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Abstract 
 
During the last few years many inventions have been made in the area of financial economics, during 
the time of Fisher, 100 years ago, there were no appropriate quantitative methods available to 
estimate dynamic conditional variances and correlations. These methods have been developed in the 
last 20 years. In this research paper we combined some of the important advances. Many of the firms 
active in the financial sector still make use of the MPT framework as developed by Markowitz, which 
imply that they all make use of linear optimization techniques. These firms differ in the method in 
which they estimate or gather these inputs. Goal of this research was to develop a model and 
especially one which delivers an optimal asset allocation. This optimal asset allocation is defined in 
portfolio theory as the portfolio which delivers the best return for each unit of risk or has the lowest 
amount of risk relative to return. This portfolio is known as the tangency portfolio. This model 
improves the average Sharpe ratio over time up to 50% on a 2 year time frame, but the 
outperformance seems time-invariant. Our results with the 2 year and 10 year GARCH-DCC MPT 
framework are convenient, but it is questionable if the benefits out weights the costs of complexity. 
We must also see the fact that a 1-month switch of 50 percent of the portfolio from corporate bonds 
to other assets classes requires an extreme amount of flexibility. And let‟s not forget that we did not 
take into account the costs of switching, we would incur up till 0.5% in costs and possibly costs 
resulting from illiquidity. The results are too weak to claim that the GARCH-DCC framework is 
considerably stronger than using historical covariance matrix. Improvement of the return 
expectations could do the trick. This thesis shows a framework which is simple, easy to adjust and 
which can be tailored to your preferences. 
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1 Introduction 
 
"To stop short in any research which bids fair to widen the gates  
of knowledge, to recoil from fear of difficulties or adverse criticism,  
is to bring reproach upon science."  
Sir William Crookes, Chemist and Physicist (1832-1919) 

 One of the most important problems in asset management is to make decisions concerning the 
optimal asset allocation (Sharpe, 1990). The goal of asset managers is to realize the highest possible return 
corrected for risk, with the lowest value at risk (VaR) possible. The prices of different asset classes change 
in response to news in anticipation of future performance. In portfolio choice and in determining 
aggregate risk, the variance and correlation structures across assets are extremely important. This paper is 
to explore possible methods and to determine the quantitative elements to use for developing a model, 
which output is the best possible asset allocation.  
 

 Kaplan and Garick (1980) wrote about the quantitative definition of risk, which is used to discuss 
notions of “relative risk”, “relativity of risk” and “acceptability of risk”, this to reach agreement among 
academics.  Physics has many linkages with economics since phenomenon in behavior often occur in 
matter, like the Hermetic saying “as above so below”. Against the earlier materialist definition of  
economic science, Robbins (1932) propounded the, now well-known, scarcity definition: “Economics is 
the  science which  studies  human behavior as a relationship between ends and scarce means which have  
alternative uses”. He would later show to be an important colleague of Hicks, one of the inspirators of 
Markowitz. “The brain at rest produces random activity,” Cowan said, or what physicists call “Brownian 
motion.” “It so happens that there is an analogy between the behavior of chemical reaction networks and 
neural networks.” (Cowan, 2008). Cowan is one of the scientist who uses applied physical knowledge to 
explain phenomena in other fields of science. He is among many scientists drawing similarities between 
different fields of science for better understanding of phenomena. Here I would like to refer to one of the 
earliest researchers of financial markets, W.D. Gann (1909), who wrote books about the behavior of 
markets and registered many panics and price patterns of the past and produced forecasts between 1909 
and 1955. He wrote “I soon began to note the periodical recurrence of the rise and fall in stocks and 
commodities. This led me to conclude that natural law was the basis of market movements. I then 
decided to devote ten years of my life to the study of natural law as applicable to the speculative markets 
and to devote my best energies toward making speculation a profitable profession.” Economist Fisher 
wrote his first book before 1907, here he makes notion of chance and uncertainty in his analysis: 
“Up to this point we have ignored the element of chance, by assuming that the entire future income-stream, or at any rate, 
such portions of it as needed to influence present choice, are foreknown and mapped out in advance . . . This assumption, like 
the assumption that bodies fall in vacuo, in the ordinary presentation of the theory of gravitation, has enabled us to complete 
our formal statement of the theory more easily, although at the expenses of exact conformity to actual historical fact; for, in 
the concrete world, the most conspicuous characteristic of the future is its uncertainty” (Fisher, 1907). 
Uncertainty about future asset prices or risk is often measured by the average deviation from the mean, 
Fisher was also one of the first economists to note this measurement of risk. 
 
 Risk and the reward for bearing risk or the risk premium are important concepts in investment 
theory. A goal of portfolio management is to produce efficient portfolios in which the optimal amount of 
premium for an amount of risk is chosen or vice versa the optimal risk for a required premium. The 
premium for risk is often seen as the explanation for return in asset pricing theory(Scholes, 2005). One 
potential source of misspecification of existing models is that the structural form of conditional means 
and variances is relatively inflexible and is held fixed throughout the entire sample period. These models 
are single-regime models in the sense that they effectively make the assumption that a single structure for 
the conditional mean and variance is present (Gray, 1996). In this research the focus is on the structure of 
the mean, variance and correlation coefficients which are used as the only three inputs in the Mean-
Variance framework, which is used to determine an optimal and efficient allocation of resources. This 
framework is agreed upon by the Nobel laureates of Economics by rewarding Markowitz, Miller and 
Sharpe with the Nobel prize in 1990. Markowitz developed a theory of portfolio decisions of households 
and firms under conditions of uncertainty and described how the problem of investing in a large number 
of assets, each with different characteristics, may be reduced to the issue of a trade-off between expected 



return and the variance of the return of the portfolio. He also showed to solve this problem as a quadric 
programming problem. He won the price together with Sharpe, who was rewarded for the contribution to 
the understanding of how these asset prices are determined and with Miller, who together with earlier 
Nobel prize winner Modigliani (1985) founded the modern theory of corporate finance. Partly continuing 
on the work of Sharpe, Scholes and Merton won a Nobel prize in 1997 for their contribution to the 
understanding of asset pricing and especially their method of developing a formula for derivative pricing. 
Their interesting and controversial finding was that in pricing derivatives, no relative risk premium is used 
in the evaluation. One only needs to have the correct estimate for volatility. In my days at the Amsterdam 
derivative trading floor Beursplein 5, where I stayed during one of my internships, I learned that there is 
only one variable important in the pricing mechanism which was continually adjusted by computer inputs 
and especially by expert human input. This expert human input largely depends on implied volatility of 
the underlying security and market, the social interaction among those experts and the news or 
information developments. Scholes (2005) describes in his book „Asset Pricing‟, which book won the Paul 
A. Samuelson award in 2001 for scholarly writing, that no problems are solved by the pure extremes. The 
CAPM and its successor factor models are paradigms of the absolute approach. In applications, they price 
assets “relative” to the market or other risk factors, without answering what determines the market or 
factor risk premia and betas. On the other end of the spectrum, even the most practical financial 
engineering questions usually involve assumptions beyond pure lack of arbitrage, assumptions about 
equilibrium “market prices of risk”. And so Scholes determines the central and unfinished task of 
absolute asset pricing is to understand and measure the sources of aggregate or macroeconomic risk that 
drive asset prices. He points at the fact that expected returns vary across time and across assets in ways 
that are linked to macroeconomic variables, or variables that also forecast macroeconomic events. “A 
wide class of models suggests that a „recession‟ or „financial distress‟ factor lies behind many asset prices”. 
At the time he wrote his book he explained that theory lags behind and there is no model which explains 
these interesting correlations. Standard macroeconomic models predict that people really do not care 
about business cycles (Lucas, 1987). Scholes view is that asset prices reveal they do, that asset prices 
correct for risk or forego risk premia to avoid assets that fall in recessions, this tells us something about 
the magnitude of environmental changes on the price of  assets. This is the reason why we include a 
regime-switching model in this research to include environmental economic information like production 
growth(GDP) and price change(Inflation).   
 
 “Today in modern society, every day of our lives the media informs us with numbers on key economic variables: 
inflation, unemployment, interest rates, stock prices and much more. Most readers or viewers regard this information merely 
as quotations, more or less similar to weather reports. But researchers regard them as important integral parts of a massive 
flow of data which, over time, gives rise to economic time series. Such time series are important, not only for basic researchers 
who develop and test economic theory, but also for practitioners who require clear understanding and reliable forecasts as a 
basis for public policy or private decisions.”  
  
 This was the introduction of the Nobel prize Award Ceremony Speech of 2003, when Engle and 
Granger won the Nobel prize for Economics. A prerequisite for capturing the special features of 
economic time series are statistical methods developed in the borderland between statistics and 
economics. Granger solved the difficult problem concerning the complex interplay among 
macroeconomic variables over time. It is difficult to distinguish adjustments towards a long-run 
relationship from short-run fluctuations in data. As with most macroeconomic variables, financial time 
series do not fluctuate around given values over time, but around stochastic trends. When traditional 
statistical methods are applied to such nonstationary time-series, the resulting relationships are often 
misleading. During the same period Engle, inspired by Laureates Friedman and Lucas, worked on 
uncertainty, volatility, which could shape economic relationships. Engle interpreted volatility as the size of 
the random term in a statistical model, and devised the so-called AutoRegressive Conditional 
Heteroskedasticity (ARCH) method to trace systematic variations in volatility over time. Application of 
his theory is especially conducted in the field of financial economics. Investors who choose between 
stocks and bonds and banks which want to limit the risk of large capital losses, all need proper 
measurement and forecasts on the riskiness of returns or their volatility. Engle was also one of the first to 
come up with a practical solution for multivariate correlation analysis. Engle modeled the behavior of 
volatility and correlation and paved the way for the new field of financial econometrics.  
 



An extension of the Asset Liability Management (ALM) theory, heavily used in the pension sector and the 
asset management industry today, is the use of the research of Steehouwer (2005), who wrote the book 
„Macroeconomic scenarios and reality‟ in which he uses a frequency domain approach for analyzing 
historical time series in generating scenarios for the future and warns that simply generating an average 
return value with “some volatility” around it is not enough. He uses advanced techniques beyond the 
scope of this thesis to develop a set of economic scenarios, which incorporate the non-linear properties 
of the data. The features the returns, volatilities and correlation are extremely important in the problem of 
finding an optimal asset allocation. 
 
 

1.1 Asset allocation problem 
 
 In portfolio choice and in determining aggregate risk, the variance and correlation structures 
across assets are extremely important. It goes beyond this thesis to fully explain the causes of risk and to 
elaborate on the changes in valuations of specific risks which aggregate in portfolio theory. When 
academic students get assigned to determine the optimal asset allocation for a one million euro portfolio 
limited by stocks and bonds, and are only able to take long positions, they start with Modern Portfolio 
Theory (MPT). This is the framework they choose for optimizing a selection of stocks and bonds and 
from there they develop their strategies. Only some are capable of making the models estimated variance 
time-variant by using Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) series. The 
computational complexity of the model and time constraint of the students soon starts to limit the 
opportunities and only the most sophisticated future portfolio managers succeed in progressing from 
there. Stylized anomalies or predictive models are applied to select up till 100 assets used to construct a 
portfolio by using the mean-variance framework. Since these students will represent an important part of 
the financial sector of the future it is likely that many financial firms are encountering the same difficulties 
in constructing their portfolios and so there is a need for practical translation of complex theory into 
useful models, which incorporate the advanced features of the financial time-series. 

 The focus of this thesis is on efficient asset allocation, by using better inputs in the mean-
variance framework one will reduce the realized variance by increasing the reliability of the diversification 
effects and will increase its return by using the knowledge of which economic conditions and so risks to 
expect. Key in this approach are the predictions for return, variance and correlation coefficients by use of 
the historical price series. In addition to the methods currently used state-of-the-art methods, like the use 
of GARCH in combination with Dynamic Conditional Correlation (DCC), for portfolio optimization are 
developed. DCC has the flexibility of univariate GARCH but not the complexity of conventional 
multivariate GARCH. An important facet of this paper is to reduce the complexity of the model, without 
losing too much performance and its practical application. Often academic models suffer of parsimony; 
the amounts of parameters that need to be estimated are large and take more than hours to calculate. The 
most important question that I will try to answer is if it possible to develop a model which outperforms 
an asset selection framework with naïve or historical variances and returns and which is not too complex 
in terms of understandability and parsimony? Secondly It is interesting to answer the question if the 
model can be improved with a factor model. Besides creating a model that uses univariate GARCH and 
DCC,  it is valuable to determine quantitative macroeconomic factors to use for an estimation or forecast 
model, which output is the best possible mean input for the Mean-Variance(MV) optimization process. 
This factor model makes use of macro-economic factors to determine regimes or states of the economy. 
The Regime-Switching factor model will be used to forecast the means while the DCC-GARCH model 
will be used to forecast the variances. The model will be assessed with performance test statistics like the 
Sharpe-ratio and forecasting performance statistics like Root Mean Squared Error, and the Diebold and 
Mariano statistic. By assessing the model in terms of forecasting errors, Sharpe-ratios the goal of this 
research is to improve and select the best possible model.  

 The paper is organized as follows. The second section outlines the methodology in detail and 
discusses the estimation procedures used. Section three elaborates on some of the assumptions made. 
Section four is about the data and software used to apply the research methodology. Section five focuses 
on the model itself and explains the model specifications used for generating testing data. The sixth 



section shows the results. Concluding remarks are in the final section. 
  

1.2 Literature overview 
  
 1.2.1 Developments in portfolio theory 
 Considering portfolio management we have to deal with risks, premiums for bearing those risks 
and the risk reduction effect on the portfolio from diversification. We can go back far in history to find 
the first signs of the notion of diversification in investments. Markowitz (1999) gives his research of the 
past, he found the following in the Merchant of Venice(1597), Shakespeare wrote  
“My ventures are not in one bottom rusted, Nor to one place; nor is my whole estate Upon the fortune of this present year; 
Therefore, my merchandise makes me not sad” Act I, Scene I 
One of the earliest written notions of diversification and intuition of covariance. It would take 300 years 
before mathematical theory was developed and another 50 years to link this to the behavior of risk and its 
risk premia and to quantify the behavior of the combined risk premia for portfolios. 
 
 In 1999 Markowitz wrote about the „early‟ history of portfolio theory. He was inspired by the 
work of Hicks (1935), Nobel prize winner with Arrow in 1972, who first wrote about value in 1934 and 
later suggested a simple theory of money. He was one of the first to introduce risk in his quantitative 
analysis. He noted “The risk-factor comes into our problem in two ways: First, as affecting the expected 
period of investment, and second as affecting the expected net yield of the investment”. He described the 
effect of risk on yield: “an increase in the risk of investment will act like a fall in the expected rate of net 
yield; an increase in the uncertainty of future out payments will act like a shortening of the time which is 
expected to elapse before those out-payments; and all will ordinarily tend to increase the demand for 
money.” Hicks did not mention the standard deviation as measure for risk, he called it „some appropriate 
measure of dispersion‟. He only classified the risk in two classes, namely time and yield. Hicks also 
described diversification. Sharpe who won the Nobel price together with Markowitz worked out the 
Sharpe ratio. The Sharpe ratio was created to answer the question “Given the same amount of risk, which 
investment provides me with the highest reward.” To do this the Sharpe ratio balances the returns in 
excess of a risk free benchmark with the standard deviation of the return set. This provides a uniform risk 
platform which funds with different risk levels can benchmark against. 
 
 In his autobiography written for the Nobel prize institute Markowitz explains about his second 
inspiration source. 
“The basic concepts of portfolio theory came to me one afternoon in the library while reading John Burr Williams's Theory of 
Investment Value. Williams proposed that the value of a stock should equal the present value of its future dividends. Since 
future dividends are uncertain, I interpreted Williams's proposal to be to value a stock by its expected future dividends. But 
if the investor were only interested in expected values of securities, he or she would only be interested in the expected value of 
the portfolio; and to maximize the expected value of a portfolio one need invest only in a single security. This, I knew, was 
not the way investors did or should act. Investors diversify because they are concerned with risk as well as return. Variance 
came to mind as a measure of risk. The fact that portfolio variance depended on security covariances added to the plausibility 
of the approach. Since there were two criteria, risk and return, it was natural to assume that investors selected from the set of 
Pareto optimal risk-return combinations.” 
The Dividend Discount Model of Williams (1937) Ph.D. dissertation implied only that investors should 
focus on the highest expected return. Markowitz‟s writes in 1999 that his idea of standard deviation or 
variance came from the work of Uspensky in 1937, who wrote an introduction to mathematical 
probability. The concept of covariance itself was developed before 1851 since notion was made by 
mathematician Sylvester, but it took 50 years before it was introduced in finance. Probably Markowitz did 
not now that Fischer already put some of the same thoughts on paper long before him in 1906. Bernstein 
(1992) notes that only a few scholars had mentioned the risk/return trade-off in portfolio selection before 
Markowitz: Fisher, Hicks and the Cowles Commission‟s Dickson Leavens (1945). Dimand wrote about 
this part of the history of financial economics in 2007 and described that Fisher‟s (1906) went much 
further than only a mere mention of the risk/return relationship. The work of Fisher gives us a good 
sense of the state of knowledge 100 years ago and we can still learn from his view on the subject matter. 
“The Fisher diagram(1907) finds the optimum where a linear consumption possibility frontier is tangent to an indifference 
curve that is convex to the origin, implying consumption smoothing over time. If the axes represented states of the world 



instead of time periods, the convexity of the indifference curves to the origin would represent risk aversion and lead to 
smoothing of consumption across states of the world.”   
The diagram shows some coincidental familiarities with the theory of Markowitz. Smoothing of 
consumptions over time can be related to diversification over time and its associated risks and rewards 
related to time. Fisher emphasized the present discounted value of expected income flows, treating the 
time pattern of income and spending (rather than a stock of capital or wealth) as fundamental knowledge. 
Fisher developed a good notion of risk and abstracted from risk in the early sections of his first book. 
“The rate of interest acts as a link between income-value and capital-value, and by means of this link it is possible to derive 
from any given income-value, its capital-value, i.e. to „capitalize‟ income. To do this we assume that the expected income is 
foreknown with certainty, and that the rate of interest (in the sense of an annual premium) is foreknown, and also that it is 
constant during successive years” (Fisher, 1906).  
Fisher was very conscious and knew that future income flows and rates of returns are expectations, not 
known with certainty:  
“Up to this point we have ignored the element of chance, by assuming that the entire future income-stream, or at any rate, 
such  portions of it as needed to influence present choice, are foreknown and mapped out in advance . . . This assumption, 
like the assumption that bodies fall in vacuo, in the ordinary presentation of the theory of gravitation, has enabled us to 
complete our formal statement of the theory more easily, although at the expenses of exact conformity to actual historical fact; 
for, in the concrete world, the most conspicuous characteristic of the future is its uncertainty” (Fisher, 1907). 
Three elements were important in his analysis: 

1.) Expected return, measured as the mean of the distribution of percentage dividend paid on a 
stock; 

2.) Risk, measured by the standard deviation of a subjective probability distribution over possible 
outcomes; 

3.) Individual attitude towards risk, measured by Fisher‟s „coefficient of caution‟. 
In his book he included the appendix on “Variability about a Mean, as measured by the „Standard 
Deviation‟”, which showed that he was advanced in quantifying the risk/reward relationship, though he 
did not make notion of diversification effects or covariance. 
 
 Fisher‟s knowledgeable view on risk may be clear from his writings. He describes that some 
market participants will estimate more highly than other the risks taken and that from this fact it might be 
seem that there is a distinction between the actual risk incurred and the estimate which individuals put on 
it. “…chance is always an estimate. Chance is subjective. Although one man‟s estimate may be better than another‟s through 
superior knowledge, intuition, or experience, the best estimate is still only an estimate, not a certainty. In the actual world of 
events there is no uncertainty. Aside from human opinion, there is no such thing as chance. To an omniscient being, all things 
are certain. It must be admitted that this view of chance is not familiar to ordinary man, nor is it universally accepted by the 
professed students of chance.”  
And further he continues with making his statements 
“It is only as the conditions vary slightly from time to time in their unknown elements that there is a change of winner; and 
the instant the unknowness of these elements is introduced into the problem, the observer unconsciously shifts his ground from 
the long run to the true theory of chance. Chance is, then, an affair of human knowledge or ignorance. According to this the 
ignorance theory, chance is not objective, but subjective. … Chance exists only so far as ignorance exists; varies with different 
persons according to their comparative ignorance of the matter under consideration; and is in fact a measure of ignorance.” 
A logical conclusion from his statements is that Fisher sees chance as a subjective estimate of risk ,which 
is in fact a measure of ignorance and that this can be measured by the standard deviation. 
 
 The notion of risk aversion and the coefficient of caution is also explained in Fisher (1906) by 
referring to the casino of Monte Carlo. 
“a person who will pay more than the mathematical value of chance. At Monte Carlo, the “bank” makes its profit in this 
way, although its victims know full well that they are paying more than the mathematical value of their chances. The 
consequence, of course, is ruin to most of them. Fortunately, persons who deliberately gamble are in most communities in the 
minority. The ordinary man is unwilling to pay even the full mathematical value of the chance. He is reluctant to assume any 
risks, and is, on the contrary, willing to make sacrifices to rid himself of them.” 
Dimand noted that Fisher credited Norton with the insight that individuals become less cautious with 
increasing capital and named Fisher as pioneer in proposing a measure of risk aversion. Risk aversion and 
non-satiation are insights which in modern terms is often referred to in behavioral finance literature when 
referred to prospect theory of Tversky and Kahneman(1974) or to the theory of Nobel prize winners 



Arrow and Pratt, which in essence shows that relative risk aversion is constant, the degree of absolute risk 
aversion decreases as wealth increases. Levy and Markowitz(1959) related the concept of expected utility 
to the mean-variance representation, they presented empirical results and showed that the function of the 
mean and the variance is equal to expected utility plus half the second derivative of utility times the 
variance.  

𝑓 𝐸, 𝑉 =  𝑈 𝐸 +  .5𝑈′′ (𝐸)𝑉 
This second derivative is characterized by three economists between 1862 and 1873, Jevons, Menger and 
Walras. In economics this is known as the effect of scarcity on the price, induced by human action, and is 
resting on psychology and the law of satiation of wants. This equation may be thought of as a rule by 
which, if you know the mean and variance of a distribution, you can guess it‟s expected utility. 
 
 1.2.2 Modern Portfolio Theory 
 Modern portfolio theory (MPT), as advocated by Markowitz (1952), attempts to find a 
combination of assets which maximizes the expected return of a portfolio for a given level of risk, or 
similarly minimizes the variance of a portfolio for a given amount of expected return. The rationale 
behind this theory is that investors will only choose a riskier portfolio if they will get compensated by a 
higher expected return. The main assumptions made here are that investors are risk-averse and that risk 
can be described by the variance of returns. The article assumed that “beliefs” or projections about 
securities follow the same probability rules that random variables obey. This assumption leads to the 
following mathematical rules 

1.) The expected return on the portfolio is a weighted average of the expected returns on individual 
securities 

2.) The variance of return on the portfolio is a function of the variances of, and the covariance‟s 
between, securities and their weights in the portfolio. 

When the covariance is normalized, one obtains the correlation matrix. Portfolio risk can be reduced by 
adding assets to the portfolio which are characterized by non-perfect correlation with the respective 
portfolio. Hence, including low-correlation assets in a portfolio can offer significant diversification 
benefits to investors.  
  
 Markowitz made a difference between efficient and inefficient portfolios and proposed an 
optimization framework by geometrical analysis. When we optimize every single portfolio by means of 
the MPT and plot the results in a risk-return space, we will obtain a combination of optimal portfolios 
which will form a hyperbola. The upper part of this hyperbola is dubbed the efficient frontier. Without 
going short on the risk free rate, one cannot improve the set of portfolios on this frontier in terms of 
expected return without increasing the risk. Therefore the efficient frontier provides us with the optimal 
portfolios for given amounts of risk and return.  
 
 Markowitz explained that during the time his research was published there was another scientist, 
Roy (1952), who proposed a striking similar framework, which was different in the assumptions made. 
Roy did not continue his work in finance compared to Markowitz. 

1.) Roy‟s allowed the amount invested in any security to be positive or negative 
2.) Markowitz proposed allowing the investor to choose a desired portfolio from the efficient 

frontier, where Roy recommended choice of a specific portfolio which maximizes the equation 
return divided by standard deviation. 

 
 From the literature on one-period mean-variance optimization models, building on the work of 
Markowitz (1952) it is known that assumptions on risk and return have impact on the optimal solutions 
obtained. Small changes in expected values, volatilities and covariance‟s of future asset returns change the 
risk and return tradeoff between the various asset classes and thereby influence the optimal investment 
portfolio. 
Theory of estimating variance, covariance and mean has progressed during the years that passed. First we 
will elaborate variance, risk and hedging and after that we focus on the mean and the risk premium.  
 
 1.2.3 Variance 
 As mentioned before Fisher would be one of the first to apply probability theory in finance by 
using the measure of „variability about a mean‟ as measured as the standard deviation. The standard 



deviation is often squared for appropriate averaging or calculation, called variance. We can distinguish 
three approaches for determining the standard deviation.  

1.) Historical averaging or averaging with a moving window (MA) 
2.) Exponential Weighted Moving Averaging(EWMA)  
3.) AutoRegressive Moving Average(ARMA) and in particular Generalized AutoRegressive 

Conditional Heteroskedasticity (GARCH) 
The research into risk metrics at investment bank J.P. Morgan has spurred the development of an 
exponential weighted standard deviation as a widely accepted risk measure worldwide during the 90‟s. In 
1992 they launched the RiskMetrics methodology to the marketplace and when the RiskMetrics Group 
outgrew the firm‟s internal risk management resources it was spun off from J.P. Morgan. A well known 
and widely used decay factor was 0.94 resulting from the empirical research of this group. Here I would 
like to emphasize the difference between risk measurements and metrics. Were the standard deviation is a 
measure of the „uncertainty‟ or „chance‟ definition of risk. „Value at Risk‟ and „Semi variance‟ are metrics 
of the asymmetric characterization within the definition of risk, in which on tries to only capture the 
negative variations from the mean. 
The best known form of an ARMA model is the Generalized AutoRegressive Conditional 
Hetereoskedasticity, a definition that follows from the work of Engle and Bollerslev, who developed this 
third approach of determining the standard deviation.  
  
 1.2.4 Covariance 
 Following the success of the GARCH model in describing the time-varying variances of 
economic data in the single-asset or univariate case, many researchers have extended the single-asset or 
time-series univariate GARCH model to the multivariate domain in which multiple assets can be handled. 
Bollerslev, Engle and Wooldridge (1988) developed the basic framework for a multivariate GARCH 
model (MGARCH). They extended the GARCH representation in the univariate case to a conditional-
variance matrix, which is vectorized and known as VECH or diagonal representation. MGARCH is often 
difficult to use for empirical applications since it involves a large number of parameters and it is difficult 
to assure that the matrix is positive-definite (Tse & Tsui, 1999). Empirical applications demand further 
simplifications and restrictions. To verify the condition that the conditional-variance matrix of an 
estimated MGARCH model is positive definite, Bollerslev (1990) suggested the constant-correlation 
MGARCH (CCC-MGARCH) model that can overcome these difficulties.  
In statistics, dependence refers to any statistical relationship between two random variables or two sets of 
data. Correlation refers to any of a broad class of statistical relationships involving dependence. Due to its 
computational simplicity, the CCC-MGARCH model is very popular among empirical researchers. 
However, while the constant-correlation assumption provides a convenient MGARCH model for 
estimation, some studies found that this assumption is not supported by some financial data. Researchers 
found that the returns across different markets exhibit time-varying correlations. Thus, there is a need to 
extend the MGARCH models to incorporate time-varying correlations and keep the feature of satisfying 
the positive-definite condition during the optimization. Engle and Kroner (1995) proposed a class of 
MGARCH model called the BEKK (named after Baba, Engle, Kraft and Kroner) model (Tse & Tsui, 
1999). However, it is a great problem that it becomes difficult to estimate the conditional covariance‟s as 
the sample size increased (Yilmaz, 2010). 
 
 The DCC-GARCH model (Engle, 2002), is a generalized version of the CCC model (Bollerslev, 
1990). The challenging problem of constant correlation is solved by the dynamic conditional correlation 
GARCH (DCC-GARCH), proposed by Engle (2001). An important assumption of the CCC model is 
that the time-varying of conditional covariance‟s  is caused by the time-varying of the conditional variance 

of the individual return series. The DCC model differs in allowing the conditional correlation matrix, 𝑅𝑡  
to be time-varying. Mathematical framework of this model, developed by Engle and Sheppard (2001), has 
main two steps algorithm to have time varying covariance matrix. First step is to find conditional standard 
deviations through the univariate GARCH and second step is to model the time varying correlations 
relying on lagged values of residuals and covariance matrices. After that, the conditional covariance matrix 
could be found by using conditional standard deviations and dynamic correlations (Yilmaz, 2010).  
 
 Both the Modern Portfolio Theory and Generalized AutoRegressive Heteroskedasticity are 
abstracts from reality and quantitative approaches to analyze financial data to gather information. Both of 



these methods did not infer with estimating the direction of the mean return, which is the toughest issues 
of the investment subject since the mean is subject to uncertainty. When someone is unwillingly exposed 
to a particular risk and is not determined to spend time to circumvent this uncertainty one often had the 
possibility to hedge against these risks. 
 
 1.2.5 Hedging of risk 
 There are many types of risk present in financial markets, the earliest product were forwards or 
standardized future contracts used by the farmers to sell short and reach an agreement with the buyer. 
This enables them to hedge against a bad harvest, which could be caused by flood or draught, other 
weather conditions or natural factors like pests and diseases. By selling short one agrees on a price before 
delivering the good, this good can even be „in production‟. These kind of contracts are called derivatives 
since they derive their value from the underlying. In the financial market these agreements are often sold 
at margin, which means that the buyer has to deposit or preserve a part of his capital as collateral. These 
derivative markets are often highly leveraged up till 50 times the initial deposit, so one also understands 
that many fortunes are made and lost in these markets.  
 
 Nowadays hedging is possible for many risk factors beside commodity risk, the largest market is 
the interest rate market and second largest is the currency market. In the interest rate market the concepts 
of swaps is often used. In finance, a swap contract is a derivative in which counterparties exchange certain 
benefits of one party's financial instrument for those of the counterparty's financial instrument. The 
benefits in question depend on the type of financial instruments involved. For example, in the case of a 
swap involving two bonds, the benefits in question can be the periodic interest (or coupon) payments 
associated with the bonds. A pension fund could use them for instance to hedge for their long term 
obligations or a bank could sell them for his asset transformation 
 
 The second important market is the currency future market with which we have to deal for 
instance if we would like to invest abroad. One must know that certainty often is possible at the cost of a 
premium implied in the price or as fee for intermediation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



2. Methodology 

 
 In this section the methodology used will be discussed and we shall elaborate on the econometric 
issues which were encountered during the analysis. The methodology used can be characterized in six 
sections. The first section Portfolio theory, in which we define the methodology of Modern Portfolio 
Theory, the second section is about the variance and Generalized AutoRegressive Conditional 
Heteroskedasticity to model the variance. The third section is about the correlation coefficient. The 
fourth section is about the mean and methodology like the probit model and the Markov Regime 
Switching model to model and estimate the mean. Then we elaborate shortly on dynamic estimation and 
the last section is about the test methodology put to practice. 
 
 

2.1 Modern Portfolio Theory 
 
 The mean-variance rule states that the investor would (or should) want to select one of those 
portfolios which give rise to the mean-variance combinations indicated as efficient. These are those with 

minimum variance ςp
2  for a given mean return 𝜋𝑝  or maximum 𝜋𝑝  for given ςp

2 . First lets answer the 

elementary question as proposed in the book „Asset Pricing‟ of Scholes (2005) “When does the mean-
variance frontier exist?” This is when the set of portfolio means and variances is less than the whole 
expected return-risk space in which all combinations are possible. This is when we rule out a specific case 
of two perfect correlated returns, but with different means. In this case one could short one, buy the 
other, and achieve infinite expected returns with no risk assuming that we have unlimited supply of these 
assets. It would be a violation of the economic law of one price. Scholes stated this in a theorem. 
Theorem: So long as the variance-covariance matrix of returns is non-singular, there is a mean-variance frontier. 
This is a requirement which we will also need when we develop time-variant correlation coefficients. 
 
 The standard computation of the mean-variance frontier uses a brute-force approach. There are 
techniques by which we can compute the set of efficient portfolios and efficient mean-variance 

combinations associated with given 𝜇 and 𝑉. The goal of the proposed model is to determine the optimal 

minimum variance portfolio for a given level of risk subjecting to the following constraints written out by 
Balvers (2001) and Renström (2002). 
 

𝒘𝑇𝝁 = 𝑟 

𝒘𝑇𝒍 = 1 

 

where  𝑟 denotes the expected portfolio return, 𝒍 represents a 1 × 𝑛 column vector of 1‟s and the sum of 

the weights is equal to 1, or the whole portfolio. 
 
 

The minimization problem can be solved using the Lagrange multiplier method with multipliers 𝜆1 and 

𝜆2 for the constraints. Set 
 

𝐿 = 𝒘𝑇𝑽𝒘 − 𝜆1  𝒘𝑇𝝁 –  𝑟 − 𝜆2 𝒘
𝑇𝒍  −  1  

 

The first-order condition with respect to 𝑤 is 

 
𝜕𝐿

𝜕𝒘
= 2𝒘𝑽 − 𝜆1𝝁 − 𝜆2𝒍 

 
By pre multiplying the Lagrangian by ½ we get more convenient expressions and 
 

𝜕𝐿

𝜕𝒘
= 𝒘𝑽 − 𝜆1𝝁 − 𝜆2𝒍 



 
Solving this derivative for the optimal portfolio weights is done by applying the following steps 
The result is a vector and at the optimum this vector must be equal to the null vector, so we have the 
necessary first-order condition for an optimum. 
 

𝜕𝐿

𝜕𝒘
= 𝒘𝑽 − 𝜆1𝝁 − 𝜆2𝒍 = 0 

 
The solution is then obtained by pre multiplying the necessary condition by the inverse to the variance-
covariance matrix 
 

𝑽−1𝒘𝑽 =  𝜆1𝑽
−1𝝁 − 𝜆2𝑽

−1𝒍 

 

⇔ 
 

𝒘∗ = 𝜆1𝑽
−1𝝁 +  𝜆2𝑽

−1𝒍 

 

Based on the fact that  𝑽 is positive definite we can conclude that 𝒘∗ minimizes the variance and that the 

solution obtained is unique. 
 

Pre multiplying the first-order condition by 𝒘∗ and using constraints gives 

 

𝜍𝑝
2 =  𝜆1𝑟 + 𝜆2 

 

To replace the Lagrange multipliers we pre multiply vector 𝒘∗ by the vector of expected returns, 𝝁, and 

separately by the unit vector, 𝒍, to obtain 

 

𝝁𝑇𝒘∗ = 𝜆1𝝁
𝑇𝑽−1𝝁 +  𝜆2𝝁

𝑇𝑽−1𝒍 

 

𝒍𝑇𝒘∗ = 𝜆1𝒍
𝑇𝑽−1𝝁 + 𝜆2𝒍

𝑇𝑽−1𝒍 

 

𝝁𝑇𝑽−1𝝁, 𝒍𝑇𝑽−1𝒍 and 𝝁𝑇𝑽−1𝒍 are scalars and we can label them A, B, and C. 

𝒍𝑇𝑽−1𝝁 = 𝝁𝑇𝑽−1𝒍  = C and 𝐷 = 𝐴𝐵 − 𝐶2 

 
Then  
 

𝑟 =  𝜆1𝐴 +  𝜆2𝐶 
 

1 =  𝜆1𝐶 +  𝜆2𝐵 
 
Solve these to obtain 
 

𝜆1 =  
𝐵𝑟 − 𝐶

𝐷
, 𝜆2 =

𝐴 −  𝐶𝑟

𝐷
 

 

Finally substitute 𝜆1 and 𝜆2 into the function for the optimal weights and we have the optimal weights as 
function of the vector of expected returns, the unity vector and the variance-covariance matrix. 
 

𝒘∗ =
𝐵𝑟 − 𝐶

𝐷
𝑽−1𝝁 +  

𝐴 −  𝐶𝑟

𝐷
𝑽−1𝒍 

 



                  =  
𝐴𝑽−1𝒍 − 𝐶𝑽−1𝝁

𝐷
 + 

𝐵𝑽−1𝝁 −  𝐶𝑽−1𝒍

𝐷
𝑟 

  
And substitution of 𝜆1 and 𝜆2 in 𝜍𝑝

2 yields an explicit expression of the portfolio frontier: 

 

𝜍𝑝
2 = (𝐵𝑟2 −  2𝐶𝑟 + 𝐴)/𝐷 

 

Plot the 𝜇𝑝  against 𝜍𝑝
2 to draw the efficient frontier. The intersection between the line with origin at the 

risk-free rate and the efficient frontier is known as the tangency or optimal portfolio. For a more 
extensive elaboration on the theory please refer to Ingersoll (1987). 
 
 2.1.1 Adding leverage 

 To be realistic the constraint the weights of the assets had to sum up to 1 in 𝒘𝑇𝒍. To be more 

realistic we could release this assumption. In essence this means that we would allow for leveraged of the 
portfolio. When the leverage constraint is released one is able to select any combination of the tangency 
portfolio and the risk-free asset on the unconstrained efficient frontier of figure 1.1. During this research 
we did not add any leverage to our portfolios. 
 
Figure 1.1: Efficient frontiers (Scherer, 2002) 

 
 
 2.1.2 Adding liabilities 
 Scherer (2002) gives an excellent compilation of theory for portfolio construction and describes 
the method to add liabilities to the framework. Since assets cannot isolate from liabilities for firms such as 
banks, insurance companies and pension funds we need to consider them in our portfolio analysis for 
determining an optimal asset allocation. Even investors need to think about liabilities as a real 
consumption stream after retirement. Asset-Liability Management (ALM) becomes a requirement for 
every investor who seeks to define his or her potential liabilities carefully. It focuses on managing the 
difference between assets and liabilities, also called “surplus”. The change in surplus depends on the 

returns of the asset portfolio, 𝑟𝑝
2, as well as the liability returns (percentage changes in the value of 

outstanding liabilities), 𝑟𝑙
2: 

 

∆𝑆𝑢𝑟𝑝𝑙𝑢𝑠 = 𝐴𝑠𝑠𝑒𝑡𝑠 × 𝑟𝑝 − 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡 ×  𝑟𝑙  
 
the surplus returns are expressed as the change in surplus relative to assets 
 

∆𝑆𝑢𝑟𝑝𝑙𝑢𝑠

𝐴𝑠𝑠𝑒𝑡𝑠
=  𝑟𝑝 − 

𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝐴𝑠𝑠𝑒𝑡𝑠
𝑟𝑙  

                    =  𝑟𝑝 − 𝑓𝑟𝑙  
 



In which 𝑓 is the ratio of liabilities to assets. If we set 𝑓 = 1 and 𝑟𝑙 = 𝑐, we are back in a world without 

liabilities (alternative is to think of liabilities as cash). Surplus volatility 𝜍𝑠𝑢𝑟𝑝𝑙𝑢𝑠
2 , can now be incorporated 

into the framework established in section 2.1 by including a short position in liabilities: 

𝜍𝑠𝑢𝑟𝑝𝑙𝑢𝑠
2 =   

𝑤1

⋮
𝑤𝑘

−𝑓

 

′

 

𝜍1,1 … 𝜍1,𝑘 𝜍1,𝑙

⋮ ⋱ ⋮ ⋮
𝜍𝑘,1 … 𝜍𝑘,𝑘 𝜍𝑘,𝑙

𝜍𝑙,1 … 𝜍𝑙,𝑘 𝜍𝑙,𝑙

  

𝑤1

⋮
𝑤𝑘

−𝑓

  

=  𝑣𝑎𝑟 𝜋𝑠𝑢𝑟𝑝𝑙𝑢𝑠   =  𝒘𝑇𝑽𝑠𝑢𝑟𝑝𝑙𝑢𝑠 𝒘 

 

Let‟s assume that liabilities can be summarized as one single asset, 𝑙, whereas, for example, 𝜍𝑘,𝑙  

summarizes the covariance of the 𝑘𝑡𝑕  asset with our liabilities. Scherer emphasizes that one of the 
difficulties in asset-liability management arises from the non-existence of a liability mimicking asset that, if 
bought, would hedge out all the liability risk completely. This is often caused by inflation-indexed 
liabilities or final wage-related schemes, which create unhedgeable equity-linked liabilities. Pension funds 
will always have to accept some liability noise. Since our goals is to arrive at an surplus-efficient frontier 
we can transform the ALM problem into the portfolio optimization framework. This is done by 

expressing the covariance matrix in terms of surplus risk. Each 𝑉𝑠𝑢𝑟𝑝𝑙𝑢𝑠  can be expressed as 𝑐𝑜𝑣(𝑟𝑖 −

𝑓𝑟𝑙 , 𝑟𝑗 − 𝑓𝑟𝑙). During this research we did not add liabilities to our portfolios, this is an important section 

for the practical application for insurance companies and pension funds, which deal with considerable 
liabilities. 
 
 2.1.3 Stability and out of sample characteristics of the efficient frontier  
 The next and practically important question addressed in this section is the stability of efficient 
portfolios. Ziemba and Mulvey (1998) explained that it makes little sense to optimize market shares and 
currency hedges, if the covariance matrix and expected (or average) returns are so unstable over time. 
Unstability causes that the ex-ante efficient portfolio proves to be inefficient ex post. Here the problem is 
partly solved by relying on better estimates for the future and accepting that the level of the return is for 
the largest share unforeseeable. Since we use time varying structures for the risk (variance) as well as for 
the relation (correlation) parameters it is possible to fix the portfolio at a certain risk level with its 
accompanying „reliable‟ historical risk premium (return) parameters. The covariance matrix of assets and 
liabilities is transformed via a matrix of long-short positions into the covariance matrix of surplus returns.  
 

𝑽𝑠𝑢𝑟𝑝𝑙𝑢𝑠 =   

1 0 … 0 −𝑓
0 1 . . −𝑓
⋮ . ⋱ . ⋮
0 0 . 1 −𝑓

  

𝜍1,1 … 𝜍1,𝑘 𝜍1,𝑙

⋮ ⋱ ⋮ ⋮
𝜍𝑘,1 … 𝜍𝑘,𝑘 𝜍𝑘,𝑙

𝜍𝑙,1 … 𝜍𝑙,𝑘 𝜍𝑙,𝑙

  

1 0 … 0 −𝑓
0 1 . . −𝑓
⋮ . ⋱ . ⋮
0 0 . 1 −𝑓

 

′

 

 
While cash is a very conservative asset in a asset-only framework, in an asset-liability framework it 
becomes one of the most risky assets. This since it has no covariation with liabilities (often similar to long 
bonds). Cash therefore cannot serve as a liability-hedging asset. Now we manipulate the expected returns 
to reflect the relative return of assets versus liabilities: 
 

𝝁𝑠𝑢𝑟𝑝𝑙𝑢𝑠 =   
𝜇1 − 𝑓𝜇𝑙

⋮
𝜇𝑘 − 𝑓𝜇𝑙

 + 𝑐(1 − 𝑓) 

 

Then we can optimize the Modern Portfolio Theory framework with inputs  𝑉𝑠𝑢𝑟𝑝𝑙𝑢𝑠  and 𝝁𝑠𝑢𝑟𝑝𝑙𝑢𝑠  and 

solve for the optimal weights. Following Scherer (2002), this is the method with which we can trace out 
the surplus-efficient frontier. The unconstrained (asset-only) efficient frontier and surplus-efficient 
frontier coincide if: 

- Liabilities are cash so when assets have no covariation with liabilities 
- All assets have the same covariation with liabilities 
- There exists an asset which behaves like the liabilities and which lies on the efficient frontier 

 



Summarized we can give the following convenient formula to calculate the surplus portfolio variance.  
 

𝜍𝑠𝑢𝑟𝑝𝑙𝑢𝑠
2 =   

𝑤1

⋮
𝑤𝑘

−𝑓

 

′

 
𝑉 Г

Г′ 𝜍𝑙,𝑙
  

𝑤1

⋮
𝑤𝑘

−𝑓

  

 

Where Г is the vector which expresses the covariance between asset and liability returns the surplus-

efficient frontier that arises is shown in figure 1.1. 
 
 
 

2.2  The Variance 
 
 2.2.1. Variance computation 
 Portfolio variance in relation with portfolio return is often used to determine the optimal asset 
allocation. The measure most often used to calculate the variance of a portfolio is a time-invariant 
measure of variance . It is dubbed naïve variance since it puts equal weights on past variance data, which 

is the simplest manner to deal with risk. Hull (2009) defines ςt as the volatility of a market variable on day 
t, as estimated at the end of day t-1. The square of the volatility is the variance rate. The univariate 

unbiased estimate of the variance rate of asset i, ςi
2 as a function of returns 𝜋𝑡  and mean return 𝜋 , using 

the most recent m observations is: 
 

ςi,t
2  =

1

𝑚 − 1
 (𝜋𝑡−1 − 𝜋 )2

𝑚

𝑖=1

 

 
To calculate portfolio variance, a measure of the strength of the correlation between two assets is used, 
which is the covariance. 
 

ς1,2 =  Cov π1 , π2  =  E π1 − μπ1
  π2 − μπ2

  

        =   𝐸 π1π2  – μπ1
μπ2

 

        =    
 π1𝑡 − π1    (π2𝑡 − π2   )

𝑁

𝑁

𝑖=1

 

 

in which N is the sample size, μπ i
 is the sample mean and the expected return and t denotes the 

observation of π. 
 
Statistical correlation as function of covariance 
 

ρ1,2 =  
ς1,2

ς1ς2
 

 

ς1,2 = ρ1,2ς1ς2 

 
The variance of a two-asset portfolio is 
 

   ςp
2 =  w1

2ς1
2 + w2

2ς2
2 +  2w1w2ρ1,2ς1ς2 

=  w1
2ς1

2 + w2
2ς2

2 +  2w1w2ς1,2 
 

w1 and w2 are portfolio weights which satisfy unity w1 +  w2 = 1. 
ς1 and ς2 are respectively the standard deviations of asset 1 and asset 2. 
 



We can calculate this for n assets. 
 

ςp
2 =   wi

2ςi
2

n

i=1

+  2   wiwjςij

n

j=1,j≠i

n

i=1

 

 

If we use the fact that the variance of 𝑅𝑖  is 𝜍𝑖𝑖  then 
 

ςp
2 =    wiwjςij

n

j=1

n

i=1

 

 
For a multiple assets it is easier to use matrix notation, and set 

 

𝛑 =  π1 , π2 , … , πn T , asset returns 

𝒘 = (𝑤1 , 𝑤2 , … , 𝑤𝑛)𝑇, weights of the assets 

𝝁 = (𝜇1 , 𝜇2 , … , 𝜇𝑛)𝑇 ,    expected returns 

𝑽 =  

 
 
 
 
 
𝜍1

2 𝜍1,2 … 𝜍1,𝑛

𝜍1,2 𝜍2
2 … 𝜍2,𝑛

⋮ ⋮ ⋮ ⋮
𝜍1,𝑛 𝜍2,𝑛 … 𝜍𝑛

2  
 
 
 
 

, the 𝑛 × 𝑛 variance-covariance matrix of returns 

 
The covariance and correlation matrices are symmetric because the covariance and the correlation 

between 𝜋𝑖  and 𝜋𝑗  is the same as the correlation between 𝜋𝑗  and 𝜋𝑖 . 

The variances of the individual assets are on the diagonal of this matrix. 
 
We would like to know the variance of the portfolio return 
 

𝜋𝑝 =  𝑤1𝜋1 +  𝑤1𝜋1 +  … +  𝑤𝑛𝜋𝑛 =  𝒘𝑇𝝅 

 

by choice of 𝑤 we obtain the portfolio variance 

 

ςp
2 =  𝑣𝑎𝑟 𝜋𝑝  =  𝒘𝑇𝑽𝒘 

 
We could also take the square root of the result and obtain the portfolio standard deviation or volatility. 
Here I would like to refer to an excellent paper of Reider (2009), who gave us generalized equations. 
 
 2.2.2 AutoRegressive Conditional Heteroskedasticity Model 
 The AutoRegressive(AR) part comes from the fact that the model is an autoregressive model in 
squared returns. The conditionality comes from the fact that the model‟s next period‟s volatility is 
conditional on information this period. Heteroskedasticity means non constant volatility. In a linear 

regression where 𝑦𝑡 =  𝛼 +  𝛽𝑥𝑖 +  𝜖𝑡 , when the variance of the residuals, 𝜖𝑡  is constant, we name that 

homoskedastic and use Ordinary Least Squares (OLS) to estimate 𝛼 and 𝛽. When the variance of the 
residuals is not constant, we call that heteroskedastistic and we can use Weighted Least Squares(WLS) to 
estimate the regression coefficients. Let‟s say that that the return on an asset is  

𝑟𝑡 =  𝜇 + 𝜍𝑡𝜖𝑡  
 

in which 𝜖𝑡  is a sequence of N(0,1) i.i.d. random variables. We will define the residual return at time t, 

𝑟𝑡 −  𝜇, as 

𝛼𝑡 =  𝜍𝑡𝜖𝑡  
 
The ARCH(1) model developed by Engle (1982) gives us the equation. 
 



𝜍𝑡
2 =  𝛼0 +  𝛼1𝛼𝑡−1

2  

In which 𝛼0 > 0 and 𝛼1 ≥ 0 to ensure positive variance and 𝛼1 < 1 for stationary. In an ARCH(1) 

model, when the residual return, 𝛼𝑡  is large in magnitude, the forecast for the next period‟s conditional 

volatility, 𝜍𝑡+1 will be large. 
 

2.2.3 Generalized AutoRegressive Conditional Heteroskedasticity 
 The second measure is a time variant variance called General Autoregressive Conditional 
Heteroscedasticity (GARCH) variant of variance. This variant is well known since it allows to take the 
auto correlative as well as the mean-revering characteristics of variance into account. 
 
 For high order ARCH processes volatility can be modelled by GARCH(p,q). Generalized ARCH 
was developed by Bollerslev (1986), compared to ARCH(q), dependencies are permitted on q lags of past  

𝜖𝑡
2 in addition to p lags of past 𝑕𝑡

2 as shown below. In a GARCH(p,q) model the volatility depends on last 
periods volatility and the return residuals: 
 

𝑟𝑡 =  𝜍𝑡𝜀𝑡       𝑕𝑡
2 = 𝜔0 +   𝑎𝑖𝑟𝑡−𝑖

2𝑞
𝑖=1 +   𝛽𝑗

𝑝
𝑖=1 𝑕𝑡−𝑗

2       0 < 𝑎 + 𝛽 < 1 

 

 The rate of decay of the autocorrelation is measured by 𝛼 + 𝛽, the closer to 1, the slower the 

decay. Following Cont (2005) estimations on returns often yield 𝛼 + 𝛽 close to 1. Volatility forecast from 
GARCH(1, 1) can be made by repeated substitutions of the obtained parameters, the last value of the 
variance and the .  
 
By the use of programming one can estimate the GARCH parameters and calculate the variance series for 
all asset classes.  
 
 

2.3  The correlation coefficients 
 
 2.3.1 Correlation computation 
 For calculation of the correlation coefficients a series of n measurements of X and Y written as 

𝑥𝑖  and 𝑦𝑖  where 𝑖 =  1, 2, . . . , 𝑛, then the sample correlation coefficient can be used to estimate the 

population Pearson correlation 𝑟 or often written as 𝜌 between X and Y. The sample correlation 
coefficient is written 
 
 

𝑟𝑥𝑦 =  
  𝑥𝑖 − 𝑥  (𝑦𝑖 − 𝑦 )𝑛

𝑖=1

(𝑛 − 1)𝑠𝑥𝑠𝑦
=  

  𝑥𝑖 − 𝑥  (𝑦𝑖 − 𝑦 )𝑛
𝑖=1

  (𝑥𝑖 − 𝑥 )2𝑛
𝑖=1  (𝑦𝑖 − 𝑦 )2𝑛

𝑖=1

 

where 𝑥  and 𝑦  are the sample means of X and Y, and 𝑠𝑥  and 𝑠𝑦  are the sample standard deviations of X 

and Y. 
 
This can also be written as: 
 

𝑟𝑥𝑦 =  
 𝑥𝑖𝑦𝑖 −  𝑛𝑥 𝑦 

(𝑛 − 1)𝑠𝑥𝑠𝑦
=  

𝑛 𝑥𝑖𝑦𝑖 −  𝑥𝑖  𝑦𝑖

 𝑛  𝑥𝑖
2 − ( 𝑥𝑖)

2 𝑛 𝑦𝑖
2 − ( 𝑦𝑖)

2
 

 
2.3.2 Dynamic Conditional Correlation 

 The multivariate GARCH model assumes that returns from 𝑘 assets are conditionally 

multivariate normal with zero expected value and covariance matrix 𝑯𝑡 . The returns can be either mean 
zero or the residuals from a filtered time series. The proposed dynamic correlation structure by Engle and 
Sheppard (2001) is constructed as follows 
 

𝑟𝑡 |𝐹𝑡−1 ~ 𝑁(0, 𝑯𝑡) 
 



and 
 

𝑯𝑡 =  𝑫𝑡𝑹𝑡𝑫𝑡  
 

𝐻𝑡  is the conditional covariance matrix and as a function of 
𝐷𝑡  is the 𝑘 𝑥 𝑘 diagonal matrix of time varying standard deviations from univariate GARCH models with 

 𝑕𝑖𝑡  on the 𝑖𝑡𝑕  diagonal and 𝑕𝑖𝑡  denotes the conditional variance of the i-th return. 

𝑅𝑡  is the time varying correlation matrix. 
 
The log-likelihood of this estimator can be written as 
 

𝐿 =  −
1

2
 (k log 2𝜋 + log |𝑯𝑡| + 𝑟𝑡 ′𝑯𝑡

−1𝑟𝑡)

𝑇

𝑡=1

 

    =  −
1

2
 (k log 2𝜋 + log  𝑫𝑡𝑹𝑡𝑫𝑡  + 𝑟𝑡 ′𝑫𝑡

−1𝑹𝑡
−1𝑫𝑡

−1𝑟𝑡)

𝑇

𝑡=1

 

    =  −
1

2
 (k log 2𝜋 + 2log |𝑫𝑡| + log |𝑹𝑡 | + 𝜖𝑡

𝑇𝑹𝑡
−1𝜖𝑡)

𝑇

𝑡=1

 

 

where  𝜖𝑡  ~ 𝑁(0, 𝑅𝑡) are the residuals standardized by their conditional standard deviation. We propose 

to write the elements of 𝐷𝑡  as univariate GARCH models, so that 
 

𝑕𝑖𝑡 =  𝜔𝑖 +   𝛼𝑖𝑝𝑟𝑖𝑡−𝑝
2

𝑃𝑖

𝑝=1

+  𝛽𝑖𝑞𝑕𝑖𝑡−𝑞

𝑄𝑖

𝑞=1

 

 

for 𝑖 = 1,2, … , 𝑘 with the usual GARCH restrictions for non-negativity and stationarity being imposed, 

such as non-negativity of variances and  𝛼𝑖𝑝
𝑃𝑖
𝑝=1 +   𝛽𝑖𝑞

𝑄𝑖
𝑞=1 < 1. The subscripts are present on the 

individual P and Q for each series to indicate that the lag lengths chosen need not be the same. The 
specification of the univariate GARCH models is not limited to the standard GARCH (p,q), but can 
include any GARCH process with normally distributed errors that satisfies appropriate stationary 
conditions and non-negativity constraints.  
 
  

𝑸𝑡 =  1 −  𝛼𝑚

𝑀

𝑚=1

−  𝛽𝑛

𝑁

𝑛=1

 𝑸 +  𝛼𝑚

𝑀

𝑚=1

 𝝐𝑡−𝑚𝝐𝑇
𝑡−𝑚  +   𝛽𝑛

𝑁

𝑛=1

𝑸𝑡−𝑛  

 

𝑹𝑡 =  𝑸𝑡
∗−1𝑸𝑡𝑸𝑡

∗−1
 

 

where 𝑄  is the unconditional covariance of the standardized residuals, 𝝐𝑡  resulting from the first stage 
estimation, and 
 

𝑸𝑡
∗ =

 
 
 
 
  

𝑞1,1 0 0 … 0

0  𝑞2,2 0 … 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 …  𝑞𝑘,𝑘  

 
 
 
 

 

 

so that 𝑸𝑡
∗ is a diagonal matrix composed of the square root of the diagonal elements of 𝑸𝑡 . The typical 

element of 𝑹𝑡  will be of the form  
 



𝜌𝑖,𝑗 ,𝑡 =  
𝑞𝑖,𝑗 ,𝑡

 𝑞𝑖,𝑖,𝑡𝑞𝑗 ,𝑗 ,𝑡

 

 

The following useful result from linear algebra simplifies finding the necessary conditions for 𝑅𝑡  to be 
positive definite and hence a correlation matrix. 
 
 

2.4  The mean 
 

2.4.1 Mean computation 
 The benefit of using the means or the returns, versus prices, is normalization. Expectations about 
the mean can be formed by many different methods, the most intuitive is to use the historical average. 
One of the problems encountered using historical averages is that real returns can differ substantially 
from this estimated mean. First of all we need to differentiate between arithmetic and geometric mean. 
The most commonly familiar mean is the arithmetic mean. We are familiar with how to average grades. In 
mathematics it is defined as 
 

𝐴𝑟𝑖𝑡𝑕𝑚𝑎𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 =  
𝛼1 + 𝛼2 + ⋯ + 𝛼𝑛

𝑛
 

 

The geometric mean is defined for all 𝑎‟s being real and positive numbers as 
 

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 =   𝛼1𝛼2 ⋯𝛼𝑛
𝑛  

 
To determine if one should use the arithmetic or geometric mean determine if returns are dependent or 
independent. The return of different assets are independent, but returns over time are dependent, since 

total return over a period depends on which return occurs first. The amount 𝑛 relates to the amount of 
compounded returns within the period and is relevant in discrete time and is also known as the True 
Time-Weighted Rate of Return when cash flows are present or when there is a sequence of returns during 

the period. When 𝑟𝑐  is the return on a continuous compounding basis this means that the number of 
periods is infinite. 
 

𝑟 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 =  −1 +   (1 + 𝑟𝑎𝑟𝑖𝑡 𝑕,𝑖)

𝑛

𝑖=1

𝑛

 

 
When means are continuous and continuously compounded it is convenient to use return which is time 
additive and mathematically convenient to use. 
 

𝑟𝑙𝑜𝑔 = ln(
𝑉𝑡

𝑉𝑡−1
) 

 
Now we showed the difference between arithmetic mean and geometric mean we can go one step further 
and discuss the difference between geometric and logarithmic mean. The logarithmic mean of two 
numbers is smaller than the arithmetic mean but larger than the geometric mean (unless the numbers are 
the same, in which case all three means are equal to the numbers).  

In the formula above 𝑉𝑡  is the asset or index value at time 𝑡. The logarithmic mean is calculated as the 
area under an exponential curve or integral. The log function can be in any base, e.g. natural log (ln), as 
long as consistent bases are used all throughout calculation. The interest rate expressed as a continuously 
compounded rate is called the force of interest.  
 
 

2.5 Dynamic estimation 



 
 2.5.1 Rolling Windows 
 For dynamic estimation of the model parameters and the return, variance and correlation 
estimations, a method based on rolling windows is used. Let say that one has a long time series of data, of 
length T, available for estimation, where T is much larger than t, the number of observations used to 
form the estimations in constructing efficient portfolios. We consider the general case where we use T 
monthly return observations to form portfolios and hold them for one month before rebalancing. When 
the holding period is one month, t = l20, the number of months in 10 years for the long term estimation 
and t = 24 for the short term estimation. The expected portfolio allocation that needs to be rebalanced 
will be relatively smaller when using the long term estimation window. We use the rolling window method 
described below as the benchmark, that provides consistent estimators of the 1-month out-of-sample 
parameters and variables. To test the GARCH-DCC model against the GARCH model a 10 year period is 
used. During the estimation procedure, the window shifts 1 month for each time step. 
 
 

2.6  Test methodology 
 
 When the model is developed in MATLAB we can estimate means, variances and covariance‟s 
and test which setting is delivers the best estimates and forecasts. Secondly we can calculate optimal 
portfolios. The performance of time varying GARCH(P,Q) variances and DC Correlations is tested 
against a model which uses historical or so called naïve variances and correlations instead.  
 
 It is possible to compare the expected return and standard deviations with the realized returns 
and standard deviations by means the Diebold-Mariano test statistics. To compare forecast errors from 
two different models the Diebold-Mariano test statistic is used. The statistic compares the deviations of 
the forecasts from the realizations, corrects for serially correlated forecasting errors and determines if this 
is statistically significant.  
 
 We would like to know how we would be invested when we would have used certain 
methodology for estimation of parameters. This can be done by comparing realized Sharpe ratios of the 
tangency portfolios of the separate models using a 1-month rolling windows.  

 
 2.6.1 Root Mean Squared Error 
 Mean squared error (MSE) of an estimator is a method to quantify the difference between values 
implied by a forecasted estimator and the realized values of the estimated quantity. MSE is a risk function 

for the expected value of the squared error loss or quadratic loss. The MSE of estimator 𝜃   compared to 

the estimated parameter 𝜃 is formulized as 
 

𝑀𝑆𝐸 𝜃  =  𝐸   𝜃  −  𝜃 
2
  

 
which can be separated in the sum of the variance and the squared bias of the estimater 
 

𝑀𝑆𝐸 𝜃  =  𝑉𝑎𝑟 𝜃  +  (𝐵𝑎𝑖𝑠 𝜃 , 𝜃 )2 

 

An MSE of zero, meaning that the estimator 𝜃  predicts observations of the parameter 𝜃.  
 
In this paper the MSE will be used as out-of-sample mean squared error, which refers to the mean value 
of the squared deviations of the predictions from the true values over an out-of-sample period. The MSE 
of different models, including the random walk model which simply implies that the forecast equal to the 
most recent value, can be compared. The MSE can be used as relative measure as proposed by 
Thompson (1990) to compare the performance of the forecasted means and variances against the random 
walk model or the naïve forecasts. 

 
 In academic literature and MATLAB the RMSE value is a basic measure of how closely a model 
fits some data, which measures the average mismatch between each realized data point and the model. 



We should look at the RMSE values as a first tool to inspect the quality of the fit,  high RMSE values can 
indicate problems. The smaller the RMSE, the closer our model follows the data; if a model goes through 
each data point exactly or when the errors are on average zero, then the RMSE is zero. RMSE is simply 
the root of the MSE. 
 
 2.6.2 Diebold-Mariano 
 For statistical comparison of forecasting accuracy between models we can us the Diebold-
Mariano (DM) statistics (Diebold and Mariano, 1995) for practical application see Chueng, Chinn and 
Pascual, (2005). This statistic is used for testing whether the performance of the forecast series is 
significantly different from that of the random walk forecast and expresses this in a comparable figure. 
The most important feature of the DM test statistic is that it corrects for economic loss resulting from the 
volatility of the tested variable. By comparing the DM test statistics we will be able to assess which model 
predicts the returns better. The statistics are calculated using the squared error and absolute error loss 
functions.  
 
To determine if one model predicts better than another we may test null hypotheses 
 

𝐻0: 𝐸 𝐿 𝜀𝑡+𝑕|𝑡
1   =  𝐸 𝐿 𝜀𝑡+𝑕|𝑡

2    

𝐻1: 𝐸[𝐿 𝜀𝑡+𝑕|𝑡
1  ] ≠  𝐸[𝐿 𝜀𝑡+𝑕|𝑡

2  ]  

 
We can calculate the loss differentials as follows 
 

𝑑𝑠𝑞,𝑡 =  𝜀𝑡
𝑚2 2  −   𝜀𝑡

𝑚1 2 

 
𝑑𝑎𝑏𝑠 ,𝑡 =  𝜀𝑡

𝑚2  −    𝜀𝑡
𝑚1  

𝑑 =  
1

𝑇0
 𝑑𝑡

𝑇

𝑡=𝑡0

 

 

in which 𝜀𝑡
𝑚1 and 𝜀𝑡

𝑚1 respectively denote the forecasting errors of model 1 and 2. These forecasting 
errors can be calculated using rolling 1-step ahead forecasts from model 1 and 2. When the loss 
differentials are positive this indicates that model 2 produces a larger forecast error than model 1. The 
DM statistic 
 

𝐷𝑀 =  
𝑑

𝑆𝐸(𝑑)
 

 

𝐷𝑀 =  
𝑑

 (𝐿𝑅𝑉𝑑/𝑇)
 

 

𝐿𝑅𝑉𝑑 =  𝛾0 + 2  𝛾𝑗

∞

𝑗 =1

, 𝛾𝑗 = 𝑐𝑜𝑣(𝑑𝑡𝑑𝑡−𝑗 ) 

 
 

in which 𝑆𝐸(𝑑) is the standard error of the loss differential, which is calculated as the asymptotic long-

run variance(LRV) of  𝑇𝑑,  (𝐿𝑅𝑉𝑑/𝑇). The long-run variance is used, because the sample of loss 

differentials is serially correlated for 𝑕 > 1 (Zivot, 2004). So the loss differentials are regressed on a 
constant using the Newey-West correction to the standard error. This to test the null hypothesis, that the 
models have equally forecasting accuracy. When the t-statistic is positive we can conclude that model 1 is 
more accurate than model 2. 
 
 2.6.3 Sharpe ratio 



 One way to assess the performance of the Naïve, the GARCH and the DCC-GARCH model is 
by using the Sharpe ratio. The Sharpe ratio of the portfolio is calculated by the function 
 

𝑆𝑅 =  
𝑅𝑝

𝑡𝑜𝑡 − 𝑅𝐹
𝑡𝑜𝑡

𝜍𝑝
𝑡𝑜𝑡  

 

In which the total portfolio return 𝑅𝑝
𝑡𝑜𝑡  and 𝜍𝑝

𝑡𝑜𝑡  are calculated during the whole period of holding the 

portfolio.  
The aggregate return over N days 
 

𝑅𝑡𝑜𝑡 =   (1 +  𝑅𝑡

𝑁

𝑡=1

) − 1 

where  𝑅𝑡  is the monthly return. 
The Sharpe ratio is calculated using the naïve approximation for risk, since we used GARCH estimates of 
the variance to forecast 1-step or month ahead, the squared realized return is used as proxy of the 
variance. 

𝜍𝑝
𝑡𝑜𝑡 ≈  𝑤𝑎𝑅𝑎

𝑚 2

𝑁

𝑡=1

 

  
in which a denotes the separate asset classes. 
 
We are interested in comparing the expected Sharpe ratio with the realized Sharpe ratio.  

1. The Sharpe ratio is calculated by first estimating the optimal portfolio weights and registering the 
expected return and variances.  

2. We calculate one expected Sharpe ratio as if we would rebalance our portfolio every month 
towards an optimal asset allocation. This is done by using the mean and variance of the optimal 
portfolios. 

3. We use the weight and the realized returns and estimated covariance‟s matrix to determine our 
realized Sharpe ratio. 

4. If the Sharpe ratio is different we can determine which one is higher and conclude which asset 
allocation approach is outperforming the other. 

 
 2.6.4 Maximum drawdown 
 The maximum cumulative loss from a market peak to trough, often called the maximum 
drawdown (MDD), is a measure of how sustained one‟s losses are. The measure is known well in the 
asset management industry since large drawdowns usually lead to fund redemptions, and so the MDD is 
the risk measure of choice for many money management professionals. A reasonably low MDD is critical 
to the success of any fund. While long-term investors are ultimately rewarded with strong absolute 
returns, short-term losses are often sharp enough to make even the most rational investors question their 
allocations. (Altegris, 2011). The maximum drawdown is measured by the cumalative sum of consequent 
losses. 
 
When the return at time t, is smaller or equal to 0 and when the last Maximum DrawDown observation is 
smaller than 0 then sum the return with the last MDD observation and else the value is the minimum of 
the return and zero. 
 

 rt +  MDDt−1 

when 

rt ≤ 0 

MDDt−1  ≤ 0 
else 

𝑀𝑖𝑛(rt , 0) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 Assumptions 

3.1 Modern Portfolio Theory 

During this research the same assumptions as Hull (2007) are made which are all true for some 
market participants. 

1.) There are no transaction costs for trading 

2.) Each is subject to the same tax rate on all net trading profits 

3.) Participants can lend and borrow money at the same risk-free rate 

4.) Market participants will make markets efficient by taking advantage of arbitrage opportunities 

Versijp (2011) adds the following assumptions for modern portfolio theory to our list. 

5.) Agents prefer more over less (no satiation) 

6.) Agents dislike risk (risk-aversion) 

7.) Traders maximize utility, and do so for 1 period 

8.) Utility is a function of expected return and variance and nothing else 

9.) There is no distortion from inflation 

10.) All information is available at no costs 

11.) All investments are infinitely divisible 

And last one which should be on our assumption list for proper analysis 

12.) The unit of measurement contains a constant Purchasing Power 

Of course this list is not the best representation of reality, but allows to do valuable analysis.  

 

 

 



 

 

 

 

 

  



4  Data and software 

4.1 Data  
 
 4.1.1 Asset classes 
 Investors have many investment possibilities and following Modern Portfolio Theory they should 
search for the best risk/reward ratio in combination with diversification. Since assets within particular 
asset classes tend to be influenced by the same risk factors, one will find difficulties to diversify. Great 
opportunity for diversification can be found in investing in other asset classes which will bring different 
risk factors and premium for bearing them.  From a report about commodity trading of TheCityUK 
(2011) we learn from their rough estimates that many investors recently discovered commodity futures as 
an investment. This since the world wide asset class commodities, value of contracts under management 
doubled in three years from 2008 till 2010 from $200bn. to about $380bn. The U.S. investor has excellent 
access to these markets by trading for instance on the commodity exchange (COMEX) or by buying 
Exchange Traded Products (ETP), which almost tripled in these three years from $113bn. to $310bn. at 
the end of 2010.  SIFMA (2011) registers the total sizes of U.S. credit markets and the Bank of 
International Settlements(BIS) (2011) registers sizes of international credit as well as equity markets. The 
sizes of the traditional asset classes, government securities, corporate securities and traded equities were 
respectively $9,123bn., $7,598bn and $251bn.. 
 
 In this research standard liquid asset classes like fixed income, commodities and equity are used. 
A sub divisions of fixed income bonds is made, in government bonds and (corporate) investment-grade 
bonds. Data necessary was obtained by use of Datastream, Bloomberg and other databases of the 
Erasmus University Rotterdam(EUR) and pension organization PGGM. I will use monthly total return 
data of indices of publically traded bonds for government bonds like S&P 30 Year US Treasury Bond 
Futures Index  available from 1988, JP Morgan Global Aggregate (Investment-grade) Bond Index 
available from 1973 onwards. For commodities I will use GSCI indices available from 1973.  
 
 The following data series were used as being representative as price index for the asset classes 
were U.S. investors are able to choose from to determine their portfolios: 

1.) Standard & Poor Goldman Sachs Commodity Index 

2.) J.P. Morgan Aggregate Bond Index 

3.) Standard & Poor 500 Index 

4.) U.S. 30-year Treasury Bill  

These series were mainly chosen because there is considerable data available to make statistically correct 
inferences. Of each index we used 279 data points. Each data point represented the return over the 
period of a month. To have comparable values we only used the first part of the data for estimation of 
the parameters to develop expectations for the month ahead. 
 
 4.1.2 Time frame 
 I will focus on the period after the end of Bretton woods in August 1971 and especially on the 
period with available data for all asset classes from 1988, this since data for both the bond indexes is non-
existent before 1988. 
 
The current dataset contains the following 4 indices 

1 S&P GSCI - Spot index USD SPGSCI Index 

2 JPM Global Aggregate Bond - Total Return Index USD JGAGGUSD Index 

3 S&P 500 – Total Return Index USD SPX Index 

4 S&P 30 Year US Treasury Bond Futures - Total Return Index USD SPGSCI Index 

  



4.2 Software  

  
 4.2.1 MATLAB 
 MATLAB is a powerful program, which offers more flexibility and standard functions than the 
language and interface of Visual Basic present in versions of Excel. During my research I made 
extensively use of the program and would like to thank the organizations Erasmus University of 
Rotterdam as well as PGGM for empowering me with their licensed versions. The power of computing 
enabled me to conduct procedures which would not have been possible to conduct by pen and paper. 
During this research I have learned the language of MATLAB programming, extensive hours of 
debugging has enabled me to fully understand every facet of each code. Thanks to the writers of the 
language as well as the codes we save time and are enabled to compute beyond the limits of human 
capability. 
  
 To calculate the optima and minima and to estimate our parameters, MATLAB codes in 
combination with computing power have been used extensively. Here you find a summary of packages 
and codes used together with the adjustments made to them. For convenience a large share is included in 
the appendices.  
 
 For the estimation of the time-variant variance parameters the UCSD_GARCH toolbox of 
Sheppard was found to be useful, functions are specified in the next section. Levin (2004) wrote the 
largest share of the framework I used for estimating the Dynamic Conditional Correlation, which was also 
supported by the UCSD_GARCH toolbox of Sheppard. For all three estimation procedures, codes to 
conduct rolling windows, to loop estimation procedures, were programmed. The codes that are used to 
conduct the procedures of Modern Portfolio Theory makes use of the formulas which are standard 
present in MATLAB, just like the codes used to conduct the test procedures. 
 
  
 
 
 

 

 

 

 
 

  



5 Model specifications and assumptions 

 In this section the procedures are not always described in formulas, but often in codes. When % 
is used in the beginning of the sentence it is a comment in MATLAB, without it is working code and it 
could be directly copied to an Editor or Compiler. It is possible to use the procedures in other programs, 
but one has to rewrite the codes used. To outline the model specifications and assumptions the following 
structure is used. At first the programming code is considered shortly, secondly we will test the reliability 
of the differences among the inputs and third we shall elaborate on the comparison between rolling 
Sharpe ratios. Then in the fourth section we will elaborate on the distributions used in determining an 
optimal allocation. During this research we limited the weight of the commodities and equity part of the 
portfolio to 25%, this is to cap the maximum amount of risk in the portfolio resulting from relatively 
higher volatility, during extreme and/or unexpected market conditions, of these asset classes. 

 

5.1 GARCH-DCC framework 
 
 The model in MATLAB makes use of the following stepwise procedure to determine the 
covariance‟s and correlations matrices, the covariance matrix and the resulting data can be used in the 
Modern Portfolio Theory framework to construct the portfolio frontier.  
 

 GARCH is a time variant variance called General Autoregressive Conditional Heteroscedasticity 
(GARCH) variant of variance. This variant is well known since will allow to take the auto correlative as 
well as the mean-revering characteristics of variance into account. For the estimation procedure of 
variances and covariance matrix fat-tailed GARCH is used. The model is specified as follows and the 
maximum likelihood is carried as described in the methodology, the name and source of the package is 
described in section 4. For high order ARCH processes volatility can be modelled by GARCH(p, q). 
Generalized ARCH was developed by Bollerslev (1986), compared to ARCH(q), dependencies are 

permitted on q lags of past  𝜖𝑡
2 in addition to p lags of past 𝑕𝑡

2 as shown below. In a GARCH(p, q) model 
the volatility depends on last periods volatility and the return residuals: 
 

𝑟𝑡 =  𝜍𝑡𝜀𝑡       𝑕𝑡
2 = 𝜔0 +   𝑎𝑖𝑟𝑡−𝑖

2𝑞
𝑖=1 +   𝛽𝑗

𝑝
𝑖=1 𝑕𝑡−𝑗

2       0 < 𝑎 + 𝛽 < 1 

 

 The rate of decay of the autocorrelation is measured by 𝛼 + 𝛽, the closer to 1, the slower the 

decay. Following Cont (2005) estimations on returns often yield 𝛼 + 𝛽 close to 1. Volatility forecast from 
GARCH(1, 1) can be made by repeated substitutions of the obtained parameters, the last value of the 
variance and the .  
 
By the use of programming one can estimate the GARCH parameters and calculate the variance series for 
all asset classes.  
 

 For the Dynamic Conditional Correlation estimation procedure of the covariance matrices the 
DCC multivariate GARCH with quasi maximum full likelihood is used. The name and source of the 
package is described in section 4. 
 

 The multivariate GARCH model assumes that returns from 𝑘 assets are conditionally 

multivariate normal with zero expected value and covariance matrix 𝑯𝑡 . The returns can be either mean 
zero or the residuals from a filtered time series. The proposed dynamic correlation structure by Engle and 
Sheppard (2001) is constructed as follows 
 

𝑟𝑡 |𝐹𝑡−1 ~ 𝑁(0, 𝑯𝑡) 
 
and 
 

𝑯𝑡 =  𝑫𝑡𝑹𝑡𝑫𝑡  



 

𝐻𝑡  is the conditional covariance matrix and as a function of 
𝐷𝑡  is the 𝑘 𝑥 𝑘 diagonal matrix of time varying standard deviations from univariate GARCH models with 

 𝑕𝑖𝑡  on the 𝑖𝑡𝑕  diagonal and 𝑕𝑖𝑡  denotes the conditional variance of the i-th return. 

𝑅𝑡  is the time varying correlation matrix. 
 
The log-likelihood of this estimator can be written as 
 

𝐿 =  −
1

2
 (k log 2𝜋 + log |𝑯𝑡| + 𝑟𝑡 ′𝑯𝑡

−1𝑟𝑡)

𝑇

𝑡=1

 

    =  −
1

2
 (k log 2𝜋 + log  𝑫𝑡𝑹𝑡𝑫𝑡  + 𝑟𝑡 ′𝑫𝑡

−1𝑹𝑡
−1𝑫𝑡

−1𝑟𝑡)

𝑇

𝑡=1

 

    =  −
1

2
 (k log 2𝜋 + 2log |𝑫𝑡| + log |𝑹𝑡 | + 𝜖𝑡

𝑇𝑹𝑡
−1𝜖𝑡)

𝑇

𝑡=1

 

 

where  𝜖𝑡  ~ 𝑁(0, 𝑅𝑡) are the residuals standardized by their conditional standard deviation. We propose 

to write the elements of 𝐷𝑡  as univariate GARCH models, so that 
 

𝑕𝑖𝑡 =  𝜔𝑖 +   𝛼𝑖𝑝𝑟𝑖𝑡−𝑝
2

𝑃𝑖

𝑝=1

+  𝛽𝑖𝑞𝑕𝑖𝑡−𝑞

𝑄𝑖

𝑞=1

 

 

for 𝑖 = 1,2, … , 𝑘 with the usual GARCH restrictions for non-negativity and stationarity being imposed, 

such as non-negativity of variances and  𝛼𝑖𝑝
𝑃𝑖
𝑝=1 +   𝛽𝑖𝑞

𝑄𝑖
𝑞=1 < 1. The subscripts are present on the 

individual P and Q for each series to indicate that the lag lengths chosen need not be the same. The 
specification of the univariate GARCH models is not limited to the standard GARCH (p, q), but can 
include any GARCH process with normally distributed errors that satisfies appropriate stationary 
conditions and non-negativity constraints.  
 
  

𝑸𝑡 =  1 −  𝛼𝑚

𝑀

𝑚=1

−  𝛽𝑛

𝑁

𝑛=1

 𝑸 +  𝛼𝑚

𝑀

𝑚=1

 𝝐𝑡−𝑚𝝐𝑇
𝑡−𝑚  +   𝛽𝑛

𝑁

𝑛=1

𝑸𝑡−𝑛  

 

𝑹𝑡 =  𝑸𝑡
∗−1𝑸𝑡𝑸𝑡

∗−1
 

 

where 𝑄  is the unconditional covariance of the standardized residuals, 𝝐𝑡  resulting from the first stage 
estimation, and 
 

𝑸𝑡
∗ =

 
 
 
 
  

𝑞1,1 0 0 … 0

0  𝑞2,2 0 … 0

⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 …  𝑞𝑘,𝑘  

 
 
 
 

 

 

so that 𝑸𝑡
∗ is a diagonal matrix composed of the square root of the diagonal elements of 𝑸𝑡 . The typical 

element of 𝑹𝑡  will be of the form  
 

𝜌𝑖,𝑗 ,𝑡 =  
𝑞𝑖,𝑗 ,𝑡

 𝑞𝑖,𝑖,𝑡𝑞𝑗 ,𝑗 ,𝑡

 

 



The following useful result from linear algebra simplifies finding the necessary conditions for 𝑅𝑡  to be 
positive definite and hence a correlation matrix. 
 
 

5.2 Modern Portfolio Theory framework 
 

 The preprogrammed codes which are prominent in a standard MATLAB installation we don‟t 
have to make many adjustments. Important is the adjustments of the constraints. During this research we 
limited the weight of the commodities and equity part of the portfolio to 25% and the whole portfolio to 
100% so that we do not use leverage. We also limited the use of the risk-free asset, since the risk-free 
asset has zero risk it does not has an effect on our Sharpe ratio and can only be used to borrow or lend. 
Dealing with the adjustment of the Sharpe ratio, when including the risk-free asset, is not part of this 
research. 

 
The standard computation of the mean-variance frontier uses a brute-force approach. There are 
techniques by which we can compute the set of efficient portfolios and efficient mean-variance 

combinations associated with given 𝜇 and𝑉. The goal of the proposed model is to determine the optimal 

minimum variance portfolio for a given level of risk subjecting to the following constraints written out by 
Balvers (2001) and Renström (2002). 
 

𝒘𝑇𝝁 = 𝑟 

𝒘𝑇𝒍 = 1 

 

Where  𝑟 denotes the expected portfolio return, 𝒍 represents a 1 × 𝑛 column vector of 1‟s and the sum of 

the weights is equal to 1, or the whole portfolio. 
 
 

The minimization problem can be solved using the Lagrange multiplier method with multipliers 𝜆1 and 

𝜆2 for the constraints. Set 
 

𝐿 = 𝒘𝑇𝑽𝒘 − 𝜆1  𝒘𝑇𝝁 –  𝑟 − 𝜆2 𝒘
𝑇𝒍  −  1  

 

The first-order condition with respect to 𝑤 is 

 
𝜕𝐿

𝜕𝒘
= 2𝒘𝑽 − 𝜆1𝝁 − 𝜆2𝒍 

 
By pre multiplying the Lagrangian by ½ we get more convenient expressions and 
 

𝜕𝐿

𝜕𝒘
= 𝒘𝑽 − 𝜆1𝝁 − 𝜆2𝒍 

 
Solving this derivative for the optimal portfolio weights is done by applying the following steps: 
The result is a vector and at the optimum this vector must be equal to the null vector, so we have the 
necessary first-order condition for an optimum. 
 

𝜕𝐿

𝜕𝒘
= 𝒘𝑽 − 𝜆1𝝁 − 𝜆2𝒍 = 0 

 
The solution is then obtained by pre multiplying the necessary condition by the inverse to the variance-
covariance matrix 
 

𝑽−1𝒘𝑽 =  𝜆1𝑽
−1𝝁 − 𝜆2𝑽

−1𝒍 



 

⇔ 
 

𝒘∗ = 𝜆1𝑽
−1𝝁 +  𝜆2𝑽

−1𝒍 

 

Based on the fact that  𝑽 is positive definite we can conclude that 𝒘∗ minimizes the variance and that the 

solution obtained is unique. 
 

Pre multiplying the first-order condition by 𝒘∗ and using constraints gives 

 

𝜍𝑝
2 =  𝜆1𝑟 + 𝜆2 

 

To replace the Lagrange multipliers we pre multiply vector 𝒘∗ by the vector of expected returns, 𝝁, and 

separately by the unit vector, 𝒍, to obtain 

 

𝝁𝑇𝒘∗ = 𝜆1𝝁
𝑇𝑽−1𝝁 +  𝜆2𝝁

𝑇𝑽−1𝒍 

 

𝒍𝑇𝒘∗ = 𝜆1𝒍
𝑇𝑽−1𝝁 + 𝜆2𝒍

𝑇𝑽−1𝒍 

 

𝝁𝑇𝑽−1𝝁, 𝒍𝑇𝑽−1𝒍 and 𝝁𝑇𝑽−1𝒍 are scalars and we can label them A, B, and C. 

𝒍𝑇𝑽−1𝝁 = 𝝁𝑇𝑽−1𝒍  = C And 𝐷 = 𝐴𝐵 − 𝐶2 

 
Then  
 

𝑟 =  𝜆1𝐴 +  𝜆2𝐶 
 

1 =  𝜆1𝐶 +  𝜆2𝐵 
 
Solve these to obtain 
 

𝜆1 =  
𝐵𝑟 − 𝐶

𝐷
, 𝜆2 =

𝐴 −  𝐶𝑟

𝐷
 

 

Finally substitute 𝜆1 and 𝜆2 into the function for the optimal weights and we have the optimal weights as 
function of the vector of expected returns, the unity vector and the variance-covariance matrix. 
 

𝒘∗ =
𝐵𝑟 − 𝐶

𝐷
𝑽−1𝝁 +  

𝐴 −  𝐶𝑟

𝐷
𝑽−1𝒍 

 

                  =  
𝐴𝑽−1𝒍 − 𝐶𝑽−1𝝁

𝐷
 + 

𝐵𝑽−1𝝁 −  𝐶𝑽−1𝒍

𝐷
𝑟 

  
And substitution of 𝜆1 and 𝜆2 in 𝜍𝑝

2 yields an explicit expression of the portfolio frontier: 

 

𝜍𝑝
2 = (𝐵𝑟2 −  2𝐶𝑟 + 𝐴)/𝐷 

 

Plot the 𝜇𝑝  against 𝜍𝑝
2 to draw the efficient frontier. The intersection between the line with origin at the 

risk-free rate and the efficient frontier is known as the tangency or optimal portfolio. For a more 
extensive elaboration on the theory please refer to Ingersoll (1987). 

 

 
 



6 Results 
  
6.1 Returns 
 
 When compare the mean of the returns on basis of the Root Mean Squared Error statistic, we 
can determine which forecast produced the lowest errors from the realized values. From this statistic we 
cannot make inferences about the direction of change which caused the error, since differences in returns 
are squared. During the research we used a method in which we estimate statistics for a certain time 
window over a time period from January 1988 up till April 2011 or equal to returns of 279 months. A 
shorter time period for calculating averages was used for the first time periods to deal with the missing 
information. In appendix 9.1.1 table 1 also the statistics for other common used time windows are shown. 
 
 From table in table 1, we can conclude that each asset class has its own individual setting to 
create the optimal forecasts. For commodities it is optimal to use the last month‟s return to forecast the 
return one month ahead, for long term U.S. government bonds the period is 3 months. For corporate 
bonds use the one year averaged return and considering equity the input for the mean-variance 
framework should be the 10 years average return. Here I would remind you that the knowledge obtained 
over time could increase your mean and in reality you could differ from the proposed mean, when this 
process is registered you could compare the mean in similar fashion. Though we used the Root Mean 
Squared Error to compare return models we should proceed by correcting for the economic loss resulting 
from the volatility of our return variable. The statistic is used for testing whether the performance of the 
forecast series is significantly different from that of the random walk is the Diebold-Mariano statistic. The 
most important feature of the DM test statistic is that it corrects for economic loss resulting from the 
volatility of the tested variable. By comparing the DM test statistics we will be able to assess which model 
predicts the returns better. The statistics are calculated using the squared error and absolute error loss 
functions. From tables in appendix 9.3 we find or commodities that the random walk followed by the 
historical sample average for investment grade bonds and treasury bonds we should use the historical 
sample average. Comparing the models with the DM statistic for equity we should use the historical 
average over 10 years. 
 

6.2 Variances 
 
 We must note that the RMSE statistics for GARCH are distorted since our GARCH 
forecast is autoregressive for this statistic we need a Diebold-Mariano statistic. This statistic 
corrects for autoregressive elements. 
When compared to the squared realized return, we see that we should use the historical sample 
variance for each asset except for the government bonds were we should use the historical 10 
year average deviation. We see that GARCH underperforms, one much ask the question if both 
measures are comparable to the squared returns. Since there is no real observable variance it goes  
 
6.3 Correlations 
 
 For the correlation estimates we used two methods one is to assume that the historical 
average is relevant and one in which we make use of the Dynamic Conditional Correlation. 
Comparison of the correlation coefficients, per pair requires considerable computing power. We 
compared the MPT with and without GARCH-DCC for the 2 year and 10 year rolling window. 
This will be discussed in the following section. Resulting from the Realized Rolling Sharpe ratios 
we can conclude that the GARCH DCC framework adds considerably to the realized Sharpe 
ratio. 
 
 
6.4 Model comparisons 
  



 For comparison of models, we should compare the efficient frontier and especially the location 
of the tangency portfolio of the portfolios that uses the different forecasted returns, variances and 
correlations and compare this to a situation with full knowledge, in which we insert the realized returns 
and realized covariance matrix.  
 
 Now that we build the model in MATLAB we can put the model to practice. This is done by 
using historical data up to the start of 1988 and by calculating the Sharpe ratios over time by the use of 
rolling windows. By using different settings and comparing these we will configure the model so that the 
likelihood of finding the best combination of the assets is maximal, which will bring us the optimal 
Sharpe ratio for each month ahead. Since reliable methodology decision for asset managers should be 
based on fast amounts of data and depends on the investment horizon, we will show the Realized Rolling 
Sharpe ratios over a measurement period of 2 years and 10 year. The second measurement we use to 
compare the portfolios is the Maximum Draw Down measure which measures the cumulative consequent 
losses. In which the 2 year measure is more vulnerable for dynamic environments which could turn out to 
be positive or negative depending on the macro-economic business environment. These results are fully 
based on the tangency portfolios. 
 
The settings which we will test are the following: 
The MPT-framework with and without 
- Historical Covariance matrix, 
- GARCH-DCC Covariance matrix 
The MPT-framework with data estimation and performance measurement period of 
- 2 year 
- 10 year 
With and without full knowledge of the returns 1-month ahead. 
 
 The forecasts of the MPT-framework versus the realizations of the actual investments in the 
weights defined by the framework are measured. The first setting is so called historical setting, an 
unweighted historical average over the estimation period, is used to estimate the most likely returns, 
variances and correlations. Next we will consider the Realized Rolling Sharpe statistics which are plotted 
in the figures. The Sharpe ratio was created to answer the question “Given the same amount of risk, 
which investment provides me with the highest reward”. To do this the Sharpe ratio balances the returns 
in excess of a risk free benchmark with the standard deviation of the return set. This provides a uniform 
risk platform which funds with different risk levels can benchmark against. We used Realized Rolling 
Sharpe ratios which imply that we computed the risk and return that would have resulted from using the 
investments weights recommended by the model. 
 
 Considering the settings under full knowledge of the returns and we are able test whether the 
historical or the GARCH-DCC framework performs better. Comparing the Rolling Sharpe ratios we find 
mixed results. When we look at a 10 year horizon the GARCH-DCC framework performs slightly better 
up to 2006 considered the performance measured over 10 years. When looking at the Sharpe ratio of the 
2 year horizon this GARCH-DCC framework also slightly out performs the framework using the 
historical covariance matrix, this is shown in figures 2 and 4 in appendix 9.2.  
 
 
 
 

 
 

 
 

 

 
 



7 Concluding Remarks 
 
 During the last few years many inventions have been made in the area of financial economics, 
during the time of Fisher, 100 years ago, there were no appropriate quantitative methods available to 
estimate dynamic conditional variances and correlations. These methods have been developed in the last 
20 years. In this research paper we combined some of the important advances. Many of the firms active 
in the financial sector still make use of the MPT framework as developed by Markowitz, which imply that 
they all make use of linear optimization techniques. These firms differ in the method in which they 
estimate or gather these inputs. Goal of this research was to develop a model and especially one which 
delivers an optimal asset allocation. This optimal asset allocation is defined in portfolio theory as the 
portfolio which delivers the best return for each unit of risk or has the lowest amount of risk relative to 
return. This portfolio is known as the tangency portfolio. This model improves the average Sharpe ratio 
over time up to 50% on a 2 year time frame, but the outperformance seems time-invariant. Our results 
with the 2 year and 10 year GARCH-DCC MPT framework are convenient, but it is questionable if the 
benefits out weights the costs of complexity. We must also see the fact that a 1-month switch of 50 
percent of the portfolio from corporate bonds to other assets classes requires an extreme amount of 
flexibility. And let‟s not forget that we did not take into account the costs of switching, we would incur up 
till 0.5% in costs and possibly costs resulting from illiquidity. The results are too weak to claim that the 
GARCH-DCC framework is considerably stronger than using historical covariance matrix. Improvement 
of the return expectations could do the trick. This thesis shows a framework which is simple, easy to 
adjust and which can be tailored to your preferences. 
 
 For further research I have six recommendations, one should test the framework for other 
inputs, like risk factor based assets Secondly one could adjust the framework for the inclusion of liabilities 
and calculations for the surplus of the coverage ratio of pension funds and insurance companies. Another 
interesting subject to work out in this framework is risk budgeting in which one aims to keep the risk of 
the portfolio below a target risk level. Fourth recommendation is to work out the framework on the daily 
and intraday level for management of portfolios and trading books. The fifth recommendation is to 
improve the expectation of the returns and accompanying volatility by using macro-economic figure 
density, Hamilton‟s Regime-switching, Kalman filters. Last but not least I would recommend to look 
further than macro-economic variables to forecast risk and return, naming natural factors such as the 
influence of the solar system on human behavior, behavioral factors acting on the humans who deal with 
the financial markets and which determine trends and cycles and other cycles such as the Kondratieff 
cycles, Armstrong cycles and political cycles. For this I would like to refer to experts like Gann (1909), 
Elliot, and more recently Armstrong and Steenhouwer (2005),   
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9 Appendices 
 
9.1 Result tables: Root Mean Squared Error and Diebold-Mariano statistics 
 
 9.1.1 Root Mean Squared Error test statistics 
 

Table 1: The mean: Root Mean Squared Error statistics 
 

Measurement 

Commodities Government 
bonds 

Corporate 
bonds 

Equity 

Random walk (0 mean) 0,004538 0,005095 0,011912 0,031408 

Historical sample 0,004139 0,002877 0,007139 0,038371 

Historical average 10 years 0,003471 0,002444 0,007067 0,031061 

Historical average 1 year 0,004111 0,002382 0,006458 0,040390 

Historical average 6 months 0,004015 0,002326 0,006488 0,042827 

Historical average 3 months 0,003193 0,002098 0,007075 0,034517 

Historical average 1 month 0,002925 0,002413 0,007001 0,043703 
The smallest Root Mean Squared Errors are highlighted, for information about the statistic please refer to the 
methodology in section 2.6.1 and 2.6.2. 
 

 9.1.2 Diebold-Mariano test statistics 
 

Table 2: Diebold-Mariano return 
       Commodities 

        

Test statistic 

Random 
walk (0 
mean) 

Historical 
sample 
average 

Historical 
average 
10 years 

Historical 
average 
1 year 

Historical 
average 
6 months 

Historical 
average 
3 months 

Historical 
average 
1 month 

        Random walk (0 mean) 1.0000 1.2607 1.4624 2.2294* 2.2611* 3.0151** 4.7068** 

Historical sample average -1.2607 1.0000 0.4527 1.9323 1.9085 2.9552** 4.7364** 

Historical average 10 years -1.4624 -0.4527 1.0000 1.8500 1.9115 2.8512** 6.2793** 

Historical average 1 year -2.2294* -1.9323 -1.8500 1.0000 0.5227 2.8512** 6.1084** 

Historical average 6 months -2.2611* -1.9085 -1.9115 -0.5227 1.0000 2.4017* 4.5568** 

Historical average 3 months -3.0151** -2.9552** -2.8512** -2.8512** -2.4017* 1.0000 4.4800** 

Historical average 1 month -4.7068** -4.7364** -6.2793** -6.1084** -4.5568** 4.4800** 1.0000 
** = Significant at the 1% level; * = Significant at the 5% level; The negative D-M statistics 
indicate that the model in the first column is worse, a positive values indicate that the 
model in the first row is worse, for information about the statistic please refer to the 
methodology in section 2.6.3. 

     

Table 3: Diebold-Mariano return 
       JPM Global Aggregate Bond Index 
       

Test statistic 

Random 
walk (0 
mean) 

Historical 
sample 
average 

Historical 
average 
10 years 

Historical 
average 
1 year 

Historical 
average 
6 months 

Historical 
average 
3 months 

Historical 
average 
1 month 

        Random walk (0 mean) 1.0000 -0.3395 0.3564 0.7254 2.0205* 3.7024** 5.9473** 

Historical sample average 0.3395 1.0000 0.0675 0.7912 2.0305* 3.7595** 6.0949** 



Historical average 10 years -0.3564 -0.0675 1.0000 0.8935 2.2572* 4.0388** 6.2301** 

Historical average 1 year -0.7254 -0.7912 -0.8935 1.0000 2.2938* 3.3514** 5.6157** 

Historical average 6 months -2.0205* -2.0305* -2.2572* -2.2938* 1.0000 2.4805* 5.6248** 

Historical average 3 months -3.7024** -3.7595** -4.0388** -3.3514** -2.4805* 1.0000 5.2322** 

Historical average 1 month -5.9473** -6.0949** -6.2301** -5.6157** -5.6248** -5.2322** 1.0000 
** = Significant at the 1% level; * = Significant at the 5% level; The negative D-M statistics 
indicate that the model in the first column is worse, a positive values indicate that the 
model in the first row is worse, for information about the statistic please refer to the 
methodology in section 2.6.3. 

     

Table 4: Diebold-Mariano return 
       S&P 500 

        

Test statistic 

Random 
walk (0 
mean) 

Historical 
sample 
average 

Historical 
average 
10 years 

Historical 
average 
1 year 

Historical 
average 
6 months 

Historical 
average 
3 months 

Historical 
average 
1 month 

        Random walk (0 mean) 1.0000 -1.3172 -1.8149 1.3921 2.5503* 3.5285** 4.2393** 

Historical sample average 1.3172 1.0000 -1.3486 4.1395** 4.0929** 4.3123** 4.5540** 

Historical average 10 years 1.8149 1.3486 1.0000 4.7063** 4.4930** 4.5444** 4.6272** 

Historical average 1 year -1.3921 -4.1395** -4.7063** 1.0000 2.4814* 3.5416** 4.3080** 

Historical average 6 months -2.5503* -4.0929** -4.4930** -2.4814* 1.0000 2.8132** 4.3117** 

Historical average 3 months -3.5285** -4.3123** -4.5444** -3.5416** -2.8132** 1.0000 3.9568** 

Historical average 1 month -4.2393** -4.5540** -4.6272** -4.3080** -4.3117** -3.9568** 1.0000 
** = Significant at the 1% level; * = Significant at the 5% level; The negative D-M statistics 
indicate that the model in the first column is worse, a positive values indicate that the 
model in the first row is worse, for information about the statistic please refer to the 
methodology in section 2.6.3. 

     

Table 5: Diebold-Mariano return 
       US Treasury bonds 30y 

        

Test statistic 

Random 
walk (0 
mean) 

Historical 
sample 
average 

Historical 
average 
10 years 

Historical 
average 
1 year 

Historical 
average 
6 months 

Historical 
average 
3 months 

Historical 
average 
1 month 

        Random walk (0 mean) 1.0000 -0.6210 0.5443 1.9182 3.5484** 5.3648** 5.2836** 

Historical sample average 0.6210 1.0000 0.6910 2.8567** 4.2859** 5.5511** 5.3166** 

Historical average 10 years -0.5443 -0.6910 1.0000 2.8259** 4.3314** 5.5706** 5.3211** 

Historical average 1 year -1.9182 -2.8567** -2.8259** 1.0000 2.854** 5.2443** 5.0298** 

Historical average 6 months -3.5484** -4.2859** -4.3314** -2.8540** 1.0000 3.9244** 4.6711** 

Historical average 3 months -5.3648** -5.5511** -5.5706** -5.2443** -3.9244** 1.0000 3.7516** 

Historical average 1 month -5.2836** -5.3166** -5.3211** -5.0298** -4.6711** -3.7516** 1.0000 
** = Significant at the 1% level; * = Significant at the 5% level; The negative D-M statistics 
indicate that the model in the first column is worse, a positive values indicate that the 
model in the first row is worse, for information about the statistic please refer to the 
methodology in section 2.6.3. 

 
 

Table 6: Diebold-Mariano variance 
   Commodities 

    



Test statistic GARCH Historical sample 
Historical 
10 years 

 GARCH 1.0000 -4.4704** -1.6139 
 Historical sample 4.4704** 1.0000 -2.9423 
 Historical 10 years 1.6139 2.9423 1.0000 
 ** = Significant at the 1% level; * = Significant at the 5% level; The negative D-M statistics indicate that 

the model in the first column is worse, a positive values indicate that the model in the first row is 
worse, for information about the statistic please refer to the methodology in section 2.6.3. 

Table 7: Diebold-Mariano variance 
   JPM Global Aggregate Bond Index 
   

Test statistic GARCH Historical sample 
Historical 
10 years 

 GARCH 1.0000 -1.4850 -0.4731 
 Historical sample 1.4850 1.0000 1.9031 
 Historical 10 years 0.4731 -1.9031 1.0000 
 ** = Significant at the 1% level; * = Significant at the 5% level; The negative D-M statistics indicate that 

the model in the first column is worse, a positive values indicate that the model in the first row is 
worse, for information about the statistic please refer to the methodology in section 2.6.3. 

Table 8: Diebold-Mariano variance 
   S&P 500 

    

Test statistic GARCH Historical sample 
Historical 
10 years 

 GARCH 1.0000 -2.1248* -1.9658* 
 Historical sample 2.1248* 1.0000 1.2617 
 Historical 10 years 1.9658* -1.2617 1.0000 
 ** = Significant at the 1% level; * = Significant at the 5% level; The negative D-M statistics indicate that 

the model in the first column is worse, a positive values indicate that the model in the first row is 
worse, for information about the statistic please refer to the methodology in section 2.6.3. 

Table 9: Diebold-Mariano variance 
   US Treasury bonds 30y 

    

Test statistic GARCH 
Historical 
sample 

Historical 10 
years 

 GARCH 1.0000 0.5395 0.8571 
 Historical sample -0.5395 1.0000 1.0181 
 Historical 10 years -0.8571 -1.0181 1.0000 
 ** = Significant at the 1% level; * = Significant at the 5% level; The negative D-M statistics indicate that 

the model in the first column is worse, a positive values indicate that the model in the first row is 
worse, for information about the statistic please refer to the methodology in section 2.6.3. 

 
 
 
  



9.2 Result figures: Sharpe ratio and Maximum Draw Down statistics 
  
 9.2.1 10 year time frame 
 
Figure 1: 10 year Sharpe ratios of Asset classes 

 
 
 
 
Figure 2: 10 year Sharpe ratios of allocated portfolios 
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 9.2.2 2 year time frame 
Figure 3: 2 year Sharpe ratios of Asset classes 

 
 
Figure 4: 2 year Sharpe ratios of allocated portfolios 
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Figure 5: 2 year Maximum Draw Downs of allocated portfolios 
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9.3 MATLAB Codes 
 
 9.3.1 GARCH-DCC framework 
 
clear all; 
clc; % clear command startwindow 
tic % starts a stopwatch timer, toc to print elapsed time 

  

  
% create a file with asset returns 
% adjust datafile names of %portfolio %load 
% change number of assets in portfolio function and constraints %portfolio, 

%efficient 
% adjust riskless rate, borrowrate and riskaversion level %optimal 
% adjust current settings %current 

  
% GARCH-DCC predictions, out of sample, sliding (jumping) startwindow 

(F.L.) % 

  
%load, LOADING DATA SET 
load 'assets4.csv' -ascii % define datafile and format 
load 'data1mrate.csv' -ascii % short term 1m interest rate 
date = assets4(1:279,1); % define dates column 
data = assets4(1:279,[2 3 4 5]); %[2:S&P GSCI spot 3:JPM Global Aggregate 

Bond 4:S&P 500 5:30 year Treasury yield]); % define data columns 2:5 
rate = data1mrate(1:279,2); 
clear assets4; 
[T,k] = size(data); % the first "dimension" is the number of rows, and the 

second "dimension" k is the number of columns 

  
%inputs, INPUTS AND RESTRICTIONS 
ar = 10; % 5 10* 15 AR terms 1~10 %*chosen in F. Levin paper* and text 
ma = 0;  % 0* no MA terms %*chosen in F. Levin paper* and text 
p = 1; % 1* 1 2 3x 5x % chosen in F. Levin paper 
q = 1; % 1* 3 2 3x 5x % chosen in F. Levin paper 
dccP = 1; 
dccQ = 1; 
archP = 1; 
garchQ = 1;  % settings carried over from ARMA GARCH 

  
DCC_garchQ=ones(1,k)*garchQ; % k = data series 
DCC_archP=ones(1,k)*archP; % k = data series 

  
offset = 1; 
months = 120; %% months or datapoints, otherwise change to 12 (months) 

  
Est_GARCH = ones(T,k) * 0; 
F_pred_ARMA = ones(T,k) * 0; 
F_pred_GARCH = ones(T,k) * 0; 
F_pred_CORR = ones(k,k,T) * 0; 
F_param1_DCC = ones(T+1,14) * 0; 
F_pred_COV = ones(k,k,T) * 0; 
F_portfolio = ones(T,k) * 0; 

  
startwindow = 0; % set to datawindow+2 below the end of the dataset for a 

quick test 
Tend = 120; % length datawindow 
lag = 0; 



  
while (Tend < T) 

  
    col = 1; 

  
    while (col <= k) 

     
        % TRAIN/ ESTIMATION OF PARAMETERS 

         
        Tstart = max(1, startwindow + 1); 
        Tend = startwindow + months; 

         

             
            % GARCH 

             
            [GARCH_parameters, GARCH_likelihood, GARCH_stderrors, 

GARCH_robustSE, GARCH_ht, GARCH_scores] = 

fattailed_garch(data(Tstart:Tend,col:col) , p , q , 'NORMAL'); 
            GARCH_likelihood; 
            GARCH_stderrors; 
            GARCH_robustSE; 
            clear GARCH_scores; 

                         

             
        % PREDICT 

         
        startwindow = startwindow + 1; 
        Tend2 = min(T+1, startwindow + months); 

             

         
            % GARCH 

             
            predict_GARCH = GARCH_parameters(1,1) + 

GARCH_parameters(2,1)*data(Tend2-1,col)^2 + 

GARCH_parameters(3,1)*F_pred_GARCH(Tend2-1:Tend2-1,col:col); % Forecast t+1 

%GARCH_parameters(2,1)*data(Tend2-1,col)^2 

  

  
        % STORE 
            F_param1_GARCH(Tend:Tend,col:col) = GARCH_parameters(1:1,:)'; 
            F_param2_GARCH(Tend:Tend,col:col) = GARCH_parameters(2:2,:)'; 
            F_param3_GARCH(Tend:Tend,col:col) = GARCH_parameters(3:3,:)'; 

  
            Est_GARCH(Tstart:Tend,col:col) = GARCH_ht(:,:);             
            F_pred_GARCH(Tend+1:Tend+1,col:col) = predict_GARCH(1,:); % 

Forecast t+1 

             
        col = col + 1; 
        startwindow = startwindow - 1; 

     
    end 

     

     
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %dcc, DCC estimation 



    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        Tstart = max(1, startwindow); 
        Tend = startwindow + months;     

     
    % DCC TRAIN 

     
        [DCC_parameters, DCC_loglikelihood, 

DCC_Ht]=dcc_mvgarch(data(Tstart:Tend,:),dccP,dccQ,archP,garchQ); % 

estimates parameters DCC 
        clear DCC_loglikelihood;     

         
        [pred_DCC_logL, pred_DCC_Rt, 

pred_DCC_likelihoods]=dcc_mvgarch_full_likelihood(DCC_parameters, 

data(Tstart:Tend,:), DCC_archP,DCC_garchQ,dccP,dccQ); % input parameters 

output Rt + forecast 
        clear pred_DCC_logL; 
        clear pred_DCC_likelihoods; 

         
    % DCC PREDICT % estimate 

     
        startwindow = startwindow + 1; 

         
        Tstart2 = max(1, startwindow + 1); 
        Tend2 = min(T+1, startwindow + months); 

  
        % from dcc_mvgarch 

         
        if isempty(archP) 
           archP=ones(1,k); 
        elseif length(archP)==1 
            archP=ones(1,k)*archP; 
        end 

             
        if isempty(garchQ) 
            garchQ=ones(1,k); 
        elseif length(garchQ)==1 
           garchQ=ones(1,k)*garchQ; 
        end 
        index=1;         
        [t,k]=size(data); 
        parameters=zeros(t+1,14); 
        F_param1_DCC(1,:) = zeros(1,14); %3xk+2 
        F_param1_DCC(Tend:Tend,:) = DCC_parameters(1:14,1); %3xk+2 
        parameters = F_param1_DCC(:,:);         

         
        % from dcc_mvgarch_full_likelihood ADJUSTED CODE FOR FORECAST 

  
            index=(k+sum(archP)+sum(garchQ)); 
            H1 = zeros(t,k); 
            H1 = Est_GARCH(1:t,:); 
            stdresid1(startwindow:Tend,:)= 

data(startwindow:Tend,:)./sqrt(H1(startwindow:Tend,:)); %uses H1 uses 

Return estimates of variance forecast with: H1 is pred_GARCH 
            parameters(T+1,1:14) = DCC_parameters(1:14,1)'; %3xk+2 
            a=parameters(Tend,index:index+dccP-1); % last garch index 

parameter 
            b=parameters(Tend,index+dccP:index+dccP+dccQ-1); 
            sumA=sum(a); 



            sumB=sum(b); 
            F_parama_DCC(Tend:Tend,:) = a; 
            F_paramb_DCC(Tend:Tend,:) = b; 
            g = data(Tstart:Tend,1:k); % remember, still 1 window with same 

Tstart and Tend as start. 
            [tt,k]=size(stdresid1); 

             

             
            %First compute Qbar, the unconditional Correlation Matrix 
            Qbar=cov(g); % Calculate covariance matrix over datawindow 

  

             
            % Next compute Qt 
            m=max(dccP,dccQ); 
            Rt=zeros(k,k,t+m); 
            H=[zeros(m,k);H1]; 
            P=dccP; 
            Q=dccQ; 
            stdresid=[zeros(m,k);stdresid1]; 
            for j=Tend2 % forecast Qt, the unconditional covariance of the 

standardized residuals stresid e(t) resulting from first stage estimation 
                Qt(:,:,j)=Qbar*(1-sumA-sumB);%-sumA 
                    for i=1:P 
                    Qt(:,:,j)=Qt(:,:,j)+sumA*(stdresid1(j-

i,:)'*stdresid1(j-i,:)); 
                    end; 
                    for i=1:Q  
                    Ft(:,:,j)=Qt(:,:,j)+sumB*Qt(:,:,j-i);  
                    

Rt(:,:,j)=Ft(:,:,j)./(sqrt(diag(Ft(:,:,j)))*sqrt(diag(Ft(:,:,j)))'); % 

calculate Rt, the time varying correlatio matrix 
                    end; 
                    F_pred_Rt(:,:,Tend2:Tend2) = Rt(:,:,Tend2:Tend2); 
            end; 
            

Rt(:,:,j)=Ft(:,:,j)./(sqrt(diag(Ft(:,:,j)))*sqrt(diag(Ft(:,:,j)))'); % 

calculate Rt, the time varying correlatio matrix        

             

  
    % STORE     

  
        F_pred_CORR(:,:,Tend2 :Tend2) = pred_DCC_Rt(:,:,120:120); 
        F_pred_COV(:,:,Tend2 :Tend2) = Qbar(:,:,:); 

  

     
end 
toc % time 

  
%dcccovariance, DCC Returned a CORRELATION matrix, now to mix with the 

GARCH and get a COVARIANCE matrix 
F_pred_COVe = ones(k,k,T) * 0; 
F_pred_GARCH_STDEV=F_pred_GARCH.^(0.5); 
for i=1:T 
    

F_pred_COVe(:,:,i)=diag(F_pred_GARCH(i,:))*F_pred_CORR(:,:,i)*diag(F_pred_G

ARCH(i,:)'); 
end 
% The non synchronous shift 
if (lag == 1) 



    F_pred_COVe(:,:,T) = F_pred_COVe(:,:,T-1); 
    months = months + 1; 
end 

 
 9.3.2 Modern Portfolio Theory framework 
 
startwindow = 2; % 2 more than variable estimations/forecasts 
Tend = 120; % 119 more than startwindow 
io(Tend2,:)=1; 
  

 
while (Tend-2 < T) 

  
Tstart = max(1, startwindow + 1); 
Tend = startwindow + months;    

     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%mpt, MODERN PORTFOLIO THEORY/ MEAN-VARIANCE OPTIMIZATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
Portfolio = data(max(startwindow,121):Tend,:); 
[m n] = size(Portfolio); % the first "dimension" is the number of columns, 

and the second "dimension" is the number of rows 
[AvrRet]= [0 0 0 0]; %mean(Portfolio); % calculates the average return of 

the Portfolio (return) vector 
[ExpRetVec]= (1+ AvrRet).^12-1; % expected return is (1 + average return) 

annualized - 1 
[CovMtx]= F_pred_COV(:,:,Tend); % calculates the covariance of the 

Portfolio returns 

  

  
%efficient, COMPUTE THE EFFICIENT FRONTIER (SHORT NOT SELLING ALLOWED)  
NumPorts = n; % defines the variable n, number of portfolios 
AssetMin = [ 0 0 0 0]; % sets minimum constraint per asset (6 assets) 
AssetMax = [ 0.5 0.5 0.5 0.5]; % sets maximum constraint per asset (6 

assets) 
pval = 1; % sets constraint total portfolio adds up to 1 
Constraint = portcons('PortValue',pval, NumPorts, 'AssetLims', AssetMin, 

AssetMax, NumPorts); % sets the portfolio constraints 
[PortRisk,PortRet,PortWts] = portopt(ExpRetVec, CovMtx, 50, [], 

Constraint); % calculate the expected return vector and covariance matrix 

of 50 portfolios 
[OptRisk,OptRet,OptWts]=portopt(ExpRetVec, CovMtx, NumPorts, [], 

Constraint); % calculate the expected return vector and covariance matrix 

of n portfolios 

  

  
%optimal, OPTIMAL ASSET ALLOCATION 
RisklessRate = rate(Tend); % define the riskless rate 
BorrowRate = rate(Tend); % define the borrowing rate 
RiskAversion = 3; % define the level of risk aversion, Coefficient of 

investor's degree of risk aversion. Higher numbers indicate greater risk 

aversion. Typical coefficients range between 2.0 and 4.0 (Default = 3).  
[RiskyRisk, RiskyReturn, RiskyWts, RiskFraction, OverallRisk, 

OverallReturn] = portalloc (PortRisk, PortRet, PortWts, RisklessRate, 

BorrowRate, RiskAversion); % calculate the optimal portfolio allocation 

  

  
%%plot, PLOT THE RESULT 



plot(PortRisk, PortRet, 'm-', OptRisk, OptRet, 'x', ... 
     0, RisklessRate, 'k:square',  RiskyRisk, RiskyReturn, 'k:diamond',... 
     [0; RiskyRisk], [RisklessRate; RiskyReturn],'r--') % plot variables 
xlabel('Portfolio Risk'); % label x 
ylabel('Portfolio Return '); % label y 
title('Efficient Frontier'); % titel graph 
legend('Efficient Frontier', 'Optimal Portfolio', 'Risk free asset', 'Risky 

Portfolio', 'Asset Allocation Point') 
grid on 

  

  
%%STORE 

  
F_PortRiskWts(Tend,1) = RiskyWts(1,1); 
F_PortRiskWts(Tend,2) = RiskyWts(1,2); 
F_PortRiskWts(Tend,3) = RiskyWts(1,3); 
F_PortRiskWts(Tend,4) = RiskyWts(1,4); 
F_PortRisk(Tend,1) = RiskyRisk(1,1); 
F_PortReturn(Tend,1) = RiskyReturn(1,1); 

  
startwindow = startwindow + 1; 

  
end 
toc % time 

 
  

 


