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In this paper we have developed an algorithm that will find a Lagrangean lower-
bound for the emission lot-sizing problem. Next to that we monitored the influence
of different parameters on the quality of the lower bound and see how the associ-
ated computation time develops. This paper is part of the PhD. Research project of
Mathijn J. Retel Helmrich on extensions of the classical economic lot-sizing prob-
lem.
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1 Introduction

The lot-sizing problem, in its most basic form, is a relatively easy problem to
solve. A feasible solution for the problem requires that a specific demand has
to be satisfied in every period 1 . . . T. The decision has to be made in which
period there will be production and how much to produce in those particular
periods. If the decision to produce has been made, there are related set-up
costs independent on the amount that will be produced. Next to those costs
the actual production brings costs with it. If the production in a certain
period exceeds the demand the remaining number of products will have to
be stored. The storing of these products will also bring costs with it. For a
producer it therefore is quite possibly not very convenient to produces the
total demand for all the periods immediately in the first period, because this
will bring great holding costs. On the other hand it is also quite possible
that producing every period for that period alone is not so cost efficient
either.

This basic problem has been solved for a few decades now but in the
ever changing economy new problems arise constantly. Nowadays the entire
world is concerned about the future of the planet. Thanks to the extensive
use of fossil fuels, the world we live in is warming up. This increasing
awareness of the CO2 problem has consequences for every section of the
economy. Everyone has to obey increasingly stricter rules regarding the
CO2-emission. The transport sector has to operate on cleaner vehicles, taxes
on cars go up and the industry has to reduce its emission to levels set by
their local government. Due to this extra restriction the optimal solution in
the original problem will quit possibly no longer be a feasible solution.

The new problem still has to be solved again as cost efficiently as possible.
This problem has been proven to be NP-hard and therefore an exact solution
is not the goal in this paper. The goal is to gain a lower bound on the
problem by means of a Lagrangean Heuristic. The next section will describe
the problem we are dealing with in more detail. Section 3 and 4 respectively
discuss the heuristic and the result. In section 5 we will draw the conclusions.
This paper is a part of the Phd. research of M.J. Retel Helmrich MSc. into
extensions of the classical economic lot-sizing problem.

2 Problem Description

So in this paper we want to obtain a solution for the extended lot-sizing
problem. To gain such a solution a better understanding of the problem
is useful. Therefore we start off by giving a detailed explanation of the
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problem. Like any other LP-problem the problem consists out of 4 parts
respectively the decision variables, parameters, the objective function and
the restrictions.

2.1 Standard
The problem can be divided into 2 major parts, where the first part is the
standard lot-sizing and the second is the emission part. First the standard
lot-sizing problem will be introduced and after that the additions, which
follow from the emission part, will be specified.

2.1.1 Decision Variables

First up are the decision variables. Decision variables are the variables that
are the most interesting, because of the fact that these variables are the
ones that will lead to the actual solution. In this case we got 3 decision
variables that are very closely related. We will define them as xt, yt and It.
yt indicates the periods in which production will find place. y is a binary
variable meaning, yt ∈ {0, 1}. This variable will be also be used to calculate
the set-up costs, because every period where yt equals 1 there is production
and therefore also set-up costs. Apart from the decision in which period
to produce we need also decide how much to produce in the periods where
y = 1 and set-up costs are made. If the choice has been made to produce in
a certain period t (yt = 1) it is of course not efficient to produce nothing.
We introduce the decision variable xt which is ∈ R, this variable indicates
the amount that will be produces in the periodt. We could say that only
this variable would be enough and that y is obsolete. In the next paragraph
we will show why the introduction of y does have benefits. In some cases
it is possible that the set-up costs are very high. When such a situation
occurs you can intuitively imagine that producing for just 1 period ahead
is not efficient. Namely this will result in a situation where the high set-up
costs are made every period this is a situations that should be avoided. It
might be more efficient to produce for more than 1 period. If in such a case
the decision is made to produce more than the demand for that period t
we will have some products left at the end of the period. Assuming that
these products do not have an expiration date and we want to use them
the next period we’ll have to store them somewhere. The storage of these
products will bring additional costs with them, which we will refer to as
holding costs. The amount of units we want to take from period t to t+ 1 is
represented by It. As you can see it is more efficient to produce for multiple
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periods in the case where the set-up costs are very high. However this is not
completely true, if in the same case the holding costs are also high it might
become very inefficient to produce for a lot of periods. In a more extreme
case where the set-up costs are low and the holding costs, you do not even
want to produce for 1 period ahead. The lot-sizing problem is therefore a
choice between making holding- or set-up costs. From this we can conclude
that the decisions regarding the amounts to produce in the different periods
are dependent on the ratio between the holding costs and the set-up costs.
It doesn’t matter whether the costs are high or low, but how high or low
they are with respect to each other.

2.1.2 Parameters

In the previous section we mentioned some of the parameters already briefly.
The formal formulations of the parameters, associated with this problem,
are stated below. The first 4 parameters are the ones found in any lot-sizing
problem. In section 2.2.1 the parameters, that are particularly for the prob-
lem where emission is to be considered, will be introduced.

Standard lot-sizing:

Kt = set up costs for periodt t = 1, . . . , T
pt = production costs for periodt t = 1, . . . , T
ht = holding costs for periodt t = 1, . . . , T
Dt = demand in periodt t = 1, . . . , T

2.1.3 Objective Function

The purpose of the entire existence of the MIP-problems is to find a solution,
which will results in a minimal, or sometimes a maximal, result. These
minimizations are translated in the objective functions of the problems. In
the lot-sizing problem the goal is to minimize the total costs, which consist
of set-up costs, production costs and holding costs. The minimization is
dependent on the relationship between the holding costs and set-up costs
described earlier. The objective function for the standard lot-sizing problem
becomes the following:

min
T∑

t=1
(Ktyt + ptxt + htIt)
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If we had only the objective function to deal with a computer program
that solves the problems would choose our decision variable x as low as
possible and even negative. To prevent this, the objective function has to
be subjected to restrictions that prevent this from happening.

2.1.4 Restrictions

The restrictions are a very important part of every LP-problem for the
reason previously described and the lot-sizing problem forms no exception.
The standard lot-sizing problem has the following restrictions.

s.t. xt ≤ Dt,T yt t = 1, . . . , T
It = It−1 + xt − dt t = 1, . . . , T

xt, It ≥ 0 t = 1, . . . , T
yt ∈ {0, 1} t = 1, . . . , T
I0 = 0

The 1st restriction concerns the maximum production for every period t. We
want no inventory left at the end of period T and therefore we set a maximum
to the production in period t, the periods maximum is equal to the demand
of all the remaining periods. In that way there cannot be produced more
than will be demanded. The 2nd restriction deals with the inventory It for
every period t. It states that the inventory in a period t has to be equal to
the inventory from the previous period It−1 plus the production in period t
xt minus the demand Dt. The next restriction ensures that we don’t have
a negative produciton or inventory. The yt ensures that there can only be
production if set-up costs are made in that period. This is where the yt

decision variable makes itself useful for the first time. The third restriction
makes sure that negative production or inventory is not possible. Without
these restrictions a solver can for example decide to produce negative to
obtain a lower total cost. The last restrictions respectively state that we
start out without any inventory and the y ∈ B .

2.2 Emission
The second part of the problem we are dealing with in this paper, are the ad-
ditions made to create the actual emission lot-sizing problem. The difference
lies in the extra emission restriction and its corresponding parameters.
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2.2.1 Additional Parameters

Before we introduce the import part, the restriction, we introduce the dif-
ferent new parameters.

K̂t = set up emission costs for periodt t = 1, . . . , T
p̂t = production emission costs for periodt t = 1, . . . , T
ĥt = holding emission costs for periodt t = 1, . . . , T
Ĉ = emission capacity

The parameters stated above can be seen as the CO2 costs for their cor-
responding actions. Every company or organization has to keep to sum of
the emission of all its processes below some level. This will lead us to the
following constraint which this paper is actually all about.

2.2.2 Additional restriction

Without this additional restriction there wouldn’t be a problem so this re-
striction is the most important part of the problem.

T∑
t=1

(K̂tyt + p̂txt + ĥtIt) ≤ Ĉ

It’s relatively straightforward but like said before without it the lot-sizing
problem is exactly solvable in polynomial time.

2.3 Data Sets
The data we used to test our methods are provided by Retel Helmrich, M.J.
and are introduced in the this section Every problem instance consists out
of 8 separate files, each of which follows from a specified distribution. Every
problem instance has different properties according to the parameters used
for the generation process. Of every combination of parameters 10 problems
are generated.

• A: Indicates the properties of the dataset 0 if the dataset posseses the
zero inventory property, 1 if the dataset does not have this property
and 4 if the dataset has cheap & dirty periods alternating with clean
& expensive periods.

• K: Indicates the mean of the uniform distribution from which the set-
up costs are generated.
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Kt ∼ discrete uniform[500,1500], discrete uniform[2500,7500], discrete
uniform[5000,15000].

• K̂ : Indicates the mean of the uniform distribution from which the
set-up emission costs are generated.
K̂t ∼ discrete uniform[500,1500], discrete uniform[2500,7500], discrete
uniform[5000,15000].

• T: T ∈ [25, 50, 100] indicates the amount of periods in that problem
instance.

The demand, the (emission)production, costs are from the same distribu-
tions for all of the problem instances and they are generated as follows:

• d: dt ∼ discrete uniform[0,200]

• pt, p̂t, ht, ĥt ∼ discrete uniform[0,20].

According to this division we can later on say something about the devel-
opment of the calculation time and the quality of the lower bound for the
different problem instances to see which parts have the most influence. The
optimal value for each of the problem instances are also provided, these are
obtained using CPLEX 10.1.

3 Methods

Like described in the previous sections the problem with the emission con-
straint is NP-hard and can probabaly not be solved exactly in polynomial
time. Therefore an alternative method has to be constructed to solve it.
The main goal in this paper was to find a lower bound. Using different kind
of methods a heuristic will be developed to do so.

3.1 Wagner Within
One of the methods we will be using in our algorithm is the Wagner-Whitin
algorithm. The standard lot-sizing problem can be solved using this. It
shows how we can solve the problem by looking at it as a shortest path
problem. In the paper ’An Efficient Implementation of the Wagner-Whitin
Algorithm for Dynamic Lot-sizing’ [1] they present an efficient computer im-
plementation of the algorithm. However because of the emission restrictions
this algorithm cannot be applied immediately first the problem has to be
modified.
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3.2 Lagrange Relaxation
In general a good way to find the lower bound on a problem is the Lagrange
relaxation method. The Lagrange method relaxes a restriction to simplify
the problem and this is exactly what we need to do before we can use the
Wagner Whitin algorithm. The Lagrange method works as follows. For a
certain LP-problem we have the following equations

min cTx

s.t. Ax ≤ b

Next we divide up the restrictions in 2 parts one of which we later will relax
into the objective function.

min cTx

s.t. A1x ≤ b1
A2x ≤ b2

When we relax the A2 part into the objective function we get the following
problem.

min cTx− λT (b2 −A2x)
s.t. A1x ≤ b1

λ ≥ 0

The λ works as a penalty. When the restriction imposed in A2 is violated
it means our objective function will be increased, which is something that
must be avoided. Any solver will therefore try to ’minimize’ the penalty
and in that way get a solution that violates the relaxed restriction as little
as possible. The benefit of the Lagrange relaxation method is that we can
manipulate our problem. If we apply this method to our problem we can
change it in such a way that we can again use the Wagner Within method
described in the previous section. If we relax the additional constraint re-
garding the emission the following problem will emerge.

min
T∑

t=1
(Ktyt + ptxt + htIt) + λ

T∑
t=1

(K̂tyt + p̂txt + ĥtIt − Ĉ)

=
T∑

t=1
((Kt + λK̂t)yt + (pt + λp̂t)xt + (ht + λĥt)It − λĈ)
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s.t. xt ≤ Dt,T yt t = 1, . . . , T
It = It−1 + xt − dt t = 1, . . . , T

xt, It ≥ 0 t = 1, . . . , T
yt ∈ {0, 1} t = 1, . . . , T
I0 = 0

If we now take a fixed number for λ we will again have standard lot-sizing.
Only with an objective function which has costs, for holding production and
set-up that also contain the emission costs and are at least as high, depend-
ing on the λ. Therefore applying the Lagrangean relaxation will be the first
step into solving our problem.

3.3 Algorithm
In this section we are going to explain the algorithm that will provide us with
a lower bound using the techniques described earlier. In the first part an
example is given and in the second part the formal algorithm is presented in
the form of a pseudo code. First we will find 2 initial solutions using λmin and
λmax in the dual problem. These solutions will be obtained using the Wagner
Within algorithm, which is possible because in these cases we know what λ
is. From this point on the a method from ”Eisner and Severance” [2] will
be used along with the Wagner Within method. This method is described
in detail in Sensitivity Analysis in Combinatorial” the PhD research from
A.P.M. Wagelmans [3] and is shown in the next few figures.

From the initial solutions x we can now define 2 linear functions in the
terms of lambda. These 2 linear equations are shown in figure 1. The
ascending is the one where λ = 0 and the descending one represent the
solutions gained with λmax.
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Fig. 1: step 1

In figure 1 we can see the 2 functions that are obtained from using λmax

and λmin. The solution that is with λmax has a negative gradient and the
one derived from λmin a positive one.

Fig. 2: step 2

Figure 2 shows the λ̄ for which the 2 equations intersect. We use this λ in
the way we earlier used the λmin & λmax. If a new solution is found there
will also be a new equation with it. This new equation is shown in the
next figure.
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Fig. 3: step 3

In figure 3 we can see that for λ̄ the new equation has a lower z-value.
If this wouldn’t be the case the new equations wouldn’t have much effect
on the lower envelope and would be discarded and the algorithm is done.
In this case however the value is lower and we keep starting the procedure
over again with 1 of the 2 new λ values where the lines intersect. When the

Fig. 4: final

collection of breakpoints is depleted the graph can come to look something
like figure 4. The maximum of the lower envelope will be the estimation of
our lower bound.



4 Results 12

3.3.1 Pseudo code

The intuitive way presented in the preceding section will now be translated
into a pseudo code so it can be implemented in a computer program, in this
paper we make use of MATLAB 2010.

Fig. 5: The pseudo code of the algorithm that finds a lower bound on the emission
lot-sizing problem

4 Results

After implementing the method we previously described we want to know
how well it performs. In this section we are going to look at the performance
in two ways. First we want to know how close we get to finding an optimal
value. However this isn’t the only important aspect of a solution, we also
want to know how long a computer will be needing to come to that solution.
A method, which leads to a value less than 1% away from the optimal, with
a computation time of 1 second, will sometimes be considered better than a
method that leads to the optimal value with 2 seconds of computation time.
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4.1 Optimal Values
The solution found by the heuristic will be evaluated by comparing it with
the optimal value of the problem instance. Keeping in mind we are searching
for a lower bound the desired results is that we find only negative numbers
and as close to zero as possible. The results found by the heuristic are pre-
sented in the table below and are ordered by the different problem instances.
In most of the analysis the A = 4 problems have been left out of the analysis,
because only for K = 1000 the optimal values were available.

A
0 1 4

HH
HHHHT

K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000

K

1000
25 -0.4317 -0.5947 -0.6248 -0.9387 -0.9634 -0.8881 - -3.0652 -3.8810
50 -0.2303 -0.2568 -0.2114 -0.3730 -0.3559 -0.3510 - -1.2897 -2.0955
100 -0.0718 -0.0651 -0.0806 -0.1213 -0.1228 -0.1196 - -0.5591 -0.7863

5000
25 -1.6059 -1.1062 -1.5026 -1.4442 -1.9858 -1.6688 - - -
50 -0.4565 -0.5264 -0.5478 -0.5778 -0.6097 -0.6784 - - -
100 -0.1644 -0.1940 -0.1828 -0.2806 -0.2229 -0.2303 - - -

10000
25 -0.9533 -2.4631 -1.2127 -2.4496 -2.0941 -1.8019 - - -
50 -0.5694 -0.6300 -0.6308 -0.6839 -0.8366 -1.0270 - - -
100 -0.2445 -0.2470 -0.2055 -0.2233 -0.2985 -0.2582 - - -

Tab. 1: Shows the mean deviation from the optimal value in percentages for each of
the 10 problem instances associated with the A,K,K̂,T combination. Not
every optimal solution was provided and therefore not every calculation
could me made

4.1.1 Parameter Influence

The results we found can are divided in different section according to the
parameters of the dataset by which they are computed. In the table we can
distinguish the 4 different parameters and from table 1 we can see how they
influence the quality of the lower bounds.

A Because of the fact the the algorithm is based on the zero-inventory
property we expect it to work better on the problem instances where the
zero-inventory property holds (A = 0). By comparing the different columns
of A we can see that our expectations turned out to be correct. Only in 3
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of the 27 problems the opposite is true. If we compare A = 0 with A = 1
we can see that on average the lower bound with A = 0 lies 0.21 percent
closer to the optimal value. If we do the same for the available sections from
A = 4 with the same section of A = 1 we see that the difference is here 1.29
percent on average.

K The parameter K represents the set-up costs and shows that the quality
of the lower bound decreases when the parameter increases.

K̂ The set-up emission costs do not show a clear pattern in terms of the
lower bound quality. In some cases the quality decreases when the parameter
increase, such is the case where A = 0, K = 1000 and T = 25. In other
cases however the quality goes the opposite way for example where A = 1,
K = 10000 and T = 100. In it appears even so that in some cases no
pattern emerges at all, the quality increases and decreases if we only change
K̂. Therefore we can conclude that K̂ has probably very little to no effect.

T Where the set-up emission costs had no clear pattern at all, the amount
of periods, T , has a very clear pattern. We can see that when the problem
contains more periods the quality actually increases. This increase is inde-
pendent of all the other parameter, in each possible combination the same
pattern emerges. We take another look at this specific parameter later on.

4.1.2 Optimal Value Statistics

To get a better view of 1 of the most important parameters another division
has been made in table 2. In table 1 we already saw that there was a

T
25 50 100

Mean -1.4045 -0.4990 -0.1843
Std 1.4707 0.6550 0.2341

Std as % of Mean 104.7115 131.2557 126.0160
Max 9.2654 4.3154 1.6707

Tab. 2: Shows the Mean, Std and Max.

positive relationship between the number of periods and the quality of the
lower bound. In table2 we take a closer look at this relationship. We can
again see clearly that there is a positive relationship. In problems where 100
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periods are being considered the algorithm is performing better in terms of
the mean. The standard deviation appears on first sight also to get better,
here we assume lower is better, but if we take a look at line number 3 ’Std
as % of Mean’ we see that the standardized standard deviations get worse.
This means on average we get a better performance but the variation gets
larger and therefor it is more difficult to make prediction if we would want
to.

4.2 Computation Time
An important aspect of developing and implementing a heuristic is the com-
putation time it will take to find results. It was therefore monitored how
long it took to solve each of the problem instances mentioned in the dataset
section. The solving of the problem instances was performed using a Mac-
Book with a 2.26 Ghz Intel Core 2 Duo processor.

A
0 1 4

H
HHH

HHT
K̂ 1000 5000 10000 1000 5000 10000 1000 5000 10000

K

1000
25 1.1030 1.2201 1.1973 2.1145 2.0420 2.0294 1.6855 2.0232 2.3736
50 2.4793 3.2178 2.9766 4.2785 5.1353 4.5190 5.8275 5.4266 6.1770
100 7.6717 7.5649 8.0108 13.8581 14.0068 12.9579 19.5100 20.5312 23.3218

5000
25 0.9094 0.9802 1.0418 1.1624 1.2146 1.3493 0.7541 0.7625 0.0839
50 2.2631 2.1088 1.9393 2.8703 2.5966 2.4644 2.2366 1.8696 2.3905
100 4.8501 5.7861 4.9514 6.7289 6.8143 6.9660 6.7805 6.4062 7.9065

10000
25 0.8546 0.6384 0.9026 0.9118 0.9522 0.9858 1.0677 0.5217 0.8140
50 1.8987 1.4589 1.6610 1.9005 1.7944 1.9924 3.3974 1.3791 1.3676
100 4.3827 4.0902 4.9900 5.1302 5.0641 5.4425 10.9046 4.3577 3.8861

Tab. 3: Shows the time it takes on average for each of the 10 problem instances
associated with the A,K,K̂,T combination.

4.2.1 Parameter Influence

The results we found can again be divided in different section according to
the parameters of the dataset by which they are computed. In the table we
can distinguish the 4 different parameters and at the hand of those we can
see what their influence is on the computation time.
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A The first distinction that is interesting is the distinction between A = 0
and A = 1. Up front we would have expected that the computation time
for A = 0 will be shorter due to the zero inventory property. Looking at the
table we can see that this in fact is the case for all of the problem instances.
The other problem which is identified by A = 4 shows no clear pattern if
compared to the other possibilities of A. Sometimes it performs better in
terms of time, but often it takes longer to solve the problems.

T Another important feature of the problem instances is the number of
periods involved 25, 50 or 100 respectively. In this case it speaks for itself
that if the planning horizon increases, the calculation time increases with
it. This expectation is confirmed by the results for all the combinations of
the other parameters we can see that the time is always ascending. The
computation time multiplies with 2.85 on average if the periods doubles
from 25 to 50. When we apply the same calculation to the increase from 50
to 100 periods the computations times multiplies with 3.50 on average.

/////////////////////////////////////////////////

K̂ If we take a look at the Parameter K̂ we can see that there for an
changing K̂ there isn’t a clear pattern with respect to the computation
time, in some cases it causes more computation time and in some cases less.

K The parameter K shows a more interesting development. One might
expect the computation time to get larger when the parameter increases,
but exactly the opposite is true. When we take a look at A = 0 we see
that the computation time for the problem with K = 1000, K̂ = 10000 and
T = 100 the computation time is around 8 seconds where the same problem
only withK = 10000 only takes 5 seconds. From the dataset section we know
that K represent the set-up costs. Knowing this we can actually explain the
results found. When the set-up costs are large, it isn’t efficient to produce in
many periods and therefore fewer solutions will be considered. From A = 4
we know that there is 1 production period more where T was 25, but since
the differences aren’t that big we can probably neglect it. When we take a
look at the differences with respect to T we see that the decrease is even
larger. In this part the ’cheap and dirty vs. clean and expense’ data sets are
considered. They appear to have even fewer solutions that are considered
and therefore it becomes even quicker.
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4.2.2 Calculation Time Statistics

To again get a better view of 1 of the most important parameters another
division has been made in table 4. The table shows the mean of the problems,

T
25 50 100

Mean 0.8364 2.4792 8.0371
Std 0.4750 1.6685 5.8414

Std as % of Mean 56.7914 67.3001 72.6803
Min 0.1702 0.3830 1.9685
Max 2.6721 12.4629 29.1217

Tab. 4: Shows the Mean, Std, Std as percentage from Mean, Min and Max

which reacts as expected to the different problems. The T = 25 problems
have a shorter calculation time than those from T = 50. which on their
turn are shorter than T = 100. The same development occurs with the
standard deviation. In general problems that deal with larger number will
have larger standard deviations most of the time. Therefore it is difficult
to compare the standard deviation of problems with different number of
periods. To compare the standard deviations anyway we have taken the
standard deviation as percentage of the mean. In this way we can compare
different periods with each other. If we compare the different periods after
this modification we can still see the same development we saw earlier.

5 Conclusions

There are 2 parts we have been monitoring in this paper. We check the
quality of the lower bounds achieved through our algorithm and the compu-
tation time needed to find the results. We now sum up the most important
conclusions of our findings.

5.1 Quality of the Lower Bounds
The algorithm delivers the expected results in terms of the type of problem
instances. The zero-property datasets perform the best followed by the one
without this property and finally followed by the instances where the cheap
and dirty vs. clean and expensive property is present. The previous result
was to be expected up front. The next one however was unexpected. One
of the most interesting findings is the one about the relationship between
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the number of periods and the quality of the lower bound. It shows that
the algorithm performs better on average with the problems with a larger
amount of periods.

5.2 Computation Time
There are a few conclusions we can draw about the influence of the different
parameters on the computation time. First up are the different problems
we have been looking at in this paper. Problems that possessed the zero-
inventory property have shown to take less long than problems that do not
posses that property. The problems which are dealing with the ’cheap and
dirty’ vs. ’expensive and clean’ have shown to be difficult to say something
about. Next is the one that is the most logical, the T that represents the
number of periods. The larger the amount of periods that is being considered
the larger the computation time will be, assuming the rest of the problems
remains the same. This is very intuitive and was to be expected. From
table 4 we can see that the variation in calculation time increase with T . A
parameter where no distinct pattern has been proven is the set-up emission
costs. The results vary too much to say something about it. The normal
set-up costs however do seem to influence the computation time. The higher
the computation time becomes the shorter it takes to solve the problem.
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