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Abstract

This thesis considers the Time Window Assignment Vehicle Routing Problem (TWAVRP)
with uncertain demand. This problem extends the well known Vehicle Routing Problem with
Time Windows (VRPTW) by including demand scenarios and by requiring the placement of
an additional time window within the ordinary time windows. A demand scenario specifies
for each customer a realization of demand. The additional time window must be placed
such that expected costs across demand scenarios are minimized. An Ant Colony algorithm
is developed that can solve this problem for medium to large instances within a reasonable
computation time.
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1 Introduction

Distribution networks pose countless intriguing challenges and numerous algorithms and tech-
niques have been conceived to tackle these challenges exactly or approximately. One such chal-
lenge is the famous Vehicle Routing Problem with Time Windows (VRPTW) where multiple
vehicles have to visit and service each customer within a specific time window under capacity
constraints. This problem is well studied because of its practical relevance. Solomon (1987)
created several benchmark instances for which the exact solutions and the best approximate so-
lutions from heuristics are publicly available1. One limitation of the VRPTW is that customer
demand is assumed fixed and only one routing schedule is created. This can cause problems if
customer demand varies, as very different routes may be optimal for very different realizations
of demand across customers. Arrival times at one customer could consequently also differ quite
widely from delivery to delivery. However, customers typically want their deliveries to fall within
a pre-specified time span to accommodate their own personnel scheduling for the processing of
deliveries. This poses a question: when should this additional time window begin?
To solve this additional complication, endogenous time windows are distinguished from exoge-
nous time windows. The original time windows of the VRPTW are the exogenous time windows
and define the time span within which arrivals at a customer are allowed to occur. The endoge-
nous time window of a customer is the time window within which deliveries at that customer
should arrive. The endogenous time window must be placed within the exogenous time window
for each customer and arrivals at a customer have to fall within the endogenous time window.
By a priori specifying multiple realizations of demand the assignment of the endogenous time
windows can be optimized in such a way that the expected costs of the routes for the demand
realizations is minimal. Thus a new challenge is born, the Time Window Assignment Vehicle
Routing Problem (TWAVRP).
Being able to solve the TWAVRP allows a supplier to ask its customers for a time interval within
which deliveries can arrive and to return to its customers a time interval within which deliveries
will arrive. An exact method to solve the TWAVRP is provided by Spliet and Gabor (2012).
They use a Branch and Price procedure that can solve small instances of the TWAVRP. The aim
of the current thesis is to develop an Ant Colony Optimization (ACO) heuristic that can solve
medium to large instances within a reasonable computation time. The structure of this thesis is
as follows: Section 2 describes the TWAVRP. This is followed by a discussion in section 3 of how
the ACO meta-heuristic has been used to solve other VRP(TW) problems. Section 4 provides
a general outline of TWEAKER, the heuristic approach for solving the TWAVRP. Section 5
shows how pheromones are constructed for the TWAVRP and sections 6 and 7 describe how
the pheromones are used to generate route schedules and time window assignments. Section 8
provides numerical results and section 9 concludes.

2 Problem Description

Consider a graph G = (V,E), with the set V = {0, . . . , n} of n customers with the depot as cus-
tomer 0 and the set Ω of demand scenarios. A demand scenario ω ∈ Ω is defined as a realization
of demand for every customer. This demand is dωv for a specific customer v ∈ V \{0} in a specific
demand scenario ω ∈ Ω. A demand scenario ω happens with a probability pω. Vehicle capacity
is denoted with Q and it must hold that 0 < dωv < Q. Customer v has a service time sv which
is the time required for loading and unloading.
Each customer v has a pre-specified exogenous time window [ysv, y

e
v]. For each customer, all ar-

rivals across demand scenarios must occur within its endogenous time window. The endogenous
time window starts at yv and has given width wv, so [yv, yv + wv] ⊂ [ysv, y

e
v]. A Time Window

Assignment (TWA) is denoted with y and defines for every customer v ∈ V an endogenous time

1http://w.cba.neu.edu/ msolomon/problems.htm
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window [yv, yv + wv].
Let cv,w be the travel cost and tv,w the travel time for visiting a customer w after customer
v. The travel cost cv,w is taken proportional to the Euclidean distance between v and w and
tv,w = cv,w + sv. A route schedule r is a path in G starting and ending in the depot that
visits all customers. The depot can appear multiple times in r. A route schedule rω(y) for
demand scenario ω has associated costs crω(y) and arrival times, tvrω(y) at customer v. Wait-
ing at a customer is allowed, which means that going from customer v to customer w it can
happen that tvrω(y) + tv,w ≤ twrω(y). The schedule rω(y) is considered feasible under y if ca-
pacity never exceeds Q when customer demand equals dωv and if arrival times lie within y,
tvrω(y) ∈ [yv, yv + wv],∀v ∈ V \{0}.
Let r∗ω(y) be the feasible route schedule with lowest travel cost c∗rω(y) for demand scenario ω and
TWA y. The solution of the TWAVRP is the assignment y∗ which minimizes expected costs
across demand scenarios: ∑

ω∈Ω

pωc
∗
rω(y∗) ≤

∑
ω∈Ω

pωc
∗
rω(y) ∀y (1)

Note that for different demand scenarios the optimal route schedules may be quite different.
The assignment y∗ can be such that for a demand scenario with a low probability to occur the
best route schedule can have very high costs compared to those of other demand scenarios.

3 ACO and Time Windows

A popular method for constructing feasible routes r in VRPTW problems is the Ant Colony
Optimization (ACO) meta-heuristic. ACO is inspired by the behavior of foraging ants discov-
ering shortest trails to food sources. They leave a substance called ‘pheromone’ on the ground.
The scent of pheromone differs across ant colonies, which helps ants to recognize trails from
their fellow colony members. Ants create trails by randomly walking around until they find a
food source, after which they travel back along their trail to the colony. Trails can lead past
several food sources. The shortest trails are traversed fastest and therefore most often, which
augments the scent. This provides positive feedback that guides the ants. Yet the ants choice is
probabilistic, the intensity of pheromone along different trails only influences the probabilities
for choosing a certain trail. The ants can choose to follow an existing trail or to make a new
trail and explore new areas. If an ant finds a trail to a food source and that trail is closer to the
colony than other trails, the positive feedback helps the other ants to understand that it is a
short trail. As time passes pheromone evaporates. This means that trails that are longer or used
less often than other trails will have a decreasing number of pheromones and therefore a lower
probability to be picked as time passes. Evaporation therefore allows the colony to effectively
stop using a trail.
In the ACO meta-heuristic, trails correspond to solutions and the length of the trail correspond
to a solution quality that must be optimized. Pheromones are defined for solutions or parts
of solutions and indicate the attractiveness of using that solution (part). To complement this,
ACO algorithms include a visibility component that provides additional information on attrac-
tive features. This general set-up for pheromone and visibility allows the flexibility needed to
adapt an implementation of ACO to suit a specific problem. ACO implementations cover a wide
range of problems in Operations Research, see Dorigo and Stützle (2004) for several problems
where ant algorithms have been successful.
The ACO algorithm can be implemented for a Vehicle Routing Problem (VRP) by letting a
trail consist of arcs between customer locations. A trail consisting of arcs that start and end
at the depot equals a route in the VRP. The customers would coincide with the food sources
along this trail, with the demand of a customer corresponding to the size of a food source. The
vehicle capacity in the VRP conforms with the maximum amount that an ant can carry from
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a food source. Pheromones lie on the arcs between customer locations, where pheromones on
arc (v, w) between customers v and w measure how attractive ants have found it in the past to
visit w after v. In the VRP the visibility component for an arc (v, w) is commonly set as one
divided by the distance between customer v and w. The ants move from location to location
using probabilities based on the pheromones on and the visibility of the arcs. After each ant
has visited each location, pheromones are increased based on the length of the routes the ants
walked and pheromones are decreased according to an evaporation rate.
Rizzoli et al (2007) discuss ACO implementations that address variants of the VRP. One of the
first and most competitive implementations for the VRPTW is the MACS-VRPTW algorithm
by Gambardella et al (1999). This algorithm features two independent ant colonies, one whose
aim is to minimize the number of vehicles used and another that pursues travel time minimiza-
tion. The two colonies communicate by sharing the best solution. Since the introduction of
MACS-VRPTW, ACO algorithms have been applied to variants of the VRPTW such as the
VRPTW with backhauls (Reimann and Ulrich, 2006), a VRPTW with double time windows
(Jia et al 2012) and a VRPTW with additional delivery men (Pureza et al 2012). These algo-
rithms show that ACO can be used in situations where the VRPTW has become a sub-problem.
Ant algorithms can be combined with other meta-heuristics to help it escape from local optima.
Yu et al (2011) propose a hybrid algorithm that combines ACO with tabu search and Dengiz et
al (2010) combine ACO with Simulated Annealing. Another way to enhance the performance of
ACO algorithms is local search (Gambardella et al 2012). The ACO algorithms for the VRPTW
use either the 2-opt or Or-opt procedure of Potvin and Rousseau (1995) or the more general
CROSS exchange described by Taillard et al (1997).
The TWAVRP is a variant of the VRPTW where the VRPTW has become a sub-problem. A
heuristic that attempts to discover a solution for TWAVRP will have to solve a VRPTW on
numerous occasions. The heuristic proposed in this thesis for solving the TWAVRP builds on
and extends some of the methods mentioned above.

4 Outline Heuristic

This section gives a general overview of the heuristic for solving the TWAVRP and the following
sections provide more details on each of its components. The heuristic is called the ‘Time
Window Establisher using Ants for Kernel Enhancing Reiterations’ (TWEAKER). It is an Ant
Colony Optimization heuristic with three independent colonies that communicate via shared
pheromones. One of the three ant colonies creates Time Window Assignments (TWAs) with the
goal of finding the optimal Time Window Assignment y∗. To evaluate the quality of a TWA y
in terms of travel time it needs to know the routes with minimal expected costs. Finding these
routes for y amounts to solving a VRPTW for every demand scenario ω with the time windows
as specified by y. Solving these VRPTW problems is the goal of ant colonies number two and
three. As in the MACS-VRPTW algorithm (Gambardella et al, 1999), one colony aims for the
lowest travel time whereas the other focuses on minimizing the number of vehicles, though the
implementation here is quite different from the implementation in MACS-VRPTW. Note that
although there are a total of three objectives, TWEAKER is not a multiple objective heuristic
as it specifically aims to find y∗, the aim of colony one. As the quality of a TWA y depends on
the length of route schedules rω(y) it is natural to have this as an objective for the VRPTW sub-
problems. Including vehicle number minimization and preferring it over travel cost minimization
may be less obvious as it may not seem directly relevant for finding y∗. This counter-intuitive
objective preference greatly improves performance though. Such counter-intuitive preferences
are actually not uncommon for Multiple Objective ACO (MOACO) algorithms as the MOACO
framework of Angus and Woodward (2003) shows. One reason could be that vehicle number
minimization helps escape local minima for travel costs. Barán and Schaerer (2003) modify
MACS-VRPTW to solve VRPTW problems while using only one colony, yet they consider the
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two objectives to be equally important and search for Pareto optimal solutions. In the present
context the only advantage of one colony for the VRPTW would be a reduction in memory usage
whereas using two colonies has the advantage that updating pheromones can be done differently
for both colonies, which increases system performance (Gambardella et al 1999). Therefore two
colonies are used for solving VRPTW problems.
Ant colony number one is called the Time Window Assignment Generator or TWA Generator
and ant colonies two and three together form the Route Generator. The TWA Generator and
Route Generator share their pheromones τ . TWEAKER initializes the pheromones τ with τ0

and has the Route Generator solve a VRPTW for each demand scenario ω with time windows
equal to the exogenous time windows [ysv, y

e
v],∀v ∈ V . The Route Generator updates τ in the

process and gives the updated pheromones τ to the TWA Generator. The TWA Generator uses
τ to generate a pool J of size NJ of initial Time Window Assignments. For each TWA y ∈ J,
TWEAKER begins a separate iteration process. For a y in pool J, the Time Window Assignment
in iteration i is denoted with y(i), with y(0) the original y from pool J. The pheromones associated
with y(i) are denoted as τ (i). In each iteration i, the TWA Generator creates a new pool P(i) of
size NP of potential new Time Window Assignments. For each TWA y(i) the Route Generator
creates route schedules rω

(
y(i)
)

for all demand scenarios ω. For each potential TWA y ∈ P(i)

the Route Generator uses pheromones τ (i) to generate route schedules. The Time Window
Assignment in the next iteration, y(i+1), is the TWA y with the lowest expected costs in pool
P(i):

y(i+1) =

{
y|y = arg min

y∈P(i)
E
ω∈Ω

[
crω(y)

]}
(2)

Once y(i+1) has been chosen from the pool P(i), pheromones τ (i+1) are set equal to the phero-
mones associated with the y that was chosen to be y(i+1).
The iteration continues until y(i+1) = y(i). This equality means that pool P(i) does not con-
tain any candidate with lower expected cost than y(i) and TWEAKER has encountered a local
optimum. In such a situation, TWEAKER restores an earlier assignment, y(i+1) = y(i−3), and
generates a new pool P(i+1). If i < 3, y(0) is restored instead. The generation of pools P(i)

is stochastic and it is likely that P(i+1) 6= P(i−3). If P(i+1) = P(i−3) then P(i+1) is generated
anew until P(i+1) 6= P(i−3). TWEAKER continues the iteration process with the new pool
P(i+1). If TWEAKER encounters a local optimum NT number of times, the iteration process is
terminated. The process is repeated for another initial TWA y(0) ∈ J to which it was not yet
applied.
TWEAKER applies this iteration procedure to each y(0) ∈ J. Pheromones τ (0) are the same for
all y(0) ∈ J. Note that costs associated with y(i+1) do not need to be lower than costs associated
with y(i). TWEAKER therefore remembers the TWA y(i) with lowest expected costs across
iterations i, denotes with y′. TWEAKER compares y′ across pool J and returns the one with
lowest expected costs as the best Time Window Assignment y∗.
During execution TWEAKER keeps a record of good route schedules. TWEAKER has a list L
of size NL with route schedules with lowest expected costs. L is used to quickly check whether
TWEAKER already has a good feasible solution for a new TWA y(i). In addition, TWEAKER
keeps a list B(i) of best feasible route schedules for a TWA y(i). B(i) is initialized with route
schedules from a nearest neighbour algorithm and if i > 0 also with route schedules from L and
B(i−1). B(i) is updated during execution of the Route Generator.

The schedule below shows the steps in TWEAKER and the sections that contain a detailed
description for a particular step. Note that there is no reference to ant colonies as the three
colonies are implemented in the form of the TWA Generator (colony 1) and the Route Generator
(colonies 2 and 3).

(0) Initialize Pheromone: Pheromone τ is initialized with τ0, a pre-specified pheromone struc-
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ture.

(1) Create initial TWAs:

(1a) Set the exogenous time windows as the time windows of a VRPTW.

(1b) Let the Route Generator solve this VRPTW and update τ .

(1c) The TWA Generator uses τ to generate a pool J of initial Time Window Assignments.
Run steps 2 to 3 to completion for each initial TWA y(0) ∈ J.

(2) TWA Generation in iteration i:

(2a) Generate a pool P(i) of potential TWAs.

(2b) The Route Generator creates for each potential TWA route schedules for each demand
scenario.

(2c) y(i+1) is chosen from pool P(i) according to equation 2.

(2d) If y(i+1) = y(i), proceed to step (3) else return to step (2a).

(3) Restore an earlier TWA:
An earlier TWA is restored, y(i+1) = y(i−3). If this is done for a threshold number of times,
NT, proceed to step (4), otherwise return to step (2a).

(4) Termination:

(4a) Terminate the current procedure and save the output.

(4b) If ∃y(0) from step 1 that has not been used yet, take that y(0) and return to step 2.

5 Constructing and Updating Pheromone

To find y∗, TWEAKER evaluates numerous Time Window Assignments y. To evaluate one
TWA amounts to solving a VRPTW for each demand scenario. The number of VRPTW prob-
lems to solve therefore depends on |Ω|, NP and the duration of the NJ iteration processes. The
pheromones in ACO algorithms help to solve this number of VRPTWs in a reasonable amount
of time, because once one VRPTW is solved by an ACO algorithm the information needed to
solve it is stored in pheromone τ and can be reused to create solutions for other VRPTWs.
MACS-VRPTW (Gambardella et al 1999) is able to solve a VRPTW quickly but it constructs
pheromones as lying on an arc between two customers. It does not capture time information,
as it may be much less desirable to visit customer w after v at time t than it is at time t′ due
to the time window constraints. A TWA y may have quite different endogenous time windows
for each customer than another TWA y′ may have and the optimal route schedule for y, r∗(y),
does not need to have any segment in common with r∗(y′). Therefore the pheromone matrix
that MACS-VRPTW constructs to solve the VRPTW for y may not lead to good solutions for
Time Window Assignment y′.
Rather than having pheromones on the arcs between customers, TWEAKER constructs phero-
mones as lying across the exogenous time windows of the customers. Construction of pheromone
in this manner confers certain strengths to TWEAKER: the pheromone level is defined over the
entire exogenous time window of a customer v and each TWA y defines for every customer v an
endogenous time window within the exogenous one. The average pheromone levels across the
time windows in a Time Window Assignment y can therefore be used as an a priori indication
of the quality of y. This is useful for constructing new TWAs.
As time is continuous, pheromone levels must be determined by means of a function that can
return an appropriate value for each moment in the exogenous time window. The approach em-
ployed here was inspired by the idea of Gaussian kernels mentioned in Blum (2005) and Socha
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and Dorigo (2008) and works as follows. For each customer v, define a set Kv of kernels. Each
kernel defines a pheromone level for a part of the exogenous time window. This happens in
layers: the first kernel covers the entire exogenous time window and defines a pheromone level
for it, then the exogenous time window is split in two equal parts, each with its own kernel
with equal area, then a third layer breaks up the exogenous time window in four parts and this
continues until the last layers, yielding a total of 2l − 1 kernels, with l the number of layers.
Figure 1 shows four layers of kernels along the exogenous time window on the horizontal axis.
In figure 1 the vertical axis is the pheromone level. Summed together, the kernels define one
pheromone level for the entire time span, which would be the black line in figure 1.

Figure 1: Triangular Kernels

As can be seen from figure 1, a kernel k ∈ Kv has three points that define a triangular shape.
These three are a top xtk and two base points xlk and xrk. For each moment within the time
span covered by xlk and xrk kernel k defines a positive pheromone level. Outside this span the
pheromone level of kernel k equals zero. The bell curves of the Gaussian kernels are replaced
with a triangular shape because such shapes are computationally much more efficient and there
is no real disadvantage. A kernel k also has two minima and two maxima that limit the area
where top xtk can be situated. Along the exogenous time window, top xtk is restricted by borders
blk and brk, b

l
k ≤ xtk ≤ brk, and vertically it is constrained by a minimum and maximum height,

hmin ≤ xtk ≤ hmax. The surface below a kernel k is held constant at a value zk and as the top
increases or decreases, the base points come nearer or move farther from each other. The base
points of a kernel k have an equal distance to the top of k to maintain symmetry, yet one of
them may bump into the edge of the exogenous time window. If that happens, the base point
that stands on the edge comes to lie at the place where the intersection between the kernel and
the edge would otherwise have been. The other base point is moved such that the area below
the kernel stays equal to zk. Figures 2 and 3 show how top and base points are limited.
The fixed surface zk together with the position of xtk defines the base points as:

xlk,1 = xtk,1 −
zk
xtk,2

, xlk,2 = 0 (3)

xrk,1 = xtk,1 +
zk
xtk,2

, xrk,2 = 0 (4)

Where xtk,1 denotes the horizontal position of the top, xtk,2 its vertical position and similarly
for the base points. The formulas illustrate that computations with triangular kernels are
straightforward and hence will be fast. Pheromone τk(t) from kernel k at time t is calculated as:
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Figure 2: Boundaries to the kernel top

Figure 3: The base point at the edge of the exogenous time window
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τk(t) =



0 if t < xlk,1

t− xlk,1
xtk,1 − xlk,1

xtk,2 if xlk,1 ≤ t ≤ xtk,1

xrk,1 − t
xrk,1 − xtk,1

xtk,2 if xtk,1 ≤ t ≤ xrk,1

0 if t > xrk,1

In other words, the pheromone level at a time t for a kernel k is halfway between the top and
the base point between which the time t happened to fall. Pheromone for customer v at time t
is calculated as:

τv(t) =
∑
k∈Kv

τk(t) (5)

By using triangular kernels, pheromone can be continuous rather than discrete and updating
will be done by adjusting the position of the top. The position of the base points will then
be calculated as in equations 3 and 4. A general issue that may arise in updating pheromone
is that remote customers may at any time have low pheromone and therefore may keep being
picked last by ants constructing routes. These remote customers then have to be included at
an unfavorable moment, which deteriorates costs. An advantage of keeping the surface zk per
kernel k constant is that pheromone levels will on average be equal across customers. Through
this normalisation of pheromones the average desirability of visiting customers is equal and there
is a better chance of including a remote customer when an ant visits another customer that is
relatively nearby.
Kv, v ∈ V \{0} will be referred to as a ‘Kernel Template’ from here on. Each kernel is updated
separately. Pheromone is updated to include new information on the new route schedules that
the ants generated. The evaporation parameter ρ lowers pheromone and the parameter θ in-
creases pheromone, ρ < 1 and θ > 1. Evaporation allows ants to forget previous solutions and is
applied every time an ant visits a customer, so that other ants are less likely to generate similar
routes. Increasing pheromone is done with the best route schedules found so far and biases the
search to the neighbourhood of these best solutions:

xtk,2 ← ρxtk,2, if blk ≤ tv,ωr ≤ brk (6)

xtk,2 ← θxtk,2, if blk ≤ t
v,ω
r∗ ≤ b

r
k (7)

xtk,1 ←
∑
ω,r∗

(
tv,ωr∗ − x

t
k,1

)
if blk ≤ t

v,ω
r∗ ≤ b

r
k (8)

Here r∗ is a route schedule from the population of best route schedules L. Newly generated
route schedules lower the tops of the kernels for which their arrival time tv,ωr falls within the
borders blk and brk (equation 6). The tops of the kernels are increased if the arrival time of a
route schedule r∗ falls within the borders (equation 7). The tops are horizontally moved to the
average arrival times within their borders of the best route schedules as is shown by equation 8.
After the top is updated, the base points xlk and xrk are updated according to equations 3 and
4.
The list L is initialized with route schedules from a nearest neighbour heuristic. Pheromones τ
are thus a collection of kernel templates, τ = {Kv}v∈V .
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6 Generating Routes

The Route Generator receives an assignment y and pheromones τ as input and it creates route
schedules for each demand scenario ω. To do so, there are two colonies and for each colony there
are |Ω| ·m number of ants, with m ants for each demand scenario ω. In one run of the Route
Generator, each ant visits all customers, starting and ending at the depot and visiting the depot
in between only if so forced by time window and capacity constraints. If an ant visits the depot,
his capacity becomes Q and if he can still visit customers within the time window constraints
he will continue to visit customers. If he cannot go to any unvisited customers within the time
windows constraints, his time is reset to the opening time of the depot. Each route along cus-
tomers that an ant travels without resetting its time corresponds to a route that a vehicle from
the depot would travel. Each ant thus creates a route schedule rω for the demand scenario ω it is
associated with. Each time an ant visits a customer, pheromone at that customer is evaporated.
After each entire run, pheromone at a customer v is increased at the arrival times of the best
route schedules at customer v. There are NR runs resulting in NR route schedules per scenario.
As mentioned there is a population B of size NB of best route schedules. If a newly generated
route schedule has a lower number of vehicles than the one in B with the highest number of
vehicles, it replaces that route schedule. If all route schedules in B have the same number of
vehicles or less as the new route schedule, but the new schedule has lower travel costs than
one in B with an equal number of vehicles, then the new route schedule replaces the one with
higher travel costs. A route schedule r with a lower number of vehicles than a route schedule
r′ is preferred over r′ even if r′ has lower travel costs. As in MACS-VRPTW, this preference
ordering is necessary to construct good schedules fast.
There are two separate ant colonies for solving a VRPTW. One aims for travel cost minimiza-
tion, the other for minimization of the number of vehicles. They keep their kernel templates
separate but share the population of best solutions. The two colonies work the same except
that for the colony minimizing travel costs, a local search is applied to a route schedule once an
ant is done constructing the schedule. This local search is the CROSS exchange as discussed in
Taillard et al (1997). The CROSS exchange generalizes local searches such as 2-opt and Or-opt
by allowing whole segments of routes to be swapped.
One run of the Route Generator works as follows: at the start, each ant visits a randomly
chosen customer. Ants walk sequentially rather than parallel, so an ant a does not encounter
dynamically changing pheromone. Sequentially walking ants make the implementation simpler
because pheromone is defined along the exogenous time window of customers. This time di-
mension would make an algorithm with parallel walking ants more complicated and slow as it
would need to keep count of who arrives where next. Each time an ant a visits a customer v
it retrieves an amount dωv , the demand of customer v at demand scenario ω, and its capacity
decreases. It updates the remaining capacity and time and removes that customer from his list
of customers to visit, Λa. Initially Λa = V \{0}, the set of customers. Due to time window and
capacity constraints the ant may not be able to choose his next destination among all unvisited
customers. Let Λ̃a ⊂ Λa denote the unvisited customers that meet the time window and capacity
constraints and can therefore serve as next destinations. If the ant returns to the depot and
both time and capacity are restored, the list is restored as well: Λ̃a = Λa.
The list Λ̃a may still be quite large. Blum (2005) suggests to have the ant choose only among
the NN neighbours that are closest in terms of travel time. Let the list of NN nearest neighbours

be denoted by Λ̃ba ⊂ Λ̃a. The next destination that could be part of the optimal solution may

not be contained in Λ̃ba but it seems reasonable that the ant can find a good route by looking at
its NN nearest neighbours, as long as NN is sufficiently large to allow construction of schedules

with low routes and travel costs. If the aim is to find good solutions quickly, Λ̃ba is used, if the

best routes possible need to be found Λ̃a is used instead. The probability with which ant a
chooses a next destination w when he is at v is given by:

10



pav,w(t) =
ταw(t′)ηβv,wν

γ1
w,1(t′)νγ2w,2(t′)φδv,w∑

w′∈Λ̃b
a

ταw′(t
′)ηβv,w′ν

γ1
w,1(t′)νγ2w,2(t′)φδv,w′

, w ∈ Λ̃ba (9)

Here t is the current time, v is the current location of the ant, w is a potential next location, t′

is the arrival time at w, α, β, γ1, γ2 and δ are parameters to be explained later on, τ denotes
pheromone, η denotes visibility, ν denotes urgency and φ is frequency. Visibility ηv,w is one di-
vided by the distance between v and w. Urgency comes in two forms, mirroring its appearance
in MACS-VRPTW: νw,1 measures how much time remains before the time window of w closes.
The closer t′ is to the closing time of the time window of w the larger the urgency will be. νw,2
measures how much time passes between ending of service at v and the start of service at w.
Frequency φv,w measures how often ants previously choose location w after location v. In other
words, the probability that an ant chooses a location w if it is at location v depends on the
pheromone level at w at the time when it arrives at w, on the distance between v and w, on
how much time remains before w cannot be visited any more, on how much time passes between
services and finally on how often w has been picked after v by other ants. α, β, γ1, γ2 and δ
regulate how important these five factors are relative to each other.
The frequency factor is mainly included to escape stagnation and δ equals zero until such a
situation occurs. The Route Generator does not and cannot prevent the ants from creating the
same routes over and over again. It is theoretically possible that if the ants create a thousand
routes, only ten of them are unique. It is not a problem that ants may occasionally create the
same routes as long as the better routes are found. However, if the solution no longer improves,
a situation of stagnation, then it does become a hindrance. The frequency factor lowers the
probability of w being chosen after v if it was chosen after v often in the past and therefore
lowers the probability of creating the same routes repeatedly. Frequency is not necessary to find
good solutions to a VRPTW problem but increases the speed with which good solutions are

found and helps to maintain diversity. The size of Λ̃ba is increased if stagnation sets in and more
diversity is desired.
ACO algorithms also incorporate a probabilistic rule to balance exploration and exploitation
(Dorigo and Stützle, 2004). Given the probabilities pav,w(t), there is a probability q0 that cus-
tomer w is chosen for which pav,w(t) is the largest and there is a probability 1−q0 that the choice
for a next location w will happen with a chance proportional to probability pav,w(t). The former
would be exploitation and the latter exploration. Exploitation adds a greedy element and is
meant to create routes with short travel times, whereas exploration is meant to maintain search
diversity and to allow for new, unexplored routes to be discovered.

7 Generating Assignments

This sections explains how the Time Window Assignment Generator assembles new Time Win-
dow Assignments y. The TWA Generator takes a Time Window Assignment y and pheromones
τ as input and generates a pool of candidate TWAs. There are two different ways to do so,
one meant for the initialization process and the other for the iteration process. At the start,
TWEAKER creates a pool J of TWAs. Rather than choosing one TWA y from J, each Time
Window Assignment y in J is explored to ensure diversity and search a wider area of the so-
lution space. TWEAKER attempts to improve each TWA y ∈ J with an iteration process.
At iteration i, the TWA Generator takes y(i) and pheromone τ (i) as input and creates a pool
P(i) of candidate TWAs, from which one is chosen to be y(i+1) according to equation 2. A
Time Window Assignment in a pool such as J and P(i) is assembled by first specifying for each
customer v ∈ V \ {0} a number of candidate endogenous time windows and subsequently letting
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an ant choose one time window for each of these customers. This ant comes from an ant colony
that is independent from the two colonies used in the Route Generator.

7.1 Candidate Time Windows

The ACO algorithm of the previous section needs candidate time windows for every customer.
For pool J these are created by considering the solutions of the VRPTW problems with exoge-
nous time windows. There is one VRPTW for each demand scenario ω, so for every customer
v the solutions provide |Ω| arrival times. These are at the centre of the |Ω| candidate time
windows that the TWA Generator uses to create pool J.
The candidate time windows that the TWA Generator needs for a pool P are created with help
of time factors m. The TWA Generator is given a TWA y(i). For each customer v, the time
window of customer v in y(i) can be moved to the past or to the future, so there are two time
factors per customer, a time factor m−v for the past and a time factor m+

v for the future. Each
is restricted: 0 < m−v < 1 and 0 < m+

v < 1. These turn the time window of y(i) at v into two
candidates, [yv −m−v wv, yv +wv −m−v wv], denoted with c−v , and [yv +m+

v wv, yv +wv +m+
v wv],

denoted c+
v , which together with the time window [yv, yv +wv] from y(i), denoted cv, form three

time window candidates for each customer v.
The time factors indicate how much a time window is moved to the past or future to create new
candidates. The time factors are asymmetric, so c−v can be much further into the past than c+

v

lies in the future and time factors across customers can be very different. They can be quite
small for one customer, implying that its time window is approximately at the place it should
be, whereas for another customer the time factors can still be quite large, implying the time
window is not yet in its rightful place. After the ants have used these candidate time windows
to generate a pool P(i) of candidate TWAs and a new TWA y(i+1) has been chosen from P(i),
the time factors are updated based on which candidate time windows constitute y(i+1). If the
indicator function 1{cv ,h} equals one if cv in iteration h was chosen in iteration h to be the time

window for y(h+1) and zero otherwise, then the formula for updating the time factors is:

m+
v,i+1 =

P∑
p=0

1{c+v ,i−p}wpm
+
v,i−p (10)

m−v,i+1 =
P∑
p=0

1{c−v ,i−p}wpm
−
v,i−p (11)

The time factors in iteration i+1 depend on the time factors of the previous P iterations, which
are weighted with w. P is chosen to be two and w = {2, 1, 0.5}. If a time window is continually
moved to the past then it should do so faster each time, whereas if a time window moves back
and forth in past and future then it is somewhere near the place it should settle and its time
factors should decrease.
The time factors are initialized as m+

v,0 = m+
v,−1 = m+

v,−2 = 0.5 and similarly for m−v . If after
updating the time factors for all customers fall below a threshold TM = 0.1, then the new
TWA is too similar to its predecessor and the process is considered to have arrived at a local
optimum. TWEAKER then sets y(i−3) as y(i+1) and resets the time factors to their initial value.
TWEAKER retraces its steps three iterations and tries again. If this resetting has happened
NT number of times, TWEAKER terminates the current iteration process.

7.2 TWA Generator ACO

Suppose that for each customer the candidate time windows have been determined. An ant a
assemble a TWA from these candidates by selecting a new destination from a list Λ of the NN
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nearest customers. If ant a is at a candidate time window h of customer v it chooses to go to a
candidate time window l of customer w with probability:

pavh,wl
=

ταwl
ηβvh,wl∑

w′
l′∈Λh

τα
w′

l′
ηβ
vh,w

′
l′

, wl ∈ Λh (12)

In this formula τwl
is the average pheromone level over the time span of candidate time window

l at customer w. ηvh,wl
is the visibility, which is given by:

ηvh,wl
=

max (min ((yeh + tv,w), yeh)−max ((ysh + tv,w), ysl ) , 0)

yel − ysl
(13)

Here tv,w is the travel time between v and w. For a time window h, ysh is the start of time
window h and yeh is the end of time window h. Visibility raises the probability that ant a
chooses a candidate time window that starts soon after the time window it is currently located,
correcting for travel time tv,w. This ensures that the time windows stay coupled, which makes it
easier to generate routes. Each ant a starts at the depot and visits customers until a candidate
time window for each customer has been chosen. Each ant a keeps track of time nor capacity
and does not visit the depot in between visiting customers. The aim of the ants is not to
generate route schedules but to choose those time windows that connect best to enable the
Route Generator to find good routes. Once a TWA is chosen, its population of best route
schedules must be initialized. TWEAKER does this by checking whether route schedules from
a previous population and from the list of best route schedules L are feasible. TWEAKER also
uses a nearest neighbour heuristic to create route schedules for the new TWA. The value of the
newly created TWA are the travel costs of the best route schedules that the Route Generator
can find for it.

8 Results

This section shows the numerical experiments and results. All computations in this section were
carried out on a Windows 7 system with an Intel Core i5 2.4 GHz processor and 8 GB RAM. All
code was written in Java. The results compare TWEAKER’s solutions to two benchmarks. The
first benchmark consists of modified versions of Solomons benchmark solutions and the second
benchmark are the TWAVRP instances for which Spliet and Gabor (2012) have calculated the
optimal solutions.

8.1 Solomon Instances

Solomon (1987) created six sets of problems, called R1, C1, RC1, R2, C2 and RC2, which are
considered the standard benchmark for VRPTW problems. Each set contains between eight and
twelve instances and the six sets together contain 56 instances. For a particular problem set,
the customer locations, service time, demand and vehicle capacity are the same across instances
in that set but time windows differ, both in window width and start time. All sets contain 100
customers. In problem sets R1 and R2 the customer locations are randomly generated, for C1
and C2 the locations are clustered and for RC1 and RC2 the customer locations are mixed,
some randomly generated and some clustered. Problem sets R1, C1 and RC1 have small vehicle
capacity combined with tight time windows, whereas problem sets R2, C2 and RC2 have large
vehicle capacity and wide time windows. Solutions to instances in sets R2, C2 and RC2 therefore
tend to have fewer routes and more customers per route than solutions for instances in sets R1,
C1 and RC1. Sets C1 and C2 have time windows whose placement is based on a solution to a
similar VRP problem without time windows.
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These problem instances are modified into TWAVRP problems by generating the set of demand
scenarios Ω and creating exogenous time windows from the problem sets themselves. A set Ω of
30 demand scenarios is generated for each problem set by applying a basic bootstrap (Dolnicar
and Leisch, 2009) to the demand of the corresponding problem set and all demand scenarios
have equal occurrence probability. Solomon (1987) provided each customer in each instance of
a problem set with a time window. For the moment, these are referred to as the endogenous
time windows. Since a customer is the same across instances of a problem set except for the
endogenous time windows, it becomes possible to create exogenous time windows. The exogenous
time window for a customer in a problem set is such that the endogenous time windows in the
instances are always within the exogenous time window. Thus the exogenous time window for
a customer in a problem set is the same across instances. The exogenous time window of a
customer does not start earlier than the opening time of the depot plus the travel time from
the depot to that customer and similarly for the end of the exogenous time window. For a
customer v in a problem set A, let ypv be earliest moment that a time window starts across the
instances in A and ygv be the latest moment. t0,v is the travel time from the depot to v and tv,0
the travel time from v to the depot, which differs from t0,v due to service time. The exogenous
time window [ysv, y

e
v] of customer v in problem set A is then given by:

ysv = max (ypv , y
s
0 + t0,v)

yev = min (ygv , y
e
0 − tv,0)

Each instance in a problem set can be regarded as one assignment of endogenous time windows
for which a VRPTW problem needs to be solved.
To see whether the Route Generator is capable of solving the original Solomon instances, tables
1 and 2 show the optimal solutions for the original Solomon instances and the solutions of the
Route Generator (RG). The results in tables 1 and 2 were obtained with parameters α = 0.5,
β = 2, γ1 = 0.5, γ2 = 2 and δ = 0.5. These values were found by running a grid search,
where each parameter could take the values 0.5, 1, 2 and 5. The obtained values give the lowest
expected costs when applied to the Solomon instances. Experimentation with setting one or
more of the factors equal to zero did not lead to lower expected costs. Note that here γ1 6= γ2,
so the factors regulating the two components of urgency are not equal. This shows that it
may have been beneficial to break urgency into two components instead of keeping it as one
as in MACS-VRPTW. The factor α in equation 9 indicates the importance of pheromone with
regard to the other factors, visibility, urgency and frequency. In MACS-VRPTW α is set to
1 but here it was found that α = 0.5 gives lower expected costs, only slightly lower compared
to setting α = 1, keeping the other factors equal. The number of ants was set to 10 as in
MACS-VRPTW. The pheromone parameters, ρ for evaporation and θ for updating, were set to
ρ = 0.9, as is standard in the literature, and θ = 1

ρ . Experimentation indicates that setting the
number of layers to five and surface zk per kernel to 0.25 times the length of the exogenous time
window yields pheromone values with a good balance between discovering new route schedules
(exploration) and finding route schedules with lowest expected costs (exploitation).
In tables 1 and 2 the columns with either ‘R1’, ‘C1’, ‘RC1’, ‘R2’, ‘C2’ or ‘RC2’ at the top
represent the optimal solutions for the Solomon instances of the corresponding problem set, the
columns with ‘RG’ at the top represent the solution according to the Route Generator and the
columns with ‘Time(s)’ indicate the time in seconds that the Route Generator took to come to
the solution. TWEAKER will be tested only on the first 25 customers of the instances, therefore
the solutions in tables 1 and 2 concern only the first 25 customers.
These tables show that the Route Generator can find solutions within 10 per cent from the opti-
mal solution, except for problem sets R2 and C2 where the solutions from the Route Generator
are 16 per cent from the optimal solutions. As R2, C2 and RC2 are the problem sets with the
wider time windows and larger vehicle capacity, their space of feasible solutions is larger. This
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Instance R1 RG Time(s) C1 RG Time(s) RC1 RG Time(s)

1 617.10 635.76 45.40 191.30 191.83 40.86 461.10 465.65 37.68
2 547.10 604.71 45.99 190.30 195.38 44.84 351.80 355.09 43.89
3 454.60 488.18 49.72 190.30 197.00 53.43 332.80 340.26 48.04
4 416.90 443.47 52.52 186.90 194.65 56.73 306.60 319.69 50.69
5 530.50 553.58 45.41 191.30 191.83 42.31 411.30 420.00 41.52
6 465.40 494.77 47.56 191.30 191.83 40.96 345.50 346.93 39.27
7 424.30 451.23 50.98 191.30 191.83 41.78 298.30 299.52 43.55
8 397.30 426.81 52.46 191.30 191.66 44.33 294.50 301.28 47.70
9 441.30 462.83 44.89 191.30 191.83 46.39
10 444.10 454.8 47.64
11 428.80 463.93 49.85
12 393.00 412 50.99

Table 1: Route Generator performance for R1, C1 and RC1

Instance R2 RG Time(s) C2 RG Time(s) RC2 RG Time(s)

1 463.30 502.53 47.41 214.70 247.29 46.11 360.20 387.94 49.14
2 410.50 474.14 51.40 214.70 247.75 52.86 338.00 369.66 55.96
3 391.40 428.39 58.30 214.70 247.77 60.51 326.90 345.19 62.26
4 355.00 421.25 61.46 213.10 245.52 65.06 299.70 317.57 67.15
5 393.00 443.86 50.45 214.70 240.6 45.87 338.00 350.85 53.70
6 374.40 438.86 54.23 214.70 258.13 46.51 324.00 375.8 54.07
7 361.60 431.64 61.24 214.50 256.68 46.68 298.30 331.69 56.56
8 328.20 405.55 64.87 214.50 252.73 45.82 269.10 313.88 67.83
9 370.70 415.06 52.80
10 404.60 460.71 55.25
11 350.90 379.46 58.63

Table 2: Route Generator performance for R2, C2 and RC2
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makes them considerably harder to solve than problem sets R1, C1 and RC1, which is reflected
in the performance of the Route Generator. It takes on average 51 seconds to execute these
results. The average deviation from the optimal solution is 8.28 per cent and if the number
of runs is lowered such that the Route Generator only needs on average 25 seconds, then the
average deviation becomes 17.8 per cent. However, TWEAKER needs to consider a rather large
number of VRPTW problems, one for each potential new TWA in pool P(i) for all iterations
in all iteration processes. Therefore the number of runs NR was lowered so that the Route
Generator only needs two to three seconds to solve a VRPTW.
Besides the parameters mentioned earlier, TWEAKER has parameters NB, NL, NN, NJ, NP

and NT that can be optimized after the previous ones have been determined. NB controls the
size of population B and NL that of list L. Large NB and NL make it more likely that the Route
Generator starts with good routes which can guide it to better solutions faster. Yet if NB and
NL are too large, too many solutions are saved which slows the algorithm without providing a
justifiable gain in solution quality. Experiments showed that a balance is struck if both are set

equal to the number of customers. NN controls the size of Λ̃ba, the list of nearest neighbours from
which ants choose their next destination. Keeping this list small narrows the choice to a few
nearby customers and affects both computation time and solution quality positively. However,
it may also hinder building diverse solution and prevent the Route Generator from finding the
best solutions. Some experimentation suggests that for instances with 50 and 100 customers
setting NN to a value between 5 to 10 has a positive impact on the route schedules created but
for 25 customer instances changing NN had little to no effect.
The three parameters NJ, NP and NT effectively control how often TWEAKER creates new
TWAs and solves new VRPTWs and they determine to a large extent the computation time. NJ

is the size of pool J and determines how many initial TWAs are formed from the candidate time
windows across the entire exogenous time window of each customer. These initial TWAs can be
very different and cover completely different areas of the exogenous time windows, therefore a
large NJ maintains diversity in TWA generation. NP is the size of a pool P. It determines the
number of candidate TWAs from which TWEAKER can choose the next TWA. If NP becomes
larger then it will be more likely that TWEAKER finds a better candidate TWA, so it stalls the
stagnation of TWA improvement. A large NP also implies that the neighbourhood of candidate
TWAs is searched more intensively because more candidates are evaluated. In other words, NJ

influences the diversity of the search whereas NP is important for the intensity. To maintain
reasonable computation times, a balance must be struck between the two.
Figures 4 and 5 show how changes in NJ (figure 4) and NP (figure 5) have an impact on the
solution quality for the representative problem instances R101, C101, RC101, R201, C201 and
RC201. The horizontal axis depicts the pool size and the vertical axis shows TWEAKERs so-
lution divided by the optimal solution for these Solomon instances. Unfortunately for all six
problem instances, there is no obvious trend in these series or a slight decrease at best. In the
case of J this means that the number of initial TWAs cover too little of the solution space and
in the case of P this means that additional intensification does not help to discover a better
local optimum.
Tables 3 and 4 show the results for solving the modified Solomon instances. For each instance
the window width wv for customer v ∈ V \{0} equals the window width in the original prob-
lem instance. The number of customers considered is 25 and the number of demand scenarios is
30. As can be seen from the tables, TWEAKER was run approximately 10 minutes per instance.
Basically, the original Solomon instances constitute a Time Window Assignment and TWEAKER
has tried to find one with lower expected costs across demand scenarios in Ω. The original So-
lomon time windows were feasible for the demand scenarios as created with the bootstrap. For
some instances TWEAKER succeeded to find a TWA with lower expected costs, especially for
the instances of set R1 and RC1. R1 is the set where locations are randomly generated and
where there are short scheduling horizons and RC1 is the set where some locations are randomly
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Figure 4: Solution as percentage of optimal solution for varying size of NJ

Figure 5: Solution as percentage of optimal solution for varying size of NP
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generated and some clustered and where scheduling horizons are also short. For R1 the average
improvement was 2.69 per cent and for RC1 it was 8.43 per cent. There are large differences
between instances in whether TWEAKER succeeded to improve upon the expected costs of
Solomons original assignment or not. In particular, TWEAKER failed to find a TWA with bet-
ter expected costs for instances from sets C1 and C2, the purely clustered problems. This can be
explained by the fact that Solomon based the placement of his time windows on the solution of
the problem without time windows. This increases the difficulty of finding a better TWA within
the time limit of ten minutes. It may also be that for clustered problems it is simply harder
to find good Time Window Assignments because the optimal assignment of a time window to
a customer may be very sensitive to the assignments of its close neighbours. That would be a
question for further research.

Instance R1 RG Time(s) C1 RG Time(s) RC1 RG Time(s)

1 617.10 544.78 565.26 191.30 319.25 599.29 461.10 354.58 529.41
2 547.10 558.19 591.31 190.30 286.75 639.26 351.80 319.06 588.07
3 454.60 474.61 659.84 190.30 216.04 755.03 332.80 308.79 679.82
4 416.90 425.90 705.35 186.90 202.01 814.43 306.60 296.53 731.11
5 530.50 466.53 575.98 191.30 237.63 614.16 411.30 345.26 564.58
6 465.40 438.03 636.59 191.30 304.05 607.26 345.50 312.91 586.10
7 424.30 415.02 692.43 191.30 226.00 666.48 298.30 300.69 656.62
8 397.30 404.22 733.33 191.30 217.53 669.45 294.50 295.01 721.85
9 441.30 442.90 622.91 191.30 216.83 700.77
10 444.10 414.70 680.89
11 428.80 426.52 683.19
12 393.00 362.74 737.96

Table 3: TWEAKER performance for R1, C1 and RC1

Instance R2 RG Time(s) C2 RG Time(s) RC2 RG Time(s)

1 463.30 489.42 658.14 214.70 336.40 677.44 360.20 342.96 647.16
2 410.50 424.01 684.56 214.70 300.58 692.13 338.00 347.64 709.13
3 391.40 395.67 798.69 214.70 252.78 838.88 326.90 310.80 813.05
4 355.00 380.15 860.05 213.10 253.70 889.26 299.70 301.67 859.63
5 393.00 401.02 706.44 214.70 295.07 637.47 338.00 345.54 700.59
6 374.40 400.02 760.53 214.70 290.09 685.63 324.00 320.30 702.58
7 361.60 364.34 842.74 214.50 279.78 695.84 298.30 313.86 755.82
8 328.20 365.06 876.36 214.50 275.41 711.82 269.10 300.80 827.70
9 370.70 389.66 743.88
10 404.60 411.30 755.49
11 350.90 342.27 803.17

Table 4: TWEAKER performance for R2, C2 and RC2

8.2 Optimally Solved TWAVRP Instances

Spliet and Gabor (2012) have calculated the optimal solutions to five TWAVRP instances, each
with eight customers and three demand scenarios. As described in their paper, customers are
randomly generated and the generation of demand and time windows is based on their experience
with the distribution centre of a Dutch retailer. For these five instances TWEAKER manages
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to find near optimal solutions as shown in table 5 below. The parameters used were the same
as the ones for the Solomon instances above.

Instance Optimal Solution Time(s) TWEAKER Time(s)

1 14.92 547.58 14.92 4.80
2 17.31 43.81 17.52 4.20
3 15.85 110.07 16.56 4.89
4 15.68 31.15 15.68 4.97
5 19.79 64.19 20.50 4.20

Table 5: TWEAKER performance for optimally solved TWAVRP instances

TWEAKER finds solutions that on average are 1.86 per cent from the optimal solution in less
than 5 seconds. This shows that TWEAKER is capable of finding near optimal solutions for
TWAVRP instances.

9 Discussion and Conclusion

This thesis introduced an Ant Colony Optimization algorithm called TWEAKER to solve the
Time Window Assignment Vehicle Routing Problem with uncertain demand. Demand vari-
ability was captured through the use of demand scenarios. The algorithm revolved around the
definition of pheromone along the exogenous time windows of customers. Pheromone in this
implementation can be viewed as a measure of how attractive it was for a vehicle to visit a
customer at a certain moment of the day. The way in which pheromone is constructed allowed
three ant colonies with three different objectives to work together. The results indicate that this
set-up is effective in solving VRPTW problems. The results also indicate that TWEAKER may
find a good time window assignment within a short amount of time but that it does not do so
consistently. This may be due to the large number of model parameters that need to be set. It
is more likely though that in such cases TWEAKER simply has not searched a sufficient area
of the solution space. TWEAKER does find near optimal solutions for the TWAVRP instances
of Spliet and Gabor (2012).
A venue for future research would be the investigation of time window assignments within clus-
ters of customers. The previous section shows that TWEAKER performed less for the clustered
problems than for the random and mixed problems. It would be interesting to find a way to im-
prove how TWEAKER deals with clustered customers, which would make the algorithm much
more effective.
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