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Abstract

Support Vector Machines (SVMs) have gained considerable popularity over the last
two decades for binary classification. This paper concentrates on a recent optimization
approach to SVMs, the SVM majorization approach, or SVM-Maj for short. This method
is aimed at small and medium sized Support Vector Machine (SVM) problems, in which
SVM-Maj performs well relative to other solvers. To obtain an SVM solution, most other
solvers need to solve the dual problem. In contrast, SVM-Maj solves the primal SVM opti-
mization iteratively thereby converging to the SVM solution. Furthermore, the simplicity
of SVM-Maj makes it intuitively more accessible to the researcher than the state-of-art
decomposition methods. Moreover, SVM-Maj can easily handle any well-behaved error
function, while the traditional SVM solvers focus particularly on the absolute-hinge error.
In this paper, the SVM-Maj approach is enhanced to include the use of different kernels,
the standard way in the SVM literature for handling nonlinearities in the predictor space.
In addition, the R package SVMMaj is introduced that implements this methodology.
Amongst its features are the weighting of the error for individual objects in the train-
ing dataset, handling nonlinear prediction through monotone spline transformations and
through kernels, and functions to do cross validation.

As an application of SVM, this paper also investigates the practicability of using
Support Vector Machine as an automatic Machine Learning Technique on predicting the
political spectrum of a person based on their choice of words in political issues. For this
research, the statements of the parliamentarians in the plenary meetings of the House of
Representatives have been used. Using the term frequency of the selected features in the
model, it was possible to obtain a hit rate of up to nearly 70%, which was higher than
the hit rate obtained by purely majority voting.

Keywords: Support Vector Machine, SVM-Maj, R, Majorization, text analysis, political
spectrum, Dutch House of Representatives.

1. Introduction

For understanding what a support vector machine (SVM) is, consider the following data
analysis problem: there are two groups of objects, say products of type A and type B, having
some common attributes such as color, price, weight, etc. These attributes will be referred
to as predictor variables in this paper. The task of separating the two types of objects from
each other is formally referred to as the binary classification task. Given the values for the
predictor variables of a new object, we would like to assign this new object to a given group, or
class. Such a binary classification task is dealt with routinely in medical, technical, economic,
humanitarian, and other fields.

Numerous learning methods have been designed to solve the binary classification task, in-
cluding Linear Discriminant Analysis, Binary Logistic Regression, Neural Networks, Decision
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Trees, Naive Bayes classifier, and others. In this paper, I focus on a method that has gained
considerable popularity over the last two decades, called the Support Vector Machines (SVMs)
classifier (Vapnik 1995). SVMs have emerged as one of the most popular and high-performing
learning methods for classification. They have been successfully applied to areas ranging from
bioinformatics (see, e.g., Furey et al. 2000; Guyon et al. 2002) to image recognition (see, e.g.,
Chapelle et al. 1999; Pontil and Verri 1998) and marketing (see, e.g., Cui and Curry 2005). In
essence, SVMs divide two groups of objects from each other by building a hyperplane in the
space of the predictor variables that separates them in an adequate way. The rapid success
of SVMs can be attributed to a number of key qualities: robustness of results, avoiding over-
fitting, and the possibility to handle nonlinearities of the predictor variables easily through
so-called kernel functions. In addition, the evaluation of an SVM model on test objects is
relatively fast and simple. The SVM is formulated as a well-defined quadratic optimization
problem that has a unique solution. Overfitting, that is, fitting an available training data-set
too well, is avoided via a penalty term that suppresses too complex potential fits. Nonlin-
earities can be handled in two ways: (1) by a preprocessing step of the predictor variables,
for example, by polynomial expansion or the use of splines (Groenen et al. 2007) and (2) by
using the kernel trick that allows nonlinear solutions to be computed implicitly. Note that
the use of kernels is very prominent in the SVM literature.

A variety of solvers for the SVM optimization task have been proposed in the literature. One
of the initial ideas has been to apply general-purpose quadratic optimization solvers such as
LOQO (Vanderbei 1994) and MINOS (Murtagh and Saunders 1998). One of the problems
of such solvers is that they require the whole kernel matrix to be stored in memory, which is
quadratic in the number of observations n. For small scale problems, this is not a problem, but
for medium and large scale problems other methods are needed. One attempt to overcome the
complete storage of the kernel matrix is by chunking (Boser et al. 1992; Osuna et al. 1997a).
This method concentrates on a (working) subset of all training objects at a given iteration,
effectively splitting the learning task into smaller subproblems that easily fit into the memory
of a computer. Alternatively, direction search was proposed (Boser et al. 1992) that updates
all unknown coefficients at each iteration in a certain feasible direction.

More recently, decomposition methods have established themselves as the mainstream tech-
nique for solving SVMs (Osuna et al. 1997b; Saunders et al. 1998; Joachims 1999). At each
iteration, the decomposition method optimizes a subset of coefficients, and leaves the remain-
ing coefficients unchanged. Solving a series of very simple optimization subproblems, this
approach has proven to be one of the fastest for large scale SVM problems. The most pop-
ular decomposition method is the so-called Sequential Minimal Optimization (SMO) (Platt
1999), where only two coefficients are updated at each iteration, which can actually be done
analytically. SMO is the basis of popular SVM solvers such as SVMlight (Joachims 1999)
and LibSVM (Chang and Lin 2001). For the linear SVM case, alternative techniques to the
decomposition methods have recently been put forward, such as the cutting plane algorithm
(Joachims 2006).

This paper concentrates on a recent optimization approach to solving SVMs (Groenen et al.
2007, 2008), referred to as the majorization approach to SVMs, or SVM-Maj for short. This
method is aimed at small and medium sized SVM problems. An overview of some popular
SVM solvers and some of their properties is given in Table 1. The other solvers are Lib-
SVM, SVMlight, SVMTorch (Collobert and Bengio 2001), mySVM (Rüping 2000), SVM-Perf
(Joachims 2006), and LibLINEAR (Fan et al. 2008).
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Properties SVM-Maj LIBSVM SVMlight SVMTorch mySVM SVM-Perf LIBLINEAR
Nonlinear kernels yes yes yes yes yes no no
Splines yes no no no no no no
Suitable for large n yes yes yes yes yes no yes
Suitable for large k yes yes yes no yes no yes
Suitable for large n and no yes yes no yes no

large k
Dual approach no yes yes yes yes yes no
Allows quadratic hinge yes yes* no no yes no yes
Allows Huber hinge yes no no no no no no
Allows k-fold cross val. yes yes yes no yes no yes
Language MatLab, R C++,Java C, C++ C++ C C++ C,C++
Gui interface or MatLab, R command command command command command command

syntax-like prompt prompt prompt prompt prompt prompt
Availability in R yes yes no no no no yes
Multi-class problems no yes yes yes no yes yes
* after modification

Table 1: Comparison table of different SVM solvers available in 2010.

In this paper, the method of Groenen et al. (2008) is enhanced to include the use of different
kernels, the standard way in the SVM literature for handling nonlinearities in the predictor
space. Moreover, a new special treatment is offered in this paper for the case where the number
of objects is less than the number of predictor variables. Three cases are distinguished for
which SVM-Maj computes the solution efficiently: (1) the case with many more observations
n than variables k, (2) the case with many variables k but medium sized n, and (3) the case
that n is medium sized and the kernel space or the space of the variables is of lower rank
than k or n. The case of large n is relatively more difficult for all SVM solvers, including
SVM-Maj. This particularly holds when kernels are used. For this case, the alternative of
introducing nonlinearity through splines in SVM-Maj can be used so that still for medium
sized n, nonlinearity can be handled efficiently.

Amongst the advantages of the SVM-Maj approach are its intuitive optimization algorithm,
its versatility, and the competitively fast estimation speed for medium sized problems. The
majorization solver is an iterative algorithm with two easily tractable alternating steps that
reveal the nature of solving the SVM optimization problem in an appealing way. The relative
simplicity of SVM-Maj arguably makes it intuitively more accessible to the researcher than
the state-of-art decomposition methods. Traditional SVM solvers focus particularly on the
absolute-hinge error (the standard SVM error function), whereas the majorization algorithm
has been designed to incorporate any well-behaved error function. This property can be viewed
as a attractive feature of the majorization approach. The SVM-Maj package comes with
the following in-built error functions: the classic absolute-hinge, Huber-hinge, and quadratic
hinge. Furthermore, SVM-Maj solves the primal SVM optimization problem even in the
nonlinear case, in contrast to other solvers, which solve the dual problem. The advantage of
solving the primal is that SVM-Maj converges to the optimal solution in each iterative step.
In contrast, other methods solving the dual optimization problem need the dual problem to
be fully converged to attain a solution.

The main features of the package SVMMaj are: implementation of the SVMMaj majorization
algorithm for SVMs, handling of nonlinearity through splines and kernels, the ability to handle
several error functions (among other the classic hinge, quadratic hinge and Huber hinge error).

In addition, SVM-Maj is able to assign a fixed weight to each individual objects in a training
dataset to receive different individual weights. In this way, the user can set importance of



Hok San Yip 5

misclassifying the object by varying the individual weight. These weights can also be set per
class. The SVM-Maj package comes with a cross validation function to asses out-of-sample
performance or evaluate meta parameters that come with certain SVM models.

One of the applications of SVM is text analysis: a way to extract specific information from a
text without the need of a human. Among others, (Pang et al. 2002) extracted the sentiment
of the movie review - whether a movie was good or bad. The idea behind automated text
analysis is to find a way to convert text into meaningful numbers, which is done by defining a
list of features. A feature is word or a combination of words which serve as an indicator of the
sentiment. For example, if the word ‘good’ has been mentioned frequently, a higher likelihood
that the review has given a positive rating. Therefore, the frequency that the word ‘good’
appears in a text is an adequate feature to be used in the data analysis. Previous researches
have shown that, by using such features, it is possible to predict its sentiment very well.

As an example of using SVM in text analysis, the political speeches during the plenary
meetings of the Dutch House of Representatives (in Dutch: De Tweede Kamer) is used to
analyse the difference in contents between the political spectra of the parliamentarians. In
particular, the parliamentarians have been divided into two classes: the progressive and the
conservative parliamentarians. If a decent classification model can be set up based on these
speeches of the politicians, it can then be used to classify text in for example forums, where
the sentiment of the bloggers are not known in advance. This automated classification method
can be very valuable for analysis of the segmentation of the spectra betwee bloggers, or even
between forum sites.

This paper is organized as follows. First, Section 6 gives a brief introduction to SVM and
the majorization approach to solving SVMs, or SVM-Maj for short. Section 2 gives technical
specification of SVM. In Section 3, the SVM-Maj algorithm is described and its update for each
iteration is derived. Furthermore, Section 3 also discusses some computational efficiencies,
and Section 4 presents the way nonlinearities are handled. Section 5 gives several detailed
examples of how the SVMMaj package can be used. Subsequently, the research in text
analysis will be discussed. In Section 7, the data which has been used for the text analysis
is introduced followed by the methodology of the research, while Section 8 discusses the
performance indicators of the models and Section 9 concludes. The Appendix gives technical
derivations underlying the SVM-Maj algorithm.

2. Definitions

First of all, let us introduce some notations: n denotes the number of object; k denotes the
number of predictor variables, X is an n × k matrix containing the k predictor variables,
without a column of ones to specify the intercept, y is an n × 1 vector with 1 if object i
belongs to class 1 and -1 if it belongs to class -1, r denotes the rank of matrix X, and λ > 0
is the penalty parameter for the penalty term. The purpose of SVM is to produce a linear
combination of predictor variables X such that aW positive prediction is classified to class +1
and a negative prediction to class −1. Let β and α be parameters of the linear combination
α + x′iβ. Then, for a given intercept α and vector with predictor weights β, the predicted
class is given by

ŷi = sign(x′iβ + α) = sign(qi + α) = sign(q̃i), (1)

where qi = xiβ. Here, the term q̃i = qi + α is used to indicate the predicted score for object
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Figure 1: This figure shows the hinge error functions. Note that the error function is only
nonzero if q̃ < 1.

i, which also accounts for the intercept α.

To find the optimal of the linear combination, the SVM loss function is used as a function of
α and β to be minimized. The SVM loss function can be represented in several ways. Here,
the notation of Groenen et al. (2008) is used that allows for general error functions f1(q̃i) and
f−1(q̃i). The goal of SVMs is to minimize the SVM loss function

LSVM(α,β)

=
∑

i∈G1
wif1(q̃i) +

∑
i∈G−1

wif−1(q̃i) + λβ′β

= Class 1 errors + Class -1 errors + Penalty for nonzero β,

over α and β, where G1 and G−1 respectively denote the sets of class 1 and -1 objects, and wi

is a given nonnegative importance weight of observation i. Note that Groenen et al. (2008)
proved that minimizing LSVM(α,β) is equivalent to minimizing the SVM error function in
Vapnik (1995) and Burges (1998). Figure 1 and Table 2 contain different error functions that
can be used, such as the classical hinge error standard in SVMs, the quadratic hinge, and
the Huber hinge. Figure 1 plots the error functions as function value of q̃i. All three hinge
functions have the property that their error is only larger than zero if the predicted value
q̃i < 1 for class +1 objects and q̃i > −1 for class −1 objects. The classic absolute hinge error
is linear in q̃i and is thus robust for outliers. However, it is also non-smooth at q̃i = 1. The
quadratic hinge is smooth but may be more sensitive to outliers. The Huber loss is smooth
as well as robust. Those observations xi yielding zero errors do not contribute to the SVM
solution and could therefore be removed without changing the SVM solution. The remaining
observations xi that do have an error or have |q̃i| = 1 determine the solution and are called
support vectors, hence the name Support Vector Machine. Unfortunately, before the SVM
solution is available it is unknown which of the observations are support vectors and which
are not. Therefore, the SVM always needs all available data to obtain a solution.

The weight wi of observation i can be interpreted as the relative importance of the error of
the observation. One can also assign the same weights for all observations in G1 and different
weight for those in G−1. Assigning weights per class is especially useful when one class is
substantially larger than the other. By assigning a larger weight for the smaller subset, one
can correct the dominance of the errors of the larger subset. For example, if there are n1

objects in G1 and n−1 objects in G−1, then choosing
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Error function f1(q̃i)

Absolute hinge max(0, 1− q̃i)

Quadratic hinge max(0, 1− q̃i)2

Huber hinge


1

2(δ + 1)
max(0, 1− q̃i)2 q̃i > −δ

(δ − 1)

2
− q̃i q̃i ≤ −δ

Table 2: Common error function used. The further q̃i is from wrongly predicted, the higher
its error. Note that f−1(q̃i) = f1(−q̃i), therefore, only f1(q̃i) is described below.

wi =

{
(n1 + n−1)/(2n1) i ∈ G1

(n1 + n−1)/(2n−1) i ∈ G−1

is one way to obtain equal weighting of the classes.

A more compact expression of LSVM is obtained by exploiting the symmetric relation f−1(q̃i) =
f1(−q̃i) = f1(yiq̃i). Then, the SVM loss function can be simplified into

LSVM(α,β) =
∑n

i=1wif1(yiq̃i) + λβ′β
= Error + Penalty for nonzero β.

(2)

To minimize this function, the SVM-Maj algorithm, discussed in the next section, is used.

3. The SVM-Maj algorithm

The SVMMaj package minimizes the SVM loss function by using the SVM-Maj algorithm,
that is based on the ideas of majorization (see, e.g., De Leeuw and Heiser 1980; De Leeuw
1994; Heiser 1995; Lange et al. 2000; Kiers 2002; Hunter and Lange 2004; Borg and Groenen
2005). Groenen et al. (2007, 2008) developed the algorithm for linear SVMs. Here, the
SVM-Maj algorithm is extended to nonlinear situations that use a kernel matrix.

The SVM-Maj algorithm uses iterative majorization to minimize the loss function (2). The
main point of this algorithm is to iteratively replace the original function f(x) by an auxiliary
function g(x, x) at supporting point x, for which the minimum can be easily computed. The
auxiliary function, called the majorization function, has the properties that:

• the minimum x∗ of g(x, x) can be found easily, and

• g(x, x) is always larger than or equal to the f(x), and

• at the supporting point x, g(x, x) is equal to f(x).
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Combining these properties gives the so-called sandwich inequality f(x∗) ≤ g(x∗, x) ≤ g(x, x) =
f(x). That is, for each support point x, we can find another point x∗ of whose function value
f(x∗) is lower or equal to the former f(x). Using this point x∗ as the next iteration’s support
point and repeating the procedure, a next update can be obtained with a lower f(x) value.
This iterative process produces a series of function values that is non-increasing and generally
decreasing. Note that this principle of majorization also works if the argument of f is a vec-
tor. Moreover, if f is strictly convex, as is the case with the SVM loss function, the updates
converge to the minimum of the original function as the number of iterations increases.

The first step is to find the majorizing functions for the different hinge errors. The ma-
jorization function of the SVM-Maj algorithm is a quadratic function so that its minimum is
obtained by setting the derivative to zero. Given the support point x, a quadratic majorization
function g(x, x) can be written as

g(x, x) = a(x)x2 − 2b(x)x+ o(x). (3)

As the parameter o(x) is irrelevant for determining x̂ as it is constant for a given x, the
notation o will be used instead of o(x) to indicate all terms that are not dependent on x in
the majorizing function.

Conform Groenen et al. (2007, 2008), f1(yiq̃i) in (2) can be majorized by g(q̃i, q̃i, yi) = aiq̃
2
i −

2biq̃i +oi with the parameters ai, bi, and oi given in Table 3. As f1(yiq̃i) ≤ g(q̃i, q̃i, yi), we can
obtain the majorization function for the SVM loss function (2), using q̃ = Xβ+α1 = q +α1
and the support point q̃ = α1 + q

LSVM(α,β) =
∑
i

wif1(yiq̃i) + λβ′β

≤
∑
i

wig(q̃i, q̃i, yi) + λβ′β + o

= q̃′Aq̃− 2q̃′b + λβ′β + o

= (α1 + q)′A(α1 + q)− 2(α1 + q)′b + λβ′β + o

= Maj(α,β), (4)

where A is an n×n diagonal matrix with elements wiai and b an n×1 vector with elements wibi
(with ai and bi from Table 3). As wi > 0 for all i, we can conclude that the diagonal matrix
A is positive definite, which implies that the majorization function is strictly quadratically
convex, thereby guaranteeing a unique minimum of the majorizing function at the right hand
side of (4). Groenen et al. (2008) showed in their article that the minimum of (4), that is, an
update for the iteration process, can be computed as followed:

(
X̃′AX̃ + λJ

)[α+

β+

]
= X̃′b, (5)

where X̃ =
[
1 X

]
and J =

[
0 0′

0 I

]
. Appendix A shows the derivation of this update, while

Algorithm 1 shows the steps taken by the SVM-Maj algorithm.

3.1. Computational efficiencies

Before I continue with the discussion of the extended options for the SVM-Maj algorithm,
a few modificationsof the SVM-Maj algorithm will be introduced to obtain computational
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Error term Parameters

Absolute hinge ai = 1
4 max(|1− yiq̃i|, ε)−1

bi = yiai(1 + |yiq̃i − 1|)
oi = ai(1 + |yiq̃i − 1|)2

Quadratic hinge ai = 1
bi = yiai(1 + max(yiq̃i − 1, 0))
oi = ai(1 + max(yiq̃i − 1, 0))2

Huber hinge ai = 1
2(k + 1)−1

bi = yiai(1 + max(yiq̃i − 1, 0) + min(yiq̃i + k, 0))
oi = ai(1 + max(yiq̃i − 1, 0) + min(yiq̃i + k, 0))2 + min(yiq̃i + k, 0)

Table 3: Parameter values of ai, bi and oi of the majorization function.

efficiencies. One efficiency can be achieved by using the QR-decomposition on matrix X to
find a more efficient update. Another efficiency improvement can be obtained in case of using
the quadratic or Huber hinge and the number of updates generally decreases when using a
relaxed update. The algorithm is summarized in Algorithm 1 and the most important steps
are discussed below and in the appendix.

Efficient updates by using QR-decomposition

Usually, the loss function will be optimized by optimizing β. However, when k > n, it is
more efficient to optimize q instead, as it has a lower dimensionality. In this situation, the
dimensional space in which the optimal parameter values lies will be smaller and therefore
it is more efficient and generally faster to compute an update. In case that r = rank(X) <
min(n, k), an even more efficient update exists. Moreover, in a higher dimensional space, one
only needs a part of the space of β to find the optimal q. The appendix discusses these issues
more in detail and introduces efficient and consistent updates for SVM-Maj for all possible
situations. An overview of all efficient updates in each occasion can be found in Table 4.

Equation 5 optimizes β to optimize the loss function. However, in some cases, there exist an
even more efficient update. Appendix A derives an efficient update for each of these cases by
making use of the singular value decomposition (SVD)

X = P Λ Q′,
(n× k) (n× r) (r × r) (r × k)

(6)

where P′P = I and Q′Q = I and Λ is a diagonal matrix. However, SVMMaj package uses
the QR-decomposition to determine the rank of X, as it is a computationally more efficient
way to determine the rank of X than doing so through the SVD-decomposition. Let the
QR-decomposition of X′ be given by X′ = VZ′ with V′V = I and Z a lower triangular
matrix. An additional QR-decomposition of Z gives Z = UR with U′U = I and R an upper
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Algorithm: SVM-Maj

input : y = n× 1 vector with class labels +1 and −1 ,
X = n× k matrix of predictor variables ,
λ > 0 the penalty parameter,
Hinge = {absolute,quadratic,huber} the hinge error function,
δ > 0 the Huber hinge parameter,
relax determining from which step to use the relaxed update (12),
method specifies whether ρ (using matrix decomposition) will be used or β.

output: αt, (ρt or βt)

t = 0;
Set ε to a small positive value;
Set (ρ0 or β0) and α0 to random initial values;
Compute L0 = LSVM(α0,ρ0) or LSVM(α0,β0) according to (2);
if hinge 6= absolute & method = β then

Find S that solves (9);
else if hinge 6= absolute & method = ρ then

Find S that solves (10);
end
while t = 0 or (Lt−1 − Lt)/Lt > ε do

t = t+ 1;
Compute ai and bi by Table 3;
Set diagonal elements of A to wiai and b to wibi;
Comment:Compute update

if hinge = absolute & method = ρ then

Find αt and ρt that solves (8):
(
Z̃′AZ̃ + λJ

)[αt

ρt

]
= Z̃′b ;

else if hinge = absolute & method = β then

Find αt and ρt that solves (5):
(
X̃′AX̃ + λJ

)[αt

βt

]
= X̃′b ;

else if hinge 6= absolute & method = ρ then

Find αt and (ρt or βt) that solves:

[
α+

ρ+

]
= Sb

else if hinge 6= absolute & method = β then

Find αt and (ρt or βt) that solves:

[
α+

β+

]
= Sb;

end
if t ≥ relax then

Replace αt = 2αt − αt−1;
Replace ρt = 2ρt − ρt−1 or βt = 2βt − βt−1;

end
Compute Lt = LSVM(αt,ρt) or LSVM(αt,βt) according to (2);

end

Algorithm 1: The SVM majorization algorithm SVM-Maj
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Method Situation

β n ≥ k, r = k
q n ≤ k, r = n
θ r < min(n, k)

Table 4: An overview of the most efficient updates for each situation.

triangular matrix. Then we have

X = U R V′.
(n× k) (n× r) (r × r) (r × k)

(7)

Note that matrices U and V are orthonormal matrices and and therefore have the same
properties as P and Q. Thus, we can replace matrices P, Λ and Q by respectively U, R and
V. The update (5) can then be computed through

(Z̃′AZ̃ + λJ)

[
α+

ρ+

]
= Z̃′b, (8)

where Z̃ =
[
1 Z

]
=
[
1 UR

]
and where ρ = V′β. Furthermore, β and q can be derived

from β = Vρ and q = Zρ = URρ. Note that in most cases, the decomposition of Z is not
necessary to perform, so that only a single QR-decomposition performance is needed. As this
decomposition is already performed to determine the rank of X, it is efficient to use update (8)
in all three cases distinguished in Table 4. Nevertheless, in case n and k are both very large,
it may be more efficient not to perform a matrix decomposition at all to avoid unnecessary
computations. Instead, one can use update (5).

Quadratic and Huber hinge

For the quadratic and Huber hinge, the parameters ai does not depend on the support point
q̃, which means that the matrix A remain fixed during the algorithm steps. In fact, the
parameters ai are the same for all i, that is, ai = a for all i. Therefore, extra computational
efficiency can be obtained by solving the linear system

(aX̃′X̃ + λJ)S = X̃′, (9)

or, when using QR-decomposition,

(aZ̃′Z̃ + λJ)S = Z̃′, (10)

so that the original update (8) can be simplified into[
α+

ρ+

]
= Sb, (11)

so that in each iteration the update can be obtained by a single matrix multiplication instead
of solving a linear system.
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Computational efficiency by the relaxed updates

The parameter updates obtained by (8) find the minimum of the majorization function in (4).
This guarantees that the next update will always be better than the previous point. However,
it turns out that often the updates converge faster when making the update twice as long by
using a relaxed update (De Leeuw and Heiser 1980):

θ∗t+1 = θt+1 + (θt+1 − θt) = 2θt+1 − θt. (12)

This relaxation is most effective when SVM-Maj has already performed several iterations.
Preliminary experimentation revealed that this is the case when at least 20 iterations without
relaxed updates have been performed. Therefore, the relaxation (12) is implemented after 20
iterations to increase model estimation efficiency.

4. Nonlinearities

In the previous sections, we have only discussed the SVM-Maj algorithm for the linear case.
However, often a better prediction can be obtained by allowing for nonlinearity of the predictor
variables. Therefore, one might consider to use nonlinearity in the model estimation. In the
SVMMaj package, two different implementation of nonlinearity can be used: I-splines and
kernels. One can choose one of these implementation, or both of them.

Splines are piecewise polynomial functions of a specified variable. The SVMMaj package can
transform each predictor variable into I-splines (Ramsay 1988). This transformation will split
the original predictor variable xj into a number of spline bases vectors gathered in the matrix
Bj . After specifying the interior knots ks that define the boundaries of the pieces and the
degree ds of the polynomials, one can transform the variable xj into the basis Bj of a size of
n × (ds + ks). This spline basis Bj will then be used as a set of (ds + ks) variables to find
a linear separating plane of a higher dimension. The piecewise polynomial transformation
of variable xj can then be obtained through computing the linear combination of the spline
bases Bjγj with the initially unknown weights γj . Then, all spline bases Bj and weights γj

are gathered in B = [B1,B2, . . . ,Bk] and β′ = [γ ′1,γ
′
2, . . . ,γ

′
k] . Note that here the I-splines

are used as they have the property that if multiplied by positive weights, there is a guaranteed
monotone relation with the original variable xj . This property can aid the interpretation of
the weights as β can be split into a vector of positive and one of negative weights.

It is also possible to map the matrix X differently into a higher dimensional space through
so-called kernels. Let us map the predictor variables of observation i, that is, xi into φ(xi)
with mapping function φ : <k → <m. Furthermore, let us denote kij = φ(xi)

′φ(xj) as the
inner product of the transformed vectors of xi and xj . Then, the kernel matrix K is denoted
as the inner product matrix with value kij in row i and column j. Note that the kernel matrix
always is of size n× n and K = ΦΦ′ with row i equal to φ(xi)

′. Using this property, we can
summarize the mapping of X even when m→∞ into a matrix of finite size, even if m→∞.
This method is also known as the ‘kernel trick’.

We will now show that this kernel matrix K can be used to find an efficient majorization
update. Then the matrix Φ is used instead of X to derive the majorization update. Let us
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Type of Kernel Kernel Function φ(xi)
′φ(xj)

linear x′ixj

homogeneous polynomial (scale x′ixj)
degree

nonhomogeneous polynomial (scale x′ixj + 1)degree

radial basis function exp(−sigma|xi − xj |2)
Laplace exp(−sigma|xi − xj |)

Table 5: Table of some examples of kernel functions, which can be used in the SVMMaj
package.

perform the QR-decomposition on Φ analogous to (7), that is

Φ = U R V′ = Z V′,
(n×m) (n× r) (r × r) (r ×m) (n× r) (r ×m)

(13)

where r denotes the rank of Φ satisfying r ≤ min(n,m) = n � ∞. Note that the update
(8) does not require V. Moreover, the relation between Φ and K can be given by K = ΦΦ′.
Using decomposition (13) yields

K = ΦΦ′ = (ZV′)(VZ′) = ZZ′. (14)

As Z is a lower triangular matrix, it can be obtained by performing a Cholesky decomposition
on K. Therefore, without actually computing the mapped space Φ, it is still possible to
perform SVM-Maj by using the kernel matrix K.

There is a wide variety of available kernels to obtain nonlinearity of the predictors. Table 5
shows some important examples of often used kernel functions.

As V is usually unknown, β cannot be calculated. Nevertheless, it is still possible to predict
the class labels of an unseen sample X2. Using q = Φβ and (13), we can derive

β = Vρ

= V(R′U′U(R′)−1)ρ

= (VRU′)U(R′)−1ρ

= Φ′U(R′)−1ρ.

The predicted values of an unseen test sample X2 are

q2 = Φ2β = Φ2Φ
′U(R′)−1ρ = K2U(R′)−1ρ, (15)

where Φ2 and Φ are denoted as the transformed matrix of respectively X2 and X into the
high dimensional space and K denotes the kernel matrix Φ2Φ

′.

5. The SVMMaj package in R

The SVM-Maj algorithm for the Support Vector Machine (SVM) is implemented in the SVM-
Maj package in R. Its main functions are svmmaj, which estimates the SVM, and
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svmmajcrossval, which performs a grid search of k -fold cross validations using SVM-Maj to
find the combination of input values, (such as λ and degree in the case of a polynomial kernel)
giving the best prediction performance.

The svmmaj function requires the n× k predictor matrix X and the n× 1 vector y with class
labels. Apart from the data objects, other parameter input values can be given as input
to tune the model: lambda, hinge, weights.obs, scale and parameters for nonlinearities
and settings of the algorithm itself. Table 6 shows the arguments of function svmmaj and its
default values. For example,

svmmaj(X, y, lambda = 2, hinge = "quadratic", scale = "interval")

runs the SVM model with λ = 2, using a quadratic hinge and for each attribute, the values
are scaled to the interval [0,1].

The function svmmajcrossval uses the same parameter input values and additionally the
parameters to be used as grid points of the k -fold cross validation. These parameters should
be given in the list object search.grid, e.g.,

svmmajcrossval(X, y, search.grid = list(lambda = c(1, 2, 4)))

performs a cross validation of X and y with as grid points λ = 1, 2, 4.

As an example, the AusCredit data set of the libsvm data sets (Chang and Lin 2001) is
used, which is included in the SVMMaj package. This data set consists of in total 690 credit
requests, 307 of which are classified as positive and 383 as negative. These classifications are
stored in AusCredit$y with class label Rejected to represent the negative responses, and
label Accepted for the positive responses. In total, 14 predictor variables of each applicant
has been stored as predictor variables in AusCredit$X. Due to confidentiality, the labels of all
predictor variables are not available. Moreover, the observations in the data set AusCredit

is split into AusCredit.tr, consisting the first 400 observations, and AusCredit.te, with the
remaining 290 observations. AusCredit.tr will be used to estimate the model, while the
AusCredit.te is used to analyze the prediction performances.

Example 1 Train the SVM-model using the data set of Australian credit requests to classify
the creditability of the applicant.

The command

R> library(SVMMaj)

loads the SVMMaj package into R. In this example, I will use the components X and y in
the training set AusCredit.tr, which consists of predictor variables respectively class labels
of 400 credit requests, to train the model. Afterwards, the characteristics of the remaining
290 requests, which has been stored into component X of test set AusCredit.te, are used to
predict the classification of the applicant. Using the actual class labels, AusCredit.te$y, the
out of sample prediction performance is analyzed by comparing the ones with the predicted
using the SVM model as estimated with AusCredit.tr. Running the SVM on the training
data is done as follows.
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Figure 2: This figure shows the distribution of predicted values q̃ of the two classes of Example
1, which can be obtained through the plot() method. These densities are created by the
density function. This function specifies beforehand the bandwidth value to plot the density,
which is shown on top of the graph.

R> model <- svmmaj(AusCredit.tr$X, AusCredit.tr$y)

R> model

Model:

update method QR

number of iterations 312

loss value 114.0001

number of support vectors 121

As a result, the trained model will be returned as an svmmaj-object. The print method of this
object shows which update method is used, the number of iterations before convergence, the
found minimum loss value and the number of support vectors. In case no kernel is used, the
matrix Z from update (8) is obtained through the QR-decomposition shown in (7) by default.
In case a nonlinear kernel is used, Z is being calculated through the Cholesky decomposition
(14). One can choose not to perform a decomposition when using a nonlinear kernel by
specifying decomposition = FALSE. Then the original update (5) will be used. A graph of
the distribution of the predicted values q̃ for each class can be plotted via the plot() method
using the density function of R, see Figure 2. The distribution shows that the majority of
the Accepted class (−1) respondents received predicted q̃i close to -1 and only a few close to
+1. The same holds for the Rejected class (+1) respondents showing that the majority of
respondents are correctly classified. A more detailed description of the model can be requested
by using the summary() method.

R> summary(model)
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Call:

svmmaj.default(X = AusCredit.tr$X, y = AusCredit.tr$y)

Settings:

lambda 1

hinge error absolute

spline basis no

type of kernel linear

Data:

class labels Accepted Rejected

rank of X 14

number of predictor variables 14

number of objects 400

omitted objects 0

Model:

method QR

number of iterations 312

loss value 114.0001

number of support vectors 121

Confusion matrix:

Predicted(yhat)

Observed (y) Accepted Rejected Total

Accepted 164 15 179

Rejected 40 181 221

Total 204 196 400

Classification Measures:

hit rate 0.863

weighted hit rate 0.863

misclassification rate 0.137

weighted missclassification rate 0.137

TP FP Precision

Accepted 0.916 0.0838 0.804

Rejected 0.819 0.1810 0.923

The Settings segment describes the parameter settings used to estimate the model. In this
example, the scales of the predictor variables have not been changed and a linear model is
specified because no spline or nonlinear kernel is used. Furthermore, the penalty term of
the loss function consists of an absolute hinge, with a penalty parameter λ of 1. In the
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Data segment, the properties of the input data are shown: the labels of each class, the
rank of the predictor variable matrix X (in case of using I-splines, this will be the rank
of the resulting spline bases) and the size of the data (the number of objects and number
of predictor variables). SVMMaj has the possibility to handle missing values through a
specified na.action-object. In case observations with missing values are omitted, the number
of omitted observations will also be printed in this segment. The Model segment summarizes
the trained model as a result of the SVM-Maj algorithm: it specifies which update has been
used, the number of iterations needed to obtain this model, the optimal loss value and the
number of support vectors. The classification performance of the model on the data used
to estimate can be found in the last segment, Classification table, where the confusion
matrix is followed by measured true positive (TP), false positive (FP) and precision below.
True positive of a class denotes the proportion of objects of that class that are being predicted
correctly, whereas false positive denotes proportion of the incorrectly predicted objects of a
class. The precision of a class is the proportion of correctly predicted objects of the class
among all objects predicted to be classified as that class.

Next, we would like to test how well the estimated SVM model predicts an unseen sample:
the 290 objects in AusCredit.te$X is used as hold-out sample. This is done through the
predict() method.

R> predict(model, AusCredit.te$X)

Prediction frequencies:

Accepted Rejected

frequency 157 133

If the actual class labels are known, one can include this object in the method to show the
prediction performance:

R> predict(model, AusCredit.te$X, AusCredit.te$y)

Prediction frequencies:

Accepted Rejected

frequency 157 133

Confusion matrix:

Predicted(yhat)

Observed (y) Accepted Rejected Total

Accepted 120 8 128

Rejected 37 125 162

Total 157 133 290

Classification Measures:

hit rate 0.845

misclassification rate 0.155



Hok San Yip 19

TP FP Precision

Accepted 0.938 0.0625 0.764

Rejected 0.772 0.2284 0.940

The classification measures of this unseen sample prediction are similar to these of the in-
sample predictions, which mean that this model has no problem of overfitting. Moreover,
average hit rate of 85% indicates that this model predicts the objects quite well. Note the
difference in true positive value between the classes; it appears that this model predicts classes
in class Accepted slightly better than the other class.

To show a the distribution of q̂ for all applicants or, if the actual class labels are given, for
each class, the argument show.plot=TRUE can be included, which result into a figure as in
Figure 3.
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Figure 3: Densities of the predictions in q̃ split by class.

As this model does not contain any nonlinearity and X is nonstandardized, q̃i for the
holdout sample can also be directly computed using the weights model$beta and constant
model$theta[1] found in the model and multiply this with the predictor variables of the
unseen sample AusCredit.te$X, after being coerced into a matrix object.

R> alpha <- model$theta[1]

R> beta <- model$beta

R> qu <- drop(alpha + data.matrix(AusCredit.te$X) %*% beta)

The predicted classes are then easily obtained by computing.

R> y <- factor(qu < 0, levels = c(TRUE, FALSE), labels = model$classes)

5.1. Cross validation

Until now, the default settings have been used. However, it is recommended to experiment
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with different parameters to obtain an optimal prediction model, in particular by varying
the penalty parameter λ. To determine the optimal parameter values to be used in further
analysis, one can use the svmmajcrossval function to perform cross validation with different
parameter values. To show an example of using cross validation to determine λ, consider the
voting data set the libsvm data sets (Chang and Lin 2001). This data set corresponds with
434 members of the U.S. House of Representatives Congressmen consisting of 167 republicans
and 267 democrats. As the predictor variables, for each of the 16 different political proposi-
tions, the votes of the politicians are registered. Using the SVM, we are trying to predict the
political wing of the last 134 members using their 16 votes on the propositions as predictor
variables. The first 300 members are used as a training sample. A five-fold cross validation
is performed on these 300 members in the training sample, with a fine grid of lambda values
λ = 10−6, 10−5.5, . . . , 105, 105.5, 106. Amongst these lambda values, the optimal λ value is the
one which results in the lowest misclassification rate.

Example 2 Performing cross validation using the voting data sets to find an optimal value
for lambda.

R> library(SVMMaj)

In this example, we will use the data in voting.tr to perform fivefold-cross validation to
determine the optimal lambda. Then, this lambda is used in an SVM analysis on the entire
data set voting.tr. Subsequently, this model is used to predict the classification of the
unseen sample voting.te. Then, voting.te$X can be used to compare the prediction with
the actual classification voting.te$y. This procedure can be executed in R using the following
commands:

R> results.absolute <- svmmajcrossval(voting.tr$X, voting.tr$y,

+ search.grid = list(lambda = 10^seq(6, -6, length.out = 25)),

+ hinge = "absolute", convergence = 1e-4)

R> model <- svmmaj(voting.tr$X, voting.tr$y, hinge = "absolute",

+ lambda = results.absolute$param.opt$lambda)

R> q.absolute <- predict(model, voting.te$X, voting.te$y)

5.2. Hinge functions

SVMMaj allows using the quadratic hinge or the Huber hinge instead of the standard absolute
hinge. An important advantage of the quadratic hinge is that it has the potential to be
computationally much more efficient than the absolute hinge. Let us perform a similar cross
validation on the voting data set using the quadratic hinge by

R> results.quadratic <- svmmajcrossval(voting.tr$X, voting.tr$y,

+ search.grid = list(lambda = 10^seq(6, -6, length.out = 25)),

+ hinge = "quadratic", convergence = 1e-4)

R> model <- svmmaj(voting.tr$X, voting.tr$y, hinge = "quadratic",

+ lambda = results.quadratic$param.opt$lambda)

R> q.quadratic <- predict(model, voting.te$X, voting.te$y)
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Figure 4: The function svmmajcrossval performs a fivefold cross validation of different lambda values of
both absolute hinge (left panel) and the quadratic hinge (right panel). This figure shows the misclassification
rate of different lambda values.

A summary of the results of these examples can be found in Table 7. Figure 4 shows the hit
rate of the cross validation using different lambda values. It can be seen that both hinges have
similar out-of-sample predictive power. It is also clear that per iteration, the quadratic hinge
is much faster than the absolute hinge. The effect of the increased computational efficiency of
the quadratic hinge is in this example canceled by a large increase of the number of iterations
as it requires more iterations to converges.

5.3. Nonlinearities

The package SVMMaj can also implement nonlinearity in the model. One can choose to
use I-splines, kernel matrices, or both methods to specify the nonlinearity. In the latter
case, SVMMaj will first convert the explanatory matrix X into spline-basis and subsequently
generate the kernel matrix of the spline-basis. An advantage of using I-splines over kernels is
that on can easily plot the effect of one variable on the predicted value q̂i. In the following
example, we will use the diabetes dataset of libsvm data sets (Chang and Lin 2001).

Example 3 Train a model with nonlinearities on a data set of 786 females of Pima Indian
heritage, predicting the presence of diabetes using several demographic and medial variables.

In this example, we will use the nonlinear options of svmmaj to train a model consisting
of 768 female at least 21 years old of Pima Indian heritage, of which 268 are being tested
positive for diabetes. In this model, we use 8 variables of state-of-health measures to clas-
sify these patients as positive for diabetes or negative. As the number of persons with a
positive test result is smaller than the ones with negative results, the loss term of the pa-
tients belonging to the former group will be weighted twice as heavy by the extra argument
weights.obs=list(positive=2,negative=1) to indicate the double weight on the second
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Absolute Quadratic

CPU-time (sec) 11.73 12.89
Mean no. of iter 94.96 1146.20
CPU-time (per iter) 3.08 0.28
Optimal p -0.50 0.50
Hit rate(average TP) 0.95 0.94

Table 7: Results of the fivefold cross validation estimation using the svmcrossval function. CPU-time is the
time in CPU seconds needed to perform fivefold cross validation and Optimal p the value of which 10p returns
the best hit rate in the cross validation. Mean no. of iterations denotes the average value of the sum of the
number of iterations per lambda-value. CPU-time per iter is the mean computation time needed to perform
one iteration. Hit rate is the average TP value by predicting the class labels of the holdout sample of 134
congress men using the first 300 congress men as sample of estimation.

group. As the rank of the explanatory matrix X is expected to be large, we will use quadratic
hinge to make use of the computational efficiency discussed before.

I-Spline

One way of applying nonlinearities in the model is using splines. In this example, we will
transform each variable into spline basis of 5 knots and a degree 2, yielding a rank of 8× (5 +
2) = 56, that is, k = 8 times the number of columns per spline basis (5 interior knots plus the
degree of 2). Five-fold cross validation is used with a grid of λ = 10−6, 10−5, ..., 104, 105, 106

to determine the optimal λ value.

R> results.spline <- svmmajcrossval(diabetes.tr$X, diabetes.tr$y,

+ scale = "interval", search.grid = list(lambda = 10^seq(6, -6)),

+ hinge = "quadratic", spline.knots = 5, spline.degree = 2,

+ weights.obs = list(positive = 2, negative = 1))

R> model.spline <- svmmaj(diabetes.tr$X, diabetes.tr$y,

+ scale = "interval", lambda = results.spline$param.opt$lambda,

+ spline.knots = 5, spline.degree = 2, hinge = "quadratic",

+ weights.obs = list(positive = 2, negative = 1))

R> predict(model.spline, diabetes.te$X, diabetes.te$y,

+ weights = list(positive = 2, negative = 1))

Prediction frequencies:

negative positive

frequency 92 76

Confusion matrix:

Predicted(yhat)

Observed (y) negative positive Total

negative 81 27 108

positive 11 49 60

Total 92 76 168
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Classification Measures:

hit rate 0.774

weighted hit rate 0.785

misclassification rate 0.226

weighted missclassification rate 0.215

TP FP Precision

negative 0.750 0.250 0.880

positive 0.817 0.183 0.645

The optimal lambda for the model using I-splines can be found in
results.spline$param.opt, which is 101. This lambda value equals the penalty value
which will give the lowest misclassification rate in the cross-validation. One of the advantages
of using splines to handle nonlinear prediction is the possibility to show the effect of a
variable by plotting its estimated transformation. Figure 5 shows these plots of the splines
per variable, which can be used for interpretation of the effects of each individual variable.
In this figure, one can clearly see nonlinear effects in most variables. For example, the
diabetes pedigree (x7) shows a positive relation with respect to female patients with positive

results, but with a diminishing returns to scale. On the other hand, Age (x8) has a reverse
v -shape: respondents who are around 40 are more likely to have diabetes. Overall, glucose
concentration (x2) and BMI (x6) have the largest effect on the class prediction when its
values are large.

Kernel

Another way of implementing nonlinearity in the model by using a kernel. In this example,
we will use the Radial Basis Function in our model training. To find the optimal λ and σ
values we performed a five fold cross validation with the grids: λ = 10−6, 10−5...104, 105, 106

and σ = 2−5, 2−4...24, 25 by the following commands.

R> results.kernel <- svmmajcrossval(diabetes.tr$X, diabetes.tr$y,

+ scale = "interval", search.grid = list(kernel.sigma = 2^seq(-5, 5),

+ lambda = 10^seq(6, -6)), hinge = "quadratic", kernel = rbfdot,

+ weights.obs = list(positive = 2, negative = 1))

R> model.kernel <- svmmaj(diabetes.tr$X, diabetes.tr$y,

+ scale = "interval", lambda = results$param.opt$lambda,

+ kernel.sigma = crossval2$param.opt$kernel.sigma,

+ kernel = rbfdot, hinge = "quadratic",

+ weights.obs = list(positive = 2, negative = 1))

R> predict(model.kernel, diabetes.te$X, diabetes.te$y,

+ weights = list(positive = 2, negative = 1))

Prediction frequencies:

negative positive

frequency 93 75
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Figure 5: The spline plots of each of 8 variables used to predict the result of a test for diabetes among females
of Pima Indian heritages. This model has been performed with lambda = 10 and the spline basis with 5 inner
knots and a degree of 2. Each graph denotes the loss term of the corresponding variable with different values.
The higher the predicted value q̃, the higher the probability of positive test.

Confusion matrix:

Predicted(yhat)

Observed (y) negative positive Total

negative 83 25 108

positive 10 50 60

Total 93 75 168

Classification Measures:
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hit rate 0.792

weighted hit rate 0.726

misclassification rate 0.208

weighted missclassification rate 0.274

TP FP Precision

negative 0.769 0.231 0.892

positive 0.833 0.167 0.667

The optimal parameter values for the kernel model are: lambda=100 and sigma=20.

Observing the prediction results, we can see that the model using I-splines has a higher TP-
value of female persons having positive result in diabetes as well as the hit rate (average
TP-value) suggesting that for these data the I-spline transformation is better able to pick up
the nonlinearities in the predictor variables than the radial basis kernel.

6. Text Analysis

In the previous sections, the R-package SVMMaj has been introduced. In the following
sections, this package is used on the speeches of the Dutch House of Representatives during
the plenary meetings. As mentioned in Section 1, this application analyses the practicability
of using SVM on predicting the political spectrum based on the contents of their speeches.

One major challenge is to find a proper feature selection, as many classification techniques
suffer from overfitting when using too many features. Recently, another classification tech-
nique has emerged whose results are very promising: Support Vector Machine (SVM) (Vapnik
1995). Various researches have shown that SVM performs on average better than other tech-
niques (Drucker et al. 1999; Joachims 1998; Pang et al. 2002). One of the advantages of SVM
is that it can handle overfitting very well (Joachims 1998). Because of this robustness of
SVM, feature selection may even be redundant. In this paper, the SVMMaj package in R
(R Development Core Team 2011) will be introduced, which uses a majorization approach to
solving SVMs, or SVM-Maj for short (Groenen et al. 2007, 2008).

Subsequently, the political speeches during the plenary meetings of the Dutch House of Repre-
sentatives (in Dutch: De Tweede Kamer) is used to analyse the difference in contents between
the political spectra of the parliamentarians. In particular, the parliamentarians have been
divided into two classes: the progressive and the conservative parliamentarians. If a decent
classification model can be set up based on these speeches of the politicians, it can then be
used to classify text in for example forums, where the sentiment of the bloggers are not known
in advance. This automated classification method can be very valuable for analysis of the
segmentation of the spectra between bloggers, or even between forum sites.

With respect to text analysis, SVM has proven to be very powerful in not only text classifi-
cations, but also sentiment analysis. The idea of this implementation is to extract features
from text which serve as predictor variables in the SVM model (Sebastiani 2005). Various
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types of features have been used in previous literature in order to improve the accuracy of
the model. The simplest method is to define a single word as a feature, also known as a
unigram. However, Polanyi and Zaenen (2005) argued that the presence of the so called va-
lence shifters could change the semantic meaning of a sentence. Therefore, they introduce
the so-called n-gram: a combination of n subsequent words as one feature. In particular, the
use of bigrams and trigrams, a combination of respectively two and three subsequent words,
are the most common used types of n-grams. On the other hand, machine learning started
to gain more popularity due to its competitive prediction performance without the need of
much data processing (Sebastiani 2005). Furthermore, several researches (Pang et al. 2002;
Bekkerman and Allan 2003) has shown that the use of unigrams in combination with Machine
Learning, in particular SVM, gives comparable, or even superior, prediction accuracy than
using n-grams.

After selecting the right features, a measurement needs to be chosen for these features. The
most straightforward one is to use the frequency of the feature in the text. Nevertheless,
several other measurements have been used, in other researches. Wu et al. (2008), for ex-
ample, introduced the term frequency – inverse document frequency (tf-idf ), which equals
the frequency divided by the number of words in the document. On the other hand, the
use of a presence indicator instead has also been investigated before, which has not leaded
to a unanimous conclusion: Pang et al. (2002) and Joachims (1998) showed that using the
presence indicator leads to a better prediction, whereas McCallum and Nigam (1998) give
opposing results.

Subsequently, these features can be used as predictor variables in order to predict the sen-
timent label – the dependent variable. One of the popular techniques is the Näıve Bayes
classifier, which has been increasingly used for among others spam filtering (Sahami et al.
1998).

One of the problems that may arise in text analysis is the number of features to be used
in the classification procedure. The more features, on the one hand, the more accurate the
model can be. However, one major downside of using many features is the possibility of over
fitting: the model is too specifically specified for the supervised data and predicts poor on new
observations. In order to reduce this over fitting problem, feature selections are frequently
used to reduce the number of features (Guyon and Elisseeff 2003). Nevertheless, SVM was
proven to be robust to over fitting. (Joachims 1998)

As the relation between predictor variables and the dependent variable may not be linear, and
as there exist interactions between predictor variables, neglecting these nonlinear dependencies
can lead to biased results (Seber and Wild 1989). Therefore, another advantage of SVM is
its possibility to include such non-linearity in its model. Many models of SVM use non-linear
kernel to include non-linearity (Boser et al. 1992), of which the Radial Basis Function (RBF)
is the most commonly used. These kernels remap the predictor matrix into an infinitely high-
dimensional space, so that nonlinear relations as well as interactions are allowed. However, one
disadvantage of using kernels is that the resulting model can hardly be used for interpretation.
Therefore, Groenen et al. (2007) have introduced I-splines as an alternative of kernels to
implement non-linearity. These splines make interpretation of the effects of input variables
possible, while allowing non-linearity. However, these splines do no incorporate interaction.
With respect to the implementation of sentiment analysis in politics, it is still in development:
a limited number of previous papers can currently be found. For example, Strapparava
et al. (2010) have used Support Vector Machine (SVM) to show its viability to predict the



Hok San Yip 27

Party Full name Members

CDA Christen-Democratisch Appèl 21
CU ChristenUnie 5
D66 Politieke Partij Democraten 66 10
GL GroenLinks 10
PvdA Partij van de Arbeid 30
PvdD Partij voor de Dieren 2
PVV Partij Voor de Vrijheid 24
SGP Staatkundig Gereformeerde Partij 2
SP Socialistische Partij 15
VVD Volkspartij voor Vrijheid en Democratie 31

Total 150

Table 8: Overview of the members of the House of the Representatives by political party

persuasiveness of political discourses. On the other hand, Thomas et al. (2006) analysed the
automatic prediction of whether a political speech supports or opposes the political issue.

7. Dutch House of Representatives

In the Netherlands, the parliament – the States-General of the Netherlands – consists of two
chambers: the House of the Representatives (in Dutch: de Tweede Kamer) and the Senate
(in Dutch: de Eerste Kamer). As the Netherlands has a multi-party system, these chambers
are being seated by members of various political parties. Of these two chambers, the House
of the Representatives is the lower house of the parliament, in which also forms the executive
government of the Netherlands – the Cabinet. This chamber consists of 150 members –
parliamentarians, among which a Cabinet is formed every four years. Table 8 shows the
mapping of the current members of the House of the Representatives by its political party.

This Cabinet consists of ministers and state secretaries, who are responsible for governing
the country, while the parliamentarians are scrutinizing their work on behalf of the Dutch
people and making laws in cooperation with the Cabinet. Therefore, the House regularly
hold meetings to discuss the political issues (topics), which are being brought forward by
fellow parliamentarians. Among these meetings, the Plenary Meetings is the assembly of all
150 parliamentarians. The former incumbent Cabinet, Rutte Cabinet, which was officially
formed on 14 October 2010, has officially resigned on the 23 April 2012. Therefore, as of
today, the country is being governed by the caretaker government, the former Rutte Cabinet.
Nevertheless, this paper focus on the period before their resignation.

7.1. Plenary Meetings of the Dutch House of Representatives

Each Plenary Meeting of the Dutch House of Representatives starts with the agenda and
other schemes of the meeting. Subsequently, several topics will be put forward for debate
or discussion. Although each topic will be discussed subsequently, it is common that the
discussion of a topic will be continued to the next meeting several times. Moreover, during
the meetings, each parliamentarian has the right to plead the Cabinet for taking specific
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Figure 6: This figures shows the distribution of words in each observation.

matters into consideration. This is usually done by proposing a motion (in Dutch: motie).
After the proposal of the motion, the chairman will arrange time for the members to cast
their voting, which can be held at the same day, or postpone it to another meeting. Before
the actual voting takes place, the motion can be withdrawn, suspended, changed or decayed.

For each plenary meeting, minutes are being made, which has been separated in topics of
discussion. Moreover, in these minutes all statements of each politician have been noted in a
chronological order. These minutes have been stored and made available for reference (Tweede
Kamer der Staten-Generaal 2012) in html-format. From these minutes, each statement of a
politician within the meeting has been stored systematically within an html-tag, while each
proposal of a motion, as well as the change of status of a motion – that is, whether the motion
has been voted, withdrawn, suspended, changed or decayed – are stored in a different tag.

For this study, a collection of these minutes of the past plenary meetings of the Dutch House
of Representatives, between 6 September 2011 and 6 March 2012 has been used. These
meetings do not only include the speeches of the parliamentarians, but also of the chairman
of the meeting, the members of the Cabinet – that is, the ministers and state secretaries – as
well as other guests. These speeches will not be taken into account in this research, as the
political spectrum of these speakers are usually unknown. In total, the data set consist of 67
meetings, covering 250 different topics. After collection of these minutes, the content has been
divided in observations. One possibility is to define one observation as one turn of speaking
time a parliamentarian has used. In this situation, however, there is a high possibility that
many observations only consist of short questions or short answers of the parliamentarian,
which will be hard to predict its sentiment. To overcome this problem, all turns of a specific
parliamentarian within the same session will be concatenated into one observation, that is, all
turns of the same parliamentarian, in the same meeting and the same topic being discussed.
In total, there are 1990 observations, of which the distribution among the parties is shown in
Table 9. Figure 6 shows the distribution of number of words in each observation.

As the purpose of this research is to analyse the practicability of using text analysis to predict
the sentiment of an observation, only the texts are included as explantory variables in this
model. Including the party of which the parliamentarian belongs to as explanatory variable,
for example, would cause the model to specify a too heavy weight on these variables instead
of the contents of the text.

7.2. Class Labels

Various classifications of political spectrum are possible. Due to simplicity, only the classi-
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Spectrum Party Total Members Number of Observations

Conservative CDA 21 14.0% 251 12.6%
CU 5 3.3% 137 6.9%
VVD 31 20.7% 257 12.9%
PVV 24 16.0% 236 11.9%
SGP 2 1.3% 100 5.0%
Total 83 55.3% 981 49.3%

Progressive D66 10 6.7% 219 11.0%
GL 10 6.7% 189 9.5%
PvdA 30 20.0% 281 14.1%
PvdD 2 1.3% 63 3.2%
SP 15 10.0% 257 12.9%
Total 67 44.7% 1,109 50.7%

Total 150 100.0% 1,990 100.0%

Table 9: Distribution of the number of members and the number of turns by political party.
All ten political parties has been classified as conservative or progressive party based on the
classification of Kieskompas (Kieskompas 2010).

fication between progressivism and conservatism has been used in this research. During the
General Elections in 2010, Kieskompas (Kieskompas 2010) has classified the political spec-
trum of all participating parties based on the 30 political issues. This classification is based
on progressivism versus conservatism, as well as left-wing versus right-wing. See Figure 7 for
the graphical interpretation of their spectrums. Here we can see a clear separation between
de conservative parties and the progressive parties. In order to investigate more deeply into
the classification, the votings of the motions during the meetings has been used for analysis.

Table 10 shows an overview of the statuses of all proposed motions between 6 September 2011
and 6 March 2012. Here we can see that for most of the motions, a voting was being held
(77.1%). For each of these 1250 votings, two of them are voted per head of parliamentarian,
while the rest of the votings are voted per party. For these votes, the voting per party has
been used to analyze the correlation of the votings between the parties. For this analysis, a
multidimensional scaling (Borg and Groenen 2005) with two dimensions has been performed.
First of all, the correlation of the votings between political parties are calculated, which
is shown in Table 11. Subsequently, these correlations are transformed into dissimilarity
measures by taking the root of 1 minus the correlation, that is sij =

√
1− ρij where ρij and

sij respectively denotes the correlation and its derived dissimilarity measure between party i
and j. The resulting dissimilarity matrix can then be used to find the multidimensional scaling
by using the SMACOF package de Leeuw and Mair (2009), which is shown in Figure 8. Here
we see that the similarity plot is quite similar to the spectrum introduced by Kieskompas
(2010). Nevertheless, in both graphs, the ChristenUnie and D66 are rather close to the
center, which implies their spectrum to be rather centered.

In this research, the classification of the conservative versus progressive parties is used as
class labels y by classifying all parliamentarians of the same party with the same class label,
independent of the topic. This results in a total data set of 1990 observations, of which 981 are
classified as conservative, and 1009 as progressive. Table 12 contains the descriptive statistics
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Status Number of motions Percentage

Accepted 498 30.7%
Rejected 752 46.4%
Suspended 133 8.2%
Changed 9 0.6%
Withdrawn 50 3.1%
Decayed 40 2.5%
Unknown 140 8.6%

Total 1,622 100.0%

Table 10: Overview of the status of the motions, which are were proposed between 6 September
2011 and 6 March 2012.

CDA CU D66 GL PvdA PvdD PVV SGP SP

CDA
CU 0.399
D66 0.261 0.333
GL 0.048 0.279 0.538
PvdA 0.180 0.332 0.441 0.546
PvdD -0.049 0.184 0.238 0.477 0.452
PVV 0.409 0.027 -0.088 -0.291 -0.181 -0.197
SGP 0.699 0.484 0.209 0.025 0.125 -0.071 0.371
SP 0.024 0.182 0.198 0.401 0.402 0.674 -0.119 -0.014
VVD 0.675 0.231 0.212 -0.025 0.087 -0.105 0.613 0.541 -0.021

Table 11: Correlation matrix between parties of the votings of motions, which were proposed
and voted between 6 September 2001 and 6 March 2012.

of the number of words of the collected observations, while Figure 6 shows the histogram of
the number of words of these observations. Here we can see no significant difference in the
number of words each parliamentarian uses during each session.

7.3. Predicting observations from a new meeting

The selection of the test set can be based on different division methods. Usually, these
observations have been randomly selected, in order to avoid biased selection. However, it
is also interesting to investigate the prediction performances of a new meeting based on its
previous meetings. Therefore, the total set of observations has been divided into three subsets
based on the date of the meeting. Using this division, the ability of SVM to predict from an
unseen meeting is being examined. Throughout the study, the observations has been divided
into 3 subsets. Subset 1 is primary being used for feature selection, that is, to define the
variables to be used in the model, while Subset 2 is used for the estimation of the model. By
dividing these first two subsets, I try to minimize the problem that temporarily used words
will be obtain a higher weight in the model. Subsequently, Subset 3 is used as test set in
order to analyse the prediction performances. Table 13 shows the descriptives of the subsets.
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Figure 7: Political landscape of the Dutch political parties according to Kieskompas (Kieskom-
pas 2010).

7.4. Text pre-processing

To be able to extract useable information out of the spoken sentences, a few text pre-processing
measures are needed. First of all, we would like to remove the conjugation of words. Whether
a person has walked, has been walking, or currently walks on the street, all these conjuga-
tions refers to the same verb: to walk. Therefore, a word stemming is performed, where all
morphological changes of a word has been transformed to its stem. This is done with an
algorithm, available in the Snowball package [Porter 2001]. A common application in text
categorization is the use of ontology, where words with similar meaning are being standardized
into one feature. However, as it is assumed that the word choice may inherent the sentiment
of the speaker, this has not been performed in this research. After these corrections, there
are in total 20,364 features. Figure 9 shows the distribution of the frequencies of the resulting
features of the total dataset, as well as the distribution per sentiment class, while Table 14
shows the mean, median and the standard deviation of the frequencies. In the latter fig-
ure, one can see slightly higher frequencies of the conservative observations of the relative
frequently used features, which can be explained by the relatively larger number of words
per observation of the conservative parliamentarians. Furthermore, there are 5,254 features
which only appear in conservative observations, while 6,392 features did only appear in the
progressive observations. The frequency distributions are shown in Figure 15.

Although SVM does not require limiting the number of features in order to perform well,
implementing too many features may increase the computational time of the model. Also,
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Figure 8: The multidimensional scaling of the votings of the motions of the House of Repre-
sentatives.

there are many features which have only appeared once in the total dataset. Therefore, it is
recommended to reduce the number of features by omitting features with a total frequency
below a certain threshold. In this research, the probability per word that the feature appears
is assumed to be binary distributed with probability p = tf j,cons for conservative observations

and p = tf j,prog for progressive observations, where tf j,class denotes the average term fre-
quency of word j occurring a observation of class class. Using this assumption, the features
will be selected using

tf j,cons − tf j,prog ∼ N(0,
var(tfi,j,cons)

ncons
+

var(tfi,j,prog)

nprog
), (16)

where tfj,cons and tfj,prog denotes the term frequency of word j occurring in the conservative
and respectively the progressive observations. Subsequently, the p-value is denoted as the
probability that the probability that the difference is larger than tf j,cons − tf j,prog. In this
study, the rejection criteria of α = 1.0%, α = 2.5% and α = 5.0% are used.

Figure 10 shows the distribution of all frequencies in of the observations in Subset 2, while
Figure 11 shows the distribution of the selected features. Here we see that not only the more
frequently used features, but also the rather occassionally used features are being selected
from the feature selection.

Of those selected, several measurements have been used in order to compare the accuracy
between them.
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Total Mean St.dev. Observations

Conservative Absolute 1,317,024. 1,342.53 1,475. 981
Logarithm 6,427.37 6.55 1.344

Progressive Absolute 1,506,946. 1,493.50 1,614. 1,009
Logarithm 658.58 6.52 1.552

Table 12: Statistics of the number of words in the observations in absolute value, as well as
in the logarithmic scale.

Subset
1 2 3

First meeting 2011-09-06 2011-11-02 2011-11-22
Last meeting 2011-11-01 2011-12-21 2012-03-08
Number of meetings 22 22 22
Conservative observations 346 357 278
Progressive observations 338 358 313
Total observations 684 715 591

Table 13: This table shows some information about the divided subsets: date of the first and
last meeting which are included into the subset, the total number of meetings and number of
observations within the subset.

• The term frequency denotes the frequency that the feature has appeared in the obser-
vation.

• The presence indicator to indicate whether the feature appears in the observation. As
(Pang et al. 2002) has shown in his paper that the use of these binary variables instead
are already sufficient for text categorization, it is interesting whether this is also the
case for text sentimentation.

7.5. Cross Validation

As mentioned before, Subset 2 is used to estimate the model. As it is not known on beforehand
what the optimal model is, I introduce several models whose results be compared with each
other.

First of all, two implementations of non-linearities are used: I-splines and the RBF-kernel.
Although the RBF-kernel is more likely to result in higher forecast performance, the advantage
of using splines over RBF-kernel is its possibility to analyse the actual effects of the features.
On the other hand, the use of term frequency will be compared against the use of the presence
indicator. Thus, there are in total 4 different models to be compared, which is shown in
Table 16. After selecting the optimal model, this model will be performed as well by using a
lower rejection criterium (α = 10%) in the feature selection, in order to analyse the effect of
the feature selection.

From this training set, a 5-fold cross validation has been performed, with a fine grid of
λ = {2−10; 2−9; 2−8; . . . ; 28; 29; 210}. Amongst these values, the optimal λ-value is the
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Figure 9: Distribution of the feature frequencies, categorised by political spectrum.

Sentiment class
Statistics Conservative Progressive Total

minimum 0.00 0.00 1.00
median 1.00 1.00 2.00
mean 23.62 28.19 51.81
maximum 19,672.00 23,720.00 43,392.00
st. Dev. 346.68 414.93 761.45

Table 14: Statistics of the feature frequencies, categorised by political spectrum.

one which results in the lowest misclassification rate. In case of an RBF-kernel, the
optimal regularization parameter λ as well as the optimal kernel parameter σ has been
found by performing a cross validation with a grid of λ = {20; 21; 22; . . . ; 28; 29; 210} and
σ = {2−5; 2−4; 2−3; . . . ; 2−13; 2−14; 2−15}.
With these optimal values, a new model is being performed. As a control set, the remaining
591 observations in Subset 3 will be used to analyse the prediction performances of a set of
unseen observations by comparing the hit rate – percentage of correctly predicted observations.

8. Results

The prediction results of the cross-validated models are shown in Table 17. For each combi-
nation of nonlinearity and feature measurement, the percentage of correctly predicted obser-
vations (hit rate) and its corresponding area-under the receiver operating characteristic-curve
(auc) are shown. The receiver operating characteristic curve (ROC-curve) (Bradley 1997)
illustrates the performance in binary classification of the model, where it graphically shows
the false positive rate at the horizontal axis against the true positive rate at the vertical axes
using different threshold value for q̃i in (1). From this curve, the total area below the curve
is denoted as the area-under the curve (auc) value. Note that this value usually range from
0.5 and 1, where 1 denotes that q̃i between both classes can be perfectly separated, while an
auc-value of 0.5 shows no differentiation between both classes at all. In both the training set
(Subset 2) and test set (Subset 3), the number of conservative observations are about equal
to the number of progressive observations. Therefore, when using majority voting to predict
the class, we would obtain a hit rate of 50%, which will be used as benchmark performance.

Table 17 shows the prediction results of the SVM-model with different nonlinearity implemen-
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Figure 10: Distribution of the feature frequencies, in Subset 2, before applying the feature
selection.

Conservative

logarithm of frequency

nu
m

be
r 

of
 fr

eq
ue

nc
ie

s

0 2 4 6 8 10 12

0
20

40
60

80

Progressive

logarithm of frequency

nu
m

be
r 

of
 fr

eq
ue

nc
ie

s

0 2 4 6 8 10 12

0
20

40
60

80
10

0

All observations

logarithm of frequency
nu

m
be

r 
of

 fr
eq

ue
nc

ie
s

0 2 4 6 8 10 12

0
20

40
60

80
10

0

Figure 11: Distribution of the feature frequencies, in Subset 2, after applying the feature
selection.

tation and different feature measurement. First of all, all models are being able to predict
better than the benchmark with hit rates of larger than 60%. Furthermore, we see that
the use of presence indicator instead of the term frequency will have a negative effect on
the prediction outcome. In both nonlinear models, the use of term frequency yields about
7% higher hit rate in case of RBF-kernel, and about 1% in case of splines. Therefore, this
data set suggest that not only the use of the word, but also the frequency is an important
measure to take into account. Furthermore, in case of using the term frequency, the model
with RBF-kernel results in the highest hit rate of nearly 70%. From these 4 models, Model
(1) and (3) results in the highest hit rates, therefore, both models is used with varying α-
valudes to analyse the effect of feature selection on the prediction. These results are shown
in Table 17b. Remarkinly, the prediction of the spline model (1) increases when the selection
criterium either increase or decrease. In case of α = 1.0%, the hit rate of the spline-model
can be increased to 65.5%. On the other hand, the formerly used criterium α = 2.5% results
in the best prediction among all. A stricter selection criterium result into a slightly lower hit
rate, while a higher α value will lower the hit rate by nearly 2%. Overall, it seems that the
chosen feature selection does not have a clear effect on the prediction outcome, which can be
explained by the overall robustness to over fitting.

9. Conclusion

This paper introduces the R-package SVMMaj, this package implements the SVM-Maj al-
gorithm of Groenen et al. (2007, 2008) with the addition of nonlinear models with kernels.
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Before After

minimum 0.000 0.000
maximum 10.861 10.301
median 1.609 1.609
mean 1.911 1.42
standard deviation 1.667 1.794
kurtosis 1.986 1.643
skewness 1.211 1.177

Table 15: Statistics of the feature frequencies of all observations, before and after applying
the feature selection.

Model Non-linearity Feature Measurement

1 Splines Presence Indicator
2 Kernel Presence Indicator
3 Splines Term Frequency
4 Kernel Term Frequency

Table 16: Four different models which has been used to compare the results. Among these
models, the one with the highest hit rate is used to perform a second model with a less strict
feature selection criterium in order to analyse its effect.

.

One of the advantages of the SVM-Maj approach is the competitively fast training speed for
medium sized problems. Furthermore, it allows individual objects in a training dataset to
receive different individual weight.

Another advantage of SVM-Maj is the possibility to use different loss functions, besides the
commonly used absolute hinge. In this package, the absolute hinge, quadratic hinge and
Huber hinge has been implemented. Nevertheless, this can be expanded to any other error
function f(q) that satisfies the following condition: the second derivative of its function has
a bounded maximum, so that a quadratic majorization function can be found. If in addition
f(q) is convex, then the overall loss function (4) is strictly convex, so that the the SVM-Maj
algorithm is guaranteed to stop at the global minimum.

Furthermore, this paper also investigates the practicability of using Support Vector Machine
as an automatic Machine Learning Technique on predicting the political spectrum of a person
based on their choice of words in political issues. For this research, the statements of the
parliamentarians in the plenary meetings of the House of Representatives have been used.

Overall, the SVM model can obtain a prediction hit rate of 68.7%, which is much higher than
the majority voting of 60%, which serves as benchmark performance. The results has shown a
slightly lower hit rate when using the presence indicator in combination with a kernel to allow
for non-linearity. On the other hand, the use of splines instead of the kernel yield a much
worse performance: it results in a slightly higher hit rate than majority voting. This may
indicate the importance of the interaction effects of the presence of the features in combination
with its frequency within an observation. Nevertheless, it is therefore hard to obtain a clear
interpretation of these effects.
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Model α Non-linearity Measurement Hit Rate AUC

1 2.50% Splines Presence Indicator 61.8% 0.679
2 2.50% Kernel Presence Indicator 61.8% 0.669
3 1.00% Splines Term Frequency 65.5% 0.701
3 2.50% Splines Term Frequency 63.3% 0.697
3 5.00% Splines Term Frequency 64.8% 0.709
4 1.00% Kernel Term Frequency 68.2% 0.737
4 2.50% Kernel Term Frequency 68.7% 0.746
4 5.00% Kernel Term Frequency 66.8% 0.746

Table 17: Results of the text sentimentation by using Support Vector Machine. This table
hows the prediction hit rate as well as the area under the ROC-curve of the 4 models, including
the prediction performances of using a different feature selection criterium.

Apart from this, these results has indicated several other issues. First of all, the political
spectrum which has been used as class label in SVM has been strictly based on the political
spectrum of the party where the parliamentarian belongs to. This is a very rough way of
labelling, as there may be differences in the sentiment between parliamentarians, or a party
may even be on a different spectrum for different topics. Nevertheless, when neglecting the
differences in the meeting, SVM can still predict decently despite this issue. Furthermore,
the voting behaviour of the parties shows that on overall, the chosen clustering can still be
observed.

Moreover, as the topics of the plenary meetings of the House of the Representatives ranges
very widely, the diversity of terminologies and jargons which has been used may also heavily
vary. Therefore, it may be preferable to divide the topics in categories on beforehand, in order
to limit the variety of topics.

A. Efficient updates for SVM-Maj

Recall that the relationship between q and β can be written as

q = Xβ. (17)

In some situations, different values of β may lead to the same q, when deriving q from β. In
other situations, the opposite could happen, that is, several values of q may result into the
same β value. Thus, there is not always a one-to-one mapping of q to β and the reverse.
Therefore, one should take these possible situations into account when performing iterative
majorization. To illustrate this, we will use the singular value decomposition (SVD) of X:

X = P Λ Q′,
(n× k) (n× r) (r × r) (r × k)

(18)

where P and Q are orthonomal matrices which satisfy P′P = I and Q′Q = I and Λ is a
diagonal matrix. The relationship between q and β can then be written as:

q = Xβ = PΛQ′β, (19)
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P′q = Λ Q′β.
(r × 1) (r × r) (r × 1)

(20)

Let us first examine the left part of the equation. q can be written as a combination of two
orthogonal vectors, a projection of q on P and a projection on its complement (I − PP′),
that is,

q = PP′q + (I−PP′)q = qB + qN . (21)

Multiplying both sides with P′ gives

P′q = P′(qB + qN )

= P′qB + P′(I−PP′)q

= P′qB + (P′ −P′)q

= P′qB + 0

= P′qB.

In other words, the left part of (20) is only dependent of qB. When r = n, PP′ equals I and
thus, q = qB + qN = qB + (I− I)q = qB. In this case there is always an unique solution of

P′q = Λθ, for any θ ∈ <r. (22)

However, when r < n, PP′ = I does not hold and there are infinitely many solutions to (22)
so that an one-to-one relationship of q and β in (17) is lost indeed.

Similarly, β can be written as β = QQ′β+(I−QQ′)β = βB+βN , and Q′β = Q′(βB+βN ) =
Q′βB. If r < k then there is no unique solution to Q′β = θ with θ ∈ <r. Note that βB and
βN are independent to each other and that

β′NβB = β′BβN = β′(QQ′)(I−QQ′)β = 0, (23)

as QQ′(I−QQ′) = 0.

As a result, we have to take care that a proper relation between β and q is retained, when more
efficient updates are derived. In the next section, we will examine three different situations
and introduce the optimization method by optimizing the parameters which has the lowest
dimension, that is, min(r, n, k). In this way, it can be assured that qN and βN are both zero
vectors. Subsequently, we will discuss the use of each optimization method in each situation.

A.1. β-method: Full rank and more objects than variables (n > k and r = k)

When the number of variables is smaller than the number of objects, and if X is of full rank,
then QQ′ = I and each β will give an unique q. As dim(β) < dim(q), it is most efficient to
optimize the loss function through β. The majorization function can as follows be written as
a function of β.

Maj(β, α) = (α1 + Xβ)′A(α1 + Xβ)− 2(α1 + Xβ)′b + λβ′β + o. (24)
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To derive an update, we set the first derivatives of (24) with respect to β and α to zero, which
yields

1′A(1α+ Xβ) = 1′b

X′A(1α+ Xβ) + λβ = X′b,

or in matrix form, [
1′A1 1′AX
X′A1 X′AX + λI

] [
α
β

]
=

[
1′b
X′b

]
.

Using the fact that α01 + Xβ =
[
1 X

] [α
β

]
, an update of both β and α0 can be derived by

solving the linear system([
1′

X′

]
A
[
1 X

]
+ λ

[
0 0′

0 I

])[
α+

β+

]
=

[
1′b
X′b

]
,

or, in compact form (
X̃′AX̃ + λJ

)[α+

β+

]
= X̃′b, (25)

where X̃ =
[
1 X

]
and J =

[
0 0′

0 I

]
.

To prove that the the linear system (25) has a unique solution under the assumption that
X 6= 0, we will show that the matrix X̃′AX̃ + λJ is positive definite. Let us examine the
following equation

[
α β′

] (
X̃′AX̃ + λJ

)[α
β′

]
=
[
α β

]
X̃′AX̃

[
α
β

]
+ λ

[
α β′

]
J

[
α
β

]
(26)

= (α1 + Xβ)′A (α1 + Xβ) + λβ′β.

From this equation, we can see that (26) equals the sum of two positive values. Furthermore,
the right part λβ′β of the equation equals zero only if β = 0, whereas the left part will be
zero only when (α1 + Xβ) = 0. As both equations only hold when α = 0 and β = 0, we
know that the matrix X̃′AX̃ + λJ is positive definite.

An update of q can be calculated by q+ = Xβ+. Note that qN necessarily equals zero, as

qN = (I−PP′)q = (I−PP′)PΛQ′β = (P−PP′P)ΛQ′β = 0.

A.2. q-method: Full rank and less objects than variables (n < k and r = n)

When k > n, or more general k > r, we know that there are no unique solutions to q = Xβ
and that Xβ = X(βB +βN ) = XβB, that is, q is not dependent of βN . Consider the penalty
term λβ′β. As QQ′(I−QQ′) = 0, the penalty term can be simplified as

λβ′β = λ(βB + βN )′(βB + βN ) = λβ′BβB + λβ′NβN

Moreover, as λβ′NβN ≥ 0 and q does not depend on βN , βN can be set to zero, with the
result that β = βB. Nevertheless, when the number of variables k is larger than the number
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of objects n, and when X is of full rank, that is r = k, then PP′ = I and each q will give an
unique β. As dim(q) < dim(β), it is most efficient to optimize the loss function through q.
β can then be derived using (20), that is,

β = QΛ−1P′q = QΛP′PΛ−2P′q = X′(XX′)−1q,

using the fact that (XX′)(PΛ−2P′)(XX′) = (PΛ2P)(PΛ−2P′)(PΛ2P) = (PΛ2P). Note
that β does not depend on qN , as β = QΛ−1P′q = QΛ−1P′qB. The penalty term λβ′β can
then be written as

λβ′β = λ(X′(XX′)−1q)′(X′(XX′)−1q)

= λq′(XX′)−1XX′(XX′)−1q = λq′(XX′)−1q = λq′K−1q,

where K = XX′ = PΛ2P′.

Therefore, the majorization function can as follows be written as a function of q.

Maj(β, α) = (α1 + q)′A(α1 + q)− 2(α1 + q)′b + λq′K−1q. (27)

The first-order conditions of (27) are

1′A(1α+ q) = 1′b,

A(1α+ q) + λK−1q = b.

Using
[
1 I

] [
α q

]
= 1α+ q = q̃, the parameters q and α can be updated by deriving([

1′

I

]
A
[
1 I

]
+ λ

[
0 0′

0 K−1

])[
α+

q+

]
=

[
1′b
b

]
,

or, in compact form

(Ĩ′AĨ + λL)

[
α+

q+

]
= Ĩ′b, (28)

where Ĩ =
[
1 I

]
and L =

[
0 0′

0 K−1

]
.

Similar to (25), we can show that (Ĩ′AĨ + λL) is positive definite and thus (28) can always
be solved.

Also, the corresponding update for β, which is

β+ = QΛ−1P′q = X(XX′)−1q, (29)

equals βB, as

βN = (I−QQ′)β = (I−QQ′)QΛ−1P′q = (Q−QQ′Q)Λ−1P′q = 0.

A.3. θ-method: Rank is smaller than either n or k (r <min(n, k))

When r < min(n, k), the interdependence of q and X can be summarized in an r × 1 vector
θ = Q′β = Λ−1P′q from (20). As qN and βN are not of interest, it is efficient to optimize
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the loss function by θ. β will then be calculated through β = Qθ, which will assure that
β = Qθ = QQ′β = βB, in a similar way, it can be shown that q = qB. Using the fact that
q = Xβ = PΛQ′β = PΛθ and θ′θ = β′QQ′β = β′BβB = β′β, the majorization function
can be written as

Maj(β, α) = (α1 + PΛθ)′A(α1 + PΛθ)− 2(α1 + PΛθ)′b + λθ′θ, (30)

with the first-order condition

1′A(1α+ PΛθ) = 1′b

ΛP′A(1α+ PΛθ) + λIθ = ΛP′b.

Using
[
1 PΛ

] [
α θ

]
= 1α0 + PΛθ = q̃, the parameters θ and α0 can be updated by

deriving ([
1′

ΛP′

]
A
[
1 PΛ

]
+ λ

[
0 0′

0 I

])[
α+

θ+

]
=

[
1′b

ΛP′b

]
,

or, in compact form

(P̃′AP̃ + λJ)

[
α+

θ+

]
= P̃′b, (31)

where P̃ =
[
1 PΛ

]
.

The advantage of this method is that r ≤ min(n, k), which means that it restricts to the
space of which the relationship between q and β is described. Moreover, it is assured that the
dimension of θ is the lowest of three (that is, r ≤ min(n, k)), and thus it is most efficient and
consistent algorithm. However, this method requires the SVD or the QR decomposition to be
computed, which may need much computational time in case n and k are large. Therefore, one
should consider the alternatives when the matrix X is of full rank, that is when r = min(n, k).
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