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Abstract

We will test the effect that different oil price transformations have
on output in a linear regression and vector autoregressive model. Sev-
eral tests are employed to analyse the significance between the transfor-
mations and output and the stability of the models. We find evidence
that transformations which are based on a volatility-scaling have the
strongest link with the output and are the most stable. Furthermore,
our results provide evidence for an asymmetric oil-output relation and
show a strong breakdown in this relation after 1973.
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2 Introduction
This paper contributes to the large body of literature that has been con-
structed on the topic of oil prices and its macroeconomic influences. Starting
with one of the pioneers, Hamilton(1983) has analysed the effect that many
U.S. recessions seem to have been preceded by an oil price increase. Both a
strong link between oil prices and output as well as a breakdown in this link
around the first OPEC crisis of 1973 are well documented. Numerous expla-
nations have been given that contribute to this weakened relation between
oil and output.

We will focus on one of the approaches that is taken in order to explain
the breakdown of the relation between oil prices and the output growth of the
U.S. In this approach researchers focus on finding oil price transformations
that do not lose their connection with the output growth as much. Examples
of such transformations are series that use a volatility measure or series that
compare the current oil price value with its maximum over the previous four
quarters.

We will contribute in several ways. First, we will construct new oil price
transformations. Second, the relations between these transformations and
the output growth are analysed and compared with one another. Third, we
will test the different relations for the existence of an unknown structural
break by means of a Quandt-Andrews test. This contrasts with the common
method of testing for a known structural break with a Chow test. Fourth,
the effects of oil price shocks on output in a multivariate framework are anal-
ysed based on generalized impulse response functions instead of the regular
impulse response functions. In this manner the results are invariable to the
specific variable ordering. Finally, we test the relation between oil and out-
put both in a direct way by ignoring other macroeconomic variables and in a
multivariate framework which does include other macroeconomic measures.

This work is relevant due to numerous reasons. In the first place is the
relation between oil prices and output growth important for many parties:
companies, investors, and governments for example. Second, by analysing
what happens with the characteristics between oil prices and the output
growth when a different transformation is used, we can learn more about
what aspects of the oil price are relevant for output and which are not. This
could be valuable information for policymakers. Finally, the results might
indicate possible interesting future research approaches that could be taken.

In Mork(1989) for example evidence is found for a breakdown between oil
price movements and output growth. However, this breakdown is no longer
present when oil price increases are used as the oil price input instead of the
regular oil price movements. This is known in the literature as an asymmetric
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effect: oil price increases appear to have more relevance for macroeconomic
variables, in particular output, than decreases.

The goal of this paper is to analyse what the effects are on the link
between oil prices and the GNP growth when we use different oil price trans-
formations. In particular we will pay attention to the statistical relevance of
these relations and second of all to the stability of the relations.

We will both use existing oil price transformations as well as new oil price
transformations in our research. The existing transformations are the oil
price increases and decreases. The net oil price increase by Hamilton(1996)
and a measure as constructed by Lee, Ni and Ratti(1995) which divides the
oil price growth by the conditional volatility of the oil price. In that manner
oil price shocks during a calm period get a larger weight than shocks that
occur in a highly volatile period.

The two new measures are a series that, unlike the net oil price increase,
does not compare the current value with a previous maximum but with the
value of a moving average. Finally we will combine the net oil price increase
of Hamilton and the series by Lee, Ni and Ratti by dividing the net oil price
increase by the conditional volatility.

The link between these oil price transformations and output growth will
be analysed within two different frameworks. First we will use a linear re-
gression framework in which output growth is regressed on its own lags and
lags of the oil price transformations. Second, more macroeconomic variables
are included in order to make the model and hence the results more realistic.
This second analysis is conducted with a vector autoregressive model. The
included macroeconomic variables have been suggested by Sims(1980b) as a
concise approximation of macroeconmic reality. Since his publication most
of the literature investigating relations between oil prices and the macroe-
conomy have been using this framework and his suggested variables. We will
use the same six variables and add one oil price variable.

In both these frameworks we will first analyse the nature of the relation
between regular oil price movements and output growth. After those re-
sults are established we can compare them with the effects that the usage of
different oil price transformations has.

The aspects of the transformations that we are most interested in are the
relevance of the transformation for the output growth and the stability of
the estimated model. The relevance will be investigated by applying Granger
causality tests. Stability is investigated by analysing whether an unknown
structural break is present in the model. As opposed to the general practice
in the literature, will we not use the Chow test for the existence of a known
structural break but will we use the Quandt-Andrews test for the presence
of an unknown structural break.
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The analyses in both sections indicate a negative relation between oil
prices and the GNP growth. However, output reacts relatively slow on oil
price shocks; the effects are strongest after three to four quarters. Second
we find evidence for a breakdown in the relation between oil prices and the
output after 1973. The different oil price transformations are less affected
but nevertheless also show a breakdown. Furthermore evidence is found
for an unknown structural break when the oil price movement are used or
the net oil price increase in the regression model. Among all the oil price
transformations, the series that consistently showed the highest significance
towards output and was the least receptive for structural breaks, were the two
transformations that are using a volatility scaling. This indicates that the
oil price volatility is important in the link of oil prices to the macroeconmy.

Finally we think that improvements in the research between oil prices and
output can be made by using MIDAS regressions, Ghysels et. al(2002). With
this method it becomes possible to use the high frequency oil price data in
combination with the low frequency macroeconomic data. Hence we do not
have to discard information during the data processing. This could result in
additional insights.

The paper is organized as follows. In section 2 an overview of the main
topics covered in the literature is provided. It serves to place this research
into its proper context and to familiarize the reader with the most important
research angels and applied methodology. Section 3 contains a preliminary
empirical analysis of the relation between oil prices and output. Section 4
introduces the different oil price transformations. After this introduction all
the transformations are compared with one another in a linear regression
framework. In particular the relevance and stability of the different models
will be researched. Section 5 compares the performances of the different
transformations within the context of a vector autoregressive model. Section
6 concludes.
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3 Literature overview
The past decades a large body of research has been developed by academics
on the role and significance of crude oil prices in the macroeconomy. Quite
often, the academic world has renewed its interest in this theme after episodes
that were characterized by abrupt and large movements in the price of crude
oil: Tatom(1988) for example performed his research on the asymmetric
responses of macroeconomic aggregates on oil price changes after a period
known for the largest oil price decrease in world history.

The aim of this section is to introduce the academic framework as it has
been established in our field of research in order to place this research into
its proper context. First, some of the main findings that were established are
discussed. Both the theoretical aspects as well as the performed empirical
research aimed at validating those claims will be covered in detail. Second,
some frequently used methodological procedures in this field of research will
be addressed.

3.1 Results from the literature

As a starting point the relation between oil price increases and U.S. reces-
sions is mentioned. A pioneer who addressed this issue empirically was
Hamilton(1983). His research is based on the phenomenon that dramatic oil
price increases are often followed by a U.S. recession several quarters later,
when considering the period 1948-1972. In his paper three hypotheses trying
to explain this observation are subjected to testing.

In the first hypothesis this correlation is considered to be a rare historical
coincidence. In the second hypothesis the correlation is explained as the
result of a third, endogenous variable, such as output, prices or the money
supply, responsible for both the oil price increase and the U.S. recession. The
final hypothesis is based on the existence of a causal, exogenous relationship
between oil price increases and U.S. recessions.

After the rejection of the first two hypotheses at conventional significance
levels, evidence is provided in favour of the last hypothesis. This suggests
that the timing and magnitude of the U.S. recessions in the 1948-1972 period
could have been different in the absence of the oil price increases. Support
for this causality however, does not provide evidence for the statement that
oil price increases are either a necessary or a sufficient condition for U.S.
recessions.

An other question that is interesting within this context was proposed
by Leduc and Sill(2004). They ask whether the recession following oil price
shocks is directly related to the oil price shocks themselves or is in fact caused
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by the monetary policy measures that are taken in response to these shocks.
In their work they calculate that the monetary measures taken after an oil
price shock account for 40 percent to the drop in output that follows a rise
in oil prices.

A second important issue in the literature is the stability of the oil price-
macroeconomy relationships. Once a significant relationship has been found,
its structure or significance often seems to display a high sensitivity to the
sample period that is used in the estimation process. The discovery of re-
lations that are severely different, when compared over two specific sample
periods, could help us in pointing out the factors that are crucial in the
macroeconomic framework for determining the behaviour of the oil price-
macroeconomy interactions. Factors that could be influential are the creation
of the OPEC, a change in exchange rate regime, changes related to fiscal or
monetary policy or distortions of international relations. Furthermore rele-
vant macroeconomic elasticities could alter or the expectations of agents, e.g
Kilian(2006).

A paper that subjects the established Granger Causal relations in Hamil-
ton’s 1983 paper to stability tests is Hooker(1996). Strong empirical evidence
is found that these relationships have severely weakened after 1973. This de-
cline in relevance of crude oil prices in the macroeconomy is attributed to im-
portant, long-term changes in the economy: In 1973 the productivity started
to slowdown, a floating exchange rate was introduced and the U.S. entered
a period characterized by unusual low interest rates. Furthermore, oil prices
were determined under a different institutional regime before 1973 than after
1973. The domestic supply in the period before 1973 was controlled by the
Texas Railroad Company (TRC) which resulted in a unique, discrete price
pattern during this period. An extensive treatment of this regime and the
shift towards the current, more volatile and reactive market, is provided in
Hamilton(2011).

The next topic of interest which is commonly discussed in the relevant
literature is that of symmetry : To what extent are the effects of oil price
declines the reverse of the effects of oil price increases? Interest in this topic
of symmetry was renewed after one of the largest price declines in history of
crude petroleum between the end of 1985 and the middle of 1986.1 This drop,
frequently referred to as the 1980’s oil glut, was a result of a crude oil surplus.
This surplus was related to the falling demand that followed the Energy Crisis
of the 1970’s. Triggered by this event Tatom(1988) investigated the symme-

1In November 1985 the price of a barrel of West Texas Intermediate(WTI) peaked at
almost $31. By July 1986 it has dropped to $11.58 per barrel: A total decline of more
than 60%.
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try question extensively. He has augmented the Andersen-Jordan(1968) GNP
equations in order to account for the effects of oil price changes. Within that
framework numerous tests have been performed in order to measure the de-
gree of asymmetry in the effects that oil prices have on the macroeconomy.
Regardless of the theoretical framework constructed in the early sections in
favour of asymmetry, the presence of significant asymmetry is rejected by all
tests. However, these results have been challenged by several researchers:

For example Mork(1989) provides an empirical justification for the ex-
istence of asymmetric effects. The six-variable system as introduced by
Sims(1980b) to concisely approximate the macroeconomic reality is aug-
mented with measures that differentiate between the effects of oil price in-
creases and oil price decreases. In this model statistical evidence is found that
oil price increases have a large , negative effect on real GNP, whereas the data
does not identify any significant effects of oil price declines, suggesting a form
of asymmetry.

However, in Hooker(1996) no evidence is found in favour of the asymmetry
hypothesis. In order to account for potential asymmetric reactions, several
transformations of oil price measures are constructed. When the results of
Granger Causality tests and structural break tests with these transformations
are analysed, no significant asymmetric affects can be established.

In Ferderer(1996) empirical support is provided that favours the asym-
metry hypothesis. First, he constructs a new measure for the volatility of
oil prices that is based on daily observations. Then, it is demonstrated that
increases in this volatility measure are significantly related to a reduction in
output. As opposed to the oil price increases which are found to be statisti-
cally unrelated to an output decrease.

Finally Hamilton(2003) finds strong support for the existence of a non-
linear, asymmetric relation between oil prices and output. He argues that
linear approximations that are established between oil prices and the output
are often wrongly classified as unstable. The instability is caused by the fact
that the relation is actually not linear. Such a relation might seem to be
unstable while the actual true underlying nonlinear relation is stable.

A problem however, with choosing an appropriate nonlinear specification
is that one can choose from a large spectrum of specifications. This implies
that it becomes difficult to properly distinguish between a nonlinear relation
that is actual significant and a relation that seems to be significant due to
the effects of data mining.

However, by using the methodology as constructed in Hamilton(2001),
those issues can be resolved. In that manner a proper statistical test is per-
formed which investigates the null hypothesis of linearity against a wide range
of alternative nonlinear specifications. By using this approach in Hamil-
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ton(2003), sufficient evidence is found in favour of a nonlinear relation be-
tween oil prices and output. In particular it is found that oil price increases
are more relevant for output than oil price decreases and that oil price in-
creases are less important when they correct earlier decreases than when they
do not seem to correct previous movements.

Furthermore, relating to this asymmetry question, is the topic of specifi-
cation or representation. The crucial point here is whether oil price changes
themselves are in fact sufficiently capturing the essence of the oil price-
macroeconomic relationships. Perhaps more informative are transformations
of the oil price changes. If this is the case a different representation of oil
prices in the form of a transformation would be more appropriate in research
and should gain more attention for policymakers than the commonly used
price changes.

An example of choosing a different representation in order to capture more
relevant information is given in Ferderer(1996). The oil price changes seem to
fail in Granger Causing macroeconomic aggregates whereas a transformation
representing the volatility, does significantly Granger Cause these aggregates.
Hence, it appears that the conventional oil change representation is less ca-
pable then a volatility measure of capturing the true oil price-macroeconomic
interactions.

Similarly, in Hamilton(1996) it is argued that the conventional log differ-
ences in oil prices do not contain the relevant information needed for captur-
ing the real interactions between oil prices and the macroeconomy. In the
first place a measure called the net oil price increase is constructed. Next,
results of a structural break in 1973 by using conventional oil change mea-
sures are contrasted with the results of using the net oil price increase in
the test. The main conclusion arising from this comparison is that a struc-
tural break is not present in the coefficients of the transformed measure as
opposed to a significant change in the coefficients of the conventional mea-
sure. Furthermore, Granger Causality is shown to hold between the net oil
price increase and macroeconomic aggregates during 1948-1994 whereas the
null of no Granger Causality was easily accepted when using the regular oil
change measure. Both results raise doubts about the validity of using oil
price differences when attempting to describe the real dynamics between oil
prices and the macroeconomy.

An other theme that frequently appears in the relevant literature is that
of the decomposition of the price of crude oil into distinct components, each of
which preferably has a clear economic interpretation. The reason for an inter-
est in this theme is that a common approach among macroeconomists consists
of evaluating the effects of a change in the price of oil on macroeconomic ag-
gregates, Kilian(2006). However, a major drawback of this approach is that
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the price of oil is varied by the researcher ceteris paribus. Bernanke(2004) has
argued that, while this theoretical simplification is applied for convenience,
it does result in a large degree of freedom that is lost: oil price fluctua-
tions do not happen in isolation but instead are usually influenced by the
behaviour of macroeconomic aggregates themselves. Furthermore, lower or
higher oil prices in turn might be driving forces for these macroeconomic
aggregates. The crucial point addressed here is that cause and effect are no
longer properly defined in this approach that attempts to relate oil prices
to the macroeconomy. An implication is that, without knowing the exact
cause of an oil price change, it will be difficult to predict the macroeconmic
consequences of such a change. However, by decomposing the price of oil
into components, these issues can be resolved.

In Kilian(2006) the price of crude oil is structurally decomposed into four
components by using a vector autoregressive model. The first two compo-
nents are related to the supply side of the market: A measure of supply
shocks that are caused by political events in the OPEC countries as devel-
oped in Kilian(2005) and the other supply shocks as measured by the percent
change in global crude oil production. The remaining two components are
related to the demand side: A measure for an aggregate demand shock in
commodities which is based on the dry cargo single voyage rates due to the
established positive correlation between these rates and global economic ac-
tivity, see Tinbergen(1959). The last component consists of demand shocks
that are specific to the crude oil market.

Several interesting conclusions are made: First, the effect of political oil
supply shocks on the real price of oil appears to be negligible. Both types of
demand shocks seem to be far more relevant in the determination of the price
of crude oil than these political oil supply shocks. The aggregate demand
shock seems to be mainly responsible for long-lasting swings in the price
whereas demand shocks specific to the crude oil market cause short term and
more extreme effects on the price. Furthermore, the relative contribution of
the four structural shocks on the real price of oil is shown to be specific to oil
price shocks: this composition is often substantially different when compared
over several periods of oil price shocks. 2

A concern for policymakers was to understand what the contributing fac-
tors were of the rapid oil price increase during the 2003-2008 period. Spec-
ulative trading in commodities markets was often mentioned as one of the
determining factors. In Kilian(2010) the validity of this presumption is inves-
tigated by explicitly modelling speculative demand shocks and, together with

2For example important differences in these contributions can be observed when com-
paring the Iranian Revolution of 1978/1979 with the Iran-Iraq War of 1980-1988
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flow demand and flow supply shocks, analysing the effects of these shocks on
the price of oil within a VAR-model. The speculative demand shock is esti-
mated by considering the above-ground oil inventories. The intuition here is
that speculative traders with their forward looking behaviour will, in antic-
ipation of of an expected oil shortage, buy and store crude oil now, hoping
to sell it with a profit later. This investor’s behaviour is therefore reflected
in the oil inventories.

The hypothesis that speculative behaviour by commodity traders was the
main factor in the 2003-2008 oil price increase, is rejected however. Instead,
aggregate demand shocks, driven by the global business cycle, appear to
be the determining cause for the increase. This result implies that stricter
regulations in the commodity markets would not have helped in preventing
the oil price increase and is therefore crucial for those who are responsible
for the financial regulatory framework.

3.2 Methodology

In this section some commonly applied methodological procedures in the oil
price-macroeconomic field are covered. The first method that we discuss is
the usage of vector autoregressive (VAR) models.

As previously mentioned, both Killian(2006, 2010) and Bernanke(2004),
have reasoned that a frequent problem in macroeconomic research is the
properly defining and separating of cause and effect. A second issue inherent
to macroeconomic research is the frequent habit of imposing many, rather
arbitrary restrictions, on a model, see e.g. Sims(1980b). A method for cir-
cumventing both issues is by specifying a model in which all variables are
treated as endogenous. Such a treatment is realized by defining a VAR-
model: every single variable is defined as a function on lags of itself and on
lags of all the other variables included in the model specification. Essentially
a VAR-model is a generalization of the univariate autoregressive(AR) model.

The information that is captured by a VAR-model can be presented in
several manners. Rarely are all the individual parameter estimates with
their standard errors reported, since this is both rather cumbersome and
usually not particular informative. A method that is frequently used for
presenting VAR-results are the Impulse Response Functions (IRF’s). These
show how a variable responds to a shock of an other variable in a VAR-
model. This provides researchers with a clear interpretation of the effects
of a shock on the other variables, after a VAR-model has been specified.
This is necessary because this information can not be easily obtained from
just the parameter estimates of the model due the underlying complicated
dependence structured as is captured by the covariance matrix.
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The second point that we will discuss is the concept of Granger causal-
ity. In many papers in the relevant literature this method is used. Granger
has introduced the concept in Granger(1969) while discussing the difficulties
that can be encountered when trying to decide the direction of causality that
exists between two variables. One reason is that a correlation does not auto-
matically imply a properly defined causal relationship between variables. In
fact, many spurious and meaningless correlations can be found in economics
and other sciences.

Two types of Granger causality tests exist. The bivariate Granger causal-
ity test addresses the question of whether x causes y by analysing how much
of the behaviour of y can be explained by its past values. Next, it is tested
how much adding lags of x adds to this overall explanation. Hence, the re-
gression being used is: yt = α0+α1yt−1+ ...+αlyt−l+β1xt−1+ ...+βlxt−l+εt,
where l is the number of lags that is considered. The null hypothesis is that
of no Granger causality and is defined by H0 : β1 = ... = βl = 0. This
hypothesis is subjected to a Wald F-test for the joint significance of the pa-
rameter coefficients. When the null hypothesis is rejected, is it said that x
Granger Causes y, which is denoted by x→ y.

A disadvantage of bivariate Granger causality tests is that x→ y does not
imply that y is the result of x. Granger causality in fact only measures the
information content but does not by itself indicates causality in the normal
sense of the word.

The concept of a bivariate Granger causality test can be extended to a
multivariate framework, resulting in a multivariate Granger causality test.
Hence this type of test is usually performed in the context of a vector autore-
gressive model. It tests whether a group of variables jointly has a significant
effect on an other variable. Therefore it is commonly used in case macroe-
conmic variables are used together in a VAR-model in order to asses whether
some variables are relevant for others, in Granger causality terms.

Both the bivariate Granger Causality tests and the multivariate Granger
causality tests are often encountered in the relevant literature. Due to its
clear interpretation and ease of use, the tests are commonly utilized for quan-
tifying the oil price-macroeconomic structures. Advantageous to this testing
procedure - thereby explaining its immense popularity - is its flexible nature:
Tests can be performed on different lag lengths, different sample periods and
on transformations of variables. In this manner specific questions can be
addressed with the Granger Causality tests in the oil price-macroeconomic
framework.

Important in the context of this research is the methodology commonly
applied to test models for a structural break. In an econometric context, a
structural change is a statement about model parameters. When one or more
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estimated parameters in a model change at a specific breakdate, a structural
break has appeared at that time. Information about structural breaks is
important due to several reasons. In the first place are many methods in time
series analysis dependent on the assumption of stationarity, i.e. that model
parameters do not change over time. In the second place can knowledge
about a structural break within a certain model, be interpreted and give us
valuable information.

Two common methods exist for testing a model for the existence of a
structural break. The oldest test was suggested by Chow(1960). His method
consists of splitting the sample into two subsamples. Then, the parameters
are estimated in both samples and tested for equality by using the F-statistic.

The major drawback of this approach however is that the breakpoint
needs to be specified at the beginning of the testing procedure. This im-
plies that either an arbitrary date is picked or or a date is picked based on
some characteristic of the data. Maybe the biggest issue in using this test
might be the fact that its outcomes can be highly sensitive to the breakpoint
that is chosen. Therefore, the likelihood of contradicting conclusions from
researchers using the same data, increases, see Hansen(2001).

In much of the relevant oil price-macroeconomic literature the Chow test
is used. Hooker(1996) establishes relationships that link GDP and the un-
employment rate to the oil price. He then tests the model parameters be-
longing to the oil price coefficients for the existence of a structural break by
Chow’s test in 1973:III. In this manner he want to analyse whether the effect
of oil prices on these macroeconomic variables has changed over time. His
choice for a breakpoint at this time is bases on empirical evidence that many
long-term macroeconomic changes have occurred at that time. Similarly in
Hamilton(1996), the Chow test is used for the stability of a model for output
growth. In these papers and others, the date that is used in the breakpoint
test is set by the researcher a priori and is hence usually based on economic
or political circumstances.

However, the question arises what to do when we do not know a possible
point for a breakpoint. In that instance a test for an unknown breakdate
needs to be performed: the Quandt-Andrews test for an unknown structural
break. In essence this test performs the Chow test sequentially over all pos-
sible breakdates. The Quandt-Andrews test statistic then is the maximum
of all these Chow tests.

However, as opposed to the known distribution of the Chow-statistic,
does the Quandt-Andrews test statistic not follow a regular distribution.
Instead, it was not until the early 1990’s in which Andrews(1993) and An-
drews and Ploberger(1994) provided tables with the critical values of this
distribution. Later, Hansen(2001) has developed a method for approaching
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the p-values that belong to this distribution. The critical values belong-
ing to the Quandt-Andrews statistic are larger than those belonging to the
Chow statistic. Therefore it might be possible that one finds evidence for a
structural break at a user-specified point but fails to find enough statistical
evidence to reject the null of no structural break with an unknown date.

Finally, we mention here the fact that there has been a clear separation
in the research field of the oil price-macroecononmy relationship: on the one
hand a large theoretical basis has been constructed and on the other hand
much empirical research has been performed. Theoretical frameworks have
been developed for example by Bruno(1982), Bruno and Sachs(1982) and
Harkness(1982) in which the dynamics between oil price movements and the
macroeconomy are analysed based solely on theoretical economic arguments.
However, these theoretical papers commonly did not use empirical support
for validating made claims as discussed in Burbidge and Harrison(1984). The
work done in these and comparable papers tends to be based on simulation
methods that are restrictive in nature. Hence, they prefer to conduct their
research based on the VAR-methodology as introduced by Sims(1980b) and
further developed by Doan and Litterman(1981).

The research conducted in this paper builds on the insights and methods
of the literature. We will for example extend Sims original six-variable model
by an oil price variable and conduct causality tests. Contributions are made
to the literature by conducting tests for the presence of an unknown struc-
tural break instead of the Chow test for a known break. Furthermore new
transformations are constructed and tested. Finally the improved general-
ized impulse response functions will be implemented for analysing the effects
of oil price shocks on the output growth.
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4 The oil price measures
In the relevant literature, no real consensus exists on which oil price measure
to use. Most authors seem to utilise the producer price index for crude
oil, e.g. Hamilton(1983) and Hooker(1996). Some authors argue that the
composite refiner’s acquisition costs for crude petroleum give a more realistic
image of the real oil price behaviour. Finally, researchers occasionally prefer
to construct their own measures because they argue that it enhances the level
of realism of the series, e.g. in Mork(1989). In order to be in line with most
of the literature, we will use the producer price index for crude as the oil
price measure in this paper.

In this section we will shortly discuss the most common oil price indices
for completeness and a general understanding. After this, some preliminary
analyses are conducted on the different oil price measures and on the relation
between oil prices and the aggregate output movements.

4.1 West Texas Intermediate(WTI)

WTI is an important, closely watched benchmark in the oil industry and
the financial world. It is a light and sweet crude oil 3 traded in the U.S.
domestic spot market at Cushing, Oklahoma. WTI is traded on the Chicago
Mercantile Exchange(CME) where it serves as the underlying commodity
on the crude oil futures contracts. From the Federal Reserve Economic Data
database(FRED) at the St. Louis Federal Reserve Bank we obtained monthly
data starting at January 1946. WTI data with a daily frequency was obtained
from the U.S. Energy Information Administration(EIA), starting at January
2nd 1986.

4.2 U.S. refiner acquisition cost(RAC) for crude oil

This oil price measure is occasionally used in research relating oil prices to
the macroeconomy. The main motivation for utilizing this series specifically
is the fact that the price of crude oil was established in a different regulatory
environment in the period 1948-1972, Hamilton(1983). In this period the
Texas Railroad Commission (TRC)and comparable state regulatory agencies
would forecast the demand for crude oil for the next month. Based on these
estimates the allowable production levels for wells in the different states to
meet this demand were determined. One important consequence of this sys-
tem was that many cyclically endogenous components of crude oil demand

3Light refers to the low density of the oil, which is measured by the API gravity. Sweet
refers to the fact that WTI is low in sulphur levels.
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did manifest themselves as regulatory shifts in quantities and not in prices.
After 1972 the oil market started to deregulate. Nowadays the petroleum
market is mostly determined by global demand and supply forces. Due to
this high level of regulation in earlier times, many researchers believe that the
RAC serves as a better proxy for the price of crude oil than this controlled
price. Three types of RAC are recorded by the EIA: the domestic, imported
and composite Refiner Acquisition Cost for crude oil. The domestic RAC is
defined as the price of crude oil produced in the U.S. or from its outer con-
tinental shelf. 4 The imported RAC is the price of oil produced outside the
U.S. and transported to the U.S. The measure most often utilized is the com-
posite RAC, which is calculated as the weighted average of the domestic and
imported RAC. All three RAC series are available at a monthly frequency
starting at January 1974.

4.3 Producer Price Index(PPI) for crude oil

A Producer Price Index5 is a weighted index of prices as measured on the
producer level. The Bureau of Labor Statistics releases every month several
PPI’s. The PPI for crude oil is available from January 1947 onwards. Most
of the research in the oil price-macroeconomy literature uses this measure as
the preferred way to represent oil prices. Therefore we have also decided to
apply this series in our research as the oil price representative.

4.4 Analyses and comparisons of oil price measures

This section serves as a first and general discussion on the characteristics of
oil price movements throughout time. Such a discussion is a logical first step
in acquiring a basic, yet important knowledge about oil price movements. In
this section we will take a closer look at the individual features of the different
oil price measures. Furthermore, similarities and differences between these
measures will be discussed.

First we want to mention the fact that most macroeconomic data is usu-
ally available at a quarterly frequency, such as the Gross National Product.
Therefore relations between oil prices and macroeconomic variables are often
investigated by first transforming the high frequency oil price data to the

4The precise definition can be found in 43 U.S.C. 1331.
5Until 1978 the PPI was named the Wholesale Price Index. The change in name did

not include a change in the index methodology, and the continuity of the price index data
was unaffected. The name change reflects only the theoretical model of the output price
index that underlies the PPI.
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lower frequency of the macroeconomic variables used. In this process of con-
verting high frequency data to low frequency data, a lot of potentially useful
information might be lost, which in turn might lead to a different estimated
relation between oil and GNP than when such a conversion would not have
been applied.

An alternative approach has been developed by Ghysels et al.(2002).
They introduce MIxed DAta Sampling (MIDAS) regressions that allow left-
hand and right-hand variables of time series regressions to be used at different
frequencies, hence not discarding information by the process of lowering the
frequency of the data. Instead the lower frequency data is modelled. The
MIDAS regressions are a relatively new development and therefore some is-
sues are still present and need to be resolved, see e.g. Ghysels et al.(2007).
However it is evident that they provide benefits in the fields of finance and
macroeconomics in particular. This because financial data nowadays com-
monly has a high frequency, even tick-data, but many relevant macroeco-
nomic numbers are only published several times per year.

In our research we have converted the monthly oil price data to quarterly
data by using the average aggregation method. However, for future research
it might be valuable to repeat the experiments by using the MIDAS regres-
sions on daily oil price data and on quarterly macroeconomic data. The
higher frequency of the oil price data might provide additional insights.

We will now provide a visual representation of the three oil price mea-
sures. The transformation of oil prices that is usually focused on within the
literature is that of the first log differences.6 Such a transformation repre-
sents the continuous growth rate of oil prices and removes the non-stationary
behaviour of the time series. This transformation is commonly applied in
macroeconomic research, mostly because of the problems that arise when
using non-stationary time series, which are often encountered in macroeco-
nomic data, such as GDP and price indices. Nevertheless, some researchers
have argued within the oil price-macroeconomy literature that it is actually
the level of the oil prices that is relevant for influencing the macroeconomy
instead of price changes. For example, Carruth, Hooker and Oswald(1995)
have constructed theoretical models that imply that it is in fact the level and
not the change in firm’s prices that is relevant for producers. The graphs of
the log differences of the WTI, PPI and the composite RAC series are shown
in figures (1) to (3) respectively. 7

Next to these three graphs, tables (1), (2) and (3) contain summary
6If we represent the time series by X(t), the first log difference is defined as: log[X(t)]−

log[X(t− 1)].
7As indicated before, does the composite RAC start later than the two other series.
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Figure 1: West Texas Intermediate

Note: Plot of the monthly log differences of WTI over the period 1947:2 - 2011:6

Figure 2: Producer price index for crude oil

Note: Plot of the monthly log differences of the PPI over the period 1947:2 - 2011:6

statistics for all three series. These provided summary statistics are given
in percentage terms, i.e. by multiplying the log difference series by hun-
dred. Since the RAC series originates in 1974, we have also split our sample
at 1974:1/1974:2. In that way it becomes possible to compare the three
series in a consistent way with one another. Furthermore, the summary
statistics might change over time, which could also cause potential oil price-
macroeconomy relationships to alter at that point.8 In this part, we refer to
the sample 1947:2-2011:6 as the full sample period, the sample 1974:2-2011:6

8As has been discussed in the literature, often oil price-macroeconmic models are tested
for having structural breaks. Some authors, like Hooker(1996), have established structural
breaks around 1973. Therefore we might expect to observe rather different values for
summary statistics in the pre- and post-1974 period.
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Figure 3: Composite refiner acquisition costs for crude oil

Note: Plot of the monthly log differences of the RAC over the period 1974:2 - 2011:6

is called the post-1974 sample period and the sample 1947:2-1974:1 is referred
to as the pre-1974 sample period.

Table 1: Summary statistics

Mean Std. Dev. Max Min Skew. Kurt.

100×∆ log(WTI) .528 6.761 85.259 -39.601 2.274 39.310
100×∆ log(PPI) .472 6.835 48.501 -36.743 -.416 11.478

Note: Summary statistics for the first (monthly) log differences of WTI and PPI over
the full sample period 1947:2 - 2011:6

Table 2: Summary statistics

Mean Std. Dev. Max Min Skew. Kurt.

100×∆ log(WTI) .502 7.719 37.706 -39.601 -0.413 7.176
100×∆ log(PPI) .5442 8.836 48.501 -36.743 -.399 7.022
100×∆ log(RAC) .584 6.978 37.473 -34.764 -.682 8.616

Note: Summary statistics for the first (monthly) log differences of WTI, PPI and
RAC over the period 1974:2 - 2011:6

21



Table 3: Summary statistics

Mean Std. Dev. Max Min Skew. Kurt.

100×∆ log(WTI) .565 5.158 85.259 -2.307 14.200 227.462
100×∆ log(PPI) .3712 1.833 19.976 -1.482 6.854 61.033

Note: Summary statistics for the first (monthly) log differences of WTI and PPI over
the period 1947:2 - 1974:1

In the full sample period the behaviour of the WTI and PPI series is
quite similar in terms of their means and standard deviations. They both
have a small, positive mean which indicates a tendency of oil prices to rise
over time in the long run. In order to test to what extent this long run
increase is related to the U.S. inflation, the same calculations were also run
with the real price of crude oil by using the log differences of WTI and PPI
that were adjusted for inflation with the CPI functioning as the deflator. In
that case, the means of the WTI and PPI series are .23 and .17 respectively,
indicating that the long run oil price increases are only partially explained
by inflationary effects. The mean values in all three tables are similar in
magnitude, and hence do not suggest the existence of structurally different
behaviour in the pre- and post-1974 period in terms of mean values.

The results demonstrate a rather large volatility of oil price movements.
For example, the S&P 500 index, commonly used as a major benchmark for
the volatile stock market, exhibits a much lower volatility than these oil price
measures, except for the PPI in the pre-1974 period: The standard deviation
of the S&P 500 series takes on a value of 3.621. In contrast with the results
found in terms of mean values between the pre- and post-1974 period, are
there clear differences present in the volatility levels between the two periods.
It appears that the volatility is higher in the post-1974 period than in the
pre-1974 period. This is also evident from figures (1) to (3). A possible
explanation for this phenomenon would be the different institutional regime
under which oil prices were established that was prevalent in the mid 70’s
and early 80’s, see Hooker(1996).

The statistical significance of the difference in volatility between the pre-
1974 and post-1974 period can be addressed by means of an F-test. We
will test H0 : σ2

pre74 = σ2
post74 versus the alternative H1 : σ2

pre74 < σ2
post74.

For WTI we find an F-value of F (448, 323) = 2.24 and for the PPI we
find F (448, 323) = 23.24. They have corresponding p-values of .00 and .00
respectively. Hence we have strong statistical evidence that the volatility of
the oil prices is higher after 1974 than before 1974.

22



In terms of the extreme values of the series, a few observations can be
made. The maximum value of the WTI series of 85 percent in the pre-1974
period is almost twice as large as the maximum values of the other series in all
the sample periods. This enormous increase occurred in January 1974: Since
August 1973 the price of a barrel of WTI was set at $4.31 and it remained
constant until the Texas Railroad Company decided to increase the price in
January 1974 to $10.11 per barrel. As stated, the other maximum values
are remarkably lower. For example, the maximum value of the PPI was 49,
which occurred in August 1990. At that same date the WTI series exhibited
its second largest price increase in history. It is remarkable that the price
increase of the PPI at January 1974 was only 20 percent compared to the
value of 85 percent.

With regards to the minimum values we observe a phenomenon that might
be related to the observed volatility difference between the two sample peri-
ods. The minimum values in the pre-1974 period are much smaller in absolute
terms than in the post-1974 period. Furthermore, it appears from figures (1)
to (3) that oil price decreases were a lot less common before 1974 than af-
ter 1974. This has for example also been noticed by Hamilton(1996). Over
the entire sample period, the largest decrease of the WTI series happened in
February 1986, corresponding to the oil glut. The minimum of both the PPI
and the RAC happened in December 2008.

Large differences appear in the skewness in the pre- and post-1974 period.
In the pre-1974 period the skewness takes on relatively large, positive values.
Whereas all three oil price measures have a small, negative skewness in the
period after 1974. This is related to the observation that oil price decreases
were smaller and less common in the period before 1974 than after 1974: oil
price increases were more common and larger in magnitude in the pre-1974
period than the decreases which results in a positively skewed distribution.
Due to much larger and more common oil price decreases after 1974, the
distribution has changed from positively skewed to a distribution that is
slightly negatively skewed.

Finally, the kurtosis over all three sample periods and for all time series
is large, indicating leptokurtic distributions. However, a large difference in
the magnitude of the kurtosis in the pre- and post-1974 period is present:
The magnitude decreases largely in the sample after 1974. Most likely again
the changing institutional regime could be responsible for this decrease in
kurtosis. Because oil prices were only changed occasionally on instigation
of institutions such as the Texas RailRoad Company, this would result in
a distribution with a higher peak around the mean value than a normal
distribution which also implies the corresponding fatter tales. This would
explain the high leptokurtic behaviour of the oil price movements in this
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period. In the period after 1974 the oil market was heavily deregulated,
implying that oil prices were more determined by market forces, which most
likely results in a less leptokurtic distribution, see Kilian(2006).

Based on figures (1) to (3), we do not expect the summary statistics in
the post-1974 period to be stable over time. Especially after the mid 1980s
all three the series seem to display a lot more volatility. We will split the
post-1974 sample at 1985:12/1986:1. The reason for a split at this specific
point is based on the fact that in the first quarter of 1986 a major oil market
collapse occurred, see Mork(1989). Also, in Hamilton(1996) it is argued that
oil prices seem to behave differently after 1986 than before. One interesting
feature he mentions is that many oil price increases that occurred between
1986 and 1996 seems to be corrections of even larger decreases, which is based
upon the analysis of his net oil price increase series. An interesting suggestion
made in this paper is that the impact of oil price increases is linked to this
correction phenomenon: oil price increases that correct previous decreases
have less impact than stand-alone increases.

Table (4) displays the summary statistics of the oil price series in the
period 1974:2 to 1985:12. In table (5) these statistics are shown for the
post-1986 period, i.e. for 1986:1 to 2011:6.

Table 4: Summary statistics

Mean Std. Dev. Max Min Skew. Kurt.

100×∆ log(WTI) .693 4.337 19.753 -12.369 1.183 7.599
100×∆ log(PPI) .877 3.003 17.867 -8.423 2.299 12.570
100×∆ log(RAC) .892 2.739 13.871 -4.878 1.684 7.468

Note: Summary statistics for the first (monthly) log differences of WTI, PPI and
RAC over the period 1974:2 - 1985:12

Table 5: Summary statistics

Mean Std. Dev. Max Min Skew. Kurt.

100×∆ log(WTI) .413 8.873 37.706 -39.601 -.441 5.817
100×∆ log(PPI) .389 10.507 48.501 -36.743 -.333 5.100
100×∆ log(RAC) .440 8.244 37.473 -34.764 -.590 6.413

Note: Summary statistics for the first (monthly) log differences of WTI, PPI and
RAC over the period 1986:1 - 2011:6

The mean growth rates of all three oil price series is almost twice as large
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in the pre-1986 period than in the post-1986 period. 9 Furthermore, this
growth rate around 8% is also highly unusual when compared with the mean
growth values over the entire sample period as shown in table (1), which are
close to 5%.

However, we have to properly test whether the mean values in the pre-
1986 are significantly smaller than in the post-1986 period. We compare
the mean values in both periods by means of a two-sample t-test. Hence
we will test the null hypothesis H0 : µpre86 = µpost86 against the alternative
H1 : µpre86 > µpost86.

This problem is the Behrens-Fisher problem since we are concerned with
comparing the mean values between two normally distributed samples but
the variances of these two samples are not assumed to be equal.

The t-statistic is calculated as described in equation (3.1). In which
x̄1 and x̄2 denote the sample means in the pre-86 and post-86 sample re-
spectively. Similarly s21 and s22 denote the sample variances among the two
samples and n1 and n2 denote the two sample sizes. The correct number of
degrees of freedom is calculated with Satterthwaite’s approximation which
is shown in eqution (3.2). The degrees of freedom is rounded down to the
nearest integer.

t = (x̄1 − x̄2)/

√
s21
n2

+
22
2

n2

(4.1)

df =
(s21/n1 + s22/n2)

2

(s21/n1)2

n1−1 +
(s22/n2)2

n2−1

(4.2)

We find the following test results. tWTI(446) = .45 with pWTI = .33,
tPPI(395) = .75 with pPPI = .23 and tRAC(416) = .86 with pRAC = .19.
Hence, we have not sufficient statistical evidence in order to conclude that
the mean of the oil prices in the pre-1986 sample is larger than in the post-
1986 period.

In the second place a strong difference in volatility is observed between
the pre- and post-1986 period. The volatility in the pre-1986 period is rather
low, especially when compared to the full sample values. However, the values
for standard deviation more than double in the period after 1986. This can
also be easily seen from figures (1) to (3), where the graphs clearly display
more erratic behaviour after 1986 than before.

9In Hansen(2001) is discussed how a common view is that the labor productivity in the
U.S. experiences a slowdown around 1973. This might be related to the relative high oil
price growth as found in this 1974-1985 period.
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We will formally test whether the volatility in the post-1986 period is
statistically higher than in the pre-1986 period. The test statistic used is an
F-statistic with degrees of freedom equal to (n1−1) and (n2−1). We obtain
the following results for the test of H0 : σ2

pre86 = σ2
post86 versus H1 : σ2

pre86 <
σ2
post86: FWTI(305, 142) = 4.19 with pWTI = .00. FPPI(305, 142) = 12.24 with
pPPI = .00. FRAC(305, 142) = 9.05 with pRAC = .00. Hence we have strong
evidence to reject the null of an equal variance in the oil price movements in
the pre-1986 and post-1986 periods.

A third important difference in the behaviour of the time series when
we compare both periods with each other is in terms of the skewness. In
the pre-1986 period all three the oil price measures have a slightly positive
skewness. In the post-1986 period this skewness becomes slightly negative.
This phenomenon is most likely due to the fact that oil price decreases seem
to be a lot more common after 1986 than before.

Finally, the value of the kurtosis decreases on average a little bit when we
go from the pre-1986 period to the post-1986 period. Implying that extreme
outcomes from the mean decrease in likelihood.

In conclusion we have clearly observed a change in the behaviour of oil
prices over time. The price movements are more erratic and extreme after
1974 than before 1974. Also, the volatility of oil prices is significantly higher
after the oil market collapse of 1986 than before. As stated at the beginning
of this section, will we use the PPI for crude oil as our measure for oil prices.
So far, we have seen that alternative oil price measures seem to behave in a
comparable way. In order to analyse this observation more in depth, we will
conduct correlation analyses in the next part.
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Tables (6) and (7) display the correlation between the PPI, WTI and RAC
series in the full sample as well as in the post-1974 sample. The correlation
between PPI and WTI takes on a rather large value of 0.75 over the full
sample period. However, this correlation increases to 0.81 when we consider
only data after 1974 as can be seen from table 5. This gives rise to questioning
to what extent the correlation between the different oil price measures is time-
varying. Furthermore the correlation between PPI and RAC and between
WTI and RAC has a very high correlation of 0.90 and 0.88 respectively.

Table 6: Correlations

∆ log(PPI) ∆ log(WTI)

∆ log(PPI) 1 0.7543
∆ log(WTI) 1

Note: Correlations between the first log differ-
ences of the PPI and WTI as measured over the
period 1947:2 - 2011:6

Table 7: Correlations

∆ log(PPI) ∆ log(WTI) ∆ log(RAC)

∆ log(PPI) 1 0.8132 0.9010
∆ log(WTI) 1 0.8840
∆ log(RAC) 1

Note: Correlations between the first log differences of the PPI,
WTI and RAC as measured over the period 1974:2 - 2011:6

In order to test the time-varying behaviour of the correlation between the
different oil price measure pairs, we have calculated several moving correla-
tions. Figures (4), (5) and (6) each show the moving correlation with a size
of 120, 180 and 240 months between the three different pairs. A first im-
portant observation is that in the period 1990-2011 the correlation between
all three pairs is rather high and seems to steadily increase to values that
exceed 90%. This might imply that the characteristics of the three series
converge towards each other, making it more appropriate to use them for
similar research purposes.

In contrast, the correlation between the different pairs does not behave
as regular in the period before 1990. The correlation between PPI and WTI
is high in the 50s but drops almost to zero in the early 60s. After this it
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quickly recovers to high correlation levels but from the mid 70s onwards the
value decreases again to low levels, even to negative when the 60 month
correlation is considered, to then adjust, starting in the mid 80s, again to
high values of correlation. For the other two correlation pairs we only have
moving correlations that start in 1979 due to the shorter sample of the RAC.
These two pairs show a very similar pattern in the time variation of the
correlation: Both have low values between 1980-1985 after which they rise
to high values in the early 90s. From that point onwards the aforementioned
steady increase occurs.
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Figure 4: Moving correlation

Note: Moving correlation between the PPI and the RAC for a window of 10,15 and 20
years. The period displayed is 1984:1 - 2011:6.
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Figure 5: Moving correlation

Note: Moving correlation between the PPI and WTI for a window of 10,15 and 20 years.
The period displayed is 1957:1 - 2011:6.

Figure 6: Moving correlation

Note: Moving correlation between WTI and the RAC for a window of 10,15 and 20
years. The period displayed is 1984:1 - 2011:6.
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Figure 7: Moving volatility

Note: Moving volatility of the PPI, RAC and WTI for a window of 10 years. The period
displayed is 1956:1 - 2011:6.

Figure 8: Moving volatility

Note: Moving volatility of the PPI, RAC and WTI for a window of 15 years. The period
displayed is 1961:1 - 2011:6.
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Figure 9: Moving volatility

Note: Moving volatility of the PPI, RAC and WTI for a window of 20 years. The period
displayed is 1966:1 - 2011:6.

Similarly, the time-varying behaviour of the volatility of the different oil
price series is analysed by means of moving volatility functions. In figures (7)
to (9) these moving volatilities are displayed for all three oil price series for a
period of 120, 180 and 240 months as the window size. Again, the volatility
is represented in percentage terms for the different series.

Several observations can be made from these graphs. In the first place do
all four graphs confirm that the volatility of the oil price was remarkably low
until 1973/1974. In the second place it can be seen that this oil price shock
of 1973 had a more profound effect on the volatility of WTI than on the PPI.
In the third place we see that the volatilities of the different oil price series
from the late eighties onwards move closely together. This indicates that a
higher level of freedom in the markets results in a convergence of behaviour
of different oil prices measures. Finally, an overall upward moving trend in
the volatility of the oil price can be detected. Whether we consider a moving
volatility with a short window or one with a longer window. In fact, the
average volatility in each decade is larger than that value for the previous
decade.
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5 The oil-output relation
Among the most important macroeconomic variables are aggregate output
measures such as the Gross Domestic Product(GDP) and the Gross National
Product(GNP).10 Due to the value that is attributed to these output mea-
sures, we have chosen in this paper to focus on the link that exists between
the oil price and the aggregate output. While the main focus of this paper is
to investigate the effects of several oil price transformations in relation to the
output growth, we will use some preliminary analyses between the oil price
and the GNP in this section in order to obtain some potential insights.

This section covers the following. In the first place are the historical
correlations between oil price changes and leaded output growth values dis-
cussed. Second, a downside correlation analysis will be performed. Third,
results for the benchmark regression will be presented. Fourth, different oil
price transformations will be introduced and finally we will analyse the us-
age of all these different transformations within the context of the regression
framework.

5.1 Correlation analysis

As a starting point the historical correlations between the aggregate output
and the oil price movements will be presented. Several authors have argued
that the effects of oil price movements require some time to be fully absorbed,
e.g. Hamilton(1983). Therefore, correlations between oil price movements
and leaded values for the Real GNP are also included.

Tables (8) displays the correlations between the log difference of the oil
price measures and the values for Real GNP growth. In order to account for a
lagged response of the aggregate output to oil price shocks, we have included
leaded values for the output growth up to twelve periods, i.e. three years.
The corresponding p-values are displayed in brackets under the correlation
coefficients. The sample period over which these historical correlations have
been calculated is the full sample of 1947:II-2008:I.11

Table (8) has a characteristic pattern. The correlation takes on a slightly
negative, statistically insignificant value between the non-leaded output series
and the oil price measures. From 1 up to 4 leads, we observe a decrease in the
correlation coefficients and at the same time does the significance of these

10The difference between these measures is that GDP is a measure for the total output
generated within a country’s borders. GNP measures the total output generated by all
the enterprises of a country, regardless of their locations.

11The total data available covered the period 1947:II - 2011:I. But due to the included
leads, is shortened by twelve quarters.
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coefficients increase. Both for the PPI as WTI the minimum correlation
with the highest significance is obtained when GNP growth is leaded by 4
quarters. From 5 leads onwards, the magnitude of the correlation coefficients
gets smaller again. Furthermore, none of them is significant at the 95%
confidence level. Only a few coefficients are found to be significant at the
90% level.

These results might indicate a tendency of aggregate output growth to
have a lagged response to oil price shocks that lasts approximately three to
four quarters. We will address this question more extensively later on by
means of a regression framework and a VAR-model.

5.1.1 Downside correlation analysis

In recent work the topic of asymmetric correlations has been investigated in
the field of equity research. In particular the recent credit crisis has shown
that correlations between different financial instruments might be dependent
on the economic climate. In fact it has been established that the correlation
between different assets and asset classes increases in bear markets. This can
have serious implications for hedging, since it often results in firms wrongly
assuming that they are properly hedged, while in fact they are under hedged.
For example, Ang and Chen(2002) showed that correlations between U.S.
stocks and aggregate U.S. markets are much greater in case of downside
moves than for upside moves. 12

To our knowledge, an analysis to a possible asymmetric effect in correla-
tions between the oil price and aggregate output has not yet been performed
within the context of oil price-macroeconomic research. Therefore such an
analysis will be conducted in this subsection.

The same principle as before is applied: Correlations are investigated
between the oil price movements and different leaded values for GNP growth.
However this time we have split the oil price changes in two different sub-
series, namely the increases and decreases in order to analyse the possibility
of an asymmetric correlation structure. Effectively, the correlation between
oil price increases and the corresponding GNP values is computed in this
manner and the same principle is applied to the decreases.

The results of these conditional correlations can be found in tables (9)
and (10). In the rows with ∆ log(WTI+) and ∆ log(PPI+) the correlations
belonging to the oil price increases are displayed and similarly in the rows
with ∆ log(WTI−) and ∆ log(PPI−) this is shown for the decreases.

12In fact they have found that correlations that are conditioned on the downside differ
by 11.6% from conditional correlations as implied by a normal distribution.
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The results from tables (9) and (10) indicate that oil price increases are
significantly correlated with output changes for the first four leaded values
of GNP. From five leads onwards this significance is no longer present. Over-
all this might indicate that oil price increases have a significant but delayed
effect on output growth. This effect seems to be the largest around three to
four quarters, based on the values of the coefficients and their correspond-
ing p-values. This is the same conclusion that was drawn from the initial
correlation analysis in the first part of this section.

The image for the correlation between oil price decreases and GNP is
rather different. First of all, most of the correlation coefficients are positive
instead of negative, indicating that oil price decreases might have a positive
effect on output. However, none of these coefficients is significant at the
conventional significance levels. 13

The results from this downside correlation analysis indicate asymmetric
features of the oil price-output interactions. Oil price movements are signif-
icantly negatively correlated with output growth. The strength and signifi-
cance of this correlation is found to be greatest around three to four leaded
values of GNP. However, oil price decreases do not seem to be significantly
correlated to output movements at all and hence this shows an asymmetric
bias in the effect of oil price decreases. vs. increases as measured by their
correlation.

13The only exception to this is the correlation coefficient between ∆ log(WTI−) and the
non-leaded value of ∆ log(GNP ).
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5.2 Regression framework

5.2.1 Introduction

As has been stated in the introduction, one of the main goals of this paper
is to investigate the effects of using different oil price transformations in
explaining the output growth. In order to compare the results of the different
transformations consistently with each other, we need a framework in which
all transformations are compared. In this paper two models are used for
this purpose. First we use a linear regression framework for the interactions
between oil price transformation and output growth. Second, this approach
is extended by adding relevant macroeconomic variables, in order to analyse
these effects within a VAR-framework.

In the linear regression framework we will first establish benchmark re-
sults. These are the results that we obtain when we use the first log dif-
ferences, i.e. the continuous growth rate, as the relevant oil price trans-
formation. Next, we will compare the results as obtained by different oil
price transformations with those of the benchmark. In particular we will
pay attention to what effects the transformations have on the relevance and
stability of the relations. Since finding an oil price transformations that is
highly relevant for the output growth and is stable over time, implies that
such a transformation captures those aspects of the oil price that are crucial
and and stay crucial over time for the output.

This section is organized as follows. First we will introduce the regres-
sion that will serve as our benchmark for comparing purposes. Second, the
different oil price transformations will be introduced. Third, the transforma-
tions are analysed and compared with the benchmark results. The last part
concludes.

The benchmark regression regresses GNP growth, yt, against four lags
of itself and four lags of the oil price movements, as measured by the PPI
for crude oil, ot. Both variables are entered in log differences in order to
represent the continuous growth rate. Finally, εt represents the error term
of the regression. Equation (5.1) below displays this benchmark regression.

yt = c+ α1yt−1 + ...+ α4yt−4 + β1ot−1 + ...+ β4ot−4 + εt (5.1)

When the residuals are heteroskedastic then the OLS method for calcu-
lating the covariance matrix of the estimated coefficients: V AR[β̄OLS] is no
longer correct. Therefore, even though β̄OLS is still an unbiased estimator,
interval estimation and hypothesis testing is no longer reliable because the
standard errors are not properly calculated. A proper method for calculating
the standard errors in case of heteroskedasticity is by using White’s standard
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errors, as was first described by White(1980).
Formally the residuals of the regression have been tested for heteroskedas-

ticity by using White’s heteroskedasticity test. This test statistic is calculated
by regressing the squared residuals on the four lags of the output growth and
on the four lags of the oil price movements. The test statistic is then the
product of the number of observations and the R-squared of that regression,
which follows a χ2-distribution. We have not found sufficient evidence in
favour of heteroskedasticity in the residuals of the regression.

Furthermore, we have tested whether the residuals exhibit signs of se-
rial correlation. We have formally tested the residuals for the presence of
autocorrelation up to twelve lags by means of the Ljung-Box Q-statistic.
For none of these lag orders have we found sufficient evidence in favour of
autocorrelation.
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5.2.2 Results for the benchmark regression

The output of the benchmark regression is displayed in table (11). The table
shows the estimated coefficients of the lagged variables. The corresponding
standard errors are displayed in brackets below the coefficient estimates.
Furthermore, the value and the corresponding p-values of exclusion F-tests
for the joint significance of the parameters is shown. The regression is run
over the full sample period which contains data from 1947:II to 2011:I. 14

From table (11) we see that all the four coefficients belonging to the oil
price, ot−1 to ot−4, have a negative value. However, based on their correspond-
ing standard errors, none of them is considered to be individually significant
at the 95% confidence level. It is clear though that ot−3 and ot−4 carry the
highest relevance respectively in the benchmark, with individual p-values of
.09 and .22 respectively.

Table 11: Benchmark regression results

Lag Coefficients Exclusion Tests
Variable 1 2 3 4 F(4,243) p-Value

yt .3181 .1625 -.0898 -.0823 11.397 .0000
(.064) (.066) (.066) (.063)

ot -.0053 -.0027 -.0093 -.0067 1.8866 .1134
(.005) (.006) (.006) (.005)

Note: Estimation results for regression (5.1). The coefficient estimates are
shown with their belonging standard errors below them in brackets. For The
relevance of the GNP growth coefficients and the oil price coefficients the
F -test value and corresponding p-value are shown.

The Wald-F exclusion test indicates that the four oil price coefficients
ot−1 to ot−4 jointly are not different from zero when compared against the
5% level. However, they are borderline significant at the less strict, 10%
level.

When the effects of using different oil price transformations are researched,
we will conduct a more extensive treatment on Granger causality and inves-
tigate how it develops over time. Especially since much of the literature
suggests a decrease in the link between the oil price movements and macroe-
conomic variables, which can be observed by means of the Granger causality.

Furthermore, the R-squared of the regression is .1926 and the adjusted
R-squared is .1660. These values indicate how well the variance of the re-

14Due to the use of four lags, does the regression start four quarters later, at 1948:II.
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gressand is explained by the model and is commonly used as the measure
for the goodness of fit. Like the Granger causality analysis, it provides a
good tool for comparing regressions using different oil price transformations
among each other and with the benchmark regression. The higher the values
are, the better the model is in explaining the variance of the output growth
and hence, the better a transformation captures the essence of the oil price
for the output growth.

Summarizing we can say that we find some relatively weak evidence for
a negative relationship between oil price movements and GNP growth. The
estimated coefficients belonging to the oil price measures do suggest that
around three to four quarters after an oil price shock the effects are most
severe to the output, based on the most negative value for the estimated
coefficients that is found around these lags. However, at the conventional
significance levels oil prices are not found to Granger cause output, indicating
indeed that the found negative relationship is rather weak.

In the rest of this paper we will try to construct transformations of the oil
price that have a more causal relationship with respect to output. Further-
more we hope to increase the overall fit of the regressions and to generate
relations that are less unstable than the benchmark.
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5.3 Introducing the transformations

In this section the different transformations for which the performance is
investigated within the regression framework are introduced. In order to
facilitate the comparisons and discussions we begin by plotting the bench-
mark oil price series. Hence, in figure (10) the producer price index for crude
petroleum is plotted, Ot and figure (11) shows the transformation that is
used as the benchmark: i.e. the first log differences of the PPI, denoted by
ot.

Figure 10: Producer price index for crude oil: Ot

Note: Plot with the values of the producer price index for crude oil, denoted by Ot.

Figure 11: Log differences producer price index for crude oil: ot

Note: Plot with the values of the first log differences of the producer price index for
crude oil, denoted by ot.

Several sources in the literature mention that oil price increases carry sig-
nificantly more relevance for the output movements than oil price decreases,
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e.g. Mork(1989) and Hamilton(2003). This observation suggest an intuitive
method for transforming the series ot in order to test the validity of these
statements.

The ot series is separated in two distinct new series. The first series
represents the oil price increases, o+t , and the second series the oil price
decreases, o−t . The construction of these two series is shown in equation
(5.2) and (5.3).

o+t =

{
0 if ot ≤ 0
ot if ot > 0

(5.2)

o−t =

{
ot if ot < 0
0 if ot ≥ 0

(5.3)

In figures (12) and (13) the oil price increase and decrease series are
displayed respectively. By comparing the two series, two important points
stand out. In the first place it is obvious that oil price movements were
considerably larger after 1973 than before. In the second place we see that
only the size of oil price increases jumped suddenly after 1973; such an
increase in magnitude appeared approximately thirteen years later for the
oil price decreases, in 1986 during the oil glut.

Figure 12: Oil price increases

Note: The o+t series; which is zero in case of an oil price decrease and equals the
continuous growth rate in case of an increase.
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Figure 13: Oil price decreases

Note: The o−t series; which is zero in case of an oil price increase and equals the
continuous growth rate in case of a decrease.

Furthermore, Hamilton (1996) has noted that many oil price increases
that happened in the post-1986 period were simply corrections of larger price
decreases. Whereas using o+t as the relevant oil price transformation works
reasonably well before 1986 as suggested by Mork(1989), Hamilton has ar-
gued that because of this change in oil price behaviour around 1986, this
transformation is no longer an adequate representation.

This was his motivation to construct an improved oil price transformation
over Mork’s o+t . In this new measure it is argued that the effect that an oil
price increase has on the output depends on the maximum value of the oil
price during the entire previous year, instead of just the previous quarter.
The reason is that oil price increases probably will have a smaller effect
when they correct previous decreases than when they are in fact fundamental
increases.

Hamilton’s(1996) measure is exactly constructed based upon this belief.
His transformation is called the net oil price increase(NOPIt). It is con-
structed by comparing the current value for Ot with its maximum value
during the last four quarters. When the difference is positive, the NOPIt is
equal to the growth rate between Ot and this previous maximum. A differ-
ence that is negative implies a value for the net oil price increase of zero. The
NOPIt calculation is shown in equation (5.4) and the corresponding series
is displayed in figure (14).

NOPIt = max(0, log(Ot)− log(max(Ot−1, Ot−2, Ot−3, Ot−4))) (5.4)

The next transformation that is used in this paper, has not yet been
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Figure 14: NOPIt

Note: Plot of the net oil price increases (NOPIt), following the methodology of
Hamilton(1996).

analysed within the existing literature. It is based upon the idea that not
only the quarter-to-quarter changes are relevant for the output, but also the
level of values that the oil price takes. For example, car owners are often
concerned with the price level of gasoline rather than just the growth rate.

We will conduct a method for determining relevant oil price thresholds,
based upon an idea of technical trading in financial markets. One of the most
implemented versions of technical trading rules compares the movements
of moving averages with different window lengths, e.g. Brock et al.(1992).
When the shorter moving average exceeds the value of the longer moving
average, the trader takes a long position because of an expected upward
price trend and vice versa.

We think that the net oil price increase as suggested by Hamilton might by
a relative strong measure since it discards many increases that do not follow
its criterion. Therefore we are interested to analyse how well this measure
that is based upon moving averages performs, especially when compared with
the NOPIt. However, it is important to mention that in theory an unlimited
universe consists of oil price transformations that are based on all sorts of
comparisons in which also the window size can be varied. Just as in technical
trading it might be possible, purely by large numbers, that apparently a
very stable and relevant oil price transformations for the output growth is
discovered. A research based on many of these series that are arbitrarily
constructed might be valuable if one can account properly for these effects
of data mining.

For the construction of the new oil price transformation, we first compute
a moving average oil price series Oma

t with a window of four quarters, see
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equation (5.5). Next, we compare the current value of the oil price, Ot, with
the value of this moving average, Oma

t . When the value of Ot exceeds that of
the moving average, the new series, denoted by o∗t takes on the growth rate
between Ot−1 and Ot, i.e. ot, else it takes on a zero value, see equation (5.6)

Oma
t =

Ot−1 +Ot−2 +Ot−3 +Ot−4

4
(5.5)

o∗t =

{
ot if Oma

t ≤ Ot

0 if Oma
t > Ot

(5.6)

Figure (15) shows this newly constructed transformation, o∗t . As opposed
to o+t and NOPIt, does this series not consist of solely non-negative values.
Negative values are present in o∗t when the last quarter-to-quarter change
was negative but still the value of the current oil price exceeded the value of
the moving average, for example because the first two observations used for
calculating the moving average were very small. It might be possible that the
fact that this series does not completely exclude negative values, provides us
with better results than the oil price increases or the net oil price increases.
This will be investigated in the next subsection, used for comparing the
results of using all these different transformations in the regressions.

Figure 15: o∗t -series

Note: Plot of the series that is based upon a comparison with the current price of oil
with a moving average value.

The next transformation has been suggested by Lee, Ni and Ratti(1995).
According to their paper, positive oil price shocks tend to have a larger effect
on GNP if they occur in a period that is characterised by calm oil prices
compared to a period in which oil prices exhibit a large volatility. Reasons
for this could be that oil price shocks in volatile periods can more often be
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classified as correcting, and hence have less influence. Second, when oil prices
have a tendency to move heavily all the time, the effect of a large shock will
be most likely less than when those shocks are quite rare; in that case the
shocks will be taken more seriously due to their unexpectedness by the the
economy.

Lee, Ni and Ratti(1995) construct their new transformation by first mod-
elling the conditional variance, ht of the oil price with a GARCH(1,1)-process.
This conditional variance is calculated for the series consisting of the first log
differences of the oil price, ot. This implies that we consider both the oil price
increases as well as the decreases for the conditional variance calculations.
Equations (5.7) and (5.8) show how the conditional variance of the oil price
movements has been calculated.

et =
√
htνt νt ∼ N(0, 1) (5.7)

ht = ω + αe2t−1 + βht−1 (5.8)

As Mork(1989) and Hamilton(1996), the authors argue the higher rel-
evance of the price increases over the price decreases. Then, in order to
construct the new measure which is denoted by o++

t , the positive oil price
shocks are divided by the conditional standard deviation

√
ht and the oil

price decreases again get assigned a zero value. The result of this transfor-
mation is that the positive oil price movements o+t , are now scaled by the
level of volatility as determined by a GARCH(1,1)-model. Equation (5.9)
displays the exact construction of o++

t .

o++
t =

{
0 if ot ≤ 0
ot/
√
ht if ot > 0

(5.9)

In figure (16) the conditional standard deviation,
√
ht, as determined by

a GARCH(1,1) is shown. It shows clearly an increase in volatility after 1973
and again after 1986. Furthermore, historically high values for the volatility
are seen after 2005 due to extreme price movements.

The next figure, (17), shows the series o+t and o++
t . By comparing these

two graphs the effect of the volatility-scaling becomes clear. The few positive
oil shocks during the fifties are now comparable in size to the shocks after
the mid-seventies, when the volatility suddenly increased. Furthermore, the
shocks after 1986 are down weighted more heavily than the shocks during
the seventies and early eighties. This results in smaller volatility-adjusted
shocks after 1986 than during the mid-seventies and early eighties. Hence,
after correcting for the volatility, the shock of 1973 belonging to the OPEC
crisis, was the most severe.
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Figure 16: Conditional volatility

Note: the conditional volatility of the oil price series as determined by a
GARCH(1,1)-model:

√
ht

Figure 17: o+t - and o++
t -series

(a) o+t (b) o++
t

Note: Comparison of the oil price increase series and the oil price increases divided by
the conditional volatility.

Finally, we have constructed a new series, called o∗∗t , that uses Hamilton’s
NOPIt transformation and adjust this series for the volatility as has been
done in the ot++-series. Hence the new series is generated by taking the orig-
inal NOPIt-values and dividing them by

√
ht, the same conditional variance

as used before, see equation (5.10). Compared to o++
t , this series is more

conservative since it contains more zeros due to its derivation from the net
oil price increase. Furthermore it has similar characteristics as the volatility
adjusted series by Ni, Lee and Ratti: the oil price shocks of the fifties are
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blown up, the shocks of the seventies ware classified to be the most severe
and the shocks after the mid-eighties are made smaller due to the largest oil
price volatility during that period.

o∗∗t =
NOPIt√

ht
(5.10)

Figure 18: o∗∗t - series

Note: Oil price transformation that is based upon the quotient of the net oil price
increase and the conditional volatility.
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5.4 Comparison of the transformations

The previous section has introduced the different transformations that are
used in this paper. In this section we will analyse the effects of using the
different oil price transformations with the benchmark and among each other.
In particular, the consequences that the different representations might have
on the relevance and stability with respect to output growth are addressed.

5.4.1 Granger causality results

First, the relevance of the oil price transformation on the output growth is
investigated. This link is tested by means of bivariate Granger causality
tests. In the initial discussion of the benchmark in section 4.2, it was shown
that over the full sample of 1947:II to 2011:I, the four ot coefficients did not
jointly Granger cause GNP growth.

Virtually every paper in the literature in which these tests are conducted,
does so on only a few different samples, e.g. Mork(1989). However, we argue
that both the high sensitivity of the test outcomes to the sample chosen, as
well as the fact that most of the established relations exhibit signs of one or
more structural breaks, does not provide a solid foundation of conducting the
research in such manners, see also Hansen(2001). Moreover, it is due to this
sensitivity, possible for the researcher to try fixing a window that empirical
proves best his hypothesis.

In our view, a better method for analysing the fluctuations in Granger
causality, is by sequentially conducting Granger causality tests with a fixed,
moving window. In this manner we simultaneously address the stability of
the relationship implicitly and we circumvent the subjectivity of the window
size by plotting a range of Granger causality values. Several window lengths
have been tested and we have chosen for a window of twenty years. The
shorter, ten and fifteen windows were too unstable and volatile for observing
clear patterns and changes in the significance. On the other hand, the longer
windows restricted the effective data we could show too much.

The bivariate Granger causality test values are computed as the Wald
F-test when the four oil transformation coefficients are restricted to be zero.
Hence, first the parameters are estimated in the unrestricted model and then
they are estimated in the restricted model by setting the oil price transforma-
tion coefficients equal to zero.15 The F-statistic is calculated by comparing
the sums of squared residuals of the restricted model with those of the unre-
stricted model. The used formula is shown in equation (5.11).

15This is implemented by setting the columns in the matrix of regressors, X belonging
to the oil price coefficients equal to zero.
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F (n, T − k) =
(SSRrestricted − SSRunrestricted)/n

SSRunrestricted/(T − k)
(5.11)

The correct F-statistic has n and T −K degrees of freedom; n being the
number of imposed restrictions16, T being the number of observations and k
indicating the number of regressors, the constant included17.

Figure (19) shows the development of the Granger causality test for the
four coefficients of the producer price index for crude oil in the benchmark,
ot. The y-axis contains the corresponding p-values of the F-test values and
the x-axis corresponds to the endpoint of a twenty year interval, e.g. the
point 1990:I shows the Granger p-value for the regression over the interval
1970:II-1990:I.

Figure 19: Granger causality test results

Note: p-values of the test that the four oil lags, ot−1 to ot−4 Granger cause GNP growth,
yt. The Granger causality test is performed sequentially over a 20 year moving window.

The graph clearly confirms some of the established results from the liter-
ature. In the intervals from [1949-1969[ to [1966-1986] do the four ot coeffi-
cients mostly Granger cause output growth, yt, at the 5% level.18

However, after this period the significance of the link between oil prices
and output growth decreases remarkably. The p-values corresponding to the
interval-endpoints between 1986 and 2011, fluctuate between .1 and .5.

However, the first OPEC crisis of 1973 does not seem to have a very
strong effect initially on the Granger causality between oil and output. The

16n = 4 in this case.
17k = 9 in this case.
18The only exceptions to this occur when the endpoint of the interval lies between the

mid-seventies and early eighties. Albeit that significance was still present at the less strict
90% level.
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large jump in the graph in 1986 on the other hand, indicates that the oil
glut and the associated price drop at that time might have causes a serious
decrease in the link between oil and output.

With the following transformations we hope to obtain Granger causality
values that have a higher significance and maintain this significance longer,
preferably over the entire period. In that instance we would have a stable
and significant oil price transformation in terms of Granger causality, hence
indicating that it contains more relevant aspects for the aggregate output
development than the oil price growth on its own.

Therefore, the first oil price transformation that we have used to test
the Granger causality on, is the oil price increase series, o+t . Based on the
many results in the literature we would expect to observe an improvement in
Granger causality when compared to the causality analysis of the benchmark
transformation, ot. The results of the test on the regression using o+t are
shown in figure (20).

Figure 20: Granger causality test results

Note: p-values belonging to the Granger null hypothesis H0 : o+t 9 yt. The Granger
tests are sequentially performed over a 20 year moving window.

Confirming our beliefs, this transformation indicates large improvements
over the benchmark in terms of relevance. A significant Granger causality
remains present between o+t and yt until 2000:II enters the interval. At that
moment in time an oil price increase of almost 20% from 1999:IV to 2000:I
is changed in a decrease of 1.5% from 2000:I to 2000:II. The behaviour of
the oil price after 2000 removes the existing Granger causality as found in
the period before 2000. Moreover, we have also seen this sharp decline in
Granger causality in the benchmark regression is shown in figure (19) after
2000.19

19It is also possible that around 1980 some characteristic behaviour left the moving
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Next, for completeness, we have conducted the Granger causality analyses
based on the oil price decrease, o−t , series. These results are shown in figure
(21). As expected, we never obtain p-values below the conventional level of
.0520. One notable aspect from this figure is the asymmetric behaviour of
the causality after 2000 if compared with the previous transformation, o+t .
Whereas that series rapidly lost its Granger significance do the negative oil
price coefficients seem to achieve a stronger link with output growth after
2000. These two results combined might be interpreted as an indication that
the economy seems to suddenly react more heavily on oil price decreases and
less on oil price increases in the new millennium.

Figure 21: Granger causality test results

Note: p-values belonging to the Granger null hypothesis H0 : o−t 9 yt. The Granger
tests are sequentially performed over a 20 year moving window.

Furthermore, it would be interesting to see whether superior results in
terms of Granger causality could be achieved when both four o+t and o−t
coefficients are included in the regression. This suggested regression is shown
in equation (5.12).

yt = c+β1o
+
t−1+...+β4o

+
t−4+γ1o

−
t−1+...+γ4o

−
t−4+δ1yt−1+...+δ4yt−4+εt (5.12)

In order to test whether the usage of both transformations in one regres-
sion yields an improvement in terms of Granger causality, we test the mutual
relevance of all eight coefficients. The results are shown in figure (22).

The figure indicates that no improvements are obtained over solely using
o+t , when both transformations are used in one regression. The fact that oil

window, causing the strength of the causality to decrease.
20Only in a few cases do we obtain a significance at the 10% level
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Figure 22: Granger causality test results

Note: p-values belonging to the Granger null hypothesis H0 : o−t &o+t 9 yt. The Granger
tests are sequentially performed over a 20 year moving window.

price decreases seemed to improve after 2000 apparently does not help in
achieving better results in the combined regression after 2000.
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The next transformation tested with the moving Granger causalities is
the Hamilton’s NOPIt. In figure (23) the results are shown.

Figure 23: Granger causality test results

Note: p-values belonging to the Granger null hypothesis H0 : NOPIt 9 yt. The Granger
tests are sequentially performed over a 20 year moving window.

The results from using the net oil price increase are comparable to using
solely the oil price increases. However, in the pre-2000 period, the p-values
belonging to the NOPIt series seem to be structurally lower than those of the
oil price increase series. Albeit the differences are rather small. The trend
that the net oil price increases perform well until 2000 enters the window is
comparable to the oil price increases only though.

The next figure, number(24), shows the Granger causality sequence when
using o∗t as the relevant oil price transformation. Again, its general pattern
is similar to that of the o+t and NOPIt series. However, it seems to perform
marginally worse than those two transformations.

Next, the Granger causality of the volatility-scaled series by Ni, Lee and
Ratti, o++

t , is determined. This sequence is shown in figure (25). By com-
paring the p-values belonging to this series with the other transformation
we have the best performing series in terms of Granger causality so far:
those p-values tend to lie structurally below those of the other transforma-
tions. Apparently the scaling approach enhances the relevance that these
coefficients have on the output growth. Unfortunately though, also for this
transformation the strong link between o++

t and yt disappears after 2000.
Next, the sequence of Granger causality p-values belonging to the quotient

of the net oil price increase and its conditional standard deviation, o∗∗t is
shown in figure (26). Despite a combination of two sensible ideas, does
this series not outperform the original series o++

t by Ni, Lee and Ratti in
a structural manner. However, together with o++

t this series outperforms
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Figure 24: Granger causality test results

Note: p-values belonging to the Granger null hypothesis H0 : o∗t 9 yt. The Granger tests
are sequentially performed over a 20 year moving window.

Figure 25: Granger causality test results

Note: p-values belonging to the Granger null hypothesis H0 : o++
t 9 yt. The Granger

tests are sequentially performed over a 20 year moving window.

structurally the benchmark and the other transformations.
Finally, for comparison purposes, in figure 27 and 28, the Granger causal-

ities for all different oil price transformations have been plotted together.
21 Figure (27) shows the Granger causality results of the post-2000 pe-
riod. In this period the transformations o++

t and o∗∗t structurally indicate
the strongest link in Granger causality terms when compared with the other
oil price transformations. One of these two transformations almost always
takes on the smallest p-values among all transformations.

21All but the o−t series due to its obvious under performance compared to the other
transformations.
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Figure 26: Granger causality test results

Note: p-values belonging to the Granger null hypothesis H0 : o∗∗t 9 yt. The Granger
tests are sequentially performed over a 20 year moving window.

The relevance of the net oil price increase for the GNP growth seems to
be structurally lower than these two transformations. An even lower link
between the transformations and the output growth is present when the oil
price increases or the series that is based upon a moving average are used.
Finally, the link between regular oil price movements and output seems to
be the lowest among all these. Similar results are obtained when we consider
the pre-2000 period, which is shown in figure (28). The main difference here
is that overall the Granger causality is stronger in the pre-2000 interval than
in the post-2000 interval.
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Figure 27: Granger causality test results

Note: Comparison of the Granger causality test results for the different oil price
transformations.

We can conclude that oil price transformations that take into account
the volatility level show the highest causality towards output growth when
used within this regression framework. Furthermore, all the other transfor-
mations, except the oil price decreases, show a stronger link with the output
than the regular oil price movements. This provides support for the asym-
metry hypothesis: oil price increases seem to be more relevant for output
growth than decreases. The fact that the two series that take the oil price
volatility into account show the highest causality towards output, is an im-
portant indication. Apparently oil price shocks have a stronger effect in calm
markets than in tumultuous markets on output growth. Finally, the causality
disappears after 2000 for all transformations. This could be related to the
continuing growth of the oil price since the new millennium. The historically
high oil prices in real terms since 2000 could be related to the upcoming of
the emerging markets
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Figure 28: Granger causality test results

Note: Comparison of the Granger causality test results for the different oil price
transformations.

5.4.2 Individual coefficients

Up to this point we have focused on the joint significance between the oil
price transformation coefficients and the output growth. Now the attention
will be directed towards the individual coefficients of those transformations.
Investigating the movements and significance of the individual coefficients
might provide additional information related to the significance and stability
when different transformations are applied. Similar to the case in which the
joint significance is addressed, a moving window of twenty years is used in
the analysis in order to observe the behaviour of the individual coefficients
over time.

we start by providing information on the individual coefficient values and
relevance over time of the benchmark regression in the four panels as shown
in figure (41) in appendix B. The two top panels, (a) and (b), display the
coefficient values of ot−1 to ot−4. In the two bottom panels, (c) and (d),
information on the significance of the four oil transformation lags is provided
by displaying their individual p-values.

A few elements stand out from these four graphs. First, all the coefficients
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belonging to the lags of ot are negative most of the time, somehow indicating
a negative link between oil price movements and output growth. Neverthe-
less, the values of these individual coefficients are rarely large enough to be
statistically relevant at the regular significance levels.

Second, lags three and four seem to be more important for the output
growth than the first two lags. This seems to be particularly true for those
intervals with end dates before 1986.

Third, the behaviour of the coefficient of the first lag is noticeable. In 1973
we see a distinct sudden loss in significance of this coefficient. Furthermore,
this coefficient has risen rapidly and steadily in value between 1968 and 1975.

Fourth, the coefficients of lags one and two seem to move opposite to
each other in terms of relevance. Commonly, when one of them increases in
relevance, the level of relevance of the other coefficient decreases and vice
versa. This might indicate a shift in timing of the effect that oil price move-
ments have on the aggregate output. In some periods an oil shock might
be absorbed quicker by the economy than in other periods. The economic
climate and variables that could be responsible for this, might be interesting
material for a future research paper.

Figures(42) to (47) in appendix B, display information on the values and
significance of the individual coefficients belonging to the different transfor-
mations. The coefficients corresponding to lags one and two of the transfor-
mations all seem to behave rather similar to each other and to the benchmark
coefficients. They commonly are not individually significant and the coeffi-
cient of the first lag increases much in value in the first few years which
results in a loss of significance. Finally, they all seem to move in opposite
directions in terms of significance, as was noted in the benchmark case. The
performance of the four coefficients of the o−t series is the worst among all
the transformations and the benchmark.

The main difference among the different transformations in terms of the
significance of the individual coefficients is found in lags three and four. These
coefficients of the o+t , o∗t and NOPIt transformations are more significant at
these lags than at the benchmark lags. Among these, o∗t performs the worst
and is followed by o+t and NOPIt. The two best performing transformations
when based upon the significance of the coefficients of the last two lags, are
the two volatility-scaled series; o++

t and o∗∗t . Until 2000 enters the moving
window, the significance of the coefficients belonging to lags three and four
is comparable among these two transformations. After these intervals, the
third lag is more important in the o++

t transformation and the fourth lag
carries a higher significance in lag four of the o∗∗t transformation.

In conclusion we can tell that all transformations, the oil price decreases
excluded, perform better in terms of individual coefficient significance than

59



the four benchmark coefficients, ot. Joint coefficient significance of the four
lags seems to be mostly caused by the coefficients of lags three and four and
not by those belonging to the first two lags, since the p-values of the last
two lags are generally lower than those of the first two lags. This might
be an indication of a delayed response of the output growth to oil price
movements. Finally, the two transformations that utilize a volatility scaling,
o++
t and o∗∗t , have the highest significance of their individual coefficients
among all the other transformations and the benchmark. Again indicating
that the volatility level of oil prices seems to be relevant for the link between
oil prices and aggregate output growth.
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5.4.3 R-squared

The next aspect that we will investigate for each transformation is the good-
ness of fit of the regression. As before, a moving window of twenty years is
chosen. The goodness of fit at every window and for each transformation is
determined with the adjusted R-squared.

Whereas the regular R-squared improves with every explanatory term
that is added to the model, does the adjusted R-squared only increase when
the added term is a model improvement that is larger than expected by pure
chance. Equation (5.13) shows how the adjusted R-squared is calculated. In
this formula n indicates the sample size, p the number of regressors and R2 is
the unadjusted, regular R-squared. For completeness, equation (5.14) shows
how to calculate the regular R-squared. The SSresiduals refers to the sum of
squared residuals and SStotal refers to the total sum of squares.

R̄2 = 1− (1−R2)
n− 1

n− p− 1
(5.13)

R2 = 1− SSresiduals

SStotal

(5.14)

Figure (29) shows the adjusted R-squared values for the benchmark re-
gression. The graph indicate that the fit has been decreasing over time from
a value that exceeded .40 for some time to values that lie approximately
between .1 and .2. When the 2000s enter the interval, a slight structural
improvement in terms of the adjusted R-squared is achieved.

Figure 29: Adjusted R2

Note: Values of the adjusted R2 of the benchmark regression. The values are calculated
by using a moving window of twenty years.

Figure (30) contains the sequences of adjusted R-squared values for all
the used oil price transformations. All of them follow a trend over that is
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comparable to the benchmark regression.22 However, some transformations
seem to produce structurally higher values for the adjusted R-squared than
other transformations.

Figure 30: Adjusted R2

(a) o+t (b) o−t

(c) NOPIt (d) o∗t

(e) o++
t (f) o∗∗t

Note: Sequences of the adjusted R2 values for the regressions using different oil price
transformations. All values are based on a 20-year moving window.

22Except for the o−t transformation which has been added for completeness.
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Figure 31: Adjusted R2

Note: Comparison of the adjusted R2 values in the regressions using the different oil
price transformations.

In order to see clearly that some transformations outperform others in
terms of their model fit, we have plotted all oil price transformations23 in fig-
ure (31). This graph convincingly demonstrates the out-performance of o++

t

and o∗∗t in terms of their model fit. The next best performing transformation
is Hamilton’s net oil price increase. This series is followed by the oil price
increase transformation and the one based on the moving average. Finally,
the benchmark regression shows the lowest model fit overall.

Hence, we have again seen a weakening in the link between oil prices and
output. This time because the model fit has structurally decreased over time.
All tested transformations outperform the benchmark in terms of model fit,
except the oil price decrease transformation. Finally, transformations that
take into account the volatility level of the oil price, structurally outperform
the other transformations when it comes to model fitting.

23Due to a clear under-performance the adjusted R-squared values for the oil price
decrease transformation are not included.
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5.4.4 Stability

Finally we will analyse how choosing a different oil price transformation
influences the stability of the regression. The classical approach for testing
stability is by means of the Chow test for parameter stability, see Chow(1969).
It is commonly used in econometric research and hence has many variations
for fitting in different situations. An extensive overview of adaptations and
implementations is provided in Andrews and Fair(1988). However, the major
problem of the Chow test approach is that the breakpoint of the test has to
be selected by the researcher a priori. This implies that a breakdate is either
solely based on the researcher’s view or is based upon the characteristics of
the data, Hansen(2001).

In either case issues arise. First, picking a subjective date can result in
a false outcome in case no evidence is found for a break at that point while
a break is actually present at an other point. Second, Chow test results are
commonly highly sensitive to the chosen breakpoint. Therefore it is possible
that researchers reach different conclusions based on equal models and data,
which is not desirable.

Hence, the proper objective and scientific approach is to treat a break-
point as unknown instead of defining it at the beginning. Quandt(1960) has
proposed this approach and he defines the maximum value of the sequence
with Chow values to be the proper statistic for this purpose. This maximum
value is therefore known as Quandt’s statistic.

The original Chow test statistic follows a known F− or χ2− distribution.
Hence it is relatively straightforward to evaluate the test outcomes. However,
Quandt’s statistic does not follow a standard distribution. When Quandt
proposed its use in 1960, all the critical values were unknown. The result was
that the statistic had no practical value at that time. It took some time before
the proper critical values were determined in Andrews(1993). Therefore the
test statistic is now commonly referred to as the Quandt-Andrews test.

The Quandt-Andrews test is not performed over the entire sample because
the test statistic becomes degenerate at both ends of the sample. Instead the
parameter stability is investigated over a sample that symmetrically excludes
a part on both sides of the sample. When the full sample is scaled to be
uniform, i.e. [0, 1], the sample from which parts are excluded is denoted as
[π0, 1 − π0]. A common value for π0 is .15. Therefore, the Quandt-Andrews
results as reported in this section also exclude the first and last 15% of the
sample.

The critical values as provided in Andrews(1993) depend on both the
interval parameter π0 and on the number of regressors being tested for sta-
bility. For the regressions in this paper the 10%. 5% and 1% critical values
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are 23.15, 25.47 and 30.52 respectively. 24

A proper method for calculating the p-values belonging to the Quandt-
Andrews statistic was developed by Hansen(1997). With his method it is
possible to asymptotically determine the proper p-values. This method with
its proper interpretation and derivation can be found in Hansen(1997). In
this work we will refer to these p-values.

24For comparison purposes, these three critical values for the regular χ2− distribution
are 14.68, 16.92 and 21.67 respectively. Note that the critical values for the Chow test and
Quandt-Andrews test coincide when π0 = .50 is chosen.
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The Chow test sequence for parameter stability in all regressors for the
benchmark regression is displayed in figure (32). For comparison purposes,
the 5% significance level for both the χ2− distribution and the Quandt-
Andrews statistic are included. The maximum Chow value, i.e. the Qandt-
Andrews test statistic, is 31.23 and its p-value is .0070. Hence strong evidence
is found in favour of an unknown structural break in the estimated benchmark
parameters.

Figure 32: Quandt-Andrews test results

Note: Plot of the Chow test sequence for the benchmark regression with the 5% critical
value that is used for the original Chow test and Andrews critical value. The latter is

used for testing for an unknown structural break and is compared against the maximum
value of the Chow test sequence.

The Quandt-Andrews test results when using the positive oil price trans-
formation are shown in figure (33). We can see clearly that the 5% critical
value for an unknown structural break is not exceeded. In fact, also the
10% critical value is not exceeded. Hence, the regression using the oil price
increases as the oil price measure has no structural break at an unknown
point. This indicates that the relation between oil price increases and output
growth when modelled with a linear regression, is more stable than the re-
lation between regular oil price movements and output growth. Finally, this
graph illustrates that evidence in favour of a structural break would have
been acquired in case a researcher would have picked a breakdate a priori
somewhere in the early eighties.

The Quandt-Andrews test results for the regression that uses o∗t as the
oil price transformation are given in figure (34). Similar to the previous
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Figure 33: Quandt-Andrews test results

Note: Plot of the Chow test sequence for the regression using o+t with the 5% critical
value that is used for the original Chow test and Andrews critical value. The latter is

used for testing for an unknown structural break and is compared against the maximum
value of the Chow test sequence.

transformation, not enough empirical evidence is found in order to reject the
null of parameter stability for an unknown breakpoint at the 5% level. At
most we find borderline evidence for a break, with a test statistic of 25.17
and its corresponding p-value of .054. Hence, this relation is more stable
than the benchmark regression but not as stable as the regression that uses
the oil price increases.
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Figure 34: Quandt-Andrews test results

Note: Plot of the Chow test sequence for the regression using o∗t with the 5% critical
value that is used for the original Chow test and Andrews critical value. The latter is

used for testing for an unknown structural break and is compared against the maximum
value of the Chow test sequence.

The next transformation being tested for its existence of an unknown
structural break is Hamilton’s net oil price increase. Results are found in
figure (35). In contrast with the previous two transformations, does the
Quandt-Andrews test indicate sufficient empirical evidence for an unknown
structural break. The test statistic is 35.5 with a corresponding p = .004.
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Figure 35: Quandt-Andrews test results

Note: Plot of the Chow test sequence for the regression using NOPIt with the 5%
critical value that is used for the original Chow test and Andrews critical value. The
latter is used for testing for an unknown structural break and is compared against the

maximum value of the Chow test sequence.

The stability test results for the volatility adjusted oil price transforma-
tion as developed by Lee, Ni and Ratti are shown in figure (36). According to
the test statistic of 23.6 we have no evidence in favour of a structural break.
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Figure 36: Quandt-Andrews test results

Note: Plot of the Chow test sequence for the regression using o++
t with the 5% critical

value that is used for the original Chow test and Andrews critical value. The latter is
used for testing for an unknown structural break and is compared against the maximum

value of the Chow test sequence.

Finally, the stability test results for the regression using o∗∗t as the oil
price measure are shown in figure (37). At the 5% level we have borderline
evidence for this series for the existence of a break.

In conclusion these Quandt-Andrews tests shown overwhelming evidence
for the presence of an unknown structural break in the model parameters of
the benchmark regression. However, using any of the oil price transforma-
tions instead, results in stable model coefficients. The only exception is the
net oil price increase, which does contain an unknown structural break.
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Figure 37: Quandt-Andrews test results

Note: Plot of the Chow test sequence for the regression using o∗∗t with the 5% critical
value that is used for the original Chow test and Andrews critical value. The latter is

used for testing for an unknown structural break and is compared against the maximum
value of the Chow test sequence.

6 VAR-analysis

6.1 Introduction

In the previous section we have focused on the effects of the different oil price
transformations within a linear regression framework. This implies that the
link between oil and output growth was investigated in a rather direct way.
However, we have ignored numerous variables which might play a crucial
role in the actual interactions. This implies that some of the results as found
in the previous section are caused by an omitted-variable bias. Therefore
in this section other relevant macroeconomic variables will be included and
used within a vector autoregression model.

This section is structured in the following way. We will start by pro-
viding a theoretical background for the VAR-models. Then we will discuss
the implementation and the results. In particular we will focus on Granger
causalities and on generalized impulse response functions.

The vector autoregression (VAR) model is the multivariate extension of
the univariate autoregression (AR) models. Its usefulness arises from the
fact that when we are dealing with macroeconomic variables, the value of
one variable is often not only related to its predecessors in time but also
on past values of other variables. Hence, when a dynamic interrelation is
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present between all these variables, VAR-models might be a good method
for representing them, see Lütkepohl (2005).

One of the pioneers in applying a VAR-model for analysing macroeco-
nomic phenomena was Sims in Sims(1980b). He disagreed with the common
practice of macroeconomists to apply many a priori restrictions to the data.
Instead, he analysed several common macroeconomic themes, such as the
Philips curve, without using these theoretical perspectives. In his VAR-
model he used six key macroeconomic variables. These variables often have
been applied in the relevant literature and are henceforth also included in
our research.
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6.2 Theoretical background

6.2.1 Introduction

We will now provide some essential theoretical information on the VAR-
models. A VAR-model of order p is a model in which every time series is
regressed on its own p lags as well as on p lags of all the other time series
that are included in the model. Mathematically, a VAR(p)-model with m
regressors is defined by equation (6.1).

yt = c + Φ1yt−1 + . . .+ Φpyt−p + εt (6.1)

In this formulation yt = (y1t, ..., ymt)
′ is a (m × 1 ) vector with the values

for them jointly determined dependent variables. The vector c = (c1, ..., cm)′

contains all the intercept terms. The matrices Φi, ∀i = 1, ..., p, are the
(m × m) coefficient matrices. Finally, εt is the m-dimensional vector with
error terms of the model. This vector is assumed to follow a white noise
process. Furthermore, the covariance matrix is assumed to be nonsingular.
25

Next to equation (6.1), an other representation exists of a VAR(p)-process.
In this representation yt is expressed in terms of its present and past error
terms εt and its mean vector c. By rewriting a VAR-model in this manner,
impulse response functions can be deducted from it. It is also referred to as
the Wold representation due to its origin in Wold(1954). It is displayed in
equation (6.2)26.

yt = c +
∞∑
j=0

Ajεt−j (6.2)

In the Wold representation them×m coefficient matrices Aj are obtained
with a recursive relation as shown in (6.3). The recursion is initiated with
A0 = Im and moreover Aj = 0 when j < 0.

Aj = ΦjAj−1 + ...+ ΦpAj−p (6.3)

A crucial assumption that underlies VAR-models is the weak stationarity
of the series yt = (y1t, ..., ymt)

′. This implies time-invariant behaviour of
25Nonsingularity of a square (n × n) matrix A implies that a square (n × n) matrix B

exists such that AB = BA = In, in which In indicates the (n×n)-identity matrix. Hence
nonsingularity guarantees that the inverse matrix exists.

26We have to note that the moving average representation is only feasible under the
stability assumption. Formally a VAR-process is stable if the reverse characteristic poly-
nomial has no roots in and on the complex unit circle. An extensive treatment of this
technicality is provided in Lütkephohl (2005).
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the first and second moments of yt. An important result is that under
weak stationarity the impulse response functions converge to zero as the
time horizon increases. Empirically, we have to subject all the variables that
are candidates for a VAR-analysis to tests for stationarity. In this paper this
will be established by executing the Augmented Dickey-Fuller (ADF) test for
the existence of a unit root.

When dealing with a stationary and stable VAR(p)-process of the form
in equation (6.1), estimation is based on the method of multivariate least
squares (LS), Lütkepohl (2005). When we are using an unrestricted VAR-
model27 it can be shown that multivariate LS estimation is equivalent to
OLS estimation in each of the m equations in (6.1) separately. Similarly to
OLS estimation, does multivariate LS estimation yield consistent estimators
that adhere asymptotic normality. Furthermore, the OLS estimator is equal
to the ML estimator in case the residuals in the VAR-model are normally
distributed.

27This implies that all the individual equations in the model contain the same regressors.
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6.2.2 Structural analyses

Since a VAR(p) model contains numerous parameters, it might be compli-
cated to rightly interpret the complex interactions and feedback between the
variables by looking at the values of all coefficient estimates. Therefore, many
dynamic properties of a VAR-model are often summarized by using different
types of structural analysis. In this research we will use two types of struc-
tural analysis: Granger causality and impulse response functions. Both of
which are discussed in this part.

6.2.3 Granger causality

Granger has defined a concept of causality that is easy to handle within
the framework of VAR-models and it therefore has gained popularity among
researchers, see Granger (1969) and Lütkepohl (2005). The main idea is that
an effect always follows the cause and not the other way around. Hence,
when a variable x has an influence on a variable z, the variable x should help
to improve the predictions on z. It is said that when a variable or a group of
variables, x, helps sufficiently in the prediction of an other variable or group
of variables, z, that x Granger causes z, which is usually denoted by x→ z.

This idea is formally implemented by using the mean squared error (MSE)
of forecasts. Officially, x fails to Granger cause z, when the MSE of a fore-
cast of z is not significantly different when this forecast is based solely on
information of past values of z when compared to a forecast that is based on
both past values of x as well as on past values of z. More precisely, x fails
to Granger cause z when a forecast of zt+S is not significantly better when
based on (xt, xt−1, ...) and (zt, zt−1, ...), than when only based on (zt, zt−1, ...).

In mathematical terms Granger causality is explained by equation (6.4).
When this equation holds for at least one h = 1, 2, ... then x Granger causes
z. In here Ωt represents the information set that contains all the relevant
information that is available until period t. zt(h|Ωt) represents the h-step
predictor of zt which is based on all the information contained in Ωt. Finally,
Ωt\{xs|s ≤ t}) is the set containing all relevant information for the prediction
except information on the history of the process xt. Hence (6.4) tells us that x
Granger causes z when the MSE of an h-step predictor is significantly smaller
when information is used about x than when this information is excluded.
Derivations, characterizations and technicalities of Granger causality testing
within a VAR-framework are provided in Lütkepohl (2005).

MSEz(h|Ωt) < MSEz(h|Ωt\{xs|s ≤ t}) (6.4)
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6.2.4 Impulse response analysis

In empirical work a researcher is often interested in how one variable will
respond to an impulse in an other variable when both of these variables
are included in a multivariate system. For this purpose impulse response
functions (IRF’s) are used.

A reason why IRF’s are particularly useful for analysing VAR-results is
related to the complicated nature of VAR-models: in a VAR(p) model the
higher order cross correlations between yit and yjt for i 6= j is given by
a complicated function of the model parameters. Therefore it is difficult
to analyse the dynamic relationships between the different series by solely
observing these coefficients. IRF’s are commonly used instead.

In technical terms an IRF analyses what the effect is over time on a
variable yj,t+n in case of the occurrence of an exogenous shock of a size δ on
the i -th variable. Hence when εit = δ occurs. Furthermore, it is assumed
that the other shocks are zero at the time of this shock, i.e. εjt = 0 ∀j 6= i.
An other useful definition of an IRF is to view it as the difference between
two conditional expectations, i.e. the difference when we do assume a shock
in one of the variables at the initial state and when we do not assume this.

The Wold representation of a VAR-model is used in order to derive the
IRF’s. In fact the coefficient matrices of that representation give information
on the effects of a unit shock in εit on the other variables. An extensive
treatment of these derivations can be found in Lüthkepohl(2005).

However, assuming that a shock only appears in one variable at a time
while it is zero for the other variables, might not be realistic. This is because
the error terms among the different variables in the model most likely are
not uncorrelated. This implies that a shock in one variable is likely to be
accompanied simultaneously by shocks in other variables. Hence, in such a
situation, we will obtain unrealistic results when we set the shocks of all vari-
ables to zero except for the shock of the variable that we want to investigate
the responses of.

Usually this issue is resolved by using so-called orthogonalized shocks. In
this method as first proposes by Sims(1980b), a Cholesky decomposition is
applied on the covariance matrix Σε:

LL′ = Σε (6.5)

In here L is am×m lower triangular matrix. The shock ξt = L−1εt is now
orthogonalized since E(ξtξ

′
t) = Im . Hence these orthogonalized shocks are

no longer correlated to one another, which enables us to conduct an impulse
response analysis by using the moving average representation. In equation
(6.6) it is shown how these IRF’s are properly calculated. It shows the effect
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of a unit shock on the j th variable in the model n periods in the future, so
at time t+n. The vector ej is a m×1 vector with a one at the j th place and
zero at the other positions. The matrix Aj comes from the moving average
representation, (6.2), and L is the lower triangular matrix resulting from the
Cholesky decomposition.

Ψo
j(n) = AnLej, n = 0, 1, 2, ... (6.6)

Unfortunately, the use of the lower triangular matrix L implies that the
IRF’s are sensitive to the ordering of the variables in the model. In practice
the use of the lower triangular matrix imposes a recursive or causal ordering
on the variables in the system as is shown in (6.7).

y1 → y2 → ...→ ym (6.7)

The ordering in (6.7) implies that the instantaneous values of those vari-
ables to the left of an arrow affect the values to the right. However, this
relation does not hold in the opposite direction. Stated differently, yst does
not have a contemporaneous effect on ykt ∀k < s.

The problem with this ordering is that is cannot be determined by purely
objective statistical methods. Instead, this ordering needs to be specified by
the researcher a priori.28 Commonly this ordering is chosen based on the
specific context of the problem. Furthermore, results of IRF’s from differ-
ent orderings can be compared with one another in order to investigate the
sensitivity of these responses to the specific variable ordering.

However, this problem of the ordering, can be resolved by using a Gen-
eralized impulse response analysis as proposed in Pesaran and Shin(1997).
Their proposed alternative is that, instead of using orthogonalized shocks,
an actual assumed distribution of the error terms εt is followed. When εt is
assumed to follow a multivariate normal distribution, the scaled generalized
impulse response functions are obtained by calculating (6.8). A full deriva-
tion of this generalized impulse response function is provided in Koop et al.
(1996).

Ψg
j (n) = σ

− 1
2

jj AnΣεej, n = 0, 1, 2, ... (6.8)

The advantage of this methodology over Sims original suggestion, is the
invariance of the IRF’s to the ordering of the model variables. Hence, re-
searchers do no longer need to determine subjectively a proper ordering of
the analyses.

28In fact there are m! possible different recursive orderings.
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Finally, we have to mention that in some instances the orthogonalized
and generalized impulse response functions coincide with one another. They
are equal in case the covariance matrix Σε is diagonal and in case a shock is
given to the first variable j = 1. Hence in those two cases ψo

j (n) = ψg
j (n).
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6.3 Implementation and results

The VAR-model as implemented in this paper will consist of the six variables
as proposed by Sims(1980b) to represent the macroeconomic system. These
variables are the GNP growth, GNP deflator inflation, the unemployment
rate, wage inflation, import price inflation and the 3-month Treasury bill
rate. This last variable replaces the money supply as measured by M1,
which was part of the original six variables in Sims model. Sims himself has
suggested to replace M1 by this rate which is explained in Sims(1980a). The
seventh variable is the oil price transformation. The VAR-model is estimated
based on a quarterly frequency over the period 1950:I - 2010:IV. Just as in
the linear regression framework do we utilize four lags, hence yielding a 7-
variable VAR(4)-model. We have executed lag exclusion tests that choose the
appropriate number of lags based upon minimizing an information criterion.
Both Schwarz and Akaike’s information criterion choose models containing 3,
4 or 5 lags. However, the difference in the value of the information criterion
between these three values is small. Hence, for consistency we will use a
VAR(4)-model throughout this entire section. More information on the data
is attached in appendix A. All the variables are entered in annual percentage
terms.29

The augmented Dickey-Fuller test was performed on all these series in
order to detect the presence of a unit root. Based upon these results all the
variables have been entered in their first log differences in order to remove
the non-stationarity. Only the unemployment rate and the Treasury Bill rate
have been used in their original form because in these series the null of a unit
root was already rejected without making a transformation. For informative
purposes, the summary statistics of the six variables that are used in the
VAR-model next to an oil price transformation, are given in table (12).

We have also tested if the four non-stationary variables, i.e. GNP, im-
ports, the GNP deflator and the wage level might be cointegrated with one
another. This implies that a stationary linear combination of these variables
can be found. By using the Johansen cointegration test we find small sup-
port for the existence of one cointegration relation at the 5% level. However,
we will not use this information since we follow the common method in the
literature by using a VAR-model with stationary time series as input. We
only vary the oil price measure as input.

29Hence the quarterly log differences are multiplied by 400 and the unemployment rate
and the T-Bill rate by 100.
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Table 12: Summary statistics

Mean Std. Dev. Max Min Skew. Kurt.

unemploymentt 5.75 1.62 10.67 2.57 .68 3.36
waget 1.61 2.89 11.76 -6.52 .49 4.29
importst 9.16 17.66 97.02 -76.06 -.09 8.73
inflationt 3.36 2.49 14.45 -0.97 1.36 5.07
tbillt 4.70 2.91 15.05 0.06 0.95 4.26
GNPt 3.25 4.02 15.91 -11.40 -0.24 4.65

Note: Summary statistics for the time series as used in the VAR-model over
the period 1950:I - 2010:IV

6.3.1 Granger causality results

Two types of structural analyses will be performed within the VAR-framework:
Granger causality tests and an impulse response analysis. We will start by
conducting Granger causality tests.

Table (13) displays the results from the Granger causality tests. Every
row corresponds to a 7-variable VAR(4)-model that uses the oil price trans-
formation as indicated in the left column. The values in the table hence
show the results for the hypothesis H0 : x 9 y, in which x represents the
different oil price transformations and y represents the output growth. Hence
we test whether a Granger causality exists between the mentioned oil price
transformation and the output growth. The Granger causality tests yield a
χ2-value with four degrees of freedom.30 The right column shows the p-value
corresponding to this test statistic.

The values in the table show in the first place that oil price changes do
not Granger cause GNP growth when used within this 7-variable VAR(4)-
model over the period 1950:I-2010:IV. On the other hand, all the oil price
transformations that are considered, at least Granger cause output growth
at the 10% level. The only exception is the oil price decrease series which is
highly insignificant.

Especially the transformations that use a volatility scaling, o++
t and o∗∗t ,

seem to have a strong link with the output growth. The other transformations
do not show such high Granger causality as these two transformations but are
nevertheless still significant at the 5% level. Therefore they seem to capture
important aspects for the GNP growth that is missed when the regular oil
price changes, ot, are used as the appropriate oil price measure in this VAR-

30The degrees of freedom have to equal the number of restrictions.
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Table 13: Granger causality test results

Excluded χ2(4) p-value

ot 4.52 .34
o+t 14.59 .0056**
o−t 5.08 .2800
NOPIt 17.57 .0015**
o∗t 12.50 .0140*
o++
t 35.10 .0000**
o∗∗t 38.32 .0000**

Note: Granger causality tests are of the restriction that all lags of
the oil price transformation coefficients are zero. The sample used
is 1950:I-2010:IV.

* Significant at the 5% level.
** Significant at the 1% level.

model.
The fact that the volatility-scaled transformations show such high causal-

ity with the output growth might be an indication that the effect of oil price
shocks on the macroeconomy is linked to the volatility of the oil price. When
the oil prices have behaved rather calm, shocks can have a greater impact
than when an equal shock would hit the oil price in a macroeconomic system
that is characterized by highly volatile oil prices. This is exactly the reason
why this series has been constructed in the first place by Lee, Ni and Rattti
(1995) and it seems to perform well over this sample.

Hamilton(1983) and Hooker(1996) among others have shown, within the
context of vector autoregressive models, that the link between oil prices and
macroeconomic variables has weakened around 1973. This seems to be true
in particular for the link between oil prices and the output growth and the
link between oil prices and the unemployment rate.31

For comparison purposes we have split our sample at 1973:III/1973:IV
as in Hooker(1996). By conducting Granger causality analyses on different
sub-samples, we can obtain valuable information on the changing strength
in the link between oil price movements and output growth. In table (14)
the block Granger causality results over the sample period 1950:I-1973:III
are shown.

31The existing relations between oil price movements and Sims other macroeconomic
variables has not altered that much since 1973. This is due to the fact that no strong
relation has been present between those variables to begin with.
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Table 14: Granger causality results

Excluded χ2(4) p-value

ot 18.41 .0010**
o+t 19.24 .0007**
o−t 2.85 .5832
NOPIt 21.30 .0003**
o∗t 19.16 .0007**
o++
t 20.80 .0003**
o∗∗t 22.61 .0002**

Note: Granger causality tests are of the restriction that all lags of
the oil price transformation coefficients are zero. The sample used
is 1950:I-1973:III.

* Significant at the 5% level.
** Significant at the 1% level.

The values in the table confirm the results from Hooker(1996) and Hamil-
ton(1983): both the regular oil price movements, ot, as well as all the different
transformations, except for the oil price decreases, do Granger cause GNP
growth at the 1% level. Furthermore the fact that the χ2 test value that
belongs to the regular oil price movement series lies very close to these χ2

values of all the different oil price transformations, indicates that over this
sample the regular oil prices seem to capture the relevant aspects of the oil
for the output as well as this is captured by the different oil price transfor-
mations. Overall, we conclude that a very strong link is present between oil
prices and the output in the pre-1973 period.

In order to be able to compare our results with with Hooker(1996), we also
have performed the block Granger causality tests over the period 1973:IV-
1994:II.32 Those test results are shown in table (15).

From the χ2 test statistics it is clear that neither ot, nor any of the oil
price transformations do Granger cause output growth at the conventional
significance levels. The strongest link that is found is the one between the
net oil price increase that is scaled for the volatility,o∗∗t , which has a p-value
of .1832, which is not significant or borderline significant.

These results are remarkable since it implies that the weakened relation
between oil prices and the output in the period 1973:IV-1994:II can not be
resolved by applying one of the suggested oil price transformations. Hence,
not only do we observe a reduction in the relevance between oil prices and

32Hence we do not use the full post-1973 period: 1973:IV-2010:IV, because that data
was not available at the publishing of Hooker(1996).

82



Table 15: Granger causality results

Excluded χ2(4) p-value

ot 3.02 .5549
o+t 2.57 .6319
o−t 2.85 .5543
NOPIt 21.30 .3047
o∗t 19.16 .5351
o++
t 20.80 .3133
o∗∗t 22.61 .1832

Note: Granger causality tests are of the restriction that all lags of
the oil price transformation coefficients are zero. The sample used
is 1973:IV-1994:II.

* Significant at the 5% level.
** Significant at the 1% level.

output growth in the period 1973:IV-1994:II when compared to the period
1950:I-1973:III, but this reduction is also present in all the different oil price
transformations that have been investigated. Therefore, the different aspects
that these oil price transformations represent, do not seem to be sufficient
for obtaining a significant link between oil and the output over this period.

However, our actual available sample is almost twenty years longer. There-
fore in table (16) the results are shown over the period 1973:IV-2010:IV.
These results contrast with the results that have been found over the period
1973:IV-1994:II. Because the link between the different oil price transfor-
mations and GNP growth seems to be stronger: In the benchmark case,
ot Granger causes output borderline (p-value =.07) Also, the net oil price
increase and the net oil price increase divided by the conditional standard
deviation are significant at the 5% and 1% level respectively. All the other
transformations, the oil price decreases and increases excepted, can be con-
sidered to Granger cause output growth at the less restrictive 10% level.

The difference in the level of Granger causality between oil price transfor-
mations and GNP growth between the periods 1973:IV-1994:II and 1973:IV-
2010:IV is remarkable. Therefore we suspect that the link between oil price
transformations and output in the period 1994:II-2010:IV has to be rather
strong in order to explain this difference. For this purpose table (17) dis-
plays these results for the period 1994:II-2010:IV. Indeed significant Granger
causalities are observed between these oil price transformation and the out-
put growth: the regular oil price movements, ot, are significant at the 10%
level, while all the oil price transformations, except for the decrease series,
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Table 16: Granger causality results

Excluded χ2(4) p-value

ot 8.87 .0700
o+t 5.39 .2492
o−t 7.59 .1078
NOPIt 12.25 .0156*
o∗t 8.62 .0714
o++
t 8.93 .0627
o∗∗t 13.55 .0088**

Note: Granger causality tests are of the restriction that all lags of
the oil price transformation coefficients are zero. The sample used
is 1973:IV-2010:IV.

* Significant at the 5% level.
** Significant at the 1% level.

are significant at either the 5% or 1% level. This seems to indicate that after
1994 the relation between oil and output has strengthened again. Next to
that, the different oil price transformations all show a higher causality with
the output than the regular oil price movements.

Table 17: Granger causality results

Excluded χ2(4) p-value

ot 8.47 .08
o+t 10.30 .0356*
o−t 3.03 .55
NOPIt 15.90 .0032**
o∗t 14.84 .0050**
o++
t 15.46 .0038**
o∗∗t 12.43 .0145*

Note: Granger causality tests are of the restriction that all lags of
the oil price transformation coefficients are zero. The sample used
is 1994:II-2010:IV.

* Significant at the 5% level.
** Significant at the 1% level.

We can conclude that in this 7-variable VAR(4)-model a strong causality
exists between oil prices and the output in the period before 1973. This
holds for both the regular oil price movements as well as for all the differ-
ent tested transformations. In the period from 1973 to 1994 no significant
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Granger causality can be established between any of the transformations and
the output growth. Confirming the breakdown of this relation as shown in
Hooker(1996) but more importantly, also showing that none of these transfor-
mations is capable of creating a significant relation with the output growth in
this period. Finally, the link between oil prices and output seems to increase
after 1994, although it does not reach the pre-1973 levels.
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6.3.2 Impulse response analysis

We will now analyse the different oil price transformations within this VAR-
framework based on an impulse response analysis. As discussed in the theo-
retical part, two types or impulse response functions exist: the orthogonalized
impulse response functions and the improved generalized impulse functions.
In this section we will use generalized impulse response functions due to the
fact that they are invariant to the ordering of the variables in the VAR-model.
33

The generalized impulse response functions, showing the effects of a stan-
dardized shock in an oil price transformation on output growth, as calculated
over the full sample 1950:I-2010:IV, are shown in figure (38). The effects are
shown up to 20 quarters, i.e. 5 years.

Figure 38: Impulse response analysis

Note: The generalized impulse response functions, indicating the effects of a shock in the
indicated oil price transformation on the GNP growth up to 20 quarters. The sample

period is 1950:I-2010:IV.

A shock in any of the oil price transformations has a comparable effect
on output growth in terms of the global pattern that will be followed by the
GNP growth. We see that a positive shock leads to a reduction of the output
growth. It seems to take some time before the effects are fully noticeable.

33Recall that a generalized impulse function is equal to the orthogonalized IRF in case
the effect is investigated of a shock given to the first variable in the ordering.

86



After four periods the effect is the strongest. Ten quarters after the applied
shock the effect on output growth has mostly worn out.

The direction in which the response functions of the different transfor-
mations move is similar. However, the size of the movements varies largely
among these different impulse response functions. First, all the different oil
price transformations have a stronger effect on output growth than a shock
in the regular oil price series ot. Second, the two volatility adjusted series,
o++
t and o∗∗t have the most pronounced effect on output growth. They are
followed by the net oil price increase. Finally, the oil price increases and the
series that is based upon the moving average show a smaller effect than this
net oil price increase. However, they still have a larger effect than the regular
oil price series.

As in the previous part, we are interested in how the relations between the
different oil price transformations and the output growth might have altered
over time. In order to be consistent with the previous part on Granger
causality analyses, we have used the same splitting of the sample size for
the impulse response analyses. Therefore figure (39) shows the generalized
impulse response functions over the period 1950:I-1973:III.

Figure 39: Impulse response analysis

Note: The generalized impulse response functions, indicating the effects of a shock in the
indicated oil price transformation on the GNP growth up to 20 quarters. The sample

period is 1950:I-1973:III.

In contrast to the generalized impulse response functions as determined
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over the full sample 1950:I-2010:IV, are the impulse response functions in
this sample belonging to the different oil price transformations very close to
one another: all of them have a very strong negative impact on the GNP
growth. Again, we see a delayed response in which the negative effect on
output is the largest after four quarters, after which it slowly returns to
normal values. Furthermore it is remarkable that the impulse responses are
positive between 5 and 10 quarters. This could imply that markets initially
negatively overreact to an oil price shock and that the positive response
values are a correction of this.

The results confirm the results as obtained from the Granger causality
analysis. In there we also saw a strong link between the different oil price
transformations and the output growth and there was no difference in sig-
nificance between all the different transformations. In here we can make it
more specific and we can see the expected trajectory that the output growth
will follow in response of a shock in one of the transformations and all these
trajectories lie very close to one another. Hence they have a comparable mag-
nitude and direction. Indicating that no improvements could be obtained by
using a different oil price transformation in this period.

Finally the generalized impulse response functions are determined over
the period 1973:IV-2010:IV. These are shown in figure (40).

Compared to the generalized impulse response functions over the period
1950:I-1973:III we see major differences. First the effects that a shock in one
of the oil price transformations has on the GNP growth now varies widely
among the transformations. The transformations that use a volatility scaling
show the strongest effect on output. All the other transformations also show
a stronger effect on GNP growth than a shock in the normal oil price series.
In the second place do we again have some evidence for a breakdown in the
link between oil prices and the output after 1973: the impact of the oil price
shocks is remarkably lower than in the pre-1973 period.
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Figure 40: Impulse response analysis

Note: The generalized impulse response functions, indicating the effects of a shock in the
indicated oil price transformation on the GNP growth up to 20 quarters. The sample

period is 1973:IV-2010:IV.

7 Conclusion
In this paper we have taken a closer look at the relation that exists between
different oil price transformations and the output growth. In the linear re-
gression framework all the oil price transformations, except for the price
decreases, showed a stronger Granger causality towards output growth than
the regular oil price movements. The strongest link was present between the
series as constructed by Lee, Ni and Ratti and the series that divides the net
oil price increase by the conditional volatility. However, in all transforma-
tions a decrease in Granger causality is seen from the 2000’s onwards. We
expect that the steady oil price increase from that moment onwards could be
related to this. All transformations in the regression framework have been
tested for the existence of an unknown structural break by means of the
Quandt-Andrews test. Only when the regular oil price movements or when
the net oil price is used, we find enough evidence for the existence of a struc-
tural beak. This shows that using one of the oil price transformations often
results in more stable relations.

In the vector autoregressive model we clearly saw the breakdown at 1973.
Before 1973 a shock in any of the oil price transformations had a very com-
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parable effect on the output as based on the generalized impulse response
functions. This was a strong negative effect with a delay of three to four
quarters. However, after 1973 the direction and timing of the effects is still
the same, namely negative and slightly delayed. However, the magnitude of
the effect is a lot smaller. Furthermore, this time noticeable differences are
present between the different oil price transformations. The transformations
that use the volatility again show the strongest effect and the regular oil
price movements the smallest effect. Hence the different transformations ap-
parently do capture some important aspects that are relevant for the output
that are missed when one just looks at the oil price movements.

In terms of Granger causality we find similar results. Before 1973 all
transformations do strongly Granger cause output. After 1973 this link
weakens but the transformations perform better than the regular oil price
movements. However since 1994 we have indications that the link between
oil and the output became stronger again.

In future research low frequency macroeconomic data could be combined
with higher frequency oil price data. MIDAS regressions could be used for
this. By not discarding information that is inherent to the process of trans-
forming high frequency data to low frequency data, we could obtain addi-
tional insights.
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8 Appendix A - Data overview
Import prices: the import value of goods and services, from FRED and
prepared by the U.S. bureau of economic analysis, entered in log-differences,
seasonally adjusted.
Interest rate: As measured by the 3 month treasury bill rate in the secondary
market, from FRED and prepared by the board of governors of the federal
reserve system, entered in log-differences, average aggregation method
Price level: Given by the implicit price deflator of the Gross National Prod-
uct, from FRED, entered in log-differences, seasonally adjusted.
Producer Price Index(PPI) for crude oil: Data from FRED, entered in
log-differences, aggregated from monthly to quarterly using average aggrega-
tion.
Real GNP: From the Federal Reserve Economic Data database(FRED) at
the St. Louis Federal reserve Bank noand prepared by the U.S. bureau of
labor statistics, entered in log-differences, seasonally adjusted.
Refiner composite acquisition costs: from the U.S. Energy Information Ad-
ministration(EIA), entered in log-differences, weighted average of the domes-
tic and imported RAC, average aggregation method.
Unemployment rate: Rate for civilians of age 16 and older, from FRED and
prepared by the U.S. bureau of labor statistics, for civilians age 16 and older,
seasonally adjusted, aggregated using average aggregation.
Wages: The real compensation per hour for the nonfarm business sector,
from FRED and prepared by the U.S. bureau of labor statistics, seasonally
adjusted
West Texas Intermediate (WTI): Price of a barrel of crude WTI, data from
FRED and prepared by Dow Jones & Company, entered in log-differences,
aggregated from monthly to quarterly using average aggregation method.

9 Appendix B - Individual coefficients
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Figure 41: Information on the individual coefficients of ot

(a) coefficient values (b) coefficient values

(c) p-values (d) p-values

Figure 42: Information on the individual coefficients of o+t

(a) coefficient values (b) coefficient values

(c) p-values (d) p-values
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Figure 43: Information on the individual coefficients of o−t

(a) coefficient values (b) coefficient values

(c) p-values (d) p-values

Figure 44: Information on the individual coefficients of NOPIt

(a) coefficient values (b) coefficient values

(c) p-values (d) p-values
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Figure 45: Information on the individual coefficients of o∗t

(a) coefficient values (b) coefficient values

(c) p-values (d) p-values

Figure 46: Information on the individual coefficients of o++
t

(a) coefficient values (b) coefficient values

(c) p-values (d) p-values
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Figure 47: Information on the individual coefficients of o∗∗t

(a) coefficient values (b) coefficient values

(c) p-values (d) p-values
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