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Abstract

In this thesis we introduce the state-based prediction method that is applied on

the domain of Power TAC for performing short-term energy demand forecasts.

Power TAC is an agent-based competition that simulates an energy market in

which energy broker agents compete against each other for the goal of profit

maximization. One of the tasks of a Power TAC broker agent is to predict the

short-term imbalance of energy supply and demand in its portfolio. The state-

based method is designed to perform this kind of forecasting. Its main feature

is that it uses states that each represents unique combinations of data features

to acquire data relevant for predictions. Subsequently, a weighted method as

well as a simple linear regression model is used to determine future energy

imbalance. The state-based method is compared to the CART regression tree

model in terms of prediction performance and time performance. We found

by conducting experiments that overall the state-based method obtains better

prediction performance, but that it is less robust to noise. In terms of time

performance, the state-based method shows a considerable improvement.
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Chapter 1

Introduction

1.1 Motivation and background

Agent-based competitions are contests in which designed intelligent agents com-

pete against each other in a simulated environment. Franklin described agents

as ‘a system situated within and a part of an environment that senses that

environment and acts on it, over time, in pursuit of its own agenda and so as

to affect what it senses in the future’ [8]. Within a competition, the agents

have a specific goal and have to make decisions to pursuit that goal. In order

to reach their goal, agents are composed of decision algorithms. Agent-based

environments provide an excellent training ground for building and evaluating

different agent decision-making methods. For example, the strategies of several

implemented agents have been described and compared for the 2002 Trading

Agent Competition [13]. These agent implementations include prediction meth-

ods or components such as genetic algorithms [10], neural networks [23], and

fuzzy logic [32].

An agent-based competition that presently is active is the Power Trading

Agent competition (Power TAC), in which an electric power market is simulated

[18]. The aim of this competition is to get insight into how energy brokers

behave in the power market under different circumstances. One can sign up for

this competition and build an intelligent agent that represents such an energy

broker.
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2 CHAPTER 1. INTRODUCTION

The goal of a broker agent is to maximize profits by performing a large

variety of tasks. The broker needs to develop a good-quality portfolio consisting

of customers who will purchase or sell power. These customers are attracted

to the portfolio by setting tariffs. A portfolio is of good quality when it is

profitable and balanced. If there appears to be an imbalance between supply

and demand of energy, the broker will be penalized with a fee and as a result

fails in maximizing its profit. The broker agent thus needs to make its decisions

in such a way that the energy imbalance is minimized.

For the version of Power TAC that we use as a basis for our thesis, the version

that was used for the Power TAC pilot competition held at International Joint

Conference of Artificial Intelligence (IJCAI) 2011, the broker has one option

to resolve predicted energy imbalances: to trade in the wholesale market to

acquire the deficit or to sell the excess of energy. To be able to know the

amounts of energy to trade in this wholesale market, however, first the expected

energy imbalance needs to be predicted. I will design and introduce a prediction

model that can perform this task. This prediction model will form a component

of a Power TAC broker agent framework and will be tested in a simulation

environment based on Power TAC. The general setup of this model, however,

should also be applicable for other purposes as well, and thus should not only

be usable within the framework of Power TAC.

1.2 Questions and methodology

As I will focus on forecasting the supply and demand of power in a Power TAC

environment, the research question is stated as follows:

• How to predict short-term energy imbalance between supply and

demand of power of a broker agent in Power TAC?

To provide a solution to this research question, multiple subquestions are

introduced. By dicussing these questions that focus on more specific aspects

related to forming predictions in a Power TAC environment, we are able to

provide an answer to the research question. The subquestions are as follows:
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• What influences the energy consumption and production of customers

within Power TAC?

• How to build a prediction model that can accurately predict future energy

usage of Power TAC customers?

• How does the applied prediction method hold against another commonly

used prediction model?

It is important to know what the Power TAC competition precisely encom-

passes to get an overview of what aspects should be taken into account for

our to-be-built prediction model. Our focus will especially lie on the behaviour

of customers within Power TAC. Therefore, we examine the consumption be-

haviour of customers within the Power TAC pilot competition that was held in

July 2011.

In order to build a good prediction model, we will firstly review predic-

tion methods that have been used to perform forecasts. Based on our insights

obtained by reviewing other prediction methods and by studying the aspects

from the Power TAC pilot competition, we will construct our prediction model

known as the state-based prediction method. The prediction performance of

this prediction model will be evaluated by forming different scenarios that each

are related to specific customer behaviour that may appear in actual Power

TAC competitions. These scenarios are constructed using partly data from a

default Power TAC simulation and using self-generated data to ensure that these

scenarios represent varying customer behaviour.

The acquired prediction performance results will be compared to the CART

regression tree prediction approach [6] to examine whether the state-based

method has an improved performance over a prediction model that has been

used frequently in the past. Since this model shares similarities with our pro-

posed state-based method, it is interesting to find out if the prediction perfor-

mance of our method is better. Furthermore, we will study and compare the

time performance of both prediction methods. In the Power TAC competition,

actions need to be executed within a limited time interval [19] and thus it is of

vital importance to know whether the methods are capable of performing their

predictions in time.
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1.3 Thesis outline

This thesis is divided into multiple chapters that each focuses on a different

aspect. In Chapter 2 prediction methods and evaluation measures for such

methods are reviewed. Chapter 3 provides an overview of Power TAC. In Chap-

ter 4 a model for generating consumption data is defined, and the state-based

prediction method is explained in detail. An evaluation of the state-based pre-

diction method is performed in Chapter 5. This evaluation encompasses both

prediction performance and time performance in comparison with a regression

tree model. In conclusion, Chapter 6 provides a summary of the thesis through a

discussion of the previously defined research question and statements related to

the subquestions, as well as future work directions for the proposed state-based

prediction method.

Additional figures and tables are included in the appendix chapters. Ap-

pendix A and B contain data related to the Power TAC pilot competition from

July 2011. Evaluation results for both the state-based method as well as the

CART regression tree method are summarized in Appendix C.



Chapter 2

Related work

In this chapter we briefly discuss a number of prediction methods and several

prediction evaluation measures that have been widely used in the past. Through

this discussion, we get an insight into how to build and evaluate a prediction

method. In Section 2.1 the prediction methods are described. Then, in Section

2.2 some evaluation measures are explained.

2.1 Prediction methods

There is a wide variety of prediction methods. We will discuss prediction mod-

els that can be categorized into four categories. In Section 2.1.1 exponential

smoothing methods are reviewed. Section 2.1.2 covers artificial neural network

approaches. Then, regression models are discussed in Section 2.1.3. And last,

in Section 2.1.4 we describe methods related to decision trees.

2.1.1 Exponential smoothing

What many prediction models have in common is that they use past data to

form forecasts. One of the most straight-forward methods is the simple moving

average (SMA) method, where a predicted value is equal to the average of

a specified number of past values. Similar to the moving average, one can

also apply a moving median or geometric moving average. However, due to

the high simplicity of these methods, they generally are poor predictors. For

5



6 CHAPTER 2. RELATED WORK

example, since all values are weighted equally, the predictions are lagging behind

[21]. Furthermore, since no trend is considered the long-term forecasts are a

horizontal straight line.

To improve the prediction performance of the SMA method, exponential

smoothing methods have been introduced. Varying exponential smoothing meth-

ods have been discussed in detail by Gardner [9]. These methods go one step

further by assigning different weights to different values. The SMA method con-

siders all past observations equally, while more relevant observations (such as

the most recent ones) can be assigned a larger weight to increase their impact of

the predicted value. With the simple exponential smoothing method a smooth-

ing factor α is defined to acquire a predicted value. The higher the smoothing

factor, the more influence recent values have, and vice versa. Even though sim-

ple exponential smoothing methods perform better than SMA methods due to

their lower vulnerability to lagging [21], long-term forecasts still suffer from the

fact that they are constant because still no trend is taken into account [9].

Double exponential smoothing methods do consider the trend within data

and adjust the prediction based on the trend. This trend represents the overall

increase or decrease. It is computed in a similar way as the prediction is formed

in simple exponential smoothing; a smoothing factor is defined and used as a

weight that determines to which degree the previous trend is adjusted by the

most recent increase to form the new trend. The larger this factor, the more

influence the most recent increase has, and vice versa. The obtained trend then

influences the prediction. The larger the trend and the larger the smoothing

factor α, the larger the prediction.

In 1960, Winters introduced triple exponential smoothing, which takes into

account a seasonal factor next to the trend [31]. In his paper, he illustrated

that item sales can greatly vary between different time periods, and thus con-

tain strong seasonal patterns. These time periods with varying data do not

necessarily need to represent a season, but could also represent any other time

period. By including a season factor as well, the data differences between time

periods can be considered in forming predictions.

Additions to the exponential smoothing methods have also been made. In-

stead of computing a linear trend for the double or triple exponential smoothing
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methods, models containing exponential trends have also been proposed and are

discussed by Pegels [25], Brenner [7], and Roberts [27]. Another modification

to exponential smoothing methods is the inclusion of a damped trend. Using a

model with a damped trend is preferred over a model without one, since models

without damped trends tend to overestimate data beyond the short-term [9]

and damped trend models have shown an improvement in prediction accuracy

[22, 30].

For double or exponential smoothing methods it is important to properly es-

timate the applied smoothing factors. Initializing these methods with the wrong

parameter will hurt the prediction performance. Finding the right parameter

values can be difficult [9].

2.1.2 Artificial Neural Networks

Artificial neural networks (ANN) are prediction models that have been used

frequently in the past due to their high predictive performance [29]. They have

also been applied for forecasting energy demand [26, 2]. These ANN models are

based on the learning process of the human brain, and were first discussed in

[23]. The idea of neural networks is that input data is transformed to output

data through the use of flexible functions. Neural networks consist of a sequence

of layers that each comprises one or more nodes. The output of the nodes from

one layer is the input of the nodes of the next layer in the sequence. A neural

network consists of one input layer, one output layer, and one or more hidden

layers which are between the input and the output layer. To compute the

output that results from a certain node given certain input, a weighted function

is applied. The sigmoidal function is the most commonly used one in neural

networks [29].

In the most basic form of ANN, a feedforward neural network, the data sim-

ply flows into one direction through the multiple layers to eventually generate an

output value. Normally, however, the weights that are used within the weighted

function are constantly updated by using a learning algorithm, which comprises

iterative procedures to improve the prediction performance of a neural networks

model. The most widely used ANN learning algorithm is the backpropagation

model [28]. The backpropagation model encompasses a supervised learning pro-
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cess which compares ANN output values to the target values to optimize the

weights that are used in the ANN. In the backpropagation model, we first com-

pute an output value in the same way as for the feedforward neural network.

Then the error of the output node is calculated and the weights applied within

the hidden layer will be updated with a gradient descent algorithm to minimize

the mean squared error. The level to which weights are updated is dependent on

the error and a user-defined learning factor. For both the error and the learning

factor it holds that the larger the size, the more the weights within the ANN are

adjusted. Updating can be applied on a case-to-case interval, which means that

weights are updated for each single observation, or done in batches, for which

first all observations are run through the ANN before the error is determined

and the weights are adjusted [29].

There are some difficulties when using backpropagation neural networks.

Even though neural networks have a good predictive performance, their compu-

tation time can be larger than that of simpler methods since a neural network

must first be trained to set all its parameters. After it is fully trained and a

neural network model is ready for use, the problem of large computation time

vanishes. However, within Power TAC new data appears almost constantly

and thus the neural network needs to be trained regularly throughout a Power

TAC game. Within the domain of Power TAC energy consumption forecasting,

this can become a problem, as all actions of an agent need to be consistently

performed on short intervals.

2.1.3 Regression

Another commonly used method for prediction is regression. Regression meth-

ods are one of the most popular methods for making predictions [29]. A straight-

forward form of regression is simple linear regression. In simple linear regression

a linear function is computed between one independent variable and a dependent

variable, which respectively serve as the input and output. Even though there

are multiple techniques to compute the linear function, the most commonly used

method is the ordinary least squares method [24]. With this method, the linear

function is determined by minimizing the sum of squared deviations between

the predicted values and their target values. This sum is also called the sum of
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squared residuals. When there is more than one explanatory variable, one can

use multiple linear regression, which follows the same mechanics as simple linear

regression, but uses at least two explanatory variables instead of one. When the

user knows the expected relationship between the independent and dependent

variable is close to linear, simple linear regression is a good and simple method

to use.

An extension to linear regression is segmented linear regression, in which

multiple linear functions are calculated for different intervals of the independent

variable that is used [20]. For example, one can compute a linear function for

small values and a separate linear function for larger values of the independent

variable. This kind of regression is convenient in cases where there are different

relationships between the dependent and independent variable given different

magnitudes of the independent variable, such as is the case in a parabolic rela-

tionship. Simple linear regression would not be able to capture such a relation-

ship, while segmented linear regression does to some degree.

One can also go one step further than using segmented linear regression and

apply nonlinear regression. Nonlinear regression is able to capture nonlinear

relationships in different ways based on the type of the nonlinear model that

is solved. Some nonlinear relationships can be transformed to a linear model

by using transformation functions. For example, in some situations it may be

possible to transform a nonlinear function to a linear function that can be solved

by using linear regression by taking the logarithm of both sides of the nonlinear

function. When a nonlinear function cannot be transformed to a linear one, the

Gauss-Newton algorithm is used to determine the parameters of the nonlinear

function. This procedure is similar to the one used in the previously discussed

neural networks model.

2.1.4 Decision trees

Predictions can also be performed by constructing decision trees. Decision trees

consist of nodes that each contain their subset of data which represent a unique

combination of data features. A node and its subset can be split into one or

more child nodes that contain data subsets of their parent node. The node that

is split forms a decision node and contains a classification rule to be able to
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navigate to its child nodes. The goal is to reach the leaf node, a node that

contains no children, representing the data relevant for your prediction. This

leaf node is reached by following the classification rules associated with the

decision nodes of a decision tree.

Decision trees can be applied as a classifier as well as a predictor for a

continuous variable. For classification purposes classification trees are used,

while regression trees are able to form continuous predictions. When a leaf node

is acquired, the prediction for classification trees is equal to the most commonly

appearing class within the data subset of the leaf node, while for regression trees

it is common practice to retrieve the average value of the predictor variable

within the subset.

Constructing a decision tree is done based on a training data set. The

tree that is built will have a prediction accuracy of 100% on this data set. A

problem that needs to be considered when building decision trees is the issue of

overfitting. The generated tree is built completely towards the characteristics of

the training data set, and using such a tree on another data set will likely hurt

the prediction performance. To prevent the usage of a tree that is overfitted

towards a training set and that is not generally applicable, two types of methods

are used to reduce the size of the generated tree. One way is to stop further

building a tree after a certain criteria is met. An example of a decision tree

method that prematurely stops tree growth is CHAID [17]. By using a chi-

square statistical test the method determines whether node splits are possible

that improve the purity (the degree of dispersion of data contained in node) by

a statistically significant amount.

Another way is to first build a full tree and to then remove parts of the

tree by using a pruning method. The popular CART algorithm [6] prunes a

fully constructed tree by removing the nodes that contribute the least to the

prediction performance of a tree. The algorithm keeps track of the prediction

performance on a validation set of trees of varying sizes. The tree that is asso-

ciated with the best prediction performance for that validation set is selected

and applied for predictions.

It might occur that a good split happens below a bad split. A method that

stops tree growth might not make the first bad split, and thus would then never
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have the chance to make the good split. Applying a pruning method overcomes

this problem, as with a pruning method the good split would be made.

In order for a decision tree to perform well, a large data set is generally re-

quired. To tackle this problem, Breiman and Cutler proposed to use a random

forest model [5]. Within this model, first multiple decision trees are constructed

based on a data set. When a forecast then needs to be formed, a prediction is re-

trieved from individual decision trees and based on these individuals predictions

the forecast is produced.

One can imagine that building a decision tree for a large data set requires

many computations. For a data set with many features, the data set can be

divided into many subsets that represent unique features, and thus the built

tree would become large. If one would then apply a pruning method as well,

computation time can rise quickly. Similar to training neural networks, building

regression trees thus may not be a good choice for use within the Power TAC

domain due to the limited computation time restraints.

From the prediction methods that we examined we prefer methods which

require no extensive training of parameters in order to perform well, since in

Power TAC forecasts should be provided on short-time intervals. If a Power

TAC broker agent is not able to perform its actions in time, that agent will be

at a disadvantage against other brokers who do execute their actions timely.

Thus, neural networks and decision tree models that require training to be able

to perform proper forecasts, are not preferred. An option is to limit the amount

of training in order to save computation time by using heuristics; another is to

use methods that require no training to perform proper forecasts.

2.2 Performance measures

Next to the prediction method that is used, it is also important to determine how

exactly to evaluate the performance of such a method. Four types of forecast-

errors can be distinguished: scale-dependent, percentage-error, relative error,

and scale-free error metrics [15]. We will discuss examples of each of these four

metrics.
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2.2.1 Scale-dependent metrics

Scale-dependent metrics encompass the most basic types of evaluation measures.

These measures simply rely on measuring the difference between predictions and

their target values. Metrics include the mean absolute deviation (MAD), which

measures the average absolute error of forecasts and their target values, the

mean square error (MSE), and the geometric mean absolute error (GMAE).

Scale-dependent metrics are only useful when applied on a single series of data,

because, as their name implies, they are scale dependent and cannot be com-

pared across different series of data.

2.2.2 Percentage-error metrics

The authors of [12] discuss a number of evaluation measures that use a per-

centage error in some way. These measures are unit free and scale-independent

and therefore can be applied across multiple data series to compare prediction

performance. The metric that is used most commonly for calculating the per-

centage error of a prediction is the Mean Absolute Percentage Error (MAPE),

which is displayed by Formula 2.1.

MAPE =
F −A
A

(2.1)

where F is the forecast value, and A is the actual value. Instead of the actual

value, the forecast can also be used as the denominator, but the actual value is

most commonly used.

The outcome resulting from the MAPE measure is intuitive and immediately

shows the user how close a prediction is to its target value. However, when

using this approach, problems arise when the actual value, when used as the

denominator, is zero. In our domain of energy consumption and production, it

might happen that there is no energy consumption during certain timeslots. A

way to avoid dividing by zero is to use an arbitrarily small number instead, but

this may result in very large percentage errors, since the MAPE performance

measure does not contain an upper limit. This can greatly bias the MAPE,

since a few large absolute percentage errors may have a large impact on the

mean due to their large size.
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Due to the disadvantages of MAPE, multiple alternatives of the MAPE

performance measure have been applied in the past. One alternative is the

symmetric MAPE (sMAPE). Rather than dividing by the actual value, the

absolute difference is divided by the average of the prediction and the actual

value as displayed by Formula 2.2.

sMAPE =
F −A

(A+ F )/2
(2.2)

Due to the way sMAPE is computed, the outcome will never be larger than

200% and thus contains an upper limit. However, even though the measure

is named ‘symmetric MAPE, it is not symmetric [11]. The outcome of two

predictions having the same absolute deviation from an actual value can be

evaluated differently. For example, if one prediction is 1100 and the other is 900,

while the actual value is 1000, then the sMAPE outcomes will be as follows:

1100− 1000

(1000 + 1100)/2
= 9.5%

and

900− 1000

(1000 + 900)/2
= 10.5%

The above example shows that a prediction below the actual value is handled

differently than a prediction above the actual value. Another disadvantage of

sMAPE is that regardless of the prediction, the outcome will always be equal

to 200% when the actual value is zero. The sMAPE measure thus also is not

capable of dealing with zero values properly.

Another measure that is proposed as an alternative to MAPE is the MAD-

to-Mean performance measure [14]. The prediction performance of a forecast is

computed by dividing the absolute prediction error by the average actual value

in the data set. This measure overcomes the problem that arises with MAPE

when one needs to deal with zero values, while still being almost as intuitive.

However, when the data set contains a large variance among the data values,

using the average actual value as the denominator is not recommended, since

certain predictions could be considered better than others while in actuality
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they are worse. In our domain the actual customer consumption may differ

greatly over different timeslots, and using the average value as the denominator

may give the wrong picture about certain predictions.

A simple alternative for the MAPE is the Percent Better measure, which

computes the percentage of individual predictions that are more accurate than

predictions of a benchmark forecasting method. This method gives insight into

whether a method is consistently more precise than another, but it does not

provide information about the degree to which a method is better or worse [4].

For example, when a method is slightly more accurate than another method for

many predictions, but contains far larger errors for the other predictions, this

is not visible through the use of the Percent Better method.

2.2.3 Relative error metrics

The authors of [4] proposed to apply evaluation measures based on relative er-

rors rather than measures based on percentage errors. Such measures directly

compare the errors obtained from one method to the errors acquired from an-

other. For example, the mean relative absolute error (MRAE) is defined as

follows:

MRAE = mean(
et
e∗t

) (2.3)

where et is the error of a prediction model and e∗t is the error of another bench-

mark prediction model; typically a simple random walk method where a predic-

tion is equal to the most recent observation. Instead of using the mean, one can

also employ the median (median relative absolute error, or MdRAE) or geomet-

ric mean (geometric absolute error, or GMRAE). The authors of [4] prefer the

GMRAE when the aim is to calibrate the parameters of a prediction model since

this method has a good sensitivity and in order to assess a performance change

in a model, the sensitivity of a forecast measure should be good. When the goal

is to select a method from a number of methods, they claim that MdRAE or

MdAPE is preferred, because these methods have good outlier protection.

Next to using measures that compute individual relative errors, another

option is to employ relative measures that directly compare the results of the
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same measure for two different methods. For example, Armstrong and Collopy

[4] proposed the cumulative relative absolute error, which is defined as:

CumRAE =
MAEa
MAEb

(2.4)

where MAEa is the mean absolute error for prediction method a, and MAEb is

the one for prediction model b. Methods other than MAE can also be applied.

Measures such as CumRAE provide a direct comparison between two methods

that is simple to understand.

2.2.4 Scale-free error metrics

A third alternative is the Mean Absolute Scaled Error (MASE), introduced by

Hyndman and Koehler [16]. This measure uses scaled errors that are based

on the average absolute error of a naive forecast method. The authors defined

MASE as follows:

MASE = mean(|qt|), where (2.5)

qt =
et

1
n−1

∑n
i=2 |Yi − Yi−1|

(2.6)

where et is the error of the t-th prediction, Yi represents an actual data value,

and qt is a scaled error. When a scaled error is smaller than 1, this means that

the prediction from the evaluated method is more accurate than the average

prediction from the naive method, while an error larger than 1 means it is

worse. The MASE is an intuitive evaluation measure that clearly shows whether

a method is better than the naive method and also to what degree this is the

case.

We prefer performance measures that are intuitive and immediately show to

which degree a prediction deviates from its target value. Relative error metrics

and scale-free error metrics are good to see whether a method performs better

than another, but they do not give us insight into the deviation of a prediction

from its target. Even though our evaluation comprises a comparison between our

proposed state-based method and a regression tree approach, we do not prefer to

use these two metric types due to their lack of intuitiveness in terms of individual
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prediction accuracy. Using scale-dependent metrics is also not an option, since

we will perform our evaluation using multiple time series and a scale-dependent

metric does not allow for good comparison between performances on multiple

series. Thus, percentage-error metrics remain. The main disadvantage of these

metric types results mostly from not being able to handle a zero denominator.

However, if we can ensure that the data used for our evaluation does not contain

zero values, this disadvantage vanishes.



Chapter 3

Power TAC Framework

In this chapter the characteristics of the Power Trading Agent Competition

(Power TAC) are described. First, in Section 3.1, we will discuss the setup of

Power TAC by covering the actions a broker agent can take. Then we will go

into more detail about the Power TAC pilot competition that was held at the

International Joint Conference of Artificial Intelligence (IJCAI) 2011 in Section

3.2. Since the focus of this thesis is on the short-term prediction of customer

consumption and production, the consumption behaviour of the customers dur-

ing the pilot competition will be reviewed. Only a general outline of the Power

TAC game will be provided. For more details on the Power TAC competition

one can read the Power TAC game specification [19].

3.1 A general overview of Power TAC

Power TAC is a trading agent simulation in which energy broker agents compete

against each other with the aim of obtaining high monetary profits. Each broker

agent is able to attract customers in order to generate energy consumption and

production. As other brokers compete in the competition, a broker continuously

needs to act in several ways to outperform the other brokers. Figure 3.1 shows

the activities which a broker is involved with in Power TAC.

The activities depicted in Figure 3.1 are interactions that occur in one times-

lot. In Power TAC, a timeslot represents a one-hour period in which a broker

can perform actions and in which the Power TAC server provides the broker

17
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Figure 3.1: An overview of the activities for a Power TAC broker agent. Source:
Power TAC game specification [19].

with information. In real-time each timeslot takes five seconds. A broker needs

to perform all the desired actions for one hour within these five seconds, which

means that all actions of a broker are required to have short computation times.

In the figure a clear distinction is made between multiple aspects of the game.

First there is portfolio development, which mainly consists of interacting with

customers. Each broker is able to design new tariffs, which are then published

in the tariff market. The tariff market contains all the tariffs that have been

offered by all participating broker agents. The tariffs may include varying rates

depending on the hour of energy consumption. For example, a tariff may be

offered which has low rates during night-time hours, but higher rates during

daytime. Previously offered tariffs may also be revoked or adjusted.

For the Power TAC version that we use for our thesis, the version from July

2011, only anonymous small customers are included. The type of customer that

have been used in the pilot competition are as follows:

• Households; customers with a typical residential consumption pattern.

• Offices; customers that have flat consumption during working hours, and

low consumption during other hours.
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• Factories; customers with similar behaviour as offices, but with higher

volatility.

The customers are able to select a tariff published on the tariff market.

When a customer is attracted to a certain tariff of a broker, it will consume

or produce for the broker that is associated with that tariff. Customers may

represent a larger population, such as a village. For example, within the pilot

competition held in July 2011 customers were present that represent 1,000 or

even 10,000 households. Each individual of a population can decide to select a

different tariff. Thus, when a customer represents a population of 10 individuals,

this population can be distributed over 10 different tariffs. Customers are able

to change the tariffs they use during the competition, and therefore brokers

continuously need to manage their portfolio of offered tariffs.

Figure 3.1 also illustrates the possibility of contract offering with customers.

This however is not implemented in the Power TAC version we base our thesis

research on. In the future, Power TAC will also contain large customers next

to the small customers. With these large customers the broker agents need to

negotiate contracts to attract them. The tariffs will not play a role within the

interaction process between brokers and these large customers.

When a broker attracts customers, the total consumption and production

of the customers also needs to be taken into account. Power TAC namely

contains the Distribution Utility, which will penalize brokers when they have

an imbalance between energy consumption and production. The larger the

imbalance, the larger the fee will generally be. The Distribution Utility will

provide penalties during each timeslot. As a result, the aim of a broker agent

is to consistently get a balance between energy consumption and production.

A very important component of a broker thus is to accurately predict future

energy imbalance in order to properly take actions to reduce or eliminate the

imbalance. In order to aid brokers with performing accurate predictions on

customer consumption, Power TAC provides every broker with historical data

containing 14 days of consumption data for each customer.

A way of counteracting energy imbalance on the long term is to manage your

tariffs in such a way that the consumption and production of energy within your

customer portfolio is at least expected to be close to balanced. Thus, when a
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broker has an oversupply of energy, the broker needs to offer a tariff that is likely

to attract customers that consume that oversupply to become more balanced

again.

When the energy usage of the customers within your portfolio is expected to

be imbalanced on the short-term (up to 23 timeslots), acting on the wholesale

market is one way for brokers to reduce that imbalance. On this market, the

brokers are able to offer bids and asks in order to buy or sell energy. The

wholesale market is open for the next 23 timeslots, which means that the broker

can resolve expected imbalance for up to 23 hours ahead through trading. The

wholesale market uses a periodic double auction mechanism. This means that

buyers and sellers can simultaneously submit respectively bids and asks for

the next 23 timeslots during the current timeslot. After all bids and asks for

a certain timeslot are submitted, the clearing price of all bids and asks can

be determined. Figure 3.2 displays an example of how the clearing price is

determined within Power TAC. This figure is directly retrieved from the Power

TAC game specification [19].

Figure 3.2: Market clearing example. Source: Power TAC specification [19].
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In Figure 3.2 a number of bids and asks are illustrated. The clearing price

that is associated to the bids and asks is determined by finding the intersection

of these bids and asks. The bids with a price higher than the clearing price and

the asks with a price below the clearing price are executed. The highest bids

and lowest asks are cleared first. Either the last cleared bid or the last cleared

asks is mostly executed only partially. In the figure, bid 8 and ask 6 are cleared

last, ask 6 is only cleared partially. The clearing price is 16.

After the processing of portfolio development, trading on the wholesale mar-

ket, and the balancing of the Distribution Utility, some information is published

to the broker, such as the current cash position of the broker and weather re-

ports. Since weather forecasts are not included yet in the Power TAC version

we use as a basis for our thesis, the weather information cannot be used yet to

predict the consumption and production of a broker’s customers. However, in

the future this aspect will play an important role, because customer behaviour

will be dependent on the weather.

Another aspect that is currently not implemented yet within Power TAC

is the possibility of partly controlling the consumption of customers through

the use of reserving capacity. In the future brokers are able to temporarily shut

down or start devices in order to consume less or more and reduce the imbalance

between total energy consumption and production.

3.2 The customers of Power TAC

In July 2011 the Power TAC pilot was held at the International Joint Conference

of Artificial Intelligence (IJCAI) 2011. The pilot competition contained a total of

four simulations. However, only the data of one simulation is available. Based

on the data of this particular game, we perform an analysis of the customer

behaviour during this simulation.

A total of five broker agents participated in the game:

• EUREBA; from Erasmus University Rotterdam.

• CrocodileAgent, from the University of Zagreb.

• IAMPower; from the University of Southampton.
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• Mertacor; from Aristotle University of Thessaloniki.

• defaultBroker; a simplistic default broker that is built in within the Power

TAC environment.

The simulation contained a total of ten different customers. All of these

customers are small customers that use the tariffs that are offered by the brokers.

The customers and their characteristics can be observed in Table 3.1.

Table 3.1: The customers within the Power TAC pilot competition that was
held in July 2011.

Name Type Population
Village 1 Consuming household 8
Village 2 Consuming household 8
DowntownHouseholds Consuming household 10,000
MorewoodHouseholds Consuming household 1,000
HighlandBusinesses Consuming office 100
UniFacilities1 Consuming office 1
UniFacilities2 Producing office 1
JennywoodPark Producing office 1
WindmillCoOp Producing office 50
SunnysideSolar Producing factory 2

The first aspect we analyse is the distribution of customer populations over

the different brokers. This way we can get an insight into whether certain

customers are volatile in the tariffs they use, or whether they stay at the same

broker. The distributions of the population of each of the ten customers are

depicted in Appendix A.

The defaultBroker agent has attracted all customers during the start of the

game, but quickly loses almost all of them after one timeslot. For some of the

customers the distribution of brokers over their population is straightforward

in the sense that only one broker fully attracts the customer population for

the remainder of the competition. For the Village 2 customer (Figure A.2) the

CrocodileAgent broker attracts its population of 8, while the IAMPower broker

fully attracts three of the four producers of the game, namely JennywoodPark,

SunnysideSolar, and UniFacilities2. The other producer, WindmillCoOp, is

also mostly attracted by the tariffs of IAMPower, but also partly uses tariffs of

Mertacor.

The attraction of the customers Village 1 (Figure A.1) and UniFacilities1
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(Figure A.6) is a duel between Mertacor and CrocodileAgent. The full popula-

tion of both of these customers changes between tariffs of these agents, although

not often. Thus, what seems to be noticeable for the behaviour of most of the

customers is that they stay at a certain broker and are not very sensitive to

change, at least for the examined pilot competition.

There are however customers of whom the population is more distributed

among multiple brokers. For the DowntownHouseholds customer (Figure A.3),

50% of the population uses tariffs of the EUREBA broker at the beginning of

the game, while 40% of the population is attracted to CrocodileAgent , and both

IAMPower and defaultBroker attract 5%. After 8 timeslots IAMPower loses

its 5% of attracted customer individuals to Mertacor. At timeslot 32, the distri-

bution of the customer populations changes greatly. EUREBA loses 25% of its

customers to CrocodileAgent, and the default broker swaps position with Mer-

tacor. The largest change takes place during timeslot 37, when Mertacor moves

from 0% attraction to 75% attraction. EUREBA again loses some customers,

approx. 20%, while CrocodileAgent loses its leading position. After some more

changes, the distribution becomes stable until the end of the game.

The pattern for the MorewoodHouseholds customer is remarkably similar, as

is depicted in Figure A.4. The distribution and changes of the brokers over the

customer population are almost exactly the same, only the timeslots at which

tariff changes occur are different. Both customers also reach an equilibrium in

distribution relatively quick, with the DowntownHouseholds customer reaching

stability at timeslot 55 and the MorewoodHouseholds customer at timeslot 61.

Since the competition consisted of a total of 312 timeslots, the customers were

insensitive to switching brokers for the largest portion of the competition.

The only customer of which the population does not reach full stability is

HighlandBusinesses (Figure A.5). At the start of the game, many brokers are

involved with this customer, but after approx. 40 timeslots the attraction of the

this customer ends up in a duel between CrocodileAgent and Mertacor. Figure

A.5 clearly shows this on-going duel. Occasionally Mertacor loses 10% of its

attracted population to CrocodileAgent, but wins them back again quickly.

Next to the distribution of customer populations over the different brokers in

the pilot competition, we also investigated the total consumption or production
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of the different customers. The figures associated to the energy usage of the

customers can be observed in Appendix B. Vertical lines are included in the

figures at a rate of 24 timeslots to be able to better compare the consumption

between different days.

The customers Village 1 and Village 2 are similar in behaviour and both

have a clear pattern in their consumption, as is illustrated by respectively Figure

B.1 and Figure B.2. The two customers frequently have two large peaks in their

daily consumption. The peaks also happen to occur during the same hours.

Due to their relatively stable consumption pattern, it is easier to predict when

large peaks in consumption will arise.

The DowntownHouseholds customer shows very odd consumption behaviour.

Figure B.3 clearly shows that the consumption during the first 48 timeslots

differs greatly from the consumption in the later timeslots. The reason for this

large change in total consumption is unknown, but it is likely to be caused by

an error within the Power TAC software environment. The consumption of the

DowntownHouseholds customer after timeslot 48 seems to be consistent, with a

larger total consumption during the end and beginning of each day.

The consumption or production of the other customers that are represented

in Appendix B seems to be more randomized. There are no clear patterns and

the consumption or production has a high volatility. For the WindmillCoOp

and SunnysideSolar customer (Figure B.7 and Figure B.8) this behaviour could

be explained by weather influences. However, since weather forecasts are not

yet included in Power TAC and thus cannot be used for consumption prediction,

the consumption of these two customers in particular becomes unpredictable.

The consumption of two of the customers, JennywoodPark and UniFacili-

ties2, are not included in Appendix B. The reason for this is that the production

of both of these customers always was zero during the complete pilot competi-

tion.

Based on the customer consumption depicted in Appendix B, we find that

the consumption of the varying customers does not seem to represent their

customer types as was stated in the Power TAC game specification. No different

consumption pattern seem to be apparent between the consumption of varying

customers. For example, for MorewoodHouseholds and HighlandBusinesses, one
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would not able to notice that the first is a household consumer while the other

is an office based on the consumption depicted in Figure B.4 and Figure B.5.

It can be expected that in the future, as Power TAC develops further, the

consumption will be more representative of the customer types.

Through a discussion of the components of Power TAC and the customer

consumption of Power TAC customers that were present during the Power TAC

pilot competition, we have gained insight into what to expect in terms of cus-

tomer consumption prediction. We described and illustrated that customers

contain a population of which each individual can use a different tariff. From

the Power TAC game specification we can derive that the consumption will be

influenced by the customer types and power types of customers, as well as the

time of consumption. All of these aspects help in defining the prediction model

we will describe in Chapter 4,
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Chapter 4

State-based Prediction

Framework

In this chapter a short-term prediction method that can be applied within the

framework of a Power TAC broker agent is described. This prediction method is

used for the purpose of forecasting the short-term imbalance of energy consump-

tion and production for a broker agent. In Section 4.1 the general components

of a broker agent are first described to show the role of such a short-term pre-

diction method within a global framework of a Power TAC broker agent. The

method will mostly be evaluated by utilising self-generated data. The reasons

for using this self-generated data and the setup to build the data is covered in

Section 4.2. Then, in Section 4.3, the short-term prediction method is described

in detail.

4.1 The components of a broker agent

In Chapter 3 we already described the interactions of a broker agent within

Power TAC. We will shortly repeat the main actions of such an agent and focus

on the role of forecasting short-term energy imbalance to gain insight into the

importance of these predictions within a broker’s framework. Figure 4.1 displays

a general overview of a broker’s main tasks and the interdependencies between

them.

27
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Publish tariffs

Adjust tariffs

Revoke tariffs

Determine long-
term energy 
imbalance

Manage tariffs

Trade energy on 
wholesale market

Resolve short-
term imbalance

Predict wholesale 
market clearing 

price

Predict short-term 
energy imbalance

Figure 4.1: An overview of the general tasks of a Power TAC broker agent.

The first task for a broker is to publish tariffs to attract customers. The

attracted customers will consume or produce energy. The total consumed and

produced energy of a broker’s customers needs to be balanced, or otherwise the

broker will receive a penalty. Therefore, the imbalance between consumption

and production continuously needs to be taken into account. Dealing with

energy imbalance can be done in two different ways. First there is the long-

term imbalance that needs to considered, and secondly there is the short-term

imbalance.

The long-term energy imbalance can be taken hold of by properly managing

your tariffs. If a broker observes that its customers are consistently consuming

a lot more energy than they produce, a logical action would be to either attract

more producers or to remove consumers from your portfolio. By publishing

or revoking the right tariffs, the long-term energy balance can be controlled.

The better a broker manages its portfolio, the lower the long-term imbalance

will be. However, as balanced as a broker’s portfolio may be in expectation,

the consumption and production will mostly not be completely balanced on the

short-term. Thus, a broker also needs to determine what imbalance in energy

to expect on the short-term to solve the short-term energy imbalances as well.

Accurately predicting the short-term imbalance between energy consumption

and production within the portfolio of a broker agent is an important part of

a broker’s framework. It can be perceived as the motor for all actions that

can be taken on the short-term to prevent imbalance fees. Without it a broker

will suffer more losses. Based on the predicted short-term imbalance, different
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actions can be set in motion. If a shortage of energy is predicted, then one

would try to acquire energy, while a predicted surplus of energy would mean

the opposite. In the version of Power TAC from July 2011 the only action that

may be performed by a broker to resolve predicted imbalances on the short-term

is to trade energy on the wholesale market. To trade on the wholesale market,

a broker requires a desired amount of traded energy based on the predicted

imbalance, next to the wholesale market clearing price to know at which prices

to trade. However, the focus of our thesis is not on the actions that resolve

energy imbalance, but on forecasting the short-term imbalance in a proper way

so that such actions can be set in motion.

4.2 Generating customer data

In Chapter 3 we discussed the energy consumption of customers within the

Power TAC pilot competition that was held at the International Joint Confer-

ence of Artificial Intelligence (IJCAI) 2011. We noticed that the consumption

of these customers does not seem to be satisfying. For most customers, the

consumption had no pattern. Also, the consumption did not represent the

customer types of the customers. For example, there was no clear difference

between customer offices and customer households. Due to the nature of the

data of the Power TAC pilot competition, it seems futile to apply prediction

models to determine future imbalances of energy consumption and production

using this data. As the main goal of this thesis is to design a prediction method

and we would like to test this data on useful data, we decided to generate our

own consumption data that does represent the type of a customer and that does

have a pattern.

For the ten customers that were present in the pilot competition, the con-

sumption of two of them still seems to be appropriate to use. Village 1 and

Village 2 have a recurring consumption pattern that seems to represent their

customer type. Both of these customers are household consumers with a total

population of 8 households. The Power TAC pilot competition contained more

household customers, as well as office and factory customers. We will generate

consumption data representing the same three customer types. Building data
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that represents these three kinds of customer types of the pilot competition will

result in a group of heterogeneous customers, which is interesting to evaluate.

The behaviour of the three types of customers (household, office, and factory)

is determined based on both their descriptions within the Power TAC game

specification [19], and the data provided by Madison Gas and Electric (MGE)

[1], an energy company that operates in the area of Madison, Wisconsin. MGE

provides information on the general consumption behaviour of several groups of

customers, such as hotels, offices, and multifamily residences.

In the game specification of Power TAC the behaviour of households in terms

of energy usage is described as ‘typical residential consumption’. In Figure 4.2

the typical behaviour of households according to MGE is depicted.

Figure 4.2: Typical consumption of a multifamily residence according to Madi-
son Gas and Electric. Source: MGE [1].

Figure 4.2 illustrates the total energy consumption of a household over the

course of a day. From the figure we learn the following characteristics:

• The consumption is low during the night.

• There is increasing consumption during the early morning until 7 to 8

AM.

• There is a relatively stable consumption during late morning and early

afternoon.

• In the late afternoon the consumption starts to increase significantly.

Eventually a peak is reached at about 8 PM.

• After 9 PM the consumption starts to decrease greatly until about 12 PM

to 1 AM.
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The main features of residential consumption are the two peaks in consump-

tion. A small peak arises in the morning, and a much larger peak during the

evening. These consumption patterns seem plausible. In the morning people

awake and start to use more energy, while in the late morning and early after-

noon people generally are away for work or school and thus less energy is used.

When people return later on the day, more energy is used again. This behaviour

is clearly represented in Figure 4.2.

The second customer type we will generate data of is the office. According

to the Power TAC game specification, ‘offices have a typical flat consumption

during working hours’, and ‘limited consumption at other times’. The figure

obtained from MGE, Figure 4.3, shows us a similar pattern.

Figure 4.3: Typical consumption of an office according to Madison Gas and
Electric. Source: MGE [1].

From early evening to early morning there is a relatively small amount of

consumption. Starting in the early morning, the consumption quickly increases

until about 9 AM, after which the consumption is relatively stable, with a

slight increase, until about 3 PM. Then the consumption starts to decrease

significantly until it reaches a more stable consumption at about 8 to 9 PM.

A third type used within the Power TAC pilot competition are factories.

Factory consumption is described in the game specification as being ‘similar to

office consumption but with greater magnitudes and more variance’. For this

reason, to generate data representing factory consumption or production, we

use a pattern that has a high similarity to the one depicted in Figure 4.3. The

difference is that the increase and decrease in energy usage during respectively

early morning and late afternoon will be larger to represent a larger magnitude.
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We will now describe in detail how we build the consumption data for the

customers. The creation of this data is mainly characterized by the use of basic

patterns to assure that the generated consumption data represents the different

type of customers. For the three types of customers we initially design two base

patterns: one for weekdays and one for weekends. These patterns are based on

the characteristics described previously. The base patterns consist of 24 pre-

defined proportions that each represent an hour. Mapping these proportions to

an image would result in a pattern similar to the ones illustrated in Figure 4.2

or Figure 4.3, depending on the customer type. Using the base patterns, we

start to generate simple consumption data for different customers. For each of

the customers, we define one base value. This base value determines the overall

magnitude of a customer’s consumption.

For each customer, a maximum random factor is also defined. The higher

this factor, the more generated consumption is likely to deviate from the base

patterns. The trend of a customers consumption is taken into account as well.

If the consumption for a certain timeslot is higher than usual, then the con-

sumption for the timeslot that succeeds that timeslot has a larger probability

of also being higher than usual.

Each customer within Power TAC represents a larger population. For ex-

ample, the customer Village 1 from the Power TAC pilot competition that was

described in Chapter 3 represents a total of eight individual households. The

energy consumption of a customer c for timeslot z ∈ h, h = {0, 1, 2, ..., 23}, is

generated as follows:

vcz = pcz · bc, where (4.1)

pcz = gcz,w · (1 + τ cz ), (4.2)

τ cz = α · random(dc) + (1− α) · τ cz−1, and (4.3)

τ c−1 = 0 (4.4)

where dc is a random factor in the interval [0, 100] for customer c, random(dc)

is a randomly computed proportion within the interval [− dc
100 ,

dc
100 ], gcz,w is the

base proportion associated with customer c related to timeslot z that falls within

week part w, τ cz represents the relative increase of the to-be computed proportion
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for timeslot z over the base proportion gch,w, pcz is the computed proportion for

customer c at timeslot z, bc is the base value associated to customer c, and vcz is

the generated consumption in kWh of customer c for timeslot z. There is also a

weight value α within the interval [0, 1]. The higher this weight, the more impact

the randomly generated proportion random(dc) has on the generated proportion

τ cz , and the lower the influence of the proportion from previous timeslot τ cz−1.

The value for α we used to generate data is 0.3. This value is selected so that

the consumption trend has a higher impact on the created consumption values

than the random factor that is included.

What we are still missing compared to the consumption data from a Power

TAC simulation are the tariffs. So far we have simply generated the total con-

sumption of a customer per timeslot. In an actual Power TAC game, however,

the consumption of the full population of a customer can be distributed over

multiple tariffs. We thus need to find a way to properly divide the consumption

values we have generated over a number of tariffs and associate a consumption

value with each tariff. Also, we would like to have different consumption be-

haviour based on which tariff is used by a customer. To decide how we can

manage varying consumption depending on tariffs, we must first know how tar-

iffs are defined in Power TAC.

Each tariff is composed of 24 rates that each are associated to a specific hour.

For the Power TAC version from July 2011, these rates are fixed, and are not

subject to variable pricing. If a customer is willing to change its consumption

behaviour depending on the used tariff, the smartest option for that customer

would be to consume more energy on hours for which the tariff rate is low, and

to consume less on hours where the price is higher. Based on this thought,

we alter the consumption generated with Formula 4.1 by redistributing the

consumption dependent on the used tariff rates of customer individuals. The

total consumption for timeslot z and tariff f for customer c is measured as
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follows:

qcz,f =
∑
i∈c∩f

(1− ρ) · v
c
z

|c|
+ wirz · (ρ ·

vcdz
|c|

), where (4.5)

vcd =
∑
z∈d

vcz, and (4.6)

wriz =
(
∑
j∈dz r

i
j)− riz∑

k∈dz ((
∑
j∈dz r

i
j)− rik)

(4.7)

where i is the collection of individuals that are part of the population of cus-

tomer c and that use tariff f during timeslot z, ρ is the proportion of the daily

consumption that is redistributed over the 24 hours of a day, dz represent day

d to which timeslot z is associated, wriz is the weight of the rate riz that is used

by individual i during timeslot z. This weight is determined by comparing it to

the other rates that are used by individual i during day d. The lower rate riz

is in comparison with the others, the more consumption will be shifted towards

timeslot z. If ρ = 0, then no consumption is shifted towards other hours.

Depicted in Figure 4.4, 4.5, and 4.6 are the generated consumption values

for three different types of customers. Figure 4.4 represents the consumption

of a household consumer, in Figure 4.5 the consumption of an office consumer

is illustrated, while Figure 4.6 shows the production of factory producer. The

random factors we used to generate these three consumption sets are respectively

8, 15, and 75.
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Figure 4.4: The generated consumption for 10 days for a household customer.
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Figure 4.5: The generated consumption for 10 days for an office customer.
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Figure 4.6: The generated production for 10 days for a factory customer.

Figure 4.4 illustrates that the generated consumption for a household con-

sumer has a pattern similar to the consumption depicted in Figure 4.2. Figure

4.6 clearly shows that the production of the factory customer is less smooth

than the consumption of the office customer due to the higher random factor.

The gap between the lower and higher production of the factory customer is

also larger than the one of the office customer, which distinguishes the factory

customer further from the office customer.
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4.3 Building the state-based prediction model

One of the tasks of a broker agent within Power TAC is to predict the imbalance

of energy consumption and energy production within the customer portfolio.

Short-term predictions need to be performed to forecast the energy imbalance

of the upcoming timeslots. Then, based on these predictions, actions can be

taken to resolve the forecasted energy imbalance. In Section 4.3.1 we describe

the general setup of our prediction method based on a number of guidelines and

assumptions. Then, in the following sections we outline in detail the different

steps of our prediction method.

4.3.1 The guidelines of a prediction

The short-term energy imbalance within Power TAC is dependent on the be-

haviour of the participating customers. Thus, to design a short-term prediction

algorithm we first need to find out how the behaviour of customers is influenced

on the short-term. Based on the Power TAC game specification [19] we find that

the following aspects / features may have an impact on the energy consumption

or production of customers.

• Customer All customers have a specific load profile that determines how

they use energy. The load profile can be divided into two parts: the

customer type, and the power type. A customer always is linked to one

customer type, but may be associated with multiple power types.

The customer type characterizes the general energy usage behaviour of

a customer. Customer types include households, offices, and factories in

the version of Power TAC from July 2011. All of these types have con-

sumption behaviour that distinguishes them from each other. Offices have

typical flat consumption throughout working hours, and lower consump-

tion outside working hours, while households represent typical residential

consumption behaviour. Thus, the customer type of a customer affects

his behaviour, and needs to be taken into account for more accurate pre-

dictions.

There are a number of power types in Power TAC that represent the

power flow of a customer. For example, a customer may support the
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‘consumption power type, which means that power flows from the grid to

the customer. Another power type is ‘production, for which the energy

flows from the customer to the grid. This production power type is further

split into sub types that allow differentiation of power sources. These

subtypes include solar production and wind production. However, the

current version of Power TAC only uses a limited number of different power

types, as weather is not integrated into the environment yet. Naturally,

the power type of a customer has a great impact on the prediction of

short-term energy imbalance, since it determines whether a customer is

consuming or producing energy.

Each customer has a customer type, at least one power type, but also a

population. One single customer may represent a village where a number

of people are living, or a large office that has hundreds of employees. Even

if the customer type and the power types are shared between different

customers, the consumption can still differ between the customers.

• Part of the week (week / weekend) Customers have other behaviour

depending on whether they are consuming on a weekday or during a week-

end. Offices will likely have lower energy consumption during the weekend,

while households may experience an increase in consumption.

• Time Like the part of the week, the time on the day also affects energy

consumption of customers. During the night, offices are closed and people

within households are sleeping, and thus will not consume much energy.

Furthermore, the tariffs that are offered by brokers may contain different

prices depending on the time of consumption, which is likely to influence

customer behaviour.

• Tariff Another aspect that has an impact on consumption and produc-

tion of a customer is the tariff that is used. For example, tariffs may

include time-of-use rates or weekday/weekend rates to encourage certain

behaviour, such as higher consumption, during specific time periods.

• Weather The behaviour of customers is also influenced by the weather.

Future Power TAC simulations may contain producers that use wind based

production, or solar based production. Furthermore, the consumption
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of customers is likely to be influenced by the temperature. Customers

might use more power for heating devices during periods in which the

temperature is low, i.e.

We need to take into account the aforementioned aspects to create an ac-

curate prediction algorithm. For this reason, we decided to design an approach

that specifically considers the varying aspects. Our approach is based on using

so-called states that each represent a unique combination of data features. The

states are defined based on three different features. They are as follows:

• Customer

• Part of the week

• Tariff

The number of states that need to be used is dependent on the amount of

values that the above three features can take. The number of customers and

tariffs differ per Power TAC competition. The customers are known at the start

of the game, and do not change during the competition. The amount of used

broker tariffs vary over the course of a competition.

Weather is not included as a feature that is used to define states. The data

model presented in Section 4.2 is based on the Power TAC version from July

2011, which did not include weather features for customer consumption, and

as a result this feature is not included in our prediction model as well. With

the three listed features, we define different states that each represent their own

pool of data. Let us show how to retrieve a state with a brief example.

Example 1 - Retrieving a state We currently are in timeslot zt on a reg-

ular weekday. One of our customers, customer c, is an office which supports

the ‘consumption’ power type. This office uses our tariff f . We now need to

forecast its consumption for the next timeslot, which is zt+1, which also falls

on a weekday. Thus, the state s for the to-be-predicted timeslot represents the

following features:

• Customer: c

• Part of the week: week
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• Tariff: f

State s thus contains all past consumption from customer c that took place during

weekdays when using tariff f.

Next to the listed aspects there are three important assumptions we can

make and that have an influence on how we build our prediction model.

• The consumption of a specific timeslot is partly dependent on the con-

sumption of the most recent past timeslots.

• At the start of a competition, the broker receives for each of the customers

two weeks of consumption data.

• Customer consumption roughly follows a daily pattern.

The magnitude of the predicted consumption value for a future timeslot is

likely to be dependent on the consumption of the most recent timeslots, i.e.

the higher the consumption during the most recently occurred timeslots, the

higher the consumption for a future timeslot is likely to be. Therefore, using a

prediction model that relies on the use of time series is a good approach.

The second assumption allows us to initiate the to-be-built prediction model

with data at the start of a competition. Since we have this historical data

already available at the beginning of a Power TAC competition, it is possible

to create a model dependent on historical data that is capable to start well.

The general setup of our prediction model will therefore be modelled around

the use of states to divide data into different data pools, and then use for each

prediction a specific state in combination with a historical data approach.

As described and explained in Section 4.2, the consumption of each customer

roughly follows a daily pattern. The consumption is based on the hour of

consumption. On certain hours the consumption will consistently be larger

than others, and vice versa. This means that it could be useful to take into

account the pattern of each customer in the setup of our prediction model by

considering the consumption associated to the hour of the future timeslot we

require a prediction for.

Now that we have defined states and described some assumptions that in-

fluence our prediction model, we illustrate the general sequence of forming pre-
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dictions using these states. Figure 4.7 depicts the steps that are taken to form

a prediction during one timeslot.

Obtain set of 
transactions from 
previous timeslot

Obtain next 
transaction

Obtain features of 
transaction

Retrieve states 
associated to the 

transaction 
features

Else

Obtain set of 
prediction gaps

If set of gaps 
contains unused 
prediction gap

Obtain future 
timeslot derived 

from current 
timeslot and next 

prediction gap

Update states with 
transaction data

If set contains 
unused transaction

Obtain set of 
expected 

transactions for 
future timeslot

Obtain features of 
transaction

Retrieve state 
associated to the 

transaction 
features

Use state to form 
individual 

prediction for 
future timeslot

Add individual 
prediction to total 

prediction for 
future timeslot

Else

Obtain next 
transaction

If set contains 
unused transaction

Figure 4.7: The sequence of steps that are used to form a prediction during a
single timeslot.

As can be observed in Figure 4.7, there are quite some steps that need to

be taken to form short-term imbalance predictions. First, storage of the newly

received past data takes place by updating states that are related to the data.

Then, we form predictions for future timeslots based on expected transactions

for those timeslots and by employing the states that are associated to those

expected transactions. We now describe in detail seven different steps that are

part of the storage and prediction process of our state-based prediction method.

4.3.2 Step 1 - Storing past data

The very first step is to store the newest data available, so that the states in our

prediction model are updated with recent information. During each timeslot of

a Power TAC game, a broker may receive a list of tariff transactions. One tariff
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transaction specifies the consumption or production in kWh during a specific

timeslot of a specified customer using a specified tariff. When performing the

prediction process during a timeslot, the first step is to obtain the tariff trans-

actions from the previous timeslot. The consumption and production values

associated to these transactions can then be stored in the states that are related

to them.

Assume that the following transactions related to previous timeslot are re-

ceived, and that the previous timeslot is related to a weekday 1:

• Transaction t1

– Customer: c1

– Tariff: f1

– Customer count: 1000

– Consumption (in kWh): 1,100

• Transaction t2

– Customer: c2

– Tariff: f1

– Customer count: 20

– Consumption (in kWh): 1,500

• Transaction t3

– Customer: c1

– Tariff: f2

– Customer count: 100

– Consumption (in kWh): 80

The data contained in these transactions will be stored in several states.

Based on the features of each tariff transaction we know exactly which states

need to be updated by adding the new tariff transaction data. If we consider

transaction t1, we update the states that represents tariff f1, customer c1 and

1Note that the data is simply used for explaining purposes and does not directly represent
actual data.
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weekdays. If a state represents another customer, another part of the week, or

another tariff, then that state is not updated.

The transaction quantities of tariff transactions are always published as the

total consumption of a specified number of individuals. Since the number of

individuals associated to a specific tariff transaction can differ between trans-

actions, we store the transaction quantities per individual and not in total, so

that the stored quantities are universal and can be compared to each other. For

the three listed transactions the following values would be stored:

• Transaction t1: 1,100
1,000 = 1.1

• Transaction t2: 1,500
20 = 75

• Transaction t3: 80
100 = 0.8

The way in which our data is stored is influenced by the setup of our pre-

diction process. To execute a prediction, an aspect to take into account is the

past energy usage for a specific hour. Figure B.1 shows that customer Village 1

always consumed significantly more during the period from 8:00 to 8:59 during

the pilot competition. If one would not consider the unusually high consumption

that is associated to this particular hour, but only the consumption of the most

recent timeslots, the predictions associated to customer Village 1 for timeslots

related to this hour will most likely always be too low. To perform predictions,

we thus would like to directly use the consumption data associated to a specific

hour.

When forming a prediction for a future timeslot that falls within a certain

hour, a reasonable approach is to first examine how high or low the energy usage

within the most recent past timeslots was, and then consider this information in

conjunction with information about the consumption for the future timeslot’s

hour. If the consumption in past timeslots is low and the consumption for a

specific hour is always high, then we do not want our prediction to be small as

well due to the information obtained from the past timeslots. Rather, we would

like to base our prediction for that hour to be based on the relative magnitude

of the consumption during the most recent timeslots. If the consumption was

relatively high during past timeslots, our prediction would be relatively higher,

and vice versa.
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Since we will take into account the hour of consumption when forming a

prediction, we also consider this aspect when storing data within states. Assume

that the set of k states is S = {s1, s2, ..., sk}. For each si ∈ S a set is included

that consists of 24 lists of data values {Li0, Li1, Li2, ..., Li23}. Each of these lists

contains the consumption values associated to one specific hour, and thus Lih =

∪j=dj=1n
i
j,h, where d is the current day’s index, nij,h is the consumption value

at hour h, day j for state si. Thus, consumption values are stored for each

hour of the day. When a tariff transaction is received, we know for which hour

the transaction quantity should be stored. If we then receive a transaction for

a certain hour, we store the transaction data in a list of values that are all

associated to that hour.

Because we would like to include the relative magnitude of a consumption

value compared to other consumption values that fall within the same hour, all

24 lists contained within a state are ordered from low to high. Each time a new

data value is stored for a certain hour, we maintain this order. By keeping track

of the order of each of the 24 groups, we can easily obtain information about

whether consumption for a specific timeslot was higher or lower than usual for

the hour that timeslot falls within. Figure 4.8 illustrates how the individual

transaction quantity from transaction t1 is stored within a state and how we

can retrieve information about the relative magnitude of that quantity.
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Figure 4.8: Storage process of a consumption value within state si.
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Figure 4.8 depicts the storage process of the consumption value of transaction

t1 within the state si. The transaction quantity per individual of transaction

t1 was 1.1 kWh and is the quantity that we store in the state. The second step

is to retrieve from si a list of values belonging to the hour of consumption of

transaction t1, which is hour h. The list Lih related to hour h and si contains

all consumption values of past timeslots within the state that are associated to

hour h. For our predictions we will also take into account the relative magnitude

of the consumption. In order to easily retrieve this magnitude, the lists of

consumption values associated to an hour are all ordered in ascending order.

Figure 4.8 shows that Lih contains the following values: {0.8, 0.9, 1, 1.2, 1.3}. In

comparison with the values within this list, the consumption of 1.1 kWh is the

third highest value, and thus should be placed fourth in the list. Because Lih

contains a total of six values, the relative position of the individual transaction

quantity of transaction t1 is 4
6 ≈ 0.67. These relative positions will play a large

role in forming our short-term imbalance predictions. Algorithm 1 describes the

process of storing transaction data from a specific timeslot to update states.

Algorithm 1 Updating states
Input: timeslot zc, hour related to timeslot zc: hzc , set of transactions associated to timeslot zc−1:
Tzc−1

Output: The storage of the most recent historical data
obtain empty set of to-be-updated states for timeslot zc: Su

for each transaction t ∈ Tzc−1
do

obtain consumption of t per individual: n
obtain set of features of t: Ft

obtain set of states that represent Ft or solely subsets of Ft: SFt
for each state sFt ∈ SFt do

compute average consumption for state sFt for timeslot zc
if sFt /∈ Su then

add sFt to Su

end if
perform Algorithm 4 with respectively n, zc, and hzc as input

end for
end for
for each state su ∈ Su do

obtain average consumption for state su for timeslot zc: n̄zc
obtain ordered list of values for hour hzc and state su: Lu

hzc
add n̄zc to Lu

hzc
obtain relative position of n̄ within Lu

hzc
: p

obtain list of relative positions per timeslot: P
add p to P

end for

4.3.3 Step 2 - Determine future timeslot

During the prediction process within one timeslot we perform short-term im-

balance forecasts for multiple future timeslots. One possible action to resolve



4.3. BUILDING THE STATE-BASED PREDICTION MODEL 45

predicted energy imbalances is to trade energy on the wholesale market. On this

wholesale market, one can buy and sell energy for up to 23 timeslots ahead. For

this reason, we perform predictions for up to 23 timeslots into the future. We

refer to the number of timeslots between the current timeslot and the timeslot

for which a prediction is performed as the ‘prediction gap’. Figure 4.9 displays

for which timeslots predictions are performed when the current timeslot is zc

and the set of prediction gaps is {g1, g2, ..., gn}.

zc

g1 

zc+g1

Timeslot → 

zc+g2

. . .

zc+gn

g2 

gn 

Figure 4.9: The timeslots for which predictions are performed given that the
current timeslot is zc and the set of prediction gaps is {g1, g2, ..., gn}.

Depending on the number of gaps we define, the number of timeslots for

which forecasts are done becomes larger and as a result the number of predictions

grows as well. For example, if the set of prediction gaps G is {1, 2, 3, 6, 12, 23}

and the current timeslot is z1, then we would perform predictions for timeslots

z2, z3, z4, z5, z13, and z24. The prediction gap we use throughout the remainder

of this chapter is simply referred to as g, while the future timeslot is notated as

zc+g, which takes place g timeslots after current timeslot zc.

4.3.4 Step 3 - Determine expected transactions

To form the energy imbalance forecast for the future timeslot zc+g, we must

know which customers are expected to consume and produce within the bro-

ker’s portfolio and also which tariffs they will use. Assume that the following

customers are expected to consume for our broker in timeslot zc+g.



46 CHAPTER 4. STATE-BASED PREDICTION FRAMEWORK

• 1000 individuals related to customer c1 using tariff f1

• 20 individuals related to customer c2 using tariff f1

• 100 individuals related to customer c1 using tariff f2

To form a prediction for timeslot zc+g, we compute individual predictions

for each of the above three expected transactions. The sum of these predictions

is the forecast for timeslot zc+g. In future references, we refer to the above three

expected transactions as e1, e2, and e3. To obtain the individual predictions

associated to each expected transaction, we must first know how to retrieve

states that are representative for a transaction and can then be used to form a

forecast.

4.3.5 Step 4 - Determine relevant past timeslots

Before we retrieve states to start performing our predictions, we first decide

which past timeslots are relevant for our forecast. One parameter setting in our

prediction model is the number of past timeslots that are taken into account to

form a prediction. We dub this parameter as m.

Figure 4.10 depicts a timeline containing current timeslot zc and other times-

lots which form the relevant timeslots for our prediction.

Zc-m Zc-2

2

Timeslot → 

Zc-1

. . .

Zc

1 

m 

Figure 4.10: A timeline representing the relevant past timeslots for a prediction
that occurs at timeslot zc when the last m timeslots are considered relevant.
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4.3.6 Step 5 - Retrieve state for prediction

For each of the three expected tariff transactions in Section 4.3.4 we need to

acquire one state. However, selecting a state based on a transaction is not simply

a process of picking the state that represents the features of that transaction.

The reason for this is that the state that represents those features may represent

a too specific combination of transaction features and as a result may not contain

the proper amount of data to form a prediction. For example, when a state si

is required for a prediction for hour h, but no consumption has taken place for

that hour in the past for state si, then we are unable to form a prediction using

the data contained in state si. To counter this issue, a good option is to look

for other similar states that do contain the data required for prediction. But

first we define when a state is deemed as having too few data. The only reason

is the following one:

• The hour of the timeslot for which the prediction is performed contains

less than η values.

The value of η is one that is free to choose by the user. The higher this

number, the more reliable predictions from a specific state will be, but at the

same time the chance that other states have to be used for predictions grows

as well. When other states are used for prediction, the forecast may also be

negatively influenced. The question is where to cross the line between only

using states that contain a decent amount of data and using other states that

contain enough data, but are not completely representative for the features of

the expected transactions.

When a state does not have enough data, a replacement state needs to be

used for prediction instead. We now describe in detail the steps and components

that are related to the process of finding this replacement state. The most

important aspect in finding a similar state is to discover which features of an

expected transaction are relevant for our prediction and should be considered in

the process of finding a new state. In total we take three features into account

that distinguish states: the tariff, the part of the week, and the customer.

However, it is possible that a customer does not have different consumption

between weekdays and weekends. In that case it would be disadvantageous to
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split the consumption data based on the part of the week and use states that

represent both that customer and a part of the week. If dividing data based

on that feature would not be done, we would be able to use relevant data from

a bigger pool of data. Therefore, at the start of a Power TAC simulation, we

determine for each customer whether we should use states that represent a part

of the week.

At the start of a Power TAC competition, we receive historical data for

each customer that represents the consumption for the last 14 days prior to the

start of the competition. Based on this historical data of a customer, we can

determine if the part of the week plays a significant role in the consumption

behaviour of that customer. Whether the part of the week has a significant

influence on the energy usage is determined by performing a matched pair sta-

tistical t test for each customer. This test is used frequently in medical research,

i.e. to examine the effects of medicines [3]. In a similar way, we can investigate

the impact of the part of the week to the consumption of customers.

First, we retrieve two states that both represent different customer data: one

state that contains all past consumption during weekdays, and one that contains

all weekend consumption. In the matched pair t test, we compare 24 pairs in

which each pair consists of the average consumption on a specific hour during

weekdays, and the average consumption on the same hour during weekends.

The values for these pairs are retrieved from the two states. When according

to the test the values for a customer differ significantly at a 95% confidence

level, then we still use the part of the week as one of the data features for that

customer. If there is no significant difference, we do not split the data based

on the part of the week. The algorithm for determining whether there is a

significant difference is displayed in Algorithm 2. Note that this algorithm can

be used to determine significant difference between any pair of states.

From the three features that we use, splitting up data based on the tariff is

the most likely reason why a state could have a lack of data. Since at the start

of a simulation we receive 14-day historical data for each customer including

consumption for both weekdays (10 days) and weekends (4 days), we will have

enough data based on the other two features unless the η parameter is set

above four (in this case, states representing weekends would not contain enough
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Algorithm 2 Determining significant difference between states
Input: a state sa, another state sb
Output: whether sa and sb are significantly different at a 95% conf. level

obtain lists from sa, each associated to a different hour: La
0 , L

a
1 , ..., L

a
23

obtain lists from sb, each associated to a different hour: Lb
0, L

b
1, ..., L

b
23

totaldif = 0
sumSqrdDif = 0
for h = 0→ 23 do

obtain average consumption associated to La
h: L̄a

h

obtain average consumption associated to Lb
h: L̄b

h

dif ← L̄a
h - L̄b

h
totaldif ← totaldif + dif
sumSqrdDif ← sumSqrdDif + dif2

end for
sampledif ← totaldif

24

totalDifSqrd← totaldif2

standarderror ←

√
sumSqrdDif− totalDifSqrd

24
23 /

√
24

t← sampledif
standarderror

if t < -2.06866 or t > 2.06866 then
sa and sb are significantly different

else
sa and sb are not significantly different

end if

data, since only four consumption quantities per hour would be stored). To

find a state that is similar to a state that does not contain data required for

prediction, we therefore first examine if there is another state that represents

the same customer and part of the week, but a different yet similar tariff.

The tariffs in Power TAC are composed of rates. These rates are the main

distinction factor between tariffs. Each rate within a tariff defines the price per

kWh for a certain number of hours. For example, there may be a rate with

a price of 0.2 that is used from hour 23 to hour 6 on each day. Each tariff is

composed of rates in such a way that all hours have a rate associated with them.

For the Power TAC version from July 2011, these rates are fixed, and are not

subject to variable pricing. To measure the similarity between two tariffs, we

simply compare the hour rates between the tariffs.

Consider tariff f1 and tariff f2 that respectively have the following rates

associated to them: {rf10 ,rf11 , ...,rf123} and {rf20 ,rf21 , ...,rf223}, where rfh is the rate

of tariff f associated to hour h. Assume that we require a prediction for timeslot

zc+g and that we take into account the consumption of the m most recently

occurred timeslots. The required state associated to tariff f1 does not contain

the required data to form our prediction. How to find out if tariff f2 is similar

enough to tariff f1 to use it for our forecast instead of tariff f1? We simply

directly compare the rates of both tariffs that are relevant for our prediction.
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For our forecast we use the past m timeslots to form a prediction and we

are in current timeslot zc. This means that the collection of past timeslots we

consider for our forecast is ∪i=mi=1 zc−i. To compute the dissimilarity between

tariffs we now use the rates that are associated to the timeslots within this

collection and the future timeslot zc+g for which a prediction is made. The

degree to which a timeslot z has an impact on our forecast is defined as wz. The

higher the weight associated to a timeslot, the more important that timeslot

is for our forecast and the more important the tariff rate associated to that

same timeslot, and thus we use the same weights in measuring the dissimilarity

between two tariffs as we do for forming a forecast. When past tariff rates are

similar, but the tariff rate for the future timeslot of prediction is not, then it is

still not preferable to use the other tariff for prediction, as the rate associated

with the future timeslot is simply not representative enough. Therefore, we also

compute the dissimilarity related to the future timeslot and assign a relatively

large weight to this future timeslot. We apply a weight of 0.5 for the weighted

dissimilarity of past timeslot rates, and a weight of 0.5 for the future timeslot’s

rate. Formula 4.8 displays how the dissimilarity is measured:

δ
Z,zc+g

f1,f2
= 0.5 · difzc+g

f1,f2
+ 0.5 ·

∑
zp∈Z

wzp · dif
zp
f1,f2

, where (4.8)

difzf1,f2 =
|rf1hz
− rf2hz

|
|rf1hz
|

(4.9)

∑
z∈Z

wz = 1 (4.10)

where Z is the set of past timeslots relevant for the prediction, zc+g is the

future timeslot for which the prediction is made, wz is the weight of the rate for

timeslot z, and rfh is the rate of tariff f for hour h. The obtained dissimilarity

is a percentual value.

When the dissimilarity between two tariffs is acquired, we can determine

whether one tariff is similar enough to be used instead of the other to retrieve

a state. If δ
Z,zc+g

f1,f2
is below a specific threshold, tariff f2 may be used as a

replacement for tariff f1. When the retrieved dissimilarity is larger, then f2 is

deemed to different, and it is not used. The same customer might have used

more than just one other tariff. In this case dissimilarity values need to be
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computed for multiple tariffs, and the selected tariff is the one with the smallest

dissimilarity that is also below the specified parameter value. If for this tariff the

associated state also does not contain the data required for prediction, then the

tariff with the second smallest dissimilarity lower than the threshold is picked,

etc. If there are no states that have a dissimilarity value below the specified

threshold and that contain enough data, then no tariff is used.

If no similar states with enough data can be retrieved, a good option is to

retrieve data from a more global state that represents less amount of features.

The more global a state is and the less aspects it takes into account, the more

likely that state is to contain data required for doing forecasts. For example,

there may be a state sx that contains all the consumption data of customer c,

for which the part of the week is ‘week’ and the tariff is f . For a more global

state sy we could omit one of the three characteristics, such as the tariff. This

state sy would then contain consumption during weekdays of customer c for all

tariffs that it has used, and not only data associated to tariff f , which means

that the amount of data for this state sy is at least as large as the amount of

data for the more specific state sx.

To use more global states when a specific state does not have the proper

data available, we need to define parent-child relationships between states to

be able to navigate from one state to another. For this reason we use a tree

that contains the used states and their parent states. Since there are only three

relevant features that are taken into account, and since the part of the week

may not be included for certain customers, the state tree remains small.

Figure 4.11 shows the general structure of the state tree to demonstrate how

one can use data of more global states.

At the bottom of the tree presented in Figure 4.11 are the most specific

states, states that take into account the largest amount of data features. When-

ever we require a prediction, we start with one of these bottom-layer states. If

one observes that there is not enough data available to form a prediction and

there is no similar state to use, one moves a layer upwards to a more global state.

This process is repeated until a state contains the data required for forecasting,

which in the worst case is a state that only represents a customer.



52 CHAPTER 4. STATE-BASED PREDICTION FRAMEWORK

Layer 3

Tariff included

Layer 2

Part of week
included if
significant

Layer 1

Customer
profile included

More global state

Customer = c1  
Part of week = Week

Tariff = f1

Customer = c1  
Part of week = Week

Customer = c1 

Customer = c2 
Tariff = f1

Customer = c2  

Customer = c1 
Part of week = Weekend

Customer = c1 
Part of week = Weekend

Tariff = f1

Figure 4.11: Moving from specific states to more global states.

In Figure 4.11 the states for two customers are displayed. For one of these

two customers the part of the week does not have a significant impact on the

consumption or production. As a consequence, the parent state of the state

from layer 3 is a state from layer 1, and layer 2 is skipped. All states, except

the states from layer 1, have one parent to maintain simplicity and allow easy

navigation. Algorithm 3 shows in detail how a state associated to a specific

tariff transaction is retrieved.

Assume that from the three expected transactions listed in Section 4.3.4 tariff

f1 has been frequently used before and states associated to this tariff contain

enough data required for prediction, while tariff f2 is used for the first time.

Tariff f2 has a dissimilarity with f1 that is below the dissimilarity threshold and

is the least dissimilar tariff of f1. Also presume that customer c1 has significantly

varying consumption between weekdays and weekends, while customer c2 does

not. Which states would we retrieve under these circumstances for the three

transactions?

• For e1: the state that represents customer c1, part of the week ‘week’,

and tariff f1. This state represent the same features as e1 and contains

enough data, so it can be used for prediction.
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Algorithm 3 Retrieving a state for prediction
Input: timeslot zc, transaction t, prediction gap g, min. no. of required observations η
Output: The state sused associated to transaction t

obtain tariff ft, customer custt, and part of week wpt from t
sweek ← state that represents ft, custt, and wpweek

sweekend ← state that represents ft, custt, and wpweekend

if sweek and sweekend are significantly different according to Algorithm 2 then
s1 ← state that represents ft, custt, and wpt

else
s1 ← state that represents ft and custt

end if
zc+g ← timeslot to predict for
hzc+g

← hour related to timeslot zc+g

if |L1
hzc+g

| ∈ s1 ≥ η then

sused ← s1
else
fsim ← tariff that is most similar to ft
so ← other state that represents fsim and same other features as s1
if |Lo

hzc+g
| ∈ so ≥ η then

sused ← so
else
sp ← parent state of s1
repeat

if |Lo
hzc+g

| ∈ sp ≥ η then

sused ← sp
else
sp ← parent state of sp

end if
until |Lo

hzc+g
| ∈ so ≥ η

end if
end if

• For e2: the state that represents customer c2, and tariff f1. In our

example, customer c2 does not have varying behaviour between weekdays

and weekends, and thus the part of the week is not taken into account.

• For e3: the state that represents customer c1, part of the week ‘week’, and

tariff f1. Since tariff f2 is used for the first time, states that represent this

tariff do not contain enough data required for prediction. In our example

tariff f1 has a dissimilarity with f2 that is lower than the dissimilarity

threshold, and is used instead.

4.3.7 Step 6 - Forming an individual prediction

After step 5, the question is how to compute a prediction when we have ac-

quired a state. We now describe in detail the process of forming an individual

prediction. Or in other words, the procedure to make a prediction associated to

one expected transaction for only one future timeslot. The expected transaction

we perform a prediction for is transaction e1. For this particular prediction we

employ the state se1 we acquired by following the steps from Section 4.3.6, and

use the prediction gap g.
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The first step we take when forming an individual prediction within one state

is to determine the relative magnitude of the consumption we try to predict. For

convenience reasons, we define this relative magnitude as the ‘timeslot trend’.

This timeslot trend is based on the relative magnitude of the consumption of the

most recent past timeslots. To determine the timeslot trend, we will compute a

value between 0 and 1, where the magnitude is larger as the outcome is closer

to 1. The higher the timeslot trend, the higher the prediction will be, and vice

versa.

The values from the past timeslots are used to form a prediction for timeslot

zc+g. When the consumption for the previous timeslot is higher, one would

expect the consumption for the next timeslot also to be larger. However, the

variable g can take multiple values, ranging from 1 to 23. When a prediction is

formed for a timeslot that occurs 23 hours ahead, the relationship between the

most recent past consumption and the future consumption is likely to not be

so clear. Since the predictions are not only performed for the next timeslot, we

are required to design a prediction method that is capable of forecasting energy

imbalance further than one timeslot into the future. Thus, to setup a prediction

we would like to consider the relationship of past data to future data.

We require the relationships between the set of past timeslots {zc−1, zc−2,

..., zc−m} and future timeslot zc+g. The relationship between timeslots is deter-

mined by the hours to which they belong, as well as the gap between the current

timeslot and the timeslot for which a prediction is made. In each relationship

the input values are the values associated to the earlier timeslot, and the output

values are linked to the later timeslots. We define hzt as the hour which timeslot

zt belongs to. When the input value belongs to timeslot zx and the output value

to timeslot zy and the prediction is performed g timeslots in advance, we use

the data set that contains all input values and associated output values of hzx

and hzy that had a gap of g timeslots in between them. For convenience, I will

define such a mapping as φ : g, hzx → hzy .

The following functions are required to compute the timeslot trend and de-

pend on the user-selected m-value:

• φ : g, hzc−1
→ hzc+g

• φ : g, hzc−2
→ hzc+g
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• ...

• φ : g, hzc−m
→ hzc+g

Now the question is how to determine the relationships between the input

and output values. We use a simple linear regression model, which computes a

linear function based on a list of input and output values. The function between

a list containing the input values (x1, x2, ..., xn) and a list containing the linked

output values (y1, y2, ..., yn), is as follows:

f(x) = β · x+ α, where (4.11)

β =

∑n
i=1((xi − µx) · (yi − µy))∑n

i=1(xi − µx)2
, and (4.12)

α = µy − β · µx (4.13)

where µx is the average of the input values, and µy is the average of the output

values. The function that is acquired by Formula 4.11 minimizes the sum of

residuals between the data points and the line associated to the obtained linear

function. Each time we receive new transaction data we update linear functions

by recomputing α and β. Algorithm 4 describes in detail this process.

Algorithm 4 Updating linear functions
Input: timeslot zt, the hour hzt related to zt
Output: updates linear functions by adjusting their α and β values

obtain set of prediction gaps: G
obtain number of past timeslots taken into account for prediction: m
obtain relative magnitude related to timeslot zt: pzt
for each prediction gap g ∈ G do

for i = 1→ m do
zpast ← zt−i−g

if consumed during timeslot zpast then
obtain relative magnitude related to timeslot zpast: pzpast

obtain hour related to timeslot zpast: hzpast

obtain list of relative magnitudes associated to hzpast : X

obtain list of relative magnitudes associated to hzt : Y
add pzpast to X

add pzt to Y
xxbar = 0
xybar = 0
for j = 1→ size of X do

obtain j-th value of X: x
obtain j-th value of Y : y
xxbar ← xxbar + (x− X̄)2

xybar ← xybar + (x− X̄)(y − Ȳ )
end for
β(g, hzpast , hzt )← xybar

xxbar

α(g, hzpast , hzt )← ybar − β × xbar
end if

end for
end for
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Although the simple linear regression method is not able to capture complex

non-linear relationships, it is still a good method to apply in order to determine

the relationships between consumption during different hours. Let us explain

why by describing the possible relationships between the consumption of two

hours. The relationship between two hours h1 and h2 can roughly have the

following characteristics:

• If consumption for h1 is relatively small/large, then the consumption for

h2 is also relatively small/large.

• If consumption for h1 is relatively small/large, then the consumption for

h2 is relatively large/small.

• If consumption for h1 is relatively small/large, then the consumption for

h2 is not of a certain magnitude and can vary in size. In this case there is

no clear relationship.

For the first two relationships, the relationship is linear and can be captured

by a simple linear regression model. For the third relationship, there is no clear

relationship. In this case, it is hard to predict the consumption in a future

hour based on the consumption in a past hour. Then a smart thing to do

would be to simply take the average or median consumption associated to the

future hour, since based on past data no accurate conclusions can be drawn

regarding the relatively magnitude of the consumption during the future hour.

Within the linear regression model, for data sets with no or a low correlation

the resulting linear function will typically represent a flat or close to flat line

of which the output values are close to the mean output value regardless of the

input value. Thus, the simple linear regression model is a viable method to use

to construct relationship functions of the consumption between varying hours.

Moreover, due to the low complexity of linear regression models, the method

is less computation-heavy than methods that compute non-linear relationships.

This is especially important within the framework of a Power TAC broker agent,

because the actions performed by a broker are required to be performed in less

than five seconds per timeslot [19].

By using the simple linear regression approach, we can transform past data
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and use the transformed values to obtain the timeslot trend. Figure 4.12 illus-

trates an example of a process for obtaining a timeslot trend.

Position
timeslot 

zc-3

0.2

Position
timeslot 

zc-2

0.35

Position
timeslot 

zc-1

0.15

Y = 0.6x + 0.28

Y = 0.4x + 0.2

Y = 0.8x + 0.1

Obtain 
linear function 

(g, hc-3, hc+a)
Transform position 

through function

Transform position 
through function

Transform position 
through function

0.4

0.34

0.22

Compute timeslot 
trend

0.29

x1/6

x2/6

x3/6

Obtain 
linear function 

(g, hc-2, hc+a)

Obtain 
linear function 

(g, hc-1, hc+a)

Current timeslot: zc Future timeslot: zc+g # Past timeslots used: 3

Figure 4.12: The process of computing the timeslot trend given a number of
input values and linear functions.

In Figure 4.12 a total of three timeslots are taken into account for deter-

mining the timeslot trend. These timeslots are defined as timeslot zc−1, zc−2,

and zc−3. For each of these timeslots, the relative position of the consumption

associated to that timeslot is depicted. Each relative position is obtained in the

same way as displayed in Figure 4.8. For example, for timeslot zc−1 the con-

sumption for that timeslot is compared to past consumption on hour hzc−1
to

acquire the relative position of the consumption for timeslot zc−1. The positions

are as follows:

• Relative position consumption of timeslot zc−3 in distribution hzc−3
: 0.2

• Relative position consumption of timeslot zc−2 in distribution hzc−2
: 0.35

• Relative position consumption of timeslot zc−1 in distribution hzc−1
: 0.15

The prediction in Figure 4.12 is performed for timeslot zc+g, which occurs

g timeslots after current timeslot zc. The next step is to transform each of

the three relative positions associated to timeslots zc−1 to zc−3 through the use

of a linear function. The three relevant linear functions are depicted in the

figure. We now use each relative position as an input for their associated linear

function to obtain a transformed relative position. The resulting transformed

relative positions are:

• 0.6 · 0.2 + 0.28 = 0.4
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• 0.4 · 0.35 + 0.2 = 0.34

• 0.8 · 0.15 + 0.1 = 0.22

The transformed relative positions already give us an indication of the ex-

pected magnitude for the consumption in future timeslot zc+g. The only step

that is left for determining the timeslot trend is to calculate a single relative

position from the three obtained transformed relative positions. To achieve this

a weighted averaging approach is applied. This approach gives the transformed

position associated to the most recent past timeslot the highest impact on the

timeslot trend. The formula for determining the timeslot trend is:

timeslot trend =

m∑
i=1

i

0.5(m2 +m)
· pi (4.14)

where m is the number of past relative positions taken into account, and pi is

past relative position i. The past positions are ordered from least recent to most

recent. Applying Formula 4.14 to the example from Figure 4.12 results in:

1

6
· 0.4 +

2

6
· 0.34 +

3

6
· 0.22 = 0.29

The acquired timeslot trend of 0.29 tells us that the expected consumption

for timeslot zc+g is relatively low. With the obtained timeslot trend, we can

form a prediction for future timeslot zc+g, which belongs to hour hzc+g
. We

retrieve the consumption values that are associated to this hour. Based on

this list of values and the computed timeslot trend we determine our prediction.

Before we show what the resulting prediction will be, we describe how we obtain

a value from a list using a certain timeslot trend.

Assume that the total number of observations for hour hzc+g
is defined as

n. If we then multiply the predicted relative position with n, we obtain an

expected position. If this value is an integer, we can use it directly as an index

to retrieve a value from the list. For example, when the obtained expected

position is exactly 40, we select the 40th value in the list we examine. However,

the obtained expected position is mostly not an integer, but a real value between

two integers. When this is the case, we cannot directly retrieve a value from a

list. Instead, we base our prediction on two values: the one associated to the
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highest index number not larger than (the floor value) and the one associated

to the lowest index number not smaller than the expected position (the ceiling

value). We compute a prediction based on the distance between the expected

position and the floor and ceiling value. The closer the expected position is

to the floor value, the more the obtained prediction is influenced by the floor

value, and vice versa. The formula for acquiring a prediction given an expected

position is as follows:

y(r) = (r − floor(r)) · vceil(r) + (ceil(r)− r) · vfloor(r) (4.15)

where r is a real number, vi is the consumption value associated to integer i,

floor(r) is the largest integer not higher than r, and ceil(r) is the smallest

integer not lower than r.

Assume the hour associated to timeslot zc+g contains the following values:

{0.7, 0.8, 0.85, 0.9, 0.95}. The timeslot trend that we computed is 0.29. That

means that the expected position is:

expected position for timeslot zc+g = 0.29 · 5 = 1.45

Based on the acquired expected position for timeslot zc+g, we can form our

prediction. We first obtain the values associated to index 1 (the largest integer

not greater than 1.45) and index 2 (the smallest integer not less than 1.45).

The values associated to these indices from the list of hour hzc+g are 0.7 and

0.8. The next step is to apply Formula 4.15 to the retrieved values to obtain a

prediction.

prediction timeslot zc+g = (1.45− 1) · 0.8 + (2− 1.45) · 0.7 = 0.745

However, since we stored all consumption values per individual customer,

we still need to adjust this number for the customer count that is associated

to expected transaction e1. The customer count for this transaction was 1,000.

Thus, we multiply the obtained consumption with this customer count. This

will result in the following prediction related to transaction e1 for future timeslot
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zc+g:

prediction timeslot zc+g = 0.745 · 1000 = 745 kWh.

The prediction for timeslot zc+g for transaction e1 thus is equal to 745 kWh.

In Algorithm 5 the same process of retrieving a prediction from a state is de-

scribed.

Algorithm 5 Prediction retrieval from a state
Input: the state si that is used for prediction, the future timeslot zc+g for which the prediction is

performed, the hour hzc+g
related to zc+g , the gap g between zc+g and the current timeslot in

number of timeslots
Output: predicted consumption related to timeslot zc+g in kWh
prop = 0
obtain number of past timeslots taken into account for prediction: m
for i = 1→ m do
zpast ← zc−i

obtain hour related to timeslot zpast: hzpast

obtain proportion related to timeslot zpast: pzpast

obtain linear function related to g, hzpast , and hzc+g
: f(x)

obtain transformed proportion using pzpast on f(x): y

obtain weight of proportion y: wy

prop← prop+ (wy × y)
end for
obtain list of values associated to hzc+g

: Li
hzc+g

retrieve consumption value in kWh from Li
hzc+g

using prop

4.3.8 Step 7 - Forming timeslot predictions

The prediction we obtained in step 6 is only associated with a single expected

transaction. The process is repeated for every transaction in the set of expected

transactions for a future timeslot, and for each value in the set of prediction

gaps. In the case of the three expected transactions presented in Section 4.3.4

and a set of prediction gaps containing six values, the total number of required

individual predictions would be 18, since three predictions are formed for six

future timeslots. Assume that we obtained the following individual predictions

for timeslot zc+g.

• Prediction for timeslot zc+g associated to transaction e1: 745 kWh

• Prediction for timeslot zc+g associated to transaction e2: 1,200 kWh

• Prediction for timeslot zc+g associated to transaction e3: 68 kWh
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Our prediction for the expected energy imbalance for timeslot zc+g would

simply be the sum of acquired individual predictions, which in this case is:

predicted energy imbalance for timeslot zc+g = 745 + 1, 200 + 68 = 2, 013

Thus, the expected energy imbalance for timeslot zc+g is equal to 2,013 kWh.

In Algorithm 6 the general process of forming predictions is summarized.

Algorithm 6 Forming predictions

Input: timeslot zc, hour hzc related to timeslot zc, set of prediction gaps G
Output: Energy consumption predictions in kWh for a set of timeslots, which de-

pends on zc and G
for each g ∈ G do

zc+g ← timeslot to predict for
T ← set of expected transactions for zc+g

for each transaction t ∈ T do
state st ← Algorithm 3 with zc+g, t, and g as input
prediction y ← Algorithm 5 with st, zc+g, hzc+g , and g as input
Yzc+g ← total predicted consumption for timeslot zc+g

Yzc+g ← Yzc+g + y
end for

end for

The aim of the broker agent now is to perform such actions that the expected

imbalance for a future timeslot is resolved. Actions that can be taken by the

agent to achieve this goal is to manage tariffs in such a way that the imbalance

becomes smaller, for example by attracting producers. A second possibility is to

buy or sell expected excess or surplus energy on the wholesale market. However,

for this thesis we focus purely on the construction of a method that is capable

of performing the required forecasts and not on the actions that a broker agent

can take to resolve forecasted imbalances.

The acquired prediction that represents the expected energy imbalance in

kWh for a timeslot in the future may provide you with information on what

imbalance to anticipate, but it does not tell you anything about the certainty

of the prediction.

An addition to the short-term energy consumption prediction model is to

compute a prediction interval of expected consumption. Instead of providing the

user solely with one number that represents the expected future consumption,

we can also compute a lower limit and an upper limit. The lower and upper limit

form a prediction interval. If this interval is large, the prediction is logically less
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certain than if the interval would be small.

When retrieving individual predictions, we compute a timeslot trend and

then extract a consumption value from a list of past values that is associated

to the hour of the timeslot the prediction is performed for. We can use these

same hour lists to compute a lower limit and an upper limit per individual

prediction as well. Summing up the lower limit of all individual predictions for

a specific timeslot will then yield us the lower limit of the total prediction for

that timeslot. The same mechanism holds for measuring the upper limit of the

total prediction.

Measuring the lower and upper limit of an individual prediction can be

performed in a rather straightforward way. Assume that X is the list of values

that is related to the hour of the timeslot for which we perform a prediction,

and that y is the predicted individual consumption. From X we can compute

the mean and the standard deviation. Using simple t-test statistics, we can then

measure a lower limit and upper limit for this single prediction. Depending on

the confidence level of the prediction interval, we obtain a standard score z. The

lower limit and upper limit can then be computed as follows:

lower limit lower(y, σsh, z) = y − σsh · z

upper limit upper(y, σsh, z) = y + σsh · z

where y is the predicted consumption, σsh is the standard deviation to the con-

sumption of hour h within state s, and z is the applied standard score.

All in all the short-term prediction method we use contains quite a number of

steps. During one timeslot there are two main actions that are performed. First,

the most recent transaction data is stored and states are updated. Then, for a

set of future timeslots expected transactions are used to form predictions. Each

individual prediction is formed by taking into account the relative magnitude of

the consumption during the most recent past hours, and through the use of a

simple linear regression model and a weighted method, these relative magnitudes

are utilised to determine the expected relative magnitude of future consumption

and with it the expected consumption.



Chapter 5

Evaluation

In this chapter the state-based prediction method presented in 4.3 is evaluated.

First, in Section 5.1, a regression tree method is described. This method is eval-

uated for the purpose of comparison with the state-based prediction method.

In Section 5.2, we define a number of evaluation scenarios that allow us to eval-

uate the two prediction methods under varying circumstances. Next, using the

defined scenarios we analyse the state-based prediction method under different

parameter setups to obtain the optimal setup for this method in Section 5.3.

Last, in Section 5.4, we evaluate and compare the prediction performance of

the regression tree method with the state-based prediction method using the

same evaluation scenarios. Furthermore, we will examine the time performance

of both prediction methods.

5.1 Constructing a regression tree

To evaluate its performance the state-based prediction method discussed in

Section 4.3 will be compared to the CART regression tree approach [6]. The re-

gression tree method shares similarities with the state-based prediction method.

For both methods data is divided into smaller subsets by performing splits based

on data characteristics. For this reason, a regression tree prediction approach

is an interesting method to compare the state-based prediction method with.

A regression tree is a tree structure that can be used for prediction. The

tree is composed of multiple nodes. Each node is associated to a set of data and

63
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may contain a prediction value. The top node, the root node, is associated with

all available data. This data can be split based on a number of characteristics

of the used data set. For example, a data set containing the characteristics of

different cars can be divided into a subset with only cars that are red, and a

subset with cars that have a different colour. The root node will then have

two children nodes, one containing the red car data, and the other containing

the remaining car data. These subsets can then be divided further into subsets

by splitting them based on another characteristic (e.g. car brand). Eventually,

once all splits are performed, a tree with leaf nodes, nodes that do not have child

nodes, will be created. These leaf nodes contain prediction values that one can

use for forecasting. When the outcome variable is categorical, the prediction is

equal to the most occurring class in the data set of the leaf node. When the

outcome variable is numerical, the prediction value is determined by taking the

average value of the outcome variable for all data points in the data set of the

leaf node.

The question now is how to build a regression tree from the data set dis-

cussed in Section 4.2. To construct a regression tree, we use data characteristics

similar to the ones that are used for the state-based prediction method. Two

features are added in comparison to the ones used for the state-based method:

customer type and power type. Due to the more static setup of the state-based

method, these two features were redundant in the state-based model, but for

the regression tree approach they do provide value, since the order of splits

is dynamic in the regression tree model. The data characteristics used in the

regression tree approach are as follows:

• Customer

• Customer type

• Hour

• Part of the week

• Power type

• Tariff
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Most of the used data characteristics are categorical variables. The outcome

variable is the predicted energy consumption, which is numerical. The to-be-

constructed tree will be a binary regression tree. This means that each node,

except for the leaf nodes, will have two children, and that data sets will always be

split into two subsets. Since most of the decision variables are categorical, there

are many possible splits. For example, assume that there are four customers:

customer ca, cb, cc, and cd. The possible splits when using customers as the

split variable would then be: {ca} and {cb, cc, cd}; {cb} and {ca, cc, cd}; {cc}

and {ca, cb, cd}; {cd} and {ca, cb, cc}; {ca, cb} and {cc, cd}; {ca, cc} and {cb, cd};

{ca, cd} and {cb, cc}. Since customers are not the only decision variable, there

are many splits to be attempted.

The only numerical variable is the hour. Although this variable can also be

treated as a categorical one, we have decided to use it as a numerical variable to

save computation time. There are 24 different hours and the number of possible

subsets with 24 values becomes considerably large. Determining possible splits

for hours is done based on threshold values. Transactions related to an hour

smaller than or equal to the threshold value are stored in one subset, while the

remaining transactions are stored in the other subset.

An important part of regression tree construction is to decide how to split

data into two subsets. Since the predicted energy consumption is a numerical

value, we can evaluate all possible splits by examining the outcome variable

values in the two created data subsets resulting from the split. A term commonly

used within tree construction is ‘node impurity’. The node impurity represents

the dispersion of the values associated to a node. If the variance between the

values is larger, the impurity will also be bigger. The nodes that we use contain

numerical values, and therefore we can simply take the sum of squared deviations

to measure the impurity of a node. Thus, the impurity is computed as follows:

impn =

m∑
i=1

((xi − an)2) (5.1)

where an is the average of all m values associated to node n, and xi is the i-th

value within the list of m values.

Now that we know how to measure the impurity of one node, it is only a
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small step to determine the impurity of a split. To compute the impurity of a

split, we measure the impurity of the two child nodes that result from the split,

and then take a weighted average of the two obtained impurity values. Equation

5.2 shows how the impurity of a split is computed:

impsplit(s) =
∑
n∈N

impn ·mn

ms
(5.2)

where s is the node that is split, N is the set of nodes that result from the

splitting of s, impx is the impurity of node x, and mx is the number of values

associated to node x.

We can elaborate on Formula 5.2 with a simple example. When a split results

in one child node containing 10 data points and an impurity of 50, and another

child node containing 15 data points and an impurity of 80, the impurity of the

split is as follows:

50 · 10 + 85 · 15

10 + 15
= 68

When building a tree, there may be a large number of possible splits. For

each of these possible splits we compute the impurity. The split associated to

the lowest impurity is then selected, so that the data is split into subsets with

the lowest dispersion across data observations. Splits are attempted until the

leaf nodes cannot be divided further into new leaf nodes containing smaller data

sets.

Usually, when a tree is constructed to its maximum size, the tree is sensitive

for data overfitting. This means that the tree works very well for the data set

it is created with (a fully built tree has a prediction accuracy of 100% on the

training data), but not so well for new data. For this reason, a good decision is

to ‘prune’ the tree to smaller sizes. By doing this, the tree is able to perform

better on new data as it does not take into account all the details that might

be specific for the data set the tree is constructed with.

How do we exactly approach building and pruning the regression tree? We

keep track of all tariff transactions of customers that have happened in the past.

All these transactions are stored in a data set. Each timeslot we may receive new

customer energy transactions and add this new data to the data set. This full
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data set is then divided into a training set and a validation set. For the training

set we randomly select a total of approximately 60% of the transactions in the

full set. The remaining 40% of the data comprises the validation set. With

the training data we then construct a full regression tree in the way described

before. The first regression tree will be constructed at the game start by using

60% of the 14-day historical consumption data that is provided to brokers by

the Power TAC server at the beginning of a game.

The next step is to start transforming one direct parent node of leaf nodes

into a leave, i.e. remove two leaf nodes so that their shared parent becomes

a leaf node. One decision node which is a parent of leaf nodes thus needs to

become a leaf node itself. Consider a tree T with x decision nodes. Thus, a sub

tree of T is a tree with x− 1 decision nodes. Assume that the set of all possible

sub trees of T with x−1 decision nodes is called S. Each tree from S has a worse

prediction performance on the training set than T . From S, you therefore want

to select that tree that has smallest reduction of prediction accuracy compared

to T . The leaf nodes that are removed from T are the ones of which the removal

results in the sub tree linked to the smallest prediction error increase for the

training set. Basically, we remove the leaf nodes that add the least amount of

prediction accuracy to the regression tree.

We prune to smaller sub trees until eventually the tree only consists of the

root node. All the pruned sub trees are then evaluated using the validation set.

The regression tree that is selected is the one that has the lowest prediction

error on the validation set. With this selected tree, we then predict the trans-

actions for the upcoming 23 timeslots. Since building and pruning regression

trees in each timeslot is computationally intensive, new regression trees are not

constructed every timeslot. Instead, we only build a new regression tree under

the following two circumstances:

• No new tree has been built during the previous six timeslots.

• A new tariff is used in a past transaction or, when perfect information is

used regarding tariff usage, is expected to be used in a future transaction.

The regression tree approach and state-based approach are much alike. For

both methods, first the relevant data subset for a prediction needs to be acquired
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(by finding the right state, or by getting the proper leaf node), after which

the obtained data is used to form a prediction. However, there are two main

differences between the methods.

First, for the state-based prediction method, the structure of the state tree

in terms of the order of the splits is defined in advance, while for the regression

tree approach the tree is fully created dynamically dependent on the data input.

Because of this, the state-based method is likely to generate predictions faster

than the regression tree approach and therefore is more suited for use within the

Power TAC game, in which a time constraint of five seconds for each timeslot

is present [19].

Secondly, when the relevant data subset is acquired, it is used in a different

way to perform a prediction. In the state-based approach, we take into account

the distributions for different hours and consider the relation of the most recent

data compared to the data distributions. For the regression tree approach,

simply the average of the outcome variables in the acquired data subset is taken.

Thus, within the regression tree approach the trend of data is not directly taken

into account. Due to their similarities yet also differences, it is interesting to

investigate how the two prediction methods fare against each other in terms of

prediction performance and time performance.

5.2 Evaluation setup

Before evaluation of both the state-based prediction method described in Section

4.3 and the regression tree approach from Section 5.1 we first construct data by

using the data generation model discussed in Section 4.2. We build data for a

number of customers and define multiple tariffs that are used by these customers.

Based on the set of customers and tariffs we define multiple scenarios. Each

scenario represents a competition of 336 timeslots in which certain customers

participate and are attracted by a broker in varying ways. The customers that

are part of our scenarios, are presented in Table 5.1.

The consumption for the last three customers listed in Table 5.1 is generated

by the model described in Section 4.2. The consumption of Village 1 and Village

2 is extracted from a Power TAC default competition. For the self-generated
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Table 5.1: The characteristics of the customers that are used in our data set.
Consuming /

Name Type producing Population
Village 1 Household Consuming 8
Village 2 Household Consuming 8
HouseholdConsumer Household Consuming 10,000
OfficeConsumer Office Consuming 100
FactoryProducer Factory Producing 50

customers we have used the following random factors and base values to generate

their consumption values:

Table 5.2: The base values and the random factors of the self-generated cus-
tomers.

Customer Base value Random factor
HouseholdConsumer 10,000 8
OfficeConsumer 10,000 15
FactoryProducer 14,000 38

The tariffs that are used by a customer are determined by using tariff setups.

A tariff setup represents the way of tariff usage during a simulated competition.

For example, one setup might be that a customer uses one tariff during a com-

plete competition. Each customer that takes part in a scenario has a tariff setup

assigned to it. Before we present the tariff setups that we use, we introduce the

different tariffs:

• Tariff1: containing the rates a rate of 0.15 for night hours and a rate of

0.18 for day hours.

• Tariff2: containing the rates a rate of 0.12 for night hours and a rate of

0.21 for day hours.

By using one or more of the above tariffs we define multiple tariff setups:

• Tariff setup 1 (T1): the full population of a customer uses one tariff

over the course of 336 timeslots. This tariff is Tariff1. This is a simple

setup that allows for evaluating the performance of customer consumption

on a more basic level.

• Tariff setup 2 (T2): the full population of a customer uses tariff Tariff1

for the first 168 timeslots. Then, the full customer population changes
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the used tariff to Tariff2. This a interesting setup to evaluate, since we

can compare this setup to T1 to get insight into how a sudden tariff

change influences the prediction performance of the two evaluated predic-

tion methods.

• Tariff setup 3 (T3): the full population of a customer uses Tariff1 for

112 timeslots. Then, for 112 timeslots, that customer is not attracted

by our broker and no tariff transactions from the customer are received.

For the last 112 timeslots the customer is attracted again and uses Tariff1.

With this setup, we can investigate how a period with a lack of data would

influence the prediction results.

• Tariff setup 4 (T4): the full population of a customer uses a tariff over

the course of 336 timeslots that is not used by any other customer. The

tariff that is used contains the same rates as Tariff1.

We will evaluate the state-based prediction method and the regression tree

forecasting model through a variety of scenarios. In each scenario certain cus-

tomers are participating, and all of these customers have a specific tariff setup

assigned to them. The list of evaluation scenarios and the customers that par-

ticipate in them can be viewed in Table 5.3.

Table 5.3: The list of evaluation scenarios and their setups.

Scenario V
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1.1 T1 T1 - - -
2.1 - - T1 - -
2.2 - - T2 - -
2.3 - - T3 - -
2.4 - - T1∗ - -
3.1 - - - T1 -
4.1 - - - - T1
5.1 T4 T4 T4 T4 T4

In Table 5.3, when for a certain scenario it is stated that a customer uses

T1, then that customer uses that tariff setup with a consumption redistribution



5.2. EVALUATION SETUP 71

percentage of 0%. When the tariff setup is notated as T1∗, then the customer

associated to that tariff setup has a consumption redistribution percentage of

10%. This means that that particular customer will redistribute 10% of a day’s

consumption over the 24 hours of that day by taking into account the tariff

rates used during those hours, as is also described in Section 4.2.

Scenario 1.1 Scenario 1.1 is an interesting one, since the customers involved

in this scenario (Village 1 and Village 2 ) and their consumption are directly ob-

tained from actual Power TAC simulation data. For this scenario, the customers

simply use one tariff for the complete duration of the simulated competition.

The reasoning behind this is that both Village 1 and Village 2 for the most

part also only used one tariff within the Power TAC pilot competition as well.

Scenario 2.2 The more interesting tariff setups are examined in conjunction

with the HouseholdConsumer customer. In Scenario 2.1 the customer only uses

one tariff, but for 2.2 to 2.4 other tariff setups are applied. In Scenario 2.2 the

consumer switches tariff halfway through the competition. For the state-based

method, this means that a new tariff-specific state will be used for forecasting.

Since this state will initially start with a small pool of data, the predictions

will have a low reliability, and thus it is to be expected that the prediction

performance will also suffer in comparison to Scenario 2.1.

Scenario 2.3 In Scenario 2.3 for a total of 112 timeslots no tariffs are used

by any customer. Before and after this period a customer uses Tariff1 for 112

timeslots. By comparing the results of Scenario 2.3 with the ones from Scenario

2.1, we can investigate whether or not the prediction performance of the state-

based and the regression prediction methods are negatively influenced by the

temporary lack of data input. Our expectations are that both methods will

have a decreased performance in comparison to Scenario 2.1.

Scenario 2.4 In Scenario 2.4 we increase the redistribution percentage from 0

to 10%. Due to this change, the customer will adjust its consumption based on

the tariff it uses. This scenario can give us insight into how well the forecasting

methods are able to cope with customer behaviour that is influenced by tariff



72 CHAPTER 5. EVALUATION

rates. It is likely that the performance will be comparable to Scenario 2.1, since

basically only the consumption pattern changes, while the randomness remains

constant.

Scenario 3.1 and 4.1 Scenario 3.1 and 4.1 have a setup that is similar to the

one of Scenario 2.1. The only difference between the scenarios is that a different

customer participates within them. For Scenario 2.1 a household consumer

with a relatively low random factor in its consumption pattern participates

in the scenario, while for Scenario 3.1 and 4.1 respectively an office consumer

and a factory producer that both have a larger random factor take part in the

scenarios. By comparing to each other the prediction performance of Scenario

2.1, 3.1, and 4.1, we can investigate the level to which the state-based method

and the regression tree model are affected by more noise in the data. It can be

expected that the results will become worse the larger the random factor is, but

it is interesting to see to which degree this will be the case.

Scenario 5.1 Last, in Scenario 5.1 we add the five different customers from

the other scenarios to one single scenario and let each of the customers use a

different tariff. This scenario is more representative of an actual competition

scenario in which a group of customers participates. Since for the state-based

prediction method the forecasts associated to one customer will not be affected

by the consumption of other customers, the obtained prediction performance for

the state-based method will likely not be surprising given the results of Scenario

2.1, 3.1, and 4.1. However, for the regression tree method the predictions per

individual customer áre influenced by consumption of other customers, since

customers, customer types and power types have an impact on how the tree is

generated, and as a result the predictions for a specific customer retrieved from

the built tree will be affected.

In the pilot version of Power TAC from July 2011, customer tariff changes

were published only one timeslot in advance. We will evaluate the prediction

methods with the assumption of perfect information regarding the attracted

customers and the tariffs that they use for up to 23 timeslots into the future.

This is a realistic consumption, as in reality brokers are informed of tariff ad-

justments much more than one hour in advance. We use this assumption to
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more accurately evaluate the prediction performance of our forecasting algo-

rithm. Let us explain with an example how skewed the evaluation of prediction

performance can become when evaluating without perfect information.

In timeslot zc a prediction is required for timeslot zc+g. For this timeslot,

it is expected that 10 individuals associated to customer c are attracted. With

this amount in mind, two predictions are formed with two different prediction

methods. They are as follows:

• Prediction method 1: 200 kWh

• Prediction method 2: 110 kWh

Timeslots later the actual consumption for timeslot zc+g. It appears that

in between timeslot zc and timeslot zc+g five individuals related to customer

c stopped being attracted by the broker. The actual consumption for timeslot

zc+g for these five individuals is 100 kWh. If we now examine the prediction

performance of the two methods for this particular example, we see that method

1 has an error of 100, while method 2 has an error of 10. Method 2 thus

is considered better. However, this does not give the right picture, because

the predictions in timeslot zc where made with 10 individuals in mind. If the

predictions would be performed with the knowledge that only five individuals

would be attracted in timeslot zc+g, then prediction method 1 would be better.

One possibility is to construct a prediction model to forecast the customers

and the tariffs that they use for future timeslots. This however requires input

from other models that are part of a full Power TAC broker framework, such as

a model that specifically keeps track of a broker’s tariffs in relation to the tariff

market. Since we focus purely on the performance of a short-term prediction

method which only forms a small fraction of the total framework of a Power TAC

broker agent, we evaluate with perfect information regarding the customers and

their used tariffs for up to 23 timeslots into the future.

The state-based prediction method and the regression tree forecasting model

will be evaluated by computing the median absolute percentage error (MdAPE)

for the varying scenarios. We decided to use this measure rather than the mean

absolute percentage error (MAPE), because it is more robust and less sensitive

to outliers. In theory, one prediction error of infinity causes the MAPE to
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become equal to infinity as well. This is not the case for MdAPE, as simply

the middle value of an ordered list of absolute percentage errors is taken, which

does not change when there is a high prediction error outlier. For this reason,

MdAPE gives a better representation of the expected absolute percentage error.

The MdAPE has the disadvantage that it cannot properly handle actual values

of zero, as that would result in a division by zero. However, in our evaluation

scenarios no actual zero values occur except for the part of Scenario 2.3 in which

no transactions are received. For this particular scenario, we only evaluate the

performance for the 224 timeslots in which transactions are received. Evaluating

the timeslots in which no transactions occur would also not be interesting, since

our assumption of perfect information would always result in a prediction error

of 0% for these timeslots. Thus, because we are not affected by zero values in

our evaluation, MdAPE is a proper metric to apply. Next to using the median,

we also measure the first and third quartile (defined as respectively Q1APE

and Q3APE) of the list of absolute percentage errors. This allows us to get

a view on the stability of predictions as well. When we display results of our

evaluation, it will be notated in the form: (Q1APE, MdAPE, Q3APE).

5.3 Optimizing the state-based prediction model

In this section we will perform an evaluation analysis on the state-based predic-

tion method by reviewing its parameter settings and by examining the prediction

performance obtained under certain settings for the variety of scenarios defined

in Section 5.2. The prediction method contains three different parameters.

One decision that needs to be made by the user is the tariff dissimilarity

threshold to determine whether a tariff is similar enough to another and can be

taken into account for predictions not associated to the tariff. This parameter

should be kept low. If this parameter would be set at a high number, then

two very different tariffs could be considered similar enough and consumption

related to an unrepresentative tariff could be used for predictions, resulting in a

bad prediction performance. The setting that we use is 5%. With this setting,

only tariffs that actually are similar will be considered similar.

Another choice that needs to be made is the number of consumption values
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η associated to the hour of the timeslot for which a prediction is performed that

have to be stored within in a state in order to judge that state as to having

enough data for a prediction. For our evaluation, we have set this parameter on

4. We consider an η of 1 to be too low and too unreliable to base predictions

on. If this one value is an outlier, then the prediction would become equal to

this outlier and this would result in a high prediction error. At the start of

a Power TAC competition, each broker agent receives for each customer the

customer’s consumption of the 14 days prior to the competition’s start. Within

these 14 days, two weekends that place and thus each state that represents

weekend consumption will have four consumption values stored for each hour.

If we would set η to a value larger than 4, then the states related to weekend

consumption will be considered as to not having a feasible amount of data. For

this reason, we have decided to use an η of 4.

Last, there is the number of timeslots m that are taken into account to

determine the timeslot trend. The higher this number, the less impact more

recent data has on the eventual prediction. This can have both negative and

positive consequences depending on the data that is used as input. A low number

has the advantage that the method can quickly adapt based on the most recent

data, but it also has the possible consequence that an outlier can worsen your

results. A higher number makes the algorithm learn slowly, but less sensitive

to an outlier. To determine m, we evaluate the prediction performance related

to m-parameters ranging from 1 until 7 in the evaluation scenarios presented in

Section 5.2.

First, we obtain the results for four basic scenarios: Scenario 1.1, 2.1, 3.1,

and 4.1. In these four scenarios, only one customer is involved and only one

tariff is used. These scenarios give us insight into how well the state-based

method is able to perform under simple circumstances in which no difficulties

occur in terms of extra tariffs. Per scenario and for each m, we compare the

acquired MdAPE for that m to the average MdAPE of a set of m-values. The
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value that we compute for each m given the prediction gap g is as follows:

dmg =
ȳMg − ymg
ȳMg

· 100, where

ȳMg =

∑
i∈M yig
|M |

where M is the set of m-parameters, which in our case is {1, 2, 3, 4, 5, 6, 7}, and

yig is the MdAPE for the scenario associated to m = i and prediction gap g. The

MdAPE values related to all evaluation scenario for the state-based method are

listed in Section C.1. By computing the percentual decrease dmg , we can get

insight into which m values perform better for the different scenarios and also

to which degree they perform better.

The results for Scenario 1.1 are displayed in Table 5.4.

Table 5.4: The percentual decrease in MdAPE for each m in comparison with
the average MdAPE related to m = {1, 2, 3, 4, 5, 6, 7} for different prediction
gaps for Scenario 1.1.

Scenario 1.1
m

Gap Avg 1 2 3 4 5 6 7
1 11.46 0.46 0.55 2.82 0.72 -1.46 -1.72 -1.37
2 12.14 1.65 1.89 -0.91 -1.32 0.58 -2.47 0.58
3 12.30 0.37 -1.50 -0.36 1.19 -0.03 0.70 -0.36
6 13.09 -8.33 -3.67 -2.14 0.69 3.13 4.81 5.50
12 12.36 -6.24 -4.06 -2.44 0.15 1.36 4.03 7.19
23 12.09 -6.58 0.94 0.53 1.77 1.28 0.37 1.69

Avg -3.11 -0.97 -0.42 0.53 0.81 0.95 2.20

In Table 5.4 the results associated to different combinations of m and size

of prediction gaps are summarized. When the prediction performance related

to a particular m and a specific gap is a negative value, that means that the

prediction error associated to that m is larger than the average prediction error

of m = {1, 2, 3, 4, 5, 6, 7} related to that particular prediction gap. If it is a

positive value, then the prediction performance is better than the average of the

seven m-values. What can be observed from Table 5.4 is that there is no m value

for which the prediction performance never is below average. Furthermore, the

values are not large, which means that the difference in performance is close for

the different m-values. Only for m = 1 and a gap of 6 or larger the prediction
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performance is more than 6% less than average. We have bolded the results

that are better or worse than the results associated to the other m-values on

a significant level of 95%. As can been observed from the table, the majority

of the displayed values are not bolded and thus are not significantly better or

worse.

The fact that the performance between different values of m is similar can

be attributed to the transformation that takes place within the state-based

method through the simple linear regression model. Due to this transforma-

tion process, the timeslot trend that is acquired for predictions does not deviate

much when different values of m are used, since transforming tends to move the

timeslot trend closer to more average values regardless of the selected m. Fur-

thermore, even varying timeslot trends may result in similar predictions, since

the timeslot trend only represent the relative magnitude of future consumption,

and if consumption is relatively stable during specific hours in terms of absolute

consumption, then similar predictions will be formed no matter the acquired

timeslot trend.

However, for larger values of m the obtained timeslot trends have a smaller

variance and are more likely to be closer to a relatively average level, since a

weighted average of more values is computed and generally smoothes to such a

relatively average level. This higher level of smoothing for larger m-values can

be both good and bad. Because of the smoothing the predicted timeslot trends

are typically average and relatively small or large trends are not forecasted as

frequently as is the case for smaller m-values. This may also explain why the

prediction performance for larger m-values is better than average for timeslots

that lie further ahead in the future (the ones that are linked to larger prediction

gaps). These predictions are less certain, since the relationship typically weakens

when timeslots are more distant from each other. Overall, by using a less

risky approach through the use of larger m-values a small increase in prediction

performance is gained for these distant timeslots. However, this increase is not

large due to the simple linear regression transformation process that is used for

determining timeslot trends and due to the timeslot trend not always having a

large influence on acquired predictions, as described previously.

A value of 7 yields the best performance for forecasting with large predic-
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tion gaps, but performs somewhat less than average for smaller gaps. Overall,

a value of 7 is the best choice for Scenario 1.1. Applying a value of 7 results

in a prediction performance that is 2.20% better than the average performance

for Scenario 1.1. This performance is not reached by using any of the other

m-values. However, this is mainly due to the relatively good prediction perfor-

mance for a gap of 6 or 12.

In the same way as for Scenario 1.1, Table 5.5 shows acquired results for

Scenario 2.1.

Table 5.5: The percentual decrease in MdApe for each m in comparison with
the average MdApe related to m = {1, 2, 3, 4, 5, 6, 7} for different prediction gap
magnitudes.

Scenario 2.1
m

Gap Avg 1 2 3 4 5 6 7
1 1.38 -0.83 2.80 2.80 -0.10 -1.55 -0.10 -3.01
2 1.33 -5.15 1.61 1.61 0.86 1.61 0.11 -0.64
3 1.40 -4.61 -2.46 -2.46 1.13 2.56 2.56 3.28
6 1.36 -4.00 -4.74 -1.79 1.90 2.63 2.63 3.37
12 1.38 3.42 1.97 4.15 -1.66 -2.39 -1.66 -3.84
23 1.54 -1.58 -2.88 -2.88 0.37 1.67 2.33 2.98

Avg -2.12 -0.62 0.24 0.41 0.76 0.98 0.36

Similar to the results for Scenario 1.1, Table 5.5 shows that an m-value

of 1 is the least preferred choice, and again there is no setting that performs

consistently better than average. Interestingly, for a gap of 3, 6 or 23 a larger

value of m seems to perform better, while for a gap of 12, smaller m-values yield

better results. This is most likely because due to the transformation process

the actual predictions for different m-values overall do not differ much and may

sometimes be better and at other times be worse, and as a consequence the

results are spread and no best m-parameter value exists. Overall, a value of

6 yields the best performance even though it only performs 0.98% better than

average.

To get a better overview of the overall performance for the different m-

values across multiple scenarios, we have summarized the average of the results

for Scenario 1.1, 2.1, 3.1 and 4.1. They are listed in Table 5.6.

Table 5.6 shows that a lower value for m is slightly preferable for predictions
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Table 5.6: The average percentual decrease in MdApe for each m in comparison
with the average MdApe related to m = {1, 2, 3, 4, 5, 6, 7} for Scenario 1.1, 2.1,
3.1, and 4.1 for different prediction gaps.

Basic scenarios
m

Gap 1 2 3 4 5 6 7
1 -0.64 1.29 1.25 0.48 -0.75 -0.62 -1.01
2 -2.81 2.11 0.85 -0.66 0.26 0.27 -0.03
3 -2.48 -1.14 0.07 1.65 2.05 0.73 -0.87
6 -4.15 -2.28 -1.25 0.90 1.91 2.28 2.59
12 0.21 -0.54 1.03 -0.56 -1.08 -0.06 1.00
23 -3.36 -0.30 -0.17 0.56 1.48 0.86 0.93

Avg -2.20 -0.14 0.30 0.39 0.64 0.58 0.44

related to a smaller prediction gap, while higher values of m are preferred for

forecasts with a larger gap. A value of 1 does not seem to be a good choice,

since the obtained results that are associated to this value usually are below

average and most often have the worst prediction performance of all m. Also,

using an m-value of 2 generates less than average results for the larger gaps.

In general, the results do not seem to deviate much between different values

of m, and there definitely is no perfect m-value for the data that is evaluated.

The overall best choice of m = 5 only performs 0.64% better than average. A

conclusion we can draw in terms of m-value selection is that a value larger than

1 should be selected, since picking a value of 1 most consistently yields less than

average prediction performance results. Furthermore, overall a larger value for

m results in slightly better prediction performance for forecasts related to larger

prediction gaps. However, it should be pointed out that this is not the case for

every scenario. Smaller m-values have the advantage that less computations are

required to form predictions, as less historical data is used to compute them.

The fact that the results between different values of m are so similar and the

best choice between scenarios shift from one m to another can be attributed

to the simple linear regression model used within the state-based prediction

method.

All in all, there simply is no preferred choice for m. In order to evaluate

our state-based prediction method with the regression tree method we therefore

select and evaluate multiple m values, ranging from m = 2 to m = 7. By
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evaluating based on several m values we can get a more broad overview of the

performance of the state-based method in comparison with the regression tree

approach than if we would evaluate based on one specific m-value. Instead of

reporting the results related to one specific m-value, we will therefore show per

scenario averaged prediction results associated with m = {2, 3, 4, 5, 6, 7}, as well

as the worst and best prediction results obtained by this set of m-values.

5.4 A comparison of prediction methods

In this section we compare the state-based prediction method to the regression

tree forecasting approach described in Section 5.1. The comparison of the two

methods will be done on two different levels. First the prediction performance

will be analysed. Then, the time performance of both prediction methods will

be illustrated.

5.4.1 Prediction performance

In Section 5.1 we described our used regression tree approach. We apply this

approach to the scenarios listed in Table 5.3. The results for the regression

tree method are depicted in Section C.2. Since the regression tree approach

contains a random component that determines which data is used as training

data, the predictions that are computed by this method will deviate between

multiple runs. We decided to report the results for each scenario based on the

average of obtained results for ten runs. Added to the results is also the lower

limit and the upper limit based on a 95% confidence level. This gives insight

into the deviation of the prediction performance between different runs of the

regression tree model. It also allows us to determine whether the state-based

method is significantly better (i.e. has a prediction error below the lower limit)

or significantly worse (i.e. has a prediction error larger than the upper limit)

than the regression tree prediction method for the different scenarios.

As described in Section 5.3, no optimal m-parameter exists and evaluat-

ing the prediction performance of the state-based method using multiple m-

parameter values could provide us a broader insight into the performance in

relation to the regression tree method. For m = {2, 3, 4, 5, 6, 7}, we have gath-
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ered the results and compare for each scenario and several prediction gaps the

average, the worst, and the best obtained results with the acquired results for

the regression tree model. In Table 5.7 the percentual decrease of results for the

state-based method in relation to the average obtained result for the regression

tree method are summarized. When the decrease is significant, the value is

bolded.

Table 5.7: The percentual decrease in MdAPE obtained by the state-based
method in comparison with the average MdAPE of the regression tree approach
for all scenarios.

Gap
Sc. 1 2 3 6 12 23

1.1
Worst 14.58 7.51 7.69 0.44 7.55 14.90
Avg 15.96 9.49 9.00 5.29 12.08 15.52
Best 18.39 11.45 10.13 9.24 17.54 16.10

2.1
Worst 6.58 11.26 3.38 4.05 4.03 -4.64
Avg 9.43 12.58 6.42 9.01 7.05 -1.43
Best 11.84 13.25 8.78 11.49 11.41 1.32

2.2
Worst 9.33 8.50 3.92 8.33 2.65 0.00
Avg 10.33 10.89 6.54 11.00 4.97 2.58
Best 12.00 13.07 7.19 14.10 7.28 5.81

2.3
Worst -0.69 -0.70 -0.70 -3.45 4.61 2.61
Avg 0.46 3.40 4.55 5.98 6.80 7.73
Best 2.08 5.63 7.69 9.66 7.89 10.46

2.4
Worst -2.00 -5.96 -8.05 -6.71 -9.27 -1.86
Avg 1.56 -1.21 -6.49 -5.03 -8.39 4.66
Best 4.00 3.97 -4.70 -2.68 -7.28 6.83

3.1
Worst 4.33 2.80 -2.17 -4.62 -7.10 -2.81
Avg 5.78 3.88 1.40 -3.54 -5.50 -0.57
Best 7.43 5.28 4.04 -2.15 -4.01 1.88

4.1
Worst 2.77 0.30 -5.64 -10.25 -7.56 -10.19
Avg 4.17 3.01 -1.83 -8.53 -6.31 -8.40
Best 5.30 7.06 0.91 -6.57 -4.59 -6.79

5.1
Worst 17.52 16.31 17.32 13.64 9.55 11.71
Avg 20.01 19.31 18.76 14.17 13.41 15.54
Best 23.08 21.46 20.78 15.00 15.91 18.02

The results from Table 5.7 show us that for Scenario 1.1 the state-based

method performs better than the regression tree approach. The decrease in

MdAPE reaches to a maximum of 18.39%. The magnitude of the prediction gap

does not seem to have an impact on the performance of the state-based method

in relation to the regression tree model, since the performance improvement is

still 17.54% and 16.10% for respectively a gap of 12 and one of 23.
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For Scenario 2.1 the state-based method performs better than the regression

tree approach. For all predictions gaps except 23 the worst obtained prediction

performance for the state-based method is still significantly better than the

performance of the regression tree model. For Scenario 3.1 and 4.1, which are

similar to Scenario 2.1, the results mostly favour the regression tree method. For

prediction gaps of 1 and 2 the state-based method has an improved performance,

but for gaps of at least 6 the regression tree performs better. The difference

between Scenario 3.1 and 4.1, and Scenario 2.1 is that the customers involved in

Scenario 3.1 and 4.1 have more randomness in their consumption (of which the

largest randomness appears in 4.1). Based on the obtained prediction results,

a regression tree seems to be better able to withstand noise and seems more

robust.

For Scenario 2.1, 3.1, and 4.1 the performance of the state-based method

relative to the performance of the regression tree approach roughly seems to

decrease as the prediction gap increases. This means that the regression tree

approach is more capable of forming prediction for more distant timeslots.

In Scenario 2.2, in comparison to Scenario 2.1, we introduced a tariff change

halfway through the competition. This does not seem to negatively affect the

performance of the state-based method in comparison with the regression tree

approach. In Table 5.8 one can observe the absolute as well as the relative

decrease in MdAPE for Scenario 2.2 in relation to Scenario 2.1 for both the

state-based and the regression tree prediction method.

Table 5.8: The average absolute and percentual decrease in MdAPE obtained
by the state-based method in comparison with the absolute and percentual
decrease in MdAPE of the regression tree approach for Scenario 2.2 in relation
to Scenario 2.1.

Gap
Method Decrease 1 2 3 6 12 23

State-based
Absolute 0.03 -0.04 -0.04 -0.04 -0.05 0.02
Relative (%) 2.27 -3.28 -3.28 -3.12 -3.64 1.40

Regr. tree
Absolute 0.02 -0.02 -0.03 -0.06 -0.02 -0.01
Relative (%) 1.31 -1.66 -2.35 -4.15 -1.41 -0.78

The results from Table 5.8 teach us that both the state-based method and

the regression tree approach mostly perform worse when a tariff change occurs
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for a customer halfway through the competition. This result is not surprising,

since the tariff change causes for both prediction methods a shift to a newly used

data pool which contains less values, and thus the forecasts for both methods

initially become less reliable after the tariff change. It can be expected that when

more tariff changes happen, the performances drop further for both methods.

The degree to which there is an increase in MdAPE on average is similar for

both methods.

For Scenario 2.3 the involved customer does not use a tariff for the middle

third of the competition. This allows us to examine to which degree a period

in which no consumption data is acquired affects the prediction performance of

the two prediction methods. For Scenario 2.3 we have compared the prediction

performance in the period after the temporary lack of data. The absolute and

the relative decrease in MdAPE for the last 112 timeslots for Scenario 2.3 relative

to Scenario 2.1 are displayed in Table 5.9 for both the state-based method and

the regression tree approach.

Table 5.9: The average absolute and percentual decrease in MdAPE obtained by
the state-based method in comparison with absolute and percentual decrease in
MdAPE of the regression tree approach for Scenario 2.3 in relation to Scenario
2.1 for the last 112 timeslots.

Gap
Method Decrease 1 2 3 6 12 23

State-based
Absolute 0.04 0.08 0.20 -0.06 0.08 0.26
Relative (%) 2.34 5.08 11.57 -3.56 4.58 13.80

Regr. tree
Absolute 0.11 0.07 0.01 -0.04 -0.04 0.17
Relative (%) 7.12 4.70 0.77 -2.95 -2.49 10.63

Table 5.9 shows that for both prediction methods the MdAPE of the last 112

timeslots of Scenario 2.3 for the most part surprisingly decreases in comparison

to the last 112 timeslots of Scenario 2.1. This means that a period without data

does not necessarily negatively influence the prediction results.

In Scenario 2.4 the customer from Scenario 2.1 shifts its consumption based

on the tariff that it uses. On hours where the tariff rate is relatively low, the

customer will consume more, and vice versa. For this scenario the customer

shifts a total of 10% of its daily consumption over the hours of that day. In

Table 5.10 the absolute as well as the relative decrease in MdAPE relative to
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Scenario 2.1 for both the state-based and the regression tree prediction method

are listed.

Table 5.10: The average absolute and percentual decrease in MdAPE obtained
by the state-based method in comparison with absolute and percentual decrease
in MdAPE of the regression tree approach for Scenario 2.4 in relation to Scenario
2.1.

Gap
Method Decrease 1 2 3 6 12 23

State-based
Absolute -0.10 -0.21 -0.20 -0.22 -0.25 0.00
Relative (%) -7.27 -15.77 -14.65 -16.32 -18.26 -0.21

Regr. tree
Absolute 0.02 0.00 0.00 0.01 -0.02 -0.07
Relative (%) 1.12 0.13 -0.07 0.60 -1.41 -4.89

The results in Table 5.10 clearly show that for Scenario 2.4 the results are

much more negatively influenced for the state-based method than for the regres-

sion tree approach. The main reason for the increase in MdAPE in comparison

with Scenario 2.1 for the state-based method is that the historical data that

is used at the beginning of a competition to initialize states with is less rep-

resentative for the consumption data during the actual game for Scenario 2.4

than for Scenario 2.1. The acquired historical data of a customer represents

consumption without a specific tariff in mind, and thus that consumption sim-

ply represents a pattern that is not affected by specific tariff rates. During the

actual competition in Scenario 2.4, the customer adjusts its consumption based

on the tariff that it uses and the consumption becomes significantly different

from the historical consumption. This is not the case within Scenario 2.1, since

in that scenario the customer does not change its consumption based on tariff

rates. At the start of the competition the historical data will be used to form

predictions for the state-based method, since there is not enough sufficient tariff

specific data available. As a consequence, the not so representative historical

data will be used at the start of Scenario 2.4 and the prediction errors will be

larger at the beginning of Scenario 2.4 than at the start of Scenario 2.1, resulting

in a larger MdAPE.

In Section 5.3 we explained that in our parameter settings a state should

contain at least four consumption values to consider the state as to having a

feasible amount of data. For Scenario 2.4 a value smaller than four would have
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a positive influence on the prediction performance. This is explained by the fact

that the unrepresentative historical data is used for more timeslots the higher

the minimum required amount of consumption values is, since it will take longer

for the states that contain the representative data to have a sufficient amount

of data.

The last scenario for which we compare the state-based method and the re-

gression tree prediction model is Scenario 5.1. In this scenario five customers

each use a different tariff and are attracted for the complete duration of the

simulated competition. The results from Table 5.7 show that the state-based

method performs significantly better than the regression tree approach regard-

less of the prediction gap. Thus, in a scenario more representative of a more

active competition that involves multiple customers, the state-based method is

able to perform better than the regression tree model.

In Table 5.11 the average percentual decrease in MdAPE for the state-based

method relative to the MdAPE for the regression tree method for all eight

scenarios are summarized.

Table 5.11: The percentual decrease in MdAPE obtained by the state-based
method in comparison with the average MdAPE of the regression tree approach
for all scenarios.

Gap
Sc. 1 2 3 6 12 23

Avg
Worst 6.55 5.00 1.97 0.18 0.56 1.22
Avg 8.46 7.67 4.79 3.54 3.01 4.45
Best 10.52 10.15 6.85 6.01 5.52 6.70

As can be observed in Table 5.11, for a gap of 1 or 2, over all eight scenarios

the average percentual decrease in MdAPE for m = {2, 3, 4, 5, 6, 7} for the state-

based method in comparison with the regression tree approach is approximately

8%. An increase in the prediction gap results in performance declines of 4.79%,

3.54%, 3.01%, and 4.45% for prediction gaps of 3, 6, 12, and 23 respectively. An

interesting observation is that the state-based method has a better performance

in relation to the regression tree method for a gap of 23 than for a gap of 12.

Thus, relative to the regression tree approach, the state-based method retains

the same level of robustness for prediction gaps that are larger. Furthermore, the

state-based method also still performs better despite of the decline in prediction
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performance in relation to the smaller gaps of 1 or 2.

5.4.2 Time performance

An important aspect for prediction methods that are used within the frame-

work of a Power TAC broker agent is the required computation time. For each

timeslot within a Power TAC competition a broker agent is obligated to take

its actions for that timeslot within the time frame of a timeslot, which is five

seconds. Since forecasting the energy imbalance of a broker agent is not the

only task that needs to be performed, the computation time required for doing

the imbalance predictions may not last longer than a few seconds. The compu-

tation time of the introduced state-based prediction method is compared to the

computation time of the regression tree approach. We used m = 7, i.e. the set-

ting which requires the most computations of the settings in Section 5.3, as the

parameter setting for the state-based method. The system that we have used

to perform the time evaluation experiments is as follows: Intel R© Core i5-750

processor (4 CPUs, 2.67Ghz) with 4096MB RAM memory.

The computation time will be evaluated using several different setups. In

each setup a Power TAC game is simulated using a specified number of tariffs nt

and a specified amount of customers nc. The number of tariff transactions that

take place within one timeslot are dependent on the specified numbers and is

equal to nt ·nc. Each customer uses each tariff once per timeslot. Logically, the

larger the number of customers and the larger the number of tariffs, the higher

the amount of tariff transactions and consequently the higher the computation

time required to perform all necessary predictions.

Figure 5.1 depicts the maximum encountered computation time for a single

timeslot given a specified number of tariffs and amount of customers for the

state-based prediction method.

In Figure 5.1 one can observe the maximum computation time encountered

during simulations of 336 timeslots. Logically, the computation time becomes

larger with an increase of customers and tariffs, since such an increase means

that the number of transactions grows. For example, for the setup of four

customers and four tariffs, the total number of transactions per timeslot is

equal to 16 (four tariff transactions for each customer). The computation time
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Figure 5.1: The maximum encountered computation time required for a single
timeslot for the state-based prediction method given the number of customers
and the amount of tariffs that they use per timeslot.

for this large setup is approximately 13.5 milliseconds. In comparison with

the setup that includes only one tariff and one customer, this is an increase of

approximately 1210%. Since the number of transactions has increased from 1

to 16 (an increase of 1500%) between these two setups, the computation time

per transaction actually has decreased.

We have also stored the computation time values for the regression tree

approach. In Figure 5.2 the maximum encountered computation time for a

single timeslot given the specified number of tariffs and amount of customers

for the regression tree prediction method is displayed.
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Figure 5.2: The maximum encountered computation time required for a single
timeslot for the regression tree prediction method given the number of customers
and the amount of tariffs that they use per timeslot.
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As Figure 5.2 illustrates, the computation for the regression tree method

grows rapidly. In comparison with the state-based method, the computation

time is much larger. Whereas the state-based method requires less than a max-

imum of 14 milliseconds per timeslot for the largest examined setup, the regres-

sion tree approach needs more than 8200 milliseconds.

Furthermore, we have only included one customer type and one power type

in our time evaluation setups. Including more customer types or power types

will increase the computation of the regression tree method even further, since

the number of possible splits when building a regression tree will then become

larger. The state-based method does not use the customer types and power

types for forecasting, since the predictions are always formed per individual

customer. Thus, for the state-based method the inclusion of more customer

types or power types would not increase the computation time.

Next to the maximum encountered computation time we also investigated

the computation time per timeslot over the course of 336 timeslot to observe to

what degree the computation time is increasing over the course of a simulated

competition. Figure 5.3 depicts for 336 timeslots the total computation time

taken up until that timeslot for the setup involving four customers and four

tariffs for the state-based prediction method.
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Figure 5.3: The total computation time for the state-based prediction method.

Figure 5.3 illustrates that for the state-based prediction method, the total

computation time grows in a linear fashion. The computation time required per

timeslot thus remains practically constant throughout the competition, other-

wise the figure should have depicted an exponential increase. Thus, the state-

based method is hardly affected by the number of transactions that have taken
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place prior to a timeslot.

In Figure 5.4 we display the total computation time over 336 timeslots for

the regression tree prediction method for the same setup as for the state-based

method. During each timeslot, 16 transactions take place that are distributed

over four different customers and four different tariffs.
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Figure 5.4: The total computation time for the regression tree prediction
method.

From Figure 5.4 one can observe that for the regression tree approach the to-

tal computation time required by the regression tree method increasingly grows.

The regression tree method thus is more affected by the number of past transac-

tions that have taken place than the state-based method. This result is logical,

since the further into a simulation game, the more tariff transactions are used

for building and pruning a regression tree and thus the longer it takes to con-

struct this tree. For the state-based method, no tree is built based on past tariff

transactions and this considerably saves computation time.

The main conclusion we can draw from our evaluations is that overall the

state-based method presented in Section 4.3 is a better predictor than the regres-

sion tree method explained in Section 5.1. In terms of prediction performance

the state-based method seems to perform better overall. We found that the

best prediction performance is obtained for the state-based method when the

prediction gap is small. For prediction gaps of 3 or larger the performance im-

provement over the regression tree method declines, but still better results are

acquired for the state-based method.

From our evaluation results, we also conclude that the regression tree ap-

proach is more robust than the state-based method. This is illustrated by the
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fact that the prediction performance is less affected by randomness in customer

consumption than the state-based method. While for customers with a relative

small randomness in consumption the state-based method was clearly better,

evaluation results for customer consumption with a larger degree of randomness

seems to turn the tide in favour of the regression tree approach. Nevertheless,

the state-based method still performs better at a significant level for a predic-

tion gap of 1 or 2 even for scenarios involving more consumption randomness.

Overall the state-based method has an improved prediction performance.

Last, we found that initializing the two prediction methods with data that

is not entirely representative for the actual game data, as was the case for

Scenario 2.4, negatively affects the state-based method to a larger degree than

the regression tree model. However, this was also caused by our parameter

selection. We only use states to form predictions when they contained at least

four data observations relevant to the forecast. Thus, the algorithm requires

some time to use the states that contain data acquired during the game, and

that do not contain the unrepresentative data acquired during the initialisation

process. By lowering the selected parameter value, the states not containing the

unrepresentative data would be used more quickly and representative would be

applied for our forecast, resulting in improved prediction performance. However,

using a low parameter setting would not be optimal when historical data actually

is representative, as is the case for scenarios other than Scenario 2.4.

In terms of time performance, the state-based method performs much better

than the regression tree prediction model. The computation time for the state-

based method increases linearly with the number of customers and the number of

used tariffs, the required time for computations for the regression tree approach

increasingly grows for each customer or tariff that is added. Furthermore, the

state-based method is able to perform its predictions in much shorter time spans

than the regression tree approach. Our results showed that in a competition that

contains four customers that have a total of sixteen transactions per timeslot

by each using four tariffs, the regression tree approach requires more than 8200

milliseconds for forming its prediction for a single timeslot. The state-based

method needed only approximately 14 milliseconds to acquire its prediction,

only a small fraction of the time required when using the regression tree method.
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Also, whereas for the state-based method the computation time per timeslot

remains practically constant when more and more transactions have been stored,

the computation time per timeslot for the regression tree mode clearly increases.

As a result, the regression tree requires more and more time as a Power TAC

competition continues and could risk crossing the Power TAC time limit of 5

seconds per timeslot. This is not the case for the state-based method. All in all,

for use within a simulation game such as Power TAC where time is limited and

computations need to be performed quickly, the state-based method is much

more applicable than the regression tree model.
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Chapter 6

Conclusions

In this chapter we conclude our research by providing a summary of our inves-

tigations. Section 6.1 presents the answers to the various questions presented

in Chapter 1 through a series of statements based on our thesis work. Section

6.2 then discusses potential directions for future work regarding the state-based

prediction method proposed in this thesis.

6.1 Summary and Contributions

Our main focus for this thesis was to present and evaluate a prediction method

that is able to properly perform forecasts. We designed a prediction model for

the Power TAC competition. In this competition so-called broker agents act

on an energy market and need to perform multiple tasks, such as attracting

customers by offering tariffs and trading energy on a wholesale market, with

the goal of maximizing profits. One of the tasks of the agent is to resolve

the expected imbalance between energy demand and supply on the short-term.

In order for a broker to resolve these imbalances, first a forecast is required for

determining the expected imbalance. Our aim was to build a prediction method

that is capable of predicting short-term energy imbalance of future timeslots in

order to serve as an initiator for resolving actions. Therefore, the main research

question introduced in Chapter 1 is as follows:

93
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• How to predict short-term energy imbalance between supply and

demand of power of a broker agent in Power TAC?

To provide an answer to this question, we introduced a number of subques-

tions that each covers a different area. Through a discussion of statements

related to these subquestions we form a picture of the usage of a short-term

prediction method within Power TAC.

We identified several features that influence the total consumption,

and created customer consumption/production data based on tariffs

and daily patterns per customer type.

In Chapter 3 we discussed the general components of Power TAC and per-

formed an analysis of the Power TAC pilot competition that took place in July

2011. Then, in Section 4.3 we described our findings on a number of features

that would influence the total consumption associated with a broker agent.

First, this consumption relies on the customers that are attracted by the broker.

Each customer is linked to a customer type and power type which determines

respectively the consumption pattern of a customer and whether the customer

is consuming or producing. The consumption of a customer is dependent on the

time of consumption. During weekends a customer is expected to consume in

different quantities than during regular weekdays. The tariff that is used by a

customer also plays a role. Brokers can control to a degree the consumption of

customers by offering specific tariff rates for certain hours. In this way, brokers

can encourage customers to shift some of their consumption to specific hours in

order to balance the expected supply and demand of energy.

The analysis in Chapter 3 taught us that using the available Power TAC data

as a source for performing our predictions would not be a wise decision, since the

customer consumption data of the Power TAC competition was too limited to

properly apply and test a prediction method on. For this reason, we created our

own data based on the Power TAC game specification, as discussed in Section

4.2. The data constructed encompasses a number of features to ensure that

customer consumption varies between different types of customers and between

varying tariffs. A consumption pattern that is dependent on the customer type

is applied as a base line to generate data. Customer behaviour may also be
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influenced by the tariffs that customers use. The main idea is that customers

sacrifice a proportion of their daily consumption which is then distributed over

all the hours of a day. The lower the tariff rate for a certain hour is in relation

to rates of other hours, the more the customer will consume on that hour.

We developed a state-based prediction model that is able to quickly

form predictions and consider customer, tariff, and time-related as-

pects of energy transactions in order to perform well in Power TAC.

In Chapter 2, we analysed prediction methods that have been used in the

past to perform forecasts. The methods that we reviewed were exponential

smoothing methods, artificial neural networks, regression models, and decision

trees. Artificial neural networks, nonlinear regression models and decision trees

all suffered from relatively large computation times that would likely render

then inapplicable for performing predictions within the Power TAC environ-

ment, in which predictions need to be formed in a limited amount of time.

Linear regression models are quicker, but are incapable of predicting complex

nonlinear relationships. Exponential smoothing methods are either simplified

and restricted in performing proper forecasts, such as is the case for simple

exponential smoothing, or require proper parameter optimisation as initialising

double exponential or triple exponential smoothing methods with the wrong

parameter settings hurt the prediction performance.

In Section 4.3, we introduced our state-based prediction method. This

method is able to form short-term energy predictions. In Power TAC, the

algorithm generates predictions for up to 23 timeslots ahead. The procedure

for creating predictions is based on using states. Each state represents a unique

combination of data features. The applied features are the ones that we de-

scribed in Section 4.3, such as the tariff, the customer, and the part of the week

in which consumption takes place. A state includes all data that is associated

to the features it represents, and based on this data predictions are formed.

Unlike for decision trees where a tree is formed dynamically based on the used

data, states and their relationships are defined in advance and thus are static

in order to save computation time, since time is limited within the Power TAC

framework and it is vital that forecasts are made timely.
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The consumption prediction for a certain timeslot using a single state is

dependent on the consumption for the previous timeslots and the consumption

hour that is related to the prediction. By using a both a simple linear regression

model as well as a weighted averaging method that assigns the highest weight

to the most recent observations, we compute a timeslot trend that represents

the expected relative magnitude of future energy consumption. The larger the

timeslot trend, the larger the predicted consumption for a future timeslot.

The state-based method contains three parameters. One of them is the

number of timeslots m taken into account to form the timeslot trend that is

applied for forming predictions. The other two parameters are associated with

the maximum allowed dissimilarity between tariffs in order for them to replace

one another for predictions, and the number of data observations η that a state

should contain that are associated with the future timeslot’s hour in order for

the state to be considered for using predictions. A larger m-value creates more

smoothing in the weighted method applied for determining the timeslot trend.

An increase in η means that predictions are based upon more observations, but

also that a state is more quickly deemed as to not having enough data. When

this is the case, another state that represents similar features will be used instead

for prediction, and this could hurt the prediction accuracy if the data contained

in the new state is not representative for the replaced state.

We designed several scenarios and conducted computer simulations to

test the performance of our prediction model. The results show that

the state-based prediction method performs better than the CART

regression tree model.

In Chapter 5 we performed both a prediction performance and a time per-

formance evaluation. The state-based prediction method described in Section

4.3 was compared to the CART regression tree model covered in Section 5.1. In

order to do our evaluation, we introduced a total of eight evaluation scenarios

in Section 5.2. Each of the scenarios represents a competition of 336 timeslots

in which a Power TAC broker agent attracts a specific customer through spe-

cific tariffs. The customers vary over the different scenarios. A total of five

customers were present, which contain a total of three different customer types.
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Two household consumers were extracted from Power TAC default competi-

tion data, and one household consumer, one office consumer, and one factory

producer were defined by ourselves and created by applying the consumption

generation model described in Section 4.2. Each of the customers had a different

consumption pattern, based on their customer type and a random factor. For

each of the eight scenarios, we have compared the MdAPE of the two prediction

methods. We analysed not only predictions that are formed one timeslot ahead,

but reviewed the performance for 2, 3, 6, 12, and 23 timeslots in advance (which

we refer to as the prediction gap).

Before analysing the performance of the state-based prediction method in

relation to the regression tree prediction model, we examined the prediction

performance of the state-based method under varying parameter settings in

Section 5.3. We found that there was no definite optimal parameter choice as

obtained performance results did not seem to differ significantly.

Overall the state-based prediction contained better prediction performance

in our experiments, but depending on the evaluation data and the prediction

gap the improvement in performance could vary greatly. In general we found

that the larger the randomness in the consumption behaviour of a customer

and the larger the prediction gap, the lower the performance of the state-based

method in comparison with the regression tree model.

For a gap of 1 or 2, the average prediction performance over all eight scenarios

related to the average performance for m = {2, 3, 4, 5, 6, 7} for the state-based

method is approximately 8% better than the regression tree method. For larger

gaps this increase in prediction performance declines to approximately 4.79%,

3.54%, 3.01%, and 4.45% for respectively prediction gaps of 3, 6, 12, and 23.

Interestingly, though, the increase in performance is larger for a gap of 23 than

for a gap of 12. This means that the state-based method contains its level of

robustness relative to the regression tree method across larger prediction gaps.

Even though there is a decline in comparison with a gap of 1 or 2, the state-

based method also still performs better than the CART regression model on

average.

We also performed an evaluation on the time performance for both pre-

diction methods. We have analysed the required computation time given a
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specific number of customers and a specific number of tariffs that are used by

these customers. Based on our results, we found that the state-based method

is significantly quicker than the regression tree method. The time required for

performing the forecast for a single timeslot when four customers use four tariffs

reached up to 8200 milliseconds for the regression tree approach, whereas the

state-based method only needs up to 14 milliseconds. Furthermore, the com-

putation time for the regression tree method increasingly grows per timeslot as

the number of past transactions that have taken place becomes larger, while for

the stated-based approach the required computation time per timeslot remains

practically constant regardless of the number of past transactions. Thus, the

state-based method contains an overall better prediction performance than the

regression tree approach, as well as a significantly improved time performance.

For these reasons, the state-based method is preferred over the CART regression

tree model in the domain of Power TAC.

6.2 Limitations and future work

In this section we discuss some limitations of our research as well as poten-

tial directions for future work. The largest limitation is that the state-based

prediction framework was only applied and evaluated separately without any

integration with other Power TAC components. As a result, our possibilities

were limited, as we were restricted to using pre-made data and could not utilise

the algorithm during an actual dynamic Power TAC competition.

In our thesis, we made the assumption of perfect information regarding the

usage of tariffs by customers for the short-term (23 timeslots ahead) in our

evaluation analysis since no prediction method was included for forecasting the

expected tariffs on the short-term. During an actual Power TAC competition, a

broker only receives such information one timeslot in advance. If this time frame

remains the same for future versions of Power TAC, a predictor is required that

provides forecasts about the expected tariffs and customers for the short-term.

In the future, the prediction method could be implemented within a com-

plete framework of a broker agent. The algorithm could then also be evaluated

in a dynamic Power TAC competition instead of by utilising pre-made data.
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Through other broker framework components, such as one that scouts tariffs

for managing the long-term energy imbalance, more tariff-related information

can be obtained and a predictor for expected customers and tariffs could be

developed and incorporated with our prediction method.

The state-based method allows for customization within the methods that

are applied within its framework. For this thesis we have used three characteris-

tics to acquire the relevant states for each prediction: the part of the week, the

customer, and the tariff. In the future of Power TAC, more characteristics could

be added to predict energy consumption, such as features that are associated

with the weather. Since the application of states is general, this part of the pre-

diction method can also be applied in other domains by using features relevant

for that domain as determinants for states. Another possible addition to the

model is the inclusion of state merging for states that are similar to increase the

size of data sets contained within states.

For this thesis, we have applied a weighted average method in combination

with a simple linear regression model to determine a timeslot trend that repre-

sents the expected relative magnitude of future consumption. The state-based

method allows for using different prediction setups within the states. One could

use other weighted methods to determine the timeslot trend, or replace the

simple linear regression component with another regression model, such as a

segmented one.
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Appendix A

Pilot broker attraction
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Figure A.1: The distribution of the population of the Village 1 customer over
the brokers of the pilot competition. This customer has a population of 8.
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Figure A.2: The distribution of the population of the Village 2 customer over
the brokers of the pilot competition. This customer has a population of 8.
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Figure A.3: The distribution of the population of the DowntownHouseholds cus-
tomer over the brokers of the pilot competition. This customer has a population
of 10,000.
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Figure A.4: The distribution of the population of the MorewoodHouseholds cus-
tomer over the brokers of the pilot competition. This customer has a population
of 1,000.
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Figure A.5: The distribution of the population of the HighlandBusinesses cus-
tomer over the brokers of the pilot competition. This customer has a population
of 100.
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Figure A.6: The distribution of the population of the UniFacilities1 customer
over the brokers of the pilot competition. This customer has a population of 1.
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Figure A.7: The distribution of the population of the UniFacilities2 customer
over the brokers of the pilot competition. This customer has a population of 1.
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Figure A.8: The distribution of the population of the JennywoodPark customer
over the brokers of the pilot competition. This customer has a population of 1.
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Figure A.9: The distribution of the population of the WindmillCoOp customer
over the brokers of the pilot competition. This customer has a population of 50.
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Figure A.10: The distribution of the population of the SunnysideSolar customer
over the brokers of the pilot competition. This customer has a population of 2.



Appendix B

Pilot customer consumption
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Figure B.1: The total consumption per timeslot for the Village 1 customer
during the pilot competition.
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Figure B.2: The total consumption per timeslot for the Village 2 customer
during the pilot competition.
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Figure B.3: The total consumption per timeslot for the DowntownHouseholds
customer during the pilot competition.
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Figure B.4: The total consumption per timeslot for the MorewoodHouseholds
customer during the pilot competition.
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Figure B.5: The total consumption per timeslot for the HighlandBusinesses
customer during the pilot competition.
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Figure B.6: The total consumption per timeslot for the UniFacilities1 customer
during the pilot competition.
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Figure B.7: The total production per timeslot for the WindmillCoOp customer
during the pilot competition.
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Figure B.8: The total production per timeslot for the SunnysideSolar customer
during the pilot competition.
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Appendix C

Evaluation results

C.1 State-based prediction method

Table C.1: The absolute percentage errors notated as (Q1APE,

MdAPE, Q3APE) of the predictions for the state-based method

given the different scenarios, the number m of timeslots taken into

account to form a prediction, and the set of prediction gaps {1, 2,

3, 6, 12, 23}.

Scenario 1.1

m gap of 1 gap of 2 gap of 3

1 (4.93, 11.41, 22.27) (5.23, 11.94, 26.22) (5.49, 12.25, 24.31)

2 (5.12, 11.40, 21.56) (5.35, 11.91, 25.75) (5.27, 12.48, 23.95)

3 (5.11, 11.14, 21.98) (5.28, 12.25, 25.89) (5.22, 12.34, 24.64)

4 (4.75, 11.38, 22.54) (5.07, 12.30, 25.21) (5.13, 12.15, 24.01)

5 (4.77, 11.63, 23.36) (5.02, 12.07, 25.09) (5.00, 12.30, 24.20)

6 (4.75, 11.66, 23.10) (4.93, 12.44, 24.74) (4.83, 12.21, 24.18)

7 (4.86, 11.62, 23.30) (4.74, 12.07, 25.00) (4.12, 12.34, 24.20)
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m gap of 6 gap of 12 gap of 23

1 (5.67, 14.18, 27.50) (5.60, 13.13, 27.28) (5.73, 12.89, 24.97)

2 (4.93, 13.57, 24.99) (5.07, 12.86, 25.02) (5.25, 11.98, 21.91)

3 (4.81, 13.37, 23.98) (4.74, 12.66, 23.92) (5.51, 12.03, 22.81)

4 (4.86, 13.00, 23.95) (4.81, 12.34, 23.46) (5.30, 11.88, 22.61)

5 (4.88, 12.68, 23.79) (4.80, 12.19, 23.59) (5.17, 11.94, 22.21)

6 (4.82, 12.46, 23.79) (5.07, 11.86, 23.62) (5.36, 12.05, 22.23)

7 (5.03, 12.37, 23.64) (5.21, 11.47, 22.34) (5.30, 11.89, 22.40)

Scenario 2.1

m gap of 1 gap of 2 gap of 3

1 (0.63, 1.39, 2.31) (0.59, 1.40, 2.41) (0.67, 1.46, 2.50)

2 (0.63, 1.34, 2.18) (0.65, 1.31, 2.37) (0.73, 1.43, 2.45)

3 (0.67, 1.34, 2.22) (0.71, 1.31, 2.41) (0.71, 1.43, 2.43)

4 (0.64, 1.38, 2.24) (0.67, 1.32, 2.42) (0.71, 1.38, 2.38)

5 (0.67, 1.40, 2.27) (0.70, 1.31, 2.42) (0.68, 1.36, 2.34)

6 (0.68, 1.38, 2.25) (0.70, 1.33, 2.37) (0.71, 1.36, 2.37)

7 (0.71, 1.42, 2.22) (0.72, 1.34, 2.37) (0.71, 1.35, 2.34)

m gap of 6 gap of 12 gap of 23

1 (0.65, 1.41, 2.44) (0.68, 1.33, 2.44) (0.78, 1.56, 2.76)

2 (0.64, 1.42, 2.38) (0.68, 1.35, 2.40) (0.77, 1.58, 2.70)

3 (0.65, 1.38, 2.37) (0.68, 1.32, 2.37) (0.82, 1.58, 2.72)

4 (0.64, 1.33, 2.40) (0.71, 1.40, 2.35) (0.85, 1.53, 2.67)

5 (0.64, 1.32, 2.40) (0.70, 1.41, 2.35) (0.83, 1.51, 2.64)

6 (0.65, 1.32, 2.41) (0.69, 1.40, 2.32) (0.80, 1.50, 2.60)

7 (0.63, 1.31, 2.38) (0.68, 1.43, 2.32) (0.80, 1.49, 2.57)
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Scenario 2.2

m gap of 1 gap of 2 gap of 3

1 (0.64, 1.36, 2.37) (0.62, 1.41, 2.44) (0.64, 1.57, 2.49)

2 (0.66, 1.33, 2.27) (0.63, 1.33, 2.36) (0.65, 1.47, 2.38)

3 (0.65, 1.35, 2.28) (0.68, 1.34, 2.35) (0.63, 1.43, 2.41)

4 (0.63, 1.32, 2.27) (0.69, 1.37, 2.32) (0.63, 1.42, 2.38)

5 (0.65, 1.35, 2.29) (0.67, 1.37, 2.33) (0.65, 1.42, 2.30)

6 (0.68, 1.36, 2.28) (0.69, 1.40, 2.29) (0.63, 1.42, 2.29)

7 (0.70, 1.36, 2.24) (0.70, 1.37, 2.25) (0.63, 1.42, 2.32)

m gap of 6 gap of 12 gap of 23

1 (0.68, 1.49, 2.40) (0.69, 1.45, 2.47) (0.76, 1.59, 2.67)

2 (0.68, 1.43, 2.32) (0.68, 1.41, 2.41) (0.71, 1.55, 2.69)

3 (0.67, 1.42, 2.32) (0.68, 1.40, 2.39) (0.76, 1.52, 2.63)

4 (0.68, 1.41, 2.35) (0.71, 1.43, 2.35) (0.74, 1.53, 2.58)

5 (0.69, 1.34, 2.38) (0.70, 1.44, 2.36) (0.71, 1.50, 2.57)

6 (0.68, 1.35, 2.38) (0.67, 1.46, 2.40) (0.72, 1.50, 2.55)

7 (0.64, 1.38, 2.37) (0.66, 1.47, 2.36) (0.72, 1.46, 2.52)

Scenario 2.3

m gap of 1 gap of 2 gap of 3

1 (0.77, 1.46, 2.22) (0.74, 1.49, 2.40) (0.71, 1.57, 2.38)

2 (0.72, 1.42, 2.18) (0.68, 1.39, 2.29) (0.70, 1.44, 2.33)

3 (0.72, 1.44, 2.13) (0.70, 1.43, 2.26) (0.67, 1.40, 2.25)

4 (0.68, 1.41, 2.03) (0.71, 1.37, 2.25) (0.70, 1.34, 2.25)

5 (0.70, 1.44, 2.00) (0.70, 1.35, 2.26) (0.72, 1.33, 2.25)

6 (0.75, 1.45, 2.04) (0.70, 1.34, 2.25) (0.74, 1.32, 2.24)

7 (0.74, 1.44, 2.08) (0.70, 1.35, 2.25) (0.75, 1.36, 2.23)
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m gap of 6 gap of 12 gap of 23

1 (0.74, 1.50, 2.43) (0.70, 1.45, 2.43) (0.80, 1.49, 2.64)

2 (0.69, 1.50, 2.41) (0.68, 1.45, 2.37) (0.76, 1.49, 2.41)

3 (0.66, 1.35, 2.34) (0.66, 1.40, 2.29) (0.71, 1.45, 2.43)

4 (0.71, 1.31, 2.31) (0.69, 1.42, 2.26) (0.71, 1.37, 2.42)

5 (0.77, 1.34, 2.26) (0.69, 1.41, 2.26) (0.68, 1.38, 2.40)

6 (0.78, 1.34, 2.24) (0.70, 1.42, 2.26) (0.64, 1.39, 2.39)

7 (0.74, 1.34, 2.23) (0.73, 1.40, 2.27) (0.67, 1.39, 2.39)

Scenario 2.4

m gap of 1 gap of 2 gap of 3

1 (0.65, 1.45, 2.6) (0.69, 1.49, 2.71) (0.75, 1.58, 2.79)

2 (0.74, 1.45, 2.59) (0.74, 1.45, 2.72) (0.75, 1.57, 2.79)

3 (0.76, 1.44, 2.59) (0.73, 1.48, 2.74) (0.76, 1.56, 2.78)

4 (0.72, 1.46, 2.62) (0.70, 1.53, 2.72) (0.77, 1.59, 2.79)

5 (0.72, 1.47, 2.65) (0.71, 1.55, 2.71) (0.75, 1.58, 2.81)

6 (0.70, 1.51, 2.62) (0.69, 1.56, 2.70) (0.72, 1.61, 2.77)

7 (0.70, 1.53, 2.63) (0.70, 1.60, 2.71) (0.74, 1.61, 2.79)

m gap of 6 gap of 12 gap of 23

1 (0.69, 1.65, 2.81) (0.76, 1.64, 2.99) (0.79, 1.65, 2.81)

2 (0.70, 1.58, 2.78) (0.75, 1.65, 2.87) (0.79, 1.64, 2.73)

3 (0.70, 1.53, 2.75) (0.74, 1.63, 2.81) (0.79, 1.55, 2.71)

4 (0.70, 1.58, 2.71) (0.76, 1.63, 2.75) (0.80, 1.52, 2.76)

5 (0.69, 1.59, 2.68) (0.75, 1.65, 2.66) (0.78, 1.50, 2.73)

6 (0.71, 1.56, 2.68) (0.74, 1.64, 2.67) (0.76, 1.50, 2.72)

7 (0.73, 1.55, 2.70) (0.73, 1.62, 2.65) (0.76, 1.50, 2.77)
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Scenario 3.1

m gap of 1 gap of 2 gap of 3

1 (1.44, 3.05, 4.83) (1.46, 3.23, 5.07) (1.20, 3.24, 5.40)

2 (1.46, 3.02, 4.71) (1.37, 3.11, 5.04) (1.38, 3.24, 5.16)

3 (1.40, 3.09, 4.80) (1.37, 3.11, 5.21) (1.52, 3.13, 5.18)

4 (1.30, 2.99, 4.82) (1.33, 3.13, 5.13) (1.53, 3.09, 5.10)

5 (1.32, 3.01, 4.93) (1.37, 3.12, 5.00) (1.53, 3.11, 5.21)

6 (1.33, 3.07, 4.90) (1.32, 3.05, 5.01) (1.52, 3.19, 5.21)

7 (1.31, 3.08, 4.90) (1.40, 3.05, 4.99) (1.51, 3.29, 5.17)

m gap of 6 gap of 12 gap of 23

1 (1.30, 3.44, 5.42) (1.85, 3.38, 5.45) (1.55, 3.35, 5.41)

2 (1.33, 3.36, 5.22) (1.71, 3.44, 5.48) (1.56, 3.24, 5.24)

3 (1.39, 3.39, 5.31) (1.69, 3.37, 5.54) (1.63, 3.24, 5.21)

4 (1.42, 3.32, 5.34) (1.60, 3.41, 5.35) (1.46, 3.19, 5.28)

5 (1.44, 3.34, 5.40) (1.57, 3.47, 5.39) (1.63, 3.14, 5.32)

6 (1.47, 3.38, 5.40) (1.49, 3.45, 5.39) (1.55, 3.21, 5.27)

7 (1.47, 3.40, 5.45) (1.47, 3.37, 5.37) (1.58, 3.29, 5.26)

Scenario 4.1

m gap of 1 gap of 2 gap of 3

1 (8.15, 16.27, 25.80) (8.80, 16.98, 27.96) (8.04, 17.58, 28.47)

2 (8.32, 15.79, 25.99) (8.38, 15.54, 28.68) (8.53, 16.72, 28.38)

3 (8.53, 15.81, 26.23) (8.39, 15.91, 27.88) (8.54, 16.68, 28.31)

4 (7.88, 16.03, 26.78) (8.02, 16.60, 26.40) (8.85, 16.69, 28.38)

5 (8.16, 16.13, 26.10) (8.57, 16.48, 27.08) (8.85, 16.35, 28.53)

6 (8.30, 15.92, 25.59) (8.72, 16.10, 27.80) (8.80, 16.94, 28.50)

7 (8.41, 15.71, 25.69) (8.59, 16.67, 27.63) (8.85, 17.43, 28.33)
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m gap of 6 gap of 12 gap of 23

1 (9.59, 18.49, 30.06) (8.89, 17.03, 31.25) (8.99, 17.92, 30.68)

2 (8.97, 18.28, 28.91) (9.32, 17.38, 28.68) (8.66, 17.46, 29.48)

3 (8.77, 18.18, 29.79) (9.48, 17.30, 29.92) (8.43, 17.29, 29.16)

4 (9.46, 18.18, 29.73) (9.49, 17.65, 29.85) (8.38, 17.84, 28.25)

5 (9.67, 17.92, 28.73) (9.34, 17.79, 29.23) (8.71, 17.61, 27.85)

6 (9.51, 17.74, 28.66) (9.32, 17.77, 29.40) (8.99, 17.62, 27.45)

7 (9.37, 17.67, 28.74) (9.29, 17.61, 28.30) (9.39, 17.48, 26.78)

Scenario 5.1

m gap of 1 gap of 2 gap of 3

1 (0.84, 1.84, 3.28) (0.92, 2.02, 3.57) (0.90, 1.88, 3.56)

2 (0.93, 1.85, 3.20) (0.89, 1.95, 3.34) (0.99, 1.90, 3.47)

3 (0.88, 1.80, 3.12) (0.91, 1.92, 3.37) (0.95, 1.83, 3.33)

4 (0.81, 1.88, 3.09) (0.90, 1.84, 3.32) (0.92, 1.91, 3.30)

5 (0.82, 1.88, 3.10) (0.90, 1.83, 3.35) (0.92, 1.89, 3.29)

6 (0.85, 1.93, 3.13) (0.92, 1.85, 3.25) (0.94, 1.86, 3.24)

7 (0.88, 1.89, 3.09) (0.88, 1.89, 3.24) (0.97, 1.87, 3.21)

m gap of 6 gap of 12 gap of 23

1 (0.90, 2.02, 3.39) (0.97, 2.06, 3.94) (1.07, 2.15, 4.42)

2 (0.92, 1.89, 3.21) (1.01, 1.93, 3.71) (1.04, 1.96, 3.72)

3 (0.91, 1.90, 3.35) (0.96, 1.99, 3.60) (0.97, 1.88, 3.55)

4 (0.88, 1.89, 3.33) (0.98, 1.93, 3.53) (0.93, 1.87, 3.45)

5 (0.91, 1.89, 3.31) (0.92, 1.87, 3.50) (0.91, 1.85, 3.37)

6 (0.93, 1.89, 3.33) (0.91, 1.86, 3.40) (0.91, 1.87, 3.35)

7 (0.95, 1.87, 3.34) (0.92, 1.85, 3.39) (0.88, 1.82, 3.36)
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C.2 Regression tree method

Table C.2: The average absolute percentage errors notated as

(Q1APE, MdAPE, Q3APE) of the predictions for the regression

tree prediction method given the different scenarios and the set of

prediction gaps {1, 2, 3, 6, 12, 23}, based on ten different runs per

scenario. The lower and upper bound of each set of ten predictions

associated to one scenario are also displayed.

Scenario 1.1

Run gap of 1 gap of 2 gap of 3

L.bound (5.91, 13.36, 23.61) (5.75, 13.23, 23.67) (5.84, 13.20, 23.46)

Avg (6.32, 13.65, 24.09) (6.16, 13.45, 24.18) (6.21, 13.52, 24.00)

U.bound (6.73, 13.94, 24.56) (6.56, 13.67, 24.69) (6.59, 13.84, 24.54)

Run gap of 6 gap of 12 gap of 23

L.bound (5.88, 13.29, 23.74) (6.07, 13.46, 24.16) (6.64, 13.87, 23.98)

Avg (6.28, 13.63, 24.42) (6.53, 13.91, 24.61) (6.85, 14.16, 24.66)

U.bound (6.68, 13.97, 25.10) (7.00, 14.35, 25.05) (7.06, 14.46, 25.34)

Scenario 2.1

gap of 1 gap of 2 gap of 3

L.bound (0.68, 1.50, 2.44) (0.67, 1.48, 2.46) (0.68, 1.46, 2.45)

Avg (0.71, 1.52, 2.48) (0.71, 1.51, 2.50) (0.71, 1.49, 2.48)

U.bound (0.74, 1.55, 2.53) (0.74, 1.53, 2.54) (0.74, 1.53, 2.52)

gap of 6 gap of 12 gap of 23

L.bound (0.70, 1.47, 2.48) (0.66, 1.47, 2.45) (0.72, 1.49, 2.51)

Avg (0.74, 1.49, 2.52) (0.69, 1.49, 2.49) (0.75, 1.53, 2.54)

U.bound (0.77, 1.52, 2.55) (0.72, 1.51, 2.52) (0.78, 1.58, 2.57)
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Scenario 2.2

gap of 1 gap of 2 gap of 3

L.bound (0.67, 1.45, 2.46) (0.70, 1.50, 2.48) (0.69, 1.48, 2.47)

Avg (0.72, 1.50, 2.53) (0.74, 1.53, 2.53) (0.73, 1.53, 2.53)

U.bound (0.76, 1.55, 2.60) (0.77, 1.57, 2.57) (0.77, 1.58, 2.58)

gap of 6 gap of 12 gap of 23

L.bound (0.69, 1.52, 2.50) (0.67, 1.48, 2.46) (0.74, 1.51, 2.50)

Avg (0.74, 1.56, 2.56) (0.70, 1.51, 2.52) (0.76, 1.55, 2.54)

U.bound (0.80, 1.60, 2.61) (0.74, 1.54, 2.58) (0.79, 1.59, 2.58)

Scenario 2.3

gap of 1 gap of 2 gap of 3

L.bound (0.70, 1.40, 2.30) (0.71, 1.39, 2.29) (0.71, 1.39, 2.29)

Avg (0.73, 1.44, 2.37) (0.73, 1.42, 2.35) (0.74, 1.43, 2.34)

U.bound (0.76, 1.47, 2.43) (0.75, 1.46, 2.40) (0.77, 1.48, 2.39)

gap of 6 gap of 12 gap of 23

L.bound (0.72, 1.41, 2.32) (0.71, 1.46, 2.25) (0.68, 1.50, 2.34)

Avg (0.76, 1.45, 2.37) (0.74, 1.52, 2.32) (0.72, 1.53, 2.39)

U.bound (0.79, 1.49, 2.41) (0.77, 1.58, 2.39) (0.76, 1.56, 2.45)

Scenario 2.4

gap of 1 gap of 2 gap of 3

L.bound (0.69, 1.46, 2.51) (0.67, 1.45, 2.47) (0.67, 1.45, 2.47)

Avg (0.73, 1.50, 2.55) (0.71, 1.51, 2.52) (0.71, 1.49, 2.51)

U.bound (0.77, 1.55, 2.59) (0.75, 1.56, 2.57) (0.75, 1.53, 2.55)

gap of 6 gap of 12 gap of 23

L.bound (0.67, 1.45, 2.42) (0.69, 1.48, 2.43) (0.70, 1.57, 2.59)

Avg (0.69, 1.49, 2.45) (0.72, 1.51, 2.47) (0.74, 1.61, 2.64)

U.bound (0.72, 1.52, 2.48) (0.74, 1.54, 2.51) (0.77, 1.65, 2.70)
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Scenario 3.1

gap of 1 gap of 2 gap of 3

L.bound (1.46, 3.16, 5.15) (1.42, 3.15, 5.20) (1.42, 3.14, 5.19)

Avg (1.52, 3.23, 5.26) (1.48, 3.22, 5.33) (1.50, 3.22, 5.31)

U.bound (1.57, 3.30, 5.36) (1.55, 3.28, 5.45) (1.58, 3.30, 5.43)

gap of 6 gap of 12 gap of 23

L.bound (1.42, 3.17, 5.20) (1.36, 3.17, 5.32) (1.41, 3.12, 5.18)

Avg (1.49, 3.25, 5.31) (1.43, 3.24, 5.43) (1.50, 3.20, 5.25)

U.bound (1.57, 3.32, 5.42) (1.50, 3.31, 5.54) (1.58, 3.28, 5.32)

Scenario 4.1

gap of 1 gap of 2 gap of 3

L.bound (8.31, 16.15, 26.87) (8.56, 16.28, 26.95) (8.28, 16.19, 26.93)

Avg (8.62, 16.59, 27.41) (8.80, 16.72, 27.62) (8.64, 16.50, 27.56)

U.bound (8.92, 17.03, 27.96) (9.03, 17.16, 28.28) (9.00, 16.82, 28.19)

gap of 6 gap of 12 gap of 23

L.bound (8.18, 16.32, 26.90) (8.37, 16.08, 27.57) (8.01, 15.76, 26.27)

Avg (8.55, 16.58, 27.49) (8.74, 16.54, 27.99) (8.37, 16.19, 26.74)

U.bound (8.92, 16.84, 28.08) (9.10, 17.00, 28.40) (8.73, 16.62, 27.21)

Scenario 5.1

gap of 1 gap of 2 gap of 3

L.bound (1.07, 2.29, 4.12) (1.09, 2.28, 4.04) (1.06, 2.25, 3.93)

Avg (1.13, 2.34, 4.22) (1.14, 2.33, 4.19) (1.13, 2.31, 4.09)

U.bound (1.20, 2.39, 4.31) (1.20, 2.38, 4.33) (1.19, 2.37, 4.25)

gap of 6 gap of 12 gap of 23

L.bound (1.04, 2.13, 3.73) (1.02, 2.12, 3.78) (0.95, 2.14, 3.89)

Avg (1.10, 2.20, 3.93) (1.07, 2.20, 3.89) (1.00, 2.22, 4.03)

U.bound (1.16, 2.27, 4.12) (1.12, 2.28, 3.99) (1.06, 2.29, 4.16)
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