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Abstract

Due to the rising use of internet, the business of e-commerce has grown
rapidly in the last years. The easy access to information leads to transpar-
ent markets with high competition due to high price sensitive customers.
Not only the customers benefit from easy access to information, companies
can also benefit from the available market information which is available
in many sectors. In this report we propose the Dependent Region Dynamic
Pricing (DRDP) model for tour operators. The DRDP model can be used for
the dynamic pricing decision of products which make use of both flight and
hotel capacities. The DRDP model is an extension of the dynamic pricing
model proposed in [50]. The DRDP model incorporates both competition
between regional clusters and market information whereas the model from
[50] assumes independent regions. The DRDP model makes use of a two-step
structure. Therefore, the model is still workable in terms of computation
times.

Keywords: •Revenue Management •Online Tour Operator
• Cross Elasticities • Transparent Market • Two− Step Model
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Chapter 1

Background

Currently, Revenue Management (RM) is widely used in many practical
applications in various industries. The most famous applications are those
in the airline industry (See for example: [26], [44], [52]), the hotel industry
([20], [25], [27],[35]) and the car rental industry ([16], [39]). According to
[9] these are the traditional industries in which RM models are applied.
Nevertheless, nowadays many other industries are experiencing the benefits
of RM models. Examples can be found in retailing ([4], [38]), media and
broadcasting ([8],[33]), tour operating ([50], [42], [43]), cruise ships [28] and
casinos [37].

Alongside the growing importance of Revenue Management, the busi-
ness of e-commerce is also rapidly growing. Moreover, according to [53] the
business of e-commerce faced a growth of 18,9% in revenue in 2010. This
growth steadily continued in 2011. Typically, in e-commerce there is a con-
stant flow of information which is generated by customers visiting websites.
Based on the visitors real-time information, price changes and promotional
decisions can be made without human interference. To make proper deci-
sions without human interference, reliable decision models are crucial for a
successful business.

Next to the easy data collection, the online setting also adds another
dimension to the already complex pricing problems. The important aspect
of operating online is that customers can easily compare competing goods
through price comparing websites1. Next to the travel sector, these price
comparing websites are also available in many other sectors. The possibility
for customers to compare different competing goods at almost no cost or
effort leads to a highly transparent market. In a high transparent market,
customers are well informed and highly price sensitive. Examples in the
literature are plentiful (see for example: [17], [18] and [41]) for examples of
competing traveling regions.

1examples of price comparing websites in travel industry are: www.expedia.com,
www.orbitz.com, www.travelsupermarket.com
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To stay ahead of competitors, it is important to incorporate the latest
developments into the decision making process. This can make the difference
between success and failure in this fiercely competitive market.

In this report we will focus on improving the RM model proposed in
[50]. This RM model is operating in an online setting and has proven to
be very successful. In the decreasing market of the economic recession the
tour operator was able to transfer 11% more passengers. The realized rev-
enue also increased with 6% and the margin even increased 137%. Despite
these impressive results, room for improvement can still be found. We are
able to extend this model by incorporating external market information and
extended consumer behavior. This results in a robust and more elaborate
approach.

1.1 Research Questions
In this study we integrate extended consumer behavior into the RM model
proposed in [50]. Beforehand, this results in several research questions. We
try to find the answers to these questions. Some of these questions raise
new sub-questions. We will also define some additional questions which are
relevant for this study. Let us first propose the following main research
question (RQ).

1.1.1 Main Research Question

RQ: How can we integrate extended consumer behavior and market infor-
mation into a tour operator’s RM model?

1.1.2 Research Sub-Questions

In this study we use a data driven approach, this means we focus on the
observed consumer behavior. The first thing we want to know is how we
can integrate the market information into the tour operators pricing deci-
sion. We are also interested in how we can measure the consumer behavior
from historical booking data. After we measured the observed behavior, we
want to know how this can be integrated into a RM model. Therefore, this
question can be split into three sub-questions (SQ.1 - SQ.3).

SQ.1: How can we integrate market information into the tour operators pric-
ing decisions?

SQ.2: How can we measure the consumer behavior from the historical booking
data?

SQ.3: How can we integrate the measured consumer behavior into a RM
model?
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In Chapter 4 we focus on measuring the consumer behavior from the
historical booking data. We focus on the behavior of customers after price
changes compared to the market price. In Chapter 5 we focus on integrating
this consumer behavior into a RM model.

1.1.3 Other Relevant Questions

Next to the research questions and sub-questions we are also interested in
other aspects of the proposed RM model. Therefore, we also try to answer
general questions about the validity and practicality of the model. It is
important to have answered these questions before the model can be used
in practice.

• What is the validity of the proposed model?

• How can we measure this validity?

• How does the extended model perform compared to the original model?

• Is the extended model still workable in terms of computation times?

• Are the additional computation times acceptable for practical applica-
tion?

• Are the expected benefits interesting for practical usage?

1.2 Outline
In this section, a brief summary of the following chapters is provided. In this
first chapter, we provided some background on RM models and the impor-
tant online setting. We also stated the research questions, these questions
will be answered in the remainder of this study.

In Chapter 2, some insights in the actual problem are provided. We
provide an overview of the complete decision making process for the online
setting of the pricing problem. This overview enables us to place the RM
model in the bigger picture of the tour operator’s decision making process.
One of the most important things is the composition of the travel prod-
ucts, the products the tour operator offers. We see that these products
are competing for space among multiple flights and hotels, this results in
a considerable combinatorial problem. [50] tackled this problem using an
Independent Region Dynamic Pricing (IRDP) model. We also focus on the
possible limitations of the IRDP approach.

In Chapter 3, the relevant literature is studied extensively. This litera-
ture study helps us placing our research into perspective.
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In Chapter 4, the observed consumer behavior is measured and quan-
tified. The consumer behavior is captured in a multiple regression model.
This multiple regression model includes cross regional effects and the exter-
nal market information. The goal of the regression model is to estimate the
expected market share for a a certain region, for a given pricing decision.

In Chapter 5, the quantified consumer behavior is integrated into a De-
pendent Region Dynamic Pricing (DRDP) model. The DRDP model con-
tains two stages: in the first stage the regional cross effects are used to
identify the optimal region price, this price is taken into account while pric-
ing the individual products in the second stage.

In Chapter 6 we provide an analytical comparison between the IRDP
model and the DRDP model. First, we focus on the problem size of the
different models. Next, we focus on the comparison of the objectives of the
different models.

In Chapter 7 we provide a case study on Sunweb, a large online tour
operator based in the Netherlands. The cross regional effects are measured
using actual booking data. Hereafter, the cross regional effects are used to
solve the DRDP model for multiple problem instances. For all instances, we
use simulation to compare the results of the DRDP pricing decision to the
IRDP pricing decision.

Finally, In Chapter 8 we draw the main conclusions and we provide some
managerial advice.
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Chapter 2

Problem Description

In this chapter we provide a detailed description of the research problem.
In section 2.1, the setting of the problem is described. The RM model

proposed in [50] can be generally applied to a tour operator facing the de-
scribed problem setting. Important is the structure of the travel products.
These travel products contain the unique combination of several properties.
Subsequently, an overview of the decision making process for the online set-
ting of the problem is provided. This overview enables us to place the RM
model in the complete picture of the decision making process.

In section 2.2, we focus on the step of the RM model in which the prices
are determined. The pricing model is based on the assumption that the
regions are independent, therefore we refer to this model as the IRDP (In-
dependent Region Dynamic Pricing) model. The assumption of independent
regions considerably simplifies the problem.

In section 2.3, possible limitations of the IRDP model are discussed. We
describe the way the consumer behavior is modeled in the IRDP model. We
also describe the consumer behavior in reality. The goal of this research is
to close the gap between the consumer behavior in the IRDP model and the
consumer behavior in reality. We try to find a RM model that describes
reality as close as possible.

2.1 Required Problem Setting
The RM model proposed in [50] is tailor made for a specific tour operator.
Nevertheless, this model can be generally applied to any tour operator that
faces a similar problem setting. In this section we describe the problem
setting that is required to apply the proposed RM model successfully. An
important requirement is that the composition of the travel products must
have a certain structure. This structure is described in 2.1.1. Subsequently,
the specific requirements for the decision making process are described in
2.1.2.
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2.1.1 Composition of the Travel Products

The first requirement of the problem setting has to do with the composition
of the travel products. Each product consists of a unique combination of
the following properties:

• Brand

• Destination

• Accommodation

• Room Type

• Start Date

• Outbound Flight

• End Date

• Inbound Flight

Sometimes, tour operators are operating using different brand names. In
that case, the brand is used to differentiate products. All products contain
a certain destination. Next to this destination, a product consists of the
stay, inbound and outbound flights for given dates. This means that the
products with the same destination are competing for space among multi-
ple flights and accommodations. For example, products competing for the
same outbound flight might be booked to a different accommodation with
a different duration. This leads to a large number of products using the
same outbound flight. The same holds for inbound flights and for the ac-
commodation capacity. A product consists of a unique combination of its
attributes, this can lead to a very large number of unique combinations, this
is illustrated in example 2.1.

Example 2.1. Consider two travel products departing the same day. The
duration of the trips is 8 and 11 days respectively. Both products can make
use of the same inbound flight, so the inbound flight overlaps. Next to this,
both products can make use of the same accommodation, in that case the
stays overlap 8 accommodation days. In total, the 8 day trip influences ten
different capacities. The 11 day trip influences different 13 capacities. Note
that when the number of products grows, the number of overlaps also grows.

Example 2.1 clearly shows that there are a high number of products in-
fluencing the same capacities. This means that if a product is booked, the
capacities of many other products are also influenced. This example shows
the overlap between two travel products, in real life there might be millions
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of travel products. Because of the overlap, only a small percentage is actu-
ally booked. The overlapping capacities of the travel products generate a
considerable combinatorial problem. The challenge is to price these prod-
ucts subject to these capacity constraints to generate maximum revenue. In
section 2.2 we discuss how [50] tackled this complex problem.

2.1.2 The Decision Making Process

Other requirements for the problem setting are related to the decision mak-
ing process. First of all, let us give an overview of the general decision
making process a tour operator faces. According to [47] the decision making
process of a tour operator consists of three general stages.

1. Determine start capacities:
The first stage consists of the capacity planning, in this stage the starting ac-
commodation and flight capacities have to be determined. These capacities
are usually outsourced to third-party suppliers. Also, in the travel industry
the initial capacities are often assumed to be fixed. This means that the
flight and hotel capacities are reserved beforehand. Due to this assumption
we can treat the available capacities as given; this considerably simplifies
the pricing decisions.

2. Determine base prices:
In the second stage, based on the determined capacities, a base price is
determined for each of the products. These base prices are adjusted in the
RM stage to respond to recent developments.

3. RM model/ dynamic pricing:
The third stage is considered as the RM stage, in this stage the revenue is
maximized as a reaction to the operational information obtained from the
tour operators websites. In this study we mainly focus on this third stage
considering the input from the other stages as given. In figure 2.1 we see
the diagram of the tour operator’s decision making process. The shaded
areas are the stages which are under control of the tour operator, the three
general stages from [47] can clearly be distinguished.

In figure 2.1 we extended the decision making process for an online tour
operator. This figure is quite similar to the figure presented in [43], they
also focus on the decision support for online travel retailing. We see the
population of potential customers visiting the websites of the tour opera-
tor. There are n brands, all brands have their own website on which they
present the travel products. The different brands might be focusing on dif-
ferent market segments, for example youth, elderly people or families. The
potential customers might also be visiting the websites of competing tour
operators. From the websites the operational information is gathered. The
operational information is used to make long and short term forecasts for
the number of bookings. From the long term forecasts, long term deals can
be closed with third party suppliers. The long term forecasts are also used
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Figure 2.1: Overview of the decision process for an online tour operator

to determine the base price for each of the products. From the short term
forecasts the capacity planning is made and the prices are optimized within
the RM model. In reality it is sometimes possible to buy additional capac-
ities at third party suppliers. In this case the capacities entering the RM
model have to be adjusted. Finally, prices determined in the pricing model
are displayed on the websites.

2.2 Formulation of the IRDP Model
The Independent Region Dynamic Pricing (IRDP) model is the step in the
RM model in which the prices for the different products are determined. The
IRDP model is an example of a Multi-Product Multi-Resource (MPMR)
pricing model. In such a model the prices of multiple products which make
use of multiple resources are optimized. These resources can for example
be airline seats or hotel rooms. In this section we will give a detailed de-
scription of the IRDP model. We first define the used sets, parameters and
variables. Hereafter, the actual IRDP model is formulated.

14



Sets:

i ∈ I: Set of products

j ∈ Ji: Set of candidate prices defined for product i

t ∈ T : Set of time periods

k ∈ K: Set of resources

Sk ⊆ I: Set of products making use of resource k

Let I be the set containing all products i. For each product we define
set Ji containing candidate prices near the current price. The booking pe-
riod T for each of the products is partitioned into t smaller time intervals.
The time intervals can be chosen such that the arrival rate of purchasing
customers is assumed to be constant in each time interval. Let K be the
set of resources that can be used by the products. Note that one product
can make use of multiple resources, but also that a resource can be used by
multiple products. For each of the resources k we define the set Sk ⊆ I of
products that make use of this resource.

Parameters:

pij : Candidate price j for product i

ci: Cost price of product i

qijt: Expected demand for product i if candidate price j
is set in time period t

Capk: Available capacity for resource k

Let pij be the price for price candidate j of product i and let ci be the
cost price of product i. qijt is the expected number of customers purchasing
product i when price j is set in period t. Price elasticities are incorporated
for determining qijt at different price levels. These price elasticities are mea-
sured from the historical operational information for the different products.
We also define Capk as the available capacity of resource k at the beginning
of the optimization period.

Variables:

xijt: Fraction of time price j is chosen for product i in interval t

The goal of the IRDP model is to maximize the expected revenue over
the defined time period T. In the pricing decision we have to decide which
price to choose for each product in each time interval. To do this, we in-
troduce decision variables xijt ∈ [0, 1]. xijt is defined as the fraction of time
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interval t price j is chosen for product i. The price fractions form a price
path for every time interval. The resulting price path is used such that the
price path is decreasing (i.e. the highest price with a non-zero price fraction
is chosen first and the lowest price with a non-zero price fraction is chosen
last). The optimal price fractions are determined using the Linear Program-
ming (LP) model in (2.1)-(2.4).

Maximize:

πIRDP =
∑
i∈I

∑
j∈Ji

∑
t∈T

(pij − ci)qijtxijt (2.1)

Subject to: ∑
i∈Sk

∑
j∈Ji

∑
t∈T

qijtxijt ≤ Capk, ∀k ∈ K (2.2)

∑
j∈Ji

xijt ≤ 1, ∀i ∈ I, t ∈ T (2.3)

0 ≤ xijt, ∀i ∈ I, j ∈ J, t ∈ T (2.4)

The objective of the IRDP model sums over all periods, products and
possible candidate prices. For each period, the revenue for each product
(pij − ci) is multiplied by the expected demand for this price path (qijtxijt).
The objective of this model is to choose the price path for each product that
maximizes the total expected revenue over the given time horizon T .

Using constraint (2.2), we make sure that for each of the resources k ∈ K
the demand does not exceed the available capacity of this resource. Con-
straints (2.3) and (2.4) are constraints on the price path. These make sure
that the price path meets several conditions. Constraint (2.3) ensures that
for each time period the price path fractions are smaller or equal to one.
Additionally, in constraint (2.4) we make sure that all fractions are non-
negative.

For practical use, the IRDP model runs in a quasi-static environment.
This means that price changes are made every night based on the information
received during the day. The demand forecasts, capacities and elasticities
can also be updated in an overnight process. The data on which these com-
putations are based are stored in a rolling horizon containing the historical
data.

2.2.1 Decomposition of the IRDP model

In this subsection we describe the main practical advantage of the IRDP
model. In the IRDP model, products to different regions do not use over-
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lapping capacities. Therefore, the problem can be split into smaller sub-
problems per region. This can be done using the decomposition described
in this subsection.

First, note that the LP model in (2.1)-(2.4) can be written in standard
form (2.5).

max π = cx
s.t. Ax ≤ b

x ≥ 0,
(2.5)

with A the mn-matrix of constraint parameters.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn

 ,
x is the column n-vector of decision variables, c is the column n-vector

of cost coefficients and b is an m-vector with non-negative right hand side
parameters. Also note that 0 is the column n-vector of zeros.

First let us introduce set R containing all travel regions. Usually travel
products to different travel regions do not make use of the same hotel or
flight capacities. When we assume that the pricing decision for one region
does not influence the demand for other regions we can treat the regions
independently. This means that the set of products and the sets of resources
can be partitioned into subsets. In other words, we can split the set of
products I into subsets of products to each region I = {I1, I2, . . . , Ir}.

By partitioning the set of products into the subsets of products per
region, the LP model can be written for each region separately. Let cr, xr,
Ar and br be the vectors corresponding to region r. The problem can be
written as the following r sub-problems:

max πr = crxr
s.t. Arxr ≤ br

xr ≥ 0
, ∀r ∈ R (2.6)

Definition 2.1. When the sub problems in (2.6) are independent and πr is
the optimal solution for sub problem r. Then, the optimal solution of the
overall problem in (2.5) (π) can be expressed as the sum of the optimal so-
lutions of the sub problems. π =

∑
r∈R πr.

Usually the complexity of a LP model grows more than linearly in the
number of decision variables. Therefore, decomposing the LP problem into r
independent sub problems considerably reduces the complexity of the prob-
lem.
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2.3 Limitations of the IRDP Model
In the introduction we described the satisfactory results realized after imple-
menting the IRDP model from [50] at an online tour operator. Nevertheless,
room for improvement can still be found. In this section we will focus on
possible limitations of the IRDP model.

First, we look at the way consumer behavior is modeled in the IRDP
model. Next, we look at consumer behavior in reality. In the remainder of
the report we try to model this consumer behavior as closely as possible.
The final goal is to improve the RM model proposed in [50], so that it more
accurately describes the actual consumer behavior.

2.3.1 Consumer Behavior in IRDP Model

In the IRDP model in (2.1)-(2.4), price elasticities are used to predict the
demand for a given product for different price alternatives. Thus, in the
current approach the only trigger for additional customers to buy a certain
product is the price change of the given product. In this situation, we assume
that customers are not interested in substitutable products. According to
various literature sources ([14], [17]-[19], [47]) there are strong correlations
between different travel products. [19] states that the Internet has brought
consumers increased access to information to make purchase decisions. As
markets come closer to perfect information, one of the expected outcomes
is an increase in competition. Therefore, we expect that the negative con-
sequences of the simplifying assumption of independent regions increase in
the current market.

Another limitation of the current IRDP model is that external market
shocks (other than seasonality) are not accounted for in the elasticity esti-
mation, see example 2.2.

Example 2.2. The Arabic Rebellions starting in 2010 led to a decrease in
tourism in Egypt and Tunisia. In the current model this decrease might be
wrongly attributed to price changes. Thus, when we use historical data of
two years to estimate the price elasticities for these countries, the estimates
will be biased for the coming two years.

Despite the fact that this is a rather extreme example, it shows that in
general each external market shock (or shift) possibly causes biased elasticity
estimates. Numerous examples of such shocks can be found in reality. The
most important thing to note is that as long as these shocks are part of the
historical dataset, the elasticities remain biased.
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2.3.2 Consumer Behavior in Reality

In reality, customers will choose a product based on numerous interacting
factors. We aggregate these factors in the following categories: price changes
of the product, price changes of substitutable products, market shocks and
other external factors influencing demand. Next, we explain why each of
these groups might influence the demand for a given product. The challenge
of this research is to account for these factors in the pricing decisions. In
other words, the challenge is to formulate a pricing model in which these
factors are incorporated.

Price Changes of the Product

Obviously, the price of a product influences the demand for the product. A
higher price will lead to lower demand and a low price will lead to higher
demand. This leads to the well-known supply and demand curves from which
the price elasticity of a product can be estimated. The price elasticity of a
product is already incorporated in the IRDP model.

Price Changes of Substitutable Products

In addition to the price changes of the product itself, prices of substitutable
products can also influence the demand for a product. When the prices of
substitutable products fall, more people tend to choose the substitutes over
the given product. On the other hand, when the prices of the substitutes
rise more people are tend to choose the given product.

The substitutable products category is divided into two sub-categories:
substitutable products within the tour operator’s products and substitutable
products offered somewhere else in the market.

Within the first sub-category the tour operator fully controls these prices.
It might be possible for the tour operator to influence the customers to
choose certain products with large margins or available capacities.

The second sub-category consists of competing with products from other
tour operators in the market. Since tour operators operate in a highly
transparent market ([17] and [18]), the customers are well informed and
highly price sensitive. Customers who are willing to buy a certain travel
product will look in the market for substitutable products and choose a
product with a favorable price. This is illustrated in example 2.3:

Example 2.3. A customer is interested in a holiday trip for a certain date.
He finds an eight day trip to Crete, what he likes about Crete is the sun,
the sea and the beach. After he found this trip, he searches the web for
comparable trips to the Aegean Coast. When he finds out that trips to Rhodes
are less expensive he is triggered to book a 8 day trip to Rhodes instead.
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This illustrates the price sensitivity of the customers and also the com-
petitiveness of products with comparable properties. Therefore, it is also
important to look at the prices of products compared to the prices of sub-
stitutes in the market.

Shocks in Market Demand

Another direct effect in demand shocks come from shocks in the complete
market. All shocks that influence the total market demand are part of this
category. Example 2.2 also illustrated a shock in market demand. Market
shocks can for example be caused by: seasonality, economic recession, ter-
rorist attacks, war or natural disaster. Numerous other examples can be
found. Most of the time, it is hard to predict shocks in market demand.
However, we can define robust models in which the market shocks are less
influential.

Other External Factors

The shocks that are not due to price changes or market shocks are cate-
gorized as other external shocks. These shocks can for example be caused
marketing activity of the tour operator or by negative publicity for the tour
operator or one of its brands. In general these other external factors cause
shocks that influence the tour operator in a different way than the total
market.

Only the price changes of the products are incorporated in the consumer
behavior in the current RM model. In this research we focus on incorpo-
rating price changes of substitutable products into the elasticity estimation.
In the next chapter we will discuss relevant literature. This might provide
useful ideas and methods for measuring the consumer behavior and for ex-
tending the IRDP model. This also enables us to place our research within
the existing literature.
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Chapter 3

Related Literature

Before we can focus on the RM model we first have to focus on measur-
ing the cross price effects. Current literature provides numerous estimation
techniques that can be used to estimate the price and demand relation be-
tween multiple products. For example, in retailing a lot of research is done
on cross price effects ([10], [24], [45], [15] and [29]). The latter two are the
most interesting (and recent), they are discussed below. Most of this re-
search is based on store level scanner data1 or survey data. The scanner
data consists of the aggregate purchases for given periods (e.g. the weekly
purchases for a given product) and is therefore very similar to the historical
booking data of a tour operator.

In [15], scanner data from multiple stores is used to estimate the (cross)
price effects between private labels and national brands of groceries. They
propose a log-log regression model to estimate the demand-price elasticities.
Instrumental variables are used to account for price endogeneity. Like in
[10], [24] and [45] the wholesale price of a product is used as an instrument.
Although the use of instrumental variables seemed to work well, the whole-
sale price is not directly available for tour operators. This is because the
capacities are bought at the beginning of the season for a fixed price. In
addition, travel products make use of multiple capacities which makes it
more difficult to determine the exact wholesale price of a product. However,
in our research, before estimating the cross price effects we perform a data
transformation which reduces the endogeneity problem.

[29] investigate the cross category demand effects of promotions. They
are also interested in the cross price effects of substitutable products. To
avoid a high number of cross product effects, they divide the products into
different independent clusters. These clusters are again divided into differ-
ent categories between which category effects are measured. This clustering
mechanism can also be used by a tour operator. The travel products can

1This is Purchase information (for example: price, brand, product size, amount pur-
chased) gathered at the time of purchase by an electronic device.
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also be divided into independent clusters (e.g. sun products, winter prod-
ucts). Within these clusters we also create sub categories, for example the
countries, regions or destinations of the different products. In our case the
travel products are very specific, most of the products are never booked at
all. This also makes it necessary to aggregate the booking data on a higher
level. In the case of a tour operator, the geographical properties of products
offer a natural way to cluster the products. In our research we will cluster
the products on a higher regional level.

Also plenty literature is available on measuring price and cross price
elasticities between different holiday destinations ([12], [18], [19], [34]). A
frequently used model is the Almost Ideal Demand System (AIDS) model
proposed in [11]. In [12] this model is developed for the tourism context. In
the AIDS model, the budget share for travel destinations is estimated from
the average expenditures to these destinations. An interesting application
of the AIDS model is found in [34], they propose a hedonic pricing model
to explain the effects of product characteristics on the products prices. The
problem with this approach is that expenditure data of the different regions
is not always directly available. Besides this, updating the estimates from
this model needs new expenditure data. Therefore, for a tour operator’s
pricing decision these models are not useful. Nevertheless, these studies
provide insight in the expenditures of customers and price competitiveness
between different destinations.

In most cases, elasticities are estimated using a regression model. A
comprehensive and detailed overview of regression techniques, assumptions
and validity tests is given in [23]. We will also use these techniques to model
the consumer behavior.

There is also plenty literature available on RM models. We refer to [5],
[47] and the references therein for an overview. Particularly, we refer to [14]
for an overview of RM models under inventory considerations. However, not
much of this literature proposes RM models specifically for tour operators.
Besides this, pricing models from the airline and hotel industries are mostly
not directly applicable for a tour operator. The combinatorial effects result-
ing from products competing for limited hotel and airline capacities result
in a completely different problem structure. Therefore, as stated in [50],
RM models from the airline and hotel industry do not fit the tour operator
business properly.

Like in this study, some recent studies incorporate consumer behavior in
RM models ([3],[6],[13],[38]). They all use consumer choice models to model
the customers preferences. A frequently used consumer choice model is the
Multinomial Logit (MNL) model, this is used in [3] and [13]. But also other
consumer choice models are studied, in [6] the customers buying decisions
are modeled using a knapsack problem. In [38], products that are likely
to be bought simultaneously are offered as a package of products. Most
of these studies focus on buying decisions of customers that possibly buy
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multiple items. In the travel industry customers will not buy multiple travel
products at once, this has the consequence that these models not directly
applicable in the travel industry. However, in the travel industry people can
be influenced to buy a certain travel package with a high margin or large
free capacities.

For tour operators, several researchers mention the necessity of taking
into account the cross price elasticities (for example, [14] and [47]). Despite
this, we do not know of any research that actually integrates cross price
decisions into a tour operator’s dynamic pricing model.

23



Part II

Methods
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Chapter 4

Statistical Methods

In this chapter we discuss how the more advanced consumer behavior from
section 2.3.2 is measured and quantified.

First, in section 4.1 the market share functions and the relative price
functions are defined. We use the market shares and relative prices to
model the characteristics of a transparent market in which customers can
easily compare prices. We also propose a multiple regression model, used
to measure the cross elasticities. In the multiple regression model, we use
the relative prices of a region compared to the market and other regions to
explain the market share of the region.

Next in section 4.2, we propose a simulation technique that can be used
to estimate the price elasticities of demand from the estimated cross elastic-
ities. We simulate a dataset and from this we estimate the price elasticities
of demand using a simple regression model.

A (multiple) regression model is based on several regression assump-
tions. In section 4.3 we discuss the process of validating and testing these
assumptions.

4.1 Cross Elasticities
In section 2.3.2 we stated that the demand shocks are caused by price
changes, price changes of substitutes, market shocks and external shocks.
We will present and approach in which price changes and price changes of
substitutes are incorporated into the decision making process. Our approach
is also more robust in case of market shocks. The (cross) price effects are
modeled using a multiple regression model. In this section we propose a
method to estimate the cross price effects from the historical booking (and
market booking) data. The cross product effects are measured on the region
level. The products are clustered on regional level, as described in section
2.2.1. In the clustering decision we took into account the fact there has to
be enough data available on cluster level to measure effects. The regional
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level is also chosen because of the decomposition property which is used
again later on, in the optimization. After we defined the regional clusters,
we can measure the cross regional effects between these clusters. First, let
us introduce the used definitions for market share and relative prices. We
use capital letters to denote the properties of the regional clusters.

4.1.1 Market Share and Relative Prices

Let Qrt be the demand for the products to region r in time period t. First,
let us define the market in definition 4.1:

Definition 4.1. The market is defined as: all parties that directly compete
with the tour operator by offering similar products in the same market.

We chose to define the market as only direct competitors. It is important
that the market consists of actual competitors, else the desired cross product
effects will be disturbed.

Let Mt be the total market purchases in time period t. Let Srt be the
tour operators market share for region r in time period t. The market share
is defined as the fraction of purchases to region r at tour operator relative
to the total market purchases. This relationship is defined in (4.1):

Srt := Qrt
Mt

. (4.1)

For each region, we also define the price of travel products relative to the
average market price. Let Prt be the price for the products to region r in
time period t. Next, let Nrt be the market price for the products to region r
in time period t. Now, the relative price Grt is defined as the average price
of the tour operators products to region r compared to the average market
price for region r. This relationship is defined in (4.2):

Grt := Prt
Nrt

. (4.2)

We assume that the potential customers do not only compare other tour
operators, but also to other comparable regions. Therefore, we also define
the relative price of region r compared to other region o. The relative
between region r and other region o at time t is defined in 4.3:

Hrot := Prt
Pot

, ∀o 6= r. (4.3)

In this study we focus on the market share series of a region rather than
on the actual demand series of the region. Dividing by the market demand
series filters the series from all patterns which are also present in the total
market, this property has a lot of advantages. For example, the series is
filtered from seasonal patterns. Next to this, the series is also filtered from
market shocks. This makes the elasticities more robust, see example 4.1.
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Example 4.1. Let us return to example 2.2 of the Arabic Rebellions (sec-
tion 2.3.1). The Arabic Rebellions caused a decrease in tourism to Egypt
and Tunisia in the total market. The market demand decreased enormously.
However, the distribution of the market over the tour operators is not ex-
pected to change. So, although there is a shock in demand, there is no shock
in market share. Therefore, elasticities based on market share are more
stable in this case than elasticities based on the actual demand.

In example 4.1 we illustrated that the market share is expected to be
much more stable over time than the demand. By using the market shares,
we indirectly correct for external shocks in the market. This way we correct
for seasonality, economic recession, terrorist attacks, war, natural disaster
and numerous other factors present in the entire market. Therefore, the
elasticities based on the market share will also be more stable than the
elasticities based on the actual demand.

We also focus on the relative prices, instead of the actual prices. Higher
absolute prices are not necessarily a good benchmark for lower demand, see
example 4.2.

Example 4.2. When the ‘season’ starts in January, the market prices are
relatively high. The market demand is also relatively high, because a lot of
people book their holidays in January. The opposite is true for the end of
the season, there are low ‘last minute’ prices and low market demand. In a
transparent market, the relative prices of different tour operators compared
to each other are expected to move the market to the cheapest tour operator.
The relative prices of different traveling regions are expected to move the
market to the cheapest regions.

This example illustrates why it is might be a good idea to look at the
relative prices instead of the actual prices. The customers are not necessarily
triggered by low prices, they are triggered by low relative prices. The mar-
ket tends to shift to the tour operators and regions with the lowest relative
prices at a given time. By using the relative prices we incorporate the con-
sumer behavior present in a transparent market. In a transparent market,
customers can easily compare the products (and prices) to other products
in the market. This feature can be modeled by using relative prices.

4.1.2 Multiple Regression Model

In this subsection we propose an Ordinary Least Squares (OLS) multiple
regression model to estimate the cross elasticities between different regional
clusters. We use the definitions of the market share (4.1), the relative price
compared to the market (4.2) and the relative price compared to other re-
gions (4.3).

We try to explain the market share Srt of region r at time t with the
relative price at this time compared to both the market (Grt) and other
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traveling regions (Hrot). However, we do not expect that all regions relative
prices will significantly influence the market share of the given region. Only
the relative prices of highly substitutable regions are expected to influence
each other’s market shares. Therefore, we use a backward elimination strat-
egy1 to determine which regions relative prices influence the market share
of the given region significantly. We start using the regression in (4.4):

Regression Model:

Srt = αr + βrrGrt +
∑
o∈R
o 6=r

βroHrot + εrt, ∀t ∈ T. (4.4)

The parameters from the model in (4.4) can be computed using general
OLS formulas. Amongst others, these formulas can be found in [23]. The
estimates (β̂) can be interpreted as the sensitivity between the relative prices
and the market share, this relation is expected to be negative. When the
tour operator increases the relative price for region r the market share of r
is expected to decline.

In the backward elimination, we eventually defined the cross regional
relationship between all regions that have a significant regression coefficient.
If the coefficient between relative price and market share is not significant,
no relationship between the regions is found. Estimating the coefficients we
must keep in mind that our goal is not the overall fit of the model, our aim
is to calculate the correct elasticities.

Eventually, the regression equation can be used to express the expected
demand as a function of the given pricing decision. This expression can be
found in equation (5.6) in chapter 5.

4.2 Elasticities
In this section we describe how we can use the cross elasticities from the
previous section to calculate the individual price elasticities of demand. In
the IRDP model, the individual elasticities of demand are required to deter-
mine the expected demand after a price change for an individual product.
Often for a tour operator it is very hard to estimate the price elasticities
of demand from the booking data, see example 4.2. Using the regression
equation (4.4), we can calculate the expected market shares per region from
given prices per region. When we multiply this with a given market demand
we obtain the expected demand per region. This relates the price and de-
mands between the regions. When we simulate prices from estimated price

1A commonly used strategy in regression analysis
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disrtibutions and market demand from the estimated market demand dis-
tribution, we can calculate the demand per region. This way, we can create
a dataset from which we can estimate the price elasticities of demand.

4.2.1 Price and Market Demand Distribution Fits

We use the actual data to fit distributions of the market demand and the
prices. We use a dataset of market demands, and a dataset of prices (the
tour operator’s prices and market prices). To see which distribution fits the
data properly we use the Kolmogorov-Smirnov (KS) test. The KS test is
based on the maximum difference between an empirical and a hypothetical
cumulative distribution. It is widely used to determine the “goodness of
fit” of a theoretical distribution compared to the distribution of the sample
values (for more information about the KS test we refer to [36]). We try
multiple different distributions 2, for each distribution we estimated the best
fitting parameters using maximum likelihood. After this, the p-value of the
KS test is used as a measure to determine which distribution fits the best
to the sample data. First we describe two distributions that seem to fit well
to market share and price data.

Extreme Value Distribution

The EV distribution used as a model for extreme values, it can also be used
as a model for other types of continuous data. For example, EV distri-
butions are closely related to the Weibull distribution. If the data has a
Weibull distribution, then log of the data follows an EV distribution. The
pdf of the EV distribution is given in (4.5).

f(x) = 1
σ
exp(x− µ

σ
)exp(−exp(x− µ

σ
)) (4.5)

Generalized Extreme Value Distribution

The Generalized Extreme Value (GEV) distribution covers three types of
distributions, these are called type I, type II and type III. Type I covers the
type of distributions with exponentially decreasing tails, such as the normal
distribution. Type II covers the distributions with polynomial decreasing
tails, such as the student t distribution. Type III covers the distributions
which tails are finite, such as the beta distribution. By using maximum
likelihood to estimate the parameters of the GEV distribution we let the
data decide which type of distribution is appropriate. The pdf of the GEV

2We tried the following distributions: Birnbaum Saunders, Exponential, Extreme
Value, Gamma, Generalized Extreme Value, Inverse Gaussian, Logistic, Log-Normal, Nak-
agami, Normal, Rayleigh, Rician, Student-t and Weibull
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distribution is given in equation (4.6).

f(x) =


1
σ (1 + ξ(x−µσ ))(−1/ξ)−1exp(−(1 + ξ(x−µσ ))1/ξ}, ξ 6= 0

1
σexp(−(x−µσ )− exp(µ−xσ )), ξ = 0

(4.6)

where µ, σ and ξ are the location, scale and shape parameters respec-
tively. Furthermore, it must hold that σ ≤ 0 and µ, ξ ∈ R. According to [32],
the determination of the paramater ξ is the central problem of extreme value
analysis. When ξ > 0, the underlying distribution belongs to the Fréchet
maximum domain of attraction and is regularly varying (power-like tail).
When ξ = 0, it belongs to the Gumbel Maximum Domain of Attraction and
is rapidly varying (exponential tail), while if ξ < 0 it belongs to the Weibull
Maximum Domain of Attraction and has a finite right endpoint.

4.2.2 Creating the Dataset

For each region we draw a random number from the fitted price and market
demand distributions. We then have the price, market price and expected
market demand for each region. Using the cross elasticity fits from formula
(4.4) we can compute the expected demand for each region. This procedure
is repeated multiple times to create a dataset of sufficient points. The price
elasticities of demand can be estimated from the prices with corresponding
demands for each region, using a simple OLS regression model.

4.3 Statistical Tests
Using a (multiple) regression model, we indirectly make several statistical
assumptions about the predictor variables, the response variables and their
relationship. Among others, these assumptions are described in detail [23]
(section 3.1.4).

Not meeting these assumptions, provides several pitfalls that possibly
undermine the validity of the estimates. In case all assumptions hold, the
analytical accuracy methods used in the regression are valid. Moreover,
these assumptions imply that the parameter estimates will be unbiased, con-
sistent, and efficient in the class of linear unbiased estimators. Therefore,
it is important to take notice of these assumptions. Finally, in the multi-
ple regression we make the assumption that there is no multicollinearity.
Multicollinearity would cause difficulty in determining the individual effects
of the independent variables. We are mainly interested in these individual
effects, therefore this assumption is also important.
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4.3.1 The Regressors

1. Fixed Regressors

This means that the explanatory variables are assumed to be non-random,
describing the situation of controlled experiments. In our case, we consider
a real data example. Therefore, we assume that there are no external factors
that influence the chosen variables. Influential data points that cannot be
explained by the model are detected in the outlier detection mechanism.
These data points are omitted.

4.3.2 The Disturbances

2. Random Disturbances, zero mean

The disturbances from the regression model are random variables with zero
mean. We can use an ANOVA to test the zero mean assumption, the dis-
turbance distribution is tested in assumption 7. When the mean of the
disturbances is not zero, the model structurally overestimates or underesti-
mates the dependent variable. This means that the estimates are biased.

3. Homoskedasticity

We also assume that the error terms of the model have a constant variance
(i.e. the error terms are homoskedastic). When this is not the case, the
OLS estimates can be inefficient. We use the Breusch-Pagan test to test
for homoskedasticity in the error terms. The Breusch-Pagan test checks
whether the estimated variances of the residuals from a regression are de-
pendent on the values of the independent variables. A way to account for
heteroskedasticity is the use of Weighted Least Squares (WLS). In WLS,
each observation is given a weight in determining the estimates β̂. The idea
is that observations with a smaller variance are more certain and hereby get
a larger weight.

4. No Correlation

Another assumption for applying OLS is that there is no correlation present
in the error terms (i.e. εi and εj are not correlated for all i 6= j). We use the
Breusch-Godfrey test to test whether previous p error terms influence the
current error term significantly. This is done using an autoregressive model
of order p (commonly referred to as AR(p) model) as an auxiliary regres-
sion. From this auxiliary regression we can test whether serial correlation
between the error terms is present. A common solution to correlated error
terms is the use of Newey-West standard errors. The standard errors of
the OLS estimates using Newey-West standard errors are considered HAC
(Heteroskedasticity and Autocorrelation Consistent). Therefore, by using
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newey-west standard errors we directly correct for heteroskedasticity and
autocorrelation.

4.3.3 The Model and Parameters

5. Constant Parameters

We assume constant parameters, the parameters are fixed unknown numbers
with standard deviation larger than zero. This means that we assume that
the same parameters can be used to describe the complete set of datapoints.
If this is not the case it might be beneficial to define different models for
different regimes of data.

6. Linear Relationship

We assume a linear relationship between the market share and the relative
prices. Before the model in 4.4 can be adequately used we first test whether
this linear relation suffices. For this we perform a general misspecification
test for linearity. This test is known as Ramsey’s Regression Equation Spec-
ification Error Test (RESET). When this test indicates linearity problems
we might want to consider non-linear models. We can also try several trans-
formations3 on the dependent and independent variables.

4.3.4 The Probability Distribution

7. Normally Distributed Error Terms

When we assume normally distributed error terms, the OLS estimates are
both consistent and (asymptotically efficient). Also the t-test for the sig-
nificance of the model parameters depends on the normal distributed error
terms. When the error terms are not normally distributed, the t-values are
not reliable. We also assume that the error terms have a mean equal to
zero. We use the Jarque-Bera test to check whether the error terms follow
a normal distribution. If this is not the case, the OLS estimates are not
consistent.

4.3.5 No Multicollinearity

The absence of Multicollinearity (high correlations between the regressors)
is another assumption for using OLS. Multicollinearity is a statistical phe-
nomenon in which two or more predictor variables in a OLS model or the
variable and the error terms are highly correlated. In this situation the pa-
rameter estimates are not consistent. The problem is that because of the
correlations we cannot adequately identify the individual effects of the pre-
dictor variables. Therefore, the elasticities estimated from the OLS model

3We can try log, square root, square, and inverse transformations
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will become unreliable. Multicollinearity does not bias the parameter es-
timates, however adapting multiple variables that describe the same effect
might lead to overestimation of this effect. To test for multicollinearity we
compute the Variance Inflation Factor (VIF) for each of the parameter esti-
mates. The VIF quantifies the severity of multicollinearity in the OLS model
for each of these parameter estimates. The VIF is a measurement on how
much the variance of the estimated parameters increases due to collinear-
ity. A common used bound for reliable estimates is found at a VIF value
of 10. Using this bound, a VIF larger than 10 may indicate a collinearity
problem. To account for endogeneity a common solution is the use of instru-
mental variables (IV). Using the IV can be implemented using a two-stage
least squares approach. In the first stage the independent variables from
the original model are expressed as a linear combination of the instrumental
variables. In the second stage the dependent variable is regressed on the
fitted values for the independent variables from the first stage. Although
the procedure for using IV is relatively easy, finding appropriate instruments
is much harder.
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Chapter 5

Two-Step DRPD Model

In this chapter we propose the Two-Step Dependent Region Dynamic Pricing
model, referred to as DRDP model. The DRDP model is a pricing model
which can be used in a tour operators dynamic pricing decisions. In addition
to the IRDP model in [50] (described in section 2.2) we integrate extended
consumer behavior and market information into the model. In the previous
section we described how the consumer behavior can be quantified using
cross elasticities. The estimated elasticities from the model in equation
(4.4) are the input for the DRDP model.

First, in section 5.1 we introduce the used sets, parameters and decision
variables. These are used later on in the optimization model. The cross
elasticities are used to express the region demand as a function of a given
pricing decision.

In section 5.2, we formulate the first step of the DRDP model. In the
first step of the DRDP model, we solve the pricing problem for the regional
clusters. This step can be seen as the missing link between the individual
product optimization and the dependencies between the different regional
clusters.

In section 5.3, we formulate the second step of the DRDP model. In the
second step, the only dependency between the regions is fixed. Therefore,
we can again assume independent regions in the second step of the DRDP
model. Despite the fact that we use a constraint to fix the average region
price, the second step of the DRDP model is very similar to the IRDP model
from [50].

In section 5.4, we consider stochastic demand. We first discuss how
stochastic demand is usually treated in RM models. Finally, we adjust the
capacity constraints to include a buffer capacity. This buffer capacity is
extra capacity that is maintained to mitigate the risk of lost demand. We
introduce these constraints for uncertainty in both the first and the second
step of the DRDP model.

Finally, in section 5.5 we propose a structure in which the DRDP model
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can be used in practice. We provide this structure to place the model into
a practical perspective.

5.1 Notation
We first introduce the used sets. Subsequently, we introduce the parameters
and variables.

Sets:

i ∈ I: Set of products

j ∈ Ji: Set of candidate prices for product i

t ∈ T : Set of time periods

k ∈ K: Set of resources

Sk ⊂ I: Set of products making use of resource k

r, o ∈ R: Set of regions

Ir ⊂ I: Set of products corresponding to region r

Kr ⊂ K: Set of resources corresponding to region r

AKr ⊂ K: Set of Accommodation Resources corresponding
to region r

FKr ⊂ K: Set of Flight Resources corresponding to region r

a ∈ Ar: Set of candidate prices for region r

The first 5 sets were already defined in section 2.2. We also define the
set of regions R and we partition the products per region, as in section
2.2.1. We do the same thing for the capacities K = {K1,K2, . . . ,Kr}, we
assume that a capacity can be assigned to exactly one region. Kr consists
of all resources corresponding to region r, these can be accommodation or
flight resources. The set of accommodation resources AKr and the set of
flight resources FKr are defined per region. For each region r it holds that
Kr = AKr ∪ FKr, where AKr ∩ FKr = ∅.

The set Ar consists of all average candidate prices for region r, this set
is defined later on in equation (5.3).

Parameters:

pij : Candidate price j for product i
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ci: Cost price of product i

qijt: Demand for product i if candidate price j is set in time
period t

Capk: Available capacity for resource k

Prt: Price of products to region r at time period t

Cr: Cost price of products to region r

Mt: Total market demand for products at time t

Nrt: Current market price of products to region r at time t

Grt: Relative price for region r compared to the market price
at time t

Hrot: Relative price for region r compared to other region o at
time t

βro, r = o: Elasticity between region r and the market

βro, r 6= o: Cross elasticity between region r and alternative region o

Qrt: Demand for products to region r at time t

The first four parameters where already defined in section 2.2. We make
a clear distinction between the parameters per product (lower cases) and
the parameters per regional cluster (upper cases).

Price and Cost per Region

We define the price of products to region r at time t as Prt. This can be
computed from the tour operator’s current product prices. We do this by
taking the average of all prices of products to region r at time t, see formula
(5.1).

Prt = 1
|Ir|

∑
i∈Ir

pit, ∀t ∈ T, (5.1)

where |Ir| is the cardinality of set Ir, which is the number of products
corresponding to region r.

The average cost price of products to region r is defined as Cr, this can
be computed from the tour operator’s cost prices per product. We do this
using formula (5.2).

Cr = 1
|Ir|

∑
i∈Ir

ci (5.2)
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Candidate Prices per Region

After we obtained the average price of a region we can also define the set of
candidate prices for each region Ar, in formula (5.3):

Ar = {Pr − 2δ%, Pr − δ%, Pr, Pr + δ%, Pr + 2δ%} (5.3)

So we are searching for prices in the neighborhood of the current re-
gion price. The value of δ defines how wide this neighborhood is defined.
The candidate price Prat can be computed from Prt by deviating with the
percentage defined in Ar from Prt.

Market Demand and Market Price per Region

Mt is defined as the total market demand for products at time t. Nrt is
defined as the current market price of products to region r at time t.

Assumption 5.1. We assume that the market demand and the market price
are fixed over the optimization horizon (Ceteris Paribus condition). The
latest known market demand is used as an estimate for the periods in the
optimization horizon.

This assumption provides us an estimate for the market demand and
market prices per region. It is also possible to use estimation techniques to
determine the expected market demand and market prices per time period.

Relative Prices per Region

Grt is defined as the relative price for region r compared to the market price
at time t, see formula (4.2). Hrot is defined as Relative price for region r
compared to other region o at time t, see formula (4.3).

Cross Elasticities

In the regression equation in (4.4) we defined which regions have a signifi-
cant cross price relation. In other words, for each region we defined which
regions relative prices significantly influence the regions market share. The
elasticities which are not significant in the regression are set to zero. The
estimated elasticity matrix βro is defined in (5.4):

βro =
{
β̂ro, if β̂ro is significant in (4.3)
0, otherwise

(5.4)
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Demand for a Given Pricing Decision

Qrt is the demand for region r at time t. Using the elasticities from (5.4),
Qrt can be expressed as a function of the pricing decision at time t. How-
ever, we first need to know the chosen prices in period t. Therefore, we first
introduce decision variables Yrat:

Variables:

Yrat: if alternative price a is chosen for region r at time t.

Yrat is a binary variable, this can be defined as in formula (5.5):

Yrat =
{

1, if price a is used for region r in period t
0, otherwise

(5.5)

Using the cross elasticities from (5.4) and the pricing decision from (5.5),
the demand function can be expressed as in (5.6):

Qrt = Mt(αr +
∑
a∈Ar

(βrrGratYrat +
∑
o∈R
o 6=r

∑
l∈Ao

βroHraoltYratYolt)). (5.6)

In this equation, Grat is the relative price for region r compared to the
market price under pricing alternative a at time t. Hraolt is the relative
price for region r under price alternative a compared to region o under price
alternative l at time t. The market share for region r (Srt) is built up from
the regression equation (4.4). The first term αr, is simply the regression
constant estimated in the regression. The second term, considers all pricing
possibilities for region r and other regions o. βrrGratYrat is only added to
the market share if price a is chosen for region r, in this case Yrat = 1.
βroHraoltYratYolt is only added if price a is chosen for region r and price l
is chosen for other region o, in this case YratYolt = 1. The market share for
a given pricing decision is multiplied by the total market demand to obtain
the actual demand.

Tightest Capacities per Region

Finally, for each region we want to determine the current available capacity.
This is the maximum number products that still can be sold to a certain
region. To calculate this, we first differentiate between flight capacities
and accommodation capacities. Let FCapr be the total flight capacity for
products to region r. The total flight capacity is expressed in 5.7 as the sum
of all flight capacity available within this region:

38



FCapr =
∑

k∈FKr

Capk, ∀r ∈ R, (5.7)

Let ACapr be the total accommodation capacity for products to region
r. The total accommodation capacity is expressed in 5.8 as the sum of all
accommodation capacity available within this region:

ACapr =
∑

k∈AKr

Capk, ∀r ∈ R, (5.8)

The tightest capacity for region r is defined in (5.9) as the minimum of
total flight and total accommodation capacity to every region:

TCapr = min(FCapr, HCapr), ∀r ∈ R, (5.9)

5.2 DRDP STEP 1
In the first step of the DRDP model, we solve the pricing problem for the
regional clusters. This step can be seen as the missing link between the
individual product optimization and the dependencies between the different
regional clusters. We want to determine the optimal prices for each of the
regions, considering cross dependencies between the regions. We also want
to make sure the expected demand for a region does not exceed the avail-
able capacity for this region. The first step of the DRDP model is a Binary
Quadratic Programming (BQP) model, defined in (5.10)-(5.13).

Maximize:

πDRDP1 =
∑
r∈R

∑
a∈Ar

∑
t∈T (Prat − Cr) ∗

Mt(αr + βrrGrat +
∑
o∈R
o 6=r

∑
l∈Ao

βroHraoltYrat)Yolt (5.10)

Subject to: ∑
t∈T Mt(αr +

∑
a∈Ar

(βrrGratYrat + ...∑
o∈R
o 6=r

∑
l∈Ao

βroHraoltYratYolt)) ≤ TCapr, ∀r ∈ R (5.11)

∑
a∈Ar

∑
t∈T

Yrat = 1, ∀r ∈ R (5.12)

Yrat ∈ {0, 1}, ∀r ∈ R, a ∈ Ar, t ∈ T (5.13)

When we replaceMt(αr+βrrGrat+βroHraolt) by Qraolt, we can simplify
(5.10)-(5.13) to (5.14)-(5.17).
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Maximize:

πDRDP1 =
∑
r∈R

∑
a∈Ar

∑
o∈R
o 6=r

∑
l∈Ao

∑
t∈T

(Prat − Cr)QraoltYratYolt (5.14)

Subject to: ∑
t∈T

Qrt ≤ TCapr, ∀r ∈ R (5.15)

∑
a∈Ar

∑
t∈T

Yrat = 1, ∀r ∈ R (5.16)

Yrat ∈ {0, 1}, ∀r ∈ R, a ∈ Ar, t ∈ T (5.17)

In the objective, the margin (Prat − Cr) for a given alternative price a
is multiplied with the expected demand (Qraolt). This term is added when
Yrat = Yolt = 1, when both price a and price l are chosen. In constraint
(5.15) we make sure that for every region the expected demand is not larger
than the total capacity available for this region. The total capacity for region
r is defined as the minimum of total flight and total accommodation capacity
to every region, see (5.9). Constraint (5.16) is a multiple choice constraint,
for each of the regions one price must be chosen. Finally, constraint (5.17)
states that the decision variables are binary.

Yrat and Yolt are the binary decision variables. Because these two binary
decision variables are multiplied, the given problem is a BQP, which are
usually NP-hard problems and hence practically difficult to solve (see [1]).
In section 5.2.1 we describe how the quadratic objective can be linearized.

Remark 5.1. In total there are |R| ∗ |Ar| ∗ |T | decision variables. So the
number of decision variables grows linear in the number of regions. Also the
size of the problem can be regulated by changing the number of alternative
prices and the number of time periods.

5.2.1 Linearization of the BQP Model

The BQP objective in (5.14) is not linear, due to the quadratic binary term
(YratYolt) in the objective. The linearization in this section comes from [30].
In this section we define this exact linearization for our specific case. First,
we introduce the set of ordered region combinations:

(r,o) ∈ E: Set of ordered region pairs, (with 1 ≤ r ≤ o ≤ |R|)

This set contains all ordered combinations of regions (r and o), in total
there are |R|2 combinations. Next, we introduce new variables to replace
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the quadratic binary terms in the objective. Thess decision variables are
defined in (5.18):

Wraolt = YratYolt. (5.18)

Hereafter, we use the additional constraints (5.19)-(5.22) to linearize the
problem into a Mixed Integer Linear Programming (MILP) problem:

Wraolt ≤ Yrat, ∀(r, o) ∈ E, a ∈ Ar, l ∈ Ao, t ∈ T (5.19)

Wraolt ≤ Yolt, ∀(r, o) ∈ E, a ∈ Ar, l ∈ Ao, t ∈ T (5.20)

Wraolt ≥ Yrat + Yolt − 1, ∀(r, o) ∈ E, a ∈ Ar, l ∈ Ao, t ∈ T (5.21)

Wraolt ≥ 0, ∀(r, o) ∈ E, a ∈ Ar, l ∈ Ao, t ∈ T (5.22)

If one of the variables Yrat or Yoat is 0, then alsoWroat = 0. When Yrat =
Yoat = 1, then Wroat = 1. This shows us that this is an exact reformulation
of the original problem. We refer to [21] for a recent comparison of other
possible linearization’s of this problem.

Remark 5.3. By using the linearizing equations in (5.19)-(5.22), 4 ∗ |E| ∗
|Ar| ∗ |Ao| ∗ |T | constraints are added to the problem.

We see that the number of constrains increases significantly in case of
the linearization.

In order to solve step 1 of our optimization we first rewrite the objective
from (5.14) into (5.23). Since Yrat is binary and Wraolt is a positive real
number this results in a non-quadratic objective:

Maximize:

πDRDP1 =
∑
r∈R

∑
a∈Ar

∑
o∈R
o 6=r

∑
l∈Ao

∑
t∈T

(Prat − Cr)QraoltWraolt (5.23)

We use both the constraints in (5.19)-(5.22) and the constraints in (5.15)-
(5.17) to obtain the linearized MILP problem. When we solve this problem
we obtain the optimal prices for each region and time period. Y ∗rat relates
to the optimal price a for region r in time period t. The optimal prices are
used in the second step of the DRDP model.
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5.3 DRDP STEP 2
Like in section 2.2.1, in this step we focus on the regions independently. So
the model proposed in this section is solved for each region independently.
In the first step we already computed for each region which of the prices is
optimal for each of the regional clusters Y ∗rat. Therefore, the optimal average
price per regional cluster per time period is defined in (5.24):

P ∗rt =
∑
a∈Ar

PratY
∗
rat (5.24)

Remark 5.4. It is important to note that price per region determined in
5.24 is fixed during the second step of the optimization. Therefore, the only
dependency between the regions is fixed. This means that we can again as-
sume independent regions in the second step of the DRDP model.

From equation (5.24) we know which price is optimal in which time
period. Therefore, we can simply add the constraint defined in (5.25) to the
model from section 2.2.

1
|I|

∑
i∈I

∑
j∈Ji

pijxijt = P ∗rt, ∀t ∈ T (5.25)

This constraint makes sure that for every time period the average price
of the chosen prices is equal to the optimal average price found in step 1 of
DRDP model.

When we add constraint (5.25) to the model from section 2.2, we obtain
the second step of the DRDP model. The goal of the second step of the
DRDP model is to maximize the expected revenue over the defined time
period T. In the pricing decision we have to decide which price to choose
for each product in each time interval. To do this, we again use decision
variables xijt ∈ [0, 1]. xijt is defined as the fraction of time interval t price
j is chosen for product i. The price fractions form a price path for every
time interval. The resulting price path is used such that the price path is
decreasing (i.e. the highest price with a non-zero price fraction is chosen
first and the lowest price with a non-zero price fraction is chosen last). The
optimal price fractions are determined using the Linear Programming (LP)
model in (5.26)-(5.30).

Maximize:

πDRDP2 =
∑
i∈I

∑
j∈Ji

∑
t∈T

(pij − ci)qijtxijt (5.26)

Subject to: ∑
i∈Sk

∑
j∈Ji

∑
t∈T

qijtxijt ≤ Capk, ∀k ∈ K (5.27)
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1
|I|

∑
i∈I

∑
j∈Ji

pijxijt = P ∗rt, ∀t ∈ T (5.28)

∑
j∈Ji

xijt = 1, ∀i ∈ I, t ∈ T (5.29)

0 ≤ xijt, ∀i ∈ I, j ∈ J, t ∈ T (5.30)

The objective from (5.26) sums over all periods, products and possible
candidate prices. For each period, the revenue for each product (pij − ci)
is multiplied by the expected demand for this price path (qijtxijt). The
objective of this model is to choose the price path for each product that
maximizes the total expected revenue over the given time horizon T .

Using constraint (5.27), we make sure that for each of the resources
k ∈ K the demand does not exceed the available capacity of this resource.
Constraint 5.28 makes sure we use the optimal price within each regional
cluster. This is the only difference in this step with the IRDP model for-
mulated in (2.1)-(2.4). Constraints (5.29) and (5.30) are constraints on the
price path. These make sure that the price path meets several conditions.
Constraint (5.29) ensures that for each time period the price path is com-
pletely defined, the fractions must sum up to one for each time period t.
Additionally, in constraint (5.30) we make sure that all fractions are non-
negative.

Remark 5.5. It is important to note that we fixed the price per region by
using the constraints in (5.28), also see remark 5.4. Therefore, optimality
from step 1 is never violated in step 2 of the DRDP model. This implicates
that the eventual pricing decision is always optimal in terms of the regional
clusters.

5.4 Stochastic Demand
The first and second step DRDP models described in this chapter are de-
terministic. The demand is treated as given using point estimates. In con-
straints (5.15) and (5.27), we make sure that the expected demand is smaller
than the capacity. In (5.15) this is done for each of the regions r and in (5.27)
this is done for each of the resources k. Because we treat the expected de-
mand as given, the pricing decision from this model is only optimal if the
realized demand is equal to the expected demand.

In reality the demand is much more uncertain. For the airline indus-
try, [7] proposed a discretization approach to integrate possible scenario
outcomes with given probabilities of these scenarios into the objective func-
tion. However, [7] and [51] find that the use of such a stochastic model in
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the airline industry does not necessarily improve the results. Moreover, [7]
concludes that stochastic booking limit models do not improve the results
because the stochastic nature of demand is already included in deterministic
booking limit models.

Alternatively, [46] proposed a simulation based ‘stochastic’ model. The
discrete optimization model is used to solve the model with simulated de-
mand as expected demand. After multiple optimizations, the gradient can
be estimated as the average of all solutions. This simulation approach offers
a lot of flexibility in modeling stochastic demand for various distributions,
however a disadvantage is that the model has to be solved multiple times.

In a case of hotel RM, [40] compared both the stochastic and simula-
tion approach concluding that the simulation based model outperformed the
actual stochastic models. Also in this experiment the disadvantage of high
computation times for the simulation model is raised. In contrary, according
to [40] stochastic models can improve the results of the bid-price model.

By ways of experiment, we propose a completely different approach.
Our approach of treating uncertain demand is commonly used in inventory
management (see for example, [2]). In inventory management, the inventory
for a given product along with the demand distribution are often used to
calculate the probabilities of stock outs. These probabilities are then used to
determine a safety stock, an extra stock that is maintained to mitigate risk
of stock outs. In our case, there are resources with uncertain demand and
limited capacities (inventory). In the remainder of this section we show how
we can use the central limit theorem to calculate the demand probabilities.
We show how the constraint in (5.15) can be adjusted to include for demand
uncertainty per region. Hereafter, we show how the constraint in (5.27) can
be adjusted to include for demand uncertainty per resource.

5.4.1 Stochastic Demand per Region

Let θr be the probability that the demand for region r within time horizon
T exceeds the total capacity for this region (TCapr).

θr = P (Qr > TCapr) (5.31)
with Qr =

∑
t∈T Qrt, the demand for region r over time horizon T .

Using the central limit theorem we can assume that Qr ∼ N(µr, σr), with
µr and σr the mean and standard deviation of the demand for region r,
respectively. We indirectly assume that the total region demand is built
up from the individual product demands, and that none of these product
demands exhibits dominant behaviour (i.e. none of the individual product
demands is excessively larger than others). We can use standard normal pdf
function φ() to calculate the demand probabilities. To make sure that the
demand for r does not exceed the capacity with a certain probability θr, we
can rewrite constraint (5.15) into 5.32:
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∑
t∈T

Qrt + φ−1(1− θr)σr ≤ TCapr, ∀r ∈ R, (5.32)

with Qrt the demand as expressed in equation 5.6. Where φ−1(1− θr)σr
is called the safety capacity, the extra capacity that is maintained to fulfill
the probability of lost demand θr.

5.4.2 Stochastic Demand per Resource

Let ζk be the probability that the demand for resource k exceeds the capacity
for this resource (Capk).

ζk = P (qk > Capk), (5.33)

with qk =
∑
i∈Sk

∑
j∈Ji

qijxij , the total demand for resource k over
time horizon T . Using the central limit theorem we can assume that qk ∼
N(µk, σk), with µk and σk the mean and standard deviation of the demand
for resource k, respectively. We indirectly assume that the total resource
demand is built up from the individual product demands, and that none
of these product demands exhibits dominant behaviour (i.e. none of the
individual product demands is excessively larger than others). We can use
standard normal pdf function φ() to calculate the demand probabilities. To
make sure that the demand for k does not exceed the capacity with a certain
probability ζk, we can rewrite constraint 5.27 into 5.34:

∑
i∈Sk

∑
j∈Ji

∑
t∈T

qijtxijt + φ−1(1− ζk)σk ≤ Capk, ∀k ∈ K (5.34)

Where φ−1(1 − ζk)σk is called the safety capacity, the extra capacity
that is maintained to fulfill the probability of lost demand ζk. Using the
constraints in (5.32) and (5.34) instead of the original constraints, we make
sure that the demand does not exceeds capacity for a certain probability.
Note that for θr and ζk equal to 0.5 we obtain φ−1(0.5) = 0. In this case we
have the original constraints.

The advantage of stochastic constraints is that the user is more flexible.
By defining the probability that the demand exceeds capacity, the tour op-
erator is able to control the expected lost demand. This can be used to fulfill
different strategies for different optimization periods. A strategy could be to
gain market share for a certain period, by choosing a smaller probability of
lost demand. The disadvantage of stochastic constraints like this is that we
need an estimate for the standard deviation of demand. The computational
experiments considering the stochastic constraints can be found in section
7.5.6.
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5.5 Intermezzo: Using the Model in Practice
This section proposes a structure in which the DRDP model can be used
in practice. We provide this structure to place the model into a practical
perspective. The flow diagram in figure 5.1 depicts how the DRDP model
fits in the process of an online tour operator.

Figure 5.1: Two-Step Algorithm

To make sure the model adapt to changing environment we make use
of a rolling horizon of several years of data. This horizon of data is called
the Operational Information. Because the travel market changes rapidly it
is a tradeoff between less ‘up to date’ data and more ‘possibly outdated’
data. Every day, the horizon ‘rolls’ one day further. The complete horizon
of data is used to create demand forecasts and to calculate the elasticities.
To keep the elasticities up to date it is required to estimate the elasticities
frequently. The data from which the elasticities are estimated is aggregated
per week. Therefore, the elasticities are updated once a week.

Subsequently, the updated elasticities are used to solve the DRDP model
in the following week. Each night, the operational information of that day
is gathered and updated. The bookings and cancellations are processed and
the remaining capacities are determined. After the operation information is
updated, the DRDP model is solved and the optimized prices are stored in
the database. Hereafter, the optimized prices are uploaded to the website.
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Part III

Results
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Chapter 6

Analytical Comparison
IRDP and DRDP model

In this chapter we make a analytical comparison between the DRDP and
IRDP model.

In section 6.1, we focus on the number of price combinations per time
period in each of the models. Among these price combinations, the model
has to choose the most profitable pricing decision. The number of price
combinations is used as a benchmark for the complexity of the model. In
the DRDPmodel we use a two-step approach. In the second step we fixed the
optimal cross regional effects. Because of this, we can assume independent
regions in the second step of the DRDP model. In the first section we
investigate the implication of this approach on the problem complexity. We
first compare the DRDP model to a hypothetical model in which we do not
use a two-step approach, we refer to this model as the Complete One-Step
(COS) model. Next, we compare the DRDP model to the IRDP model. We
also provide an example in which we show the magnitude of the differences
in complexity between the models.

In section 6.2, we compare the objectives of the IRDP and the DRDP
model. We show that the objective of the models does not per definition
represent the expected profit.

6.1 Number of Price Combinations
In the IRDP model in equations (2.1)-(2.4), the expected number of purchas-
ing customers for a product is determined from the historical price demand
relationship. In this case, the estimated demand for a product is considered
a function of the chosen price of this product. The products within a region
are dependent because they share the same resources but also because they
share a pool of potential customers. When we include cross elasticites, the
relationships between the products become more complicated. Moreover,

48



when the regions become dependent, we can no longer decompose the prob-
lem into independent sub problems per region (as we described in section
2.2.1). In figure 6.1 we see that the pricing (LP) models which were assumed
to be independent now influence each other. The pricing decision of a region
now influences the demand of all other (competing) regions. Instead of |R|
independent models we now have one large pricing model, referred to as
the complete one-step model. Although we did not formulate this model,
we use the number of price combinations in this ‘hypothetical’ model as a
benchmark.

Figure 6.1: Structure of the Problem: Independent vs Dependent Regions

The complexity of the problem mainly depends on the involved number of
regions, products, price alternatives and time periods. In the IRDP model,
we considered |R| regions with |Ir| products per region, for each product
we considered |Ji| possible prices. This leads to |Ji||Ir| pricing combinations
per region per time period. In the case of independent regions, there are
|R||Ji||Ir| pricing combinations. In the case of dependent regions, the amount
of pricing combinations per period becomes |Ji||R||Ir|. In this case, we have
one big model in which all products are dependent. In the DRDP model we
first solve the pricing problem on the region level with |Ji||R| possible price
combinations. Subsequently, we solve the second step of the model for each
region independently (like the IRDP model |R||Ji||Ir| price combinations).
In total, the DRDP model contains |Ji||R| + |R||Ji||Ir| price combinations
(|Ji||R| for the first step and |R||Ji||Ir| for the second step).

6.1.1 DRDP model vs Complete One-Step model

First of all, we are interested in the number of price combinations in the
two-step DRDP approach compared to the complete one-step model. In
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theorem 6.1 we state that in case of dependent regions, the number of price
combinations in the DRDP model is strictly smaller than the number of
price combinations in the complete one-step model.

Theorem 6.1.

|Ji||R| + |R||Ji||Ir| < |Ji||R||Ir|, ∀(|R|, |Ir|, |Ji|) ∈ Z, (|R|, |Ir|, |Ji|) > 1 (6.1)

Proof:
Let x = |R|, y = |Ir| and z = |Ji|. We want to prove that zx+xzy < zxy

with (x, y, z ∈ Z) and (x, y, z > 1). To do this, we use three-dimensional
mathematical induction. Let, P (m,n, k) be the inequality involving arbi-
trary variables m,n and k. Mathematical induction states that if all of the
following conditions hold, we have proven that the inequality holds:

C1. P (2, 2, 2) holds

C2. P (m+ 1, n, k) holds, given that P (m,n, k) holds

C3. P (m,n+ 1, k) holds, given that P (m,n, k) holds

C4. P (m,n, k + 1) holds, given that P (m,n, k) holds

With (m,n, k ∈ Z) and (m,n, k > 1)

C1.
We want to show that P (2, 2, 2) holds. We can simply plug in the values in
the inequality to obtain: 22 + 2 ∗ 22 = 12 and 22∗2 = 16 to show that C1.
holds.

For conditions C2.-C4. we use the P (m,n, k) assumption, we assume
that the following inequality holds:

A1. km +mkn < kmn, for arbitrary (m,n, k ∈ Z) and (m,n, k > 1)

C2.
We want to show that k(m+1) + (m+ 1)kn < k(m+1)n holds, given A1.: We
rewrite the right hand side of the inequality into kmn ∗ kn, and divide both
sides by kn to obtain:

km+1−n + (m+ 1) < kmn

Now we look at assumption A1. Since m > 1, n > 1 and k > 1 we know
that km+1−n < km and that (m+ 1) < mkn. Therefore using A1. we get:

km+1−n + (m+ 1) < km +mkn < kmn

Which shows C2. holds for arbitrary (m,n, k ∈ Z) and (m,n, k > 1)
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C3.
We want to show that km+mk(n+1) < km(n+1) holds, given A1.: We rewrite
the right hand side of the inequality into kmn ∗km, and divide both sides by
km to obtain:

1 +mkn+1−m < kmn

Now we look at assumption A1. Since m > 1, n > 1 and k > 1 we know
that 1 < km and that mkn+1−m < mkn. Therefore using A1. we get:

1 +mkn+1−m < km +mkn < kmn

Which shows C3. holds for arbitrary (m,n, k ∈ Z) and (m,n, k > 1).

To prove C4., let us first rewrite A1. into km

kmn + mkn

kmn < 1 by dividing
both sides of the inequality by kmn.

C4.
We want to show that (k + 1)m +m(k + 1)n < (k + 1)mn holds, given A1.:
Divide both sides of the inequality by (k + 1)mn, we obtain:

(k + 1)m

(k + 1)mn + m(k + 1)n

(k + 1)mn < 1

Now we look at the rewritten assumption A1. Since m > 1, n > 1 and k > 1
we know that (k+1)m

(k+1)mn< km

kmn and that m(k+1)n

(k+1)mn < mkn

kmn . Therefore using A1.
we get:

(k + 1)m

(k + 1)mn + m(k + 1)n

(k + 1)mn <
km

kmn
+ mkn

kmn
< 1

Which shows C4. holds for arbitrary (m,n, k ∈ Z) and (m,n, k > 1).

This concludes the proof that zx + xzy < zxy with (x, y, z ∈ Z) and
(x, y, z > 1). �

Using theorem 6.1 we know that in case of dependent regions, the DRDP
approach reduces the number of pricing combinations per definition.

6.1.2 DRDP model vs IRDP model

We are interested in the comparison between the number of price combina-
tions in the DRDP model compared to the IRDP model. In theorem 6.2,
we state that the number of price combinations under the IRDP model is
strictly smaller than the number of price combinations under the DRDP
model.

Theorem 6.2.

|R||Ji||Ir| < |Ji||R| + |R||Ji||Ir|, ∀(|R|, |Ir|, |Ji|) ∈ Z, (|R|, |Ir|, |Ji|) > 1 (6.2)
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Proof: We know that |Ji| > 0 and |R| > 1, hence |Ji||R| > 1. Therefore,
|R||Ji||Ir| < |Ji||R| + |R||Ji||Ir| �

Using theorem 6.2, we know that the number of price combinations in
the IRDP model is strictly smaller than the number of price combinations
in the DRDP model. Therefore, the complexity grows by using the DRDP
model instead of the IRDP model. The percentage growth in the number of
price combinations is derived in the next section.

% Growth in Price Combinations

We are mainly interested in the complexity of the DRDP model compared
to the IRDP model. Per theorem 6.2, we know that the number of price
combinations for the DRDP model is higher than the number of price com-
binations in the IRDP model. In theorem 6.3, we define the percentage
growth in price combinations as a result of using the DRDP model instead
of the IRDP model.

Theorem 6.3. For an arbitrary problem instance, using the DRDP model
instead of the IRDP model leads to an additional |Ji||R|−|Ir |

|R| % in price com-
binations.

Proof: Let x = |R|, y = |Ir| and z = |Ji|. We assume that (x, y, z) ∈ Z
and (x, y, z) > 1. The percentage growth in price combinations of the DRDP
model compared to the IRDP model can be formulated as:

∆% = (zx + xzy)− xzy

xzy

This can be reformulated as:

∆% = zx−y

x
�

In reality, this percentage will be relatively small because the number
of products per region is expected to be much larger than the number of
regions.

In theorem 6.3, we expressed the percentage growth in price combina-
tions as a result of using the DRDP model instead of the IRDP model. This
way we have quantified the growth in price combinations. Using theorem
6.3, we know that for an arbitrary problem instance with x = |R| regions,
y = |Ir| products per region, and z = |Ji| alternative prices per product the
number of price combinations will grow with zx−y

x %.
A relatively high percentage growth will be realized when the number

of regions is relatively high compared to the number of products pre region.
In reality, the number of products per region will not be smaller than the
number of regions.
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6.1.3 Magnitude of Price Combination Difference

We compared the DRDP approach with the IRDP and the complete one-
step approach. For each approach, we are interested in the growth of the
number of pricing combinations for a given number of regions, products per
region and number of price alternatives. We want to know the magnitude of
these differences in pricing combinations for different set sizes. The following
example provides us this insight:

Example 6.1: Comparison Different Approaches. We look at x = |R|
regions with y = |Ir| products per region r and z = |Ji| alternative prices
per product i. In the case of the IRDP model, we have xzy possible price
combinations. In case of Complete One-Step (COS) model we have zxy

price combinations. In case of our Two-Step DRDP model we have zx+xzy

price. In table 6.1 we see how the number of price combinations evolves for
different set sizes.

Independent Dependent Dependent
Regions Regions Regions

IRDP Model COS model DRDP model
x = |R| y = |Ir| z = |Ji| xzy zxy zx + xzy

2 5 5 6.25 ∗ 103 9.77 ∗ 106 6.28 ∗ 103

4 5 5 1.25 ∗ 104 9.54 ∗ 1013 1.31 ∗ 104

6 10 5 5.86 ∗ 107 8.67 ∗ 1041 5.86 ∗ 107

8 10 5 7.81 ∗ 107 8.27 ∗ 1055 7.85 ∗ 107

10 20 5 9.53 ∗ 1014 6.22 ∗ 10139 9.53 ∗ 1014

12 20 5 1.14 ∗ 1015 5.66 ∗ 10167 1.14 ∗ 1015

Table 6.1: Growth of Price Combinations

We must note that the results from table 6.1 hold for each time period.
Example 6.1 clearly illustrates the large benefits of the DRDP model in
terms of the number of price combinations. The number of alternative prices
is assumed fixed at 5 price alternatives. The number of regions is varied
from 2 to 12 and the number of products per region is varied from 5 to
20. In reality, the number of regions is not expected to grow very fast.
Due to a large number of possible combinations, the number of products
per region can grow fast. In case we do not use the DRDP approach the
number of price combinations grows excessively. In case of 12 regions, 20
products per region and 5 price alternatives per product, the number of
price combinations is 5.66 ∗ 10167. When the DRDP approach is used the
number of price combinations is reduced to 1.14 ∗ 1015 combinations. So, by
dividing the pricing decision into two steps, the DRDP approach is able to
reduce the number of price combinations considerably.
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The difference between the IRDP and DRDP approach is only |Ji||R|
price combinations (this is 512 for the large example). So compared to the
IRDP approach, the DRDP approach does not strongly increase the number
of price combinations, see theorem 6.3. In the case of 12 regions, 20 products
per region and 5 price alternatives per product, the growth percentage is
approximately 0.00%.

6.2 Objectives and Expected Profit
An important thing to notice is that the objective from the IRDP model
(given in (2.1), denoted by ΠIRDP ) and the objective from step 2 of the
DRDP model (given in (5.26), denoted by ΠDRDP2) are represented by the
same formula. Therefore, one might be tempted to compare these objectives
in order the compare the expected profit for both models. However, the
objectives ΠIRDP and ΠDRDP2 do not represent the actual expected profit.
In the next section we describe how the actual profit can be calculated. We
next show that the optimal value from the IRDP model (Π∗IRDP ) will be
larger or equal than the optimal value from the second step of the DRDP
model (Π∗DRDP2).

Theorem 6.4.
Π∗IRDP ≥ Π∗DRDP2 (6.3)

Proof:
When we compare the IRDP model (given in (2.1)-(2.4)) to the second step
of the DRDP model (given in (5.24)-(5.28)) we see that these mathematical
programs are almost identical. Let SIRDP be the feasible region defined
in (2.2)-(2.4). Let SDRDP2 be the feasible region defined in (5.25)-(5.28).
Because (5.25)-(5.28) contains all constraint from (2.2)-(2.4) and more con-
straints we know that SDRDP2 ⊆ SIRDP . Because the problems also have
an identical objective we know that Π∗IRDP ≥ Π∗DRDP2. �

6.2.1 Calculate Expected Profit from ΠIRDP and ΠDRDP2

We proved that Π∗IRDP ≥ Π∗DRDP2, so when we compare these objectives,
the IRDP objective will always be the highest. The reason for this is that
in the objectives πIRDP and πDRDP2 the cross regional profits are not in-
corporated. Because of this, we have to adjust the objectives to obtain the
correct expected profit including the expected cross regional profit. We can
use the πDRDP1 objective (given in (5.14)) to correct for the expected cross
profit generated by competing regions pricing decisions. We can correct the
objectives (ΠIRDP and ΠDRDP2) for the cross regional profit in order to
obtain the total expected profit.
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Additional Cross Regional Profit

In the IRDP model, for each of the products, a price elasticity of demand
is defined. Choosing for an alternative price of a product leads to a change
in demand for that product. This change in demand for the individual
products is calculated using this price elasticity. In the second step of the
DRDP model, the products also have their own price elasticities. Using
only price elasticities of demand, the cross regional effects are ignored in
this step. Note that in case of the DRDP model this does not have any
negative consequences on the pricing decision itself, see remark 5.5. In step
2 of the DRDP model, the average price for a region is fixed to the optimal
region price from step 1. A consequence is that the cross regional profit is
just a constant term that can be calculated after the regional pricing decision
in step 1 of the DRDP model.

Let Prt be the base price for region r at time t calculated from the base
product prices pit, using formula (5.1). Let P ∗rt be the optimal region prices
obtained after step 1 of the DRDP model.

The relative price changes after step 1 of the DRDP model, for time
period t, are defined in (6.4):

∆Hrot = P ∗rt
P ∗ot
− Prt
Pot

. (6.4)

When the relative price of region r compared to other region o has in-
creased, we assume that region r loses customers to region o. However, if
the price increase is sufficient this might be profitable. The total cross profit
for region r (χr) over time horizon T is defined in (6.5):

χr =
∑
o∈R
o 6=r

∑
t∈T

(P ∗rt − Cr)Mt(βro∆Hrot). (6.5)

This formula uses the elasticities from the regression in (4.4), the change
in relative price results in a change in market share (βro∆Hrot). This is
multiplied with the total market demand (Mt) in order to compute the
change in actual customers. The change in customers is multiplied with the
margin of the region for a given pricing decision (P ∗rt − Cr).

Note that the cross profit can also be calculated for the IRDP model.
After a pricing decision, we first have to calculate the region price and cost
from the optimal product prices (using formulas (5.1) and (5.2)).

The total cross profit summed over all regions can be added to the objec-
tives from the first step of the DRDP model and the IRDP model. In these
objectives, the cross regional profit was not incorporated. For the DRDP
model, the total expected profit (ΨDRDP ) including the cross regional profit
(
∑
r χr) can be calculated using the formula in (6.6):
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ΨDRDP = πDRDP2 +
∑
r

χr. (6.6)

In this equation, πDRDP2 represents the regions ‘own’ profits whereas∑
r χr represents the regions ‘cross profits’. Note that in the DRDP model,

the cross profits are optimal, see remark 5.5. Therefore, the cross profits
from step 2 of the DRDP model are per definition higher or equal to the
cross profits from the IRDP model.
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Chapter 7

Case Study

In this chapter we provide a case study of a large tour operator called Sun-
web. In the section 7.1 we provide some background information.

In section 7.2, we describe the available data, we focus on 4 main des-
tinations of Sunweb. These destinations account for approximately 90% of
the total bookings.

Before the elasticities can be measured using regression, we have to make
sure that the regression parameters can be trusted. Therefore, in section
7.3, we perform a pre-modeling data analysis. We first look at the strategy
of focusing on the relative price, market share relationship. Next we test
the market share series on stationarity. We also describe the used outlier
detection mechanism. In the travel industry, people are influenced by many
factors other than price. Marketing activities can cause large demand peaks
that cannot be explained by price changes. To be able to determine the
effects of price changes on demand, outlier detection is very important.

In section 7.4 we describe the regression analysis proposed in section
4.1.2. We estimate the elasticities from the actual booking data and we
perform several statistical tests to guarantee the validity of the estimates.
We also used the simulation technique described in section 4.2 to estimate
the elasticities of demand from the estimated cross elasticities.

In section 7.5 we use simulation to compare the results of different pric-
ing models under different circumstances. We define multiple test cases,
representing different possible situations. We vary three different attributes
of a test case: capacity, margins and demand volatility. The aim is that the
test cases provide a realistic mix of different possible situations. First, we
compare the models after the first step of the DRDP model. Hereafter, we
compare the models after the second step of the DRDP model. To be able to
solve the second step of the model, we first have too extend some of the test
cases. We are interested in the average profit generated for each of the mod-
els under different circumstances. We are also interested in the robustness
of the models. The simulation outcomes provide us insight in the behavior
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of the optimization models, they also show the possible value of the DRDP
model. We also discuss the results for the DRDP model using the stochastic
constraints described in section 5.4. These stochastic constraints make use
of a buffer capacity, extra capacities that are maintained to mitigate risk
of lost demand. This approach of treating uncertain demand is commonly
used in inventory management (see for example, [2]). We are interested in
the effect of these constraints on both the profit and the lost demand.

In the last section 7.6, we consider the realized computation times of
both the DRPD and IRDP model. In section 6.1, we already analyzed the
problem complexity of the different models. We expect that the computation
times are closely related to the complexity of the models.

7.1 Background

7.1.1 Sunweb

In this study we will focus on Sunweb, part of the Sundio Group1. Currently,
Sundio is one of the largest tour operators and webshops in the Netherlands.
Since 2007 the Sundio Group has been the umbrella organization correspond-
ing to 14 different brand names. Sunweb is the largest of these brands, with
a substantial share of the total Sundio bookings. Sunweb has been operating
as a direct sales organization for flight package holidays to sunny destina-
tions predominantly within Europe since 2000. They mainly provide sum-
mer holidays (Sunweb-Summer) but also Winter holidays (Sunweb-Winter).
Figure 7.1 depicts the travel countries that Sunweb-Summer offers.

Figure 7.1: Holiday Countries of Sunweb-Summer
1for more information on Sundio Group or Sunweb see: http://www.sundiogroup.com
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In this picture we see that Sunweb-Summer is mainly active in Western-
Europe, but also in Africa, and Dubai. In the remainder of this case study,
we focus on the booking data of Sunweb-Summer. This data is described in
section 7.2. We first provide some background information on GfK Retail
and Technology.

7.1.2 GfK Retail and Technology

GfK Retail and Technology2 is the global leader in sales reporting and mar-
ket intelligence for technical consumer goods markets. GfK Retail and Tech-
nology is active in various markets, including travel and tourism. The main
clients of GfK Travel and Tourism include Tour Operators, Airports, Travel
Insurers, Rental Car Companies and Hotels.

GfK Retail and Technology works in direct partnership with travel agen-
cies and tour operators in Germany, United Kingdom, France, Italy, the
Netherlands and Russia. The added value of GfK is that they provide unique
market intelligence based upon live booking information. This booking in-
formation helps tour operators to get a better understanding of the highly
competitive market. Besides this, the market information can be used to
support tactical planning decisions, pricing decisions and marketing cam-
paigns.

7.2 Data Description
In this study we focus on Sunweb’s most important countries: Greece, Spain,
Turkey and Portugal. In figure 7.2 we see the number of bookings for each
country as a percentage of the total bookings. Spain and Greece are the main
contributors to the total number of bookings. With approximately 90% of
the total Sunweb bookings these four countries provide a good representation
of the total booking process within Sunweb.

The dataset used in this chapter consists of the booking data from the
first week of 2008 until the 24th week of 2011. The data is aggregated as the
total number of bookings per week and the corresponding average price of
these bookings. In total, the dataset consists of 181 aggregated weeks. For
the same period we possess the number of market bookings and the average
market price per region per week. The Market data is provided by GfK, an
organization that delivers market information (described in section 7.1.2).
We use the formulas (4.1) and (4.2) to compute the market share and the
relative price of Sunweb compared to the rest of the market. We are only
interested in the rest of the market that is able to influence the number of
bookings of Sunweb. Therefore, the market is defined as: tour operators

2for more information on GfK Retail and Technology see: http://www.gfkrt.com/
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Figure 7.2: Sunweb bookings per country as a percentage of the total book-
ings

operating in the Netherlands (according to definition 4.1). Incorporating
other travel organizations will only disturb the expected relationships.

7.3 Pre-Modeling Data Analysis
An accurate pre-modeling data analysis is necessary to make sure that we
can correctly interpret the regression results. We first show that looking at
the price-demand relationship can cause trouble because the data is highly
seasonal. We also show that correcting for the market bookings and the
market price is a successful strategy. Next, we test the market share data
for stationarity. Hereafter we describe how possible outliers are treated. We
also describe why this outlier detection is important in this analysis.

7.3.1 Actual Prices vs. Relative Prices

Usually the relationship between price and demand is a negative one. The
coefficient in this relationship is often used as the price elasticity of demand.
For tour operators it is often not possible to estimate price elasticities this
way. Figure 7.3 depicts a scatterplot between price and demand per week
for Turkey.

When we fit a regression line to the scatter plot in figure 7.3, we obtain
a positive (not significant) relationship with a R2 of 0.01. This positive re-
lationship is caused by a seasonal demand and pricing pattern. We describe
two periods that cause a positive relationship between price and demand.
This phenomenon was already described in example 4.2.

First, we consider the period January-February: most people book their
summer holiday in this period. The selling season also starts in January
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Figure 7.3: Turkey, Price(PTurkey) vs. Demand(QTurkey)

resulting in high prices. The dots with high price and high demand in figure
7.3 typically represent the weeks in this period.

Second, we look at the summer holiday in June-August: less people book
their summer holiday in this period. However, the people that do are willing
to accept the fact that there is less certainty and less choice to get lower
prices. In figure 7.3 we clearly see the low price low demand dots. The very
low prices (around 200 and 300) with low demands are typical examples of
‘last-minute’ weeks.

Both of these periods influence the relationship between price and de-
mand to become positive. Therefore, we are not able to estimate the price
elasticities using a linear regression (without seasonal dummies).

In section 4.1.1 we described how we avoid this problem using the relative
price in a given week compared to the market share in this week. In this
approach we assume that for each region the market share is more or less
constant over time. Figure 7.4 depicts the relationship between the relative
price of products to Turkey and the corresponding market share.

When we fit a regression line to this data, a negative and significant
relationship is found with a R2 of 0.37. Therefore, we can conclude that the
relative price of Sunweb’s products to Turkey significantly influences the
market share of Sunweb to Turkey. For the other regions we find similar
relationships.
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Figure 7.4: Turkey, Relative Price(GTurkey) vs. Market Share(STurkey)

7.3.2 Stationarity

In our approach we assume that the market share is more or less constant
over time, i.e. we have stationary market share series. If the market share
data is not stationary, the standard assumptions for asymptotic analysis
will not be valid. As a result, the regression parameters cannot be trusted
because the t-values do not necessarily follow a t-distribution. Next to this,
in a non-stationary series, a shock will have a permanent effect on all future
observations. We performed the Augmented Dickey Fuller test to test for a
unit root in the market share data. We also included seasonal dummies to
test for seasonality. The p-values of the Augmented Dickey Fuller test are
presented in table 7.1.

Test H0 Greece Spain Turkey Portugal
ADF Unit Root in Sr 0.00 0.00 0.01 0.00

Table 7.1: Unit Root Test Results: p-values of the Augmented Dickey Fuller
test

In table 7.1, we see that for all market share series the null hypothesis
of a unit root is rejected (with α = 0.05). We conclude that none of the
market share series contains a unit root.

If a unit root is found one would typically take the first differences of
the market shares (∆Srt) to obtain a stationary series.
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7.3.3 Outlier Detection

As a last step in the pre-modeling data analysis we study the dataset to
identify possible outliers. As in [22], an outlier can be defined as follows:

“An outlier is an observation which deviates so much from other observa-
tions as to arouse suspicions that it was generated by a different mechanism”

In the tour operating industry, we know there many mechanisms that
influence people to buy certain products. A lot of people are attracted to a
product for other reasons than the price. For example, marketing activities
attract people to book their holiday in a certain week. From experience
we know that marketing activities can have huge effects on the number of
bookings.

We determine outliers using the dffits as described in [23] (page 383).
Dffits can be seen as “a scale invariant measure for the difference in fitted
values”. First, we estimate the complete regression model (4.4) including all
countries. This model is used to calculate the dffits. We assume the differ-
ence in fitted value is significant if the dffits value is larger than 2

√
k/n, with

k the number of explanatory variables and n the number of observations.
We assume that all values that are hard to fit are due to marketing actions or
other non-price related shocks in market share. All possible identified out-
liers are omitted in the final regressions. This mechanism makes sure that
the most influential observations do not bias the elasticity estimates. How-
ever, one must be careful not to delete observations that contain valuable
information.

7.4 Elasticity Estimation
After we analyzed the data extensively in the previous section we can per-
form the elasticity estimation using the regression model from (4.4). The
results are described in this section.

7.4.1 Cross Elasticities

We performed the regression in equation (4.4)3 with the outlier treatment
described in the previous section. We use backward elimination to determine
the significant relationships until we obtain the final model in which all
parameters are significant (with a α of 0.05). After this, we performed
several statistical tests to make sure that the regression assumptions are
met. The used tests and assumptions are described section 4.3. The test
results of the described tests are presented in table 7.2.

3We use GRETL to perform the data analysis

63



Models
Test H0 Greece Spain Turkey Portugal
ADF Unit Root in Sr 0.00 0.00 0.01 0.00
RESET Specification is Adequate 0.63 0.09 0.21 0.93
BP No Heteroskedasticity 0.76 0.89 0.48 0.72
JB Normally Distributed Error 0.09 0.10 0.23 0.45
BG No Autocorrelation 0.00 0.00 0.00 0.79
VIF multicollinearity GGreece 1.53 1.53 1.53 1.53
VIF multicollinearity GSpain 1.40 1.40 1.40 1.40
VIF multicollinearity GTurkey 1.29 1.29 1.29 1.29
VIF multicollinearity GPortugal 1.50 1.50 1.50 1.50

Table 7.2: Null hypothesis and p-values of Statistical Tests

We performed the RESET test to check whether the specified linear mod-
els are adequate. Looking at the RESET test results we see that for none
of the regions, the null hypothesis of an adequate specification is rejected.
Therefore, we can conclude that for all regions the linear specification is ade-
quate. In order to test for heteroskedasticity, we also performed the Breusch
Pagan (BP) test. When we look at the results of the BP test, we see that for
none of the regions the null hypothesis of no heteroskedasticity is rejected.
Therefore, as a result of the BP test we conclude that heteroskedasticity is
not a problem. We used the Jarque-Bera (JB) test, to test the normality
of the residuals. Looking at the JB test results, we see that for none of the
regions the null hypothesis of normally distributed error terms is rejected.
Therefore, we can conclude that the error terms are normally distributed.
To test for autocorrelation, we performed the Breusch-Godfrey (BG) test.
When we look at the results of the BG test, we see that the null hypothesis
of no autocorrelation cannot be rejected for the model of Portugal. So for
Portugal we can conclude that autocorrelation is not a problem. For all
other regions, the null hypothes of no autocorrelation is rejected. For these
regions we cannot conclude there is no autocorrelation present. Although
serial correlation does not affect the consistency of the estimated regression
estimates, it does affect our ability to conduct valid statistical tests. There-
fore as discussed in section 4.3, we use Newey-West standard errors which
are known to be Heteroskedasticity and Autocorrelation Consistent (HAC).
When we look at the Variance Inflation Factors (VIF), we see that all VIF
values are smaller than two. A VIF larger than ten is an indication of multi-
collinearity. Therefore, we conclude that multicollinearity is not a problem
in the performed regressions.

We repeat the regression procedure, only now we use Newey-West Stan-
dard Errors to account for the found autocorrelation. The final regression
results are presented in table 7.3. We also present the standard errors of the
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regression next to the estimated parameters. In figure 7.5, the residuals are
plotted with the corresponding normal distribution fit.

SGreece SSpain STurkey SPortugal
Constant 0.260 (0.015) 0.201 (0.017) 0.179 (0.012) 0.065 (0.004)
Trend 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Greece -0.057 (0.014) - -0.037 (0.009) -
Spain -0.056 (0.016) -0.071 (0.019) -0.078 (0.008) -0.016 (0.004)
Turkey - - -0.023 (0.009) -0.008 (0.003)
Portugal - - - -0.010 (0.003)
# outliers 10 9 10 11
# obs 171 172 171 170
SSE 0.087 0.031 0.017 0.004
R2 0.549 0.494 0.624 0.519
p-value 0.000 0.000 0.000 0.000

Table 7.3: Regression Results

Figure 7.5: Residuals of the regression models including normal pdf fit

To interpret the regression results it is important to understand the
equation in (4.4). In (4.4), the Sunweb market share of region r is explained
using the price of this region compared to the same region in the market
(Grt) and the price of this region compared to other regions within Sunweb
(Hrot). Grt and Hrot are defined in equations (4.2) and (4.3), respectively.
The estimated parameters can be interpreted as follows: let β̂ro be the
parameter estimate, when we increase the relative price of region r compared
to region o with one unit, the market share of region r is expected to increase
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with β̂ro. For example, when HGreeceSpain is increased with 1 unit, SGreece
is expected to increase with -0.056 units.

For the estimated regression models in table 7.3, the constant and trend
are significant in all cases. Considering the elasticities, it is remarkable
that all elasticities are negative. This means that when the relative price of
region r increases compared to the other prices, the expected market share
of r decreases. This relationship was already expected, see section 4.1.2.
It is also remarkable that the relative price of the region compared to the
market price is significant in all models.

Considering the model for Greece, a significant negative elasticity is
found for both the price compared to the market as the price compared
to Spain. The other relative prices do not have significant influence on the
market share of Greece. In the case of Greece 10 outliers are omitted, this
leaves 171 remaining observations. An interesting measure for the goodness
of fit is the sum of squared error (SSE), in the SSE all regression error terms
are squared and summed (

∑
ε2). The SSE is a measure of the discrepancy

between the data and the estimated model. In case of Greece, the SSE is
equal to 0.087. Another interesting measure is the R2, this is known as
the squared multiple correlation coefficient. R2 represents the percentage of
variability in market share that can be explained by the explanatory vari-
ables. The fitted model, has an R2 of 0.549, this means that 54.9% of the
variation in the market share can be explained by this model. We also per-
form an ANOVA test with the null hypothesis: all coefficients are zero. The
alternative hypothesis is: at least one of the coefficients is non-zero. The
p-value in the table corresponds to this ANOVA test. For the Greece model,
the null hypothesis is rejected. So, we cannot conclude that at least one of
the coefficients is non-zero.

In the model for Spain, the only significant elasticity is found for the
price compared to the market. The prices compared to other regions do
not have significant influence on the market share of Spain. In the case of
Spain 9 outliers are omitted, this leaves 172 remaining observations. The
SSE is equal to 0.031, this is smaller than the SSE for Greece. This does not
necessarily imply a better fit. Since the average share of Greece is larger,
the SSE of Greece is expected to be larger as well. The R2 of the Spain
model is equal to 0.494, this means that 49.4% of the variability in market
share can be explained by this model. The null hypothesis of the ANOVA
is again rejected, so we cannot conclude that at least one of the coefficients
is non-zero.

Next, the model for Turkey is considered. Negative elasticities are found
for the relative price compared to the market and the relative prices com-
pared to Greece and Spain. The relative price compared to Portugal does
not have significant influence on the market share of Turkey. In this model
10 outliers are omitted, the model is based on the 171 remaining observa-
tions. The SSE is equal to 0.017, this is smaller than the SSE for Greece and
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Spain. The R2 of the Turkey model is equal to 0.624, meaning that 62.4%
of the variability in market share can be explained by the model. The null
hypothesis of the ANOVA is again rejected, so we cannot conclude that at
least one of the coefficients is non-zero.

Finally, the model for Portugal is considered. Negative elasticities are
found for the relative price compared to the market and the relative prices
compared to Spain and Turkey. The relative price compared to Greece
does not have significant influence on the market share of Portugal. In
the Portugal model 11 outliers are omitted, the model is based on the 170
remaining observations. The SSE is equal to 0.004, this is the smallest SSE
so far. This is not surprising since the average market share of Portugal is by
far the smallest. The R2 of the model is equal to 0.519, meaning that 51.9%
of the variability in market share can be explained by the model. The null
hypothesis of the ANOVA is again rejected, so we can again not conclude
that at least one of the coefficients is non-zero.

For each of the regression models we also plotted the residuals in figure
7.5, we also included a fit of the normal pdf. According to the log likelihood
values of the corresponding fits we can compare the models. The highest log
likelihood is found for the Portugal (705.7), after this comes Turkey (577.4),
then Spain (530.6) and the lowest log likelihood is found for Greece (434.1).
For all models it holds that the JB test does not reject the null hypothesis
of normally distributed residuals.

Practical Interpretation

Considering the models in table 7.3, the market share of Spain is the hardest
to explain. The R2 of the Spain model is the lowest of all four models. Next
to this, only the relative price compared to the market has a significant
influence on Spain’s market share. For Greece, only the relative price of
Greece compared to the market and Spain has a significant effect on the
market share of Greece. For Turkey and Portugal, three relative prices
compared to other regions and the market are influencing the market share.
It looks like the market shares of the popular regions (Greece and Spain)
are harder to influence than the market shares of the less popular regions
(Turkey and Portugal). It also looks like the customers to Turkey and
Portugal are willing to switch their destination easily if another region or
the market is cheaper. Or alternatively, people are willing to go to Turkey
and Portugal if the relative prices are favorable. Customers to Greece are
only willing to switch to cheaper alternatives in Spain and the market to
Greece. The customers to Spain are not willing to switch destinations,
however when the market is cheaper they will switch to other trips to Spain
in the market.
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7.4.2 Elasticities

In this section we already estimated the cross elasticities between the re-
gions. These cross elasticities can be used to solve the first step of the
DRDP model. However, in the second step of the DRDP model and the
IRDP model the price sensitivity is modeled with the price elasticities of de-
mand. In section 7.3.1 we saw that, due to seasonality, linear least squares
cannot be used to estimate the price elasticities of demand from the dataset.
Therefore, we create our own dataset based on the cross elasticities from ta-
ble 7.3. In section 4.2 we explained this process in greater detail. The
price elasticities of demand are estimated from this dataset. The distribu-
tions, paramater estimates, likelihood values and Kolmogorov Smirnov (KS)
p-values are presented in table 7.4.

Panel A: Sunweb Price Distribution Fits
Country Greece Spain Turkey Portugal
Distribution EV GEV GEV GEV
location: µ 547.0 494.1 512.7 489.6
scale: σ 50.2 42.0 47.6 62.1
shape: ξ - -0.185 -0.425 -0.239
Log-Likelihood -992.7 -947.9 -970.1 -1003.0
KS p-value 0.84 0.76 0.86 0.52

Panel B: Market Price Distribution Fits
Country Greece Spain Turkey Portugal
Distribution EV EV EV EV
location: µ 707.6 679.4 676.2 656.2
scale: σ 71.2 38.0 63.7 55.8
shape: ξ - - - -
Log-Likelihood -1104.8 -968.5 -1058.3 -1015.3
KS p-value 0.11 0.37 0.46 0.29

Panel C: Market Demand Distribution Fits
Country Greece Spain Turkey Portugal
Distribution GEV GEV GEV GEV
location: µ 1787.5 6075.8 3741.9 614.9
scale: σ 2636.3 1786.5 2039.4 1218.0
shape: ξ 0.033 0.403 0.095 0.203
Log-Likelihood -1646.6 -1684.6 -1674.7 -1469.4
KS p-value 0.05 0.53 0.07 0.70

Table 7.4: Distribution Fits

We look the distributions and corresponding fits in table 7.4, for all data
samples we found a distribution that fits the data properly. The null hy-
pothesis (H0=The compared samples are drawn from the same distribution)
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of the KS-test is never rejected. Therefore, we conclude that all fitted dis-
tributions fit the data properly. For each fit we also calculated the Log
Likelihood of the fitted parameters. Note that we can only compare the re-
sults for the same chosen distribution. We see that for the EV distribution,
the market price for spain results in the highest likelihood. On the contrary,
the market price for Greece results in the lowest log likelihood. For the GEV
distributions, the price distribution fits have considerably higher likelihoods
than the market demand fits. Generally, the market demand fits are the
hardest to fit to the data.

Figure 7.6: Price Distribution Fits

Figure 7.7: Market Demand Distribution Fits
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In figures 7.6 and 7.7 we plotted the price and markets demand distri-
butions, respectively. All the market prices from figure 7.6 follow an EV
distribution, the Sunweb price for Greece also follows a EV distribution.
The Sunweb prices of Spain, Turkey and Portugal from figure 7.6 follow a
GEV distribution. The market demand for each of the countries in figure
7.7 follows a GEV distribution. In figure 7.6 we see that the market prices
are on average higher than the Sunweb prices.

Remarkable to see that for the sunweb price distribution fits the shape
parameter ξ is negative. According to [32], for a negative value of ξ, the
GEV distribution belongs to the Weibull Maximum Domain of Attraction
and has a finite right endpoint, this finite right endpoint can clearly be seen
in figure 7.6. For the market demand distribution fits, the shape parameter
ξ is always positive. According to [32], for a positive value of ξ, the GEV
distribution belongs to the Fréchet maximum domain of attraction and is
regularly varying (power-like tail), this power like tail can clearly be seen in
figure 7.7.

We used the fitted distributions from table 7.4 to create the dataset and
estimate the price elasticities of demand, as described in section 4.2. The
estimated price elasticities of demand are given in table 7.5.

Test Greece Spain Turkey Portugal
Price Elasticity of Demand -0.067 -0.026 -0.021 -0.051

Table 7.5: Price Elasticity of Demand Estimates

The elasticities of demand presented in table 7.5 are used in the IRDP
model and in the second step of the DRDP model. By deriving the price
elasticities of demand from the cross elasticities we made sure that the elas-
ticities from both models are generated under the same data generating
process without any disturbances. This makes sure that the models can be
compared fairly.

7.5 Validation of DRDP Model
In this section we use simulation to compare the results of different pricing
models under different circumstances. We define multiple test cases, repre-
senting different possible situations. We vary three different attributes of
a test case: capacity, margins and demand volatility. The aim is that the
test cases provide a realistic mix of different possible situations. First, we
compare the models after the first step of the DRDP model. Hereafter, we
compare the models after the second step of the DRDP model. To be able
to solve the second step of the model, we first have to extend some of the
test cases. We are interested in the average profit generated for each of the
models under different circumstances. We are also interested in the robust-
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ness of the models. Therefore, we also look at the number of simulations
that each of the models generates the highest profits. We also look at the
number of simulations that each of the models generates the lowest profits.
Next to this, we are interested in the average capacity utilization and the
number of lost customers.

The simulation outcomes provide us insight in the behavior of the opti-
mization models, they also show the possible value of the DRDP model.

We also discuss the results for the DRDP model using the stochastic
constraints described in section 5.4. We are interested in the effect of these
constraints on both the profit and the lost demand.

The models in this section are solved, using CPLEX 12.4 as solver4.

7.5.1 Step 1: Test Cases

In this subsection we describe the basic test cases of the simulations. The
test cases are supposed to represent different possible situations. For each
test case, we consider 4 traveling regions: Greece, Spain, Turkey and Portu-
gal. The booking horizon consists of one time period with 10000 expected
market bookings. We focus on the products departing at the end of this time
horizon. The starting prices per region are given table 7.6. From the prices,
market prices and market demand we can calculate the expected Sunweb
demand for each region (E(Qr)), using formula (5.7).

Greece Spain Turkey Portugal
Price (e) 519 512 524 512
Market Price (e) 668 657 642 626
E(Qr) 1693 1457 432 323

Table 7.6: Base Situation

We are interested in the behavior of the models under different circum-
stances. To create varying test cases we focus on three important properties:
Capacity, Margins and Demand Volatility. Next, each of these properties
with corresponding choices is described.

Capacity/Demand Ratio

We are interested in the behavior of the models under different capacity
scenarios. Therefore, we define three capacity situations. The capacity per
region can be defined as a ratio of the expected demand in the base situation.
The capacity/demand ratio is defined per region in (7.1):

Capacity/DemandRatior = TCapr
E(Qr)

, (7.1)

4Processor: Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz, 2501 Mhz, 2 Core(s), 4
Logical Processor(s)
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with TCapr the capacity for products to region r. And E(Qr) the ex-
pected demand in the base pricing decision, given in table 7.6. We define
three different capacity situations with capacity/demand ratios of 1.5, 1.2
and 0.9 for high, average and low capacity situations respectively.

Margins

We are interested in the behavior of the models under different margin sce-
narios. We expect that the DRDP model might be able to exploit the fact
that the margins of some regions are higher than the margins of other re-
gions. Therefore, we set different costs per region to be able to control the
margins of the products. We define an equal margins situation in which the
base margins of all regions are equal to e100. We define an unequal margin
situation in which the base margins of the regions differ. In this situation
we increase the base margins of Greece and Turkey to e150 and we decrease
the base margins of Spain and Portugal to e50.

Demand Uncertainty

We are interested in the robustness of the different models. Therefore, we
also define situations with different demand volatility. We refer to section
5.4 for a discussion on demand uncertainty in RM models.

After the models are solved, we simulate the actual demand using the
expected demand as mean and a chosen standard deviation. We define
2 possible choices for the standard deviation, a high standard deviation
or a low standard deviation. The high and low standard deviations are
determined as a function of the expected demand per region. In the high
demand volatility case, the demand volatility is defined as σr = 0.25E(Qr).
In the low demand volatility case, the demand volatility is defined as σr =
0.1E(Qr). We assume that for each of these situations the demand volatility
is known beforehand.

Summarizing Test Cases

In table 7.7 we provide an overview of all the Test Cases. We look at
all combinations of the described test case properties. The computational
results are described next, in section 7.5.2.

7.5.2 Step 1: Computational Results

We solved step 1 of the DRDP model for each of the test cases described
in table 7.7. The optimization starts with the prices of the products before
optimization, these are called the base prices. In the results, the Base pric-
ing decision is also considered. For each of the test cases, we also solved
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Capacity Margins Demand Uncertainty
Test Case 1 High Equal High
Test Case 2 High Equal Low
Test Case 3 High Unequal High
Test Case 4 High Unequal Low
Test Case 5 Average Equal High
Test Case 6 Average Equal Low
Test Case 7 Average Unequal High
Test Case 8 Average Unequal Low
Test Case 9 Low Equal High
Test Case 10 Low Equal Low
Test Case 11 Low Unequal High
Test Case 12 Low Unequal Low

Table 7.7: Different Test Cases Step 1

the IRDP model. After the models are solved, we have the pricing decisions
for each of the models with corresponding expected demands. The realized
demand for each region is simulated as random number from the normal
distribution. We use the expected demand as mean and 0.1 and 0.25 times
the expected demand as standard deviations for the certain and uncertain
demand situations respectively. For each test case, 10000 simulations are
performed. The complete computational results are shown in table 8.1 (test
cases 1-3), table 8.2 (test cases 4-8) and table 8.3 (test cases 9-12) in Ap-
pendix I.

Average Results

In table 7.8, the average results over all 12 test cases are presented. These
results represent the average performance of the models over 12 different
test cases. For each test case we performed 10000 simulations, so in total
these results are based on 120000 simulations.

Base IRDP DRDP
Avg Profit (e) 358934 438355 523077
Std Profit (e) 36498 41448 55441
Profit as % of IRDP 82.0 % 100.0 % 119.9 %
Profit % Highest 0.0 % 1.7 % 98.3 %
Profit % Lowest 88.5 % 10.8 % 0.7 %
Cap % Utilization 81.6 % 80.8 % 79.2 %
Avg Demand Lost 190.3 180.1 114.4

Table 7.8: Average Results of all 12 Test Cases

The most important benchmark is the average realized profit. The base
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pricing decision leads to the lowest average profit of e358934, with a stan-
dard deviation of e36498. In 0.0% of the simulations, the base pricing
decision led to the highest realized profit. In 88.5% of the simulations, the
base pricing decision led to the lowest realized profit. Using the base prices
led to an average capacity utilization of 81.6% and an average lost demand
of 190.3 customers.

The IRDP pricing decision leads to an average profit of e438355, with a
standard deviation of e41448. In 1.7% of the simulations, the IRDP pricing
decision led to the highest realized profit. In 10.8% of the simulations, the
IRDP pricing decision led to the lowest realized profit. Using the IRDP
prices, led to an average capacity utilization of 80.8% and an average lost
demand of 180.1 customers.

Finally, the DRDP pricing decision leads to the highest average profit of
e523077, with a standard deviation of e55441. In 98.3% of the simulations,
the DRDP pricing decision led to the highest realized profit. In 0.7% of
the simulations, the DRDP pricing decision led to the lowest realized profit.
Using the DRDP prices, led to an average capacity utilization of 79.2% and
an average lost demand of 114.4 customers.

Note that the standard deviation of the profits is the highest for the
DRDP model. As expected, the standard deviations of the profits are much
smaller in case of low demand uncertainty compared to high demand uncer-
tainty.

For each model, the profit is expressed as a percentage of the IRDP
profit. Over all test cases, the DRDP model realized on average 19.9% more
profit than the IRDP model. Not only the average profits are higher, the
percentage of the simulations the DRDP model performs best is also quite
convincing. Of all three pricing decisions, the DRDP model realized the
highest profit in 98.3% of the simulations while the IRDP model realized the
highest profit in only 1.7% of the simulations. The DRDP model realized
the lowest profit in 0.7 % of the simulations, for the IRDP model this is
10.8% of the simulations. From these percentages we can conclude that the
DRDP model is also quite robust.

Compared to the IRDP model, the DRDP model realized a lower capac-
ity utilization and less lost demand. This implicates that the average prices
in case of the DRDP model are higher than for the IRDP model.

Next, we discuss the results for the different capacity, margins and de-
mand volatility situations described in section 7.5.2.

Low, Average and High Capacity

Three different capacity situations are considered. In the first situation, the
capacity is considered high (1.5 times the expected base demand). In the
second situation, the capacity is considered average (1.2 times the expected
base demand). In the third situation, the capacity is considered low (0.9
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times the expected base demand). For each of these situations, the realized
profits for all test cases were aggregated. The average realized profits for
each of the models, for the different capacity situations, are presented in
figure 7.8.

Figure 7.8: Average Profit for Low, Average and High Capacity

For all models, it holds that a higher capacity ratio leads to a higher
average profit. With higher capacities, more products can be sold in the op-
timization period. This leads to higher average profits and less lost demand.
The Profit difference between the high and average capacity situations is
smaller than between the average and low capacity situations. In the lowest
capacity situations, the base capacity is smaller than the expected demand.
In that case, a unit of additional capacity is more valuable than in the case
of average capacity.

Comparing the optimization models, the DRDP model realized a higher
average profit than the IRDPmodel for each of the different capacity/demand
situations. Next to this, the DRDP realized the highest profit in 98.7%,
99.1% and 97.4% of the simulations for the high, average and low capacity
ratios, respectively. The DRDP realized the lowest profit in 0.4%, 0.4% and
1.7% of the simulations for the high, average and low capacity ratios, re-
spectively. We conclude that the pricing of the DRDP model is preferred in
all capacity situations.

Equal and Unequal Margins

We considered different margin scenarios. In the first scenario, all regions
have an equal base margin of e100 per product. In the second scenario, we
increase the base margins of Greece and Turkey to e150 and we decrease the
base margins of Spain and Portugal to e50. We expected that the DRDP
model might be able to exploit the fact that the margins of some regions are
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higher than the margins of other regions.
We aggregated all test cases with equal base margins and compared them

to the test cases with unequal base margins. The realized profits for both
margin situations, for all models are shown in figure 7.9.

Figure 7.9: Average Profit for Equal and Unequal Margins

For both the base pricing decision and the DRDP pricing decision, the
average profit is 1.0% higher in case of unequal margins. Nevertheless, the
differences are minimal. For the IRDP model, the average realized profit
is more or less equal for both situations (0.0% difference). No large differ-
ences are found between the equal margin situations and the unequal margin
situations.

Comparing the profits generated under the different optimization mod-
els, the average profit under the DRDP pricing policy is higher for both
equal and unequal margins. The DRDP model realized the highest profit
in 98.1% and 98.7% of the simulations for the equal and unequal margins,
respectively. The DRDP model realized the lowest profit in 0.5% and 0.8%
of the simulations for the equal and unequal margins, respectively. For both
equal and unequal margin situations, the DRDP pricing policy is preferred.

Low and High Demand Volatility

We considered the situation of high demand volatility (0.25 times the ex-
pected demand) and low demand volatility (0.1 times the expected demand).
We aggregated all test cases with high demand volatility and compared them
to the test cases with low demand volatility. The realized profit for both
volatility situations, for all models is shown in figure 7.10.

All models realize higher average profits under low demand volatility
compared to high demand volatility. When the demand becomes more
volatile, the demand estimates used in the models become less accurate.
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Figure 7.10: Average Profit for High and Low Volatility

Large underestimations of demand lead to large numbers of customers lost,
large overestimations of demand lead to a large number of unsold capacities.
Both these situations result in lost potential profit. Looking at the average
realized profit, none of the models in specific seem to benefit from higher or
lower demand volatility.

The DRDPmodel generated a higher average profit for both low and high
demand volatility situations. In case of low demand volatility the DRDP
model realized the highest profit in 99.8% of the simulations. In case of high
demand volatility, the DRDP model realized the highest profit in 96.9% of
the simulations. The DRDP model realized the lowest profit in 1.3% and
0.0% of the simulations, for high and low demand volatility, respectively.
The DRDP model benefits from the more accurate information, in case of
low demand volatility the DRDP model realized the highest profit in almost
all simulations. In both low and high demand volatility situations, the
DRDP pricing policy is preferred.

Interaction Effects

So far we focused on the individual effects of the capacity, margings and de-
mand volatility situations. However, interaction effects may also be present.
To study these, we take a closer look at the average realized profits from the
complete computational results shown in table 8.1 (test cases 1-3), table 8.2
(test cases 4-8) and table 8.3 (test cases 9-12) in Appendix I. In figure 7.11
we plotted the average realized profits for each test case individually.

We see that in case of high capacity, the interaction effects are minimal.
For each test case with high capacity (test cases 1-4), the realized profits are
comparable. Only in case of unequal margins, the IRDP realized slightly
less profit and the DRDP model realized slightly more profit. In case of
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Figure 7.11: Realized average profits for all test cases

average capacity (test cases 5-8), we see that the combination of low demand
volatility and unequal margins leads to the highest profits for both the IRDP
and DRDP model. In case of low capacity (test cases 9-12), the demand
volatility becomes more important. The gaps between the realized profits
of high demand volatility and low demand volatility situations is the largest
in this case. In case of low capacity, extra unforseen demand might lead
to large lost profits. Whereas, in case of high capacity the extra unforseen
demand still fits within the capacity.

7.5.3 Step 2: Test Cases

In section 7.5.1, we described the regional test cases used to test step 1 of
the DRDP model. Because the data of all regional clusters is aggregated,
both models are solved as if there is only one product per region. This is
not completely fair because the DRDP model is designed for this purpose.
Whereas, the IRDP model is designed for the pricing of multiple products
that make use of the same resources. Next to this, DRDP model solves this
pricing problem of the regional clusters to optimality. To be able to make
a fair comparison between the models, we are also interested in the results
after step 2 of the DRDP model. For solving step 2 of the DRDP model,
we need to a situation with multiple products per region. To create this
situation, we expand some of the previously described test cases.

We focus on the optimization of products to Greece. To create different
products we define different accommodation types and different possible de-
parture dates. The total demand for trips to Greece is split into demand for
these products within Greece. To look at different problem sizes we also de-
fine two scenarios. In the first scenario we have ten possible departure dates
and in the second scenario we have hundred possible departure dates. In
both scenarios there are three different accommodation types. This results

78



in 30 different products for the small problem 300 different products for the
large problem.

Departure dates

We define multiple departure dates from which the arriving customers can
choose. Note that the base demand for Greece is already known from table
7.6 (1693 customers). We draw random numbers from a multinomial distri-
bution to distribute the region demand over the different departure dates.
The Greece base demand is used as the number of trials and the probability
of success for each departure date is equal. All trips are 8 days and every 3
days a flight departs.

Accommodations

We define three types of accommodations: cheap ones, average ones and ex-
pensive ones. An 8 day trip to an average priced accommodation costs e519,
this is equal to the Greece base price from table 7.6. A trip to the cheap
accommodation is 20% cheaper and a trip to the expensive accommodation
is 20% more expensive than base price. The demand for the different types
of accommodations is equally distributed, each accommodation type gets
one third of the total demand. For each of the accommodations, inbound
flights and outbound flights the capacity-demand ratio is 1.2.

Test cases 5 and 6 from table 7.7 are expanded. This means we are still
interested in the different demand volatility scenarios. An overview of the
expanded test cases is given in table 7.9.

Demand Volatility # departure Dates # Acco’s
Test Case 5.1 High 10 3
Test Case 5.2 High 100 3
Test Case 6.1 Low 10 3
Test Case 6.2 Low 100 3

Table 7.9: Expanded test cases 5 and 6

7.5.4 Step 2: Computational Results

In the previous section, we described the expanded test cases. For each of
these test cases, the IRDP model and the DRDP model are solved. Again,
we consider the Base pricing decision, this is the pricing decision before
optimizing the pricing policy. The base price of an average priced accom-
modation is e519. A trip to a cheap accommodation is 20% cheaper and
trip to an expensive accommodations are 20% more expensive. After the
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models are solved, we again simulate the actual realized demand. For each
product, we use a normal distribution with the expected demand as mean
and 0.1 and 0.25 times the expected demand as standard deviations for the
low and high demand volatility situations, respectively.

The complete computational results are presented in table 8.4 in Ap-
pendix II.

Average Results

We aggregated the computational results from the different test cases. The
average results are presented in table 7.10. For each test case we used 10000
simulations, so these results are based on a total of 40000 simulations. Note
that these are the results for Greece only.

Base IRDP DRDP
Avg Profit (e) 191599 261923 280564
Std Profit (e) 5477 8312 8944
Profit % of Base 73.2 % 100.0 % 107.1 %
Profit % Highest 0.0 % 12.1 % 87.9 %
Profit % Lowest 85.7 % 10.3 % 4.1 %
Cap % Utilization 90.1 % 89.4 % 88.8 %
Avg Demand Lost 80.2 76.1 69.0

Table 7.10: Average Results of Expanded Test Cases

The most important benchmark is the average realized profit. The base
pricing decision leads to the lowest average profit of e191599, with a stan-
dard deviation of e5477. In 0.0% of the simulations, the base pricing deci-
sion led to the highest realized profit. In 85.7% of the simulations, the base
pricing decision led to the lowest realized profit. Using the base prices led
to an average capacity utilization of 90.1% and an average lost demand of
80.2 customers.

The IRDP pricing decision leads to an average profit of e261923, with a
standard deviation of e8312. In 12.1% of the simulations, the IRDP pricing
decision led to the highest realized profit. In 10.3% of the simulations, the
IRDP pricing decision led to the lowest realized profit. Using the IRDP
prices led to an average capacity utilization of 89.4% and an average lost
demand of 76.1 customers.

Finally, the DRDP pricing decision leads to the highest average profit of
e280564, with a standard deviation of e8944. This is 7.1% higher than the
average profit realized after using the IRDP model. The standard deviation
is slightly higher than for the IRDP model. In 87.9% of the simulations,
the DRDP pricing decision led to the highest realized profit. In 4.1% of
the simulations, the DRDP pricing decision led to the lowest realized profit.
Using the DRDP prices led to an average capacity utilization of 88.8% and
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an average lost demand of 69.0 customers. Compared to the IRDP model,
the DRDP model again leads to lower capacity utilization. This implicates a
higher average price for the products under the DRDP model. On average,
these slightly higher prices also result in less lost demand. On average over
all expended test cases, the DRDP model is preferred.

Compared to the region results from section 7.5.2, the DRDP pricing
decision performed equally well compared to the base pricing decision. In
both cases, the DRDP pricing decision leads to an increase of 46% in average
profit. The IRDP model performed relatively better in case of multiple
products per region. In case of multiple products per region, the IRDP
pricing decision realized a 37% higher profit than the base pricing decision.
In the case of the regional clusters in table 7.8, this was 22.0%. With multiple
products per region, the IRDP model can exploit the fact that products
using the same capacities have different demands and prices. Therefore, the
IRDP prices result in higher profits compared to the base prices.

Finally, we conclude there are no large differences between the small
and large test cases. Next, we discuss the results for the different demand
volatility situations.

Low and High Demand Volatility

We considered the situation of high demand volatility (0.25 times the ex-
pected demand) and low demand volatility (0.1 times the expected demand).
We aggregated all expanded test cases with high demand volatility and com-
pared them to the expanded test cases with low demand volatility. The
realized profit for both volatility situations, for all models is shown in figure
7.12.

Like for the regional test cases in section 7.5.2, all models realize higher
average profits under low demand volatility compared to high demand volatil-
ity. When the demand for the products becomes more volatile, the demand
estimates used in the models become less accurate. Large underestimations
of demand lead to a higher number of lost customers, large overestimations
of demand lead to a higher number of unsold capacities. Both these sit-
uations result in lost potential profit. Therefore, the test cases with high
demand uncertainty have a higher standard deviation of the profit. Again,
none of the models in specific seems to benefit more from higher or lower
demand volatility. The DRDP model generated a higher average profit for
both low and high demand volatility situations. Considering the highest
realized profits per simulation: the DRDP model realized the highest profit
in 85.5% and 90.3% of the simulations for high and low demand volatility,
respectively. Whereas, the IRDP model realized the highest profit in 14.5%
and 7.9% of the simulations for high and low demand volatility, respectively.
Considering the lowest realized profits per simulation: the DRDP model re-
alized the lowest profit in 8.2% and 0.0% of the simulations for high and

81



Figure 7.12: Avg Profit for Different Demand Volatility Situations

low demand volatility, respectively. Whereas, the IRDP model realized the
lowest profit in 20.5% and 0.0% of the simulations, for high and low demand
volatility, respectively.

Again, the DRDP model benefits from the more accurate information.
In both low and high demand volatility situations, the DRDP pricing policy
is preferred.

7.5.5 IRDP vs DRDP model

In order to compare the IRDP and the DRDP models, we performed a
t-test to test the realized profits. The central limit theorem ensures that
the (parametric) t-test test works well with large samples, in our case 10000
simulations is sufficient to trust the t-test outcomes. The t-test, tests the null
hypothesis that the realized profits are independent random samples from
normal distributions with equal means and equal but unknown variances,
against the alternative that the means are not equal. For all test cases
and expanded test cases, the null hypothesis is rejected (for α=0.01). In
case the null hypothesis is rejected we conclude that the model with the
highest average profits realized significant higher profits. Therefore, we can
conclude that the DRDP model realized significant higher profits than the
IRDP model for all test cases.

7.5.6 Stochastic Constraints

In section 5.4 we introduced constraints that can be used to deal with
stochastic demand. Instead of existing techniques from amongst [7] and
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[51], we proposed a different approach. We use techniques from inventory
management to manage the available capacities. Using the proposed con-
straints we are able to regulate the probability of lost demand. By means of
simulation experiments we test whether this approach provides the desired
results.

Step 1 of the DRDP Model

In the step 1 of the DRDP model, the stochastic constraint regulates the
expected lost demand on the region level. For each of the instances in table
7.7, we solved the DRDP model for θr = 0.3, θr = 0.5 and θr = 0.7. The
results are presented in table 8.5 (test cases 1-6) and 8.6 (test cases 7-12) in
appendix III.

For the high capacity situations (test cases 1-4), we see that the realized
profits are more or less the same for all values of θr. Next to this, each model
realized the highest profit in approximately 33.3% of the simulations. This
also holds for the lowest realized profits. This can easily be explained, by
the fact that the optimal pricing decision is feasible for all considered values
of θr. In fact, the optimzal pricing decision for the different values of θr is
exactly the same. This means that the required safety buffer for the different
values of θr does not influence the optimal pricing policy. Moreover, in case
of an increasing value of θr, the safety buffer declines (in case of θr = 0.7 it is
even negative). A result of this, is that the capacity constraint is loosened.
Therefore, the expected profit is never lower than for a lower value of θr.

For the average capacity situations (test cases 5-8), we see that the mod-
els with θr = 0.5 and θr = 0.7 again perform equally well. In fact, the pricing
decision again is exactly the same for these models. When we use the value
of θr = 0.3, a more strict capacity constraint is constructed. In this case,
all region prices are set to a maximum (+10%). This is required to fulfill
the lost demand probability. We see that this has the expected results for
capacity utilization and the lost demand. In all cases, due to the capacity
buffer, the realized capacity utilization decreased. This capacity buffer also
reduces the lost demand significantly. Looking at the lost demand, we can
conclude that the demand buffer brings the desired effect.

On the other hand, on average the higher prices also result in lower prof-
its. Whereas, the DRDP model (with θr = 0.5) optimized the prices using
the expected demand, the DRDP model with θr = 0.3 uses the expected de-
mand including the buffer. On average, over 10000 simulations, the expected
demand will be a better estimate for the realized demand than the expected
demand plus buffer. So, on average the θr = 0.3 model is not preferred.
However, there are also cases in which the realized demand turns out to be
higher than the expected demand. In these cases, the model with θr = 0.3
can still serve all customers for even higher prices per customer. This can
be seen in the percentages that this model realized the highest profits. This
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is approximately 20% and 13% in case of high and low demand volatility,
respectively. On the contrary, when the demand does not turn out to be
higher than expected the model with θr = 0.3 leads to poor results with
even lower demands and also lower profits. We can conclude that in the
test cases of average capacity, the stochastic constraints are not preferred in
terms of profit.

For the low capacity situations (test cases 9-12), we again see that the
models with θr = 0.5 and θr = 0.7 perform equally well. Remarkably, there
are no results for the model with θr = 0.3. This is due to the fact that the
model is not feasible in these cases. Since we use the constraint that the
complete price path has to be defined (5.16), the service level from constraint
(5.32) cannot be guaranteed. In practice it is very simple to overcome this
problem. The equality in constraint (5.16) makes sure that the price path is
completely defined by setting it equal to one. When we replace this equality
sign by a smaller or equal to sign, the price path does not necessarily have
to be completely defined. In order to realize maximum profits the price path
will always be completely defined, unless the capacity constraint is violated
otherwise. When the price path cannot be completely defined, it is obvious
that the considered product has to have the highest price possible (+10%).
In case a certain product runs out of capacity it is simply removed from the
possible products. For tour operators, this happens all the time especially
when the products are close to departure. Note that this practical feature
of the price path constraint is already used in the IRDP model.

Step 2 of the DRDP Model

In the step 2 of the DRDP model, the stochastic constraint regulates the
expected lost demand on the resource level. For each of the instances in
table 7.9, we solved the DRDP model for ζk = 0.3, ζk = 0.5 and ζk = 0.7.
The results are presented in table 8.7 in appendix VI.

In general, the results for the stochastic constraints are comparable for
the first and second step of the DRDP model (looking at test cases 5-8,
with average capacity). For all expanded test cases (5.1-6.2) it holds that
the models for ζk = 0.5 and ζk = 0.7 perform equally well. The pricing
policy that is optimal for the ζk = 0.5 model can also be obtained by the
ζk = 0.7 model. Again, the ζk = 0.3 model leads to a lower capacity utiliza-
tion and lower lost demand due to the capacity buffer. Again, the pricing
decision under the smaller probability of lost demand leads to significant
lower profits. Therefore, to gain maximum profits the original constraints
are preferred.

Summarizing, we conclude that introducing buffer capacity, a common
used inventory management technique, does reduce lost demand. We can
obtain and maintain a desired service level by using a capacity buffer. How-
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ever, these techniques only twist the prices to obtain a certain service level.
In terms of profits, they are not beneficial. We saw those results for stochas-
tic constraints on both the region level and the resource level.

7.6 Computation Times
In sections 7.5.2 and 7.5.4 we solved multiple instances of step 1 and step 2
of the DRDP model, respectively. For both step 1 and step 2 of the model,
we discuss the corresponding computation times5.

Step 1 of the DRDP Model

For the step 1 test cases, we solved the first step of the DRDP model. These
basic test cases did not lead to high computation times. All test cases were
solved within 0.01 seconds for the DRDP model and 0.001 seconds for the
IRDP model. We considered 4 regions, and 5 alternative prices per region.
Because our problem instances are very small we cannot conclude that this is
the case for larger problem instances. However, the DRDP model is designed
in such a way that the first step of the model is never expected to grow very
fast. This is because the size of the first step of the model only grows in the
number of regions, the number of price alternatives and the number of time
periods, this is described in section 5.5.1. The number of time periods and
the number of alternative prices can be controlled by the user. In practice,
one time period and 5 alternative prices are used. The number of regions is
not expected to grow very large.

Step 2 of the DRDP Model

For the step 2 test cases, we solved the second step of the DRDP model. This
took 0.0012 seconds for the small problem instance (30 products), for the
IRDP model this was 0.0010 seconds. For the large problem instances (300
products) we observed a computation time of 0.0055 seconds. For the IRDP
model this was 0.0034 seconds. The computation times of the second step
of the DRDP are comparable to the IRDP model. The only difference is the
average price constraint, this leads to slightly higher computation times. We
expect that larger problem instances can be solved within reasonable time.
Moreover, the IRDP model currently solves the actual problem instances
(20+ million products) within several minutes.

5Note, in AIMMS the computation times are rounded to two decimal places.
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Chapter 8

Conclusions and Further
Research

8.1 Conslusions
Due to the rising use of internet, the business of e-commerce has grown
rapidly in the last years. The easy access to information leads to transparent
markets with high competition due to high price sensitive customers. Not
only the customers benefit from easy access to information, companies can
also benefit from the available market information which is available in many
sectors.

In this research we proposed the Dependent Region Dynamic Pricing
(DRDP) model. The DRDP model can be used for the dynamic pricing
decision of products which make use of both flight and hotel capacities.
The DRDP model integrates both market information and competition be-
tween regions into the tour operator’s pricing decision. The DRDP model
is an extension of the Independent Region Dynamic Pricing (IRDP) model,
proposed in [50].

In Chapter 1 we provide a short introduction and provide some back-
ground information. Hereafter we state the research questions and sub ques-
tions.

In Chapter 2, some insights in the actual problem are provided. We
provide an overview of the decision making process for the online setting
of the pricing problem. This overview enables us to place the RM model
into the bigger picture of the tour operator’s decision making process. One
of the most important things is the composition of the travel products the
tour operator offers. We see that these products are competing for space
among multiple flights and hotels, this results in a considerable combina-
torial problem. [50] tackled this problem using the Independent Region
Dynamic Pricing (IRDP) model. We formulate and extensively study the
IRDP model. Usually products to different regions do not use overlapping
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capacities. Next to this, [50] assumed that the pricing decisions of the re-
gions do not influence the demand of other regions. Due to this assumption,
the problem can be decomposed into independent sub-problems per region.
Decomposing the problem into independent sub-problems considerably re-
duces the complexity of the problem. Next, we focus on the way consumer
behavior is modeled in the IRDP model. In the IRDP model, the demand
for a product only depends on the price of this product. We identify that
in reality, demand shocks can be caused by price changes of the product,
price changes of substitutable products, shocks in market demand and other
external factors.

In Chapter 3, the relevant literature is studied extensively. This liter-
ature study helps us placing our research into perspective. Not much of
this literature proposes RM models specifically for tour operators. Besides
this, pricing models from the airline and hotel industries are mostly not
directly applicable for a tour operator. The combinatorial effects result-
ing from products competing for limited hotel and airline capacities result
in a completely different problem structure. Therefore, as stated in [50],
RM models from the airline and hotel industry do not fit the tour operator
business properly. Next to this, several researchers mention the necessity of
taking into account the cross price elasticities (for example, [14] and [47]).
Therefore, in Chapter 4 and 5 we propose methods to integrate extended
consumer behavior into a tour operator’s dynamic pricing model.

In Chapter 4, the observed consumer behavior is measured and quan-
tified. The consumer behavior is captured in a multiple regression model.
This multiple regression model includes cross regional effects and the exter-
nal market information. We use the market shares and relative prices to
model the characteristics of a transparent market in which customers can
easily compare prices. The goal of the regression model is to estimate the
expected market share for a certain region, after a given pricing decision. In
order to test whether the parameter estimates are valid, in section 4.3 seven
regression assumptions with corresponding statistical tests are discussed.
For each assumption, there is a different impact on the parameter estimates
in case the assumption is not met.

In Chapter 5, the quantified consumer behavior is integrated into a De-
pendent Region Dynamic Pricing (DRDP) model. The DRDP model con-
tains two stages, in the first stage the cross effects between regional clusters
are used to identify the optimal region price. This price is taken into account
while pricing the individual products in the second stage. The first step can
be seen as the missing link between the individual product optimization and
the dependencies between the different regional clusters. The first step is
modeled as a Binary Quadratic Programming (BQP) problem, which are
usually NP-hard and hence practically difficult to solve. Therefore, we also
describe how the quadratic objective can be linearized. The optimal average
price per region from step 1 is fixed during the second step of the optimiza-
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tion. Therefore, the only dependency between the regions is fixed. This
means that we can again assume independent regions in the second step of
the DRDP model. In addition to the IRDP model, we use a constraint to fix
the optimal region prices from the first step of the DRDP model. Despite
this, the second step of the DRDP model is very similar to the IRDP model.
Finally, we propose additional constraints that can be used to deal with
stochastic demand. Instead of existing techniques, we proposed a different
approach. We use techniques from inventory management to manage the
available capacities. Using the proposed constraints we are able to regulate
the probability of lost demand.

In Chapter 6, we provide an analytical comparison between the IRDP
model and the DRDP model. First, we focus on the number of price combi-
nations of the different models. Among these price combinations, the model
has to choose the most profitable pricing decision. The number of price
combinations is used as a benchmark for the complexity of the models. We
conclude that the difficulty of the problem mainly depends on the number
of regions, the number of products per region and the number of alterna-
tive prices per product. The size of the first step of the DRDP model only
depends on the number of regions and the number of alternative prices per
region. Since these two sets are not expected to grow very large, the first
step of the DRDP model will also not grow very large. The size of the sec-
ond step of the DRDP model grows as fast as the size of the IRDP model.
The size of the problem in case of the DRDP model will always be larger
than the size of the problem in case of the IRDP model. However, the two-
step DRDP approach effectively includes cross region effects with minimal
increase in complexity. Next, we focus on the comparison of the objectives
of the different models. We conclude that in both the objective of the IRDP
model and the objective of the second step of the DRDP model, the cross
regional profit is missing. We also conclude that, due to the fixed cross
regional effects, this did not affect the actual pricing decisions. However, in
order to obtain the correct expected profit an adjustment to the objectives
is required.

In Chapter 7, we provide a case study on Sunweb, a large online tour
operator based in the Netherlands. In a pre-modeling data analysis, we con-
cluded that the price demand relationship is disturbed by high seasonality.
In the beginning of the booking season, the prices and demand are relatively
high. While, in the end of the booking season, the prices and demand are rel-
atively low. Both these situations cause a positive relationship between price
and demand. We conclude that our approach of using the relative prices to
explain the market shares is much more stable. Next to this, we found that
all of the market share series are stationary over time. In the travel in-
dustry, people are influenced by many factors other than price. Marketing
activities can cause large demand peaks that cannot be explained by price
changes. To be able to determine the effects of price changes on demand,
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outlier detection is very important. In the elasticity estimation, we found
around ten outliers for each of the regions. The remaining observations were
used to estimate the relationship between relative prices and market share.
We found that the market share of Spain is the hardest to explain, only the
relative price compared to the market has a significant influence on Spain’s
market share. For Greece, only the relative price of Greece compared to the
market and Spain has a significant effect on the market share of Greece. For
Turkey and Portugal, three relative prices compared to other regions and
the market are influencing the market share. It looks like the market shares
of the popular regions (Greece and Spain) are harder to influence than the
market shares of the less popular regions (Turkey and Portugal). It also
looks like the customers to Turkey and Portugal are willing to switch their
destination easily if another region or the market is cheaper. Or alterna-
tively, people are willing to go to Turkey and Portugal if the relative prices
are favorable. Customers to Greece are only willing to switch to cheaper
alternatives in Spain and the market to Greece. The customers to Spain are
not willing to switch destinations, however when the market is cheaper they
will switch to other trips to Spain in the market.

Next, we used simulation to compare the results for different pricing
policies. We compare the base pricing decision, with the optimized pricing
decisions from the IRDP and DRDP models. We created multiple test cases
to test both the first and the second step of the DRDP model compared to
the IRDP model. We varied the capacity, margins and demand uncertainty
in order to obtain a realistic mix of different possible test cases. For each
test case, we solved both the IRDP and DRDP model. We first focus on
the regional pricing decision after the first step of the model, the DRDP
model realized on average 19.9% more profit than the IRDP model. The
DRDP model led to the highest realized profit in 98.3% of the simulations
and to the lowest profit in 0.7% of the simulations. Next to this, for each
of the capacity/demand, margin and demand uncertainty situations did the
DRDP model lead to the highest average profit. This shows that the DRDP
model is highly preferred for the regional pricing decision.

The first step of the DRDP model is designed for the pricing decision of
regions. Whereas, the IRDP model is designed for the pricing of multiple
products that make use of the same resources. Therefore, in order to make a
fair comparison we also compared the IRDP and DRDP model for problem
instances with multiple products per region. We found that the DRDP on
average led to 7.1% more profit than the IRDP model. Next to this, the
DRDP model led to the highest realized profit in 87,9% of the simulations
and to the lowest profit in 4.1% of the simulations. Next to this, for each of
the demand uncertainty situations did the DRDP model lead to the highest
average profit. This shows that the DRDP model is also preferred for the
product pricing decision.

Additionally, we solved each of the test cases including the stochastic
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constraints. We conclude that using the stochastic constraints we are able
to regulate the probability of lost demand. However, in terms of profit
the stochastic constraints were not effective. We conclude that introducing
buffer capacity, a common used inventory management technique, does re-
duce lost demand. We can obtain and maintain a desired service level by
using a capacity buffer. However, these techniques only twist the prices to
obtain a certain service level. In terms of profits, they are not beneficial.
We saw those results for stochastic constraints on both the region level and
the resource level.

Finally, we considered the computation times for each of the solved test
cases. All of the test cases, for both the first and second step, were solved
within 0.01 seconds. In our analytical comparison we concluded that the
first step of the DRDP model is not expected to grow very large. Therefore,
we do not expect that this step will lead to problems in terms of computation
times. The second step of the DRDP model is very much comparable to the
IRDP model. We expect that larger problem instances can be solved within
reasonable time. Moreover, the IRDP model currently solves the actual
problem instances (20+ million products) within several minutes.

8.1.1 Managerial Implications

In this report, we studied the competition between travel products to Greece,
Spain, Turkey and Portugal. We found that the market shares of the popular
regions (Greece and Spain) are harder to influence than the market shares
of the less popular regions (Turkey and Portugal). We also found that the
customers to Turkey and Portugal are willing to switch their destination
easily if another region or the market is cheaper. Or alternatively, people
are willing to go to Turkey and Portugal if the relative prices are favorable.
Customers to Greece are only willing to switch to cheaper alternatives in
Spain and the market to Greece. The customers to Spain are not willing to
switch destinations, however when the market is cheaper they will switch
to other trips to Spain in the market. These are insightful implications for
managers, these findings can be used in order to steer marketing activities.
Since customers to Turkey and Portugal are most price sensitive, we advise
managers to invest in marketing activities for Turkey and Portugal.

We also concluded that the Dependent Region Dynamic Pricing (DRDP)
model is expected to realize higher profits than the current IRDP model.
We found that the DRDP on average led to 7.1% more profit than the IRDP
model. We found that competition between regions and market information
can add value to a tour operator’s the pricing decisions. For managers,
the question rises whether these improvements compensate the investments.
In case of Sundio, the implementation of the model will require less effort.
Since the DRDP model is an extension of the current IRDP model which is
already implemented. We do not expect that the extended model will bring
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complications in terms of computation times. The data processing usually
takes most of the time in the overnight process, the actual optimization is
only a small step in terms of computation times.

We also advice to consider the fact that this model is dependent on the
market information provided by GfK. Therefore, the reliability of GfK and
the quality of the data must be studied in advance.

8.2 Further Research
In this section we will provide some ideas on directions of further research.
First of all, in the DRDP model we fixed the number of market bookings
over the optimization period. It might be interesting to replace these values
by market demand estimates per time period. The market demand series
can be used to determine the market demand estimates.

In this research we used the market bookings from GfK as an auxiliary
data source. We showed that an auxiliary data source can add value to
the pricing decisions. Since there are many more free data sources available
it might be interesting for a tour operator to identify additional possible
valuable information. Examples of this can be exchange rates, tax info,
weather forecasts, popularity of destinations on social media, etc.

In the manegarial implications section (8.1.1), we concluded that the re-
gression results provide insightfull results that can be used to steer marketing
activities. In general, it can be Interesting to link marketing advertisement
to operational information. This way, advertisements can be optimized on
expected profit for the tour operator. Customers can be influenced to buy
certain products that are beneficial for the tour operator. Recently, in co-
operation with ORTEC, such algorithms are developed for Sundio.

In the airline and hotel industry, models are often extended to include
the overbooking and cancellation of customers. The DRDP model can also
be extended to include overbooking and cancellation of customers.

In the DRDP model, the demand is treated as given using point esti-
mates. Because we treat the expected demand as given, the pricing decision
from this model is only optimal if the realized demand is equal to the ex-
pected demand. We proposed a technique to control the lost demand prob-
ability in case of stochastic demand. This technique did not lead to higher
profits. In order to obtain higher profits, it might be interesting to inves-
tigate methods from the hotel and airline industry in order to incorporate
stochastic demand into the objective function.
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Appendix I: Computational
Results Regional Test Cases

Base IRDP DRDP
Test Case 1: High, Equal, High

Avg Profit (e) 373711 455969 546642
Std Profit (e) 54953 69104 83385
Profit % of IRDP 82.0 % 100.0 % 119.9 %
Profit % Highest 0.0 % 3.9 % 96.1 %
Profit % Lowest 73.4 % 25.8 % 0.8 %
Cap % Utilization 66.6 % 65.7 % 64.3 %
Avg Demand Lost 7.9 8.2 4.9

Test Case 2: High, Equal, Low
Avg Profit (e) 373865 457846 547298
Std Profit (e) 25620 25871 35990
Profit % of IRDP 81.7 % 100.0 % 119.5 %
Profit % Highest 0.0 % 0.1 % 99.9 %
Profit % Lowest 84.1 % 15.9 % 0.0 %
Cap % Utilization 66.7 % 66.0 % 64.4 %
Avg Demand Lost 0.0 0.0 0.0

Test Case 3: High, Unequal, High
Avg Profit (e) 380916 433875 557241
Std Profit (e) 87377 89212 115124
Profit % of IRDP 87.8 % 100.0 % 128.4 %
Profit % Highest 0.2 % 1.2 % 98.6 %
Profit % Lowest 73.9 % 25.3 % 0.8 %
Cap % Utilization 66.4 % 66.1 % 65.4 %
Avg Demand Lost 7.8 9.8 7.4

Table 8.1: Computational Results Test Case 1-3
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Base IRDP DRDP
Test Case 4: High, Unequal, Low

Avg Profit (e) 382250 434072 557618
Std Profit (e) 35813 36663 46582
Profit % of IRDP 88.1 % 100.0 % 128.5 %
Profit % Highest 0.0 % 0.0 % 100.0 %
Profit % Lowest 84.0 % 16.0 % 0.0 %
Cap % Utilization 66.7 % 67.5 % 66.5 %
Avg Demand Lost 0.2 0.4 0.2

Test Case 5: Average, Equal, High
Avg Profit (e) 363625 445149 534567
Std Profit (e) 45008 59201 71798
Profit % of IRDP 81.7 % 100.0 % 120.1 %
Profit % Highest 0.0 % 1.9 % 98.9 %
Profit % Lowest 86.3 % 13.1 % 0.6 %
Cap % Utilization 81.1 % 80.0 % 78.6 %
Avg Demand Lost 112.8 111.9 90.1

Test Case 6: Average, Equal, Low
Avg Profit (e) 373617 457251 546971
Std Profit (e) 21538 27585 33174
Profit % of IRDP 81.7 % 100.0 % 119.6 %
Profit % Highest 0.0 % 0.0 % 100.0 %
Profit % Lowest 98.3 % 1.7 % 0.0 %
Cap % Utilization 83.3 % 82.3 % 80.4 %
Avg Demand Lost 3.2 4.7 1.4

Test Case 7: Average, Unequal, High
Avg Profit (e) 370234 462223 542363
Std Profit (e) 52896 59085 75611
Profit % of IRDP 80.1 % 100.0 % 117.3 %
Profit % Highest 0.0 % 2.4 % 97.6 %
Profit % Lowest 87.7 % 11.4 % 0.9 %
Cap % Utilization 80.6 % 79.8 % 79.6 %
Avg Demand Lost 111.4 108.5 101.9

Test Case 8: Average, Unequal, Low
Avg Profit (e) 381918 474489 556603
Std Profit (e) 34968 34810 46660
Profit % of IRDP 80.5 % 100.0 % 117.3 %
Profit % Highest 0.0 % 0.1 % 99.9 %
Profit % Lowest 99.3 % 0.7 % 0.0 %
Cap % Utilization 83.3 % 82.0 % 81.7 %
Avg Demand Lost 5.9 5.2 3.0

Table 8.2: Computational Results Test Case 4-8
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Base IRDP DRDP
Test Case 9: Low, Equal, High

Avg Profit (e) 315405 395677 454093
Std Profit (e) 24274 32653 48797
Profit % of IRDP 79.7 % 100.0 % 114.8 %
Profit % Highest 0.1 % 5.9 % 94.0 %
Profit % Lowest 94.7 % 3.7 % 1.6 %
Cap % Utilization 93.7 % 92.8 % 90.1 %
Avg Demand Lost 592.7 558.3 377.2

Test Case 10: Low, Equal, Low
Avg Profit (e) 333377 419677 488397
Std Profit (e) 5839 9915 11479
Profit % of IRDP 79.4 % 100.0 % 116.4 %
Profit % Highest 0.0 % 0.5 % 99.5 %
Profit % Lowest 100.0 % 0.0 % 0.0 %
Cap % Utilization 99.1 % 98.2 % 96.9 %
Avg Demand Lost 403.8 375.1 195.0

Test Case 11: Low, Unequal, High
Avg Profit (e) 322212 402814 460416
Std Profit (e) 40034 42990 69039
Profit % of IRDP 80.0 % 100.0 % 114.3 %
Profit % Highest 0.0 % 3.4 % 96.6 %
Profit % Lowest 90.7 % 6.1 % 3.2 %
Cap % Utilization 93.7 % 92.7 % 89.0 %
Avg Demand Lost 589.6 562.2 376.9

Test Case 12: Low, Unequal, Low
Avg Profit (e) 336083 421217 484715
Std Profit (e) 9661 10288 27659
Profit % of IRDP 79.8 % 100.0 % 115.1 %
Profit % Highest 0.0 % 0.4 % 99.6 %
Profit % Lowest 99.9 % 0.1 % 0.0 %
Cap % Utilization 97.7 % 96.9 % 93.6 %
Avg Demand Lost 448.7 417.2 214.2

Table 8.3: Computational Results Test Case 9-12
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Appendix II: Computational
Results Expanded Test Cases
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Base IRDP DRDP
Test Case 5.1: High, 3, 10
Avg Profit (e) 186672 255414 272117
Std Profit (e) 7517 11306 11967
Profit % of Base 73.1 % 100.0 % 106.5 %
Profit % Highest 0.0 % 14.3 % 85.7 %
Profit % Lowest 70.4 % 21.5 % 8.1 %
Cap % Utilization 87.1 % 86.4 % 85.4 %
Avg Demand Lost 124.3 121.2 113.3
Test Case 5.2: High, 3, 100
Avg Profit (e) 186238 256723 276121
Std Profit (e) 7488 11158 12015
Profit % of Base 72.5 % 100.0 % 107.6 %
Profit % Highest 0.0 % 14.7 % 85.3 %
Profit % Lowest 72.3 % 19.5 % 8.2 %
Cap % Utilization 85.8 % 86.3 % 85.6 %
Avg Demand Lost 128.1 122.3 111.1
Test Case 6.1: Low, 3, 10
Avg Profit (e) 197374 267792 286773
Std Profit (e) 3442 5378 5925
Profit % of Base 73.7 % 100.0 % 107.1 %
Profit % Highest 0.0 % 9.0 % 91.0 %
Profit % Lowest 100.0 % 0.0 % 0.0 %
Cap % Utilization 93.7 % 92.4 % 92.2 %
Avg Demand Lost 33.2 29.9 24.3
Test Case 6.2: Low, 3, 100
Avg Profit (e) 196111 267764 287244
Std Profit (e) 3460 5408 5870
Profit % of Base 73.2 % 100.0 % 107.3 %
Profit % Highest 0.0 % 10.4 % 89.6 %
Profit % Lowest 100.0 % 0.0 % 0.0 %
Cap % Utilization 93.6 % 92.6 % 92.4 %
Avg Demand Lost 35.2 31.1 27.3

Table 8.4: Computational Results Step1 and 2
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DRDP DRDP DRDP
θ = 0.3 θ = 0.5 θ = 0.7

Test Case 1: High, Equal, High
Avg Profit (e) 546078 546642 545624
Std Profit (e) 82224 83385 82225
Profit % Highest 33.2 % 33.5 % 33.3 %
Profit % Lowest 33.0 % 33.4 % 33.6 %
Cap % Utilization 64.2 % 64.3 % 64.2 %
Avg Demand Lost 5.3 4.9 5.6
Test Case 2: High, Equal, Low

Avg Profit (e) 547456 547298 547324
Std Profit (e) 35786 35990 36305
Profit % Highest 33.4 % 33.3 % 33.2 %
Profit % Lowest 33.33 % 33.3 % 33.3 %
Cap % Utilization 66.5 % 64.4 % 66.4 %
Avg Demand Lost 0.0 0.0 0.0
Test Case 3: High, Unequal, High
Avg Profit (e) 557651 557241 557511
Std Profit (e) 113573 115124 114216
Profit % Highest 33.9 % 32.7 % 33.4 %
Profit % Lowest 33.4 % 33.2 % 33.4 %
Cap % Utilization 66.5 % 65.4 % 66.4 %
Avg Demand Lost 6.9 7.4 8.4
Test Case 4: High, Unequal, Low
Avg Profit (e) 557852 557618 557571
Std Profit (e) 45892 46582 46289
Profit % Highest 33.4 % 33.2 % 33.3 %
Profit % Lowest 33.5 % 33.4 % 33.3 %
Cap % Utilization 66.5 % 66.5 % 66.6 %
Avg Demand Lost 0.2 0.2 0.3
Test Case 5: Average, Equal, High
Avg Profit (e) 444279 534567 535021
Std Profit (e) 71222 71798 71249
Profit % Highest 20.1 % 39.7 % 40.2 %
Profit % Lowest 79.9 % 9.9 % 10.2 %
Cap % Utilization 57.6 % 78.6 % 78.6 %
Avg Demand Lost 40.7 90.1 86.9
Test Case 6: Average, Equal, Low
Avg Profit (e) 426774 546971 547623
Std Profit (e) 33199 33174 32908
Profit % Highest 12.4 % 43.4 % 44.2 %
Profit % Lowest 87.6 % 6.3 % 6.2 %
Cap % Utilization 61.4 % 80.4 % 79.7 %
Avg Demand Lost 0.5 1.4 1.3

Table 8.5: Stochastic Results Test Case 1-6
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DRDP DRDP DRDP
θ = 0.3 θ = 0.5 θ = 0.7

Test Case 7: Average, Unequal, High
Avg Profit (e) 441239 542363 534938
Std Profit (e) 76189 75611 77261
Profit % Highest 19.2 % 40.7 % 40.1 %
Profit % Lowest 80.4 % 9.9 % 9.7 %
Cap % Utilization 60.1 % 79.6 % 78.9 %
Avg Demand Lost 56.2 101.9 107.5
Test Case 8: Average, Unequal, Low
Avg Profit (e) 427213 556603 557665
Std Profit (e) 46215 46660 46187
Profit % Highest 13.5 % 43.3 % 43.2 %
Profit % Lowest 84.9 % 7.7 % 7.4 %
Cap % Utilization 59.2 % 81.7 % 81.3 %
Avg Demand Lost 0.8 3.0 3.2

Test Case 9: Low, Equal, High
Avg Profit (e) - 454093 453618
Std Profit (e) - 48797 49029
Profit % Highest - 52.2 % 47.8 %
Profit % Lowest - 47.8 % 52.2 %
Cap % Utilization - 90.1 % 89.9 %
Avg Demand Lost - 356.6 370.0

Test Case 10: Low, Equal, Low
Avg Profit (e) - 488397 488544
Std Profit (e) - 11479 11159
Profit % Highest - 50.2 % 49.8 %
Profit % Lowest - 49.8 % 50.2 %
Cap % Utilization - 96.9 % 96.3 %
Avg Demand Lost - 195.0 197.2
Test Case 11: Low, Unequal, High

Avg Profit (e) - 460416 460025
Std Profit (e) - 69039 69203
Profit % Highest - 51.1 % 48.9 %
Profit % Lowest - 48.9 % 51.1 %
Cap % Utilization - 89.0 % 90.2 %
Avg Demand Lost - 376.9 368.8
Test Case 12: Low, Unequal, Low

Avg Profit (e) - 484715 484198
Std Profit (e) - 27659 27588
Profit % Highest - 50.4 % 49.6 %
Profit % Lowest - 49.6 % 50.4 %
Cap % Utilization - 93.6 % 93.3 %
Avg Demand Lost - 214.2 212.8

Table 8.6: Stochastic Results Test Case 7-12
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DRDP DRDP DRDP
ζ = 0.3 ζ = 0.5 ζ = 0.7

Test Case 5.1: High, 3, 10
Avg Profit (e) 182073 272117 273521
Std Profit (e) 10726 11967 12142
Profit % Highest 3.9 % 48.0 % 48.1 %
Profit % Lowest 67.6 % 17.3 % 15.1 %
Cap % Utilization 82.1 % 85.4 % 85.8 %
Avg Demand Lost 70.3 113.3 112.0
Test Case 5.2: High, 3, 100
Avg Profit (e) 180123 276121 276658
Std Profit (e) 10801 12015 12075
Profit % Highest 5.5 % 45.6 % 48.9 %
Profit % Lowest 65.1 % 17.7 % 17.2 %
Cap % Utilization 81.1 % 85.6 % 84.7 %
Avg Demand Lost 67.8 111.1 111.6
Test Case 6.1: Low, 3, 10
Avg Profit (e) 184448 286773 284612
Std Profit (e) 4995 5925 5871
Profit % Highest 0.7 % 49.5 % 49.8 %
Profit % Lowest 96.7 % 1.9 % 1.4 %
Cap % Utilization 84.4 % 92.2 % 93.7 %
Avg Demand Lost 4.1 24.3 29.7
Test Case 6.2: Low, 3, 100
Avg Profit (e) 186646 287244 287872
Std Profit (e) 5016 5870 5894
Profit % Highest 1.2 % 48.8 % 50.0 %
Profit % Lowest 96.4 % 2.0 % 1.6 %
Cap % Utilization 80.7 % 92.4 % 93.6 %
Avg Demand Lost 2.2 27.3 32.4

Table 8.7: Stochastic Results Test Case 5.1-6.2
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