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Abstract

Nowadays university hospitals become more and more interested in operations re-
search. Within a hospital all medical departments are connected by some process.
One of those processes is the care wards provide to patients. While providing this
care, a patient occupies a hospital bed; those beds are scarce. There is a clear trade-
off between the occupancy level and ward availability. The more beds, the lower the
occupancy and the higher the availability. We describe the idea of increasing the occu-
pancy while maintaining the same availability, by combining wards. To estimate the
occupancy and ward availability we developed a model that not only uses the patient
arrival rate, but also includes the patient bed requirements (i.e. a patient requiring
multiple beds).
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1 Introduction

1.1 Hospitals

One of the main objectives of an university hospital, besides providing education and doing
research, is to provide care to those who need it. Part of this care is provided in the wards
of the hospital. A ward is a care unit that provides care to patients during treatments and
is, in general, a scarce resource within a hospital1. Furthermore, not only is this a scarce
resource, most individual wards are controlled by different medical department rather than
the wards being one shared resource.

While wards are essential to hospital care, they are also a huge cost factor as a medical
departments Nowadays, the health care sector is becoming more and more interested in
using operations research to optimize the available resources, enhance patient care and
minimize cost. However, in case of wards, current solutions only go so far as to more
accurately estimate the arrivals and target a given occupancy level (Harper, 2002; Green,
2002). Although these solutions do benefit the hospital, they have negative impact on
patient service (Green & Nguyen, 2001).

1.2 The scope of this research

The main goal of this thesis is to find a way to,

Optimize the bed occupancy level by combining ward locations, while keeping
the current level of ward availability.

The literature suggests several definitions for the bed occupancy level, but the most used is

occupancy level =
average number of occupied beds

total operational beds
. (1.1)

Using Equation 1.1 we can easily show that we can increase the occupancy level by reducing
the total operational beds, but this inadvertently will also lower the ward availability. The
ward availability is usually defined as,

ward availability =
admitted patients

total arrivals
. (1.2)

As a result of lowering the operational beds, fewer patients can be admitted and thus the
ward availability will decrease. Therefore we have to find an alternative way to increase
the occupancy level and maintain the service level, for example combining ward locations.
Throughout this thesis we answer a series of questions, which help reaching our intended
goal.

1. How do wards operate and what characteristics can we exploit in our models?
Section 2 is used to introduce wards, as well as their general behaviour. Furthermore
we will describe the situation at Erasmus MC, which provided us with the patient
data; the Erasmus MC is trying to restructure the organisation and increase the
occupancy level, without lowering the service level.

1In Section 2 we will explain wards and ward locations (WLs) in more detail.
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2. What solution methods exist in the currently available literature?
Within the operations research field there already exist various models and solutions
related to health care. Generally these methods can be classified in four different
levels; strategic, tactical, off-line and on-line operational control. In Section 3 we will
present some of the existing ideas or methods, as well their usual operational level.

3. Which model is best to describe the patient flow in the wards?
The first step is to analyse the available data, in Section 4, so that we can use that
in our model. Thereafter we derive our theoretical model in Section 5, which we will
evaluate using the simulation described in Section 6. Section 7 will show results for
two different divisions, as well as a series of different theoretical situations.

4. Can managerial decisions further optimize bed occupancy?
Some aspects of wards that affect the occupancy or service level are by design and
can only be changed by managerial decisions. We use Section 8 to elaborate on some
ideas which might further increase occupancy or service levels.

This research is done for and in cooperation with the Erasmus MC, which is the largest
university hospital in the Netherlands.

2 Characterizing Wards

2.1 Wards in general

A ward is a care unit that provides care to patients during treatments. While wards are an
essential part of the hospital, they are also expensive. Historically wards are categorised
by their speciality, e.g., general surgery or orthopaedics. Recently other classifications are
used in extension to the specialities, such as average length of stay (LOS) and level of
care. The advantage of these classifications is that each ward only has one type of patient.
However, they might also lead to low occupancy levels as arrival rates for some specialities
are quite low.

Analyse
patient bed
requirement.

Beds
avail-
able?

Admitted to
the ward.

Arrival
Yes

Admit Discharge

No
Refuse

Length of Stay

Figure 1: Patient flow through a ward.

Figure 1 shows general patient flow through a hospital ward2. At patient arrival, the
hospital estimates the patient’s bed requirement – e.g. 2 beds – and if these beds are
available the patient is admitted. If not, the patient is refused and most likely will find

2This flow diagram is inspired on the flow diagram we found in (Bruin, Bekker, Zanten, & Koole, 2010)
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care elsewhere. The patient stays in the hospital ward and occupies a bed until the current
treatment has been completed. After completing the treatment, the patient is discharged
and the bed available again.

2.2 Wards in Erasmus MC

The Erasmus MC has 115 wards of which the majority is categorised by their speciality
and the length of stay (LOS). As the term ‘ward’ is both used for a physical location in
the Erasmus MC as well as a hierarchical term, we will refer to one of these 115 locations
as ward location (WL). As such in our case a ward can consist of multiple locations, i.e.,
WLs. Throughout the Erasmus MC each WL is owned by one medical departments, as
shown in Figure 2.

Division
Medical

Department Ward Location

Erasmus MC

Hoboken

Algemene
Heelkunde

Ward #4098

Ward #4108

Dermatologie

Ward #7413

Ward #7441

Sophia Kinder-
geneeskunde

Figure 2: Part of the current situation within the Erasmus MC.
This organisational chart only shows a small part of the Erasmus MC. In fact Algemene Heelkunde has 6
WLs.

Therefore, a WL only provides care to patients of that medical department.

2.3 Case Study

2.3.1 Introduction

The general idea for this thesis originated from a project the Erasmus MC is working on.
The Erasmus MC in Rotterdam currently has 33 medical departments across 7 divisions in
3 different locations. As mentioned above, currently each medical department is responsible
for a series of WLs; these only provide care for patients from that medical department.

In the near future the Erasmus MC will restructure the divisions and medical departments
to reduce cost. One of the proposed changes is to reposition the WLs within the organisa-
tion.
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Division
Medical

Department Ward Location

Erasmus MC

Hoboken

Algemene
Heelkunde

Dermatologie

Ward Unit

Ward #4098

Ward #4108

Ward #7413

Ward #7441
Sophia Kinder-

geneeskunde

Figure 3: The proposed situation by the Erasmus MC.

A new medical department will be created, for each division, and has as sole purpose to
provide (ward) care for patients of the medical departments within that division. There has
not yet been a decision for a precise layout of the individual WLs this new medical department
is in charge of, but the goals are to

• reduce cost;

• increase the occupancy level;

• maintaining at least the same availability3.

The first goal by itself is easy. The majority of the cost of a ward comes from the operational
beds, even if there are no patients assigned to them. For this reason it seems only fair to
decrease the number of operational beds, which will also increase the occupancy level due
to relation 1.1. However, as we mentioned before, this will negatively influence the ward
availability, i.e., service level – see Equation 1.2.

2.3.2 Study Design

As this study has a clear practical application, we employ a classical 3-step approach:
(theoretical) design, (empirical) validation and implementation. In this thesis we address
the first two phases, i.e. design and validation, of this approach.

1. Design
Sections: 4, 5
During this phase we analyse the available data and identify the key processes within
wards. We then use these processes to design a theoretical model that represents
reality. When processes are uncertain, no clear representation possible, we have to
make assumptions and as such the represented reality may change.

3As we will use inventory management, this is also referred to as the service level.



8

2. Validation
Sections: 6, 7
We validate our theoretical model by use of simulation. Using the actual data we
designed a simulation environment that supports a series of testing scenarios. This
phase is usually as close to reality as the data allows, but can also cover extreme
cases.

The third and final phase, i.e. the implementation, is done by the hospital management
in a later stadium. This phase requires some more research into some soft-aspects of this
model. For example, this model might show that combining wards has a clear financial
benefit, but planning might be so complex the result can never be implemented. The actual
choice for implementation depends on several factors, ranging from the actual benefit, the
perceived complexity by employees to the implementation cost.

3 Literature Overview

3.1 Background

Within the field of healthcare management, a field that has relatively small overlap with
the operations research community, there are several popular subjects (Carter, 2002). For
example, as approximately 60% of all inpatient admissions consist of a visit to the operating
room (OR) department, the OR department is an interesting subject. However none of
these subjects can be viewed as stand-alone, because they are all connected through various
resources within the hospital (Van Berkel & Blake, 2007). Some of these resources are
scarce and impose constraints on the performance of other medical departments. One such
a resource are the beds wards provide to patients. Again considering the OR department
example, the ward imposes constraints on the OR department’s schedule since after surgery
a bed has to be available for recovery. Assuming we target a ward availability of 95 per
cent and if the ward is functioning sub-optimal, at the point where it has too few beds,
the OR department can never attain the best possible throughput.

Historically, many decisions within a hospital, including the ward size, are based on
basic statistics, e.g., averages and proportions. More recent, many authors considered
the patient flow and bed requirement to be like queueing models, which vary greatly in
complexity (Harper & Shahani, 2002). Other authors used integer programming (Ruth,
1981) and simulation approaches (Dumas, 1985; Van Berkel & Blake, 2007). These models
share a similar goal, to optimize the bed allocation throughout the hospital to reduce cost.

3.2 Planning and Ward Occupancy

This section gives an overview of ward resource planning and the proposed solution meth-
ods in the literature. We will decompose the planning process in four classic hierarchical
levels: strategic, tactical, off-line and on-line operational control (Vissers, Adam, & Bek-
kers, 2002).

3.2.1 Strategic Level

On the strategic level the focal point is on long-term goals and targets. Usually, this
involves answering questions like ‘what . . . ?’ or ‘where . . . ?’, e.g., ‘what service level do
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we target’? To reach these goals, we need to dimension the ward resources (Bruin et al.,
2010), such as, the beds and personnel. At this level decisions are made about the physical
bed capacity. The ward capacity decisions are not made by the hospital management alone,
but are influenced by for example governments imposing a minimum occupancy or service
level. Furthermore, agreements are made with the staff concerning their service (Oostrum,
2009). The horizon for strategic planning is usually more than a year and is based on
historical data.

3.2.2 Tactical Level

The tactical level is more a mid-term process, anywhere from a couple of weeks up to 1
year (Wullink et al., 2007). Here we focus more on the ‘how . . . ?’, e.g., ‘how do maintain
a certain service level’? The answer to these questions are based on the actual patient
demand (Oostrum, 2009). At this stage the operational bed requirements are determined.
Historically these operational bed requirements depend on the ‘rights’ a ward acquired
within the organisation (Bruin et al., 2010), but is becoming more and more based on the
actual demand (Green & Nguyen, 2001; Green, 2002; Bekker & Bruin, 2010).

3.2.3 Off-line Operational Control

Once both the long-term goals and the mid-term assignments of resources has been com-
pleted, it becomes important to create schedules. How many medical personnel has to be
assigned to each ward? There already is a fixed operational bed target and the schedule
should contain at least enough personnel to main this target. This horizon for planning is
usually around 1 week.

3.2.4 On-line Operational Control

On-line operational control involves dealing with the changes in the weekly schedule. Due
to, for example, sickness there is a slight fluctuation in available staff, which in terms effects
the number of operational beds. This also involves re-scheduling scheduled admissions if
there is too little capacity.

3.3 Terminology

In this section we will discuss some commonly used definitions, which might not be evident
without a medical or health care management background.

3.3.1 Arrivals versus Admissions

When reviewing hospitals, there is distinct difference between arrivals and admissions.
An arrival is simply a person requiring medical care, who arrives at the hospital. If, upon
arrival, there is capacity available he or she is admitted; this capacity can be anything
from available beds to the required personnel. Hospitals generally only register admissions,
where we require arrivals. To approximate the arrivals we will use a method described in
Bruin et al., 2010, which uses the registered admissions, length of stay (LOS) and the
number of operational beds.
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3.3.2 Scheduled and Unscheduled Arrivals

We can divide all arrivals in two groups, namely scheduled and unscheduled arrivals. The
scheduled arrivals usually occur during the day and are known in advance. These arrivals
are scheduled anywhere from a couple of days up to several weeks in advance. Unscheduled
arrivals on the other hand are not known in advance and usually involve emergency care.

3.3.3 Length of Stay

After a patient is admitted in the hospital, the time he or she spends in a ward is called
the length of stay (LOS), abbreviated as LOS. After this time a patient can either be
discharged or transferred to another ward4. This information can easily be obtained from
the hospital administration, as both the time of admission and discharge are registered.

3.3.4 Physical and Operational Beds

We have to classify two different type of beds, namely physical beds and operational beds.
The first one is rather straightforward, but the latter requires some explanation. An
operational bed is a management term, which is defined by the available staff for each
ward. Usually there is a ratio of operational beds per staff member, i.e., one bed per
employee. The amount of operational beds is generally lower than the actual physical beds
in a ward. Hence, a patient can only be admitted if there is an operational bed available.
The number of operational beds is usually evaluated every year, but might vary slightly
from week to week (Green, 2002) due to holidays or illness.

4 Quantifying Wards

4.1 Overview

The Erasmus MC has provided us with anonymous patient5 data of 42,431 patients, which
were all admitted in 2010. During this year these patients made 91,976 visits to the hospital
and stayed 336,605 days in the wards. This comes down to an average of 7.93 days per
patient and an average of 3.66 days per visit. Figure 4 shows the number of patients in
the hospital per day of each physical location.

4This will be noted as a new admission.
5Each patient was assigned a random numeric id and all personal information had been removed.
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Figure 4: Daily number of patients staying in the hospital.
Throughout the year, there are on average 543 patients in location Hoboken, 244 in location Sophia and
133 in location Daniel den Hoed.

(a) Location: Hoboken (b) Location: Sophia

(c) Location: Daniel den Hoed

We will use this data to derive the distributions for the arrivals and admissions, Sec-
tion 4.2, and LOS, Section 4.3. Section 4.4 will be used to explain some assumptions we
made about the current number of operational beds per WL.

4.2 Arrivals

4.2.1 Admissions

As we mentioned before, currently the Erasmus MC has 115 WLs, distributed over 7
divisions. As shown in Table 1 the total admission rate (λ) is approximately 321.76 patients
per day, but the admission rates per division differs considerably. Due to the length of the
table, we refer to Appendix A Table 20 for a full overview of the admission rates.
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division no. of admissions rate [week] rate [weekend]
Daniel 15, 923 58.51 3.13
Diagnostiek 431 1.65 0.00
Hersenen en Zintuigen 10, 913 38.50 8.31
Hoboken 22, 919 81.39 16.11
Sophia 26, 119 87.18 32.36
Spoed en Intensief 6, 079 22.18 2.80
Thorax 9592 32.35 11.05

Total 91, 976 321.76 73.76

Table 1: Daily admission rate for all 7 divisions in the Erasmus MC.

The provided data does not contain the exact arrival times, merely the dates. However,
there is reason to assume that this is not constant during a 24 hour period. For example,
most scheduled arrivals occur during office hours and not at night. Therefore there the
arrival rate might be considerably lower during the nights. We have no way of confirming
this at this time, thus we assume that arrivals occur with the same rate during day and
night – Assumption 4.1.

Assumption 4.1 (Admissions) Patients arrive uniformly over a 24 hour
period, thus allowing 1 arrival rate for a day.

Table 1 also shows that the admission rate is considerably lower during the weekends. As
a result, the occupancy level will also be lower during the weekends.

Figure 5: Daily number of admissions for the Sophia division.
Without seperating weekdays and weekends, there are 72.3 admissions per day on average.

4.2.2 Arrival Rate

As we mentioned before, the is no information about the actual arrival rate. Bruin et al.,
2010 described a method to derive the actual arrival rate from the LOS and operational
beds, using the Erlang Loss function. However, the Erlang Loss model requires the arrival
rate to be (pure) Poisson, which is not necessarily the case. In Section 5 we will adapt
their idea to our new situation.
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4.3 Length of stay

4.3.1 Deterministic Data

As we mentioned before, there is no information about the actual time of admission,
merely the date. Therefore the LOS is deterministic, e.g., either 1 or 2 days, rather than
continuous. There are several minor issues with these values, as admissions of a couple of
hours are stored as a whole day. As a result, the majority of the WLs have a fairly large
amount of patients with LOS of 1 day. Furthermore, a bed can only be used once every
day, even though the patient was only in it several hours; hence, it is only freed at the end
of a 24 hour period.

4.3.2 Continuous LOS

Figure 6: Histogram of the ad-
mitted days of all patients.

We assume that this is merely a data issue, rather than
the reality. Therefore we assume that the actual LOS is
continuous. Some WL only had 1 or even 0 arrivals, we
did not include those in the figures in this section as there
is too little data to provide an accurate analysis. These
WL have so little impact on the overall system, that these
are not going to make a difference. We also assume that
the LOSs of patients are independent.

Assumption 4.2 (Length of Stay) The
treatment duration of patients are independent;
within each ward location they are identically
distributed.

The average LOS for the entire hospital is 3.66 days,
but ranges from less than a day6 up to 109.77 days. We
built a small tool, using MatLab, which tries to fit several
known distributions over the LOS, e.g., normal, exponen-
tial, Weibull and Gamma distributions. The majority of
the time the LOS can be approximated by an exponen-
tial distribution, but in some cases a Weibull distribution
is a better fit. We found two reasons why Weibull could
be a better fit. The first, and most important, reason is
that some WL provide treatments that take at least sev-
eral days, which cannot be approximated by an exponential distribution. These WL have
a Weibull shape parameter that is larger than 1, shifting the distribution to the right, i.e.,
more than 1 day. The second reason is a little less obvious, as the data is rounded upwards
to whole days. However, some wards have a relatively large amount of day treatments and
thus a relatively large probability of 1 treatment day. This results in a Weibull distribution
with a shape parameter less than 1, which looks largely like an exponential distribution
but with higher probabilities on the first few days.

During the simulation we use random generated numbers from the appropriate distri-
bution as LOS. While Section 6.2.3 will explain this in more detail, we do want to mention

6We cannot be more precise, as we do not have this data.
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one thing. As we now draw an arrival from a Poisson distribution and a LOS from either
an exponential or a Weibull distribution, the treatment might end in during the night. If
we generate an arrival at 10AM and draw a LOS of 36 hours, the patient is discharged at
2AM 2 days later. In reality this will not occur, as these patients will be discharged the
next morning. We argue, shown in Section 7.6.1, that this has little impact on the actual
performance in reality and thus we assume that patient can also be discharged during the
night.

Assumption 4.3 (Discharging) Patients will be discharged immediately
after ending their treatment and thus can be discharged at any time during a
24 hour period.

4.4 Beds

4.4.1 Operational Beds

Part of the data we received was a list of operational beds per WL. However, there are
some inconsistencies found in this list. While a large part of the data seems accurate, there
are a few that stand out. For example, the list states that WL ‘Ambulante Zorg Daniel
(6951)’ has 10 operational beds, but the patient data suggests that on average there are
19.12 beds occupied. Clearly if there are only 10 operational, this cannot happen. There
are also a few wards where it is the other way around. WL ‘Algemene Heelkunde (4125)‘
had only 1 arrival last year, but according to the data there were 40 operational beds.

We believe the latter case to be typing mistakes, as usually exchanging 2 subsequent
values result in logical combinations – in case of the example we believe that there were
40 operational beds at WL 4126, which had an average of 29.32 occupied beds. However,
the first error is harder to correct as these do not seem to be mistakes made when creating
this list. We do however notice that in case the data seems to be valid, the occupancy
level varies from approximately 40 per cent to 95.4 per cent. This results in a 65 per cent
occupancy level on average. As such, in case that the given operational beds is lower than
the average occupied beds, we assume that the actual operational beds value should be,

total operational beds =
average number of occupied beds

0.65
. (4.1)

This is a little lower than the 85 per cent what some literature suggests (Green &
Nguyen, 2001; Bekker & Bruin, 2010), but in line with others (Bruin et al., 2010).

4.4.2 Physical Beds

The data we received contained no information about the physical bed capacity for each
WL nor an estimate for the total number of beds the Erasmus MC owns. We do however
have information about the number of admitted patients for each day. We also know that,
if a patient is admitted, i.e., in our data, he or she has to be assigned to a bed. Thus a
WL has to have at least the same amount of beds as the number of patients admitted.
Therefore we define the physical bed capacity for a WL as,

physical beds = max
i
{occupied beds on day i} . (4.2)
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This might result in an overestimate of the number of the physical beds, as beds might
be borrowed from other wards on peak days, but in general this is not a problem. As we
will show in Section 7 we usually require far less beds than this maximum.

4.5 Data Limitations

While the provided data is fairly complete, there are some aspects not covered at the time
of writing.

As we explained in Section 2, each patient is assigned to a bed (or refused) when arriving
at the hospital. However for various reasons the hospital can decide to deviate from this
protocol. For example when a patient is highly contagious he or she can be assigned to
multiple beds to avoid infection of other patients7. As we have little to no information
about the frequency of this happening, we do include it in our theoretical model, but not
in our results. Therefore, we assume that all patients will only require 1 bed.

Assumption 4.4 (Beds) All patients are provided with 1 bed, no more,
no less.

5 Theoretical Approach

5.1 Relation to Warehousing and Inventory Management

The easiest analogy to a ward is a service environment, i.e., queueing theory. Such an
environment usually involves a series of employees, called servers, who serve customers for
a certain time-frame, the service time. To complete the analogy, the server in this case
would be a bed and the service time would be the LOS. However, in this context, literature
assumes that each customer occupies only 1 server. Therefore we use different analogy,
namely inventory management in warehousing.

While a ward is not necessarily the same as a warehouse, there are quite a few similar-
ities we can exploit to model the resource flow.

A warehouse is part of a supply chain (Ghiani, Laporte, & Musmanno, 2004) and
usually stores a product – which we will refer to as a ‘unit’. When a customer buys an
unit, this unit is withdrawn from the stock. Re-supplying the warehouse can be done by
employing one of several strategies. The most used are continuous review polices; once the
amount of units in stock hits a certain lower bound value, an order is placed to re-supply
the warehouse. If the re-supply order is not fulfilled immediately the warehouse has to
have a number of units in stock to meet the demand during this time, i.e., the safety stock.

The connection with the hospital wards might not be exactly evident, but lets assume
the stored units are in fact the hospital beds. Also assume that the lead-time of a ‘new
bed’ is equal to the LOS of a patient. We can then compare the ward unit as a warehouse
that ‘sells’ beds and places a re-supply order for each sold bed. This type of warehousing
policy is called the (S − 1, S)-policy, or more general S-policy, where S is the number of
‘units‘ or beds the warehouse has in stock.

7The patient is assigned to one bed, but the beds directly next to him or her remain empty to avoid
infection.
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5.2 (R,Q)-Policy

The (S− 1, S)-policy is a classic inventory management model based on the (R,Q)-policy.
The (R,Q)-policy has a fixed re-order size Q at a fixed re-order point R, which in case of
(S − 1, S) are 1 and S − 1 respectively.

Using the (R,Q) policy’s properties we can determine when to place a re-supply order.
This decision should be based on the current stock situation, the anticipated demand, and
different cost factors Axsäter, 2006. While it is easy to base the decisions solely on the
physical stock on hand, it is important to also include the outstanding re-supply orders
and back-orders8. Therefore (Axsäter, 2006) defines two different characterizations of the
stock situation, namely the inventory position (IP) (Definition 5.1) and inventory level (IL)
(Definition 5.2).

Definition 5.1 (Inventory Position9) The inventory position is the sum
of the stock on hand and the outstanding re-supply orders, minus the back-
orders.

Definition 5.2 (Inventory Level) The inventory level is the difference
between the stock on hand and the back-orders.

When we consider a hospital ward, there is a vague area concerning the back-orders. While
it is widely known that there are waiting lists for certain medical procedures, these delays
are not necessarily caused by the hospital wards. As a result there is reason to assume
that a patient will get treatment elsewhere, e.g., a less preferable ward, if the current ward
has insufficient capacity. Therefore we assume that insufficient capacity results in a lost
sale or blocking.

5.2.1 Palm’s Theorem

Palm, 1938 decribed a well-known queuing theorem, which can be applied to inventory
control systems. Assume we have a pure Poisson10 demand process with an arrival rate λ
per time unit. Also assume that the re-supply time has distribution ψ (t) with mean t̄ and
that we do not allow back-orders. (Palm, 1938) then states that,

Theorem 5.1 (Palm’s Theorem) During the steady state, the probability
of x units in re-supply R at any given time are equal to the normalized values
of the Poisson distribution with rate λ·t̄, i.e.,

P [R = x] =
(λt̄)x

x! e−λt̄∑S
k=0

(λt̄)
k! e

−λt̄
. 0 ≤ x ≤ S (5.1)

A proof of Theorem 5.1 is complicated due to a finite value for S. Nonetheless several
proofs are found in the literature, including in Palm, 1938 where the theorem originated.

8A backorder is an unfulfilled customer order due to insufficient stock on hand; this order has to be
fulfilled in the future, when a re-supply order arrives.

9Note that in our case, the IP has a constant value of S, due to the fact we place a re-supply order for
each ‘sold’ unit; hence, S-policy.

10A poisson distribution where each customer will buy one unit.
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Theorem 5.1 is closely related to the Erlang Loss model, which descibes the probability
a customer’s order is not accepted. Assume we use (S−1, S)-policy and we accept no back-
orders. Then the order is accepted if we have less than S units in re-supply; hence, if there
are S units in re-supply there are no units in stock. We can thus rewrite the probability
of a customer being accepted as,

P [R < S] =

S−1∑
i=0

P [R = i] =

S−1∑
i=0

(λt̄)x

x! e−λt̄∑S
k=0

(λt̄)
k! e

−λt̄
.

Similarly we can define the probability an order is rejected as,

P [R ≥ S] =
(λt̄)S

S! e−λt̄∑S
k=0

(λt̄)
k! e

−λt̄
, (5.2)

the Erlang Loss function.

5.2.2 Compound Poisson Demand

A common assumption in inventory management is that the cumulative demand is not pure
Poisson, but can be represented as a limit of an appropriate compound Poisson processes
(Feller, 2002). This means the customers arrive according to a Poisson process with given
intensity λ and that the size of their demand is also a stochastic variable. We can define
the probability of k customers arriving in time interval t as

P (k) =
(λt)k

k!
e−λt, k = 0, 1, 2, . . . (5.3)

with mean, as well as variance, λt.
The the demand size, or compounding distribution, is not required to be a single type of

distribution as long as it is independent and identically distributed (I.I.D.) and independent
of the customer arrivals. Therefore we define the demand size as

fj = probability of demand size j(j = 1, 2, . . .). (5.4)

Note that due to Assumption 4.4 we get f1 = 1, thus the cumulative demand can be
described by a pure Poisson process as in Equation 5.3. However, throughout this section
we will consider the more general case where the demand size can vary; this will allow future
implementation of this idea in situations where patients might require multiple beds.

We can extend Equation 5.4 by assuming that there are no demands of size zero, i.e.,
f0 = 0 and that not all demands are multiples of some integer larger than one. We can
assume this without loss of generality, since we can always rewrite the process to a situation
where the previous holds; for example, in the situation where the demand size is a multiple
of some integer, we can assume that one new unit is in fact several old units.

If we define D(t) as the stochastic demand during time interval t and extend fj by the
number of customers that generated demand j to fkj , we can denote the distribution of
D(t) as
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P (D (t) = j) =

∞∑
k=0

(λt)k

k!
e−λtfkj , (5.5)

where

fkj =

j−1∑
i=k−1

fk−1
i fj−i. (5.6)

The pure Poisson process has mean and variance λt, which is the average number of
customers in time interval t. The mean (µ) and variance (σ2) of the compound Poisson
process is a little different as it includes the demand size. If we define K as the stochastic
number of customers during one time unit and J as the stochastic demand size of one
customer, we can write the mean of the compound Poisson process as

Z = P (D (t) = j) (5.7)

µ = E [Z] = E
k

[E {Z|K}] = E
k

[KE (J)] = E (K)E (J)
5.3,5.4

= λ
∞∑
j=1

jfj . (5.8)

Similarly the variance can be written as

E
[
Z2
]
− µ2 = E

k

[
E
{
Z2|K

}]
− µ2

= E
k

[var {Z|K}+ (E (Z|K))]− µ2

= E
k

[
Kvar (J) +K2 (E (J))2

]
− µ2

= λvar (J) +
(
λ+ λ2

)
(E (J))2

= λ
[
var (J) + (E (K))2

]
= λE

(
J2
)

= λ

∞∑
j=1

j2fj . (5.9)

Notice that 5.8 and 5.9 degenerate to λ if f1 = 1. This proves that a pure Poisson process
can be modelled as compound Poisson process without further consequences; thus allowing
us to continue with compound Poisson and apply Assumption 4.4 in the final stage.

5.2.3 Generalized Palm’s Theorem

The theorem Palm proposed in Palm, 1938, now known Palm’s theorem, is only valid for
the pure Poisson distribution and thus we cannot use this directly. Therefore we have to
use a more generalized version of Palm’s theorem as described in Feeney & Sherbrooke,
1966.

Theorem 5.2 (Generalized Palm’s Theorem) During the steady state,
the probability of x units in re-supply R at any given time are equal to the
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normalized values of the compound Poisson distribution with rate λ·t̄, i.e.,

P [R = x] =
p (x|λt̄)∑S
k=0 p (k|λt̄)

, 0 ≤ x ≤ S (5.10)

where,

p (x|λt̄) =
x∑
k=0

(λt̄)k

k!
e−λt̄fkx .

As the proof of Theorem 5.2 is rather lengthy, we refer to Feeney & Sherbrooke, 1966
for the actual proof. We will however state the most important assumptions and results
of this proof.

The first assumption is that there are no partial fills, thus an order is accepted or
rejected as a whole. This means that if a customer requires, for example, 3 units and
there are only 2 left, this customer order is rejected and we remain with 2 units in stock.
We argue that this close to reality, as hospital procedures and rules prevent sub-standard
solutions, e.g., too little beds for a patient.

The second assumption is that, per customer, there is a single re-supply order with a
single lead-time; thus all units in the same re-supply order have the same lead-time. Surely
if we only look at bed occupancy, i.e., a patient is occupying a bed, this is true; when a
patient is discharged, all beds are ‘available’ at the same time. However, a bed might not
be available immediately after a patient is discharged. Normal procedure includes cleaning
the beds and the bedding. Depending on the size of the cleaning crew, the beds a patient
occupied might or might not be ready simultaneously. We do however assume that the
cleaning time is relatively short compared to the LOS and thus can be ignored11.

5.2.4 Service Level

There are many definitions for the service level of a warehouse or queueing system. Axsäter,
2006 defines three, namely the probability of no stockout per cycle, the fraction of the
demands that can be satisfied with stock on hand and the fraction of time without back-
orders. While many systems use the first definition, it is flawed and should be avoided if
possible. If the re-order point R is high compared to the order quantity Q, the probability
of no stockout can be relatively high, while the actual service is low. Also, as we do not
allow back-orders – see Definition 5.2 –, the fraction of time without back-orders is flawed
as well. This leaves us with the second definition for the service level, usually refered to as
the fill rate, which is the most accurate of the 3 mentioned as well as the most difficult to
calculate.

Throughout the literature there exist 2 definitions for the fill rate, which are very
similar to read, but different nonetheless. The first definiton, the one we mentioned before,
is used to calculate the number of customers that were accepted; the second, the fraction
of demand that can be satistied with stock on hand, also includes the order size and can be
seen as a weighted average of customers. As we are interested in the number of patients
we accept, disregarding their bed requirement, we will use the first definition.

11An alternative would be to include the average cleaning time in the LOS, however we have no such
information available.
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Definition 5.3 (Fill Rate (Fs)) The fill rate is the faction of the de-
mands that can be filled immediately from stock on hand.

Feeney & Sherbrooke, 1966 derived an equation for the expected fills12 Fc, using the steady
state properties and Theorem 5.2. Assume we have S units in stock, and that the arrival
rate λ during the leadtime t̄ can be written as λt̄, the expected number of fills can then be
written as,

Fc(S) = λ

{
f1

S−1∑
x=0

P [R = x] + 2f2

S−2∑
x=0

P [R = x] + . . .+ SfsP [R = 0]

}
. (5.11)

We can easily rewrite Equation 5.11 to the fill rate Fs, by dividing by λ. Furthermore to
reduce the number of summations in Equation 5.11 we can use the fact that P [R = x] can
be written as Equation 5.10. This results in,

Fs(S) =
f1
∑S−1

x=0 p (x|λt̄) + 2f2
∑S−2

x=0 p (x|λt̄) + . . .+ Sfsp (0|λt̄)∑S
k=0 p (k|λt̄)

(5.12)

Equation 5.12 can be used to evaluate a ward’s performance as well as estimate the unob-
served arrival rate.

5.3 Combining What We Know

We have shown that you can use inventory management to model the flow of beds in
hospital wards, but the main goal was to optimize the bed occupancy by combining WLs.

The literature suggests that most WL have exponentially distributed LOS with an
arbitrary parameter λ. Assuming we are combining two or more wards, the combined LOS
distribution can be written as hyper-exponential, i.e.,

fX (x) =

n∑
i=1

fYi (x) pi, 0 < pi < 1,

n∑
i=1

pi = 1, (5.13)

where

Yi ∼ exp (λi) ,

pi = P [patient arrives at WL i] .

The hyper-exponential is closely related to the generalized Erlang distribution, where pi = 1
for all i. Nonetheless in Section 4.3 we showed that not all WLs have exponentially distrib-
uted LOS, e.g., some have Weibull distributed LOS. Similar to the hyper-exponential dis-
tribution, there is the mixed-Weibull distribution. In case of mixed-Weibull Equation 5.13
remains unchanged, except for Yi which now is Weibull distributed with parameters αi
and βi for shape and scale respectively (Kao, 1959). Both hyper-expontential and mixed-
Weibull have similar statistical properties, e.g., the expected value is given by

12The expected number of demands that can be filled immediately from stock on hand; equal to λ ∗ Fs.
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E [X] =

n∑
i=1

E [Yi] ·pi, (5.14)

where

Yi ∼ exp (λi) ∨ weib (αi, βi) .

More important, the exponential and Weibull distribution are closely related; an expo-
nential distribution with parameter λ is equal to a Weibull distribution with parameter(s)
α = λ and β = 1. Due to this relation we can actually sum over different type of distribu-
tions, e.g., where Y1 ∼ weib (α1, β1) and Y2 ∼ exp (λ2).

Besides the expected lead-time, we also require the unobserved arrival rate. Bruin et
al., 2010 suggested to use the Erlang Loss model to approximate the arrival rate λ, but
this result is only valid for pure Poisson processes. Therefore we use the fill rate, which has
similar properties. Due to the fact that we refuse all patients that whose bed requirement
we cannot meet, this is also the percentage of patients that is admitted. If know the
average LOS, t̄, we can then use,

average number of occupied beds = λ · t̄·
f1
∑S−1

x=0 p (x|λt̄) + . . .+ sfsp (x|λt̄)∑S
k=0 p (k|λt̄)

(5.15)

Now, assume that we combine n wards with arrival rates λi, . . . , λn. The combined arrival
rate can then be expressed as,

Λ =
n∑
i=1

λi. (5.16)

Using Equation 5.16 we can rewrite the probability a patient has LOS distribution i as,

pi =
λi∑n
j=1 λj

for i = 1, . . . , n. (5.17)

Combining this definition of pi with Equation 5.14, we get

E [X] =

∑n
i=1E [Yi] ·λi∑n

j=1 λj
, (5.18)

which we can use as expected lead-time t̄ in Theorem 5.2.
Using the expected lead-time we can estimate the required number of beds13 to reach

a target fill rate. This process can only be done by enumerating all the possible values for
S, the number of beds, untill we hit the target fill rate, as the values for Fs(S) change
each iteration – see Section 5.2.4. Luckily todays computers are fast enough to go through

13Physical as well as operational.
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these values in mere seconds.
Input: λ > 0 /* Arrival Rate */
Input: t̄ > 0 /* Expected Lead-Time */
Input: M > 0 /* Physical Beds */
Input: 0 < F targets < 1 /* Target Fill Rate */
Input: 0 < fi < 1 /* Probability for i items */

Output: S /* Required Beds */

beds := −1;
fcalculated := 0;
while F calculateds < F targets and S ≤M do

S := S + 1;
psum := 0; numerator := 0;
for x := 0 to S do

ppartial := 0;
for k := 0 to x do

ppartial := ppartial + (λt̄)k

k! e−λt̄fkx ;
end
if k < S then

numerator := (S − x)·fS−x·ppartial;
end
psum := psum + ppartial;

end
F calculateds := numerator

psum
;

end
Algorithm 1: Required amount of beds to get to a target fill rate.
This method can be used to estimate both the physical as well as the operational beds, the only
difference is the planning horizon. As we have written in Section 3, acquiring physical beds is on a
strategic level, a horizon of a year or more, where operational beds is on an tactical level, a horizon
of a few weeks to a year.

Algorithm 1 is the method we used to estimate the bed requirements for the new wards.
Note that the expected lead-time for Weibull depends on the Gamma distribution, which
is hard to approximate numerically. Therefore we use Stirling’s Formula (Feller, 1967) as
approximation.

6 Modelling the Ward(s)

6.1 Introduction

This section will describe the simulation model we designed to test our theoretical model
under several different circumstances. The model as described in this section is generic
and can be adapted to several different situations we describe in Section 7.

Throughout the literature there are several different types of simulations, e.g., Monte-
Carlo simulation, system dynamics and discrete event modelling. As we are interested in
how the system evolves over time, we can either do system dynamics or discrete event
modelling (Ross, 2006). System dynamics, the most complex of the two, has support
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for feed-back loops14, but requires the simulation to keep track of time. Discrete event
modelling is a more direct method, where order events by their due time and jump through
them in order; thus the simulation will skip proportions of time until the next event, see
Figure 7. While both are a valid option, clearly discrete event modelling is the better
choice, as we do not require feed-back loops.
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Figure 7: Discrete event modelling versus System Dynamics.

Our model will be based on the data characteristics described in Section 4 and thus fall
in the ‘stochastic modelling’ category. Using the methods described in Section 6.2 we
generate 2 types of events, namely arrival and discharge events.

• Arrivals At each arrival event, we check the current simulation and ward state. If
there are beds available in the intended ward, we generate a discharge event in the
future, using the method in Section 6.2.3. Furthermore, we draw a new inter-arrival
time until the next arrival occurs and generate an arrival event at that time.

• Discharge A discharge event is considerably easier, as it is only used to release a bed.
While no new events are generated, we do store the realised LOS for this patient, as
we need this later on.

We will continue generating events up to a fixed horizon, e.g., 10 years. The hospital’s,
division’s15 or ward’s service level and occupancy level will be based on the successful
arrivals, i.e., those which spawned a discharge event.

6.2 Implementation

6.2.1 Pseudo-Random Number(s)

As Marsaglia, 1986 showed, many programming languages generate pseudo-random num-
bers (PRNs) which fail the randomness tests, i.e., no randomness, not efficient or not
homogeneous. We designed a PRN-algorithm which generated PRNs which are uniformly

14Usually an equation that characterizes a variable based on the system’s state, e.g., decreasing the
inflow if the system is full.

15The weighted average fill rate of all wards in a division of the hospital.
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distributed between 0 and 1, based on the algorithm proposed in Marsaglia, Zaman, &
Tsang, 1990 which does not suffer from these limitations. More important, unlike the
built-in PRN, the algorithm produces the same output when seeded with the same initial
values; it passes the repeatability test proposed in Marsaglia et al., 1990. As we also re-
quire exponential and Weibull distributed random numbers, we implemented Equation 6.1
and Equation 6.2 to generate these random numbers.

X =
1

µ
· − log (U) (6.1)

where

X ∼ exp (µ)

U ∼ uniform [0, 1]

Y = α·
(

1

k

)−log(U)

(6.2)

where

Y ∼ weibull (α, k)

U ∼ uniform [0, 1]

6.2.2 Arrival Rate

As shown in Section 4.2.1 the LOS and operational beds vary per WL. Therefore we
estimate the arrival rate per WL before combining them to one ward. We then use the
Poisson distribution properties, which say that the sum of independent Poisson variables
rate λi is also Poisson with rate Λ =

∑
i λi, to combine these arrival processes to one.

During the simulation we use another Poisson property, which says that the inter-arrival
times between two consecutive arrivals is exponentially distributed with rate 1

Λ .

6.2.3 Length of Stay

The LOS is implemented as a two-step random process. Prior to running the simulation
we calculated pi (Equation 5.17), which can be used as the probability an arrival occurred
at ward i.

Input: P = P1, P2, . . . , Pn /* Cumulative Probability Values of pi */

Output: LOS

u := uniform random value;

while u ≤ pi do
i := i+ 1;

end

los := random value from LOS in WL i;
Algorithm 2: Generate a random LOS.
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Upon an arrival event, we draw a random uniform value u between 0 and 1. We compare
this value, using Algorithm 2, to the cumulative probabilities Pi. If u is between 0 and P1

we choose ward 1, if u is between P1 and P2 we choose ward 2, and so forth – see Figure 8.

sample spacePi 0 0.2

p1 = 0.2

0.32

p2 = 0.12

0.7

p3 = 0.38

0.79

p4 = 0.09

1

p5 = 0.21

Figure 8: Sample space of Pi.

Once we identified the WL the patient would have originally arrived at we generate a
random LOS from the distribution we fitted over that WL’s LOS. This will result in the
most accurate LOS distribution for all patients at the combined ward, as we make no
further assumptions for the combined LOS.

6.3 Performance Indicators

After the simulation is finished we are interested in two different performance indicators,
namely the service level and occupancy level. The first one is easy to calculate, as we know
which arrival events spawned two new events, i.e., a new arrival and a discharge event. We
assume that these arrival events are ‘successful’ and all other arrival event have ‘failed’.
We can then write the service level as,

service level =
successful arrival events

total arrival events
. (6.3)

Where the total arrival events is the sum of all successful and failed arrival events.
The occupancy level is a little more complex, as we might skip several days due to our

choice in simulation set-up; we cannot keep track of the number of occupied beds on each
day. Therefore we use a variant of the formula presented in Bruin et al., 2010. They define
the occupancy level using Little’s formula (Little, 1961) as,

occupancy =
admissions (per time unit) ·average LOS (timeunit)

number of operational beds
. (6.4)

At the end of our simulation we do know the total number of admissions; the number of
‘successful’ arrivals. We also know the number of operational beds, as this is a given and
fixed value. If we alter a successful arrival event to not only spawn a discharge event, but
also store the generated LOS in a list, we can then write the occupancy as,

occupancy =

total number of arrivals
simulated days ·

∑
admissions LOS

total number of arrivals

number of operational beds
. (6.5)

Equation 6.6 can be simplified to,

occupancy =

∑
admissions LOS

number of operational beds·simulated days
. (6.6)
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7 Results

This section contains some of the results of both the theoretical model and the simula-
tion model. As the Erasmus MC currently has 7 divisions, 33 medical departments and
115 wards, we will not show all results in this section; more specific we will focus on two
divisions, which show the most interesting results, namely ‘Daniel’ and ‘Hoboken’. Fur-
thermore, if unspecified, a target service level of 95% is used. The complete results are
available in Appendix B and Appendix Appendix C.

7.1 The Erasmus MC

Before we alter operational beds or combine wards, we have to get an indication of the
current situation within the hospital. Therefore we ran both the theoretical and simulated
model as is, without any modifications to the data. As the table is too large to include in
the text, the complete result can be found in Appendix B. Table 2 shows a summary of
these results for each division.

Theoretical Simulated
division beds occupancy service occupancy service
Daniel 219 0.733 0.753 0.732 0.753
Diagnostiek 4 0.843 0.442 0.840 0.444
Hersenen en Zintuigen 282 0.620 0.927 0.618 0.928
Hoboken 522 0.607 0.965 0.610 0.965
Sophia 432 0.683 0.891 0.683 0.891
Spoed en Intensief 86 0.630 0.970 0.632 0.970
Thorax 173 0.669 0.902 0.666 0.906

Erasmus MC 1680 0.666 0.884 0.666 0.884

Table 2: Simulation results for the Erasmus MC without any changes.

The occupancy level for the entire Erasmus MC is 66.6%, which is relatively low con-
sidering there the service level is 88.4%. This suggests that there is enough capacity, just
not in the right place. These initial results also gives us two great sample cases to evaluate
further, namely Daniel and Hoboken. Of all divisions which have more than one WL16,
Daniel has the lowest service level. Similarly Hoboken has the lowest occupancy level.
Therefore, in case of Daniel, we focus on increasing the service level, while keeping at least
the same occupancy level, and in case of Hoboken we will do it the other way around.

7.2 Daniel

Where most medical departments are performing on average, large part of Daniel’s poor
service level is due to the WLs of medical department SOG Daniel. These WLs currently
have a combined service and occupancy level of 37.3% and 88.9% respectively. Table 3
shows in detail which WLs in medical department SOG Daniel are performing poorly,
namely (6961) and (6973). The high occupancy levels at these WLs indicates there is too
little operational capacity at these locations. In direct opposite to WLs (6961) and (6973),
locations (6960) and (6978) have a high service level and low occupancy levels.

16All divisions with exception of Diagnostiek.
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medical opr. Theoretical Simulated
department wards beds occupancy service occupancy service level
SOG Daniel 42 0.889 0.373 0.889 0.374

(6960) 20 0.573 0.993 0.569 0.994
(6961) 14 0.978 0.244 0.978 0.247
(6973) 4 0.930 0.235 0.931 0.234
(6978) 4 0.085 1.000 0.082 1.000

Table 3: Baseline results for medical department SOG Daniel.

Therefore the first step we take is to combine these 4 WLs to one new ward. Similarly
we will do this for all medical departments in division Daniel.

opr. Theoretical Simulated
medical department beds occupancy service occupancy service
Ambulante Zorg Daniel
[6941, 6951, 6953]

25 0.752 0.954 0.758 0.952

Haematologie
[5428, 5444, 5445, 6630, 6971, 6972]

60 0.855 0.957 0.862 0.953

Interne Oncologie
[5353, 6966, 6968, 6969]

54 0.845 0.956 0.841 0.959

Radiotherapie [6963, 6964, 6965] 18 0.739 0.931 0.740 0.935
SOG Daniel
[6960, 6961, 6973, 6978]

42 0.978 0.490 0.979 0.488

Division: Daniel 199 0.861 0.799 0.862 0.798

Table 4: Theoretical and Simulated results for division Daniel.
We set the maximum capacity to the sum of the operational beds of the individual wards. As a result
divisions Radiotherapie and SOG Daniel are still below our service level target of 95 per cent.

As a result of the changes to the organisational structure the overall service level has
increased by 4% while the operational beds decreased by 9%, i.e., 20 beds. We do note
however that the operational bed decrement is merely due to a fixed maximum capacity to
the combined wards, as SOG Daniel still has a poor performance. Nonetheless, both the
service level as the occupancy level increased, which cannot be done without combining
WLs.

While the service level certainly increased, it is still approximately 9% below average.
Another option we have is not to set a capacity constraint on the individual wards, but
rather the division as a whole. Previously we had 219 operational beds over all WL, which
leaves us with 20 (operational) beds for which we have manpower. If we ignore the physical
bed constraints and run Algorithm 1 for each ward, we get an estimate of the operational
bed requirements.
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beds service level 90% service level 95%
medical department physical operational beds operational beds
Ambulante Zorg Daniel
[6941, 6951, 6953]

40 23 25

Haematologie
[5428, 5444, 5445, 6630, 6971, 6972]

65 54 60

Interne Oncologie
[5353, 6966, 6968, 6969]

85 49 54

Radiotherapie [6963, 6964, 6965] 26 17 19
SOG Daniel
[6960, 6961, 6973, 6978]

54 82 89

Division: Daniel 270 205 247

Table 5: Operational bed requirement for division Daniel.
We ran the algorithm for each ward with an infinite physical capacity, i.e., M =∞.

Clearly, in both cases, the overall operational bed requirement is below the physical capa-
city of 270 physical beds – see Table 5. However medical department SOG Daniel requires
80+ operational beds to maintain the target service level(s), which is notably higher than
the 54 beds it currently has. So if we cap the maximum operational beds by the number
of physical beds, medical department SOG Daniel can only use these 54 beds. As a result
the total operational beds decreases by 35 from the 247 mentioned in the last column of
Table 5.

opr. Theoretical Simulated
medical department beds occupancy service occupancy service
SOG Daniel
[6960, 6961, 6973, 6978]

54 0.971 0.626 0.972 0.626

Division: Daniel 212 0.857 0.845 0.855 0.846

Table 6: Theoretical and Simulated results for medical department SOG Daniel.
The operational beds is capped at the available physical beds the medical department currently has. The
total operational beds lower than the 247 in Table 5 due to the restriction on medical department SOG
Daniel.

Therefore, even in the new situation, SOG Daniel can only attain a service level of
62.6% at a maximum 54 operational beds. Not to mention, by increasing the maximum
operational beds in medical department SOG Daniel, the overall service level goes up to
84.5%; only 3.9% lower than the original average service level. Nonetheless, we are still
only using 212 of the 270 available beds. This implies that the service level can increase
more if we increase the physical bed capacity, e.g., in medical department SOG Daniel.
A way to increase the physical bed capacity in SOG Daniel is to merge it with Interne
Oncologie, which has 36 unused beds. These 36 beds are more than enough to increase
SOG Daniel’s service level to 95%.
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opr. Theoretical Simulated
medical department beds occupancy service occupancy service
Ambulante Zorg Daniel
[6941, 6951, 6953]

25 0.752 0.954 0.750 0.955

Haematologie
[5428, 5444, 5445, 6630, 6971, 6972]

60 0.855 0.957 0.858 0.957

Interne Oncologie & SOG
Daniel
[5353, 6966, 6968, 6969, 6960, 6961, 6973, 6978]

136 0.921 0.953 0.922 0.954

Radiotherapie [6963, 6964, 6965] 19 0.715 0.950 0.707 0.959

Division: Daniel 240 0.862 0.953 0.862 0.955

Table 7: Theoretical and Simulated results for division Daniel after combining Interne
Oncologie and SOG Daniel.

Table 7 clearly shows we now have an overall service level of 95.3%, as well as a service level
of at least 95% in each ward. Not only the service level is above average17, the occupancy
level is with 86.2% also 20% above average. The only problem we foresee with the proposed
structure, is that the operational bed requirement is now 240 beds. This is significantly
higher than the 219 in the baseline solution. However, if we continue to combine WLs we
can further decrease this requirement.

opr. Theoretical Simulated
medical department beds occupancy service occupancy service
Division: Daniel 220 0.947 0.950 0.947 0.952

Table 8: Theoretical and Simulated results for division Daniel.
The individual WLs are combined to one ward, which provides care for patients from all
medical departments in division Daniel.

If all medical departments in division Daniel are all sharing the same ward, the oper-
ational bed requirement drops to 220. This is, compared to the baseline solution, only 1
more than before. We do note that one of the goals mentioned in Section 2.3 was to reduce
cost. Clearly increasing the operational beds is not in line with this, but we argue that we
increased the occupancy and service levels such that the increased cost justifiable.

7.3 Hoboken

Combined division Hoboken currently has an occupancy level of 60.7%, which is about
6% below average. Though, while the occupancy level is fairly low, the service level is
second highest of the entire Erasmus MC. Therefore we have to find a way to increase the
occupancy level without sacrificing service. Note that we, to keep in line with previous
results, will target a service level of 95%, which is a little below the current 96.5%.

17Compared to the baseline in Section 7.1.
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medical opr. Theoretical Simulated
department wards beds occupancy service occupancy service level
Algemene
Heelkunde

(4125) 2 0.000 1.000 0.000 1.000
Inwendige
Geneeskunde

(3194) 1 0.115 0.885 0.121 0.857
(5118) 5 0.191 0.997 0.180 0.999
(5126) 36 0.002 1.000 0.002 1.000
(5226) 10 0.000 1.000 0.001 1.000
(7616) 5 0.116 1.000 0.120 0.999

MDL
(5243) 1 0.172 0.828 0.169 0.823

Table 9: Baseline results for low occupancy WLs in division Hoboken.

Large part of the low occupancy and high service level can be explained by a series of
WLs that have a relatively low arrival rate, but a large number of operational beds. Table 9
shows the WLs with less than 20% occupancy. Most interesting are WLs (3194) and (5243),
which have a service level lower than the target of 95%. Assuming we value service over
occupancy, we should increase the operational beds to 2 for each ward. However, the
occupancy level would decrease to 0.064 and 0.102 respectively. As shown in Table 10 we
can increase the occupancy level, in for some WL, by lowering the amount of operational
beds, but only very little. Therefore we continue, same as with division Daniel, and combine
the WLs per medical department.

medical opr. Theoretical Simulated
department wards beds occupancy service occupancy service level
Algemene
Heelkunde

(4125) 1 0.015 0.985 0.028 1.000
Inwendige
Geneeskunde

(3194) 2 0.064 0.993 0.064 0.991
(5118) 4 0.236 0.987 0.240 0.988
(5126) 3 0.038 0.997 0.045 1.000
(5226) 1 0.004 0.996 0.002 1.000
(7616) 3 0.189 0.982 0.184 0.985

MDL
(5243) 2 0.102 0.982 0.105 0.988

Table 10: Optimized theoretical and simulated results for low occupancy WLs in division
Hoboken.

By combining the WLs per medical department we increased the occupancy level to 82.1%,
which is a short over of 15% above average. Due to this combination, the operational bed
requirement dropped by 41.2% from 522 to 307 beds.
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opr. Theoretical Simulated
medical department beds occupancy service occupancy service
Algemene Heelkunde
[4098, 4108, 4125, 4126, 4127, 4221]

89 0.894 0.953 0.895 0.951

Dermatologie [7413, 7441] 18 0.690 0.958 0.687 0.959
Inwendige Geneeskunde
[3194, 5118, 5124, 5126, 5138, 5142, 5226, 5228, 5323, 7616]

93 0.898 0.952 0.900 0.954

MDL [5241, 5243, 5277, 5278] 49 0.839 0.953 0.838 0.954
Orthopedie [4427] 28 0.768 0.954 0.761 0.957
Plastische Chirurgie [4525] 22 0.711 0.964 0.719 0.962
Reumatologie [5957, 5958] 8 0.482 0.970 0.486 0.967

Division: Hoboken 307 0.821 0.955 0.821 0.955

Table 11: Theoretical and simulated results for division Hoboken.

While we clearly succeeded in all 3 of the goals mentioned in Section 2.3, there is still
one ward that has a relatively low occupancy level, namely Reumatologie. This is due to
patients, in this ward, having a low arrival rate – less than 1 patient a day – and relatively
high LOS – more than 4 days. Therefore we can combine it with a ward that has more
arrivals and a lower LOS, like Dermatologie; the arrival rate is about 13 patients a day,
which have LOS of less than 1 day.

opr. Theoretical Simulated
medical department beds occupancy service occupancy service
Algemene Heelkunde
[4098, 4108, 4125, 4126, 4127, 4221]

89 0.894 0.953 0.895 0.951

Dermatologie &
Reumatologie
[5957, 5958, 7413, 7441]

22 0.734 0.953 0.734 0.952

Inwendige Geneeskunde
[3194, 5118, 5124, 5126, 5138, 5142, 5226, 5228, 5323, 7616]

93 0.898 0.952 0.900 0.954

MDL [5241, 5243, 5277, 5278] 49 0.839 0.953 0.838 0.954
Orthopedie [4427] 28 0.768 0.954 0.761 0.957
Plastische Chirurgie [4525] 22 0.711 0.964 0.719 0.962

Division: Hoboken 303 0.834 0.953 0.833 0.954

Table 12: Theoretical and simulated results for division Hoboken.

The combined ward Dermatologie & Reumatologie now have a occupancy level of 73.4%,
which is an increase over when they were both separate. As a result the overall occupancy
level also increased a little, by 1%. This is not that much, but this can be explained by
the fact that medical departments Orthopedie and Plastische Chirurgie now have increased
influence on the overall occupancy. We can continue this process until we combined all
wards in this division, which is shown in Table 13.
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opr. Theoretical Simulated
medical department beds occupancy service occupancy service
Division: Hoboken 269 0.954 0.950 0.956 0.948

Table 13: Theoretical and simulated results for division Hoboken.
The WLs in division Hoboken are now a completely shared resource, which results in a overall occupancy
and service levels.

7.4 The Erasmus MC as one

We showed that both the service level as well as the occupancy can be increased by com-
bining wards. Furthermore, due to the relation between occupancy level and operational
beds, the operational bed requirement decreased if more medical departments share the
same ward resource. Therefore a theoretical, but nevertheless interesting, case is to see
how far we can increase the occupancy and decrease the operational beds, by combining
all the wards within the Erasmus MC to one resource.

opr. Theoretical Simulated
medical department beds occupancy service occupancy service
Erasmus Medical Center 1109 0.986 0.950 0.986 0.952

Table 14: Theoretical and simulated results for entire Erasmus MC.
The WLs in the Erasmus MC are now one shared resource.

While the results in Table 14 show that we can decrease the operational beds by 34%
and increase the occupancy level to 98.6%, we have to note that will always be a purely
theoretical case, as there are too many challenges to overcome. Of these challenges the most
obvious is that the Erasmus MC has 3 different locations and it is not always possible18 to
transfer a patient to a ward on the other side of town.

7.5 Sensitivity Analysis

7.5.1 Changing the Arrival Rate

An interesting question is how sensitive these new wards are to changes in the arrival
rate(s) or LOS distribution of the individual WLs. In Section 5.3 we showed that we can
use Equation 5.16 to calculate the combined arrival rate of a new ward, which consists of
n WLs. Assume that the arrival rate of an arbitrary WL j increases by 10 per cent. We
can then write the combined arrival rate as,

Λnew =

n∑
i=1

λi + 0.1λj , (7.1)

where λj is the previous arrival rate of WL j. We can then write the total per cent change
as,

18Probably never.
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Λnew − Λ

Λ
=

∑n
i=1 λi + 0.1λj −

∑n
i=1 λi∑n

i=1 λi

=
0.1λj∑n
i=1 λi

. (7.2)

From Equation 7.2 it is clear that Λnew will increase by at most 10 per cent. In fact, there
will only be a 10 per cent increase if λj is the only arrival rate, i.e., λi = 0 ∀ i 6= j. As
Equation 5.12 is non-linear and depends on the number of WLs we are combining, there is
no one-on-one translation to the change in service level. However, we find that generally
the service level decreases by 5 to 15 per cent if we increase an arbitrary λi by 10 per cent;
the larger the overall change in Λ is, given by Equation 7.2, the lower the service level
becomes.

When the arrival rate of an individual ward increases, it also has impact on the com-
bined LOS distribution. In Section 5.3 we defined the combined LOS as a mixed-Weibull
distribution, with pi = λi∑n

j=1 λj
– Equation 5.18. Therefore, an increase in λj will increase

the chance a patient has LOS distribution j. Depending on the actual LOS, the expected
combined LOS may either increase or decrease. We noticed that generally the change in
LOS is neglectably small compared to the change in Λ.

7.5.2 Changing the LOS distribution

Similar to the change in arrival rate, we can write the change in LOS E [Yj ] as,

t̄new − t̄
t̄

=

∑n
i=1E [Yi] ·pi + 0.1·E [Yj ] ·pj −

∑n
i=1E [Yi] ·pi∑n

i=1E [Yi] ·pi

=
0.1·E [Yj ] ·pj∑n
i=1E [Yj ] ·pi

. (7.3)

The actual change in the overall LOS is a little more complex, as it depends on pj , which
in turn depends on λj and Λ. However, from Equation 7.3 we can derive that the change
to t̄ will be less than 10 per cent if the new ward exists of more than one WL; pj < 1 for
WL j.

Simulations showed that a 10% increase in LOS yields the exact same results as a 10%
increase in arrival rate. This can be explained by analysing Equation 5.6 in Section 5. The
equation depends on Λ multiplied by t̄, like,

Λ · t̄ =

n∑
i=1

λi ·
n∑
j=0

E [Yj ] ·pj . (7.4)

We also showed that pi can be written as the fraction of the total arrivals that occurred
at WL i, i.e., λiΛ . Therefore we can rewrite Λ · t̄ as,
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Λ · t̄ =

n∑
i=1

λi ·
n∑
j=0

E [Yj ] ·pj

=

n∑
i=1

λi ·
∑n

i=0E [Yj ] ·λj∑n
i=1 λi

=

n∑
i=0

E [Yj ] ·λj . (7.5)

As a result, any increase to either λj or E [Yj ] will result in the same change to Λ· t̄ and thus
yield the same decrease in service level. Accordingly, we can assume that a 10% increase
to E [Yj ] will also result in a 5 to 10% decrease in service level.

7.6 Non-Stationary Arrival Rate

Up until now we assumed that arrival rate to be stationary and discharged patients im-
mediately after finishing the treatment. We made these assumptions due to the data
limitations, as described in Section 4. While the results of our theoretical model seems
to be accurate under these assumptions, we are interested in different – more realistic –
scenarios too. Throughout this section we will test our theoretical model using the data
from division ‘Hersenen en Zintuigen’19 in 3 different, hypothetical scenarios.

7.6.1 No patient discharges during the night

Assume that we drop Assumption 4.3 and replace it with the assumption that patients
can only be discharged between 8AM and 10PM . Then any patient that has a LOS that
results in an end of treatment after 10PM today, will be discharged tomorrow at 8AM
exactly. Note that the theoretical results have not changed as we did not change the input;
we still use the same arrival rate and the same LOS distribution. See Section 7.6.3 for
results after changing the input of the theoretical model.

19This division is not limited by the number of physical beds and as such our algorithm has no constraints
which might affect the results.
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opr. Theoretical Simulated
medical department beds occupancy service occupancy service
KNO [7310, 7328] 23 0.730 0.959 0.741 0.949
Mondziekten, Kaak en
Aangezichtschirurgie &
Bijzondere
Tandheelkunde[4625]

7 0.499 0.954 0.508 0.943

Neurochirurgie [6216, 6225] 28 0.770 0.953 0.784 0.941
Neurologie
[3613, 6116, 6124, 6125, 6128]

46 0.830 0.955 0.827 0.932

Oogheelkunde [7710, 7727, 7792] 21 0.728 0.952 0.738 0.900
Psychiatrie
[7294, 7295, 7296, 7297, 7298, 7299, 7566, 7569]

74 0.882 0.951 0.891 0.953

Division: Hersenen en
Zintuigen

199 0.767 0.954 0.773 0.927

Table 15: Theoretical and simulated results for division Hersenen en Zintuigen. Scenario:
a patient can only be discharged between 8AM and 10PM .

As a result our theoretical model has a slight over-estimate of the service level, as shown
in Table 15. This can easily be explained by the fact that, during the nights, no patients
are discharged and there is no change in arrival rate. Therefore, if at some point during
the night all beds are taken, no additional patients can be admitted until 8AM the next
morning. This is in contradiction with our theoretical model, which assumes discharges
occur right after the end of the treatment.

7.6.2 Low arrival rate during the night

Throughout this thesis we ignored the fact that the arrival rate might fluctuate during
the day, even though we did mention it in Section 4.2.1. We mentioned the idea that the
arrival right might be significantly lower during the nights, due to scheduled appointments
only occuring during office hours. In this scenario, an extension of the one above, we will
lower the arrival rate during the night by 90 per cent and discharge only between 8AM
and 10PM .
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opr. Theoretical Simulated
medical department beds occupancy service occupancy service
KNO [7310, 7328] 23 0.730 0.959 0.729 0.974
Mondziekten, Kaak en
Aangezichtschirurgie &
Bijzondere
Tandheelkunde[4625]

7 0.499 0.954 0.612 0.903

Neurochirurgie [6216, 6225] 28 0.770 0.953 0.810 0.947
Neurologie
[3613, 6116, 6124, 6125, 6128]

46 0.830 0.955 0.736 0.997

Oogheelkunde [7710, 7727, 7792] 21 0.728 0.952 0.659 0.984
Psychiatrie
[7294, 7295, 7296, 7297, 7298, 7299, 7566, 7569]

74 0.882 0.951 0.976 0.913

Division: Hersenen en
Zintuigen

199 0.767 0.954 0.736 0.971

Table 16: Theoretical and simulated results for division Hersenen en Zintuigen. Scenario:
A patient can only be discharged between 8AM and 10PM , and the arrival rate during the night is 90 per
cent lower than by day.

Due to its setup, the results in this scenario are affected in two different ways. The lower
arrival rate during the night will increase the service level and decrease the occupancy level,
while the longer LOS will increase the occupancy level and lower the overall service. The
end result depends on both the original arrival rate and LOS distribution. For example, the
higher the original arrival rate is, the more effect the low nightly rate has. In this situation,
without changing the input parameters, on average our theoretical model under-estimates
the service level and over-estimates the occupancy.

7.6.3 Higher arrival rate during office hours

In this scenario we increase the arrival rate during office hours to counter-act the lower
arrival rate during the night. By lowering the arrival rate between 10PM and 8AM , the
daily arrival rate is also affected. For example, assuming we originally had a ward that
has 19 arrivals a day and we lower the nightly arrivals by 90 per cent, then this ward will
now only have 11.9 arrivals a day. As the daily arrival rate is a given parameter, we have
to increase the arrivals during office hours by about 64 per cent.
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opr. Theoretical Simulated
medical department beds occupancy service occupancy service
KNO [7310, 7328] 23 0.730 0.959 0.877 0.844
Mondziekten, Kaak en
Aangezichtschirurgie &
Bijzondere
Tandheelkunde[4625]

7 0.499 0.954 0.752 0.787

Neurochirurgie [6216, 6225] 28 0.770 0.953 0.909 0.807
Neurologie
[3613, 6116, 6124, 6125, 6128]

46 0.830 0.955 0.904 0.886

Oogheelkunde [7710, 7727, 7792] 21 0.728 0.952 0.824 0.887
Psychiatrie
[7294, 7295, 7296, 7297, 7298, 7299, 7566, 7569]

74 0.882 0.951 0.986 0.671

Division: Hersenen en
Zintuigen

199 0.767 0.954 0.876 0.846

Table 17: Theoretical and simulated results for division Hersenen en Zintuigen. Scenario:
A patient can only be discharged between 8AM and 10PM , 90 per cent of the patients arrive during the
day and the other 10 by night.

Without changing the input parameters, the theoretical model both under-estimates the
occupancy level and over-estimates the service level by around 11 per cent – see Table 17.
Where a 2 or 3 per cent offset could be disregarded as acceptable, a 11 per cent offset
cannot. This shows that, the larger the difference between day and night arrivals, the
harder it is to predict both the occupancy and service level and the larger the bias is.

8 Managerial Decisions

In this section we will describe some management decisions that might further increase the
bed occupancy. Note that some of these measures do not increase the service level – i.e.
fill rate – per se; merely the occupancy level.

8.1 Weekend-Ward(s)

As we have shown in Table 20 – Appendix A – there is a significant difference in admissions
during the week versus the weekends. The method in Section 5 combines existing wards,
which either increases the fill rate or reduces the required operational beds. However,
even after combining several wards, during the weekends the arrival rate is still relatively
low. This is due to the fact that scheduled arrivals generally do not occur during the
weekends, thus resulting in only unscheduled arrivals. Furthermore admitted patients
might be allowed to go home during the weekends, which decreases the operational bed
requirement for these wards.
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Theoretical Simulated
medical department beds occupancy service occupancy service
Ambulante Zorg Daniel
[6941, 6951, 6953]

1 0.010 0.990 0.008 1.000

Haematologie
[5428, 5444, 5445, 6630, 6971, 6972]

53 0.845 0.955 0.837 0.958

Interne Oncologie
[5353, 6966, 6968, 6969]

28 0.757 0.960 0.753 0.963

Radiotherapie [6963, 6964, 6965] 12 0.586 0.967 0.602 0.962
SOG Daniel
[6960, 6961, 6973, 6978]

25 0.746 0.957 0.743 0.958

Division: Daniel 119 0.756 0.959 0.753 0.960

Table 18: Operational bed requirement during the weekend for division Daniel.
The beds requirement is acquired by use of the method described in Section 5 with a target fill rate of
0.95.

Looking at Table 18, we find that there are approximately 15 unscheduled arrivals each
weekend for division Daniel – 7952 arrivals in a 10 year simulation. Maintaining a service
level of 95% during the weekends, requires at least 119 beds divided over 5 wards.

Theoretical Simulated
medical department beds occupancy service occupancy service
Weekend-Ward 101 0.903 0.953 0.899 0.956

Table 19: Operation bed requirement for the ‘weekend-ward’ in division Daniel.
Beds are estimated with a fill rate of 0.95 and the simulation ran 10 years.

If we create a new ‘weekend-ward’, which is the combination of all wards in Table 18,
we notice the bed requirement dropped by 15% to 101 operational beds – see Table 19.
Furthermore, the occupancy level increased to 90.3% and the simulated service level is
95.3%, only 0.6% less than the separate wards and still over the required target of 95%. This
shows that a ‘weekend-ward’ is a viable alternative to keeping the wards separate during
the weekends. However, it does add additional complexity in organizational structure of
the hospital, as well as the planning process. There now is a special ward only available
during the weekends and these patients might still require care during the week.

8.2 Service Level Differentiation

Service level differentiation is a relatively new concept in call centres (Gurvich, Armony,
& Mandelbaum, 2008; Gurvich & Whitt, 2009) and spare part inventory management
(Kranenburg & Houtum, 2007). The key idea is to divide the customers in two different
groups, e.g., ‘good’ and ‘normal’ customers. Then both these groups will get a different
service level, e.g., 95 per cent for ‘good’ customers and 85 per cent for ‘normal’ customers.
Compared to an overall service level of 95 per cent, the required servers, in case of service
systems, or units, in case of inventories, decrease. This allows for lower inventories while
keeping a high service level for certain customers.

As we have seen in Section 5 and Section 7, there is a trade-off between operational
beds and the service level. For example Haematologie 5444 had a service level of 79.8%
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and an occupancy level of 39.9%, which increases if we combine wards. However we can
only do so much as there are physical beds available, some wards might still have not that
high service levels; see SOG Daniel in Section 7.2. Further increasing the service level
requires additional operational beds, but lowers the occupancy level. We cannot change
this trade-off, but we can shift in service levels. For example, by setting a service level of
95 per cent for emergency, unexpected, patients and 85 per cent for expected patients, we
can maintain the current operational bed requirements, while increasing the service level
for the ‘good’ customer group, i.e., emergency patients.

We believe that in reality this is already the case, as most hospitals cancel scheduled
admissions if there are to many emergency, unexpected, arrivals, but it has never been
described.

9 Conclusion

In this paper we have shown a way to increase the occupancy level by combining ward
locations (WLs), while maintaining a set ward availability target, i.e., service level target.

We applied inventory management, in particular (S − 1, S)-policy, to describe the pa-
tient flow through hospital wards where patients might be assigned to multiple beds. Using
the mixed-Weibull distribution as length of stay (LOS) and the generalized Palm’s theorem,
which seems to accurately estimate the service level in most situations, we could determine
the required operational beds per WL or combined WLs.

From the case study we did for the Erasmus MC we learned that this idea can not
only be used to increase occupancy level, but also to increase the service level itself. As
the results showed combining WLs automatically results in a higher service level. Then,
by decreasing the required operational beds, it is possible to increase the occupancy level,
while the original service level is maintained. As a result of the lower operational bed
requirement, the cost of the wards can also be lowered, which is in line with the 3 goals
the Erasmus MC targeted.
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A Admission(s) - Overview

Table 20: Total number of admissions and admission rate
for all 7 divisions and 33 medical departments throughout the
Erasmus MC.
Hence, the blank rows underneath the medical departments show the
individual WL – denoted by the number in the second column. The
admission rate for a medical department is the same as the sum of the
admission rates for each WL the medical department is in charge off.
This is also true for the divisions, where the admission rate is the sum
of the individual rates for the medical departments in that division.

medical department ward no. of ad-
missions

rate
[week]

rate
[weekend]

Daniel 15,923 58.51 3.13
Ambulante Zorg Daniel 5077 19.45 0.01

(6941) 1 0.00 0.00
(6951) 4991 19.12 0.01
(6953) 85 0.33 0.00

Haematologie 1196 4.72 1.71
(5428) 349 1.22 0.30
(5444) 208 0.79 0.02
(5445) 79 0.30 0.01
(6630) 16 0.06 0.00
(6971) 289 0.89 0.54
(6972) 470 1.46 0.85

Interne Oncologie 5642 20.72 2.25
(5353) 2941 11.25 0.04
(6966) 1121 3.64 1.63
(6968) 1237 4.71 0.07
(6969) 343 1.11 0.51

Radiotherapie 815 2.95 0.43
(6963) 365 1.25 0.38
(6964) 247 0.95 0.00
(6965) 203 0.76 0.05

SOG Daniel 2978 10.67 1.87
(6960) 1271 4.75 0.29
(6961) 1193 4.02 1.38
(6973) 425 1.55 0.19
(6978) 89 0.34 0.00

Diagnostiek 431 1.65 0.00
Nucleaire Geneeskunde 431 1.65 0.00

(5520) 431 1.65 0.00
Hersenen en Zintuigen 10,913 38.50 8.31
KNO 1698 6.04 1.17

(7310) 2 0.01 0.00
(7328) 1696 6.03 1.17
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medical department ward no. of ad-
missions

rate
[week]

rate
[weekend]

Mondziekten, Kaak
en Aangezichtschirurgie
& Bijzondere Tand-
heelkunde

358 1.30 0.18

(4625) 358 1.30 0.18
Neurochirurgie 1426 4.71 1.89

(6216) 121 0.46 0.00
(6225) 1305 4.25 1.89

Neurologie 3380 11.43 3.71
(3613) 23 0.09 0.00
(6116) 599 2.30 0.00
(6124) 136 0.48 0.00
(6125) 1232 3.56 2.90
(6128) 1390 5.00 0.81

Oogheelkunde 3154 11.85 0.60
(7710) 3 0.01 0.00
(7727) 618 2.13 0.59
(7792) 2533 9.70 0.01

Psychiatrie 907 3.18 0.75
(7294) 206 0.67 0.29
(7295) 182 0.66 0.09
(7296) 166 0.54 0.23
(7297) 66 0.25 0.00
(7298) 128 0.47 0.05
(7299) 119 0.44 0.03
(7566) 1 0.00 0.00
(7569) 39 0.12 0.07

Hoboken 22,919 81.39 16.11
Algemene Heelkunde 4528 14.80 6.39

(4098) 115 0.44 0.00
(4108) 76 0.25 0.10
(4125) 1 0.00 0.01
(4126) 1508 4.92 2.14
(4127) 1575 4.99 2.62
(4221) 1253 4.19 1.53

Dermatologie 3123 11.97 0.00
(7413) 972 3.72 0.00
(7441) 2151 8.24 0.00

Inwendige Geneeskunde 6233 21.92 4.93
(3194) 31 0.11 0.01
(5118) 222 0.85 0.01
(5124) 333 1.13 0.37
(5126) 4 0.01 0.01
(5138) 884 2.96 1.07
(5142) 1284 4.10 2.06
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medical department ward no. of ad-
missions

rate
[week]

rate
[weekend]

(5226) 1 0.00 0.00
(5228) 1752 6.71 0.00
(5323) 1571 5.46 1.41
(7616) 151 0.58 0.00

MDL 5903 22.08 1.36
(5241) 2895 11.08 0.04
(5243) 45 0.17 0.00
(5277) 1503 5.23 1.32
(5278) 1460 5.59 0.00

Orthopedie 1248 4.18 1.51
(4427) 1248 4.18 1.51

Plastische Chirurgie 1470 4.88 1.88
(4525) 1470 4.88 1.88

Reumatologie 414 1.57 0.03
(5957) 226 0.85 0.03
(5958) 188 0.72 0.00

Sophia 26,119 87.18 32.36
Ambulate Zorg Sophia 3273 12.54 0.00

(3812) 3273 12.54 0.00
ICK 2097 6.82 3.05

(3920) 497 1.58 0.82
(3921) 463 1.54 0.60
(3922) 264 0.85 0.40
(3923) 482 1.56 0.73
(3939) 352 1.15 0.49
(3963) 39 0.15 0.01

KG Neonatologie 859 2.47 2.03
(3955) 289 0.84 0.66
(3956) 308 0.86 0.81
(3957) 259 0.77 0.56

Kinderchirurgische
Groep

3254 11.41 2.64

(3941) 1635 5.78 1.22
(3943) 1619 5.64 1.42

Kindergeneeskunde 5049 17.53 4.56
(3529) 123 0.47 0.00
(3566) 1983 7.18 1.05
(3567) 1 0.00 0.00
(3951) 1291 4.34 1.51
(3952) 823 2.83 0.82
(3953) 828 2.70 1.18

KJP (incl. Adolescentenk-

liniek)

101 0.35 0.10

(3728) 26 0.08 0.04
(3729) 41 0.16 0.00
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medical department ward no. of ad-
missions

rate
[week]

rate
[weekend]

(3738) 9 0.03 0.01
(3739) 24 0.07 0.05
(3860) 1 0.00 0.00

Urologie 2598 8.96 2.50
(4325) 2102 7.06 2.50
(4329) 496 1.90 0.00

Verloskunde & Vrouwen-
ziekten

8891 27.10 17.48

(3971) 2177 6.31 5.10
(3972) 1958 6.05 3.65
(3973) 962 2.98 1.78
(3974) 136 0.39 0.32
(3979) 1920 5.64 4.30
(7123) 229 0.87 0.01
(7124) 1509 4.85 2.33

Spoed en Intensief 6,079 22.18 2.80
Anesthesiologie 903 3.45 0.03

(1509) 900 3.44 0.03
(7829) 3 0.01 0.00

IC Volwassenen 2091 3.91 2.76
(4225) 570 1.72 1.17
(5825) 645 1.99 1.20
(8326) 876 3.20 0.39

Operatiekamers 3085 11.82 0.00
(7925) 3085 11.82 0.00

Thorax 9592 32.35 11.05
Longziekten (5625) 2246 8.12 1.21

(5625) 1449 5.32 0.58
(5626) 797 2.80 0.63

Thorax Cardiologie 5316 17.85 6.31
(8114) 637 2.44 0.00
(8116) 1229 4.67 0.09
(8117) 1177 4.04 1.18
(8126) 1379 3.86 3.57
(8127) 628 1.97 1.09
(8328) 266 0.87 0.38

Thorax Chirurgie 2030 6.37 3.53
(8327) 2030 6.37 3.53

Total 91, 976 251.99 0.00
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B Service Level(s) - Baseline

Table 21: Simulation results for unaltered wards.
The results in this table are based a 10 year simulation, with the data
as presented in Section 4, without combining wards. This can be used
as baseline for the other results.

Theoretical Simulated
medical department ward beds occupancy service occupancy service
Daniel 219 0.733 0.753 0.732 0.753
Ambulante Zorg Daniel 32 0.630 0.987 0.622 0.987

(6941) 1 0.004 0.996 0.004 1.000
(6951) 30 0.637 0.994 0.638 0.996
(6953) 1 0.326 0.674 0.314 0.668

Haematologie 60 0.676 0.827 0.670 0.821
(5428) 17 0.858 0.780 0.855 0.780
(5444) 2 0.395 0.805 0.402 0.806
(5445) 1 0.299 0.701 0.295 0.710
(6630) 1 0.061 0.939 0.065 0.949
(6971) 18 0.643 0.975 0.656 0.971
(6972) 21 0.853 0.831 0.862 0.810

Interne Oncologie 67 0.675 0.956 0.675 0.954
(5353) 18 0.647 0.974 0.645 0.975
(6966) 18 0.777 0.900 0.781 0.900
(6968) 16 0.689 0.948 0.688 0.949
(6969) 15 0.566 0.985 0.565 0.987

Radiotherapie 18 0.649 0.802 0.644 0.816
(6963) 10 0.655 0.915 0.655 0.927
(6964) 4 0.613 0.776 0.610 0.772
(6965) 4 0.688 0.692 0.681 0.689

SOG Daniel 42 0.889 0.373 0.889 0.374
(6960) 20 0.573 0.993 0.569 0.994
(6961) 14 0.978 0.244 0.978 0.247
(6973) 4 0.930 0.235 0.931 0.234
(6978) 4 0.085 1.000 0.082 1.000

Diagnostiek 4 0.843 0.442 0.840 0.444
Nucleaire Geneeskunde 4 0.843 0.442 0.840 0.444

(5520) 4 0.843 0.442 0.840 0.444
Hersenen en Zintuigen 282 0.620 0.927 0.618 0.928
KNO 38 0.469 1.000 0.473 1.000

(7310) 1 0.008 0.992 0.006 1.000
(7328) 37 0.469 1.000 0.468 1.000

Mondziekten, Kaak
en Aangezichtschirurgie
& Bijzondere Tand-
heelkunde

4 0.759 0.590 0.756 0.591

(4625) 4 0.759 0.590 0.756 0.591
Neurochirurgie 39 0.578 0.997 0.569 0.997



47

medical department ward beds occupancy service occupancy service
(6216) 5 0.093 1.000 0.092 1.000
(6225) 34 0.638 0.996 0.627 0.997

Neurologie 55 0.642 0.907 0.640 0.907
(3613) 1 0.088 0.912 0.094 0.901
(6116) 5 0.459 0.933 0.455 0.935
(6124) 1 0.479 0.521 0.484 0.528
(6125) 28 0.842 0.893 0.847 0.891
(6128) 20 0.615 0.987 0.617 0.985

Oogheelkunde 24 0.649 0.947 0.654 0.946
(7710) 1 0.268 0.732 0.336 0.750
(7727) 8 0.659 0.878 0.654 0.884
(7792) 15 0.647 0.962 0.645 0.960

Psychiatrie 122 0.638 0.946 0.645 0.946
(7294) 18 0.619 0.982 0.592 0.975
(7295) 21 0.635 0.985 0.629 0.991
(7296) 22 0.626 0.988 0.645 0.990
(7297) 6 0.599 0.875 0.560 0.895
(7298) 17 0.641 0.973 0.658 0.972
(7299) 13 0.650 0.948 0.649 0.936
(7566) 20 0.038 1.000 0.029 1.000
(7569) 5 0.776 0.626 0.770 0.663

Hoboken 522 0.607 0.965 0.610 0.965
Algemene Heelkunde 168 0.631 0.962 0.628 0.961

(4098) 1 0.441 0.559 0.436 0.551
(4108) 3 0.617 0.698 0.600 0.718
(4125) 2 0.000 1.000 0.000 1.000
(4126) 40 0.736 0.986 0.742 0.984
(4127) 44 0.550 1.000 0.545 1.000
(4221) 40 0.648 0.998 0.645 0.999

Dermatologie 19 0.630 0.923 0.635 0.919
(7413) 6 0.621 0.858 0.617 0.860
(7441) 13 0.634 0.955 0.635 0.957

Inwendige Geneeskunde 191 0.599 0.986 0.600 0.987
(3194) 1 0.115 0.885 0.121 0.857
(5118) 5 0.191 0.997 0.180 0.999
(5124) 12 0.624 0.952 0.625 0.954
(5126) 36 0.002 1.000 0.002 1.000
(5138) 23 0.651 0.985 0.640 0.986
(5142) 40 0.637 0.998 0.633 0.999
(5226) 10 0.000 1.000 0.001 1.000
(5228) 18 0.637 0.977 0.637 0.981
(5323) 41 0.627 0.999 0.627 0.999
(7616) 5 0.116 1.000 0.120 0.999

MDL 68 0.617 0.967 0.617 0.967
(5241) 18 0.615 0.982 0.616 0.983
(5243) 1 0.172 0.828 0.169 0.823
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medical department ward beds occupancy service occupancy service
(5277) 40 0.638 0.998 0.637 0.999
(5278) 9 0.622 0.922 0.629 0.921

Orthopedie 35 0.642 0.996 0.642 0.998
(4427) 35 0.642 0.996 0.642 0.998

Plastische Chirurgie 34 0.477 1.000 0.482 1.000
(4525) 34 0.477 1.000 0.482 1.000

Reumatologie 7 0.459 0.843 0.466 0.843
(5957) 5 0.532 0.892 0.553 0.889
(5958) 2 0.398 0.802 0.403 0.788

Sophia 432 0.683 0.891 0.683 0.891
Ambulate Zorg Sophia 20 0.616 0.987 0.617 0.987

(3812) 20 0.616 0.987 0.617 0.987
ICK 51 0.746 0.699 0.741 0.702

(3920) 12 0.599 0.962 0.594 0.961
(3921) 8 0.658 0.879 0.666 0.873
(3922) 10 0.434 0.991 0.425 0.990
(3923) 7 0.910 0.419 0.913 0.422
(3939) 8 0.789 0.729 0.770 0.753
(3963) 6 0.474 0.948 0.482 0.928

KG Neonatologie 27 0.370 0.993 0.379 0.990
(3955) 10 0.327 0.999 0.331 1.000
(3956) 9 0.367 0.995 0.344 0.997
(3957) 8 0.421 0.985 0.455 0.986

Kinderchirurgische
Groep

50 0.830 0.891 0.830 0.891

(3941) 25 0.827 0.894 0.833 0.887
(3943) 25 0.833 0.888 0.831 0.895

Kindergeneeskunde 100 0.574 0.955 0.574 0.955
(3529) 1 0.471 0.529 0.466 0.536
(3566) 12 0.598 0.963 0.597 0.965
(3567) 5 0.001 1.000 0.002 1.000
(3951) 30 0.711 0.981 0.712 0.982
(3952) 26 0.414 1.000 0.419 1.000
(3953) 26 0.481 1.000 0.473 1.000

KJP (incl. Adolescentenk-

liniek)

58 0.599 0.942 0.603 0.932

(3728) 9 0.601 0.933 0.543 0.988
(3729) 12 0.611 0.958 0.674 0.915
(3738) 5 0.542 0.884 0.531 0.886
(3739) 11 0.623 0.945 0.575 0.975
(3860) 21 0.028 1.000 0.017 1.000

Urologie 38 0.692 0.950 0.696 0.950
(4325) 34 0.768 0.968 0.768 0.964
(4329) 4 0.465 0.897 0.458 0.895

Verloskunde & Vrouwen-
ziekten

88 0.725 0.846 0.726 0.846
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medical department ward beds occupancy service occupancy service
(3971) 21 0.694 0.968 0.700 0.965
(3972) 19 0.630 0.981 0.621 0.983
(3973) 17 0.797 0.872 0.795 0.871
(3974) 4 0.361 0.950 0.353 0.954
(3979) 18 0.732 0.935 0.729 0.936
(7123) 3 0.629 0.683 0.638 0.685
(7124) 6 0.817 0.604 0.818 0.603

Spoed en Intensief 86 0.630 0.970 0.632 0.970
Anesthesiologie 15 0.633 0.928 0.629 0.934

(1509) 10 0.635 0.927 0.635 0.927
(7829) 5 0.002 1.000 0.002 1.000

IC Volwassenen 52 0.642 0.966 0.649 0.964
(4225) 18 0.676 0.964 0.691 0.952
(5825) 21 0.619 0.988 0.629 0.991
(8326) 13 0.637 0.954 0.629 0.953

Operatiekamers 19 0.622 0.983 0.623 0.984
(7925) 19 0.622 0.983 0.623 0.984

Thorax 173 0.669 0.902 0.666 0.906
Longziekten (5625) 60 0.546 0.998 0.546 0.997

(5625) 32 0.499 1.000 0.491 1.000
(5626) 28 0.637 0.993 0.638 0.994

Thorax Cardiologie 83 0.679 0.853 0.678 0.851
(8114) 5 0.488 0.918 0.494 0.921
(8116) 14 0.646 0.956 0.646 0.953
(8117) 15 0.614 0.973 0.615 0.976
(8126) 18 0.637 0.977 0.645 0.971
(8127) 16 0.955 0.435 0.956 0.449
(8328) 15 0.635 0.966 0.646 0.963

Thorax Chirurgie 30 0.777 0.955 0.772 0.954
(8327) 30 0.777 0.955 0.772 0.954

Total 1680 0.666 0.884 0.666 0.884
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C Service Level(s) - One Ward per Medical Department

Table 22: Simulation results for unaltered wards.
The results in this table are based a 10 year simulation, with the data
as presented in Section 4, without combining wards. This can be used
as baseline for the other results.

Theoretical Simulated
medical department beds occupancy service occupancy service
Daniel 212 0.857 0.845 0.855 0.846
Ambulante Zorg Daniel
[6941, 6951, 6953]

25 0.752 0.954 0.755 0.955

Haematologie
[5428, 5444, 5445, 6630, 6971, 6972]

60 0.855 0.957 0.840 0.967

Interne Oncologie
[5353, 6966, 6968, 6969]

54 0.845 0.956 0.843 0.956

Radiotherapie [6963, 6964, 6965] 19 0.715 0.950 0.722 0.948
SOG Daniel
[6960, 6961, 6973, 6978]

54 0.971 0.626 0.972 0.626

Diagnostiek 8 0.749 0.785 0.753 0.777
Nucleaire Geneeskunde [5520] 8 0.749 0.785 0.753 0.777
Hersenen en Zintuigen 206 0.763 0.957 0.766 0.958
KNO [7310, 7328] 23 0.726 0.961 0.718 0.962
Mondziekten, Kaak- en
Aangezichtschirurgie &
Bijzondere Tandheelkunde
[4625]

9 0.548 0.958 0.560 0.956

Neurochirurgie [6216, 6225] 28 0.761 0.958 0.763 0.958
Neurologie
[3613, 6116, 6124, 6125, 6128]

48 0.839 0.952 0.832 0.955

Oogheelkunde [7710, 7727, 7792] 22 0.719 0.961 0.717 0.961
Psychiatrie
[7294, 7295, 7296, 7297, 7298, 7299, 7566, 7569]

76 0.879 0.954 0.881 0.957

Hoboken 307 0.821 0.955 0.821 0.955
Algemene Heelkunde
[4098, 4108, 4125, 4126, 4127, 4221]

89 0.894 0.953 0.897 0.947

Dermatologie [7413, 7441] 18 0.690 0.958 0.696 0.956
Inwendige Geneeskunde
[3194, 5118, 5124, 5126, 5138, 5142, 5226, 5228, 5323, 7616]

93 0.898 0.952 0.900 0.950

MDL [5241, 5243, 5277, 5278] 49 0.839 0.953 0.839 0.955
Orthopedie [4427] 28 0.768 0.954 0.762 0.954
Plastische Chirurgie [4525] 22 0.711 0.964 0.716 0.961
Reumatologie [5957, 5958] 8 0.482 0.970 0.482 0.974
Sophia 336 0.824 0.956 0.824 0.955
Ambulante zorg Sophia [3812] 18 0.670 0.966 0.670 0.968
ICK
[3920, 3921, 3922, 3923, 3939, 3963]

51 0.839 0.957 0.842 0.953
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medical department beds occupancy service occupancy service
KG Neonatologie
[3955, 3956, 3957]

15 0.643 0.963 0.637 0.964

Kinderchirurgische Groep
[3941, 3943]

53 0.842 0.958 0.845 0.958

Kindergeneeskunde
[3529, 3566, 3567, 3951, 3952, 3953]

59 0.861 0.951 0.861 0.953

KJP incl.
Adolescentenkliniek
[3728, 3729, 3738, 3739, 3860]

30 0.776 0.956 0.789 0.933

Urologie [4325, 4329] 35 0.794 0.957 0.795 0.957
Verloskunde &
Vrouwenziekten
[3971, 3972, 3973, 3974, 3979, 7123, 7124]

75 0.880 0.953 0.882 0.948

Spoed en Intensief 68 0.706 0.956 0.703 0.957
Anesthesiologie [1509, 7829] 11 0.596 0.956 0.596 0.954
IC Volwassenen
[4225, 5825, 8326]

40 0.820 0.951 0.825 0.954

Operatiekamers [7925] 17 0.678 0.959 0.676 0.958
Thorax 154 0.851 0.954 0.852 0.952
Longziekten [5625, 5626] 40 0.811 0.957 0.820 0.953
Thorax Cardiologie
[8114, 8116, 8117, 8126, 8127, 8328]

84 0.889 0.953 0.884 0.957

Thorax Chirurgie [8327] 30 0.777 0.955 0.770 0.956

Total 1291 0.818 0.930 0.818 0.929
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