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Abstract

Financial instruments are bought and sold at a financial market. Market
makers at a financial market act as intermediaries between the buyer and
the seller of the financial instrument. Market makers have the power to
quote the bid price and the ask price. This price-setting process is called
market-making. With market maker models this price-setting proces of the
market maker is studied. To create liquidity in the market the market maker
must trade immediately if an order arrives. The market maker bears risk
because he does not have optimal portfolios. To protect himself against
the losses he quotes the ask price higher than the bid price. The difference
between the bid price and the ask price is called the bid-ask spread. The
main causes of emergence of bid-ask spread are the fixed costs, the inventory
costs and the adverse selection costs. Fixed costs are costs arising from
order execution. Inventory costs arise from holding securities in inventory.
Adverse selection costs arise from trading with traders who have superior
information. In early financial literature the bid-ask spread is modelled
with a regression model. Later market makers models are used to study
the price setting mechanism of the market maker. There are two types
of market makers models: inventory-based models and information-based
models. In inventory-based models the behaviour of the market maker as
inventory-holder and the inventory cost are studied. In information-based
models the adverse selection problem between the market maker and the
informed trader is studied. The informed trader has superior information
than the market maker, which is why the market maker has adverse selection
cost if he trades with the informed trader. Two examples of information
based models are the model of Glosten and Milgrom and the Das market
maker’s model. The market maker of Glosten and Milgrom uses Baysian
learning to learn the fundamental value of the underlying security. The
market maker of Das expands the Glosten and Milgrom model by keeping
a probabilistic density distribution of the fundamental value. We study
the market maker’s behaviour with a linear pricing strategy and introduce
a market maker with bid-ask spread location detection and fundamental
value approximation capability. We compare the Das market maker with
our market maker with the mean of bid-ask spreads method and the sum of
differences between the fundamental value and the bid and ask price method.

Keywords: Market maker’s model, market-making, bid-ask spread, or-
der flow, fundamental value, trading probabilities
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Chapter 1

Introduction

Every day people hear news from the financial world. Prices of securities
like stocks, bonds or other financial instruments can go up or can go down.
Stocks are units of ownership of a company. Bonds are units of owner-
ship of debts of a company. These financial instruments are traded in a
financial market. If you want to buy or sell stocks you go to a stockbroker
and the stockbroker goes to a dealer to buy or sell stocks for you. Dealers
in over-the-counter market are called market makers and on the exchanges
they are called specialists. Exchanges are central places where the trading
takes place. Exchanges have highly standardised organisational structures
and trading rules. Over-the-counter markets have less standardised organ-
isational structures and are strictly traded between two parties. Market
makers or specialists are persons or companies that maintain the bid and
ask prices for a given stock and process trading orders.

Financial market microstructure is the branch of finance that deals with
the organisational structure of financial markets and the rules of trading.
Important issues of study are market structure and design, price formation
and design, transaction cost and timing cost, information and disclosure,
trading behaviour of market participants. There are three classifications of
markets: order-driven markets, quote-driven markets and hybrid markets.
In order-driven markets the brokers match investor’s buy and sell orders,
but takes no own position in the traded security. The prices are determined
when the orders are placed or thereafter. Market liquidity comes from the
continuous flow of orders transmitted by investors. In quote-driven markets
designated market makers act as intermediaries and maintain the bid and
ask prices by standing ready at any moment to trade at publicly quoted
prices. The ask price is higher than or equal to the bid price. This differ-
ence between the quoted prices is called the bid-ask spread. The bid price
is the price that the market maker is willing to buy the stock. The ask price
is the price that the market maker is willing to sell the stock. The market
makers provide market liquidity who trade for their own account by always
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executing the investor’s buy and sell orders. The size of the bid-ask spread
is a measure of liquidity of the traded stock. More frequently traded stocks
have smaller spreads than less frequently traded stocks. Each stock has its
own fundamental value which is unknown to the market participants. In hy-
brid markets components of order-driven and quote-driven market systems
are combined. Good works written about financial market microstructure
are [24], [25], [26] and [21].

1.1 Major contribution

Why is it important to conduct research to how the market makers do the
market making? Because it is important to research the trading behaviour
and the pricing mechanism of the market maker. The market maker plays a
big role in the financial market. It is also important to know if the trading
behaviour of the investors has an effect on the trading behaviour and the
price strategies of the market maker. It is also relevant to study the order
flow related to the behaviour and price formation of the market maker,
because the market maker does not know the real fundamental value. The
fundamental value is the value of a security contained in the security itself.
This value is usually calculated as all the future income generated by the
security. We want to learn which methods the market maker can use to
estimate the fundamental value in the market maker’s model. We learn
how to build a market maker model using an existing market maker’s model
environment studied by others [1][11][10]. We begin simple first and then
gradually making the model more complex. We begin with a simple linear
bid and ask pricing rule with the fundamental value in the formula. This
indicates that in this model it is assumed that the market maker knows the
fundamental value of the security. We model the market maker in such a way
that he learns the fundamental value. The market maker learns the place
of bid-ask spread with respect to the fundamental value. If the location is
determined then the market maker can increase the price or decrease the
price to bring the price nearer to the fundamental value. To calculate the
location we try first the method where the maximum of the probabilities of
the order types of the traders determines the location and then we try the
method where we use the density probability distribution of the order flow of
the traders to determine the location. We learn how to evaluate the model.
We learn how to do simulations with the market maker’s models and how
to compare the models. We learn how to set up the experiments to compare
and analyse the performance between the market maker’s models. We use
mean of bid-ask spreads and sum of differences between fundamental value
and the prices as our performance measure.
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1.2 Research questions

These are the research question of our study:

• How well will the new market maker’s trading strategy per-
form?

• How can the market maker use the order flow information?

• How can the bid and ask prices be updated if the location of the bid-
ask spread with respect to the fundamental value is determined?

• How can the market maker know there is a jump in the fundamental
value?

• How to compare and measure the performance between the market
makers with different market making strategies?

1.3 Methology

We want to know how a market maker does the market-making. Market-
making is the business of quoting bid and ask prices to create a market
so that buyers and sellers can trade. We experiment with several market
making strategies. We use simulatation as our scientific research method.
First we introduce a simple market maker who updates his prices according
to the last order executed. If the order is a buy order the ask price is up-
dated, if the order is a sell order the bid price is updated and if there is no
order placed then both the ask price and the bid price are updated. Second
we introduce another market maker who initially calculates the location of
the bid-ask spread with respect to the fundamental value and then updates
the prices according to the last arrived order. To calculate the location
of bid-ask spread we use the probabilities of executed order types. First
the maximum value determines the location, then we use the value that is
closest to the probability density distribution of the executed order types.
Because the real fundamental value is not known to the market maker, we
divide the whole simulation time in short same-sized periods to calculate
the probability density distribution. The two models will be compared with
the model of Das [11]. The market maker of Das maintains a probability
density function of all possible fundamental values to update the bid and
ask prices. To control the experiments with the same inputs, we generate
exogeneously the fundamental values and a sequence of type of traders and
other independent variables we use are in all the three models the same. We
measure the performance of the market makers with the mean of bid-ask
spreads method and the sum of differences between the fundamental value
and the bid and ask prices method. All the market makers are modelled in
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an environment like that of the Glosten and Milgrom model [1]. The models
are discrete in time and the simulations will be modelled in Matlab. Mat-
lab is a high-level language environment that allows performing computer
simulations interactively.

1.4 Organisation of the thesis

The following is the outline of this thesis. In chapter 2 we write about fi-
nancial microstructure and different market maker’s models in the financial
literature. In chapter 3 we discuss the market maker of the Das model in
detail. In chapter 4 we introduce the market maker with a simple market
making strategy and the market maker who first calculates the location of
the bid-ask spread with respect to the fundamental value and then updates
the bid and ask prices. We will find methods to approximate the fundamen-
tal value. In chapter 5 we discuss our implementation of the three models
and the experimental setups. In chapter 6 we present the results of our
experiments. In chapter 7 we draw conclusions and propose directions for
further research.
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Chapter 2

Financial market
microstructure literature

In early financial market microstructure literature the bid-ask spread is de-
termined by a regression model. A regression model is used to explain the
relationship of one variable to one or several other variables. An example of
such regression model to explain the bid-ask spread is as follows:

si = α+ β1 ln(Mi) + β2(1/pi) + β3σi + β4 ln(Vi) + ε (2.1)

with

• si : average (percentage) bid-ask spread for company i.

• Mi : market capitalization

• pi : security price level

• σi: volatility of the security price

• Vi : trading volume

Studies like [31] and [30] explain that the main causes of bid-ask spread
are the fixed costs, adverse selection costs and inventory costs. Fixed costs
are costs arising from order execution like administrative cost and com-
pensation for the time of the market maker. Adverse selection costs exist
due to assymmetric information between the market maker and informed
traders. Uninformed traders have only publicly available information and
informed traders have publicly available and some private information. In-
ventory costs originate from holding unwanted risky securities in inventory
by the market maker. The market maker wants to compensate the cost
by the bid-ask spread. The studies also show that bid-ask spread is nega-
tively correlated with the security price level and the trading volume and
the market capitalization. That means that the bid-ask spread is becoming
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higher if the security price level or the trading volume of the security or
the market capitalization is becoming lower. The market capitalization is
the total value of the outstanding shares hold by investors in the company.
The reason that the bid-ask spread is negatively correlated with the secu-
rity price level is that the fixed cost which is fixed for the most part and
so per unit price the fixed cost is higher for lower priced securities than the
fixed cost for higher priced securities. The reason that the bid-ask spread is
negatively correlated with the trading volume is that higher trading volume
means that the market maker is less necessary to hold a inventory, so the
inventory cost is lower and hence lower bid-ask spread. The reason that the
bid-ask spread is negatively correlated with the market capitalization is that
lower market capitalization means lower liquidity, so the market maker has
to hold securities in inventory. That means higher inventory cost and result
is a higher bid-ask spread. And the studies show that the bid-ask spread is
positively correlated with the volatility of the security price. That means
that the bid-ask spread is becoming lower if the volatility of the security
price is becoming higher. The volatility of a security price is the rate that
indicates how rapidly the price is going to change over a certain period of
time. The reason that the bid-ask spread is positively correlated with the
volatility of the security price is that the adverse selection cost is higher for
more volatile securities than for less volatile securities. There will be more
informed traders willing to trade in volatile securities, because they have
superior information. So the bid-ask spread is higher due to higher adverse
selection cost, because the market maker has to trade with more informed
traders.

2.1 Market maker’s models

Two kinds of models have been developed in the literature: inventory-based
models which specifically deal with issues surrounding the inventory cost of
the market maker for having securities in inventory and information-based
models which specifically deal with issues surrounding the adverse selection
problem between the informed traders and the market maker. The adverse
selection problem arises in a trade between two participants with different
levels of information. Chapter 5 of [21] and chapter 2 of [26] discussed about
inventory-based models. Chapter 3 and 4 of [21] and [26] discussed about
information-based models.

2.1.1 Inventory-based models

In inventory-based models the focus is on a market maker as the provider of
market liquidity. The market maker has to trade immediately when an order
is placed. Because the buy volume and sell volume differ in each trade the
market maker has to hold inventory of securities. The inventory may deviate

10



from the inventory that the market maker wants. Such market maker doesn’t
want to hold risky portfolios that does not have an optimal expected return
given the risk he wants to take. Moreover the market maker has to bare
the risk of price changes. The market maker is risk-averse. He prefers low
risk securities above high risk securities. The market maker can control the
inventory by trading with traders to get back to the portfolio he wants if his
portfolio deviates away from the portfolio he wants. That is why the market
maker has inventory cost. A modelling approach by Garman [17] to this
inventory control problem is done by assuming that the market maker does
not want to go bankrupt. The market maker can hold cash or securities in
inventory. The market maker goes bankrupt if he has no money or securities
in inventory. The goal of the market maker is to maximize the expected
profit in each trade. The market maker sets the bid price and the ask price
in the beginning of the trading game or simulation. The buy and sell orders
are modelled as random Poisson distributions. A Poisson distribution is the
probability distribution of a Poisson random variable. A Poisson random
variable is the number of times an event takes place during a fixed time
period. The event is in this case the placement of buy order or a sell order
by traders. The Poisson distribution probabilities can calculated with

P (order placed = x) =
e−µµx

x!
x = 0, 1, 2, ... (2.2)

where e is the natural base of logarithms, µ is the expected value of the
Poisson distribution and x is the number of orders placed (buy or sell). The
inventories of the market maker are modelled as:

IC(t) = IC(0) + PaNa(t)− PbNb(t) (2.3)

IS(t) = IS(0) +Nb(t)−Na(t) (2.4)

where IC(y) is the cash inventory at time t, IS(t) is the security inventory
at time t, IC(0) and IS(0) are the begin values in the inventory, Pb is the bid
price, Pa is the ask price, Na(t) is the total executed buy volume at time t
and Nb(t) is the total executed sell volume at time t. The goal of Garman’s
study is to calculate the expected time to bankruptcy. This approach is not
realistic because the market maker quotes bid and ask prices only at the
beginning of the trading game, so the market maker’s price setting decision
based not on his inventory.

A more realistic approach is done by Ho and Stoll [18]. The market maker
in this model is also a risk-averse liquidity provider. The market maker is
assumed that he cannot go banktrupt. The market maker allows temporarily
order imbalances, this means that the buy orders and the sell orders do not
match. He uses an inventory of securities to do this. The excess of securities
is hold in inventory. The market maker maximizes expected utility of total
wealth at the end of the trading game. In economics the expected utility

11



is the measure of satisfaction for a person if he has to make choices in an
uncertain environment. The buy and sell order flow are modelled as Poisson
distributions. The market maker sets the bid and ask prices in reaction to
inventory changes and wealth changes. Ho and Stoll solved this trading game
using dynamic programming. Dynamic programming is an optimization
technique that works as follows: first the problem is divided into a number of
subproblems. Each subproblems is then solved with the smallest subproblem
solved first. The solutions to the subproblems contribute further to the
solution of the whole problem.

Both the model of Garman and the model of Ho and Stoll show that the
ask price is higher than the bid price, because the market maker holds an
inventory of securities. The market maker of Garman holds an inventory
because of the bankruptcy risk and the market maker of Ho and Stoll holds
an inventory because of price risk.

2.1.2 Information-based models

Information-based models are used to explain that the bid-ask spread is
caused by the adverse selection cost of the market maker. The dynamics of
the behaviour and the price setting of the market maker can be modelled.
The market maker sets a higher ask price and a lower bid price to protect
himself against the adverse selection. The informed traders have superior
information than him. If he trades with informed traders he will loose. The
difference between the bid and the ask price compensates the lost of the
market maker. There are two types of information-based models: strategic
trader model and sequential trade model. In strategic trader model the
strategic behaviour of the informed trader is stressed. In sequential trade
model the information signals in each trade period are stressed.

Strategic trader models

The model of Kyle[22] is a batch and order-driven market. This means
that the market maker collects a lot number of different security orders
and then executes them simulteneously. In the market there are strategic
informed traders and uninformed traders. The traders place only market
orders. Market orders are the simplest type of orders a trader can place
in a financial market. Market orders are orders to be executed at once at
current market prices. The traders can place orders concurrently and are
anonymous. The market maker sets the market price p at which the traders
buy or sell the security. The uninformed traders place simply random orders
of size µ ∼ N(0, σ2µ). If µ > 0 then the uninformed trader places a buy order.
If µ < 0 then the uninformed trader places a sell order. The informed trader
knows the fundamental value v. He trades strategically and chooses the size
of the order x such that his expected trading profit Π = E[x(v − p)] is
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the highest. The market price of the security p and the total order flow
D = x + µ are known to all the traders. The market maker collects the
total order flow which is equal to x+ µ. The market maker has zero-profit
expectation. This means that market making is perfectly competitive, in
other words the entry cost to become a market maker is very low. The
market maker does not know which part of the total order flow is placed
by informed traders and which part is placed by uninformed traders. The
market maker does not know the true value of the fundamental value. The
market maker adjusts his expectation of the price given the total order flow
(p = E[v|D] = E[v|x+ µ]). An equilibrium in this model can be calculated
in which the market maker choses the price setting function such that he
earns zero profit given the optimal action of the informed trader. And the
informed traders maximize their expected trading profit given the market
price that the market maker sets. The equilibrium market price and the
equilibrium profit for the informed traders can be calculated (See [22] for
the calculation details). Kyle shows that the linear pricing function of the
total order flow is the optimal pricing strategy for the market maker. If the
market maker chooses a linear price function, then the trading function for
the informed trader is also linear. Kyle also shows that the bid-ask spread
arises from the adverse selection cost of the market maker. The information
of the order flow is also relevant for the market maker’s price setting decision.

Sequential trade models

The model of Glosten and Milgrom [1] captures the adverse selection prob-
lem explicitly with a bid-ask spread in his model. The model is a quote-
driven market with informed traders and uninformed traders. Informed
traders know the true value of the fundamental value and uninformed traders
do not know the true fundamental value. In each trade a trader can only
place order of one unit of security. In each period only one trade takes place
between a trader and the market maker. Trading is anonymous and there
are no transaction costs. In each period one type of trader (informed or
uninformed) arrives at random. The market maker is uninformed about the
fundamental value, is risk-neutral and has zero-profit expectation. Because
of the asymmetric information between the market maker and informed
traders, the market maker will lose against the informed traders. Result
is that the market maker will quote higher prices for ask orders and will
quote lower prices for bid orders. Main idea is that the type of order con-
veys information about the true fundamental value. Informed traders will
buy if ask pice is lower than the fundamental value and will sell if the bid
price is higher than the fundamental value. The market maker uses the
Bayesian learning rule to set the bid and ask prices. Buy order will be in-
terpreted by the market maker as a good signal and updates his expectation
E[v|Buy] > E[v] with setting the ask price to E[v|Buy]. Likewise, after a
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sell order the market maker updates his expectation E[v|Sell] < E[v] with
setting the bid price to E[v|Sell]. The traded security has only two values,
high (VH) and low (VL), and the expected value of the security is

E[v] = P (v = vH)vH + P (v = vL)VL (2.5)

The market maker sets the ask price after a buy order:

ask = E[v|Buy] = P (v = vH |Buy)vH + P (v = vL|Buy)vL (2.6)

P (v = vH |Buy) and P (v = vL|Buy) can be calculated with the Bayesian
learning rule for discrete distribution:

P (v = vH |Buy) =
P (Buy|v = vH)P (v = vH)

P (Buy)
(2.7)

P (v = vL|Buy) =
P (Buy|v = vL)P (v = vL)

P (Buy)
(2.8)

The conditional probability of buy is

P (Buy) = P (Buy|v = vH)P (v = vH) + P (Buy|v = vL)P (v = vL) (2.9)

The market maker sets the bid price after a sell order:

bid = E[v|Sell] = P (v = vH |Sell)vH + P (v = vL|Sell)vL (2.10)

P (v = vH |Sell) and P (v = vL|Sell) can be calculated using the Bayesian
learning rule for discrete distribution again:

P (v = vH |Sell) =
P (Sell|v = vH)P (v = vH)

P (Sell)
(2.11)

P (v = vL|Sell) =
P (Sell|v = vL)P (v = vL)

P (Sell)
(2.12)

The conditional probability of sell is

P (Sell) = P (Sell|v = vH)P (v = vH) + P (Sell|v = vL)P (v = vL) (2.13)

Glosten en Milgrom show that the endogenous bid-ask spread will be-
come visible S = E[v|Buy] − E[v|Sell] in the model. So they use their
model to explain that the bid-ask spread is due to the adverse cost of the
market maker. And they also show that the bid-ask spread will increase
with vH−vL (volatility of the security) and the fraction of informed traders.

An extention of this model is the model of Das. This model will be dis-
cussed in chapter 3.
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Chapter 3

The market maker model of
Das

3.1 Model description

The market maker model of Das [10] [11] is an extension of the model of
Glosten and Milgrom [1]. The model of Glosten and Milgrom is more the-
oretical and mathematical while the model of Das has a more realistic set-
ting and is a simple agent-based model. The model is a sequential trading
model. The environment wherein the agents operates is a discrete time mar-
ket. There is only one market maker and traders can be informed, partially
or noisy informed or uninformed.

In the market only one security is traded. The security has a real funda-
mental value Vi at time period i. The market maker sets bid and ask prices
(Pb and Pa) in each trading step at which he is willing to buy or sell one unit
of the stock. The market maker maintains a probability density function of
the fundamental value. After each trade the market maker updates its belief
about the fundamental value. The traders have different information about
the true value of the stock, so the model is an adverse selection problem. At
each time period only one trader is selected for trading. The market maker
knows the probability structure of the arrival process. The market maker
knows the probability of the traders placing buy or sell orders or decide not
to trade. The traders can only place market orders. The informed trader,
if selected, will place a buy order if the underlying true value is greater
than the buy quote and will place a sell order if the underlying true value
is smaller than the sell quote and will place no order if the underlying true
value lies between the bid and ask quotes. The uninformed trader, if se-
lected, will place a buy and sell order with the same probability (η) and will
place no order with probability 1− 2η.

The model allows the presence of noisy informed traders, which are ab-
sent in the model of Glosten and Milgrom. This is more realistic, because in
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the real world it is more likely that the investors do not know the underlying
value perfectly. A noisy informed trader gets a noisy signal of the true value,
but the trader thinks it is the true value. The noisy value for the informed
trader is denoted by Wi and is equal to Vi + η̃(0, σW ) where η̃(0, σW ) is
drawn from a normal distribution with mean 0 and variance σ2W . The noisy
informed trader, if selected, will place a buy order when Wi > Pi,a, will place
a sell order when Wi < Pi,b and will place no order when Pi,b ≤Wi ≤ Pi,a.

During the simulation the true underlying value evolves with probabilis-
tic jumps or changes. The jump process is as the following: at time i + 1,
a jump in the true value will take place with probability ρ. Then the value
at time Vi+1 will become Vi + ω̃(0, σW ) where ω̃(0, σW ) is also drawn from
the normal distribution with mean 0 and variance σ2W .

3.2 The algorithm of the market maker

We describe here the price setting algorithm of the market maker. The
algorithm computes approximate solutions to the expected value equations.
Glosten and Milgrom derive the bid quote to be the expectation of the true
value given that a sell order is received (Pb = E[V |Sell]) and the ask quote
to be the expectation of the true value given that a buy order is received
(Pa = E[V |Buy]). Because the true value may change and depends on
chance, the value V is a random variable. Das adds a probability distribution
function to the market maker to assign probabilities to this random variable
V .

3.2.1 Compute the ask quote

The expected value of the discrete random value V given a specific order
is defined as the integral of all values of the random variable V , each value
multiplied by its conditional probability. For instance for all value V = x
given that a market buy order is received:

E[V |Buy] =

∫ ∞
0

xP (V = x|Buy) dx (3.1)

Because the market is a discrete time market, the x-axis is discretized
into intervals to compute the values of equation 3.1 approximately:

E[V |Buy] =

Vi=Vmax∑
Vi=Vmin

ViP (V = Vi|Buy) (3.2)

After applying the rule of Bayes and simplifying the equation 3.2:

E[V |Buy] =

Vi=Vmax∑
Vi=Vmin

ViP (Buy|V = Vi)P (V = Vi)

P (Buy)
(3.3)
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And the ask quote is set to the expected value given that a buy order is
received:

Pa =
1

PBuy

Vi=Vmax∑
Vi=Vmin

ViP (Buy|V = Vi)P (V = Vi) (3.4)

Since the ask quote lies always between the minimum value and the
maximum value, Vmin < Pa < Vmax , we divide Pa into two parts:

Pa =
1

PBuy

Vi=Pa∑
Vi=Vmin

ViP (Buy|V = Vi)P (V = Vi)

+
1

PBuy

Vi=Vmax∑
Vi=Pa+1

ViP (Buy|V = Vi)P (V = Vi)

(3.5)

The probability that a buy order is placed given that V = Vi is constant
within each sum. The uninformed trader will always buy independent of
what the value is and the informed trader buys only if V > Pa. Therefore,
P (Buy|V ≤ Pa) = (1 − α)η and P (Buy|V > Pa) = (1 − α)η + α. The ask
quote equation can be written as this way:

Pa =
1

PBuy

(
Vi=Pa∑
Vi=Vmin

((1−α)η)ViP (V = Vi) +

Vi=Vmax∑
Vi=Pa+1

((1−α)η+α)ViP (V = Vi)

)
(3.6)

To solve equation 3.6 the a priori probability buy order (PBuy) must be
computed with this equation:

PBuy =

Vi=Vmax∑
Vi=Vmin

P (V = Vi)

=

Vi=Pa∑
Vi=Vmin

((1− α)η)P (V = Vi) +

Vi=Vmax∑
Vi=Pa+1

((1− α)η + α)P (V = Vi)

(3.7)

3.2.2 Compute the bid quote

The bid quote equation can be derived in the same way as the ask quote:

Pb =
1

PSell

(
Vi=Pb−1∑
Vi=Vmin

((1−α)η+α)ViP (V = Vi) +

Vi=Vmax∑
Vi=Pb

((1−α)η)ViP (V = Vi)

)
(3.8)
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The probability that a sell order is placed given that V = Vi is constant
within each sum. The uninformed trader will always sell independent of
what the value is and the informed trader sells only if Pb < V . Therefore,
P (Buy|V ≤ Pa) = (1− α)η + α and P (Buy|V > Pa) = (1− α)η.

And the a priori probability of a sell order (PSell) is:

PSell =

Vi=Pb−1∑
Vi=Vmin

((1−α)η+α)P (V = Vi) +

Vi=Vmax∑
Vi=Pb

((1−α)η)P (V = Vi) (3.9)

With the equations 3.6 and 3.8 the market maker can set prices in each
time interval.

3.2.3 Compute bid and ask quote with noisy informed traders

The buy quote equation (3.8) and the sell quote equation (3.6) and the
probability of buy order equation (3.9) and probability of sell order equation
(3.7) for perfectly informed traders can be expanded for noisy informed
traders.

The noisy informed investor’s selling and buying are determined by a
probability, the conditional probabilities for buying and selling are:

P (Buy|V = Vi, Vi ≤ Pa) = (1− α)η + αP (η̃(0, σ2W )) > (Pa − Vi)) (3.10)

P (Buy|V = Vi, Vi > Pa) = (1− α)η + αP (η̃(0, σ2W )) < (Vi − Pa)) (3.11)

P (Sell|V = Vi, Vi ≤ Pb) = (1− α)η + αP (η̃(0, σ2W )) < (Pb − Vi)) (3.12)

P (Sell|V = Vi, Vi > Pb) = (1− α)η + αP (η̃(0, σ2W )) > (Vi − Pb)) (3.13)

The second term in the first two equations gives back the probability
that a noisy informed trader will buy if the fundamental value is less than
or equal to the ask price (equation 3.10) and if the fundamental value is
higher than the ask price (equation 3.11). The second term in the last two
equations gives back the probability that a noisy informed trader will sell if
the fundamental value is less than or equal to the bid price(equation 3.12)
and if the fundamental value is higher than the bid price (equation 3.13).
The first term in the four equations is the probability that an uninformed
trader will buy or sell.

The new buy and sell priors with noisy informed traders are now

PBuy =

V=Pa∑
V=Vmin

[αP (η̃(0, σ2W ) > (Pa − Vi)) + (1− α)η]P (V = Vi) +

Vi=Vmax∑
Vi=Pa+1

P (η̃(0, σ2W ) < (Vi − Pa)) + (1− α)η]P (V = Vi)

(3.14)
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PSell =

V=Pb−1∑
V=Vmin

[αP (η̃(0, σ2W ) < (Pb − Vi)) + (1− α)η]P (V = Vi) +

Vi=Vmax∑
Vi=Pb

P (η̃(0, σ2W ) > (Vi − Pb)) + (1− α)η]P (V = Vi)

(3.15)

Finally, the bid quote and the ask quote can be calculated as

Pb =
1

PSell

Vi=Pb∑
Vi=Vmin

[((1− α)η + αP (η̃(0, σ2W ) < (Pb − Vi)))ViP (V = Vi)] +

1

PSell

Vi=V max∑
Vi=Pb+1

[((1− α)η + αP (η̃(0, σ2W ) > (Vi − Pb)))ViP (V = Vi)]

(3.16)

Pa =
1

PBuy

Vi=Pa∑
Vi=Vmin

[((1− α)η + αP (η̃(0, σ2W ) > (Pa − Vi)))ViP (V = Vi)] +

1

PBuy

Vi=V max∑
Vi=Pa+1

[((1− α)η + αP (η̃(0, σ2W ) < (Vi − Pa)))ViP (V = Vi)]

(3.17)

3.2.4 Updating the probabilistic density estimates

Situation of buy or sell order received

Each time the market maker receives an order, he updates the posterior
probability on the value of V , in case of the situation with noisy informed
traders

When Vi ≤ Pa and market buy order:

P (V = Vi|Buy, Vi ≤ Pa) =
P (Buy|V = Vi, Vi ≤ Pa)P (V = Vi)

PBuy
(3.18)

When Vi > Pa and market buy order:

P (V = Vi|Buy, Vi > Pa) =
P (Buy|V = Vi, Vi > Pa)P (V = Vi)

PBuy
(3.19)

When Vi ≤ Pb and market sell order:

P (V = Vi|Sell, Vi ≤ Pb) =
P (Sell|V = Vi, Vi ≤ Pb)P (V = Vi)

PSell
(3.20)
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When Vi > Pb and market sell order:

P (V = Vi|Sell, Vi > Pb) =
P (Sell|V = Vi, Vi > Pb)P (V = Vi)

PSell
(3.21)

The prior probability P (V = Vi) is known from the probability dis-
tribution function, the prior probability of a buy order or a sell order
(PBuy andPSell) can be computed with equations 3.14 and 3.15 respectively,
and the conditional probabilities of a buy order or a sell order can computed
with equations 3.10, 3.11, 3.12 and 3.13.

In case of the situation with perfectly informed traders the signal in-
dicates the value is higher or lower than a certain price. In that case the
update equations are

P (V = Vi|Buy, Vi > Pa) = ((1− α)η + α)P (V = Vi) (3.22)

P (V = Vi|Buy, Vi ≤ Pa) = (1− α− (1− α)η)P (V = Vi) (3.23)

P (V = Vi|Sell, Vi < Pb) = ((1− α)η + α)P (V = Vi) (3.24)

P (V = Vi|Sell, Vi ≥ Pa) = (1− α− (1− α)η)P (V = Vi) (3.25)

Situation of no orders received

When there is no order received the posterior probability can be calculated
as follows:

P (V = Vi|No order) =
P (No order|V = Vi)P (V = Vi)

PNo order
(3.26)

and P (No order|V = Vi) in case with noisy informed traders can be
computed as

P (No order|V = Vi, Vi < Pb) = (1− α)(1− 2η) + αP (η̃(0, σ2W ) > (Pb − Vi))
(3.27)

P (No order|V = Vi, Pb ≤ Vi ≤ Pa) = (1− α)(1− 2η) +

α[P (Pb − Vi < η̃(0, σ2W )) + P (Vi − Pa < η̃(0, σ2W ))]

(3.28)

P (No order|V = Vi, Vi > Pa) = (1− α)(1− 2η) + αP (Vi − Pa < η̃(0, σ2W ))
(3.29)

The second term of the equations 3.27, 3.28 and 3.29 gives back the
probability that a noisy informed trader does not place an order. The first
term is the probability that an uninformed trader does not place an order.
And P (Noorder|V = Vi) in the case with perfectly informed traders can be
computed as
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P (No order|V = Vi, Vi < Pb) = 1− α− (1− α)(1− 2η) (3.30)

P (No order|V = Vi, Pb ≤ Vi ≤ Pa) = (1− α)(1− 2η) + α (3.31)

P (No order|V = Vi, Vi > Pa) = 1− α− (1− α)(1− 2η) (3.32)

If Vi < Pb and Vi > Pa then the uninformed traders place an order
with a probability of 2η and all informed traders place an order. And if
Pb ≤ Vi ≤ Pa then only the uninformed traders place an order with a
probability of 2η.

This model extends the Glosten-Milgrom model by introducing an algo-
rithm for keeping a probability density function of the true underlying value
of the stock in a dynamic market with probabilistic jumps in the fundamen-
tal value. Using the estimation prices are set in a rather realistic framework.
The noise in the informed trading is explicitly incorporated into the model
which gives a more dynamic market behaviour. In chapter 4 we introduce
a market maker in the same environment as the Das model, but without
the maintaining of a probabilistic density function of the true fundamental
value. The market maker in the model is first assumed to know the true
fundamental value and then we modify the market maker to approximate
the true fundamental value, because in the real world the true fundamental
value is also unknown to the market maker.
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Chapter 4

Market maker’s strategies
and fundamental value
approximation

4.1 Introduction

In this chapter we introduce a market maker with a simple market maker
price setting strategy and then expand this market maker with a new strat-
egy who detects the fundamental value with respect to the location of the
bid-ask spread and then adjusts the bid price and the ask price. Initially, we
assume that the market maker knows the fundamental value and uses the
fundamental value in the price rule to calculate the future prices. Next the
market maker approximates the fundamental value with detection of the lo-
cation of the fundamental value with respect to the bid-ask spread and then
adjusts the bid and ask prices. We generate the fundamental values and a
sequence of types of traders exogeneously.

4.2 Financial market microstructure of the model

The financial market microstructure is the same as in the model of Das
(See chapter 3). Here we describe it shortly. Only one stock is traded on
the market. The stock has a real fundamental value which is known to the
informed traders. The fundamental value can change if a jump takes place
with a size of σv. The change can be positive or negative. There is only
trade between the market maker and traders. The traders are informed or
uninformed. The portion of informed traders is given by α. The portion of
uninformed traders is then of course 1−α. The measure of informedness of
informed traders is σw. The model is a sequence trade model. This means
that at one point in time only the market maker and one trader can trade
with each other. After ’selection’ an uninformed trader places a market
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buy order or a market sell order with the same probability (η) or withhelds
an order with probability (1 − 2η). An informed trader if selected places a
market buy order or a market sell order depending on the fundamental value.
The informed trader does not trade if the fundamental value lies between
the bid-ask spread. The market maker adjusts his expectation about the
fundamental value and sets the bid and ask prices. The initial bid price and
ask price can be set to a chosen value. The trading game ends if the stop
condition of the number of time steps is satisfied.

4.3 Market maker who uses a simple linear price
setting strategy

We describe here the market maker who uses a simple linear price setting
strategy. Hereafer we call this market maker simpleMM. This market maker
is assumed to know the fundamental value. SimpleMM adjusts the bid price
if the order is a sell order and adjusts the ask price if the order is a buy
order. If in the timestep there is no trader to trade then the market maker
adjusts both the bid price and the ask to make the bid-ask spread closer to
the fundamental value. The price schedule for the bid price of SimpleMM is

bt = bt−1 + β(fv − bt) (4.1)

and for the ask price is

at = at−1 + β(fv − bt) (4.2)

where bt and bt−1 are the bid price at time t and t− 1 respectively. at and
at−1 are the ask price at time t and t− 1 respectively. β is the learning rate
or the convergence rate. fv is the fundamental value.

Because in 4.1 bt and in 4.2 at is on both side of the equal sign, we use
the following estimated price setting rules

bt = bt−1 + γ(f̂v − bt−1) (4.3)

at = at−1 + γ(f̂v − at−1) (4.4)

where f̂v is the estimated fundamental value.
Equations 4.3 and 4.4 can also be written as

bt = (1− γ)bt−1 + γf̂v (4.5)

at = (1− γ)at−1 + γf̂v (4.6)

bt is also equal to bt−1+βfv
1+β and at is equal to at−1+βfv

1+β , so these also holds

1

1 + β
= 1− γ
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and

γ = 1− 1

1 + β
=

1 + β − 1

1 + β
=

β

1 + β
(4.7)

According to equation 4.7 if γ is the same as β
1+β then the estimation

equations from 4.3 and 4.4 are equal to the equations from 4.1 and 4.2.

4.4 Market maker who uses a bid-ask spread loca-
tion detection price setting strategy and fun-
damental value approximation

4.4.1 Using the maximum value of trading probabilities to
update the price

Hereafter we call this market maker detectMM. DetectMM computes the
executed buy, sell and hold probabilities. These probabilities are calculated
by taking the number of each type of order and divides it by the total number
of orders. Hold means that during the timestep there is no trader to contact
the market maker to place an order.

realpBuy =
number of buys

total number of orders
(4.8)

realpSell =
number of sells

total number of orders
(4.9)

realpHold =
number of holds

total number of orders
(4.10)

In each time the market maker calculates the probabilities realpBuy,
realpSell and realpHold. RealpBuy is the probability of buy order placed
from the timestep 0 to timestep t. RealpSell is the probability of sell order
placed from timestep 0 to timestep t. RealpHold is the probability of no
order received from timestep 0 to timestep t. The location of the bid-ask
spread with respect to the fundamental value is determined by the maximum
value of these probabilities. If realpBuy is the maximum value then the
fundamental value lies above the bid-ask spread. So the market maker needs
to increase the bid and ask price,

If a buy order is placed:

at = at−1 +
∆a

k
(4.11)

bt = bt−1 (4.12)
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If a sell order is placed:

at = at−1 (4.13)

bt = bt−1 +
∆b

k
(4.14)

bt = at (if bt > at) (4.15)

No order received:

at = at−1 +
∆a

k
(4.16)

bt = bt−1 +
∆b

k
(4.17)

If realpSell is the maximum value then the fundamental value lies under
the bid-ask spread. Then the market maker needs to decrease the bid and
ask price,

If a buy order is placed:

at = at−1 −
∆a

k
(4.18)

bt = bt−1 (4.19)

at = bt (if at < bt) (4.20)

If a sell order is placed:

at = at−1 (4.21)

bt = bt−1 −
∆b

k
(4.22)

No order received:

at = at−1 −
∆a

k
(4.23)

bt = bt−1 −
∆b

k
(4.24)

If realpHold is the maximum value then the fundamental value lies be-
tween the bid-ask spread. In this case the market maker needs to increase
the bid price and decrease the ask price,

If a buy order is placed:

at = at−1 −
∆a

k
(4.25)

bt = bt−1 (4.26)

at = bt (if at < bt) (4.27)
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If a sell order is placed:

at = at−1 (4.28)

bt = bt−1 +
∆b

k
(4.29)

bt = at (if bt > at) (4.30)

No order received:

at = at−1 −
∆a

k
(4.31)

bt = bt−1 +
∆b

k
(4.32)

bt = at (if bt > at) (4.33)

∆a and ∆b is the amount of increase or decrease of the ask price and
the bid price respectively in each timestep. For simplicity reason we assume
that ∆a is equal to ∆b. k = {1, 2, . . . } and we divide ∆a and ∆b by k to
let the change in the price become smaller and smaller in the hope that it
reaches the fundamental value approximately. If a bid order is placed then
only the ask price is changed and the bid price is the same as the previous
bid price. If a sell order is placed then the bid price is adjust and the ask
price is the same as the previous ask price. If no order is received then both
the bid price and the ask price are updated. Because the ask price is always
greater than or equal to the bid price, the bid price is set to the same value
as the ask price or the ask price is set to the same value as the bid price in
cases where it is needed.

In the instances where there are more than one maximum value the
location of the fundamental value with respect to the bid-ask spread is de-
termined by the most recent order. If the last order is a buy order then
bid ≤ ask ≤ fv. If the last order is a sell order then fv ≤ bid ≤ ask. If there
is no order received during that particular timestep then bid ≤ fv ≤ ask.

This model has two drawbacks: (1) the market maker does not know if
a change in the fundamental value has occurred. (2) the market maker uses
the order flow with noise to see if the price is overvalued or undervalued.
The order flow is the aggregated orders placed by informed and uninformed
traders. The order flow contains noise because the orders placed by unin-
formed traders are placed randomly. Those orders do not tell something
about the price in relationship with the fundamental value. DetectMM uses
the maximum of the probability of the order placed. If the market maker
with the available information updates the price too slowly and the price is
attractive for informed traders to buy or to sell, they will continually only
be placing buy orders or only placing sell orders. Then, the market maker
will forecast the location of the fundamental value wrong and will not track
the true fundamental value right. That’s why we introduce another market
maker that tries to nullify the two disadvanges of detectMM.
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4.4.2 Using the distribution of trading probabilities to up-
date the prices

We use the distribution of trading probabilities to update the prices to nullify
the above descibed problems. We call this market maker spreadMM. The
distribution of the trading probabilities can be calculated because we know
how much informed traders there are and we know the trading probability
of the informed traders. If the ask price is lower than the fundamental
value then all the informed traders will buy and the uninformed traders will
buy with a probability of η, only the uninformed traders will sell with a
probability of η and the no order probability is 1 − 2η. If the bid price is
higher than the fundamental value then only the uninformed trader will buy
with a probability of η, all the informed traders will sell and the uninformed
traders will sell with a probability of η and the no order probability is 1−2η.
If the fundamental value is between the ask price and the bid price then only
the uninformed traders will buy with a probability of η, only the uninformed
traders will sell with a probability of η and the no order probability is 1−2η.
In mathematical formulas are:

trading distribution =

α+ (1− α)η (1− α)η 1− (α+ 2η(1− α))
(1− α)η (1− α)η 1− (2η(1− α))
(1− α)η α+ (1− α)η 1− (α+ 2η(1− α))


(4.34)

whereby in each row the first value is the buy probability (p1), the second
value is the sell probability (p2) and the third value is the no order proba-
bility (p3). The first row is where fv < ask < bid. The second row is where
ask < fv < bid. The third row is where ask < bid < fv.

Other difference between spreadMM and detectMM is that spreadMM
gets a signal when the fundamental value changes that is when a jump in
the fundamental value occurs. This is spreadMM with signalling. Final
step is modelling spreadMM in such a way that spreadMM does not get
the news signal that the fundamental value has changed (spreadMM with-
out signalling), because in real world market makers do not know when a
change in the fundamental value occurs. In the case of detectMM realpBuy,
realpSell and realpHold in each timestep are computed by taking each order
types from the beginning at timestep 0 until timestep t divided by the corre-
sponding number of total orders. Now in the case of spreadMM realpBuy,
realpSell and realpHold in each timestep are computed by taking each or-
der types from the fundamental value change until timestep t divided by
the corresponding number of orders from the fundamental value change un-
til timestep t. The time between the fundamental change until the current
timestep is a period. In the case of spreadMM without signalling, we choose
a constant period of time steps that spreadMM uses to calculate the distri-
bution of the probabilities of the executed order types. We have to compare
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the distribution [realpBuy realpSell realpHold] with each row of the trad-
ing distribution to locate the place of the fundamental value with respect to
the bid-ask spread and then update the bid and price accordingly. Prices
updating process is the same as detectMM. We compute the minimum dis-
tance between [realpBuy realpSell realpHold] and each row of the trading
distribution with:

distance =
√

(realpBuy − p1)2 + (realpSell − p3)2 + (realpHold− p2)2

(4.35)

If the minimum value is for row 1 then the fundamental value lies above
the bid-ask spread. If the minimum value is for row 2 then the fundamental
value lies under the bid-ask spread and if the minimal value is for row 3 then
the fundamental value lies between the bid-ask spread.
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Chapter 5

Experimental setups

5.1 Fundamental value serie

We have to simulate the value of the fundamental value of the security in
each time during the simulation. We allow changes occur in the fundamen-
tal value, because in the real world the fundamental value of the security
can also change during its lifetime. We generate a sequence of values which
represents the fundamental values of the security in each time. We call the
sequence the fundamental value serie. The fundamental value serie is gener-
ated with the parameters pj, v0, nsteps and sv. Pj is the probability that a
jump will occur in the fundamental value. V 0 is the start fundamental value.
Nsteps is the number of trades in the simulation. Sv is the standard devia-
tion of the jump of the fundamental value. The idea is that in each time t if
a jump takes place with probability pj then the fundamental value at t will
be the fundamental value at time t− 1 plus sv. And if a jump is not taken
place then the fundamental value at time t is the same as the fundamental
value at time t− 1. The pseudocode of the function to generate the funda-
mental value serie is shown in function fv = GenerateFundamentalValues.
jumps is a vector of size nsteps with 0s and 1s. 0 means there is no jump
in the fundamental value and 1 means there is a jump in the fundamen-
tal value. Number of jumps is nsteps/pj. Rand is a function to generate
random numbers between 0 and 1. If the random number is smaller than
pj then the value in the vector is 1 otherwise the value is 0. Jsize is the
size of the jump in de fundamental value and it is calculated by sv times a
random number drawn from a normal distribution. Each fundamental value
in the fundamental value serie is then calculated by v0 plus cumulative sum
of (jumps * jsize). An example of such fundamental value serie is shown in
figure 5.1. This fundamental value serie is randomly chosen, but we use it
because the number of jumps in the fundamental value is not too big such
that the market maker becomes instable and it is not too small such that
we can see what the market maker does when there are more jumps taking

29



place in a short amount of time.

Function fv = GenerateFundamentalValues(nsteps,sv,pj,v0)

jumps ← [0,rand(nsteps-1) < pj]; jsize ← sv * randn(nsteps);
fv ← v0 + cumsum(jumps * jsize);

0 200 400 600 800 1000
0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025
x 10

4 Fundamental values

Time

P
ric

e

Figure 5.1: A fundamental value serie with 1000 time steps.

5.2 Type of trader serie

We have to simulate the arrival of traders for contacting the market marker
and trading with them. Our method is generate at random a sequence of
the numbers 0 to 3 to represent the traders. This sequence of numbers we
call the type of trader serie. For the simulations we need four groups of
traders, which are the informed traders, the uninformed trader who buys,
the uninformed trader who sells and the uninformed trader who decides
not to trade. The total number of traders generated is determined by the
number of time steps during the simulations. The type of trader serie is
generated with the parameters α, η and nsteps. Nsteps gives the number
of time steps. α gives the percentage of informed traders. So the number of
informed traders is calculated by nsteps ∗ α and the number of uninformed
traders is calculated by nsteps ∗ (1 − α). The uninformed traders will be
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further classified with the parameter η. η is the buy probability or sell
probability of the uninformed trader. The uninformed trader buys or sells
with the same probability η. The uninformed trader holds a trade with
probability 1 − 2 ∗ η. The informed trader we represent with a 0. The
uninformed trader who buys we represent with a 1. The uninformed trader
who sells we represent with a 2. The uninformed trader who does not trade
we represent with a 3. To illustrate this idea we give here an example:
nsteps = 12, α = 0.33, η = 0.25 then the type of trader sequence can be

0 1 3 2 1 0 3 3 2 0 0 3

There are 4 informed traders and 8 uninformed traders. 4 of the 8 unin-
formed traders hold a trade, 2 buy and 2 sell.

5.3 Market maker’s model parameters estimates

All the three marker maker’s models have the following parameters:

α - this is the fraction of informed traders.

η - this is the probability that an uninformed trader buys or sells.

tt - this is the sequence of type of traders.

pj - this is the probability that a jump will occur.

fvp - this is the fundamental values serie.

buy 0 - this is the start buy price at the beginning of the simulation.

sell 0 - this is the start sell price at the beginning of the simulation.

The Das market maker has these additional parameters:

v0 - this is the initial fundamental value estimate.

sv - this is the standard deviation in the jump of the fundamental value.

SimpleMM has this additional parameter:

γ - this is the convergence rate.

DetectMM and spreadMM have these additional parameters:

∆a - this is the amount of increase or decrease of the ask price.

∆b - this is the amount of increase or decrease of the bid price.
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In the simulations we let most of the parameters constant. We change
only a few parameters to analyse the effect of the parameter to the dynamics
of the market maker. The parameters that we change in the simulations is
explained in detail in section 5.6. There are parameters that the market
maker can control like ∆a and ∆b, because the value of these parameters
can be chosen by the market maker. There are parameters that the market
maker can’t control for example α and η, because these parameters are
dependent of the market situation and the traders in the market.

5.4 The pseudocode of detectMM

The pseudocode of detectMM’s fundamental value location detection is
shown in algorithm 1 and the price quoting mechanism is shown in algo-
rithm 2. In the code it can be seen that detectMM has to choose three cases
according to the maximum probabilistic value of Ptrade. This is the portion
of buys, sells and no orders from the beginning of the simulation until the
time i. The simulation stops if the stopcondition (number of time steps) is
met. In each case detectMM can choose 3 other decisions according to the
type of order received. In total there are 9 deterministic paths in each time
step for detectMM to choose for. The ask price is then updated with the
function ask and the bid price is updated with the function bid.

Algorithm 1: Pseudocode of DetectMM’s fundamental value location
detection algorithm

input : tt
output: Ptrade, index

ptrade ← ComputePtrade(tt);
index ← Max(ptrade);

5.5 The pseudocode of spreadMM

The pseudocode of spreadMM’s fundamental value location detection is
shown in algorithm 3 and the price quoting mechanism is shown in algo-
rithm 2. In the code it can be seen that spreadMM gets a signal of a change
in the fundamental value and sets new ask price to fv + 200 and sets the
new bid price to fv − 200. This is because the market maker receives a
change of the fundamental value and does not know what the new bid and
ask price are and sets a large bid-ask spread. If there is no change in the
fundamental value then spreadMM has to choose three cases according to
the minimum value of DPtrade. This is the distance we described in sec-
tion 4.4.2 and is computed with equation 4.35. The simulation stops if the
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stopcondition (number of time steps) is met. In each case spreadMM can
choose 3 other decisions according to the type of order received. In total
there are 9 deterministic paths in each time step for spreadMM to choose
for. The ask price is then updated with the function ask and the bid price
is updated with the function bid.

5.6 Experimental setup

We use Matlab as the programming environment for programming the code,
debugging the code, evaluating the model, and doing simulations. Doing
simulation is the mainly method we use to see the behaviour of the market
maker. The simulations can be categorized according to these criteria:

1. difference in market maker’s model: Das market maker, simpleMM,
detectMM and spreadMM

2. difference in number of simulations: 1 simulation or 100 simulations

3. difference in the values we set for the parameters: α, γ, ∆a, ∆b, k,
period

With simpleMM and detectMM we only do single simulations to see the
price dynamics of the market maker mechanism. With single simulation we
only run the simulation 1 time. We use the same fundamental value serie
for the single simulations. We use α’s of 0.25, 0.33, 0.5 and 0.75 to see what
kind of effect the number of informed traders has on the prices quoted by
the two market makers. We set an η of 0.4. For each α we generate the
corresponding trader type serie, because the trader type serie depends on
the α chosen. This parameter tells the probability of an uninformed trader
to buy or sell. If η is 0.4 then the buy probability is 0.4 and also the sell
probability is 0.4 and the no order probability is of course 0.2.

To simulate spreadMM we do 100 simulations. And we calculate in each
time step the mean bid price and ask price over the 100 simulations. For
example at t = 1 the mean bid price over the 100 simulations is calculated
as follows: Adding the bid price in each simulation of t = 1. We do this
with all the bid prices in time steps from t = 1 to t = 1000. After this
we get 1000 mean bid prices. Likewise, we do the same with the ask price.
We plot the mean bid price curve and the mean ask price curve with the
fundamental value curve in the same figure. To see what spreadMM will
do in situation where the fundamental value is stable for a long time, we
generate a fundamental value with only one jump during the simulation.
The first 500 time steps the fundamental value is 10000 and last 500 time
steps the fundamental steps is 10020. We create this fundamental value with
only one change in the fundamental value in the middle of the simulation
time and change the parameters to get an insight of what kind of effect have
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on the parameters to the bid and ask prices and if the market maker using
distribution of orders from the order flow can track the fundamental value.
We generate 100 type of trader series each with an α of 0.25 and then also the
same with an α of 0.33, 0.5, 0.75. The experiments can be categorized into
three groups. In the first group of experiments the change in the experiment
is the parameter α. There are four experiments in this group. We set η to
0.4, ∆a and ∆b to 40 and k = 1, 2, 3, ... and if the first derivative of the
price in time t = 0 we set k back to 0 or else we increase k with 1 in the
next time step. The goal of this group of experiments is to see what kind of
effect the population of informed traders has on the price setting behaviour
of the market maker. In the second group of experiments we set α to 0.75
and η to 0.4 and we do with the parameter k the same as in the first group
of experiments, but we set ∆a and ∆b in the simulations to the values of
10, 30, 50, 70, 90 or 200. In the third group of experiments we set α to 0.75
and η to 0.4, ∆a and ∆b to 90 and we change k in the experiments to 1,
2, 4, or 6, but now in each time step the value of k is fixed and does not
change during the simulation as the first group of experiments does. We do
the simulations of spreadMM with signalling and without signalling. In case
of spreadMM without signalling, we do simulations with constant periods of
5, 10, 20, 25, 30 and 60.

We simulate the Das market maker with α’s of 0.25, 0.33, 0.5 and 0.75
and an η of 0.4. We compare the result of the simulation of the Das market
maker with the result of the simulation of spreadMM.

5.7 Model evaluation and Performance measure

5.7.1 Model evaluation of detectMM and spreadMM

For evaluation and benchmarking the market maker’s model we use two
methods. The first method is the mean of bid-ask spreads method. The
second method is sum of difference between the fundamental value and the
prices as performance measure.

5.7.2 Mean bid-ask spreads

To average the 100 simulations we use for comparison the mean of bid-ask
spreads as performance measure. After the 100 simulations we compute
the mean of bid-ask spreads of the 100 simulations. The mean of bid-ask
spreads is calculated by adding the bid-ask spread in each timestep together
and divide by the number of timesteps in the simulation. In mathematical
formula this will be:

mean of bid-ask spreads =

∑
at − bt

Number of timesteps
(5.1)
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Sum of diffence between the fundamental value and the prices

For benchmarking the performance of the Das market maker and spreadMM
we compute the sum of difference between the fundamental value and the bid
price (sumdifbid), the sum of the difference between the fundamental value
and the ask price (sumdifask) and the average of the two (avaragesumdif).
In mathematical formulas:

sumdifbid =
∑

(fvt − bidt) (5.2)

sumdifask =
∑

(askt − fvt) (5.3)

averagesumdif =
(sumdifbid+ sumdifask)

2
(5.4)
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Algorithm 2: Pseudocode of DetectMM and SpreadMM price quoting
algorithm

input : index, order, delta a, delta b,k
output: ask [i], bid [i]

for i← 1 to n do
switch index do

case index is 1
if order is 1 then

ask [i] ← ComputeAsk(ask,i,delta a,k);
bid [i] ← bid [i− 1];

else if order is -1 then
ask [i] ← ask [i− 1];
bid [i] ← ComputeBid(bid,i,delta b,k);

else order is 0
ask [i] ← ComputeAsk(ask,i,delta a,k);
bid [i] ← ComputeBid(ask,i,delta b,k);

case index is 2
if order is 1 then

ask [i] ← ComputeAsk(ask,i,-delta a,k);
bid [i] ← bid [i− 1];
if ask [i] < bid [i] then ask [i] = bid [i];

else if order is -1 then
ask [i] ← ask [i− 1];
bid [i] ← ComputeBid(bid,i,-delta b,k);
if bid [i] < ask [i] then bid [i] > ask [i];

else order is 0
ask [i] ← ComputeAsk(ask,i,-delta a,k);
bid [i] ← ComputeBid(ask,i,-delta b,k);

case index is 3
if order is 1 then

ask [i] ← ComputeAsk(ask,i,-delta a,k);
bid [i] ← bid [i− 1];
if ask [i] < bid [i] then ask [i] = bid [i];

else if order is -1 then
ask [i] ← ask [i− 1];
bid [i] ← ComputeBid(bid,i,delta b,k);
if bid [i] < ask [i] then bid [i] > ask [i];

else order is 0
ask [i] ← ComputeAsk(ask,i,-delta a,k);
bid [i] ← ComputeBid(ask,i,delta b,k);
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Function ask(i) = ComputeAsk(ask,i,delta a,k)

ask[i] ← ask[i− 1] + delta a
k ;

Function bid(i) = ComputeBid(bid,i,delta b,k)

bid[i] ← bid[i− 1] + delta a
k ;

Algorithm 3: Pseudocode of spreadMM’s fundamental value location
detection algorithm

input : priors, txpro, fv
output: ask, bid, dptrade, index

if change in the fundamental value then
ask ← fv + 200;
bid ← fv - 200;
index ← 1;

else
dptrade ← ComputeDPtrade(priors, txpro);
index ← Min(dptrade);

Function dptrade = ComputeDPtrade(priors, txpro)

for i← 1 to 3 do
for j ← 1 to 3 do

dptrade ←
√

(priors[i][j]− txpro[j])2;
end

end
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Chapter 6

Results

In this chapter we describe the results of the experiments we have simulated
with the Das market maker (see chapter 3) and with the market makers
simpleMM (see chapter 4.3) , detectMM (see chapter 4.4.1) and spreadMM
(see chapter 4.4.2).

6.1 Simulation results of single experiments

6.1.1 Experiment with simpleMM
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Figure 6.1: This is the result of the experiment with simpleMM(α = 0.25).

First we did some simulations with simpleMM. Figure 6.1 shows the
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bid price, the ask price and the fundamental value of the simulations with
simpleMM. We only show the figure of the result of the experiment with an
α of 0.25 here. The results of the simulations with α’s of 0.33, 0.5 and 0.75 is
shown in appendix A, because the figures are mostly identical to each other.
SimpleMM can track the fundamental value, because the market maker is
assumed to know the fundamental value. After a jump in the fundamental
value it can be clearly seen that there occurs a little delay in time before the
market maker gets to the correct fundamental value. How fast the prices
converge to the fundamental value is determined by the parameter γ. If γ is
nearer to 0 then the prices will slower converge. If γ is nearer to 1 then the
prices will converge faster. The bid price and the ask price in the same time
step in the simulations are not the same, due to different trader type series
we have used and so the order flow in the four simulation is also different.

6.1.2 Experiments with detectMM

As shown in figure 6.2 the four experiments of DetectMM with α’s of 0.25,
0.33, 0.5 and 0.75. The figures show that the detectMM method doesn’t
work. The detectMM cannot track the fundamental value. In the figures
of the experiments with α of 0.25 and 0.33 show similar picture. It seems
that information from the uninformed traders who trade randomly cause
detectMM to think that the fundamental value is under the bid price, that
is why he is continuously decreasing the bid price. DetectMM thinks at
the same time that the fundamental value is above the ask price and is
continuously increasing the ask price during the whole simulation. The
strange thing is that the course of the bid price curve in the experiment
with α of 0.25 is almost the same as the course of the ask price curve in
the experiment with α of 0.33. And the course of the ask price in the
experiment with α of 0.25 is almost the same as the course of the bid price
curve in the experiment with α of 0.33. The bid price in the experiment
with α of 0.25 decreases fast in the beginning and the ask price in the
experiment with α of 0.33 increases fast in the beginning and then the bid
price and the ask price go horizontally or go less steep. The ask price in
the experiment with α is 0.25 increases fast in the beginning and the bid
price in the experiment with α of 0.33 decreases fast in the beginning and
then the ask price and the bid price go horizontally or go less steep. The
results of the experiments with α of 0.5 and 0.75 also show no good tracking
of the fundamental value. Although the bid price and the ask price go
up and down around the fundamental value with the difference that the
changes in the experiment with α of 0.75 is much faster than the changes
in the experiment with α of 0.5. However, detectMM does not know that
the fundamental value has changed. We think that more information from
the informed traders makes the market maker performs better. The pattern
of the order flow has a crucial effect on the price dynamics of the market
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maker.
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(a) α = 0.25
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(b) α = 0.33
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(c) α = 0.5
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(d) α = 0.75

Figure 6.2: These are the results of the experiments of detectMM with α’s
of 0.25, 0.33, 0.5 and 0.75.

6.2 Simulation results of 100 experiments

We did with each same setting 100 experiments as the single experiment.
The parameters are the same in the 100 experiments except that the ar-
rangement of the orders differs. This is randomly generated 100 times. The
simulations are runned 100 times and we average the bid and ask price. We
compute the mean bid and mean ask price over the 100 experiments and
plot the mean prices together with the fundamental value.
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6.2.1 Simulation with SpreadMM

Fundamental value serie with 1 jump

We have done a number of simulations to determine which price updating
function fits best and investigate the effect of the different parameters on
the price updating process. The simulations can be grouped into three cat-
egories. We used a fundamental value serie with only one jump. Figure 6.3
shows the first of experiments where α is changed in each simulation. Fig-
ure 6.4 shows the second group of experiments where ∆a and ∆b are changed
in each simulation. These are the small increment of the bid and the ask
price. Figure 6.5 shows the third group of experiments where k is changed
in each experiment. K is a variable that we choose to divide by the small
increment ∆a and ∆b. In the first group of experiments we increment in
each time step the parameter k with 1 and set back to 1 of the derivative of
the price function in that time step is equal to 0. We set the small increment
fixed to 40. We made 4 experiments: α’s are 0.25, 0.33, 0.5 and 0.75. We
see that in all four experiments that the ask price function is the same, but
the bid price function is closer to the fundamental value, because there are
more informed traders trading in the simulation. In the second group of ex-
periments we set α fixed to 0.75. We did the same with the parameter k as
in the first group of experiments. Here we did 6 experiments. We increment
∆a and ∆b in each experiment with 20. The values are respectively 10, 30,
50, 70, and 90. Finally, to see if a large value has an effect on the price
behaviour of the market maker, we set ∆a and ∆b to 200. We see that the
parameters ∆a and ∆b have no effect on the price behaviour of the market
maker. In the third group we set α fixed to 0.75 and set ∆a and ∆b fixed
to 90. Here we did not increment the parameter k in each time step with 1.
The value does not change during the simulation. We did four experiments
with the following values of k: 1, 2, 4 and 6. We see that if k is small then at
the beginning of the simulation or after a change in the fundamental value
the price converges faster to the fundamental value. A larger k means that
the market maker needs more time to set the price closer to the fundamental
value. Another characteristic in the experiments is that if k is larger then
in a period where there is no change in the fundamental value, then the
bid-ask spread is smaller.

Fundamental value serie with multiple jumps

We did with the same experimental settings in simulations but now with
more jumps in the fundamental value. We want to see what kind of effect
the occurrence of jumps will have in a short period on the price setting of
the market maker. First we did 4 experiments with α of 0.25, 0.33, 0.5 and
0.75. The small increment ∆a and ∆b are set to 90 and the k is set to 1
fixed. The result is shown in figure 6.6. As shown in that figure, if α is larger
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(a) α = 0.25
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(b) α = 0.33
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(c) α = 0.5
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(d) α = 0.75

Figure 6.3: These are the results of the experiments of spreadMM with
signalling and α’s of 0.25, 0.33, 0.5 and 0.75.
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(a) ∆a and ∆b = 10
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(b) ∆a and ∆b = 30
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(c) ∆a and ∆b = 50
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(d) ∆a and ∆b = 70
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(e) ∆a and ∆b = 90
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(f) ∆a and ∆b = 200

Figure 6.4: These are the results of the experiments of spreadMM with
signalling and α is 0.75 and ∆a and ∆b have values of 10, 30, 50, 70, 90 and
200.
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(a) k = 1
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(b) k = 2
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(c) k = 4
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(d) k = 6

Figure 6.5: These are the results of the experiments of spreadMM with
signalling and α is 0.75 and ∆a and ∆b are 90 and k is 1, 2, 4 or 6.
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then the bid-ask spread is smaller. In period where many jumps occur, the
market maker does not know what to do. The prices are not stable. We
did also four experiments and varied the parameter k. The values are 1, 2,
4 and 6. The small increment is set to 90 and α is set to 0.75. The result
is shown in figure 6.7. In that figure is shows that if k is larger then the
market maker needs more time to converge to the fundamental value and
in stable period then the bid-ask spread is smaller. These phenomena are
consistent with what we see in figure 6.5, the result of the experiments with
only one change in the fundamental value. In instable period the prices are
not so stable, but the direction of the prices is the same as the fundamental
value.
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(a) α = 0.25
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(b) α = 0.33
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(c) α = 0.5
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(d) α = 0.75

Figure 6.6: These are the results of the experiments of spreadMM with
signalling and α’s of 0.25, 0.33, 0.5 and 0.75 , k is 1 unchanged.
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(a) k = 1
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(b) k = 2
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(c) k = 4
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(d) k = 6

Figure 6.7: These are the results of the experiments of spreadMM with
signalling and α is 0.75 and ∆a and ∆b are 90 and k is 1, 2, 4 or 6.
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SpreadMM and fundamental value approximation

In the above experiments with spreadMM, the market maker gets the news
signal that the fundamental value is changed and from that time step on to
the current time step the distribution of the probability of buy, sell and no
order is calculated. These calculated probabilities are then compared with
the distribution of the prior probability of buy, sell and no order using the
distance method (see equation 4.35). However, we want to model in a way
such that the market maker does not know whether a fundamental change
has taken place or not. The results of the experiments with fundamental
value approximation are shown in figure 6.8. We did 6 experiments. Each
simulation we varied the size of the period wherein the market maker calcu-
lates the probabilities. The total number of orders in equations 4.8, 4.9 and
4.10 in each time step of this period is equal to current timestep minus the
number of timesteps since the beginning of the chosen size of the period. As
it is seen in the results if the chosen period is large then the market maker
will become more uncertain and lead to a large bid-ask spread and unstable
prices.

6.2.2 Simulation with the Das market maker

We did experiments with the Das market maker with α is 0.75 and η is
0.4. The result is shown in figure 6.9. The figure shows that after each
jump in the fundamental value the market maker sets a very large bid-ask
spread. He gets a signal if a change in the fundamental value has taken
placed. After a jump the market maker needs time to converge to the new
fundamental value. Unlike spreadMM, the Das market maker is in unstable
period where there occur more than one jump also very stable and can track
the fundamental value.

6.3 Comparison between Das market maker and
SpreadMM

6.3.1 Using the mean of bid-ask spreads method

We use mean of bid-ask spreads method to compare the performance be-
tween the Das market maker and spreadMM. We summarise the bid-ask
spreads of each time step and divide it by the number of time step. Small
bid-ask spreads are preferred by the market maker. So if the mean sum of
bid-ask spreads is small, then this means that the market maker is doing a
good job. Figure 6.10 shows 4 experiments with the following market makers
and settings (from above to below and from left to right):

• Das market maker
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(a) period = 5
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(b) period = 15
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(c) period = 20
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(d) period = 25
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(e) period = 30
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(f) period = 60

Figure 6.8: These are the results of the experiments that spreadMM does
not get a signal when a change take place in the fundamental value (without
signalling).
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Figure 6.9: This is the result of the experiment with the Das market maker
(α = 0.75).

• SpreadMM with fundamental value changing signalling (k is 6 and is
fixed in each time step)

• SpreadMM with fundamental value changing signalling (k is incre-
mented in time step)

• SpreadMM without fundamental value changing signalling (period is
10)

Each figure plots the probabilistic density function of the mean of bid-ask
spreads over the 100 simulations generated by the market maker. The Das
market maker has generated mean of bid-ask spreads between 14 and 22.
SpreadMM with fundamental value changing signalling and fixed k has gen-
erated mean of bid-ask spreads between 68 and 90. SpreadMM with funda-
mental value changing signalling and k is incremented has generated mean
of bid-ask spreads between 20 and 110. The spreadMM without fundamen-
tal value changing signalling has generated mean of bid-ask spreads between
16 and 36. We also put the result of the experiments of spreadMM with-
out signalling, but varied the size of the period wherein the market maker
calculates the probabilities to adjust the prices in figure 6.11. As shown in
figure 6.11 if the period is large, for example 30 and 60, then the mean of
bid-ask spreads is also increasing.
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(d) SpreadMM without signalling

Figure 6.10: These are the results of the probabilistic density function of
the mean of bid-ask spreads (with α is 0.75).
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Figure 6.11: These are the results of the probabilistic density function of the
mean of bid-ask spreads done with the simulation with spreadMM when he
does not get a signal when a change takes place in the fundamental value.
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6.3.2 Using the sum of difference between the fundamental
value and the price method

We use the sum of difference between the fundamental value and the prices
method to compare the performance of Das market maker and the diverse
settings of spreadMM, because the mean of bid-ask spreads method says
nothing about how close the market maker is tracking the real fundamental
value. We use the same models described in 6.3.1 about the mean of bid-ask
spreads method for camparisons. Table 6.1 and table 6.2 list the sum of
difference between fundamental value and bid price, the sum of difference
between fundamental value and ask price and the mean of the models. The
tables show that the Das market maker tracks the fundamental value better
than spreadMM. SpreadMM with signalling where k is incremented has a
larger difference than spreadMM with signalling where k is fixed. As we
look at the results of spreadMM without signalling then we can see that
the larger the period that spreadMM uses to calculate the probabilities the
larger the difference is.

Table 6.1: Table sum of difference between fv and prices 1

Model diffbid diffask diffmean

Das market maker 9173.01 8772.91 8972.96
SpreadMM with signalling (k is fixed) 32081.67 36807.07 34444.60

SpreadMM with signalling(k is incremented) 53611.97 47586.65 50599.31
SpreadMM without signalling (period is 10) 20551.46 17329.24 18940.35

Table 6.2: Table sum of difference between fv and prices 2

Model diffbid diffask diffmean

SpreadMM without signalling (period is 5) 19345.90 16909.15 18127.53
SpreadMM without signalling (period is 15) 21250.09 19432.14 20341.12
SpreadMM without signalling (period is 20) 23063.50 20625.36 21844.43
SpreadMM without signalling (period is 25) 26505.41 23727.31 25116.36
SpreadMM without signalling (period is 30) 28929.41 26512.80 27721.10
SpreadMM without signalling (period is 60) 32939.29 32425.62 32682.46
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6.4 Conclusion

SimpleMM can quote prices which reflect the true fundamental value, be-
cause it is assumed that he knows the fundamental value. DetectMM does
not work, because of the shortcomings of the model. If we compare the
Das market maker with spreadMM both with the mean of bid-ask spreads
method and the sum difference between the fundamental value and the bid
and ask price then we see that the Das market maker performs better, be-
cause the Das market maker keeps a probability distribution of all possible
fundamental values. Das market maker has more information to approx-
imate the fundamental value than spreadMM. SpreadMM can track the
fundamental value, but it is not perfect. Advantage of spreadMM over the
Das market maker is that spreadMM uses a simpler fundamental value ap-
proximation method so that spreadMM uses less computation time.
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Chapter 7

Conclusion and future
research

7.1 Conclusion

Market makers play a very important role in today’s financial markets. One
of the main task of the market maker is to execute investors’ orders at the
best possible price. How does the market maker know what is the best
price to create liquidity and at the same time profits from the trade? How
does a market maker quote the bid and ask prices? Using a model we can
study the pricing mechanism of the market maker. Market makers are using
inside knowledge, experience to set prices on a daily basis. The order flow
is one of the information a market maker uses. The question is whether the
order flow contains information for the market maker to track the underlying
fundamental value. In this thesis we have conducted a research on market
marker’s models. We introduced a simple linear market maker’s price setting
function with the fundamental value in it. This is not consistent with the real
world. Then we introduced the method of using the order flow information
to locate the position of the fundamental value with respect to the bid-ask
spread. We first use the maximum value of probability order type in the
order flow to determine the position of the fundamental value. However,
because of the drawbacks of this method we introduced another method
to use. Then we used the distribution of the probability of the order type
in the order flow to determine the fundamental value. And the market
maker gets a signal if the fundamental value changes. In the real world
the market maker does not know in advance that the fundamental value is
going to change. That’s why the market maker calculates the probabilities
not since a change occurs in the fundamental value, but from each small
periods of time the market maker begins to compute the probabilities. We
compared this market maker with the Das market maker using the mean of
bid-ask spreads method and the difference between the fundamental value
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and the prices method. We conclude that the information in order flow does
indeed contain information that the market maker can use to update the
prices, but this only works in certain situations. For example if the period is
relatively small then the information is more useful. Using the mean of bid-
ask spreads method to compare the performance of the Das market maker
and the in this paper introduced market maker spreadMM shows that the
Das market maker is better, because he generates smaller bid-ask spreads.
If we compare the mean of bid-ask spreads that is generated by spreadMM
but with varied size of periods that the market maker is using to calculates
the probabilities to adjust the prices then the results show that the larger
the period the larger the bid-ask spread. If we compare the models with
the sum difference between the fundamental value and the prices we also see
that the Das market maker performs better than spreadMM.

7.2 Future research

These are the possible recommendations we suggest to conduct further re-
search:

• We suggest to use probabilistic fuzzy system to model the probability
density of the order types in the order flow. It is good to model the
order flow process as a probabilistic fuzzy system, because the proba-
bilistic uncertainty of the orders placed by investors can be modelled
and better understanding of the order flow process can be gained.

• The smallest increments ∆a and ∆b in the price updating function
are fixed in each time step. We suggest to change this amount of
incrementation in each time step, because the distance between the
prices and the fundamental value differs in each time step, so the
incrementation should also be different in each time step to update
the prices.
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Appendix A

Figures
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(a) α = 0.33
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(b) α = 0.5
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(c) α = 0.75

Figure A.1: These are the results of the experiments with simpleMM.
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Appendix B

Matlab codes

SpreadMM code

function [fv,ba,of,in] = xuemm2(fvp,tt,v0,bid0,ask0,a,eta,n,r,delta_a,delta_b);

%% Initialisation

% Error checking

if (nargin < 1), error( ’Not enough input arguments.’ ); end;

if (nargin < 2), v0 = 10000; elseif isempty(v0), v0 = 10000; end;

if (nargin < 3), bid0 = 9950; elseif isempty(bid0), bid0 = 9950; end;

if (nargin < 4), ask0 = 10050; elseif isempty(ask0), ask0 = 10050; end;

if (nargin < 5), a = 0.3; elseif isempty(a), a = 0.3; end;

if (nargin < 6), eta = 0.5; elseif isempty(eta), eta = 0.5; end;

if (nargin < 7), pj = 0.001; elseif isempty(pj), pj = 0.001; end;

if (nargin < 8), sw = 0; elseif isempty(sw), sw = 0; end;

if (nargin < 9), r = 0; elseif isempty(r), r = 0; end;

if (nargin < 10), delta_b = 10; elseif isempty(delta_b), delta_b = 10; end;

if (nargin < 11), delta_a = 10; elseif isempty(delta_a), delta_a = 10; end;

if ( a < 0 ) | ( a > 1 ), error( ’A must be between 0 and 1. ’); end;

if ( eta < 0 ) | ( eta > 0.5 ), error( ’ETA must be between 0 and 0.5.’ ); end;

% Generate fundamental value series

nt = size(fvp,1);

if (nt == 1), nt = fvp; fvp = generate_fvp(nt,v0,pj,sv); end;

if (r == 1), fvp = round(fvp); end;

% Initialise output storage

ba = zeros(nt,2);

fv = fvp;

of = zeros(nt,1) - 2;

in = zeros(nt,1);
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index = -1;

bid = bid0; ask = ask0;

ba(1,:) = [bid,ask];

asksign(1) = NaN;

bidsign(1) = NaN;

k = 1;

% priors when bid <= ask <= fv

fv_above = [(1-a)*eta + a, (1-a)*eta, 1-(a+2*eta(1-a))];

% priors when bid <= fv <= ask

fv_between = [(1-a)*eta, (1-a)*eta, 1-(2*eta(1-a))];

% priors when fv <= bid <= ask

fv_beneath = [(1-a)*eta, (1-a)*eta + a, 1-(a+2*eta(1-a))];

priors = [fv_above; fv_between; fv_beneath];

for i = 2:nt,

trader = tt(i);

if (tt(i) == 0)

order = informed_trader(fvp(i),ba(i-1,:));

elseif (tt(i) == 1)

order = 1;

elseif (tt(i) == 2)

order = -1;

else

order = 0;

end

of(i) = order;

trades = compute_trades(of);

maximum = find(trades == max(trades));

if (size(maximum,2) > 1)

if order == 1,

index = 1;

elseif order == -1,

index = 2;

else

index = 3;

end

else
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index = maximum;

end

in(i) = index;

switch index,

case 1

if order == 1,

if (asksign(i-1) == 1)

k = 1;

end

ask = compute_ask(ba,i,delta_a,k);

bid = ba(i-1,1);

asksign(i) = 0;

bidsign(i) = bidsign(i-1);

else if order == -1,

if (bidsign(i-1) == 1)

k = 1;

end

bid = compute_bid(ba,i,delta_b,k);

ask = ba(i-1,2);

if (bid > ask)

bid = ask;

end

bidsign(i) = 0;

asksign(i) = asksign(i-1);

else

if (bidsign(i-1) == 1)

k = 1;

end

bid = compute_bid(ba,i,delta_b,k);

bidsign(i) = 0;

if (asksign(i-1) == 1)

k = 1;

end

ask = compute_ask(ba,i,delta_a,k);

asksign(i) = 0;

end

end

case 2

if order == 1,
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if (asksign(i-1) == 0)

k = 1;

end

ask = compute_ask(ba,i,-delta_a,k);

bid = ba(i-1,1);

asksign(i) = 1;

bidsign(i) = bidsign(i-1);

if (ask < bid)

ask = bid;

end

else if order == -1,

if (bidsign(i-1) == 0)

k = 1;

end

bid = compute_bid(ba,i,-delta_b,k);

ask = ba(i-1,2);

bidsign(i) = 1;

asksign(i) = asksign(i-1);

else

if (bidsign(i-1) == 0)

k = 1;

end

bid = compute_bid(ba,i,-delta_b,k);

bidsign(i) = 1;

if (asksign(i-1) == 0)

k = 1;

end

ask = compute_ask(ba,i,-delta_a,k);

asksign(i) = 1;

end

end

case 3

if order == 1,

if (asksign(i-1) == 0)

k = 1;

end

ask = compute_ask(ba,i,-delta_a,k);

bid = ba(i-1,1);

asksign(i) = 1;

bidsign(i) = bidsign(i-1);

if (ask < bid)

ask = bid;

end
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else if order == -1,

if (bidsign(i-1) == 1)

k = 1;

end

bid = compute_bid(ba,i,delta_b,k);

ask = ba(i-1,2);

bidsign(i) = 0;

asksign(i) = asksign(i-1);

if (bid > ask)

bid = ask;

end

else

if (bidsign(i-1) == 1)

k = 1;

end

bid = compute_bid(ba,i,delta_b,k);

bidsign(i) = 0;

if (asksign(i-1) == 0)

k = 1;

end

ask = compute_ask(ba,i,-delta_a,k);

asksign(i) = 1;

if (bid > ask)

bid = ask;

end

end

end

otherwise

error(’There are only three cases’);

end

if ( r == 1 ), bid = floor(bid); ask = ceil(ask); end;

ba(i,:) = [bid, ask]; k = k + 1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% compute the number of buys, sells or holds

%% tradesRatio = [buys ratio, sells ratio, holds ratio]

function trades = compute_trades(tt);

trades = [size(find(tt == 1),1)/size(tt,1),...

size(find(tt == -1),1)/size(tt,1),...

size(find(tt == 0),1)/size(tt,1)];
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Function to generate fundamental values to be used in the

% simulation

function fvp = generate_fvp(nsteps,v0,pj,sv);

jumps = [0;rand(nsteps-1,1) < pj]; jsize = sv*randn(nsteps,1);

fvp = v0 + cumsum(jumps .* jsize);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Function to determine the order type for the informed trader

function order = informed_trader(fv,ba);

if ( fv > ba(2)),

order = 1; % buy

elseif ( fv < ba(1) ),

order = -1; % sell

else

order = 0; % hold

end

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function ask = compute_ask(ba,i,delta_a,k);

ask = ba(i-1,2) + (delta_a/k);

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function bid = compute_bid(ba,i,delta_b,k);

bid = ba(i-1,1) + (delta_b/k);

SimpleMM Code

for i = 2:nt,

trader = tt(i);

if (tt(i) == 0)

order = informed_trader(fv(i),ba(i-1,:));

elseif (tt(i) == 1)

order = 1;

elseif (tt(i) == 2)

order = -1;

else

order = 0;

end

of(i) = order;
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if (order == 1)

ask = compute_ask(gamma,fv(i),ba(i-1,:));

elseif (order == -1)

bid = compute_bid(gamma,fv(i),ba(i-1,:));

else

bid = compute_bid(gamma,fv(i),ba(i-1,:));

ask = compute_ask(gamma,fv(i),ba(i-1,:));

end

if ( r == 1 ), bid = floor(bid); ask = ceil(ask); end;

ba(i,:) = [bid,ask];

end

Generate type of traders serie code

function tt = generate_traders(nsteps,a,eta);

%% Generate traders

% 0 informed trader

% 1 uninformed trader who buys

% 2 uninformed trader who sells

% 3 uninformed trader who holds

tt = zeros(nsteps,1);

tt(1) = -2;

for i = 2:nsteps,

% determine type of trader

if ( rand(1) > a ) % uninformed trader

r = rand(1);

if ( r <= eta ),

tt(i) = 1; % buy

elseif ( (r > eta) & (r <= 2*eta) ),

tt(i) = 2; % sell

else

tt(i) = 3; % hold

% else: trader is informed

end

end

end
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Different fundamental value with bid or ask price
code

clear;

clc;

map = uigetdir;

dirListing = dir(map);

sumbid = 0;

sumask = 0;

meanba = ones(1000,2);

nsteps = 1000;

for i = 1:nsteps,

for d = 3:length(dirListing),

filename = dirListing(d).name;

load(filename);

sumbid = sumbid + ba(i,1);

sumask = sumask + ba(i,2);

end

meanba(i,1) = sumbid / 100;

meanba(i,2) = sumask / 100;

sumbid = 0;

sumask = 0;

end

diffbid = sum(abs(fv - meanba(:,1)));

diffask = sum(abs(meanba(:,2) - fv));

diffmean = (diffbid + diffask) / 2;

Calculate mean 100 simulations to plot

clear;

clc;

map = uigetdir;

dirListing = dir(map);

sumbid = 0;

sumask = 0;
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meanba = ones(1000,2);

nsteps = 1000;

for i = 1:nsteps,

for d = 3:length(dirListing),

filename = dirListing(d).name;

load(filename);

sumbid = sumbid + ba(i,1);

sumask = sumask + ba(i,2);

end

meanba(i,1) = sumbid / 100;

meanba(i,2) = sumask / 100;

sumbid = 0;

sumask = 0;

end

Calculate the mean sum of bid-ask spreads

clear;

clc;

map = uigetdir;

dirListing = dir(map);

for d = 3:length(dirListing),

filename = dirListing(d).name;

load(filename);

meanba(d) = sum((ba(:,2) - ba(:,1))) / size(ba,1);

end
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