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Abstract

This master thesis considers supply chain design in green logistics. The research consists of
two parts. First, we formulate the environmentally conscious design as a a multi-objective opti-
mization problem and construct the Pareto front using scalarizing methods (weighted sum and
ε-constraint method) and genetic algorithms (NSGA-II/SPEA2). The second part involves con-
structing a preference model to aid the decision maker (DM) in choosing the preferred alternative
using the UTAGMS method.

This research includes a case study for a supply chain in the South Eastern Europe region;
it extends the work of I. Mallidis, R. Dekker, and D. Vlachos. The impact of greening on supply
chain design and cost: a case for a developing region. Journal of Transport Geography, 22:118–
128, 2012. We apply a genetic algorithm to optimize simultaneously cost, CO2 emission and
Particulate Matters (PM – also known as fine dust), and to present a set of alternatives to
the DM (the Pareto front). In this case study there are two different scenarios: both have the
distribution centers outsourced, one also outsources the transportation while the other scenario
leases the transportation. First we compare the different method to see which method give the
best representation of the Pareto front. Then the UTAGMS method will be used to aid the
DM in choosing his/her most preferred solution. For the UTAGMS method, the DM is asked to
provide his/her preference information by means of pairwise comparisons. Some computational
tests are used to determine how applicable the UTAGMS method is to this particular case.
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Chapter 1

Introduction

Green logistics has become more popular over the last years. Due to the liberalization of in-
ternational trade, extensive and complex supply chain networks with various demand points
around the world are developed. For these supply chains, cost minimization is often the most
important optimization objective. However, in green logistics also other objectives are consid-
ered, namely ones that quantify the environmental impact. The emission of greenhouse gases
has increased over the last years due to the growth of international transport, and should be
taken into account in supply chain design for their negative influence on the environment. En-
vironmentally friendlier transportation has been promoted by governmental initiatives such as
the Kyoto protocol and European Union action plans including (i) Freight Transport Logistics
Action Plan (2007) [19], (ii) Greening Transport (2008) [20], (iii) Strategy for the internalization
of external costs (2008) [21], and (iv) A sustainable future for transport: Towards an integrated,
technology led and user friendly system (2009) [22]. Therefore, optimization of supply chains
nowadays also has to consider, besides the cost, the environmental aspects such as the emission
of carbon dioxide (CO2) and particulate matters (PM, also known as fine dust).

In this research we introduce a case for optimizing simultaneously costs, CO2 and PM emis-
sions while designing a supply chain of white goods for South Eastern Europe. The original
model, which only solves the three objectives individually, was proposed by Mallidis et al. [46].
We will optimize the multi-objective mixed integer linear programming (MOMILP) problem by
applying two scalarization methods and two evolutionary algorithms. After obtaining a set of
possible solutions, we apply a preference model to order (rank) the solutions. Because of the
increasing importance of the environmental impact of the supply chain, it would be interesting
to see whether these changes in preferences will lead to intermediate solutions in which not only
the cost is optimized and how much the cost may increase in order to reduce the emission of
CO2 or PM.

In Multi-Objective Optimization (MOO) there does not exists just one optimal solution
like in single-objective optimization problems. MOO deals with contradictory objectives and
the ‘best’ solution should make a compromise between them. Without any further information
you cannot say that one solution is better than one other solution, unless one dominates the
other. One solution dominates the other if it has at least one better objective value while the
other objectives are at least the same (or better) related to a dominated solution. Thus you
are interested in all non-dominated solutions, called the Pareto front, to have all alternatives
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available to determine what solution is the best.
There are three approaches to involve the preferences of the decision maker (DM), namely a

priori, interactive or a posteriori. In the first case the preference information will be used directly
within the solving process. In the second case, during an interactive approach based on pairwise
comparisons, the DM will be guided to his/her most preferred solution. In the third case, the
whole set of solutions will be generated and then a preference model can be constructed to aid
the DM. In this research we only take the latter in consideration. We will apply the UTAGMS

method [29] that builds a set of additive value functions to obtain a complete preorder of the
set of alternatives based on preference statements.

There exists many approaches to obtain the Pareto set of solutions for a MOO model.
Three commonly used methods that scalarize the problem into a single objective are objective
weighting, distance functions and a method of min-max formulation [61]. However, these three
approaches convert the MOO problem to a single-objective optimization problem and thus result
in a single solution. One can use scalarizing approaches to generate multiple solutions. Although
these methods generate multiple solutions, they do not find the whole Pareto front, e.g., the
weighted sum method cannot find solutions that lie in non-convex regions of the Pareto front.
Evolutionary algorithms have been shown to provide good approximations of the Pareto front
[see 15, 24, 61].

1.1 Problem description

The base model is described by Mallidis et al. [46]. This paper describes the design of the supply
chain network for the South Eastern Europe region and the impact different optimization criteria
have on cost and design of the network. In this model they only consider single-objective
optimization, with four different scenarios in different models. They analyze the impact of
leasing or outsourcing transportation, and also leasing or outsourcing distribution centers. In
this research we extend the work of Maladis et al. by applying multi-objective optimization with
scalarization. We will discuss these results in section 4.4.1.

We will only include the solutions for outsourcing a distribution center as it seems that
outsourcing a distribution center is always cheaper and has less emissions than leasing it (see
results in [46]) when outsourcing is feasible (e.g., it may not be feasible when long term contracts
are required). It is obvious that you only include non-dominated solutions in the decision making
process. In case of leasing a distribution center (DC), [46] is not clear about what the minimum
throughput should be to be profitable and thus to open the DC. Therefore, we will not consider
the possibility of leasing a distribution center. However, given a set of possible solutions, which
alternative is the best? Different preferences leads to different choices, and we want to build a
model supporting the choice of an alternatives over another one.

Probably, the weighted sum and ε-constraint method are not able to provide a good approx-
imation of the Pareto front. Therefore, we need to apply a method that does generate (a good
approximation of) the Pareto front before we apply our preference model. The solution set has
to be complete in order to know whether the most preferred solution is really the best solution
for this DM. We will also compare the Pareto front obtained with the more complex method to
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that of the weighted sum and ε-constraint methods. Then we can see whether the efforts of the
complex method leads to a better estimate of the Pareto front or whether a simpler method like
the weighted sum method is also appropriate in terms of generating the Pareto front.

1.2 Research question

In this research we apply a genetic algorithm to generate (or approximate) the Pareto front for
a multi-objective optimization model. Then we will apply a preference model according to the
UTAGRIP method in order to help the decision maker (DM) to find the best solution. We can
formulate the following research question:

Can we aid the DM to design a supply chain in green logistics, by representing alternatives
obtained with genetic algorithm and thereafter apply the UTAGMS method?

In order to answer this research question, we have the following sub-questions:

1. How different is the Pareto front obtained with a genetic algorithm (NSGA-II/SPEA2)
related to one from the weighted sum method?

2. How applicable is the UTAGMS method to this specific multi-objective optimization model?

3. How many preference statements do we need in order to obtain a single (best) solution?

Although there exists multiple algorithms to generate the Pareto front, this research is limited
to applying the NSGA-II and SPEA2 algorithm, together with the UTAGMS method. The main
focus will be to apply the UTAGMS method to the MOO context and perform computational
tests to determine how many preference statements are needed to build a preference model, and
how much computational time is required in order to find a single ‘best’ solution for the DM.

We will build a model for optimizing the supply chain and advising the DM a solution based
on his/her preferences. The first part, thus the genetic algorithm, will generate a set of possible
decision alternatives. Then, the UTAGMS method will be used to aid the DM to find the most
preferred solution among these alternatives.

1.3 Methodology

The generation, or at least a good approximation, of the Pareto front can be obtained by applying
a genetic algorithm. In this research we will apply the Non-dominated Sorting Genetic Algorithm
(NSGA-II) and the Strength Pareto Evolutionary algorithm 2 (SPEA2) to approximate the
Pareto front. These two algorithms do not involve any preference information, so there is a clear
separation between obtaining the set of non-dominated solutions and applying a preference
model to rank them. Both algorithms are able to generate a good representation of the Pareto
front for a multi-objective optimization problems, and we can test which one suits this particular
problem better. Also, these approaches will be compared to the scalarization methods to see
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whether genetic algorithms do a better job than the ‘simpler’ scalarization methods or whether
scalarization methods are also sufficient.

The UTAGMS method will be used as a procedure to deal with the DM’s preferences. This
method is proposed by Greco et al. [29] and is used for ranking a finite set of actions evaluated
on multiple criteria. The method builds a set of additive value functions based on the DM’s
preferences and besides the preference relation. The UTAGMS method itself is an extension of
the UTA method with ordinal regression (see [37]).

The NSGA-II and SPEA2 will be implemented using the ParadisEO framework [12, 44].
That is a object-oriented framework in C++ for the reusable design of metaheuristics. The
framework provides the MOO algorithms NSGA, NSGA-II, IBEA and SPEA2. To test these
results, we compare solutions of genetic algorithms with those of the scalarization methods.
Then the preference model will be implemented using R [52], a free software environment for
statistical computing, together with the ‘ror’ library1.

To determine how valuable our preference model can be in practice, we perform compu-
tational tests to investigate how many and what kind of preference statements are needed in
order to build a preference model. The UTAGMS method needs preference information in form
pairwise comparisons. Because there is no real DM involved, we will execute tests with random
preference statements to determine the applicability of our preference model in the particular
case study.

1.4 Structure

The thesis is organized as follows. In Chapter 2 we will describe the applied approaches for
estimating the Pareto front for a multi-objective optimization model: scalarization methods and
genetic algorithms. We will discuss preference models and the related theory in Chapter 3. In
Chapter 4 we describe the case study and their results. In Chapter 5 we discuss the methods
that are used and then in Chapter 6 we present the conclusions of this research.

1Robust Ordinal Regression http://cran.r-project.org/web/packages/ror/
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Chapter 2

Multi-Objective Optimization

Multi-objective optimization (MOO) is the process of simultaneously optimizing multiple con-
flicting goals or objectives. The difference with single-objective optimization is that MOO results
in several/many equally efficient solutions, known as Pareto optimal solutions, instead of one
single solution. A MOO problem consists of a set of objective functions that can be either
maximized or minimized. A set of constraints limits the set of possible outcomes, known as the
solution space. Without loss of generality, a MOO problem can be defined as follows (we assume
all objective functions to be minimized):

Minimize F (x) =
(
F1(x), F2(x), . . . , Fn(x)

)
subject to gj(x) ≥ 0, j = 1, . . . , J.

hk(x) = 0, k = 1, . . . ,K.

(2.1)

In [14] two goals of MOO are described: (i) convergence to the Pareto optimal solutions
and (ii) maintenance of a set of maximally-spread Pareto optimal solutions. Both goals are
independent to each other and the optimization algorithm must have properties to achieve both
goals. MOO results in multiple solutions while a user often only needs one solution. In [14]
there are two steps defined in order to find a single (best) solution:

1. Find multiple trade-off optimal solutions with a wide range of values for objectives;

2. Choose one of the obtained solutions using higher-level information.

The ideal way, according to Deb [14], is to find first a well-distributed set of trade-off solutions
(step 1) and then apply the preferences (step 2). This way is less subjective than using first
the preference information. In the latter, one can estimate a relative importance vector using
higher-level information, i.e. the DM’s preference information, which results in a single solution.
Therefore, in this research we will first focus on the Pareto-set and thereafter apply a preference
model.

In most MOO algorithms is the concept of dominance used to compare two solutions. A
solution dominates another solution if the following two conditions are met:

1. The solution is no worse than the other solution in all objectives;

2. The solution is strictly better than the other solution in at least one of the objectives.
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Without any preference information and all objectives being equally important, we cannot say
that one solution is better than the other solution unless it dominates the other. Among a set
of solutions, the set of non-dominated solutions is called the Pareto optimal set or Pareto front.
The Pareto front represents the solutions that you cannot improve on one of the objectives
without worsening another objective.

There are different approaches to optimize MOO problems; below we describe some of them.
First we describe scalarization methods, then genetic algorithms, and finally other approaches.

2.1 Scalarization methods

Scalarization methods are methods that scalarize a multi-objective problem to a single-objective
problem. Ehrgott [18] defines the principle of scalarization to solve a MOO problem as ‘con-
verting the multi-objective program to a single-objective program that usually depends on some
parameters not included in the objective function and then solve the scalarized problem repeat-
edly with different parameter values’. Below we describe the Weighted Sum and ε-Constraint
Methods, and other scalarizing approaches.

2.1.1 Weighted Sum Method

The weighted sum method assigns a non-negative weight to each objective and normally the
weights sum up to one. The mathematical definition is shown in Equation 2.2. The different
objectives do not have to be scaled because the weights merely serve to find solutions on the
Pareto front. By changing the set of weights, a different point on the Pareto front can be
obtained. However, there are three difficulties with the weighted sum method [13]: (i) there
is no satisfactory (a priori) selection method to determine the weights that guarantee the final
solution to be acceptable, (ii) it cannot find solutions on non-convex regions of the Pareto front,
and (iii) varying the weights may not result in an evenly distributed and accurate/complete
representation of the Pareto front.

Minimize F (x) =
M∑
m=1

wmfm(x)

Subject to gj(x) ≥ 0 j = 1, 2, ..., J

hk(x) = 0 k = 1, 2, ...,K

(2.2)

There exist extensions of the weighted sum method for dealing with these three issues. Kim
and de Weck [41] presented the adaptive weighted sum method, which is an improvement to
their earlier presented bi-objective adaptive weighted sum method [40]. They demonstrate that
their adaptive weighted sum method finds solutions for non-convex regions and a well-distributed
Pareto front. After normalization and applying the usual weighted sum method, this method
involves some additional steps. First, nearly overlapping solutions are removed. Then Pareto
front patches have to be identified which will be further refined, and then using additional
equality constraints and sub-optimization for these patches, new solutions are obtained. Finally
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a Pareto-filter is applied to remove all dominated solutions.

2.1.2 ε-Constraint Method

To overcome the difficulty that the weighted sum method does not find solutions in a non-
convex region, the ε-Constraint Method is used. This method optimizes one objective, while
the other objectives are used as constraints. Consequently, compared with the weighted sum
method (Equation 2.2) there is only one objective function (fµ(x)) and additional constraints
(fm(x) ≤ εm) that require the other objectives do not exceed the user-defined values. The new
equation is shown in Equation 2.3.

Minimize fµ(x),

Subject to fm(x) ≤ εm m = 1, 2, ...,M and m 6= µ

gj(x) ≥ 0 j = 1, 2, ..., J

hk(x) = 0 k = 1, 2, ...,K

(2.3)

One difficulty about this method is how to choose the εm values; you do not know beforehand
what the best values will be. If you increase the ε-values with too small steps it leads to a lot
of redundant runs, and if the steps between different runs are too large it misses Pareto optimal
solutions. Thus it requires more user input to find solutions in non-convex regions, but the
ε-Constraint method has also several advantages over the Weighted Sum Method:

1. The Weighted Sum Method only finds extreme points for linear models, thus a lot of runs
are redundant because they result in the same solution. The ε-Constraint Method is able
to produce non-extreme efficient solutions.

2. The Weighted Sum Method cannot find solutions for non-convex regions, while the ε-
Constraint Method does not suffer from this pitfall.

3. The ε-Constraint Method can control the number of efficient solutions, while this is not
so easy for the Weighted Sum Method.

Research that has been done to improve the ε-constraint method, e.g. [43] and [47]. The
former presents an adaptive scheme that finds appropriate constraint values during the run.
The latter [47] proposes a novel version of the ε-constraint method: the augmented ε-constraint
method (AUGMECON). This is an effective implementation of the ε-constraint method using
lexicographic optimization for the payoff table, and can be used in an interactive context.

2.1.3 Other

A third scalarization method minimizes the distance to an ideal point (i.e., the solution in
which all objectives are minimized simultaneously). However, the ideal point is not a feasible
solution when there are conflicting objectives. The compromise programming method applies
this principle, and one example shown in [18] is the following minimization problem (with a
weighting vector λ > 0, an integer 1 ≤ q < ∞, ideal point yI and x ∈ X representing the
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constraints):

min

{( p∑
k=1

λk (fk(x)− yIk)q
) 1

q

: x ∈ X

}
(2.4)

In [48] are a number of scalarization functions described; these are STEM, STOM, achieve-
ment scalarizing functions, GUESS, NIMBUS, a lexicographic formula and four variants of
integer-valued multi-objective optimization. These functions are either reference-point based
or used for classification. In the latter the decision maker is asked to classify a set of current
solutions to be acceptable or whether some objectives need improvement. Thus the functions
based on classification already take preferences into account.

2.2 Genetic Algorithm for MOO

A genetic algorithm is a search heuristic and belongs to a larger class called evolutionary algo-
rithms. Genetic algorithms normally deal with population sizes larger than one. Each individual
of the population represents a single solution, and therefore genetic algorithms seem well suited
for generating the optimal solution set in multi-objective optimization problems.

Genetic algorithms are based on Darwin’s theory about evolution. A genetic algorithm
start with an initial set of solutions, called the population, represented by chromosomes. In each
generation, new solutions are generated using genetic operators such as recombination, crossover
and mutation. This way you try to find better solutions by improving earlier ones. For each
individual in the population (in each generation), a fitness value F (x) is calculated representing
the goodness of the solution. The algorithm stops when an end condition is satisfied.

The basic principles of a standard genetic algorithm consist of coding, a fitness function
and reproduction. The coding means the representation of the potential solution in terms of
a string of values (called chromosomes). Often the binary alphabet is used, but it depends on
what is best suited for the particular problem. The fitness function returns a numerical fitness
(or ‘utility’) value for a particular chromosome. This indicates how good the potential solution
is. In the reproduction phase, individuals from the population are selected and recombined
to generate the offspring for the next generation. The recombination is typically done with
mechanisms like crossover and mutation. Crossover takes two individuals and uses random
point(s) to cut the chromosome in two segments, a ‘head’ and ‘tail’ segment [7]. The tail
segments are swapped over to produce two new chromosomes. Figure 1 shows an example of
a single-point crossover. Usually, crossover is not applied to all pairs of chromosomes, but has
a likelihood of being applied typically between 0.6 and 1.0. Often the fittest chromosomes
are selected for crossover, but one can also use different selection mechanisms, e.g., tournament
selection. With tournament selection, the individual with the best fitness has the highest chance
of being chosen. For example, the best individual can have p chance to be chosen, the second
best p× (1− p), the third p× ((1− p)2), and so on. Mutation is applied, after crossover, to each
child instead of pairs. It randomly alters a gene and is typically applied in 0.01 of the cases to
escape from local optima. Figure 2 shows a single-point mutation.

Fonseca and Fleming [26] describe four different approaches for evolutionary algorithms
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Figure 1: Crossover [7]

Figure 2: Mutation [7].

in multi-objective optimization: (i) plain aggregation approaches, (ii) population-based non-
Pareto approaches, (iii) Pareto-based approaches, and (iv) niche induction techniques. In the
first approach the multiple objectives are aggregated into a scalar function. These methods are
similar to the weighted sum approach described in Section 2.1.1. The second approach was
the first approach that optimizes multiple objectives simultaneously, like the Vector Evaluated
Genetic Algorithm (VEGA) method from Schaffer [56], but does not make direct use of Pareto
optimal solutions, i.e., all Pareto optimal solutions have the same fitness. At most, they monitor
the population for non-dominated solutions. The third approach ranks the population based on
their non-domination. The solutions that have the same rank get the same fitness value, thus
all Pareto optimal solutions have the same fitness. This approach does not guarantee that the
Pareto-set is uniformly sampled, unlike the last approach. Niche induction techniques have the
additional use of fitness sharing and can also add a mating restriction. Both are necessary to
produce a distance measure needed for uniform sampling.

2.2.1 NSGA-II

The Non-dominated Sorting Genetic Algorithm ([16]) has the following three properties:

1. It uses an elitist principle;

2. It uses an explicit diversity preserving mechanism;

3. It emphasizes the non-dominated solutions.
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For the fast non-dominated sorting approach two entities need to be computed: (i) domi-
nation count np, the number of solutions which dominate the solution p; and (ii) Sp, a set of
solutions that the solution p dominates. The solutions with np = 0 represent the first non-
dominated front. Then, for each solution with np = 0 (thus from the first non-dominated front),
we visit each member (q) of its set Sp and reduce its domination count by one (thus we remove
solution p from nq). For any member for which domination count becomes zero (nq = 0), we
put in a separate list Q. Then Q represents the second domination front. These procedures are
repeated for each member of Q to identify the third front, and we continue until all fronts are
identified.

To obtain a density estimation of solutions surrounding a particular solution, we compute
the average distance of two points on either side of the point along each of the objectives. This
quantity idistance serves as an estimate of the perimeter of the cuboid formed by using the nearest
neighbors as the vertices (this is the crowding distance). In Figure 3 is the crowding-distance
of the i-th solution in its front (marked with filled circles) the average side length of the cuboid
(shown with a dashed box). The following algorithm is used to calculate the crowding-distance
for each point in set I:

1. Call the number of solutions in I as l = |I|. For each i in the set, first assign I[i]distance = 0;

2. For each objective m, sort the set in ascending order;

3. For each objective m, assign a large distance to the boundary solutions, or I[1]distance =

I[l]distance =∞, and for all other solutions i = 2 to (l − 1), assign

I[i]distance = I[i]distance +
I[i+ 1]m − I[i− 1]m

fmaxm − fminm

Thus the crowding-distance computation requires first to sort the population in ascending order
for each objective. Then for each objective function are the boundaries set to infinity, and for all
other (intermediate) solutions the distance is the absolute normalized difference in the function
values of two adjacent solutions. The last is repeated for all other objectives. Then the total
crowding-distance is the sum of individual distance values corresponding to each objective, with
each objective being normalized.

The crowded-comparison operator (�n) ensures a uniform spread-out of the Pareto front
during the various stages of the algorithm. Assume that every individual i has the following
two attributes: non-domination rank (irank), and crowding distance (idistance). Then the partial
preorder �n is defined as

i �n j IF (irank < jrank) OR(
(irank = jrank) AND (idistance > jdistance)

)
Thus in order for a solution to be preferred to another one in terms of necessarily better, it
needs a better rank (a better non-domination front) or a better crowding distance in case of the
same rank.

The main loop starts with the initialization of a random parent population P0 sorted based
on the non-domination. First the offspring Q0 of size N will be created using the usual binary
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Figure 3: Crowding-distance calculation [16]
.

tournament selection, recombination and mutation operators. Algorithm 1 describes the proce-
dure for the t-th generation. First we combine the parents and the offspring (Rt = Pt ∪ Qt),
which has the size 2N . Then we sort the population Rt according to their non-domination.
Elitism is ensured because the current as well as the previous members are included in Rt.
The new population (Pt+1) will be filled with the best fronts (first F1, then F2, etc.), until the
size of the next front (Fl) is bigger than the number of open spots in Pt+1. To have exactly
N members in the new population and the diversity preservation (i.e., that a good spread of
solutions is maintained in the obtained solution set), the front Fl will be ordered based on the
crowding-distance and the first N − |Pt+1| (i.e., the number of open spots) solutions will be
added to end up with exactly N solutions in Pt+1. Then we start again to make an offspring
(Qt+1) of Pt+1 and we repeat this algorithm until the stopping criterion is met.

Algorithm 1 NSGA-II (main-loop for the t-th generation)
Rt = Pt ∪Qt
F = fast-non-dominated-sort(Rt)
Pt+1 = ∅ and i = 1
while |Pt+1|+ |Fi| ≤ N do
crowding-distance-assignment(Fi)
Pt+1 = Pt+1 ∪ Fi
i = i+ 1

end while
Sort(Fi,�n)
Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)]
Qt+1 = make-new-pop(Pt+1)

t = t+ 1
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2.2.2 SPEA2

The Strength Pareto Evolutionary Algorithm 2 (SPEA2) is an improvement over the earlier
presented algorithm SPEA, by Zitzler and Thiele [65]. SPEA2, proposed by Zitzler et al. [66],
takes new features into account. The main differences with its predecessor are:

• An improved fitness assignment for each individual, which takes into account how many
solutions it dominates and how many solutions are dominated by;

• A nearest neighbor density estimation technique to have better guidance of the search
process;

• New archive truncation methods that guarantee the preservation of boundary solutions.

We describe the basis of SPEA first and then we show the improvements made by SPEA2.
SPEA starts with an initial population and an empty set called the archive. Then for each
iteration the following steps are performed. First are all non-dominated solutions from the
population copied to the archive. Then all duplicates or dominated solutions from the archive
are removed. If the resulting archive is greater than a predefined maximum size, further archive
members are removed by a clustering technique. Then for each individual in both the population
and archive sets the fitness is calculated:

• Each individual in the archive set is assigned a strength value S(i) ∈ [0, 1), which represents
the fitness F (i) at the same time. Thus for each non-dominated solution (or archive
member), the fitness is equal to its strength. S(i) is the number of dominated solutions or
equal solutions (j) by i divided by the population size (N) plus one;

• The fitness of F (j) is calculated by summing up S(i) for all archive members i that
dominates or are equal to j and adding one at the end.

This means that for all non-dominated solutions the fitness is between 0 and 1 (0 < F (j) < 1)
and all dominated solutions have a fitness value higher than one (F (j) > 1). Then the next
step is the mating selection phase, where individuals from the union of the population and the
archive are selected by means of binary tournament selection (i.e., the better the individual,
the higher chance to be chosen). Finally, recombination and mutation result in new offspring
population.

In contrast to SPEA, SPEA2 uses a different fitness assignment: a fixed archive size, the
clustering technique is replaced by an alternative truncation method, and only archive mem-
bers participate in the mating selection phase. To avoid situation that population members
dominated by the same members of the archive have the same fitness value, both the number
of dominating and dominated solutions are taken into account. The raw fitness is determined
by the number of its dominators in both the archive and population, where in SPEA only the
archive members are considered. The final fitness value is composed of this raw fitness value
plus additional density information. If you take just the raw fitness as the final fitness value,
it may fail when most individuals do not dominate each other. Therefore, an adaptation of the
k-nearest neighbor is used for additional density information to discriminate solutions that have
the same raw fitness value.
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A fixed size used for the archive in the SPEA2 environmental selection. Like in SPEA, first
are all solutions that are non-dominated copied, i.e. all solutions that have a fitness value smaller
than one. If the size of the archive is exactly the correct one (|P̄t+1| = N̄), the environmental
selection is completed. Else there can be two situations: the archive is either too small or too
big. In the first case, the best dominated solutions in the previous archive and population are
copied to the new archive. In the latter case, an archive truncation procedure is invoked that
iteratively removes solutions until the size is equal to the predefined size. The ones that have
the minimum distance, defined with the k-th nearest neighbor procedure, to other solutions will
be removed. Algorithm 2 shows an overview of the SPEA2 procedure.

Algorithm 2 SPEA2 Algorithm [66]
Input: N population size

N̄ archive size
T maximum number of generations

Output: B non-dominated set

Step 1: Initialization: Generate an initial population P 0 and create the empty archive
(external set) P̄0 = ∅. Set t = 0.

Step 2: Fitness assignment: Calculate fitness values of individuals in Pt and P̄t
Step 3: Environmental selection: Copy all non-dominated individuals in Pt and P̄t

to P̄t+1. If size of P̄t+1 exceeds N̄ then reduce P̄t+1 by means of the truncation
operator, otherwise if size of P̄t+1 is less than N̄ then fill P̄t+1 with dominated
individuals in Pt and P̄t

Step 4: Termination: If t ≥ T or another stopping criterion is satisfied then set A to
the set of decision vectors represented by the non-dominated individuals in P̄t+1.
Stop.

Step 5: Mating selection: Perform binary tournament selection with replacement on
P̄t+1 in order to fill the mating pool.

Step 6: Variation: Apply recombination and mutation operators to the mating pool and
set Pt+1 to the resulting population. Increment generation counter (t = t + 1)
and go to Step 2.

2.2.3 Other genetic algorithms

The NSGA [61] was one of the first methods that solve multiple objectives simultaneously. In
this algorithm, the population is first sorted (ranked) based on an individual’s non-domination,
and a sharing method is used to keep the diversity within the population after reproduction.
The improved version (NSGA-II), addresses the three main criticisms of NSGA: (i) high com-
putational complexity of non-dominated sorting, (ii) lack of elitism, and (iii) need for specifying
the sharing parameter. The original algorithm only varies in the way the selection operator
works.

Zitzler and Thiele [65] presented the SPEA algorithm. This algorithm combined features from
four older algorithms: (i) the Vector Evaluated Genetic Algorithm (VEGA) from Schaffer [56];
(ii) Aggregation by Variable Objective Weighting from Hajela and Lin [33]; (iii) Niched Pareto
Genetic Algorithm (NPGA) from Horn, Nafpliotis and Goldberg [35]; and (iv) Nondominated
Sorting Genetic Algorithm (NSGA) from Srinivas and Deb [61]. The SPEA algorithm is char-
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acterized by: (a) storing nondominated solutions externally in a second continuously updated
population, (b) evaluating an individual’s fitness dependent on the number of external non-
dominated points that dominate it, (c) preserving population diversity using Pareto dominance
relationship, and (d) incorporating a clustering procedure in order to reduce the nondominated
set without destroying its characteristics [65].

The Pareto Archived Evolution Strategy (PAES) proposed by Knowles and Corne [42] is
intended to be a simpler evolution scheme for multi-objective optimization problems. The PAES
algorithm can be defined as a (1 + 1) evolution strategy, i.e., that a population of size two
with one parent and its mution is used. However, they use a reference archive of previously find
solutions in order to identify the non-domination ranking of the current and candidate solutions.

[15] proposes a modified approach of the NSGA-II algorithm. The NSGA-II algorithm has
difficulties in solving problems with a large number of objectives, and the modified approach uses
a reference point method to find Pareto optimal solutions near the DM’s regions of interest. An
interactive approach is described in which the obtained solution is used to createM new reference
points. New Pareto optimal solutions are then found by forming new achievement scalarizing
problems. A new reference point will be suggested if none of the suggested solutions satisfies the
DM, and this procedure is repeated until the DM is satisfied. However, this procedure results to
a single solution that depends on the chosen weight vector. Therefore, [15] proposes a reference
point method based of the NSGA-II algorithm (R-NSGA-II) to obtain multiple solutions without
the need of a (subjective) weight vector.

[10] describes an interactive approach, together with a genetic algorithm to solve the model
with preferences included. During the optimization process of the genetic algorithm, the DM is
asked to compare some pairs of solutions in the current population. Then a set of value functions
is used together with the preference information and a modified version of the NSGA-II is applied
to search solutions satisfying the DM’s preferences.

Another interactive approach to include preference along with evolutionary optimization is
described in [63]. In this paper they propose an algorithm called Preference-Based Evolutionary
Algorithm (PBEA), based on the IBEA. The DM is asked to give his/her preference information
in each information by defining a reference point. This algorithm discovers the Pareto front near
the reference points given by the DM, and thus the whole Pareto front does not have to be
approximated.

2.2.4 Implementation of GAs for supply chain design

To implement the supply chain in a genetic algorithm, you need a representation of the design
and flows between the different sources. If the supply chain consists of multiple stages, each
stage requires a part of the chromosome. Thus for each stage of the supply chain, a part of
the chromosome is dedicated to represent from which source to which depot the goods are
transported, how many goods there are transported and also the transportation modes if there
are multiple available.

The optimization of a supply chain with a genetic algorithm is described in [1, 62]. In
the first paper [1], the authors provide a genetic algorithm for solving a multi-objective supply
chain network, with costs, customer service and capacity utilization ratio as the objectives. The
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second [62] is an implementation for a single-objective optimization: the costs. Important here
for our research is the representation and the genetic operators. As stated in the first paper,
tree-based representation is one of the best ways for representing network problems, and both
of these papers use a tree-based representation. For tree-based representations, there are three
ways of encoding: edge, vertex or edge-and-vertex encoding. The second paper uses vertex-
based encoding using Prüfer number representation [27], which needs a repair mechanism for
infeasible solutions. In the first paper they use priority-based encoding to escape from the
repair mechanism, which is edge-and-vertex encoding. Three genetic operators are applied in
both papers: crossover, mutation and a selection mechanism.

As mentioned above, the representation of the network and flows can be encoded/decoded
using priority-based encoding developed by Gen and Cheng [27]; [1] uses such encoding for a
two-stage transportation problem. With priority-based encoding the length of a chromosome is
equal to the number of sources plus the number of depots. If more stages are required, additional
parts needed to be represented. This can be done in the same way as for the transportation
from the first to the second stage.

The chromosomes have the length of the number of sources (|K|) plus the number of depots
(|J |), i.e. |K|+ |J |. Thus the chromosome (or part of the chromosome) consists of the priorities,
where the first K integers represent the sources and the next J integers represent the depots.
Then, based on the priorities, arcs are sequentially added between sources and depots. Figure 4
shows an example of this. Algorithm 3 presents the procedure to decode a chromosome for a
single stage of the network [1]. It shows how a single stage can be decoded to the corresponding
flows in the supply chain.. Because the length of the chromosome is |K|+ |J |, it is guaranteed
that each source or depot is served and thus the demand conditions are met (only if the capacity
allows this and thus a feasible solution is available). However, these parts now represent arcs
in the transportation tree, but not yet which transportation mode is used. Therefore, a part
of equal size (|K|+ |J |) can be added to the chromosome which consists of integer numbers to
represent the different transportation modes. Thus, e.g., in case of three sources and four depots
the chromosome consists of two parts (both of size (|K| + |J |)), where both parts have length
seven. The first part represent the transportation modes and the second part the priorities. If
you split these parts and link them, i.e. the first integer in the first part corresponds to the first
integer in the second part, etc., you can combine a specific arc (based on the priority) with the
transportation mode.

2.3 MOO in Green Logistics

In this research we investigate the impact of greening the supply chain on the design and cost.
The case presented in Chapter 4, involves besides the minimization of the costs, also the min-
imization of CO2/PM emissions. Therefore, we discuss (a part of) the related work about
greening the supply chain.

The Locating of hazardous waste treatment and their routing has been studied with MOO
models. In [36] is a goal programming model developed that considers four objectives: (i)
minimization of total operation cost, (ii) minimization of total perceived risk, (iii) equitable
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Figure 4: A sample of priority-based encoding; a transportation tree and its encoding [1].

Algorithm 3 Decoding the chromosome for transportation tree
Input: K : set of sources, J : set of depots;

bj : demand of depots j, ∀ j ∈ J ;
ak : capacity of source k, ∀ kinK;
ckj : transportation costs of one unit of product from source k to depot

j, ∀ k ∈ K,∀ jinJ ;
v(k + j) : chromosome, ∀ k ∈ K, ∀ j ∈ J ;

Output: gkj : the amount of products shipped from source k to depot j;

Step 1: gkj ← 0, ∀ k ∈ K,∀ j ∈ J
Step 2: l← arg max{v(t), t ∈ |K|+ |J |}; select a node
Step 3:

if l ∈ K then
k∗ ← l; select a source
j ← arg min{ckj |v(j) 6= 0, j ∈ J}; select a depot with the lowest cost

else
j∗ ← l; select a depot
k∗ ← arg min{ckj |v(j) 6= 0, k ∈ K}; select a source with the lowest cost

Step 4: gk∗j∗ ← min{ak∗ , bj∗}; assign available amount of units
Update availabilities on source (k∗) and depot (j∗)

ak∗ = ak∗ − gk∗j∗
Step 3:

if ak∗ = 0 then
v(k∗) = 0

if bj∗ = 0 then
v(j∗) = 0

Step 5:
if v(|K|+ j) = 0,∀ j ∈ J then

calculate transportation cost and return
else
goto Step 1
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distribution of risk among population centers, and (iv) equitable distribution of the disutility
caused by the operation of the treatment facilities. A bi-objective model for locating hazardous
waste and routing has been proposed by [2], that include the optimization objectives of mini-
mizing the total cost and the transportation risk. [50] is another study that integrate both risk
and cost.

Quariguasi Frota Neto et al. [51] want to balance the cost and the environmental impact.
They correctly argue that an improvement of sustainable logistics is often only possible with
an investment that brings none or negative results. They present a framework for optimizing
both cost and environmental impact simultaneously, consisting of three steps: (i) asses the
environmental impact, (ii) normalization, and (iii) weighting. Then they want to explore all
Pareto optimal solutions, using a heuristic to present the multi-objective optimization problem
as several single-objective optimization problems. Harris et al. [34] evaluates a supply chain on
overall logistics costs and CO2 emissions by taking into account the structure (e.g. the number
of depots) and different freight utilization ratios; the case study involve operational and strategic
decisions.

Apart from multi-objective optimization in green logistics, there are also studies that focus
just on the green logistics part. Sbihi and Eglese [55] focus on three topics: reverse logistics
(recycling), waste management and vehicle routing/scheduling. For each of these topics different
theories are applied, e.g., (facility) location models and dynamic lot-sizing for recycling and arc
routing for waste management. The vehicle routing and scheduling consists of the link between
vehicle routing and emissions. Sbihi and Eglese want to reduce the emissions by reducing the
travel distance, i.e., route optimization. Zheng and Zhang [64] provide detailed steps for green
logistics. They divide the green logistics into five parts: (a) green packaging, (b) green transport,
(c) green storage, (d) green flow of processing, and (e) development of reverse logistics. For each
of these parts there are a number of green aspects to apply, e.g., using greener packaging material
or a greener way of transport. They split Reverse logistics into two parts: recycling and waste
management. The first one is about reusing material, while the second one is about handling,
storage, processing and distribution of waste.
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Chapter 3

Preference modeling

The previous chapter describes the multi-objective optimization process, which results in a set
of possible solutions. Often, it is difficult to choose one solution from a (large) set of solutions.
However, it is much easier for a DM to make a choice between two alternatives. So-called
preference models can find the most preferred solutions by applying piecewise comparisons in an
iterative process. Thus for any pair of alternatives (x and y), the DM has to choose which one
he/she prefers, and then the model induces the DM’s most preferred solution from the (large)
solutions’ set. The crux of the preference model is to come up with such a sequence of piecewise
comparisons, which should be as short as possible.

The classical theory of preference modeling can be characterized by: (a) the use of a specific
language, (b) the use of a specific syntax, and (c) the emphasis put on a number of particular
situations [9]. In this chapter we describe first the Multi-Attribute Value Theory (MAVT) and
the UTA method, which form the basis for UTAGMS. Then we describe UTAGMS, which we
will apply on a case study, and other approaches such as the ELECTRE and PROMETHEE
methods.

3.1 Multi-Attribute Value Theory

The theory we discuss here is based on the outline of the method in [57] of the Multi-Attribute
Value Theory (MAVT). A few axioms proposed by Keeney and Raiffa [39] are used to build up
the MAVT. It is necessary to represent the preference of a decision maker (DM) via a set of
scores to compare different solutions. Also, weights are used to quantify the relative importance
of criteria and to account for the differences in scales of the criteria scores. Certain conditions
are necessary for the use of additive MAVT models. To illustrate these conditions, consider a
decision problem with a number of alternative solutions. Let two of these solutions A and B,
measured against two sets of criteria I and J , where I contains at least two criteria, and J

contains at least one. A and B can be expressed as vectors of attribute levels, i.e. A = (ai, aj)

and B = (bi, bj). In defining the attributes on which to measure the solutions, one must ensure
that mutual preferential independence exists among them. This means that for comparisons in
which some of the criteria are kept fixed, preference is determined solely by the criteria in which
there is a variation and does not depend on the levels of the other criteria. I is preferentially
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independent of J if for all ai, bi, preferences on criteria I:

for some αj ∈ J, (ai, αj) ≤ (bi, αj) =⇒ (ai, βj) ≤ (bi, βj) ∀βj ∈ J

This condition implies that the DM should be able to establish a weak ordering of their
preferences, i.e. the DM can decide whether ai is at least as good as bi on criterion i: ai ≤ bi.

The MAVT consists of two steps: (i) build a value function vj for each criterion, and (ii)
compute a global value v(ai) for each action ai

v(ai) = f
(
v1(ai), v2(ai), ..., vn(ai)

)
The value functions created in the first step need to comply with the transitivity conditions of
preferences and indifferences. For the second step, often the additive model is used:

v(ai) =

n∑
j=1

wjvj(ai) = w1v1(ai) + w2v2(ai) + ...+ wnvn(ai),

usually with
∑n

j=1 wj = 1, where wj are the weights or scale coefficients (with wj > 0).

3.2 UTA

The UTA (UTilitè Additive) method assesses a set of additive value functions which aggregate
multiple criteria in a composite criterion, using weak-order prefence information from the DM
and the multi-criteria evalutions of these solutions. The method, proposed in [37], assesses a set
of value functions using an ordinal regression method (linear programming) instead of a single
value function for each criterion. A weak preference relation % on AR, i.e. for each pair of vectors
x, y ∈ G is defined as:

x % y ⇐⇒ x is at least as good as y

and can be decomposed into asymmetric and symmetric parts as follows:

1. x � y ≡ [x % y and not (y % x)]⇐⇒ ‘x is preferred to y’;

2. x ∼ y ≡ [x % y and y % x]⇐⇒ ‘x is indifferent to y’.

The value function is additive if it has the form:

g(a) =

n∑
i=1

gi(ai) (3.1)

Taking into account the additive form (Eq. 3.1) and the preference conditions (a weak order),
the value of each solution a (from a set of solutions AR) can be written as:

u′[g(a)] =
n∑
i=1

ui[gi(a)] + σ(a) ∀α ∈ AR (3.2)
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where σ(a) is the potential error relative to u′[v(a)].
[37] proposes to use linear interpolation in order to estimate the corresponding marginal

value functions in a piecewise linear form. For each criterion (g), the interval [gi∗ , g
∗
i ] is split

into (α− 1) equal intervals, and the endpoints gji are given with:

gji = gi∗ +
j − 1

αi − 1

(
g∗i − gi∗

)
∀ j = 1, 2, ..., αi (3.3)

Then the marginal value of a is approximated by linear interpolation, and thus, for gi(a) ∈
[gji , g

j+1
i ]:

ui[gi(a)] = ui(g
j
i ) +

gi(a)− gji
gj+1
i − gji

[
ui(g

j+1
i )− ui(gji )

]
(3.4)

Combining Eq. 3.2 with the relations of a weak order, we have Eq. 3.5 for a strict preference
relation (a is better than b: a � b) and Eq. 3.6 for indifferent pairs (a is equal to b: a ∼ b).

n∑
i=1

{
ui[gi(a)]− ui[gi(b)]

}
+ σ(a)− σ(b) > 0 (3.5)

n∑
i=1

{
ui[gi(a)]− ui[gi(b)]

}
+ σ(a)− σ(b) = 0 (3.6)

Taking into account the hypothesis on monotonicity of preferences (i.e. the marginal values are
monotone non-decreasing functions of the criterion gi), the marginal values ui(gi) must satisfy
the constraint in Eq. 3.7, with si being the indifference threshold for each criterion gi.

ui(g
j+1
i )− ui(gji ) ≥ si, ∀ j = 1, 2, ..., α− 1, i = 1, 2, ..., n (3.7)

The values ui(gj) are estimated by means of a linear program where we use a linear objective
function in order to minimize the amount of total deviation. The objective function:

minF =
∑
a∈AR

σ(a) (3.8)

Under the constraints:

n∑
i=1

{
ui[gi(a)]− ui[gi(b)]

}
+ σ(a)− σ(b) > 0 if a � b

n∑
i=1

{
ui[gi(a)]− ui[gi(b)]

}
+ σ(a)− σ(b) = 0 if a ∼ b

ut(g
j+1
i )− ui(gji ) ≤ si ∀ i,∀ j

n∑
i=1

ui(g
∗
i ) = 1

ui(gi∗) = 0, ui(g
j
i ) ≥ 0, σ(a) ≥ 0 ∀ i,∀ j, and∀a ∈ AR

(3.9)
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Figure 5: Post-optimality analysis [37].

The stability analysis of the results of the linear problem is considered as a post-optimality
analysis problem. If the optimum F ∗ is zero, the polyhedron1 of admissible solutions for ui(gi)
is not empty and many value functions lead to a perfect representation of the weak order R.
Figure 5 shows the post-optimal solution space defined by the polyhedron:

F ≤ F ∗ + k(F ∗) (3.10)

under the constraints of Eq. 3.9 where k(F ∗) is a positive threshold which is a small proportion
of F ∗. Branch and bound algorithms can be used to explore the polyhedron, and these results
can give a very clear idea of the stability of ui(gi). Partial exploration of the polyhedron can
be obtained by solving the LPs [min]ui(g

∗
i ) and [max]ui(g

∗
i ) in the polyhedron (Eq. 3.10). In

case of instability, the latter two LPs give the internal variation of the weights of criteria gi, and
consequently give an idea of the importance of the criteria to the DM.

UTASTAR

[60] describes the UTASTAR algorithm, which is an improvement of the UTA method by Siskos
and Yannacopoulos [59]. The error function, with single error α(a), is not sufficient to minimize
completely the dispersion of points all around the monotone curve of Figure 6. The points on the
right side of the curve cause this problem; it would be suitable to subtract an amount of value
and not increase the values of the others. Thus a double positive error function is proposed,

1A geometric solid in three dimensions with flat faces and straight edges
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where σ+ and σ− are the overestimated and underestimated errors respectively:

u′[g(a)] =
n∑
i=1

ui[gi(a)]− σ+(a) + σ−(a) ∀a ∈ AR (3.11)

Another important modification concerns the monotonicity of preference constraints of the
criteria. Instead of an indifference threshold for each criterion, the threshold can be replaced by
a non-negativity constraint for the variable wij (for si = 0):

wij = ui(g
j+1
i )− ui(gji ) ≥ 0 ∀i = 1, 2, ..., n and j = 1, 2, ..., αi − 1 (3.12)

Consequently, the UTASTAR algorithm can be summarized in the following steps ([60]):

1. Express the global value of reference actions u[g(ak)], k = 1, 2, ...m, first in terms of
marginal values ui(gi), and then in terms of variables wij according to the Equation 3.11,
by means of the following expression:{

ui(g
1
i ) = 0 ∀i = 1, 2, ..., n

ui(g
j
i ) =

j−1∑
t=1

wit ∀i = 1, 2, ..., n and j = 2, 3, ..., αi − 1
(3.13)

2. Introduce two error functions σ+ and σ− by writing for each pair of consecutive actions
in the ranking analysis expressions:

∆(ak, ak+1) = u[g(ak)]− σ+(ak) + σ−(ak)

−u[g(ak+1)] + σ+(ak+1)− σ−(ak+1)
(3.14)

3. Solve the linear program:

min z =
m∑
k=1

[σ+(ak) + σ−(ak)]

subject to
∆(ak, ak+1 ≥ δ if ak � ak+1

}
∀k

∆(ak, ak+1 = 0 if ak ∼ ak+1
n∑
i=1

αi−1∑
j=1

wij = 1

wij ≥ 0, σ+(ak) ≥ 0, σ−(ak) ≥ 0 ∀i, j and k

(3.15)

with δ being a small positive number.

4. Test the existence of multiple or near optimal solutions of the linear program (Eq. 3.15)(sta-
bility analysis); in case of non uniqueness, find the mean additive value functions of those
(near) optimal solutions which maximize the objective functions:

ui(g
∗
i ) =

αi−1∑
j=1

wij ∀i = 1, 2, .., n (3.16)
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Figure 6: Ordinal regression curve; ranking versus global value [60].

on the polyhedron of constraints of the LP (3.15) bounded by the new constraint:

m∑
k=1

[
σ+(ak) + σ−(ak)

]
≤ z∗ + ε (3.17)

where z∗ is the optimal value of the LP in step 3 and ε a very small positive number.

The comparison between UTA and UTASTAR made by [59] provided that UTASTAR has
better results concerning a number of comparison indicators, like:

1. The number of the necessary simplex iterations for arriving the optimal solutions;

2. Kendall’s τ 2 between the initial weak order and the one produced by the estimated model;

3. The minimized criterion z (sum of errors) taken as the indicator of dispersion of the
observation.

3.3 UTAGMS

The UTAGMS method is proposed by Greco et al. [29] and can be outlined as follows. The
preference information in this method is in form of pairwise comparisons of reference alternatives
AR ⊆ A and is a partial preorder on AR, denoted by %. A value function is compatible if it
is able to restore the partial preorder % on AR. Furthermore, each compatible value function
induces a complete preorder on the whole set A.

In particular, any two alternatives x, y ∈ A, can be ranked in the following way by a com-
patible value function: x � y, y � x, and x ∼ y. With respect to x, y ∈ A, it is thus reasonable
to ask the following two questions:

2Correlation coefficient based on ranking instead of the data itself
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1. are x and y ranked in the same way by all compatible value functions?

2. is there at least one compatible value function ranking x at least as good as y (or y at
least as good as x)?

In answering these questions for all pairs of alternatives (x, y) ∈ A×A, one gets a necessary weak
preference relation %N in A (U(x) ≥ U(y) for all compatible value functions), and a possible
weak preference relation %P in A (U(x) ≥ U(y) for at least one compatible value function).

In order to compute the binary relations %N and %P , UTAGMS continues the following way.
For all actions x, y ∈ A, let πi be a permutation of indices of alternatives from set AR∪x, y that
reorders them increasingly on criterion gi, i.e. gi(aπi(1)) ≤ gi(aπi(2)) ≤ ... ≤ gi(aπi(ω)), where

• if AR ∩ {x, y} = ∅, then ω = m+ 2;

• if AR ∩ {x, y} = x or AR ∩ {x, y} = y, then ω = m+ 1;

• if AR ∩ {x, y} = {x, y}, then ω = m.

Then we can fix the characteristic points of ui(gi), i = 1, 2, ..., n, in

g0i = αi, g
j
i = gi(aπi(j)), for j = 1, 2, ..., ω , gω+1

i = βi

Let us consider the following ordinal regression constraints:

U(a) ≥ U(b) + ε⇐⇒ a � b
}

∀a, b ∈ AR
U(a) = U(b)⇐⇒ a ∼ b
ui(g

j
i )− ui(g

j−1
i ) ≥ 0, i = 1, 2, ..., n, j = 1, ..., ω + 1

ui(g
0
i ) = 0, i = 1, 2, ..., n

n∑
i

(gω+1
i ) = 1

(3.18)

where ε is an arbitrary small positive value. This set of constraints depends on the pair of
alternatives x, y ∈ A, because gi(x) and gi(y) give coordinates for two of (ω + 1) characteristic
points of marginal value function ui(xi) ∀i.

We suppose that the polyhedron defined by the set of constraints (3.18) is not empty. Thus
in this case we have:

x %N y ⇐⇒ d(x, y) ≥ 0

where

d(x, y) = min {U(x)− U(y)}
s.t. (Eq. 3.18)

and

x %P y ⇐⇒ D(x, y) ≥ 0,
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where

D(x, y) = max {U(x)− U(y)}
s.t. (Eq. 3.18)

3.4 UTA variants and extensions

3.4.1 GRIP

Generalized Regression with Intensities of Preference (GRIP) generalizes both UTA (UTASTAR
actually) and UTAGMS methods by adopting all features of UTAGMS and taking into account
additional preference information in the form of comparisons of intensities of preferences. This
method is proposed by Figueira et al. [25] and can be outlined as follows. For alternatives
x, y, w, z ∈ A, the comparisons can be expressed in two possible, not exclusive, ways:

1. Comprehensively, on all criteria, like ‘x is preferred to y at least as much as w is preferred
to z’;

2. Partially, on a particular criteria, like ‘x is preferred to y at least as much as w is preferred
to z’, on criterion gi ∈ G.

Additional preference information needed to provide by the DM, besides the partial preorder %
on AR, consists of:

• A partial preorder %∗ on AR ×AR, whose meaning is: for x, y, w, z ∈ AR:

(x, y) %∗ (w, z)⇐⇒ ‘x is preferred to y at least as much as w is preferred to z’

• A partial preorder %∗i on AR ×AR, whose meaning is: for x, y, w, z ∈ AR:

(x, y) %∗i (w, z)⇐⇒
‘x is preferred to y at least as much as w is preferred to z’ on criterion gi, i ∈ I

Also is stated that intensities of preferences can be expressed in terms of pre-defined degrees of
intensities such as ‘moderate’ or ‘very strong’, e.g., the preference of x over y is moderate, the
preference of w over z is very strong.

The following output can/is produced by the GRIP method:

• a necessary ranking %N , for all pairs of actions (x, y) ∈ A×A;

• a possible ranking %P , for all pairs of actions (x, y) ∈ A×A;

• a necessary ranking %∗
N , with respect to the comprehensive intensities of preferences for

all
(
(x, y), (w, z)

)
∈ A×A×A×A;

• a possible ranking %∗
P , with respect to the comprehensive intensities of preferences for all(

(x, y), (w, z)
)
∈ A×A×A×A;
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• a necessary ranking %∗
N

i , with respect to the comprehensive intensities of preferences for
all
(
(x, y), (w, z)

)
∈ A×A×A×A and for all criteria gi, i ∈ I;

• a possible ranking %∗
P

i , with respect to the comprehensive intensities of preferences for all(
(x, y), (w, z)

)
∈ A×A×A×A and for all criteria gi, i ∈ I;

However, the first two (the necessary %N and possible %P ranking) provide the most useful
information and there is often no actual need to compute the other results, they can be requested
concerning particular pairs of alternatives.

3.4.2 Stochastic UTA

The stochastic UTA method is proposed by Siskos [58] for multi-criteria decision aid under
uncertainty. The additive value function becomes:

u(δa) =

n∑
i=1

ai∑
j=1

δai (gji )ui(g
j
i ) (3.19)

where δai is the distributional evaluation of alternative a on criterion i, δai (gji ) is probability
that the performance of alternative a on criterion i is gji , and ui(g

j
i ) is the marginal value of

performance gji .

3.4.3 UTADIS

The UTA-method can be extended to use for sorting problems, e.g., with discriminant analysis.
In case of two classes, the following two inequalities must hold:

{ a ∈ A1 ⇔ u[g(a)] ≥ u0
a ∈ A2 ⇔ u[g(a)] < u0

(3.20)

with u0 being the level of acceptance/rejection in order to distinguish alternatives being in A1

or A2, where A1 contains the most preferred alternatives. Instead of two classes, there can be
many classes. Typically, the DM evaluation is expressed in terms of classification of reference
groups A1 � A2 � . . . � Aq. Then the following conditions have to be satisfied:

{ u[g(a)] > ui ∀a ∈ A1

ul ≤ u[g(a)] < ul−1 ∀a ∈ Al (l = 2, 3, . . . , q − 1)

u[g(a)] < uq−1 ∀a ∈ Aq

(3.21)

where u1 < u2 < . . . < uq−1 are thresholds to discriminate the groups. Similar to UTASTAR,
two error variables are used (σ+ and σ−). Then the additive value model is developed to
minimize these errors. Recently, several new variants are published such as UTADIS I, II and
III.
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3.4.4 UTADISGMS

Greco et al. [30] proposed the UTADISGMS method, which is an ordinal regression method for
multiple-criteria sorting problems using a set of additive value functions as preference model.
Like other robust ordinal regression methods, it takes into account the set of all value functions
compatible with the DM’s preferences. Furthermore, it considers general monotone increasing
marginal value functions instead of piecewise linear only (like UTADIS).

The DM is asked to provide a set of assignment examples. Each assignment example consists
of an alternative and its desired assignment, i.e., a lower bound and upper bound for its desired
class. Then considering all compatible value functions, two possible assignments are obtained
for each alternative a: the possible and the necessary assignment. The necessary assignment
CNdr(a) determines the classes Ah for which all compatible value functions assign a to Ah, and
the possible assignment CPdr determines the classes Ch for which exists at least one compatible
value function that assigns a to Ch.

The procedure consists of six steps, of which the first three initial steps are the same as with
UTAGMS. The remaining steps involve the calculation of the boundary indices and the necessary
and possible classes and their assignments.

3.4.5 UTAGMS-GROUP and UTADISGMS-GROUP

Robust ordinal regression for group decision problems is proposed in [32]; both the UTAGMS-
GROUP and UTADISGMS-GROUP are introduced and extend the original method to group
decision making. In the group context, let us denote a set of DM with D = {d1, d2, . . . , dp}, and
each member having an equal weight because it is assumed that they have the same importance.
In the first stage, each individual member of D is asked to give his/her preferences, and then
the possible and necessary relations/assignments are identified. In the second stage, spaces of
consensus are investigated for subsets of DM. Again, the possible and necessary results verify
whether these results are given by at least one DM or all DMs. This way they can identify what
would happen always, sometimes or never. There are four possible types of results:

• Necessary–Necessary (N,N), the necessary (N) consequences provided by each DM are
confirmed for all DMs (N);

• Necessary–Possible (N,P ), the necessary (N) consequences provided by each DM are
confirmed for at least one DM (P );

• Possible–Necessary (P,N), the results formed by the possible (P ) outcomes are confirmed
for all DMs (N);

• Possible–Possible (P, P ), the results formed by the possible (P ) outcomes are confirmed
for at least one DM (P ).

The type of result indicates the certainty of a possible action. When it is (N,N) it is absolutely
sure, for (N,P ) or (P,N) it can differ from absolutely sure to not sure at all sure, and the type
(P, P ) has the lowest level of certainty. However, if (P, P ) is false, this negative result can be
confirmed with the greatest confidence, because it is confirmed for all compatible models.
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In case of UTAGMS-GROUP (for ranking and choice problems), each DM is asked to give
the preference information required by the UTAGMS and GRIP method. Using this preference
information, the possible �Pdr and necessary �Ndr relation are computed for all DM dr ∈ D. Then
the four possible types of preference relations can be determined for all subsets D′ ⊆ D:

• a �N,ND b : a �Ndr b for all dr ∈ D′

• a �N,PD b : a �Ndr b for at least one dr ∈ D′

• a �P,ND b : a �Pdr b for all dr ∈ D′

• a �P,PD b : a �Pdr b for at least one dr ∈ D′

Then from these four relations, one can obtain indifference (∼), preference (�), and incompa-
rability (?) in a usual way.

In case of UTADISGMS-GROUP (for sorting problems), a set of all compatible value functions
UAR,dr is considered. Given a set ARdr of assignment examples, for each a ∈ A and for each dr ∈ D,
the possible and necessary assignment are defined like in UTADISGMS:

CPdr(a) =
{
h ∈ H : ∃U ∈ UAR,drassigning a to Ch

}
and

CNdr(a) =
{
h ∈ H : ∀U ∈ UAR,drassigning a to Ch

}
Then the four types of assignments can be computed:

• CN,ND (a) = ∩dr∈D′CNdr(a),

• CN,PD (a) = ∪dr∈D′CNdr(a),

• CP,ND (a) = ∩dr∈D′CPdr(a),

• CP,PD (a) = ∪dr∈D′CPdr(a).

In UTADISGMS each set contains a set of value functions; these sets are ordered in the same
order as the exemplary assignments. For each iteration, the possible CPt,dr(a) and necessary
CNt,dr(a) assignments are computed. Then for all a ∈ A, we can compute the assignments
CN,Nt,D (a), CN,Pt,D (a), CP,Nt,D (a) and CP,Pt,D (a).

3.5 Outranking methods

According to [57], an outranking relation is a binary relation which compares the arguments for
and against a hypothesis Alternative A is at least as good as Alternative B given what is known
about a DM’s preferences. The alternatives are then compared via the outranking relation and
placed in a partial order. There is no reason for an outranking relation to be transitive nor
complete [53].

The outranking relation, usually denoted by S, was proposed by Roy whose aim was to
represent four realistic situations of preference: indifference, weak preference, strict preference
and incomparability. One, two or three of these situations assigned to any pair of alternatives
could be used to develop a satisfactory preference model. If a outranks b, there are sufficient
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arguments that a is not worse than b (concordance test) and no essential reasons to refuse that
a outranks b (non-discordance test).

3.5.1 ELECTRE methods

The first appearance of a method of the ELECTRE family was in the mid-sixties; ELECTRE
I was proposed by Roy. Nowadays, there are several methods which belong to this family, we
describe the main futures of the ELECTRE Methods below, mainly based on Figueira et al. [23].

According to Figueira et al., the ELECTRE methods are relevant in the following context:

1. The DM wants to include at least three criteria in the model;

2. Alternatives are evaluated (for at least one criterion) on an ordinal scale or on a interval
scale;

3. A strong heterogeneity related with the nature of evaluations exists among criteria;

4. Compensation of the loss on a given criterion by a gain on another one may not be
acceptable for the DM;

5. For at least one criterion the following holds true: small differences of evaluations are
not significant in terms of preferences, while the accumulation of several small differences
may become significant. The latter requires the introduction of discrimination thresholds
which leads to a preference structure with a comprehensive intransitive indifference binary
relation.

In the ELECTRE Methods the preferences are modelled using binary outranking relation S.
Considering two alternatives x and y, there are four possible situations:

• aSb and not bSa, i.e. a � b (a is strictly preferred to b);

• bSa and not aSb, i.e. b � a (b is strictly preferred to a);

• aSb and bSa, i.e. a ∼ b (a is indifferent to b);

• Not aSb and not bSa, i.e. aRb (a is incomparable to b).

ELECTRE methods build one or several outranking relations. Notice that a new preference
relation, R (incomparability), is introduced. This is useful when the DM is not able to compare
two alternatives. The construction of an outranking relation is based on two major concepts
and these needs to be fulfilled for validating the assertion aSb:

Concordance For an outranking aSb to be validated, a sufficient majority of criteria should
be in favor of this assertion;

Non-discordance When the concordance condition holds, none of the criteria in the minority
should oppose too strongly to the assertion aSb.
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ELECTRE methods consists of two main procedures: the construction of one or several
outranking relation(s) followed by an exploitation procedure. In the first, each pair of alternatives
are compared in a comprehensive way. The latter is used to elaborate recommendations from
the results obtained in the first phase. The recommendations depends on the problematic
(choosing, ranking or sorting), and thus each method can be characterized by its construction
and its exploitation procedures.

ELECTRE I’s objective is to aid the DM to find a single (best) solution, and thus belongs
to the choice problematic. This method is very simple and should only be applied when all the
criteria have been coded in numerical scales with identical ranges. The concordance and non-
discordance conditions should hold, so we calculate the concordance index as follows (assuming∑

j∈J wj = 1):

c(aSb) =
∑

{j:gj(a)≥gj(b)}

wj

where {j : gj(a) ≥ gj(b)} is the set of indices for all criteria belong to the concordant coalition
with the outranking relation aSb. The index must be greater than or equal to a given concordance
level s, i.e., c(aSb) ≥ s. The discordance holds if it is smaller than or equal to a given level v,
i.e., d(aSb) ≤ v. The discordance can be calculated as follows:

d(aSb) = max
{j:gj(a)<gj(b)}

{
gj(b)− gj(a)

}
Both conditions have to be computed for every pair of alternatives (a, b) in the set A, where
a 6= b. This procedure leads to a binary relation in comprehensive terms and thus to one of the
four situations mentioned earlier.

The exploiting of the outranking relation (the second procedure) is used to identify a small
as possible subset of alternatives. Such a subset, Â, may be determined with the help of the
graph kernel concept, KG [54]. If the graph contain direct cycles, a preprocessing step must take
place where maximal direct cycles are reduced to singleton elements, forming thus a partition
on A. Let Ā denote that partition, each class on Ā = {Ā1, Ā2, ...} is now composed of a set of
equivalent alternatives. The preference relation defined on Ā is:

Āp � Āq ⇐⇒ ∃a ∈ Āp and ∃b ∈ Āq such that aSb for Ā)p 6= Āq

All actions that form a cycle are considered indifferent. The interested reader can find more
about ELECTRE methods in [23].

3.5.2 PROMETHEE methods

In this section we describe an overview of the PROMETHEE methods, based on [11]. The
first two methods, PROMETHEE I (partial ranking) and PROMETHEE II (complete ranking)
are proposed and presented for the first time in 1982 by J.P. Brans. A few years later, Brans
and Mareschal developed PROMETHEE III (ranking based on intervals) and PROMETHEE IV
(continuous case). They also presented a visual interactive module GAIA, which provide a graph-
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ical representation supporting the PROMETHEE methodology. Furthermore, PROMETHEE
V (MCDA including segmentation constraints) and PROMETHEE VI (representation of the
human brain) are also presented by Brans and Mareschal.

The preference information required by the PROMETHEE methods consists of information
between criteria and information within each criteria. Information between criteria is the relative
importance of each criteria. These weights can be normalized such that

∑k
j=1 wj = 1. The

structure of the preference information for the information within criteria is based on pairwise
comparisons. The deviation between the alternatives are considered for each criterion and the
larger the deviation, the larger the preference. These preferences can be real numbers between
0 and 1, and holds zero if the deviation is negative, i.e. p(a, b) > 0 ⇒ p(b, a) = 0. For each
criterion we can define a preference function:

πj(a, b) = Fj(gj(a)− gj(b)) (3.22)

There are six possible types of preference functions proposed in order to facilitate the identifica-
tion. For each function, 0, 1 or 2 parameters have to be defined: q is a threshold of indifference,
p is a threshold of strict preference and s is an interval between q and p. In order to construct a
partial or complete ranking, first aggregate preference indices and outranking flows have to be
defined. Let a, b ∈ A, and let:

{ π(a, b) =
k∑
j=1

πj(a, b)wj ,

π(b, a) =
k∑
j=1

πj(b, a)wj .
(3.23)

where π(a, b) is the degree which a is preferred to b over all criteria and π(b, a) how b is preferred
to a. When π(a, b) and π(b, a) for each pair of alternatives are computed, a complete valued
outranking graph can be obtained with arcs between all pairs of nodes.

The positive outranking flow expresses how alternative a outranks all other (n − 1) alter-
natives and the negative outranking flow expresses how alternative a is outranked by all other
(n− 1) alternatives. The positive outranking flow:

φ+(a) =
1

n− 1

∑
x∈A

π(a, x), (3.24)

and the negative outranking flow:

φ−(a) =
1

n− 1

∑
x∈A

π(x, a). (3.25)

The higher φ+(a), the better alternative a is, the lower φ−(a), the better the other alternative.
The partial ranking (PROMETHEE I) can be obtained from the positive and the negative
outranking flows. Because both flows usually do not induce the same ranking, the intersection
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is used. For the complete ranking (PROMETHEE II), the net outranking flow is computed:

φ(a) = φ+(a)− φ−(a). (3.26)

The higher net flow, the better the alternative.

3.6 Outranking with Robust Ordinal Regression

The principle of robust ordinal regression for outranking models has been applied to the ELEC-
TRE methods and the PROMETHEE methods. We describe both below.

3.6.1 ELECTREGKMS

ELECTREGKMS implements robust ordinal regression to outranking methods and is proposed in
[31]. It is motivated by missing arguments in ELECTRE-like methods, and these are analogical
to issues listed by the UTAGMS method [29]. In ELECTREGKMS, the whole set of outranking
models consistent with the preferences of the DM are assessed. More specifically, the sets of
compatible intra-criterion and inter-criteria model parameters are considered. The former can be
supplied in a direct way with allowed values or indirect by pairwise comparisons of some reference
alternatives per criterion. The latter, important coefficients, veto thresholds, and concordance
thresholds are much more difficult to supply. Therefore, these values are inferred from pairwise
comparisons stating the truth or falsity of an outranking relation.

Often the functions of the marginal concordance indices are limited to piecewise linear func-
tions. Some methods extend the set of functions, e.g. PROMETHEE allows to choose from
some predefined shapes. ELECTREGKMS extends this further with ψj(a, b), j = 1, ..., n, which
are monotone non-decreasing functions with respect to gj(a) − gj(b), such that ψj = kj if a
outranks b on criterion j, and ψj = 0 if b is strictly preferred over a on criterion j.

With respect to all compatible outranking relations, it is reasonable for one to ask two
questions for every pair of alternatives (a, b) ∈ A×A: is a at least as good as b for all compatible
outranking models, and does there exist at least one compatible outranking model for which a
is at least as good as b. These two questions result in the following two outranking relations:

• a necessarily outranks b (aSNb), if a outranks b for all compatible models;

• a possibly outranks b (aSP b), if a outranks b for at least one compatible model.

3.6.2 PROMETHEEGKS

The scheme of robust ordinal regression can be adjusted to PROMETHEE I or II and is proposed
by Kadziński et al. [38]. The pairwise comparisons stating the truth or falsity of an outranking
relation are either provided at the level of construction or at the level of exploitation. The former
refers to the strength of arguments in favor of a over b or the other way around. The latter refers
to their final ranking position. Furthermore, the set of all compatible PROMETHEE preference
models considered. Consequently, Kadziński et al. define and build general monotone preference
functions, and use the aggregate preference indices and outranking flows scores.
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The preference information required from the DM consists of pairwise comparisons of some
reference alternatives a ∈ AR ⊆ A. They distinguish two kinds of such relations, relations at
the construction level and relations at the exploitation level. This is done because it is possible
within the family of outranking methods that a outranks b, but b takes a higher rank in the final
ranking. However, this distinction between the construction and exploitation level may not be
visible for the DM, because it is assumed that the strengths of arguments in favor of a over b
also means that a is at least as good ranked as b in their final rank. Other information that
should be given by the decision maker is the intra-criterion preference information concerning
the indifference and preference thresholds pj ≥ qj ≥ 0, j = 1, ...,m. It is allowed that the DM
provides real intervals rather than precise values.

Compatible outranking models are composed of the sets of preference indices π(a, b), marginal
preference indices πj(a, b), outranking flow scores ψ(a), ψ+(a), and ψ−(a), indifference qi, and
preference pj thresholds, satisfying a set of conditions. Then both the necessary and possi-
ble relations are computed considering a LP problem (see [38] for the conditions and the LP
problems).

3.7 Other methods

3.7.1 AHP

The analytical hierarchy process (AHP) can also be used when the DM is facing multiple objec-
tives [see 28, chap. 16]. AHP consists of five stages:
Stage 1: Set up the decision hierarchy.
Stage 2: Make pairwise comparisons.
Stage 3: Transform the comparisons into weights and check the consistency of the decision

maker’s comparisons.
Stage 4: Use the weights to obtain scores for the different options and make a provisional

decision.
Stage 5: Perform sensitivity analysis.

In the first stage, a hierarchical tree is made where each attribute will be broken down
into more details for each level in the tree. Below each of the lowest-level attributes in the
tree are the alternatives added to the tree. In the second stage, for each level of the tree we
need to do pairwise comparisons for each possible pair on a scale from 1 to 9; these scales
are: (1) equally important, (3) weakly more important, (5) strongly more important, (7) very
strongly more important, (9) extremely more important, or intermediate decisions (2, 4, 6, and
8). The third stage first normalizes the weights and then uses a mathematical approach based
on eigenvalues. Furthermore, there is an inconsistency index which is designed to alert the DM
for any inconsistency; index zero indicates no inconsistencies. In the fourth stage, for each path
from the top of the hierarchy down to the lowest level representing the alternative, the scores
are multiplied, and the results of the different paths summed leading to a final score for this
particular alternative. The final stage consists of a sensitivity analysis to examine how sensitive
the preferred course of action is to changes of judgment made by the DM.

However, AHP is not a valid methodology. Barzilai described that AHP is based on mathe-
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matical errors [6]. The AHP errors that are listed include that the coefficients of linear prefer-
ence functions cannot correspond to weights representating relative importance, the eigenvector
method is not the correct method for constructing preference scales, the assignment of number
1-9 is arbitrary, and there is no foundation for these scales. Therefore, AHP should not be used
for preference modeling.

3.7.2 MACBETH

MACBETH (measuring attractiveness by a categorical-based evaluation technique) is an inter-
active approach for quantifying value judgments about the elements of a finite set [5]. The
technical component of MACBETH is a chain of four linear programs (Mc1 to Mc4), first pro-
posed by Bana e Costa and Vansnick [4]. In the first step the DM is asked to do pairwise
comparisons for any two actions a and b, by choosing one of the six categories:

(C1) very weak difference of attractiveness;

(C2) weak difference of attractiveness;

(C3) moderate difference of attractiveness;

(C4) strong difference of attractiveness;

(C5) very strong difference of attractiveness;

(C6) extreme difference of attractiveness.

During the questioning process a matrix is filled with the categorical judgments, consistency
of a ranking is made and discusses with the DM until the transitivity property holds. Then by
applying the preference information to the four linear programs, one of the two possible cases
according to the optimal value cmin of Mc1 can result. In the first case, when cmin = 0, it
is possible to associate a real number v(a) with each element a ∈ A in such a way that the
following two measurement rules are satisfied:

1. ∀ a, b ∈ A : a � b ⇐⇒ v(a) > v(b); i.e., the number assigned to alternative a is strictly
greater than the number assigned to alternative b, if and only if, for the DM a is more
attractive than b;

2. ∀ k, k′ ∈ {1, 2, 3, 4, 5, 6} with k 6= k′ and ∀ a, b, c, d ∈ A with (a, b) ∈ Ck and (c, d) ∈ Ck′ :

k > k′ ⇐⇒ v(a) − v(b) > v(c) − v(d); i.e. that the differences in the numbers between a
and b are strictly greater than between c and d, not belonging to the same category (this
information is not asked to the DM, but follows indirectly from the matrix of judgments).

In this case, MC2 gives real numbers v(a)(a ∈ A) to be associated with the alternatives in A.
These numbers can then be plotted to verify whether the relative differences between alternatives
is what the DM wants.

In the second case (cmin > 0), it is not possible to represent the preferences numerically.
MC2 suggest values v(a)(a ∈ A) that tries to reconcile the DM’s initial inconsistent judgments.
Another possibility for the DM is to revise his/her preferences, in this case the programs Mc1
and Mc2 can run again. An interactive learning process can be facilitated by Mc3 and Mc4,
they can suggest some concrete modifications of the DM’s judgment.
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3.7.3 Robust ordinal regression in non-additive form

In previously described methods with ordinal regression, such as UTAGMS, ELECTREGKMS and
PROMETHEEGKS, the value functions have an additive form. It is, however, also possible to
develop a preference model with non-additive robust ordinal regression. In [3] they describe
how the value can be evaluated in terms of the Choquet integral, which allows to represent
the interaction among criteria modelled by fuzzy measures. The DM is asked to make pairwise
comparisons to express his/her preferences, the intensity of preferences of pairs of alternatives
(like GRIP), and to supply pairwise comparisons on the importance of criteria. The model then
defines a set of fuzzy measures such that the corresponding Choquet integral is compatible with
the DM’s preferences. Furthermore, the model uses linear programming to establish the possible
and necessary relations.

3.8 Overview

The previous described methods are all most common preference models that can be applied
to different circumstances. Two of them are for groups decisions, while the UTADIS methods
should be used for sorting/classification problems. Most of the methods are used for choosing
or ranking problems.

The UTA method assesses a set of linear value functions, compatible for all criteria, from
piecewise comparisons given by the DM. The methods based on the outranking relation, like
ELECTRE and PROMETHEE methods, require additional information such as important coef-
ficients and veto thresholds, while AHP and MACBETH require to assign scales to the pairwise
comparisons. Therefore, from the DM’s perspective is the UTA method the easiest to apply,
because he/she only has to provide preference information in the form of pairwise comparisons.

The principles of robust ordinal regression are applied to the UTA, ELECTRE and PROME-
THEE methods. Robust ordinal regressions suits the preference models for cases where the DM’s
preferences cannot be presented by piecewise linear functions only. Robust ordinal regression
takes into account the set of all compatible additive value functions, and considers non-decreasing
marginal value functions. Also, robust ordinal regression is used to infer the inter-criteria infor-
mation (i.e. important coefficients and veto thresholds) for the outranking models. The methods
then compute the weak necessary and weak possible relations for a set of actions.

The GRIP method extends the UTAGMS methods by taking additional preference infor-
mation into account in the form of comparisons of intensities of preferences. This additional
information is useful for ranking, e.g., in the case that a complete preorder is required. However,
for choosing one ‘best’ alternative from a set of solutions, there is no need to specify this kind
of preference information. Thus taking into account that the DM only has to provide preference
information in form of pairwise comparisons, and without the need to infer inter-criteria infor-
mation, we will apply the UTAGMS method as preference model in order to aid the DM with
choosing a single, most preferred alternative.
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Chapter 4

Case Study

The case study we describe in this paper is the case study as it is provided by Mallidis et al.. The
single-objective optimization model is described in [46] and [45] contains the data for this case.
There are some differences between the final paper [46] and the first report [45], in this research
we follow the final paper. In this chapter we first describe the case study and the MOO model,
then how it is implemented and finally we discuss the results of the multi-objective optimization
and the preference model.

4.1 Description

The model considers a multinational company that aims to serve a specific geographical area
(market) in the South East Europe region, trading various products with similar characteristics
(e.g. white goods, furniture, etc.). For this supply chain, all cargo is transported from one major
loading point far away to one of the entry points. These entry points are either international ports
or other major transportation nodes and therefore have no capacity limitations. Through these
entry points, the goods are transported to a distribution center for container deconsolidation
purposes and from there the regional markets are served. The demand is allocated in these
markets, so that they are the last stage of the supply chain. A simple (graphical) representation
is shown in Figure 7.

In the above mentioned supply chain network, a number of decisions have to be made in-
volving: (a) network design such as (i) the selection of entry points, (ii) the choice of transport
means, (iii) the selection of distribution centers, and (iv) the determination of the associated
flows; and (b) either leasing or outsourcing transportation modes.

The model has the following optimization criteria: (i) the total costs including (a) trans-
portation/handling costs per TEU (Twenty feet Equivalent Unit; the size of a container), (b)
operational costs of distribution centers, and (c) holding costs per TEU; and (ii) the total
amount of emissions generated from the above supply chain operations separately for each type
of emission.

We consider two realistic options for the supply chain designs: in the first option is the
transportation outsourced to a third party logistics provider while in the second option leases
the transportation. The distribution centers are leased through medium time-horizon contracts
for both options. We make the following assumptions to model the supply chain: (i) rail services
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Figure 7: Supply Chain Network [46].

utilize the public railway network. This implies that rail transportation services are provided
by each country’s national railway company, so the option of leasing rail transportation is not
considered valid. A block train is utilized when the number of TEUs exceed a specific number,
which results in a discount cost per TEU transported; (ii) the outsourced transportation as
well as the storage together with the deconsolidation/consolidation costs are charged per TEU
based on spot market prices; and (iii) the trucks of a third party logistics provider (outsourcing
transportation option) will transport cargo flows of other customers in the return haul of the
trip, while leasing option trucks are exclusively utilized and thus will return empty or almost
empty (e.g. carrying commercial returns, and/or packaging material). Therefore, the emissions
of the outsourcing or leasing options in the return haul are treated in a different way.

The supply chain considered in this model for transporting white goods in the South Eastern
Europe market that includes Bulgaria, Romania and Macedonia, has a planning horizon of one
year, and the replenishment orders are set on a monthly basis. A market share of 20% is assumed
of the annual sales of white goods. The major loading point (origin of the white goods) is the
Port of Shanghai and we consider three different entry points: Ports of Thessaloníki, Varna, and
Constanta. There are 16 potential distribution centers located on entry points (Thessaloniki,
Varna and Constanta) and regional market’s capital. There are 15 regional markets considered,
satisfying the demand of the entire region. Figure 8 shows the supply chain for this region,
where the triangles represent distribution centers or regional markets while circles represent the
entry points.

The goods are first shipped from Shanghai to Gioia Tauro (Italy) with typical mother vessels
(6000 TEU), where the containers are transshipped onto feeder vessels that deliver them at the
entry points. The annual demand for the region of Bulgaria, Romania and Macedonia is based
on (i) the estimated annual demand for the same products in Greece, and (ii) the ratio of each
country’s region GDP related to that of Greece.

To transport the goods from the entry points to the distribution centers, they use either: (i)
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Figure 8: Supply Chain with possible Distribution Centers (triangles) and Entry Points (cir-
cles) [46].
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electrical trains in the Bulgarian and Romanian rail routes, as well as the route from Thessaloniki
to Skopje; (ii) diesel trains in the route of Thessaloniki to Kulatu/Promachon (national border);
or (iii) heavy duty trucks in all routes (using truck types Euro III, IV, V, VI). To transport
the goods from the distribution centers to the regional markets, delivery trucks are used since
the transport to the regional market retail stores are Less than Full Truck Load (LTL). The
difference in transportation times are insignificant since the major part of the total lead of
maritime transportation is almost the same for all network realizations. Therefore, the holding
costs are not included in this model.

Transportation costs

The regression equations 4.1 (heavy duty truck) and 4.2 (delivery truck) are used to calculate
the transportation cost y in euro per 40ft container (2 TEU) for distance x in kilometers. For
the option that leases the transportation, the freight rates for Euro III heavy duty trucks and
delivery trucks are estimated to decrease 20% compared to outsourcing. This is because: (i)
they are charged based on a fixed long term contract and not on a spot market basis, and (ii)
no agency fees are included since the examined company has direct communication with the
truck owners. The freight rates for the truck types Euro IV, V and VI are based on the Euro
III trucks, the data can be found in [46].

y = 1.92x+ 241.87 100 Km ≤ x ≤ 1100 Km (4.1)

y = 1.953x+ 1948 50 Km ≤ x ≤ 600 Km (4.2)

The incorporated rail costs per 40ft container are: (i) a rail freight for transporting a 40ft
container to its destinations rail depot, (ii) a rail freight rate per returning empty 40ft container,
(iii) a fixed discharge from wagon and a loading on truck cost per 40ft container (e 50) at the
rail freight depots as also the loading of the returning empty 40ft container on the wagon, and
(iv) a city limit expense of e 100 for transporting a 40ft container by truck from the rail depot
to its final destination and returning the empty container.

The costs of shipping per 40ft container have been retrieved from Orphee Beinoglou S.A.
They include: (i) the fixed sea freight rates per 40ft container from Shanghai to the examined
entry port; (ii) the local charges, e.g., discharge, pilotage costs and loading on a truck or wagon
costs, at the entry ports; and (iii) custom clearance documentation costs at each port.

Transportation emissions

The emissions calculations are based on a fixed amount of CO2 and PM emissions per ton/km
obtained from [17]. The distance considered between two ports has been calculated using the Port
to Port distance calculator1. Thus the choice of entry point only matters the feeder transport
from Italy to the entry point.

1searates.com, http://www.searates.com/reference/portdistance/
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The CO2 and PM emissions for the Euro III heavy duty and delivery truck are calculated
based on fixed amounts produced per ton/kilimoter ([8]). The same amount of CO2 emissions
will be considered for the Euro IV, V and VI heavy duty and delivery truck since a different
Euro-type engines have no effect in terms of CO2 emissions. Regarding PM emissions, significant
reductions are observed between Euro III and IV heavy duty and delivery truck, and the Euro
V and Euro VI, while there is no difference between the Euro IV and Euro V. In the option
that involves outsourcing transportation is the company not accountable for the PM and CO2

emissions generated in the return trips of the trucks, since they are typical utilized to transport
cargo for other companies returning. Therefore, the amount of emissions generated in the return
haul of the trip is not considered. For the leased trucks though, the emissions of the return trips
are added because the trucks are dedicated to serve the company.

Rail CO2 and PM emissions are calculated based on a fixed amount of CO2 and PM emissions
produced per ton/kilometer transported and incorporate the amount of emissions generated from
the entry point to the distributions centers. In case of electrical trains, it depends on how the
electricity is generated. As it is difficult to obtain good values for the region, the authors used
published data from [17].

For both costs and emissions calculations and overviews of different routes, [46] and [45]
contain more detailed information.

4.2 Model

The model we describe here is a Mixed Integer Linear Programming Problem as presented by
[46]. It investigates potential entry points (from set EP), locations of the distribution centers
(from set DC) and the transportation modes between the entry points and distribution centers,
as well as from the distribution centers to the regional markets. In Mallidis et al.’s [46] model
there are two kinds of objective functions: one for calculation the logistics costs and one for
calculating different types of emissions, both to be minimized. The total logistics costs include:
(i) the outsourced or leased transportation and the associated handling costs per TEU which
vary for the different transportation modes, (ii) the custom formalities expenses per TEU, (iii)
the holding costs for the cycle stocks per TEU, and (iv) the costs for outsourcing storage and
deconsolidation/consolidation of services to a third party logistics company. The emissions
data are available for CO2, CO, PM, SO2 and NOx (from the set EG), but only CO2 and PM
(Particulate Matter) are taken into account. Table 1 provide the variables for the model and
Table 2 the parameters.
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Table 1: Decision variables

Variable Description
xmij number of TEU transported from node i to node j using transportation

mode m =1,..,M.
zij binary variable which indicates whether a block train is utilized or not

in the route from node i to node j.
ywj binary variable which indicates whether a distribution center of size w is

leased at node j or not.

Table 2: Model parameters

Parameter Description
Dr total demand at regional market r.
cmij cost of transporting a TEU from node i to node j using transportation

mode m (node 0 is the major loading port).
cbtij block train transportation cost from node i to node j per TEU.
cdcj deconsolidation/consolidation cost per TEU at a distribution center at

node j (only in the option of outsourcing).
gemij emissions of type g generated from transporting a TEU from node i to

node j using transportation mode.
gebtij emissions of type g generated during a block train trip from node i to

node j.
Lw capacity of a distribution center of size w (Lw is considered infinite).
tmij transportation time from node i to node j using transportation mode m.
h holding cost per TEU.
N represents the minimum TEU volume for charging a block train.
M0 represents a very large constant.

Consequently Mallidis et al. (2010a) suggested the following integer programming model:

Minimize total cost (TC):
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∑
i∈EP

M∑
m=1

cm0ix
m
0i +

∑
i∈EP

cbt0ix
bt
0i + h

∑
i∈EP

(
tbt0ix

bt
0i +

M∑
m=1

tbt0ix
bt
0i

)
+
∑
i∈EP

∑
j∈DC

M∑
m=1

(
cmij + cdcj

)
xmij +

∑
i∈EP

∑
j∈DC

(
cbtij + cdcj

)
xbtij+

∑
i∈EP

∑
j∈DC

(
tbtijx

bt
ij +

M∑
m=1

tmijx
m
ij

)
+
∑
w

∑
j∈DC

fwj y
w
j +

∑
j∈DC

∑
r∈RM

M∑
m=1

cmjrx
m
jr

+
∑
j∈DC

∑
r∈RM

(
tbtjrx

bt
jr +

M∑
m=1

tmjrx
m
jr

)
(4.3)
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Or Minimize total emissions (TEg) of type g:

TEg =
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i∈EP
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(4.4)

Subject to:

Flow Constraints

m∑
m=1

xm0i + xbt0i =
∑
j∈DC

M∑
m=1

xmij +
∑
j∈DC

xbtij , ∀i ∈ EP (4.5)
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∑
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M∑
m=1

xmjr +
∑
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xbtjr = Dr, ∀r ∈ RM (4.7)

Capacity Constraints

∑
i∈EP

M∑
m=1

xmij +
∑
i∈EP

xbtij ≤
∑
w

LW ywj , ∀j ∈ DC (4.8)

∑
w

ywj ≤ 1, ∀j ∈ DC (4.9)

Block Train Constraints

xbt0i˘M0z0i ≤ 0, ∀i ∈ EP (4.10)

xbt0i˘Nz0i ≥ 0, ∀i ∈ EP (4.11)

xbtij˘M0zij ≤ 0, ∀i ∈ EP, ∀j ∈ DC (4.12)
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xbtij˘Nzij ≥ 0, ∀i ∈ EP, ∀j ∈ DC (4.13)

xbtjr˘M0zjr ≤ 0, ∀j ∈ DC, ∀r ∈ RM (4.14)

xbtjr˘Nzjr ≥ 0, ∀j ∈ DC, ∀r ∈ RM (4.15)

Non-Negativity Constraints

xmij ≥ 0 (4.16)

The flow constraints guarantee that there is no product surplus or shortage in the supply
chain, in other words you can not deliver more goods than that have entered in the entry point,
distribution center or regional market. More specifically, Eq. 4.5, 4.6 and 4.7 guarantee the
balance between the inbound and outbound of the entry point and distribution center, the
distribution center and the regional market, and it makes sure that the amounts that entered
the regional market are equal to the demand of that region. Capacity constraint 4.8 guarantees
that the capacity will be adequate to handle the flow that will pass through it if the distribution
center is activated and constraint 4.9 makes sure there is only one distribution center per possible
location. The block train constraints guarantee that a block train is used when the amount of
TEUs are above a specific number. The model is an extension of a two-level capacitated location
problem, extended with an extra objective and different transportation modes with block train
requirements.

4.3 Implementation

In this section we describe briefly how different parts are implemented before we elaborate
our results. The scalarizing methods are compared with genetic algorithms, and both try to
approximate the Pareto front. UTAGMS is used to find solutions which best fit to some preference
statements.

4.3.1 Scalarizing methods

The scalarizing methods, i.e. the Weighted Sum Method (WSM) and the ε-Constraint Method
(ECM), are implemented using Lindo Lingo software2. In order to obtain a front for the WSM,
we used all weight combination from the range of 0.01 to 1 with steps of 0.01. For the ECM we
took nine ε values between the objective’s best value to its worst from each objective.

2more information available at http://www.lindo.com/
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4.3.2 Genetic Algorithm

The genetic algorithms have been implemented using the ParadisEO framework3. This frame-
work allows you to use different MOEA such as NSGA, NSGA-II, IBEA and SPEA2, and just run
the procedures with some parameters and implementation of the initialization, evaluation and
genetic operators. With this framework, one can easily switch between genetic algorithms rather
than implement the algorithms themselves. The source code of the ParadisEO implementation
is available at github: https://github.com/CornePlas/MOOSCN.

The ParadisEO framework is required to run this optimization problem. ParadisEO 1.3-
beta2 is used, see http://paradiseo.gforge.inria.fr/ for more information and downloads.

Representation

To involve multiple stages, we use the reversed supply chain, i.e., we start with the last stage
and end with the first stage. Thus in our case, first the demand of the regional markets (depots)
will be allocated over the distribution centers (sources) using their priorities to set up the
transportation tree. Then we can continue with the distribution centers as depots using their
output to the regional markets as demand, and the entry points as sources. There is only one
possibility to supply these entry points, thus from the major loading point to the entry points it
is not necessary to represent the transport flows in the chromosomes. This means that the final
chromosome consists of four parts:

1. Integers (0 – 4/5) of size |EP |+ |DC| representing transportation modes for the first stage;

2. Permutation of size |EP | + |DC| with priorities to set-up the transportation tree for the
first stage;

3. Integers (0 – 4) of size |DC|+ |RM | representing the transportation modes for the second
stage;

4. Permutation of size |DC|+ |RM | with priorities to set-up the transportation tree for the
second stage.

Thus if we translate this to our case; the chromosome length, consisting of four parts, is equal
to (|EP |+ |DC|) + (|EP |+ |DC|) + (|DC|+ |RM |) + (|DC|+ |RM |) = (3 + 16) + (3 + 16) +

(16 + 15) + (16 + 15) = 100. This means that we can represent each possible solution by a
chromosome with the length of 100 integers and no need for binary encoding.

Algorithm: genetic operators

On the parts that contain the transportation modes, default crossover and mutation operators
can be applied. Priority-based encoding belongs to the permutation encoding class and thus
require specific operators, e.g., for crossover partially mapping crossover, order crossover or
position based crossover.

We used different crossover operators for the different parts: the transportation parts used
uniform crossover, i.e. that each digit has a certain chance, in our case 50%, to be exchanged. For

3available at http://paradiseo.gforge.inria.fr/
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the priorities parts we used order crossover which basically changes order of the chromosomes,
but maintain unique priorities.

Mutation does not involve a second chromosome, but changes the position(s) of digits. We
used the same mutation operators for the different parts. These are swap mutation, shift muta-
tion and TwoOpt mutation. The swap mutation swaps two components of a chromosome, shift
mutation shifts two components of a chromosome, and TwoOpt mutation takes two random
points and between these points it takes the inverse order.

4.3.3 UTAGMS

To test whether UTAGMS is applicable to this case we have designed a test which incorporates:

• Different (sample) sizes/number of alternatives {20, 40, . . . , 180, 200};

• Different number of statements per iteration (5, 10, 20);

• Measures how much computation time it takes to remain with one alternative left (total
time);

• Time needed per iteration;

• Count the number of statements used and the number of iterations required.

For the smaller sets (up to N = 60), we iterate until we end up with one alternative left
using different sizes of preference statements. For each run, either five, ten or twenty preference
statements (P ) are used per iteration (only if there are enough alternatives left). Then after each
iteration a number of alternatives can be removed that are dominated according the calculations
using UTAGMS. For the remaining alternatives P random preference statements are added.
Then for each case, it is measured how long it takes to do the calculations and end up with
one remaining alternative, how much time the calculations for the necessary relations takes,
how many preference statements are used and how many iterations are needed. For population
sizes larger than 60 we only measure how much time it takes for the first run and then we
can approximate the total time required to finish with one solution. An overview of the test
procedure is presented in Algorithm 4. The full R-script is in Appendix 6.2 and also available
at github: https://github.com/CornePlas/MOOSCN-R.

The tests are executed 16 times with R (version 2.10.1 (2009-12-14)), using eight Intel(R)
Xeon(R) CPU X3440 @ 2.53GHz processors. The R-script is not multi-threaded, so each run
uses a single core and is run in parallel.

4.4 Results

In this section we elaborate the results. First we show the Pareto front using scalarizing methods
and genetic algorithm, and then the results of UTAGMS applied on solutions from both methods.
Option A represents the solutions with outsourcing the transportation services, while Option B
represents the leasing of the transportation services.
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Algorithm 4 Loop to test UTAGMS

N ← {10, 20, 30, 40, 50, 60}
P ← {5, 10, 20}
for all i ∈ N do

for all j ∈ P do
while |Ni| > 1 do
If Pj > Nj , Pj = Pj/2;
Add Pj random preference statements, only if Pj < Nj , else Pj = Pj/2;
Calculate necessary relation;
Remove solutions from Ni that are definitely not the preferred one.

end while
end for

end for
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Figure 9: Pareto front of the weighted sum method.

4.4.1 Scalarizing methods

Weighted Sum Method

Here we will discuss the results we have obtained from apply the Weighted Sum Method to the
case. Figure 9a (Option A) shows the results for outsourcing transportation, while Figure 9b
(Option B) shows the results for leasing transportation. As we can see from these figures, there
is a pay-off between the three different optimization criteria. If you want to decrease the PM
emissions, we see an increase of the costs and the other way around. The same fact applies to
the CO2 emissions and the PM emissions; decreasing one results to an increase of the other one.

We can translate these results into tables, where we can quantify the differences related to
one objective. We have taken the single-objective optimization of the costs as bases to see the
increase/decrease of the objectives. Table 3 shows this for Option A, and Table 4 for Option
B. In these tables are the costs measured in e 1000 per year, CO2 emissions are measured in
tons per year and PM emissions are measured in Kg per year. The last two columns show some
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Table 3: Trade-offs for option A (WSM)

ID Costs ∆C CO2 ∆CO2 PM ∆PM EPs DCs
1 843.70 539.43 14.81 3 12
2 843.70 0.00% 539.43 0.00% 14.81 0.00% 3 14
32 845.97 0.27% 537.17 −0.42% 12.41 −16.23% 3 14
82 848.27 0.54% 535.61 −0.71% 12.02 −18.82% 3 14
132 851.35 0.91% 538.88 −0.10% 10.22 −30.97% 3 14
167 881.94 4.53% 547.01 1.40% 7.65 −48.36% 3 14
183 904.35 7.19% 567.43 5.19% 5.26 −64.47% 3 14
195 942.95 11.76% 558.49 3.53% 4.66 −68.54% 3 14
205 997.98 18.29% 567.43 5.19% 2.94 −80.13% 3 14
212 1039.87 23.25% 568.18 5.33% 2.61 −82.39% 3 14

Table 4: Trade-offs for option B (WSM)

ID Costs ∆C CO2 ∆CO2 PM ∆PM EPs DCs
1 825.47 572.80 27.53 3 11
2 825.47 0.00% 565.96 −1.20% 27.53 0.00% 3 13
44 830.90 0.66% 552.11 −3.61% 11.97 −56.54% 3 13
87 834.76 1.13% 543.97 −5.03% 12.59 −54.28% 3 13
111 836.61 1.35% 548.41 −4.26% 10.79 −60.80% 3 14
165 841.75 1.97% 539.54 −5.81% 11.66 −57.64% 3 13
219 891.03 7.94% 543.36 −5.14% 10.46 −61.99% 3 13
220 901.69 9.23% 581.82 1.57% 6.06 −77.99% 3 13
244 956.64 15.89% 598.22 4.44% 4.47 −83.78% 3 13
245 963.16 16.68% 608.52 6.23% 4.44 −83.88% 3 13

differences in the design of the network by showing the number of entry points and distribution
centers that are used to fulfill the demand. Note that the tables contain only a part of obtained
front.

To obtain these fronts, 5151 optimization problems need to be solved, i.e. each weight com-
bination of three in A = {1, 0.99, . . . , 0.01, 0}, thus we optimize the problem with weight com-
binations such as {1, 0, 0}, {0.99, 0.01, 0}, {0.99, 0, 0.01}, etc., this implies that we need 1 + 2 +

3 + 4 + . . .+ n = (n2 + n)/2 problems to optimize, n = |A| = 101 =⇒ (1012 + 101)/2 = 5151

required optimizations. Each optimization takes about 2-3 seconds, which means that the total
computation time for obtaining a front with the weighted sum method is about four hours.

ε-Constraint Method

Here we show the same figures and tables for the ε-Constraint Method (ECM) as we did for
the Weighted Sum Method (WSM). Figures 10a and 10b show the graphs, and Table 5 and 6
are the tables. Similar to the WSM, these tables show only a few points of the graphs. More
solutions for the ECM can be obtained by adding runs with different ε-values. However, it is
impossible to know the right ε-values beforehand, so it is hard to find a good representation of
the whole Pareto front.

Compared to the weighted sum method, the ECM took less time to obtain a Pareto front.
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Figure 10: Pareto fronts for the ε-constraint method.

Table 5: Trade-offs for option A (ε-CM)

ID Costs ∆C CO2 ∆CO2 PM ∆PM EPs DCs
1 844.702 539.17 13.59 3 12
2 844.702 0.00% 539.17 0.00% 13.59 0.00% 3 14
15 849.961 0.62% 541.62 0.45% 9.96 −26.71% 3 15
29 862.6 2.12% 538.65 −0.10% 10.00 −26.44% 3 11
41 876.426 3.76% 534.95 −0.78% 12.23 −10.01% 3 14
58 884.489 4.71% 557.21 3.35% 6.33 −53.42% 3 12
84 919.3 8.83% 560.54 3.96% 5.12 −62.33% 3 10
101 938.2 11.07% 555.60 3.05% 5.12 −62.33% 3 14
121 976 15.54% 559.95 3.85% 3.87 −71.55% 3 12
130 1013.8 20.02% 566.91 5.14% 2.68 −80.26% 3 11

Table 6: Trade-offs for option B (ε-CM)

ID Costs ∆C CO2 ∆CO2 PM ∆PM EPs DCs
1 825.93 562.48 25.28 3 15
2 826.55 0.07% 560.95 −0.27% 22.96 −9.18% 3 14
16 832.51 0.80% 546.25 −2.89% 13.68 −45.89% 3 11
32 851.76 3.13% 537.76 −4.40% 13.15 −47.98% 3 12
46 864.89 4.72% 539.36 −4.11% 11.36 −55.06% 3 14
64 878.48 6.36% 537.76 −4.40% 12.51 −50.51% 3 14
73 891.15 7.90% 576.30 2.46% 6.72 −73.42% 3 13
84 917.41 11.08% 579.65 3.05% 5.71 −77.42% 3 13
90 943.67 14.26% 596.35 6.02% 4.65 −81.59% 3 12
92 943.67 14.26% 613.05 8.99% 4.53 −82.09% 3 13
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The method took about 45 minutes for each option to obtain a front. However, this method had
fewer optimization problems to solve (93 = 729) and many of the (single) ε-constraint problems
did not have a feasible solution. Also, the ECM obtained less solutions compared to the WSM.
The ECM finds 130 solutions for option A and 92 for option B, while the WSM finds 212 solutions
for option A and 245 for option B. To obtain a larger representation, more computation time is
needed with additional ε-values.

4.4.2 Genetic Algorithm

Both genetic algorithms have been run with a population size of 400, for 104 generations with
a probability of 70% for crossover and a probability of 30% for mutation. It takes about one
hour to obtain a Pareto front with these parameters for the NSGA-II, while it takes about six
hours for SPEA2 (with an unbounded archive, the computation time is similar for an archive
size equal to the initial population). Then the resulting fronts contain between 200 and 230
possible solutions for NSGA-II and between 1300 and 2000 solutions for SPEA2 (or equal to the
archive size).

NSGA-II

As we already have seen Pareto fronts for the scalarizing methods, we focus here on the com-
parison of methods instead of indicating that decreasing PM will lead to an increase of costs.

Figure 11a and 11b shows one example of the Pareto front generated with the NSGA-II
method. Depending on parameters such as the population size, number of generations, and
crossover and mutation percentage, the Pareto front can differ. Even if you use the same pa-
rameters for each run, the front can differ due to used pseudo-randomness as well as for the
initialization of the population and the genetic operators. Table 7 and 8 show some possible
solutions obtained with the algorithm. Remarkable about these configurations is that the ex-
treme points (obtained with the scalarizing methods) are not included, but close approximates
of these points are obtained (for the region it converges to). Also, NSGA-II is converging to
the first objective in this particular case. This means that it find a lot of solutions near the
optimum for costs, but totally lack of efficient solutions with low PM values. Thus the obtained
fronts with NSGA-II are not well-spread. However, it is possible to obtain well-spread solutions
with NSGA-II, if you decrease the amount of generation to, e.g., 1000 generations. In that case
though, the solutions are not really efficient compared to fronts obtained with the scalarizing
methods.

SPEA2

The results we see with the SPEA2 algorithm are similar to the results obtained with the
NSGA-II algorithm using a low amount of generations. Figures 11c and 11d show the Pareto
front obtained with the SPEA2 algorithm and Tables 9 and 10 show some example points.
The figures of NSGA-II and SPEA2 are very different; whereas SPEA2 maintain a well-spread
distribution of the front, the NSGA-II is focused on the low costs/CO2 only, with high PM. The
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Table 7: Trade-offs for option A (NSGA-II)

ID Costs ∆C CO2 ∆CO2 PM ∆PM EPs DCs
213 844.58 538.95 29.12 3 14
211 844.71 0.02% 538.69 −0.05% 28.95 −0.56% 3 15
199 845.18 0.07% 537.55 −0.26% 30.22 3.79% 3 14
145 846.21 0.19% 537.15 −0.33% 28.49 −2.15% 3 15
130 846.59 0.24% 537.15 −0.33% 28.08 −3.58% 3 15
109 847.27 0.32% 536.33 −0.49% 30.46 4.63% 3 13
101 847.43 0.34% 537.15 −0.33% 27.00 −7.27% 3 13
80 848.97 0.52% 536.14 −0.52% 26.45 −9.16% 3 14
2 861.76 2.03% 538.55 −0.07% 22.68 −22.11% 3 14
1 882.20 4.45% 545.02 1.13% 22.66 −22.17% 3 13

Table 8: Trade-offs for option B (NSGA-II)

ID Costs ∆C CO2 ∆CO2 PM ∆PM EPs DCs
216 826.92 560.14 38.63 3 14
215 827.26 0.04% 560.14 0.00% 38.02 −1.57% 3 14
190 828.25 0.16% 553.62 −1.16% 33.93 −12.17% 3 14
173 829.68 0.33% 550.26 −1.76% 36.32 −5.99% 3 13
142 830.58 0.44% 548.20 −2.13% 35.31 −8.59% 3 15
112 832.56 0.68% 544.84 −2.73% 35.80 −7.33% 3 13
86 833.67 0.82% 543.56 −2.96% 35.32 −8.56% 3 14
44 835.71 1.06% 547.03 −2.34% 30.11 −22.06% 3 13
2 840.22 1.61% 541.31 −3.36% 30.75 −20.39% 3 14
1 842.84 1.92% 547.77 −2.21% 28.51 −26.19% 3 14

obtained solutions with SPEA2, are however, less efficient than the solutions obtained with the
scalarizing methods.

The SPEA2 algorithm described by Zitzler et al. uses a bounded archive size. ParadisEO [44]
provide, however, to use an unbounded archive size. With the unbounded archive size, the
number of resulting solutions is increasing if the amount of generations increases. Then because
the population size increase, the computation time is also increasing. Therefore, you can restrict
the population size and resulting solutions by using a fixed archive size. This will limit the
computation time also. The results presented here do not use a fixed archive size.

4.4.3 The resulting Pareto front

In the previous sections we described each option separately for each method to see the differ-
ences between both options. However, in that case should the DM choose one option explicitly
beforehand. Therefore, we take the fronts obtained with the weighted sum method and combine
both options to represent the DM a single front. Figure 12 shows the resulting front. In this
figure are also the extreme points from Mallidis et al. [46] included, to see how the solutions
relate to the extreme ones.

If you compare the solutions, you see on the left side of the figure solutions from option A,
while on the right side you find most solutions from option B. This means that the transportation
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Table 9: Trade-offs for option A (SPEA2)

ID Costs ∆C CO2 ∆CO2 PM ∆PM EPs DCs
1943 850.04 557.30 26.65 3 14
1900 856.35 0.74% 534.82 −4.03% 26.78 0.50% 3 12
1645 883.24 3.91% 539.49 −3.20% 12.88 −51.67% 3 12
1574 894.28 5.21% 572.02 2.64% 6.30 −76.34% 3 14
1442 912.95 7.40% 550.02 −1.31% 4.42 −83.40% 3 13
784 870.13 2.36% 541.41 −2.85% 15.35 −42.41% 3 14
365 927.49 9.11% 552.94 −0.78% 3.93 −85.27% 3 13
32 993.04 16.82% 551.93 −0.96% 2.55 −90.42% 3 12
25 994.83 17.03% 555.45 −0.33% 2.43 −90.90% 3 14
2 1011.98 19.05% 552.46 −0.87% 2.35 −91.19% 3 13

Table 10: Trade-offs for option B (SPEA2)

ID Costs ∆C CO2 ∆CO2 PM ∆PM EPs DCs
1384 835.52 574.15 39.84 3 14
1376 842.65 0.85% 549.58 −4.28% 24.88 −37.56% 3 15
1346 849.08 1.62% 541.61 −5.67% 29.43 −26.12% 3 12
778 885.97 6.04% 575.51 0.24% 11.15 −72.00% 3 13
745 888.91 6.39% 554.48 −3.43% 17.74 −55.48% 3 15
591 900.08 7.73% 560.60 −2.36% 15.17 −61.93% 3 15
590 900.18 7.74% 584.76 1.85% 9.52 −76.11% 3 12
134 936.95 12.14% 596.73 3.93% 4.89 −87.72% 3 15
9 947.44 13.40% 600.96 4.67% 4.35 −89.09% 3 12
1 950.49 13.76% 599.28 4.38% 4.44 −88.84% 3 13

is outsourced for solutions that try to minimize the PM emissions, while the transportation is
leased for solutions that minimizes costs (and CO2). The front presented in Figure 12 contains
all solutions obtained with the generation of the Pareto front for option B, while solutions from
option A are either beyond the PM emission’s lower bound of option B or it adds a solution
with a lower amount of CO2 emission for a certain level of PM emissions.

Figure 13 represents the same Pareto front in a two dimensional surface, where the colors
indicate the third dimension and the circles represent the solutions. The costs and CO2 are on
the axes, while the legend shows the colors that belong to the different levels of PM emissions.
This figure may give a better view on how costs, CO2 and PM relate to each other.
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(a) Option A - NSGA-II
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(b) Option B - NSGA-II
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(c) Option A - SPEA2
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Figure 11: Pareto fronts for GAs.
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Figure 12: The resulting Pareto front
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Figure 13: 2-d heat graph of Pareto front.
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Figure 14: UTAGMS Results.

4.4.4 UTAGMS

We tested the method with different sizes, i.e. number of alternatives available as possible solu-
tion/configuration. Also, we have applied different fixed size of preference statements required
per iteration to show the differences between them in computation time. Figure 14a shows the
results with sample sizes up to 60. In Figure 14b we added the iterative process in which 60
alternatives are reduced to a single solution. It shows that the cumulative time per iteration is
similar to previous total times of smaller sample sizes. Therefore, we can approximate the total
time required for larger sample sizes with just calculating the first iteration, i.e. calculate for
example for 200 alternatives only the first run with 5, 10, or 20 preference statements.

If there are n alternatives, n2 calculations are required to obtain a matrix in which relations
for both (a �N b) and (b �N a) are calculated. The more preference statements are added, the
longer it takes to do all computations. However, the total run time decreases if there are more
preference statements added per iteration because you can eliminate more solutions after each
iteration and thus fewer iterations are needed.

In Figure 16 the approximations are made for the total calculation time for amount of alterna-
tives up to 200, based on the single run time in Figure 15 and assuming that for each iteration the
number of preference statements determines how many alternatives can be removed after each it-
eration. Thus if we start with 200 alternatives and use 20 preference statements per iteration, we
need the cumulative sum of the single run times of the set {200, 180, 160, . . . , 40, 20, 10, 5, 3, 2}.
These cumulative sums show also what (total) time is needed for the intermediate numbers of
alternatives.

Tables 11 and 12 show the data presented in the figures. The mean is the average time
UTAGMS took to do the calculations, and the last column shows the standard deviation of the
16 runs.
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Table 11: UTA results for small samples (Mean and Std. Dev. in seconds)

Alternatives Pref. Statements Mean Standard Deviation
10 5 4.666 0.182
20 5 34.738 1.747
20 10 27.019 2.453
30 5 143.950 6.195
30 10 99.734 4.057
40 5 436.396 22.068
40 10 304.482 7.619
40 20 275.440 19.977
50 5 1103.902 57.020
50 10 747.597 28.370
50 20 760.285 56.424
60 5 2396.269 126.376
60 10 1680.253 82.889
60 20 1675.409 95.921

Table 12: UTA results for large samples (Mean and Std. Dev. in seconds)

Alternatives Pref. Statements Mean Standard Deviation
80 20 3086.998 125.840
100 20 7510.208 161.993
120 20 18524.308 693.801
140 20 37030.249 392.654
160 20 65273.258 659.275
180 20 108787.044 1372.603
200 20 169123.369 3420.303
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Chapter 5

Discussion

We split the discussion of the test results in two parts: first we discuss multi-objective optimiza-
tion with genetic algorithms, and then the preference model UTAGMS.

5.1 Multi-objective optimization

The multi-objective optimization model included in this thesis consists of two scalarizing meth-
ods and two genetic algorithms. According to literature, both scalarizing methods have some
drawbacks concerning finding solutions for non-convex regions, and in generating a well-dis-
tributed representation of the Pareto front. Therefore, genetic algorithms are used to compare
and check whether it is a good representation of the Pareto front.

When comparing the results, both methods show more or less the same shape, but the
scalarizing methods are able to find solutions with lower costs for similar CO2 and PM emissions,
i.e. more efficient solutions. However, the results from the genetic algorithms can consists of
more alternative solutions (depending on the chosen parameters) and take less computational
time. Regards the computational time, for the weighted sum method you need about 5000 runs
to obtain the front, which takes about five hours, whereas a genetic algorithm can produce a front
in one run, which does can take between two minutes and one hour depending on the amount
of generations. In case of NSGA-II, a lower amount of generations produces a well-distributed
front, but are not so efficient like the scalarizing methods. To obtain solutions with NSGA-
II that are more efficient, similar to the scalarizing methods, an increase of the generations is
required. However, in this particular case, the front converges to the first objective if the amount
of generations is increased and then it loses their well-spread distribution of the front. However,
SPEA2 showed that it maintained the well-spread distribution for a large amount of generations
but are still not so efficient compared to the scalarizing methods, whereas NSGA-II is efficient,
at least for the first two objectives (costs and CO2).

The Pareto front obtained by applying genetic algorithms depends on the parameters that
are used. However, the obtained front will be similar in each run. By adjusting the initial
population size more or fewer solutions can be obtained, but one characteristic of the genetic
algorithms is that it produces well-distributed fronts so different parameters will not change
much to the fronts presented in this thesis except the amount of generations for the NSGA-II.

When you compare the results of the scalarizing methods with the results of the SPEA2 (and
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Table 13: Comparison of MOO methods

Method No. solutions Dist. front Comp. time Single crit. Extremes
Weighted sum (212 + 245) well 5.5 hours efficient close
ε-constraint (130 + 92) well 45 min efficient close
NSGA-IIa (213 + 216) well/bad 2 min/1 hour bad/efficient approximates
SPEA2b (1943 + 1384) well 2 min/4 hoursc bad approximates
a The algorithm generates different results depending on how many generations are used: well-distributed for low
amount of generations (but than lacks efficiency), badly distributed for many generations. This also determines
the computation time.

b The algorithm can also be limited by a bounded archive size, that reduces the amount of solutions and compu-
tation time.

c A representation can be obtained in two minutes, increase the amount of generations will also increase the number
of solutions for the unbounded archive, but does not really improve the front after, e.g., 5000 generations. A
bounded archive can reduce the computation time.

NSGA-II in case if few generations are used) you see that the genetic algorithms have problems
with finding the solutions with the lowest costs possible for a certain amount of CO2 and PM
emissions. The tables in section 4.4 show that when you compare solutions from the different
methods, with CO2 and PM being more or less the same, the costs in the genetic algorithms are
higher. This means that the genetic algorithms do not find the best possible solutions and thus
not all solutions are Pareto optimal if you compare them with the real Pareto front.

Both the scalarizing methods and the genetic algorithms showed that if you want to decrease
the PM emissions, the costs and CO2 emissions increase. If you compare the extreme points,
you see that when the costs are optimized the CO2 emissions are near the optimum (minimum)
while the PM emissions are near the worst (maximum). Thus optimizing the CO2 emissions
causes a small increase of costs while it also decreases the PM emissions a little. Optimizing the
PM emissions will both increase costs and CO2.

Table 13 presents an overview of the performances of the applied methods to the MOO
problem, according to our experience. As the table shows, the scalarizing methods perform
well on all criteria except the weighted sum method for the computation time. Both genetic
algorithms could improve if they were able to obtain solutions with lower costs like in the
weighted sum method and find the extreme solutions. The weighted sum method takes a lot
of computation time, while the other methods obtain the fronts relatively fast. However, the
weighted sum method finds Pareto optimal solutions, while the genetic algorithms approximates
the frontier and thus the solutions are not necessarily Pareto optimal compared with the real
Pareto front. Since it is important that the solutions are really close to the real Pareto front, the
weighted sum method obtained the best approximation of the Pareto front. When comparing the
weighted sum method and epsilon-constraint method, the weighted sum method obtained more
efficient solutions for some regions, probably because not the right ε-values are used. However,
it is impossible to determine the right ε-values beforehand.

The computation time and amount of solutions obtained by SPEA2 depends on the chosen
archive size. The larger the archive, the longer it takes to compute and the more solutions
are obtained. It seems however, although the method obtain more solutions, it does not really
improve the obtained Pareto front. NSGA-II converges to the first objective if the amount of
generations increases. In our case, we used 104 generations and you see that the fronts are
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Table 14: Alignment objectives; the table shows points near the extremes solutions. It shows
how one or both other objectives can improve against a small decrease of the chosen objective

Costs (e 1000/yr) ∆ Costs CO2 (tn/yr) ∆ CO2 PM (Kg/yr) ∆ PM
825.47 572.80 27.53
826.27 0.10% 562.60 -1.78% 23.67 -14.03%
827.33 0.23% 554.71 -3.16% 20.22 -26.57%
827.78 0.28% 554.71 -3.16% 19.01 -30.95%
828.87 0.41% 552.11 -3.61% 16.38 -40.50%
896.58 534.95 11.93
850.26 -5.17% 534.95 0.00% 13.58 13.77%
894.65 -0.21% 534.98 0.01% 11.55 -3.24%
886.61 -1.11% 537.78 0.53% 12.06 1.06%
858.76 -4.22% 538.37 0.64% 11.68 -2.17%
1039.87 568.18 2.61
997.98 -4.03% 567.43 -0.13% 2.94 12.86%
988.01 -4.99% 564.59 -0.63% 3.28 25.73%
971.13 -6.61% 564.59 -0.63% 3.65 39.74%
937.78 -9.82% 616.27 8.46% 4.62 77.08%

converged, but become efficient for that region of the front. If a lower amount of generations are
used, the obtained front is well-spread but not efficient. Increasing the amount of generations
to a larger amount than 104 does not improve the results anymore.

This research extends the work of [46] by means of offering various intermediate solutions
and combining two options. The results show that there exist many intermediate solutions be-
tween the single-objective optimizations by Mallidis et al.. Furthermore, it shows that solutions
minimizing the PM emissions outsource the transportation, while solutions that minimize costs
or CO2 lease the transportation. Somewhere around the middle between the minimum and
maximum of the PM emissions there exist a few solutions from option A that have less CO2

emissions, but higher costs, compared to the solutions from option B for a similar level of PM.
The PM emissions are more or less the opposite of the costs and CO2, costs and CO2 are

more or less aligned. Table 14 shows solutions for the three extreme points of the Pareto front. If
you compare these solutions, you see that for a little increase of one objective, there are solutions
that reduce both other objectives. This means that even if one objective has a very high priority,
there are alternatives nearby that reduce the other two objectives against a small increase of
the chosen objective. Especially if you look to the costs, the extreme solution minimizing costs,
does only have to increase 0.41% to gain 40.5% loss of PM emissions.
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5.2 UTAGMS

We tested whether the preference model UTAGMS is applicable for problems similar to the case
study. In these tests, we tested how many preference statements are needed and the compu-
tational time required in the selection process to end up with a single preferred alternative.
The tests used random preference statements and each alternative can be chosen once, which
prevents the possibility of an inconsistent model. It seems reasonable that when a small amount
of preference statements are used per iteration, the DM is capable of applying consistent prefer-
ence statements. However, for a larger amount of statements it can happen that the transitivity
property is violated. Then the preference statements should be revised and the iteration has to
start all over again, so if there are many alternatives left, it can take a considerable amount of
time. Another point with the random statements is that because each alternative can be chosen
once in each iteration, it is not possible to say, e.g., a � b and c � a, because a is already chosen
in the same iteration. This means that the latter has to wait until the next iteration before the
statement can be added. However, if a real DM is used instead of random preference statements
this is not an issue and it would not affect the computation time.

Adding more preference statements per iteration will increase the computation time for that
single iteration. This also means that after the iteration, more solutions are necessarily less
preferred to another solution. This means that none of these alternatives will be the ‘best’
alternative (because other solutions are preferred over them), and the total computation time
will decrease because there are fewer iterations required. It is reasonable to assume that for n
alternatives, (n−1) preference statements are needed. However, if the DM already should know
what solution will be his/her preferred one, no preference model is needed at all. Therefore, the
DM gets in each iteration a small subset of alternatives, that he/she is capable of expressing
preference statements on, and ends up with a single preferred solution.

It is shown in [49] that, even for Pareto sets, the UTAGMS method is capable of inducing
additional (preference) relations from a single preference statement. However, in our case this
occurs only a few times while many statements are used. Thus given a preference statement in a
reference set (x � y ∈ AR), it would not induce any additional relations for a pair of alternatives
in the whole set (such as, w � z ∈ A). Therefore, you need (n − 1) preference statements to
obtain a complete preorder (a ‘ranking’ problem), and also (n − 1) preference statements to
choose the ‘best’ alternative (a ‘choosing’ problem). Thus because it will not induce any other
relations than given by the preference statements and the (long) computation time for large
samples, the UTAGMS method is not appropriate to use for the case described in this study.
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Chapter 6

Conclusions and future work

The study was set out to investigate whether a preference model like UTAGMS is applicable for
cases like the one described in Chapter 4. In order to do this, we first had to deal with a multi-
objective optimization problem. To this intent, we applied two ‘simple’ scalarizing methods
and a more complex method: genetic algorithms. Both scalarizing methods have some issues in
obtaining a well-distributed representation of the Pareto front, therefore, two genetic algorithms
are used to compare the obtained fronts, which allows us to see whether the scalarizing methods
are sufficient for obtaining a front or whether some essential solutions are missing. Both methods
were compared in order to see differences in the impact on cost and design in green logistics.
Then the obtained representation of the Pareto front has used to test whether the UTAGMS

is applicable to the case. The latter has not been done yet in existing literature (as far as we
know). We tested the method by estimating the time required to find one single ‘best’ solution
and by counting the number of preference statements that are required in order to find the ‘best’
solution.

6.1 Conclusions

Our main research question was: Can we aid the DM to design a supply chain in green logistics,
by representing alternatives obtained with genetic algorithm and thereafter apply the UTAGMS

method? In order to answer this question, it is decomposed into subquestions. These subques-
tions have been answered in previous chapters, we will now summarize each of them.

1. How different is the Pareto front obtained by a genetic algorithm (NSGA-II/SPEA2) related
to the weighted sum method?
The largest difference between these types of methods is the efficiency in the obtained
solutions. The Pareto front representation obtained with the scalarizing methods are more
efficient than the ones obtained with the genetic algorithms, i.e., they are closer to the real
Pareto front. The latter might win in computational terms, but in the end is efficiency
often the most important criteria for selecting a supply chain design. The weighted sum
method obtains an acceptable amount of alternatives and produces a good representation
of the Pareto front. It seems the method does not suffer from missing solutions for non-
convex regions since the genetic algorithms were not able to improve the obtained fronts.
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Therefore, we would recommend to use the scalarizing approach for this particular case
to obtain a well-spread Pareto front with efficient solutions and probably close to the real
Pareto front.

2. How many preference statements do we need in order to obtain a single (best) solution?
To this question, a short answer can be given: for n alternatives, you can assume that
it needs (n − 1) preference statements. During our tests, it occasionally happened that
more solutions could be removed than the number of preference statements given. But this
did happen only a few times, so you can assume that UTAGMS needs (n − 1) preference
statements until the DM’s single preferred solution remains.

3. How applicable is the UTAGMS method to this specific multi-objective optimization model?
As we have seen takes it really long if the possible solution set is larger than, e.g., fifty
alternatives. The Pareto fronts we have obtained consist of 190-250 possible solutions,
thus in such cases one can say that UTAGMS is not applicable to this case. However, it
is shown that for smaller solution sets it is able in a appropriate time to find the DM’s
‘best’ solution. Thus either the genetic algorithm’s parameters can be adjusted to give a
representation of the Pareto front with a smaller set of possible solution or some kind of
pre-selection mechanism is required.

Finally, we are able to answer the research question: Can we aid the DM to design a supply chain
in green logistics, by representing alternatives obtained with genetic algorithm and thereafter
apply the UTAGMS method?

We have seen that both genetic algorithms were capable of presenting a representation of the
Pareto front, i.e., give the DM a set of possible configurations for the design of the supply chain.
We showed that these configurations can differ with respect to the number of distribution centers
or entry points that are used, and we showed some payoff tables in which the difference were
listed with respect to the objectives. Related to the scalarizing methods, the genetic algorithms
produced a larger set of possible solutions, had a close approximation of the extreme points,
but the solutions are not so efficient as the ones obtained with the scalarizing methods. Thus
it is better to present the DM a set of alternatives resulting from the scalarizing methods, in
particular the weighted sum method.

The obtained results have been used for the preference model. As we have seen the UTAGMS

method is appropriate when the set of possible solutions is small, e.g., a maximum of 50 possible
solutions. It can be used for larger sets, but then the DM needs a lot of patience. Thus the final
answer to the research question is no, because it does not induce any other preference relation
than the ones provided by the DM.

There is already a lot of work done in the topic of multi-critera decision analysis (MCDA),
but none of them have assessed whether the preference models have been applicable to real-
world decision problems in green logistics. This research is a contribution to this field in the
sense that it assessed both the computational time that is required to use such a model, as well
as the number of preference statements required for a DM to arrive at his/her final solution.
The preference model can also be used to obtain a complete preorder. However, we think the
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DM is only interested in what solution would be his/her preferred one and not interested in the
complete preorder.

6.2 Future research

This research uncovered some directions for future research. One feature of the UTAGMS method
is that it allows to build a complete preorder of the possible solution set. In this research,
however, we only include the choice problem, i.e., aid the DM to find his/her most preferred
solution. Future research should assess on the number of preference statements needed for
obtaining a complete preorder, and the corresponding computation time.

To this end, one can also investigate how often these preference statements lead to an incon-
sistent preference model. In our case it was not possible to get an inconsistent model, because
we only allow one alternative to be chosen once per iteration. Especially when a large amount
of preference statements are applied, to obtain a complete preorder, there is a chance that the
statements are inconsistent.

Furthermore, one can think about how the computational time could be reduced for a large
set of possible solutions. Now, for each alternative are LP problems to be solved to determine
whether the alternative is necessary better than other ones, thus the relation needs to be com-
puted in both directions. It might possible that when you check whether a is necessary better
than b, it also involves whether b is necessary better than a. Additional improvements might be
obtained when the preference model would require fewer statements to obtain a final solution.

Moreover, the results of NSGA-II can probably be improved by solving the issue that it is
converging to the first objective. Also, maybe SPEA2 can be improved to some extend such
that it is able to find solutions that are closer to the real Pareto front.
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Appendix A: R script

This file is also available at github: https://github.com/CornePlas/MOOSCN-R.

f i l e_GA <− "OptionA_n s g a i i . txt " ;

# load requ i r ed l i b r a r i e s
l ibrary ( " ro r " ) ;
l ibrary ( " sampling " ) ;
l ibrary ( " chron" ) ;
l ibrary ( "MASS" ) ;

# read data
data <− as .matrix ( read . csv ( f i l e_GA, header=FALSE, sep=" ; " ) ) ;
data_adj <− 1/data ;

# func t i on to f i nd one s i n g l e s o l u t i on ,
# i t uses random pre f e r ence s ta tements to f i l t e r a l t e r n a t i v e s
f i ndSo l <− function (d , s ){

p r e f . s <− c ( ) ;
s i z e <− nrow(d ) ;
s tatements <− 0 ;
i t e r a t i o n s <− 0 ;
maxTime <− 0 ;

# crea t e loop to end wi th one v a r i a b l e
while ( ( i s .matrix (d ) ) && ( length (d [ , 1 ] > 0) ) ){

# amount d i v i d ed by two are the number o f s ta tements , thus s
pr e f . s <− s ∗ 2 ;
s e l e c t i o n <− matrix (numeric ( 1 ) , length (d [ , 1 ] ) , 1 ) ;

# determine amount o f p r e f e r ence s ta tements
x <− 1 : length (d [ , 1 ] ) ;

while ( p r e f . s > length (d [ , 1 ] ) | |
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( p r e f . s == length (d [ , 1 ] ) && ! ( p r e f . s%%2==0))){
# i f the remaining a l t e r n a t i v e s i s sma l l e r than the
# number o f a l t e r n a t i v e s , l e s s s ta tements are needed
pr e f . s <− round ( ( p r e f . s/2)/2)∗ 2 ;

}

# d i s p l a y some output
cat ( format ( Sys . time ( ) , "%H:%M; " ) , "␣ i t e r a t i o n : ␣" , i t e r a t i o n s , " ,

␣ s i z e : ␣" ,nrow(d ) , "/" , s i z e , " , ␣ statements : " , ( p r e f . s/ 2 ) ) ;

cat ( format ( Sys . time ( ) , "%H:%M; " ) , "␣ i t e r a t i o n : ␣" , i t e r a t i o n s , " ,
␣ s i z e : ␣" ,nrow(d ) , "/" , s i z e , " , ␣ statements : " , ( p r e f . s/2) ,
f i l e="output_smal l . txt " , append=TRUE) ;

# count no . s ta tements
statements <− statements + ( p r e f . s / 2 ) ;
# crea t e random pre f . s ta tements
p r e f e r e n c e s <− matrix (sample (x , p r e f . s , replace=FALSE) ,

ncol=2, byrow=TRUE) ;
# ca l c necessary r e l a t i o n s
t imeI t <− system . time ( ro r <− utagms (d , p r e f e r enc e s ,

nece s sa ry=TRUE, st r i c tVF=TRUE) ) [ 1 ] ;

# show some output
cat ( " , ␣ time : " , t imeIt , ’ \n ’ ) ;
cat ( " , ␣ time : " , t imeIt , ’ \n ’ , f i l e="output . txt " ,append=TRUE) ;
for ( i in 1 : length ( ro r [ , 1 ] ) ) {
# f i l t e r a l l a l t e r n a t i v e s t ha t cannot be the p r e f e r r e d one

for ( j in 1 : length ( ro r [ 1 , ] ) ) {
i f ( i != j && ro r [ i , j ] )

s e l e c t i o n [ j ] = 1 ;
}

}

i f ( t imeI t > maxTime){
maxTime <− t imeI t ;

}

d <− d [ s e l e c t i o n ==0 ,]; # remove ’ dominated ’ s o l u t i o n s
i t e r a t i o n s <− i t e r a t i o n s + 1 ;

}
return (c (d , statements , i t e r a t i o n s , maxTime ) ) ;
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}

## use sample
sample_s i z e <− c (10 , 20 , 30 , 40 , 50 , 6 0 ) ;
no_statements <− c ( 5 , 1 0 , 2 0 ) ;
r e s u l t s <− matrix (numeric ( 1 ) , ( length (sample_s i z e )∗length
( no_statements ) ) , 6)
for ( j in 1 : length (sample_s i z e ) ){

for ( i in 1 : length ( no_statements ) ){
i f (sample_s i z e [ j ] >= (no_statements [ i ]∗2)){

sample_data <− srswor (sample_s i z e [ j ] , nrow(data ) ) ;
sample_set <− as .matrix (data_adj [ sample_data==1 ,1 :3 ] ) ;
sys <− system . time (

x <− f i ndSo l (sample_set , no_statements [ i ] ) ) ;
r e s u l t s [ j , ] <− c (sample_s i z e [ j ] , no_statements [ i ] ,

sys [ 1 ] , x [ 4 ] , x [ 5 ] , x [ 6 ] ) ;
# no . a l t e r n a t i v e s used , time f o r ca lc , no . s tatements ,
# no . i t e r a t i o n s , ( f i x e d ) s ta tements p/ i t e r a t i o n

cat (sample_s i z e [ j ] , no_statements [ i ] , sys [ 1 ] , x [ 4 ] , x [ 5 ] ,
x [ 6 ] , ’ \n ’ , f i l e=" r e s u l t s . txt " , sep=" , " ,append=TRUE) ;

cat ( r e s u l t s [ j , ] , "\n" ) ;
}

}
}

print ( r e s u l t s )
write .matrix ( r e s u l t s , f i l e=" r e s u l t s_a l l . csv " , sep=" ; " , 1024 ) ;

cat ( ’ ’ , f i l e="output_l a r g e . txt " ) ;
sample_l a r g e <− c (75 , 100 , 125 , 150 , 175 , 200 ) ;
statements <− 25 ;
r e s u l t s <− matrix (numeric ( 1 ) , 6 , 3 ) ;
for ( i in 1 : length (sample_l a r g e ) ){

sample_data <− srswor (sample_l a r g e [ i ] , nrow(data ) ) ;
sample_set <− as .matrix (data_adj [ sample_data==1 ,1 :3 ] ) ;
p r e f e r e n c e s <− matrix (sample ( 1 :nrow(sample_set ) , statements ,

replace=FALSE) , ncol=2, byrow=TRUE) ;
sys <− system . time ( ro r <− utagms (sample_set , p r e f e r enc e s ,

nece s sa ry=TRUE, st r i c tVF=TRUE) )
r e s u l t s [ i , ] <− c (sample_l a r g e [ i ] , statements , sys [ 1 ] )
cat ( r e s u l t s [ i , ] , "\n" ) ;
cat ( r e s u l t s [ i , ] , ’ \n ’ , f i l e="output_l a r g e . txt " , sep=" , " ,
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append=TRUE) ;
}

print ( r e s u l t s )
write .matrix ( r e s u l t s , f i l e=" r e s u l t s_l a r g e . csv " , sep=" ; " , 1024 ) ;
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Appendix B: Data

The data is also available at github:
https://github.com/CornePlas/MOOSCN/tree/master/data

Table 15: Demand

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
22 18 17 19 19 42 19 11 7 10 9 9 11 15 19

Table 16: Warehouse costs (per item)

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
96 96 96 96 96 96 96 96 72 96 96 96 96 96 96 120

Table 17: Costs/Emissions from Major Loading Point to EP

ep1 ep2 ep3
Costs 2317 2621 2607
CO2 1963 2027 2040
PM 5119 5284 5317
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Option A

Table 18: dcrm-dt1-cost

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 220 2479 2678 3194 2659 2770 2567 2616 3440 2837 2897 3278 3376 3407 3161
dc2 2479 220 2518 2661 2132 2260 2747 2466 3296 2655 2409 2786 2882 2942 2903
dc3 2678 2518 220 2800 2665 2721 3272 3012 3866 3182 2860 3040 3198 3364 3440
dc4 3194 2661 2800 220 2569 2405 3411 2835 3493 3053 2444 2253 2505 2948 3061
dc5 2659 2132 2665 2569 220 2128 2940 2466 3387 2653 3167 2815 3040 3557 3038
dc6 2770 2260 2721 2405 2128 220 2928 2403 3118 2591 2093 2469 2567 2589 2678
dc7 2567 2747 3272 3411 2940 2928 220 2567 3092 2546 3055 3428 3512 3303 2923
dc8 2616 2467 3012 2835 2466 2403 2567 220 2823 2135 2401 2903 2895 2673 2426
dc9 3440 3296 3866 3493 3387 3118 3092 2823 220 2635 3036 3233 3159 2659 2387
dc10 2837 2655 3182 3053 2653 2591 2546 2135 2635 220 2614 2966 3145 2649 2313
dc11 2538 2409 2860 2444 3167 2093 3055 2401 3036 2614 220 2321 2426 2448 2538
dc12 3278 2786 3040 2253 2815 2469 3428 2903 3233 2966 2321 220 2196 2665 2891
dc13 3376 2882 3198 2505 3040 2567 3512 2895 3159 3145 2426 2190 220 2475 2731
dc14 3419 2942 3364 2948 3557 2589 3303 2673 2659 2649 2448 2665 2475 220 2221
dc15 3161 2903 3440 3061 3038 2678 2923 2426 2387 2313 2538 2891 2731 2221 220
dc16 3737 3506 4088 3655 4284 3299 3387 3030 2389 2850 3176 3337 3094 2641 2509

Table 19: dcrm-dt1-pm

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 6.2 167.6 230.4 393 224.2 259.3 195.3 210.7 470.6 2176.3 299.4 419.5 450.3 460.2 382.5
dc2 167.6 6.2 179.9 224.8 57.9 98.6 251.9 163.2 425 223 145.4 264.3 294.4 313.5 301.2
dc3 230.4 179.9 6.2 268.6 226.1 243.9 417.6 335.7 604.9 389.3 287.7 344.3 394.2 446.6 470.6
dc4 393 224.8 268.6 6.2 195.9 144.1 461.4 279.7 487.3 348.7 156.5 96.1 175.6 315.4 351.1
dc5 224.2 57.9 226.1 195.9 6.2 56.7 312.9 163.2 454 222.4 384.4 273.5 344.3 507.6 343.7
dc6 259.3 98.6 243.9 144.1 56.7 6.2 309.2 143.5 369 202.7 45.6 164.5 195.3 202 230.4
dc7 195.3 251.9 417.6 461.4 312.9 309.2 6.2 195.3 361 188.5 349.3 466.9 493.4 427.5 307.4
dc8 210.7 163.9 335.7 279.7 163.2 143.5 195.3 6.2 276 59.1 142.9 301.2 298.8 228.5 150.9
dc9 470.6 425 604.9 487.3 454 369 361 276 6.2 216.8 343.1 405.3 381.9 224.2 138.6
dc10 2176.3 223 389.3 348.7 222.4 202.7 188.5 59.1 216.8 6.2 210.1 320.9 377.6 221.1 115.2
dc11 186 145.4 287.7 156.5 384.4 45.6 349.3 142.9 343.1 210.1 6.2 117.7 150.9 157.7 186
dc12 419.5 264.3 344.3 96.1 273.5 164.5 466.9 301.2 405.3 320.9 117.7 6.2 78.2 226.1 297.5
dc13 450.3 294.4 394.2 175.6 344.3 195.3 493.4 298.8 381.9 377.6 150.9 76.4 6.2 166.3 247.1
dc14 463.8 313.5 446.6 315.4 507.6 202 427.5 228.5 224.2 221.1 157.7 226.1 166.3 6.2 86.2
dc15 382.5 301.2 470.6 351.1 343.7 230.4 307.4 150.9 138.6 115.2 186 297.5 247 86.2 6.2
dc16 564.3 491.6 675.1 538.4 736.7 426.3 454 341.3 139.2 284.6 387.5 438 361.6 218.7 176.8
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Table 20: dcrm-dt2-cost

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 238 2685 2901 3459 2880 3000 2780 2833 3726 3072 3138 3550 3656 3690 3423
dc2 2685 238 2727 2882 2309 2448 2975 2670 3569 2875 2609 3017 3121 3186 3144
dc3 2901 2727 238 3032 2886 2947 3544 3262 4187 3446 3097 3292 3463 3643 3726
dc4 3459 2882 3032 238 2782 2605 3694 3070 3783 3307 2647 2440 2712 3193 3315
dc5 2880 2309 2886 2782 238 2304 3184 2670 3669 2873 3430 3049 3292 3853 3290
dc6 3000 2448 2947 2605 2304 238 3171 2603 3377 2806 2266 2674 2780 2803 2901
dc7 2780 2975 3544 3694 3184 3171 238 2780 3349 2757 3309 3713 3804 3578 3165
dc8 2833 2672 3262 3070 2670 2603 2780 238 3057 2313 2600 3144 3136 2894 2628
dc9 3726 3569 4187 3783 3669 3377 3349 3057 238 2854 3288 3501 3421 2880 2586
dc10 3072 2875 3446 3307 2873 2806 2757 2313 2854 238 2831 3212 3406 2869 2505
dc11 2748 2609 3097 2647 3430 2266 3309 2600 3288 2831 238 2514 2628 2651 2748
dc12 3550 3017 3292 2440 3049 2674 3713 3144 3501 3212 2514 238 2378 2886 3131
dc13 3656 3121 3463 2712 3292 2780 3804 3136 3421 3406 2628 2372 238 2681 2958
dc14 3702 3186 3643 3193 3853 2803 3578 2894 2880 2869 2651 2886 2681 238 2406
dc15 3423 3144 3726 3315 3290 2901 3165 2628 2586 2505 2748 3131 2958 2406 238
dc16 4047 3798 4428 3958 4639 3573 3669 3281 2588 3087 3440 3614 3351 2861 2717

Table 21: dcrm-dt2-pm

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 1.2 33.5 46.1 78.6 44.8 51.9 39.1 42.1 94.1 56.1 59.9 83.9 90.1 92 76.5
dc2 33.5 1.2 36 45 11.6 19.7 50.4 32.6 85 44.6 29.1 52.9 58.9 62.7 60.2
dc3 46.1 36 1.2 53.7 45.2 48.8 83.5 67.1 121 77.9 57.5 68.9 78.8 89.3 94.1
dc4 78.6 45 53.7 1.2 39.2 28.8 92.3 55.9 97.5 69.7 31.3 19.2 35.1 63.1 70.2
dc5 44.8 11.6 45.2 39.2 1.2 11.3 62.6 32.6 90.8 44.5 76.9 54.7 68.9 101.5 68.7
dc6 51.9 19.7 48.8 28.8 11.3 1.2 61.8 28.7 73.8 40.5 9.1 32.9 39.1 40.4 46.1
dc7 39.1 50.4 83.5 92.3 62.6 61.8 1.2 39.1 72.2 37.7 69.9 93.4 98.7 85.5 61.5
dc8 42.1 32.8 67.1 55.9 32.6 28.7 39.1 1.2 55.2 11.8 28.6 60.2 59.8 45.7 30.2
dc9 94.1 85 121 97.5 90.8 73.8 72.2 55.2 1.2 43.4 68.6 81.1 76.4 44.8 27.7
dc10 56.1 44.6 77.9 69.7 44.5 40.5 37.7 11.8 43.4 1.2 42 64.2 75.5 44.2 23
dc11 37.2 29.1 57.5 31.3 76.9 9.1 69.9 28.6 68.6 42 1.2 23.5 30.2 31.5 37.2
dc12 83.9 52.9 68.9 19.2 54.7 32.9 93.4 60.2 81.1 64.2 23.5 1.2 15.6 45.2 59.5
dc13 90.1 58.9 78.8 35.1 68.9 39.1 98.7 59.8 76.4 75.5 30.2 15.3 1.2 33.3 49.4
dc14 92.8 62.7 89.3 63.1 101.5 40.4 85.5 45.7 44.8 44.2 31.5 45.2 33.3 1.2 17.2
dc15 76.5 60.2 94.1 70.2 68.7 46.1 61.5 30.2 27.7 23 37.2 59.5 49.4 17.2 1.2
dc16 112.9 98.3 135 107.7 147.3 85.3 90.8 68.3 27.8 56.9 77.5 87.6 72.3 43.7 35.4
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Table 22: dcrm-dt3-cost

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 257 2896 3128 3731 3106 3236 2998 3055 4018 3313 3384 3829 3943 3979 3692
dc2 2896 257 2941 3108 2490 2640 3208 2880 3849 3101 2814 3254 3366 3436 3391
dc3 3128 2941 257 3270 3112 3179 3822 3518 4515 3717 3341 3550 3735 3929 4018
dc4 3731 3108 3270 257 3001 2809 3984 3311 4080 3566 2855 2631 2925 3443 3575
dc5 3106 2490 3112 3001 257 2485 3434 2880 3956 3099 3699 3288 3550 4155 3548
dc6 3236 2640 3179 2809 2485 257 3420 2807 3642 3026 2444 2884 2998 3023 3128
dc7 2998 3208 3822 3984 3434 3420 257 2998 3612 2973 3569 4004 4102 3858 3414
dc8 3055 2882 3518 3311 2880 2807 2998 257 3297 2494 2804 3391 3382 3122 2834
dc9 4018 3849 4515 4080 3956 3642 3612 3297 257 3078 3546 3776 3690 3106 2789
dc10 3313 3101 3717 3566 3099 3026 2973 2494 3078 257 3053 3464 3674 3094 2702
dc11 2964 2814 3341 2855 3699 2444 3569 2804 3546 3053 257 2711 2834 2859 2964
dc12 3829 3254 3550 2631 3288 2884 4004 3391 3776 3464 2711 257 2565 3112 3377
dc13 3943 3366 3735 2925 3550 2998 4102 3382 3690 3674 2834 2558 257 2891 3190
dc14 3993 3436 3929 3443 4155 3023 3858 3122 3106 3094 2859 3112 2891 257 2595
dc15 3692 3391 4018 3575 3548 3128 3414 2834 2789 2702 2964 3377 3190 2595 257
dc16 4365 4096 4775 4269 5003 3854 3956 3539 2791 3329 3710 3897 3614 3085 2930

Table 23: dcrm-dt3-pm

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 1.2 33.5 46.1 78.6 44.8 51.9 39.1 42.1 94.1 56.1 59.9 83.9 90.1 92 76.5
dc2 33.5 1.2 36 45 11.6 19.7 50.4 32.6 85 44.6 29.1 52.9 58.9 62.7 60.2
dc3 46.1 36 1.2 53.7 45.2 48.8 83.5 67.1 121 77.9 57.5 68.9 78.8 89.3 94.1
dc4 78.6 45 53.7 1.2 39.2 28.8 92.3 55.9 97.5 69.7 31.3 19.2 35.1 63.1 70.2
dc5 44.8 11.6 45.2 39.2 1.2 11.3 62.6 32.6 90.8 44.5 76.9 54.7 68.9 101.5 68.7
dc6 51.9 19.7 48.8 28.8 11.3 1.2 61.8 28.7 73.8 40.5 9.1 32.9 39.1 40.4 46.1
dc7 39.1 50.4 83.5 92.3 62.6 61.8 1.2 39.1 72.2 37.7 69.9 93.4 98.7 85.5 61.5
dc8 42.1 32.8 67.1 55.9 32.6 28.7 39.1 1.2 55.2 11.8 28.6 60.2 59.8 45.7 30.2
dc9 94.1 85 121 97.5 90.8 73.8 72.2 55.2 1.2 43.4 68.6 81.1 76.4 44.8 27.7
dc10 56.1 44.6 77.9 69.7 44.5 40.5 37.7 11.8 43.4 1.2 42 64.2 75.5 44.2 23
dc11 37.2 29.1 57.5 31.3 76.9 9.1 69.9 28.6 68.6 42 1.2 23.5 30.2 31.5 37.2
dc12 83.9 52.9 68.9 19.2 54.7 32.9 93.4 60.2 81.1 64.2 23.5 1.2 15.6 45.2 59.5
dc13 90.1 58.9 78.8 35.1 68.9 39.1 98.7 59.8 76.4 75.5 30.2 15.3 1.2 33.3 49.4
dc14 92.8 62.7 89.3 63.1 101.5 40.4 85.5 45.7 44.8 44.2 31.5 45.2 33.3 1.2 17.2
dc15 76.5 60.2 94.1 70.2 68.7 46.1 61.5 30.2 27.7 23 37.2 59.5 49.4 17.2 1.2
dc16 112.9 98.3 135 107.7 147.3 85.3 90.8 68.3 27.8 56.9 77.5 87.6 72.3 43.7 35.4
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Table 24: dcrm-dt4-cost

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 385 4339 4687 5590 4653 4848 4492 4578 6020 4964 5070 5736 5907 5962 5531
dc2 4339 385 4407 4656 3730 3956 4807 4315 5767 4646 4216 4875 5043 5149 5080
dc3 4687 4407 385 4899 4663 4762 5726 5272 6765 5569 5005 5320 5596 5887 6020
dc4 5590 4656 4899 385 4496 4209 5969 4961 6112 5343 4277 3942 4383 5159 5357
dc5 4653 3730 4663 4496 385 3723 5145 4315 5928 4643 5542 4926 5320 6225 5316
dc6 4848 3956 4762 4209 3723 385 5125 4205 5456 4533 3662 4322 4492 4530 4687
dc7 4492 4807 5726 5969 5145 5125 385 4492 5412 4455 5347 6000 6147 5781 5114
dc8 4578 4318 5272 4961 4315 4205 4492 385 4940 3737 4202 5080 5067 4677 4246
dc9 6020 5767 6765 6112 5928 5456 5412 4940 385 4612 5313 5658 5528 4653 4178
dc10 4964 4646 5569 5343 4643 4533 4455 3737 4612 385 4574 5190 5504 4636 4048
dc11 4441 4216 5005 4277 5542 3662 5347 4202 5313 4574 385 4062 4246 4284 4441
dc12 5736 4875 5320 3942 4926 4322 6000 5080 5658 5190 4062 385 3843 4663 5060
dc13 5907 5043 5596 4383 5320 4492 6147 5067 5528 5504 4246 3833 385 4332 4780
dc14 5983 5149 5887 5159 6225 4530 5781 4677 4653 4636 4284 4663 4332 385 3887
dc15 5531 5080 6020 5357 5316 4687 5114 4246 4178 4048 4441 5060 4780 3887 385
dc16 6540 6136 7155 6396 7497 5774 5928 5302 4181 4988 5559 5839 5415 4622 4390

Table 25: dcrm-dt4-pm

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 0.6 16.8 23 39.3 22.4 25.9 19.5 21.1 47.1 28 29.9 41.9 45 46 38.3
dc2 16.8 0.6 18 22.5 5.8 9.9 25.2 16.3 42.5 22.3 14.5 26.4 29.4 31.4 30.1
dc3 23 18 0.6 26.9 22.6 24.4 41.8 33.6 60.5 38.9 28.8 34.4 39.4 44.7 47.1
dc4 39.3 22.5 26.9 0.6 19.6 14.4 46.1 28 48.7 34.9 15.6 9.6 17.6 31.5 35.1
dc5 22.4 5.8 22.6 19.6 0.6 5.7 31.3 16.3 45.4 22.2 38.4 27.4 34.4 50.8 34.4
dc6 25.9 9.9 24.4 14.4 5.7 0.6 30.9 14.4 36.9 20.3 4.6 16.4 19.5 20.2 23
dc7 19.5 25.2 41.8 46.1 31.3 30.9 0.6 19.5 36.1 18.8 34.9 46.7 49.3 42.8 30.7
dc8 21.1 16.4 33.6 28 16.3 14.4 19.5 0.6 27.6 5.9 14.3 30.1 29.9 22.9 15.1
dc9 47.1 42.5 60.5 48.7 45.4 36.9 36.1 27.6 0.6 21.7 34.3 40.5 38.2 22.4 13.9
dc10 28 22.3 38.9 34.9 22.2 20.3 18.8 5.9 21.7 0.6 21 32.1 37.8 22.1 11.5
dc11 18.6 14.5 28.8 15.6 38.4 4.6 34.9 14.3 34.3 21 0.6 11.8 15.1 15.8 18.6
dc12 41.9 26.4 34.4 9.6 27.4 16.4 46.7 30.1 40.5 32.1 11.8 0.6 7.8 22.6 29.8
dc13 45 29.4 39.4 17.6 34.4 19.5 49.3 29.9 38.2 37.8 15.1 7.6 0.6 16.6 24.7
dc14 46.4 31.4 44.7 31.5 50.8 20.2 42.8 22.9 22.4 22.1 15.8 22.6 16.6 0.6 8.6
dc15 38.3 30.1 47.1 35.1 34.4 23 30.7 15.1 13.9 11.5 18.6 29.8 24.7 8.6 0.6
dc16 56.4 49.2 67.5 53.8 73.7 42.6 45.4 34.1 13.9 28.5 38.7 43.8 36.2 21.9 17.7
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Table 26: dcrm-dt-co2

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 9 257 353 602 344 397 299 323 721 429 459 643 690 705 586
dc2 257 9 276 344 89 151 386 250 651 342 223 405 451 4176 462
dc3 353 276 9 411 346 374 640 514 927 596 441 528 604 684 721
dc4 602 344 411 9 300 221 707 428 747 534 240 147 269 483 538
dc5 344 89 346 300 9 87 479 250 696 341 589 419 528 778 527
dc6 397 151 374 221 87 9 474 220 565 311 70 252 299 310 353
dc7 299 386 640 707 479 474 9 299 553 289 535 715 756 655 471
dc8 323 251 514 428 250 220 299 9 423 91 219 462 458 350 231
dc9 721 651 927 747 696 565 553 423 9 332 526 621 585 344 212
dc10 429 342 596 534 341 311 289 91 332 9 322 492 579 339 176
dc11 285 223 441 240 589 70 535 219 526 322 9 1176 231 242 285
dc12 643 405 528 147 419 252 715 462 621 492 1176 9 120 346 456
dc13 690 451 604 269 528 299 756 458 585 579 231 117 9 255 379
dc14 711 4176 684 483 778 310 655 350 344 339 242 346 255 9 132
dc15 586 462 721 538 527 353 471 231 212 176 285 456 378 132 9
dc16 865 753 1034 825 1129 653 696 523 213 436 594 671 554 335 271

Table 27: epdc-blocktrain-co2

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 438 342 414 362 NA 292 424 326 85 211 182 286 257 107 128 NA
ep2 251 155 227 178 NA 107 239 140 NA 258 133 NA 130 184 221 326
ep3 290 194 266 NA NA 146 278 178 NA 264 108 178 219 223 235 364

Table 28: epdc-blocktrain-cost

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 1700 1487 1664 1637 8029 1387 1664 1533 708 1058 970 1305 1221 678 787 8029
ep2 872 659 836 809 8029 558 836 704 8029 943 529 8029 829 901 631 1305
ep3 1046 833 1010 8029 8029 732 1046 878 8029 809 566 809 941 902 930 1637

Table 29: epdc-blocktrain-pm

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 161 130 153 136 NA 114 156 125 28 87 78 112 102 54 61 NA
ep2 81 50 73 57 NA 35 77 45 NA 83 43 NA 42 59 71 124
ep3 93 62 86 NA NA 47 89 57 NA 85 35 57 71 72 76 137

Table 30: epdc-hd1-cost

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 2001 1774 2346 1920 2538 1571 1657 1306 676 1129 1450 1607 1369 923 793 100
ep2 1549 1066 1315 541 1094 755 1697 1181 1505 1242 609 100 486 947 1169 1607
ep3 1467 943 1079 100 852 691 1680 1114 1761 1329 730 541 789 1225 1336 1920

Table 31: epdc-hd1-pm

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 293.1 255.4 350.7 279.7 382.7 221.4 235.8 177.3 72.3 147.8 201.3 227.5 187.8 113.6 91.8 3.2
ep2 217.9 137.3 178.9 49.9 142.1 85.4 242.6 156.5 210.6 166.7 61.1 3.2 40.6 117.4 154.6 227.5
ep3 204.2 116.8 139.5 3.2 101.8 74.9 239.7 145.3 253.1 181.1 81.3 49.9 91.2 163.8 182.4 279.7
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Table 32: epdc-hd2-cost

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 2167 1922 2542 2080 2750 1701 1795 1414 732 1223 1570 1741 1483 1000 859 108
ep2 1678 1154 1425 586 1186 817 1839 1279 1631 1346 659 108 526 1025 1267 1741
ep3 1589 1021 1169 108 923 749 1820 1206 1907 1439 790 586 855 1327 1448 2080

Table 33: epdc-hd2-pm

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 58.6 51.1 70.1 55.9 76.5 44.3 47.2 35.5 14.5 29.6 40.3 45.5 37.6 22.7 18.4 0.6
ep2 43.6 27.5 35.8 10 28.4 17.1 48.5 31.3 42.1 33.3 12.2 0.6 8.1 23.5 30.9 45.5
ep3 40.8 23.4 27.9 0.6 20.4 15 47.9 29.1 50.6 36.2 16.3 10 18.2 32.8 36.5 55.9

Table 34: epdc-hd3-cost

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 2417 2144 2835 2320 3067 1898 2002 1577 817 1364 1751 1942 1654 1116 958 121
ep2 1872 1288 1589 654 1322 912 2051 1427 1819 1501 735 121 587 1144 1413 1942
ep3 1772 1139 1304 121 1030 835 2030 1346 2127 1605 882 654 953 1480 1615 2320

Table 35: epdc-hd3-pm

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 58.6 51.1 70.1 55.9 76.5 44.3 47.2 35.5 14.5 29.6 40.3 45.5 37.6 22.7 18.4 0.6
ep2 43.6 27.5 35.8 10 28.4 17.1 48.5 31.3 42.1 33.3 12.2 0.6 8.1 23.5 30.9 45.5
ep3 40.8 23.4 27.9 0.6 20.4 15 47.9 29.1 50.6 36.2 16.3 10 18.2 32.8 36.5 55.9

Table 36: epdc-hd4-cost

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 3168 2809 3715 3040 4019 2487 2623 2067 1070 1787 2295 2544 2167 1462 1255 158
ep2 2453 1687 2082 857 1733 1195 2687 1869 2383 1967 964 158 769 1499 1851 2544
ep3 2322 1493 1708 158 1350 1094 2660 1763 2788 2104 1155 857 1249 1939 2116 3040

Table 37: epdc-hd4-pm

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 29.3 25.5 35.1 28 38.3 22.1 23.6 17.7 7.2 14.8 20.1 22.8 18.8 11.4 9.2 0.3
ep2 21.8 13.7 17.9 5 14.2 8.5 24.3 15.6 21.1 16.7 6.1 0.3 4.1 11.7 15.5 22.8
ep3 20.4 11.7 14 0.3 10.2 7.5 24 14.5 25.3 18.1 8.1 5 9.1 16.4 18.2 28

Table 38: epdc-hd-co2

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 776 676 928 740 1013 586 624 469 191 391 533 602 497 301 243 8
ep2 577 363 473 132 376 226 642 414 557 441 162 8 108 311 409 602
ep3 540 309 369 8 269 198 634 385 670 479 215 132 241 434 483 740
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Table 39: epdc-train-co2

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 438 342 414 362 NA 292 424 326 85 211 182 286 257 107 128 NA
ep2 251 155 227 178 NA 107 239 140 NA 258 133 NA 130 184 221 326
ep3 290 194 266 NA NA 146 278 178 NA 264 108 178 219 223 235 364

Table 40: epdc-train-cost

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 2087 1822 2042 2009 NA 1696 2042 1878 847 1285 1175 1594 1488 810 946 NA
ep2 1052 787 1007 974 NA 660 1007 843 NA 1142 624 NA 998 1088 752 1594
ep3 1269 1004 1224 NA NA 878 1269 1061 NA 974 671 974 1139 1090 1124 2009

Table 41: epdc-train-pm

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 161 130 153 136 NA 114 156 125 28 87 78 112 102 54 61 NA
ep2 81 50 73 57 NA 35 77 45 NA 83 43 NA 42 59 71 124
ep3 93 62 86 NA NA 47 89 57 NA 85 35 57 71 72 76 137
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Option B

Table 42: dcrm-dt1-cost

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 176 1983 2143 2555 2127 2216 2054 2093 2752 2269 2318 2622 2701 2726 2529
dc2 1983 176 2015 2129 1705 1808 2197 1972 2636 2124 1927 2229 2305 2354 2322
dc3 2143 2015 176 2240 2132 2177 2618 2410 3093 2546 2288 2432 2558 2691 2752
dc4 2555 2129 2240 176 2055 1924 2729 2268 2794 2443 1955 1802 2004 2358 2449
dc5 2127 1705 2132 2055 176 1702 2352 1972 2710 2122 2533 2252 2432 2846 2430
dc6 2216 1808 2177 1924 1702 176 2343 1922 2494 2072 1674 1976 2054 2071 2143
dc7 2054 2197 2618 2729 2352 2343 176 2054 2474 2036 2444 2743 2810 2643 2338
dc8 2093 1974 2410 2268 1972 1922 2054 176 2258 1708 1921 2322 2316 2138 1941
dc9 2752 2636 3093 2794 2710 2494 2474 2258 176 2108 2429 2586 2527 2127 1910
dc10 2269 2124 2546 2443 2122 2072 2036 1708 2108 176 2091 2372 2516 2119 1851
dc11 2030 1927 2288 1955 2533 1674 2444 1921 2429 2091 176 1857 1941 1958 2030
dc12 2622 2229 2432 1802 2252 1976 2743 2322 2586 2372 1857 176 1757 2132 2313
dc13 2701 2305 2558 2004 2432 2054 2810 2316 2527 2516 1941 1752 176 1980 2185
dc14 2735 2354 2691 2358 2846 2071 2643 2138 2127 2119 1958 2132 1980 176 1777
dc15 2529 2322 2752 2449 2430 2143 2338 1941 1910 1851 2030 2313 2185 1777 176
dc16 2990 2805 3271 2924 3427 2640 2710 2424 1912 2280 2541 2669 2476 2113 2007

Table 43: dcrm-dt1-pm

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 9.9 268.1 368.6 628.8 358.8 414.9 312.4 337.1 753 448.4 479 671.2 720.5 736.2 612.1
dc2 268.1 9.9 287.8 359.7 92.6 157.7 403.1 261.2 6176.1 356.8 232.6 422.8 471.1 501.7 482
dc3 368.6 287.8 9.9 429.7 361.7 390.3 668.2 537.2 967.9 622.9 460.3 551 630.8 714.6 753
dc4 628.8 359.7 429.7 9.9 313.4 230.6 738.2 447.5 779.6 557.8 250.3 153.8 2176.9 504.6 561.8
dc5 358.8 92.6 361.7 313.4 9.9 90.7 500.7 261.2 726.4 355.8 615 437.6 551 812.1 550
dc6 414.9 157.7 390.3 230.6 90.7 9.9 494.8 229.6 590.4 324.3 72.9 263.2 312.4 323.3 368.6
dc7 312.4 403.1 668.2 738.2 500.7 494.8 9.9 312.4 577.6 301.6 558.8 747.1 789.5 684 491.8
dc8 337.1 262.2 537.2 447.5 261.2 229.6 312.4 9.9 441.5 94.6 228.7 482 478 365.7 241.5
dc9 753 6176.1 967.9 779.6 726.4 590.4 577.6 441.5 9.9 346.9 549 648.5 611.1 358.8 221.8
dc10 448.4 356.8 622.9 557.8 355.8 324.3 301.6 94.6 346.9 9.9 336.1 513.5 604.2 353.8 184.3
dc11 297.7 232.6 460.3 250.3 615 72.9 558.8 228.7 549 336.1 9.9 188.2 241.5 252.3 297.7
dc12 671.2 422.8 551 153.8 437.6 263.2 747.1 482 648.5 513.5 188.2 9.9 125.2 361.7 476
dc13 720.5 471.1 630.8 2176.9 551 312.4 789.5 478 611.1 604.2 241.5 122.2 9.9 266.1 395.3
dc14 742.2 501.7 714.6 504.6 812.1 323.3 684 365.7 358.8 353.8 252.3 361.7 266.1 9.9 138
dc15 612.1 482 753 561.8 550 368.6 491.8 241.5 221.8 184.3 297.7 476 395.2 138 9.9
dc16 903 786.5 1080.2 861.4 1178.8 682 726.4 546 222.7 455.3 619.9 700.8 578.5 349.9 282.9
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Table 44: dcrm-dt2-cost

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 191 2148 2321 2767 2304 2400 2224 2266 2980 2458 2510 2840 2925 2952 2739
dc2 2148 191 2182 2305 1847 1958 2380 2136 2855 2300 2087 2414 2497 2549 2515
dc3 2321 2182 191 2425 2309 2358 2835 2610 3349 2757 2478 2634 2771 2915 2980
dc4 2767 2305 2425 191 2226 2084 2955 2456 3026 2645 2118 1952 2170 2554 2652
dc5 2304 1847 2309 2226 191 1843 2547 2136 2935 2299 2744 2439 2634 3082 2632
dc6 2400 1958 2358 2084 1843 191 2537 2082 2701 2244 1813 2140 2224 2243 2321
dc7 2224 2380 2835 2955 2547 2537 191 2224 2679 2206 2647 2970 3043 2862 2532
dc8 2266 2138 2610 2456 2136 2082 2224 191 2446 1850 2080 2515 2508 2316 2102
dc9 2980 2855 3349 3026 2935 2701 2679 2446 191 2283 2630 2801 2737 2304 2068
dc10 2458 2300 2757 2645 2299 2244 2206 1850 2283 191 2265 2569 2725 2295 2004
dc11 2199 2087 2478 2118 2744 1813 2647 2080 2630 2265 191 2011 2102 2121 2199
dc12 2840 2414 2634 1952 2439 2140 2970 2515 2801 2569 2011 191 1903 2309 2505
dc13 2925 2497 2771 2170 2634 2224 3043 2508 2737 2725 2102 1898 191 2145 2366
dc14 2962 2549 2915 2554 3082 2243 2862 2316 2304 2295 2121 2309 2145 191 1925
dc15 2739 2515 2980 2652 2632 2321 2532 2102 2068 2004 2199 2505 2366 1925 191
dc16 3238 3038 3542 3167 3711 2859 2935 2625 2070 2469 2752 2891 2681 2288 2173

Table 45: dcrm-dt2-pm

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 2 53.6 73.7 125.8 71.8 83 62.5 67.4 150.6 89.7 95.8 134.2 144.1 147.2 122.4
dc2 53.6 2 57.6 71.9 18.5 31.5 176.6 52.2 136 71.4 46.5 84.6 94.2 100.3 96.4
dc3 73.7 57.6 2 85.9 72.3 78.1 133.6 107.4 193.6 124.6 92.1 110.2 126.2 142.9 150.6
dc4 125.8 71.9 85.9 2 62.7 46.1 147.6 89.5 155.9 111.6 50.1 30.8 56.2 100.9 112.4
dc5 71.8 18.5 72.3 62.7 2 18.1 100.1 52.2 145.3 71.2 123 87.5 110.2 162.4 110
dc6 83 31.5 78.1 46.1 18.1 2 99 45.9 118.1 64.9 14.6 52.6 62.5 64.7 73.7
dc7 62.5 176.6 133.6 147.6 100.1 99 2 62.5 115.5 60.3 111.8 149.4 157.9 136.8 98.4
dc8 67.4 52.4 107.4 89.5 52.2 45.9 62.5 2 88.3 18.9 45.7 96.4 95.6 73.1 48.3
dc9 150.6 136 193.6 155.9 145.3 118.1 115.5 88.3 2 69.4 109.8 129.7 122.2 71.8 44.4
dc10 89.7 71.4 124.6 111.6 71.2 64.9 60.3 18.9 69.4 2 67.2 102.7 120.8 70.8 36.9
dc11 59.5 46.5 92.1 50.1 123 14.6 111.8 45.7 109.8 67.2 2 37.6 48.3 50.5 59.5
dc12 134.2 84.6 110.2 30.8 87.5 52.6 149.4 96.4 129.7 102.7 37.6 2 25 72.3 95.2
dc13 144.1 94.2 126.2 56.2 110.2 62.5 157.9 95.6 122.2 120.8 48.3 24.4 2 53.2 79.1
dc14 148.4 100.3 142.9 100.9 162.4 64.7 136.8 73.1 71.8 70.8 50.5 72.3 53.2 2 27.6
dc15 122.4 96.4 150.6 112.4 110 73.7 98.4 48.3 44.4 36.9 59.5 95.2 79 27.6 2
dc16 1176.6 157.3 216 172.3 235.8 136.4 145.3 109.2 44.5 91.1 124 140.2 115.7 70 56.6
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Table 46: dcrm-dt3-cost

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 206 2317 2503 2984 2484 2588 2399 2444 3214 2651 2707 3063 3154 3183 2953
dc2 2317 206 2353 2486 1992 2112 2567 2304 3079 2481 2251 2603 2693 2749 2713
dc3 2503 2353 206 2616 2490 2543 3057 2815 3612 2974 2672 2840 2988 3143 3214
dc4 2984 2486 2616 206 2401 2247 3187 2649 3264 2853 2284 2105 2340 2755 2860
dc5 2484 1992 2490 2401 206 1988 2747 2304 3165 2479 2959 2630 2840 3324 2838
dc6 2588 2112 2543 2247 1988 206 2736 2245 2913 2421 1955 2307 2399 2419 2503
dc7 2399 2567 3057 3187 2747 2736 206 2399 2890 2379 2855 3203 3282 3087 2731
dc8 2444 2306 2815 2649 2304 2245 2399 206 2638 1995 2244 2713 2705 2497 2267
dc9 3214 3079 3612 3264 3165 2913 2890 2638 206 2463 2837 3021 2952 2484 2231
dc10 2651 2481 2974 2853 2479 2421 2379 1995 2463 206 2442 2771 2939 2475 2161
dc11 2371 2251 2672 2284 2959 1955 2855 2244 2837 2442 206 2169 2267 2287 2371
dc12 3063 2603 2840 2105 2630 2307 3203 2713 3021 2771 2169 206 2052 2490 2702
dc13 3154 2693 2988 2340 2840 2399 3282 2705 2952 2939 2267 2046 206 2313 2552
dc14 3194 2749 3143 2755 3324 2419 3087 2497 2484 2475 2287 2490 2313 206 2076
dc15 2953 2713 3214 2860 2838 2503 2731 2267 2231 2161 2371 2702 2552 2076 206
dc16 3492 3276 3820 3415 4003 3083 3165 2831 2233 2663 2968 3118 2891 2468 2344

Table 47: dcrm-dt3-pm

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 2 53.6 73.7 125.8 71.8 83 62.5 67.4 150.6 89.7 95.8 134.2 144.1 147.2 122.4
dc2 53.6 2 57.6 71.9 18.5 31.5 176.6 52.2 136 71.4 46.5 84.6 94.2 100.3 96.4
dc3 73.7 57.6 2 85.9 72.3 78.1 133.6 107.4 193.6 124.6 92.1 110.2 126.2 142.9 150.6
dc4 125.8 71.9 85.9 2 62.7 46.1 147.6 89.5 155.9 111.6 50.1 30.8 56.2 100.9 112.4
dc5 71.8 18.5 72.3 62.7 2 18.1 100.1 52.2 145.3 71.2 123 87.5 110.2 162.4 110
dc6 83 31.5 78.1 46.1 18.1 2 99 45.9 118.1 64.9 14.6 52.6 62.5 64.7 73.7
dc7 62.5 176.6 133.6 147.6 100.1 99 2 62.5 115.5 60.3 111.8 149.4 157.9 136.8 98.4
dc8 67.4 52.4 107.4 89.5 52.2 45.9 62.5 2 88.3 18.9 45.7 96.4 95.6 73.1 48.3
dc9 150.6 136 193.6 155.9 145.3 118.1 115.5 88.3 2 69.4 109.8 129.7 122.2 71.8 44.4
dc10 89.7 71.4 124.6 111.6 71.2 64.9 60.3 18.9 69.4 2 67.2 102.7 120.8 70.8 36.9
dc11 59.5 46.5 92.1 50.1 123 14.6 111.8 45.7 109.8 67.2 2 37.6 48.3 50.5 59.5
dc12 134.2 84.6 110.2 30.8 87.5 52.6 149.4 96.4 129.7 102.7 37.6 2 25 72.3 95.2
dc13 144.1 94.2 126.2 56.2 110.2 62.5 157.9 95.6 122.2 120.8 48.3 24.4 2 53.2 79.1
dc14 148.4 100.3 142.9 100.9 162.4 64.7 136.8 73.1 71.8 70.8 50.5 72.3 53.2 2 27.6
dc15 122.4 96.4 150.6 112.4 110 73.7 98.4 48.3 44.4 36.9 59.5 95.2 79 27.6 2
dc16 1176.6 157.3 216 172.3 235.8 136.4 145.3 109.2 44.5 91.1 124 140.2 115.7 70 56.6
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Table 48: dcrm-dt4-cost

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 308 3471 3750 4472 3722 3878 3594 3662 4816 3971 4056 4589 4726 4770 4425
dc2 3471 308 3526 3725 2984 3165 3845 3452 4614 3717 3372 3900 4034 4119 4064
dc3 3750 3526 308 3919 3731 3810 4581 4217 5412 4455 4004 4256 4477 4709 4816
dc4 4472 3725 3919 308 3597 3367 4775 3969 4890 4275 3422 3154 3506 4127 4286
dc5 3722 2984 3731 3597 308 2979 4116 3452 4742 3714 4433 3941 4256 4980 4253
dc6 3878 3165 3810 3367 2979 308 4100 3364 4365 3627 2930 3457 3594 3624 3750
dc7 3594 3845 4581 4775 4116 4100 308 3594 4329 3564 4277 4800 4917 4625 4092
dc8 3662 3454 4217 3969 3452 3364 3594 308 3952 2990 3362 4064 4053 3742 3397
dc9 4816 4614 5412 4890 4742 4365 4329 3952 308 3690 4250 4526 4422 3722 3342
dc10 3971 3717 4455 4275 3714 3627 3564 2990 3690 308 3660 4152 4403 3709 3238
dc11 3553 3372 4004 3422 4433 2930 4277 3362 4250 3660 308 3249 3397 3427 3553
dc12 4589 3900 4256 3154 3941 3457 4800 4064 4526 4152 3249 308 3074 3731 4048
dc13 4726 4034 4477 3506 4256 3594 4917 4053 4422 4403 3397 3066 308 3465 3824
dc14 4786 4119 4709 4127 4980 3624 4625 3742 3722 3709 3427 3731 3465 308 3110
dc15 4425 4064 4816 4286 4253 3750 4092 3397 3342 3238 3553 4048 3824 3110 308
dc16 5232 4909 5724 5117 5997 4619 4742 4242 3345 3990 4447 4671 4332 3698 3512

Table 49: dcrm-dt4-pm

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 1 26.8 36.9 62.9 35.9 41.5 31.2 33.7 75.3 44.8 47.9 67.1 72 73.6 61.2
dc2 26.8 1 28.8 36 9.3 15.8 40.3 26.1 68 35.7 23.3 42.3 47.1 50.2 48.2
dc3 36.9 28.8 1 43 36.2 39 66.8 53.7 96.8 62.3 46 55.1 63.1 71.5 75.3
dc4 62.9 36 43 1 31.3 23.1 73.8 44.7 78 55.8 25 15.4 28.1 50.5 56.2
dc5 35.9 9.3 36.2 31.3 1 9.1 50.1 26.1 72.6 35.6 61.5 43.8 55.1 81.2 55
dc6 41.5 15.8 39 23.1 9.1 1 49.5 23 59 32.4 7.3 26.3 31.2 32.3 36.9
dc7 31.2 40.3 66.8 73.8 50.1 49.5 1 31.2 57.8 30.2 55.9 74.7 78.9 68.4 49.2
dc8 33.7 26.2 53.7 44.7 26.1 23 31.2 1 44.2 9.5 22.9 48.2 47.8 36.6 24.1
dc9 75.3 68 96.8 78 72.6 59 57.8 44.2 1 34.7 54.9 64.9 61.1 35.9 22.2
dc10 44.8 35.7 62.3 55.8 35.6 32.4 30.2 9.5 34.7 1 33.6 51.3 60.4 35.4 18.4
dc11 29.8 23.3 46 25 61.5 7.3 55.9 22.9 54.9 33.6 1 18.8 24.1 25.2 29.8
dc12 67.1 42.3 55.1 15.4 43.8 26.3 74.7 48.2 64.9 51.3 18.8 1 12.5 36.2 47.6
dc13 72 47.1 63.1 28.1 55.1 31.2 78.9 47.8 61.1 60.4 24.1 12.2 1 26.6 39.5
dc14 74.2 50.2 71.5 50.5 81.2 32.3 68.4 36.6 35.9 35.4 25.2 36.2 26.6 1 13.8
dc15 61.2 48.2 75.3 56.2 55 36.9 49.2 24.1 22.2 18.4 29.8 47.6 39.5 13.8 1
dc16 90.3 78.7 108 86.1 117.9 68.2 72.6 54.6 22.3 45.5 62 70.1 57.9 35 28.3
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Table 50: dcrm-dt-co2

rm1 rm2 rm3 rm4 rm5 rm6 rm7 rm8 rm9 rm10 rm11 rm12 rm13 rm14 rm15
dc1 15 411 565 963 550 636 479 516 1154 687 734 1028 1104 1128 938
dc2 411 15 441 551 142 242 618 400 1042 547 356 648 722 769 738
dc3 565 441 15 658 554 598 1024 823 1483 954 705 844 966 1095 1154
dc4 963 551 658 15 480 353 1131 686 1194 855 384 236 430 773 861
dc5 550 142 554 4176 15 139 767 400 1113 545 942 670 844 1244 843
dc6 636 242 598 353 139 15 758 352 905 497 112 403 479 495 565
dc7 479 618 1024 1131 767 758 15 479 885 462 856 1145 1210 1048 754
dc8 516 402 823 686 400 352 479 15 677 145 350 738 732 560 370
dc9 1154 1042 1483 1194 1113 905 885 677 15 532 841 994 936 550 340
dc10 687 547 954 855 545 497 462 145 532 15 515 787 926 542 282
dc11 456 356 705 384 942 112 856 350 841 515 15 288 370 387 456
dc12 1028 648 844 236 670 403 1145 738 994 787 288 15 192 554 729
dc13 1104 722 966 430 844 479 1210 732 936 926 370 187 15 408 606
dc14 1137 769 1095 773 1244 495 1048 560 550 542 387 554 408 15 211
dc15 938 738 1154 861 843 565 754 370 340 282 456 729 606 211 15
dc16 1383 1205 1655 1320 1806 1045 1113 837 341 698 950 1074 886 536 433

Table 51: epdc-blocktrain-co2

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 438 342 414 362 NA 292 424 326 85 211 182 286 257 107 128 NA
ep2 251 155 227 178 NA 107 239 140 NA 258 133 NA 130 184 221 326
ep3 290 194 266 NA NA 146 278 178 NA 264 108 178 219 223 235 364

Table 52: epdc-blocktrain-cost

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 1700 1487 1664 1637 8029 1387 1664 1533 708 1058 970 1305 1221 678 787 8029
ep2 872 659 836 809 8029 558 836 704 8029 943 529 8029 829 901 631 1305
ep3 1046 833 1010 8029 8029 732 1046 878 8029 809 566 809 941 902 930 1637

Table 53: epdc-blocktrain-pm

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 161 130 153 136 NA 114 156 125 28 87 78 112 102 54 61 NA
ep2 81 50 73 57 NA 35 77 45 NA 83 43 NA 42 59 71 124
ep3 93 62 86 NA NA 47 89 57 NA 85 35 57 71 72 76 137

Table 54: epdc-hd1-cost

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 1600 1419 1877 1536 2031 1256 1326 1044 541 903 1160 1286 1095 739 634 80
ep2 1240 852 1052 433 875 604 1358 945 1204 994 487 80 389 757 935 1286
ep3 1173 754 863 80 682 553 1344 891 1408 1063 584 433 631 980 1069 1536

Table 55: epdc-hd1-pm

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 498.3 434.1 596.2 475.5 650.6 376.4 400.9 301.4 122.9 251.3 342.2 386.8 319.3 193.1 156.1 5.4
ep2 370.5 233.4 304.1 84.9 241.5 145.2 412.4 266 358 283.4 103.9 5.4 69.1 199.6 262.8 386.8
ep3 347.1 198.6 237.2 5.4 173 127.3 407.5 247 430.3 307.9 138.2 84.9 155 278.5 310.1 475.5
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Table 56: epdc-hd2-cost

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 1734 1537 2033 1664 2200 1361 1436 1131 586 978 1256 1393 1186 800 687 87
ep2 1343 923 1140 469 948 654 1471 1023 1304 1077 527 87 421 820 1013 1393
ep3 1271 817 935 87 739 599 1456 965 1526 1151 632 469 684 1062 1158 1664

Table 57: epdc-hd2-pm

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 99.7 86.8 119.2 95.1 130.1 75.3 176.2 60.3 24.6 50.3 68.4 77.4 63.9 38.6 31.2 1.1
ep2 74.1 46.7 60.8 17 48.3 29 82.5 53.2 71.6 56.7 20.8 1.1 13.8 39.9 52.6 77.4
ep3 69.4 39.7 47.4 1.1 34.6 25.5 81.5 49.4 86.1 61.6 27.6 17 31 55.7 62 95.1

Table 58: epdc-hd3-cost

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 1934 1715 2268 1856 2454 1518 1602 1262 653 1091 1401 1553 1323 893 766 97
ep2 1498 1030 1271 523 1058 729 1641 1141 1455 1201 588 97 470 915 1130 1553
ep3 1418 911 1043 97 824 668 1624 1076 1702 1284 705 523 763 1184 1292 1856

Table 59: epdc-hd3-pm

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 99.7 86.8 119.2 95.1 130.1 75.3 176.2 60.3 24.6 50.3 68.4 77.4 63.9 38.6 31.2 1.1
ep2 74.1 46.7 60.8 17 48.3 29 82.5 53.2 71.6 56.7 20.8 1.1 13.8 39.9 52.6 77.4
ep3 69.4 39.7 47.4 1.1 34.6 25.5 81.5 49.4 86.1 61.6 27.6 17 31 55.7 62 95.1

Table 60: epdc-hd4-cost

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 2534 2247 2972 2432 3215 1989 2099 1654 856 1430 1836 2035 1734 1170 1004 127
ep2 1963 1350 1666 686 1386 956 2150 1496 1907 1573 771 127 615 1199 1481 2035
ep3 1858 1194 1367 127 1080 875 2128 1410 2230 1683 924 686 999 1552 1693 2432

Table 61: epdc-hd4-pm

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 49.8 43.4 59.6 47.5 65.1 37.6 40.1 30.1 12.3 25.1 34.2 38.7 31.9 19.3 15.6 0.5
ep2 37 23.3 30.4 8.5 24.2 14.5 41.2 26.6 35.8 28.3 10.4 0.5 6.9 20 26.3 38.7
ep3 34.7 19.9 23.7 0.5 17.3 12.7 40.7 24.7 43 30.8 13.8 8.5 15.5 27.9 31 47.5

Table 62: epdc-hd-co2

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 1319 1149 1578 1258 1722 996 1061 798 325 665 906 1024 845 511 413 14
ep2 981 618 805 225 639 384 1091 704 947 750 275 14 183 528 695 1024
ep3 919 526 628 14 458 337 1078 654 1139 815 366 225 410 737 821 1258
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Table 63: epdc-train-co2

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 438 342 414 362 NA 292 424 326 85 211 182 286 257 107 128 NA
ep2 251 155 227 178 NA 107 239 140 NA 258 133 NA 130 184 221 326
ep3 290 194 266 NA NA 146 278 178 NA 264 108 178 219 223 235 364

Table 64: epdc-train-cost

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 2087 1822 2042 2009 NA 1696 2042 1878 847 1285 1175 1594 1488 810 946 NA
ep2 1052 787 1007 974 NA 660 1007 843 NA 1142 624 NA 998 1088 752 1594
ep3 1269 1004 1224 NA NA 878 1269 1061 NA 974 671 974 1139 1090 1124 2009

Table 65: epdc-train-pm

dc1 dc2 dc3 dc4 dc5 dc6 dc7 dc8 dc9 dc10 dc11 dc12 dc13 dc14 dc15 dc16
ep1 161 130 153 136 NA 114 156 125 28 87 78 112 102 54 61 NA
ep2 81 50 73 57 NA 35 77 45 NA 83 43 NA 42 59 71 124
ep3 93 62 86 NA NA 47 89 57 NA 85 35 57 71 72 76 137
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