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Abstract

In this paper we developed a Variable Neighborhood Search based heuristic for

the lot sizing problem with an emission constraint. This is an extended version of

the standard lot sizing problem, where the emission constraint is a capacity of the

production quantities and inventory. The purpose of the heuristic is to rapidly find a

good solution. The results show that this heuristic is highly efficient for production

planning with a short time horizon.
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1 Introduction

For every industrial company production planning is an important factor. They have to

determine when and how much they will produce in order to satisfy all their clients by

meeting their demands, while they want to keep the costs as low as possible. This form

of production planning is called the lot sizing problem, where the total costs which exist of

setup, inventory holding and production costs, have to be minimized over a certain time

horizon.

Nowadays companies are bound to much stricter rules. Because of the climate change

everyone becomes more aware of environmental issues like the CO2 emissions. In order

to reduce these CO2 emissions and the pollute of plants, governments set environmental

restrictions. In terms of the lot sizing problem this means that companies are limited in the

quantity of products they produce and store in a certain period.

The original lot sizing problem is an LP-problem which is relatively easy to solve (see

Wagner and Whitin (1958)). The lot sizing problem with an emission constraint however

has proven to be NP-hard and is not as easy to solve. This thesis is a part of the research

of M.J. Retel Helmrich on solving lot sizing problem with an emission constraint. The

purpose of this thesis is to find a heuristic that provides a good solution for this problem

without having a large computation time. The heuristic that we developed is based on a

Variable Neighborhood Search. This method, developed by Hansen and Mladenovic (1999),

has proven to be an efficient method for different kinds of problems. It uses a local search in

different neighborhoods to find the global optimum. In this thesis we have datasets available

of different lot sizing problems with an emission constraint. For every problem the optimal

solution is also included in the datasets. In the end we will the compare the costs that are

found by our heuristic with the optimal solution, and report the computation time.
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2 Problem Description

In this section we will provide an exact explanation of our problem. The standard lot sizing

problem consist of an objective function and a few restrictions, parameters and decision

variables. The lot sizing problem with emission constraint is extended with an extra re-

striction and four parameters. In his paper we consider a finite horizon of T periods where

t = 1, .., T and a plant with an infinite capacity, meaning that there is no limit on how many

products can be produced or stored in a period. In the problem we consider the plant only

produces one kind of product.

2.1 Parameters

The first four parameters are the parameters for the standard lot sizing model. The last

three (K̂t, p̂t, ĥt and Ĉ) are the extra parameters needed for the emission constraint. All

the costs and demand are known beforehand, but can vary over time.

Kt = set up costs in period t t = 1, . . . , T

pt = production costs per unit for period t t = 1, . . . , T

ht = inventory holding costs per unit remaining at end of period t t = 1, . . . , T

Dt = demand in period t t = 1, . . . , T

K̂t = set up emission costs in period t t = 1, . . . , T

p̂t = production emission costs per unit for period t t = 1, . . . , T

ĥt = inventory holding emission costs per unit remaining at end of period t t = 1, . . . , T

Ĉ = the emission capacity

2.2 Decision variables

For every period t, we have to decide if we will produce (yt=0/1) and if this is the case, the

quantity (xt). The inventory (It) depends on the production periods.

yt = 1 if there will be produced in period t, 0 otherwise t = 1, . . . , T

xt = Production quantity in period t t = 1, . . . , T

It = Inventory remaining at the end of period t t = 1, . . . , T
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2.3 Objective function and restrictions

min

T∑
t=1

(Ktyt + ptxt + htIt) (1)

It = It−1 + xt − dt t = 1, . . . , T (2)

s.t. xt ≤ Dt,Tyt t = 1, . . . , T (3)

xt, It ≥ 0 t = 1, . . . , T (4)

yt ∈ {0, 1} t = 1, . . . , T (5)

I0 = 0 (6)

T∑
t=1

(K̂tŷt + p̂tx̂t + ĥtÎt) ≤ Ĉ (7)

In (1) the objective function is given, it wants to minimize to total costs. These costs

consists out of the set up costs (Ktyt), the total production costs (ptxt) and the inventory

cost (htIt) per period t. Note that in some periods there will not be produced so there will

not be any set up and production costs.

The objective function is subject to several restrictions. The restriction in (2) makes

sure that the demand in every period satisfied. The amount of the production in stock

at the beginning minus the amount of production in stock at the end of a period plus the

amount produced must be equal to the demand of that period. The constraint in (3) has the

function that if there will not be produced in a period, meaning that Dt,Tyt is equal to zero,

xt will also be equal to zero. The third constraint (4) says that the production quantity and

inventory cannot be negative. In (5) it says that yt can only be one and zero. A one when

there will be produced in period t, and a zero when this is not the case. The restriction in

(6) says that we start with no products in stock. The last constraint in (7) is the emission

constraint. Just like the objective function the sum of all the costs per periods are taken

except they are now calculated with the emission parameters. These total costs, (actually

it is more a penalty because these are not actual costs), has to be less than or equal to Ĉ,

the emission capacity.
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2.4 Data sets

For his research on the lot sizing problem with an emission constraint, M.J. Retel Helmrich

created 600 test problems. In this paper we use these test problems to test the heuristics we

created. The problems can be divided in different categories. In defining the these categories

the zero inventory property (ZIP) plays an important role. This property makes sure that

in every period t where there will be produced, there is no inventory left from the previous

periods. Meaning that for all production periods only the exact quantity of products that

is needed till the next production period will be produced. In the lot sizing problem with

emission constraint this property does not necessarily hold. However it is of importance

because the property holds for all the solutions of the algorithms we create in this paper.

Below we provide a short description of the different test problems:

A) 1. Optimal solution meets the zero inventory property.

2. Optimal solution does not necessarily meet the zero inventory property.

3. These problems have the feature that all periods are alternately cheap and clean for

the even periods and expensive and polluting for the odd periods.

B) The set-up costs and the set-up emission costs are generated from three different uniform

distributions with the mean 1000,5000,10000.

C) The length of the periods T are 25, 50 or 100.

D) For every category there are 10 unique problems generated.

E) For every problem three different emission capacities Ĉ are given, the demand D per

period and all the costs K,p,h,K̂,p̂ ,ĥ for every period.

Besides all these parameters we need for the heuristic, the optimal solution is also known

for every test problem.
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3 Methods

The heuristic we present in this paper consists of three parts: the Initialization, the Variable

Neighborhood Search (VNS) and a disruption. In this section we will describe the three parts

individually. In figure 1 the pseudo code is given. The heuristic starts with finding an initial

solution and is followed by an iterative process where the VNS and the disruption part are

repeated until the search is terminated. For every iteration where a better solution is found,

the solution with corresponding costs will be saved. In section 4 we will discuss how many

iterations are preferred before we terminate the search.

Figure 1: Pseudo code for the algorithm

3.1 Initialization

The first step of the heuristic is to find an initial solution. The work of Wagner and Whitin

(1958) describes how to find the optimal solution for the dynamic lot sizing problem given

that the solution has the zero inventory property. If we apply this Wagner-Whitin algorithm

for our problem, the solution probably will not be feasible because of the emission constraint.

However if we solve the algorithm using the costs of these emission constraints we can

guarantee that the solution is feasible. That this solution could be far from optimal does

not really matter, as it is just an initial solution. In Evans (1985) an efficient way to

implement the Wagner-Whitin algorithm is described. This implementation guarantees a

fast computation time.
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3.2 Variable Neighborhood Search

When the initial solution has been created the Variable Neighborhood Search is executed.

The basic VNS described in Hansen and Mladenovic (1999) consists of an initial solution

x0 and a set of neighborhood structures Nk with k different neighborhoods. The incumbent

solution will be set to x0(x ← x0) and k to the first neighborhood (k ← 1). A local search

will be applied to find a better solution. If a better solution cannot be found k will be set

to k+ 1. If there is a better solution, this solution will be set as the new incumbent solution

and k will be set to 1. This will be repeated until a certain stopping condition is met, this

could be the maximum CPU time allowed or a maximum number of iterations. In figure 2

the steps of this basic VNS are given.

Figure 2: Pseudo code for the basic VNS as described in Hansen and Mladenovic (1999)

3.2.1 Neighborhood structure

All the solutions in our algorithms meet the zero inventory property, this way the solution

for the lot sizing problem only depends on the production periods y. For every possible y,

there can be only one possible combination of x and I because there is no inventory left in

the next production period. In our heuristic there are two different neighborhood structures.

We define the neighborhood as the difference between any two solutions:

P (y/y
′
)=|y/y

′ |, where |./.| denotes the number of different points between the two solu-

tions
∑T

t=1 |yt − y
′
t|.

1. The first neighborhood Nk has all the set of all solutions where k=P (y/y
′
)=1.
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y=



1

0

[1]

1

0


y

′
=



1

0

[0]

1

0



In this neighborhood we change one production period yt, from a one to a zero or vice

versa. As we can see in the notations shown above only one production period changes.

If the production horizon is T we can calculate that this neighborhood consists of T

possible solutions.

2. The second neighborhood Nk has all the set of all solutions where k=P (y/y
′
)=2.

y=



1

[0]

[1]

1

0


y

′′
=



1

[1]

[1]

1

0



The notations shown above indicates we change two production periods in this neigh-

borhood. However this neighborhood does not consist all the P (y/y
′
)=2 solutions.

We limited this neighborhood to all the production periods where it is possible to

produce in one period earlier or in a period later. This means that yt = 1 → 0 and

yt−1 = 0→ 1 (producing in period t− 1 instead of t) or yt = 1→ 0 and yt+1 = 0→ 1

(producing in period t + 1 instead of t). This is only possible if yt−1 or yt+1 is zero in

the first place. On forehand we cannot calculate the size of this neighborhood because

it depends on y and how many times this situation occurs.



3 METHODS 8

3.2.2 Best improvement and first improvement

In Hansen and Mladenovic (1999) there are two different types of VNS discussed. The first

one is the VNS in a steepest descent manner. Meaning that each possible solution in a

neighborhood is examined and the solution that would bring the most improvement will be

set as the incumbent solution. The disadvantage of this Best improvement implementation is

that it takes time to examine every solution and calculate the corresponding costs. The other

possibility is the quickest descent manner or First improvement. Instead of examining the

whole neighborhood, every time a solution that brings improvement is found this solution will

be set as the incumbent solution immediately. In this paper we will create two algorithms, in

the first Best improvement algorithm the VNS is executed with a steepest descent manner,

in the second First improvement algorithm the VNS is executed with the quickest descent

manner.

3.2.3 Best Improvement

In figure 3 the pseudocode for the VNS where ’Best improvement ’is implented is given.

Figure 3: Pseudo code for the VNS with the ’Best improvement’ implemented

In the first step the incumbent solution y is the initial solution that was found in section

3.1 using the Wagner Whitin algorithm. Every time when a neighborhood is entered all

the solutions, y
′

(or y
′′
) from the neighborhood of the incumbent solution y are examined.

For every y
′

(or y
′′
) the emission costs are calculated. If these costs do not exceed the
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emission capacity the total costs will be calculated and will be stored. If the emission costs

do exceed the emission capacity, a penalty will be given and instead that the total costs

will be calculated a very large number will stored. When all the possible solutions in the

neighborhood are examined, y will be set to the solution of y
′

that gives the lowest total

costs. This new solution will enter N1 and the whole process will be repeated. Note that it

does not matter if we are in N1 or N2 if a better solution is found it will go back to the first

neighborhood. It is also possible that after all the solutions in a neighborhood are examined,

there is no better solution found than the incumbent. When this happens in N1, we move

on to the second neighborhood. If this happens in N2, the VNS is finished and the output

is y.

3.2.4 First Improvement

In figure 4 the pseudocode for the VNS where ’First improvement ’is implented is given.

Figure 4: Pseudo code for the VNS with the ’First improvement’ implemented

Just like in the VNS where Best improvement is implemented, the VNS with First

Improvement starts with setting the incumbent solution y as the initial solution found by

the Wagner Whitin algorithm. The difference from Best improvement is that if we enter

a neighborhood, instead of checking all possible solutions in the neighborhood, only one
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solution will be examined. The emission costs will be calculated to check if this solution is

feasible. If this is the case the total costs will be calculated and compared with the costs

of the incumbent solution. When these total costs are lower, y
′

(or y
′′
) will be set to the

incumbent solution immediately. Independent of what neighborhood we are currently in,

we enter N1 again with the new solution. If y
′

(or y
′′
) is not feasible or if the costs are not

improving, we search for a new solution y
′

(or y
′′
) in the same neighborhood. If there are

no improving solutions are found in a neighborhood we exit the neighborhood. If we are in

N1, we move on to N2. If this happens in the second neighborhood the VNS is finished and

have y as output.

3.3 Disruption

The variable neighborhood search is followed by a disruption. The VNS part of the heuristic

is able to find a local optimum. However it could be possible that the global optimum lie

far away from the local optimum we just found. By running the VNS again but starting

with a different initial solution y we may find this global optimum. It has no use to run the

initialization algorithm of section 3.1 again because the Wagner Whitin algorithm always

gives the same outcome for a given problem. That is why we disrupt the current best solution

y. The disrupted y will be the new ’initial’ solution for the VNS. The disruption is done by

randomly change a few production periods, from a one to a zero or vice versa. Only the first

period cannot be changed because we always produce in the first period. The number of

periods that will be disrupted is a percentage of the number of periods T. This percentage

is a parameter we can adjust. Later we will determine what percentage is preferred for the

heuristic.
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4 Results

In this section the performance of the heuristics will be tested. The test problems, described

in section 2.4, are divided into 9 categories: the three different ’A’ problems and for each

’A’ problem the three different planning periods T are separated. For every problem we

calculated the relative difference with the optimal solution percentage wise ((solution found

- optimal solution) / optimal solution*100 %) and the computation time in seconds. For

each category the average relative difference with the optimal solution, the average compu-

tation time and the percentage that the optimal solution is found are reported. Because for

every problem there were three different emission capacities Ĉ we find for every category

three values, where the first one stands for the lowest (strictest) capacity and the third

for the highest capacity. We start with comparing the Best improvement with the First

improvement heuristic and deciding the two input parameters.

4.1 Best heuristic

The heuristics we described earlier are quite similar but it is expected that the Best improve-

ment heuristic gives a better solution while the First improvement heuristic is expected to

have lower computation time. Because of the large number of test problems we first want to

test what heuristic is more efficient before we run all the problems. That is why we compare

the two heuristics with only a part of the test cases. We also used these test cases to decide

the other input parameters: the amount of iterations and the percentage of the periods that

is disrupted, the disruption percentage. After some trial and error we discovered that if the

disruption percentage is too high, then it is almost impossible to find a feasible solution.

Intuitively this seems logic: the chances to find a feasible solution after a random disruption

slink when the new solution differs a lot. We found that a disruption percentage around 5

or 10 percent would be the most efficient. For the amount of iterations we tested for several

problems how much iteration it took before they found their minimum costs. We found out

that most problems found their best solutions before the fiftieth iteration, however there

were also some problems who found there optimum in a later stadium. Figure 5 gives an

example of the progress for one test case.
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Figure 5: This is an example of the progress of the best solution found so far(on the y-axes)

after a certain amount of iterations (x-axes). Both graphs are from the same test problem

(A=0, 50 periods) but the graph on the left has an stricter emission constraint.

The two heuristics can be compared by their computation time, their relative difference

with the optimal solution and how many times the optimal solution is found. The comparison

is made using 90 test problems and we have tried three different inputs:

� Input 1: 100 iterations and a disruption percentage of 5

� Input 2: 50 iterations and a disruption percentage of 10

� Input 3: 100 iterations and a disruption percentage of 10

In the tables below the results of the two heuristics given these inputs are shown:
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Table 1: Input 1

Best improvement First improvement

25 50 100 25 50 100

Computation time in seconds 1.24 3.95 13.15 1.07 3.36 11.02

1.41 5.32 18.52 1.21 4.09 13.47

1.59 6.72 25.23 1.37 4.78 16.83

Relative difference optimum in % 0.06 0.28 0.38 0.08 0.60 1.74

0.01 0.03 0.17 0.14 0.25 0.41

0.05 0.06 0.05 0.10 0.13 0.16

Optimum found in % 96.67 43.33 13.33 90.00 16.67 0

96.67 80.00 36.67 86.67 50.00 13.33

96.67 70.00 46.67 80.00 60.00 26.67

Table 2: Input 2

Best improvement First improvement

25 50 100 25 50 100

Computation time in seconds 0.54 1.71 6.20 0.45 1.41 5.04

0.68 2.38 7.81 0.54 1.74 5.49

0.83 3.35 10.32 0.65 2.05 6.18

Relative difference optimum in % 0.06 0.58 0.72 0.90 1.90 4.01

0.02 0.09 0.40 0.14 0.56 1.76

0.06 0.09 0.23 0.13 0.22 0.42

Optimum found in % 93.33 30.00 06.67 73.33 03.33 0

96.67 66.67 13.33 83.33 26.67 03.33

90.00 50.00 26.67 80.00 46.67 13.33
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Table 3: Input 3

Best improvement First improvement

25 50 100 25 50 100

Computation time in seconds 1.03 3.24 11.19 0.90 2.83 10.05

1.34 4.48 13.48 1.10 3.37 10.77

1.64 6.21 18.38 1.30 4.10 12.14

Relative difference optimum in % 0.06 0.25 0.66 0.13 1.61 3.28

0.00 0.03 0.41 0.09 0.41 1.36

0.05 0.02 0.18 0.15 0.15 0.23

Optimum found in % 96.67 43.33 06.67 83.33 0 0

96.67 76.67 13.33 86.67 40.00 0

90.00 76.67 33.33 80.00 60.00 10.00

If we compare the two heuristics it can be seen that Best improvement gives, for all

categories and inputs, a solution that is closer to the optimum, while First improvement

results in lower computation times. It seems that the difference in computation times seems

smaller than the difference of the best solution between the two algorithms, indicating

that the Best improvement heuristic gives a better algorithm. However it has to be taken

into account that there is a possibility that the First improvement heuristic could give a

better solution if the running time was just as long. We can compare the results of Best

improvement input 2 with First improvement input 3. Although First improvement has

two times as many iterations, what results in a longer computation time, the solutions still

cannot match the solutions of Best improvement. We assume that Best improvement gives

us the best model, but we still have to compare the three inputs. In three tables the best

values are expressed in boldface. For T= 25 and T=50, input 1 and 3 gives almost similar

results, however the computation times of input 3 are slightly faster, so input 3 is preferred.

For 100-periods problems input 1 gives clearly better results than the other two. That input

1 and 3 are better models is because it has two times as many iterations. The fact that

a disruption percentage of 5 percent is preferred instead of the 10 percent for T=100 also

seems logical. When 10 instead of 5 periods are disrupted the chances to find a feasible
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solution slink. For 25 and 50 periods, 10 percent disruption only means that 3 and 5 periods

are disrupted.

4.2 Final results

In the last section we concluded that the most efficient heuristic is the Best improvement

heuristic with 100 iterations, a disruption percentage of 10% for 25 and 50 periods and

a disruption percentage of 5% for 100 periods. We used this model for all the 600 test

problems. The results are given separately for the three categories of A and each for the

three different lengths of periods. Every category is also divided with the three different

emission capacities. Where 1 stands for the lowest emission costs allowed and 3 for the

highest. All the results are an average of the corresponding test problem per category. In

table 4 these results are given.

Table 4: Final results

A: 1 2 3

T: 25 50 100 25 50 100 26 50 100

Relative difference 1 0.48 2.09 2.27 0.48 2.59 2.47 1.63 5.28 7.06

optimum in % 2 0.44 1.29 1.70 0.43 1.33 1.45 1.49 5.19 5.56

3 0.19 0.62 0.86 0.36 0.64 0.67 1.15 1.70 2.86

Optimum found in % 1 77.8 20.0 4.4 58.9 6.7 1.1 20.0 0 0

2 82.2 33.3 7.8 64.4 27.8 6.7 30.0 0 0

3 84.4 47.8 13.3 76.7 47.8 11.1 65.0 45.0 20.0

Computation time in seconds 1 0.84 2.53 9.79 0.99 3.06 11.64 1.33 3.51 13.72

2 1.03 3.14 12.54 1.32 4.33 17.71 1.68 5.75 22.76

3 1.23 4.11 16.79 1.63 5.91 24.30 2.06 8.49 32.48
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The results show some logical patterns. It can also been seen that the computation times

take longer when the emission cost become larger. When the emission capacity become

larger, the set of feasible solution become bigger what could result in a larger computation

time. There are also differences in the results between the three periods T, as well the

solutions as the computation times are better if the time period is shorter. That is why we

will take a look at the results for each period separately.

� T=25: The category A1 and A2 does not differ very much from each other. It was

expected that the A1 problems would perform better because of the zero-inventory-

optimum. This is the case, but except for the least strict capacity, the difference is not

very large and the computation times are quite similar. The results for the A3 category

stays behind on the other two, besides the longer computation time the difference with

the optimum is almost twice as large compared to the other categories. Overall the

heuristic seems to do an excellent job for T=25, in the best case the relative difference

is on average only 0.19% and the worst case 1.63% on average. While the computation

times are around one or two seconds.

� T=50: The same pattern can be seen as from the 25-periods problem. The A1 and

A2 results are quite similar. The A1 problems are slightly better but the difference is

not that much, only for the strictest problem the difference is a little bit larger. The

results of the A3 category on the other hand stay behind. Longer computation times

and the difference percentage wise with the optimum is in for two capacities more than

5% on average. The results for the other two categories seem very decent.

� T=100: For the 100 period problems the results for A1 and A2 are very similar. For

two capacities the relative difference with the optimum is even better in the A2. Again

we see that the results of the A3 category stay behind. With average relative difference

between 0.67 and 2.47% we can conclude that the model gives a decent solution. The

computation time on the other hand are almost three times as much as in the T=50

period. We can see that the model is less effective for 100 period problems.
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5 Conclusion

In this paper a VNS based heuristic is used to solve the lot-sizing problem with an emission

constraint. Because this problem is a NP-hard problem it is not easy to find an exact

solution. The heuristic introduced in this paper shows that the results are very decent.

They are close to the optimum and in many cases the optimum was found. Especially

for short horizon of 25 periods the heuristic performed well: the computation time took

on average about one second and in 80% of the problems the optimum was found. For

the problems where the costs come in pairs (A3 problems) the results stay behind. The

relative difference from the optimum was larger and it also took more time to compute.

Even for the problems where the optimum does not necessarily meet the zero inventory

property, very good results are reported, with only a slightly longer computation time than

the problems where the optimum meet the ZIP. We can conclude that this heuristic is

efficient for production planning with a short time horizon.
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