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Abstract

This paper examine whether the use of the 24 hours separately generates more accu-
rate volatility estimates and forecasts. We have used the GARCH(1,1), GARCH(2,2), GJR-
GARCH(1,1), GJR-GARCH(2,2), and EGARCH(1,1). We have tried to solve the problem of
explosive volatility process by performing several methods. The results show that the use of
the 24 hours separately does not generate more accurate estimates of the conditional volatility.
One-day ahead forecasts obtained with the different GARCH models for the daily spot prices
are the worst forecasts when comparing with the one-day ahead volatility forecasts of the 24
hours separately. The results also show that the average one-day ahead volatility forecasts
of the 24 hours separately generates significant better forecasts for the daily volatility of the
returns than using the one-day ahead volatility forecasts of the daily spot prices.
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1 INTRODUCTION

1 Introduction

In the last years electricity markets in numerous countries in the world are experiencing a deregu-
lation process. The aim of this deregulation has been based on encouraging the electricity markets
to competition. This process has changed the market pricing mechanism. The electricity prices are
now determined by the interaction between supply and demand. The competition in the electricity
markets should increase customer value, but it has caused the increase in volatility of electricity
prices. The prices in the spot market has been dramatically influenced by this deregulation. Before
this deregulation there was little uncertainty in electricity prices and the prices were predictable.

Electricity has become a regular commodity that can be bought and sold in electricity mar-
kets. The behaviour of electricity prices are quite complex and volatile when compared with other
financial markets or commodities. Escribano et al. (2002) noted that the high volatility of elec-
tricity prices can be explained by some characteristics of electricity. One of the characteristics of
electricity is the non-storability. Electricity cannot be stored for use in the future. For this reason
supply and demand have to be continuously balanced. Sudden increase/ decrease in supply and
demand will change the equilibrium price, because changes in supply and demand cannot easily
be smoothed out. Another characteristic of electricity is the limited transportability. The limited
transportability makes the transmission of electricity among regions impossible. The interaction
between supply and demand plays an important role in the volatility of the prices. The demand
for electricity is highly inelastic, due to the fact that electricity is a necessary commodity and
the consumers do not have substitution possibilities. Electricity demand is also highly weather-
dependent. Demand and supply curves are steep for electricity markets. For high levels of demand,
an increase in demand or decrease in supply lead to a high price jump. This steepness of demand
and supply curves results in price peaks and high volatility.

For risk management, portfolio management and option pricing issues volatility is of crucial
importance. Volatility is also of crucial importance for the participants in the highly volatile elec-
tricity markets. The volatility process influences the pricing of derivative contracts traded. This
highly volatile electricity markets have led to enormous market risks for the participants. It is very
important to understand this volatility process in the electricity markets. The predictability of the
variation in volatility may be useful for financial application such as Value at Risk (Jorion,2000).
Thomas and Mitchell (2005) noted in their paper that high volatility creates uncertainty about
the revenues of the generators and the cost of the retailers/distributors. They also emphasize that
high price volatility can make capacity planning and investment decisions difficult for generators
and operators of the distribution grid. Understanding the volatility is of crucial importance to
sytsem operators and regulators to ensure that markets are designed and operated in a way that
limits market power and promotes confidence and safety for market participants.

In recent years, researchers have examined the volatility in electricity markets. The volatility
of electricity prices in countries, such Spain, California, England, Wales, and the PJM system are
analyzed by Benini et al (2002). Mount (2001) noted in his paper that a uniform auction worsens
the price volatility as compared to a discriminatory auction in the England & Wales system.
Dahlgren et al. (2001) emphasize the need for price risk management for electric utilities, due to
the fact that electricity markets are characterized by extreme short-term price volatility. Dahlgren
et al. applied the Value at Risk(VaR), a method for quantifying price risk, in the Californian
market. Lucia and Schwartz (2002) noted that volatility clustering is a characteristic of electricity
markets. Clustered volatility motivate the use of GARCH models. Escribano et al. (2002) have
examined the generalized autoregressive conditional heteroscedasticity (GARCH) to focus on the
volatility of the daily spot prices. He also included jump-diffusion intensity parameters in their
model specification. A multivariate generalized autoregressive conditional heteroscedasticity is
also used to identify the source and magnitude of price and price volatility spillovers in Australian
electricity spot markets (Worthington et al ,2005). Duffie et al.(1998) and Knittel and Roberts
(2001) focus on diferent types of ARCH or GACRH models to energy prices. Thomas and Mitchell
(2005) consider the GARCH variants inlcude the basic GARCH, TARCH, EGARCH and PARCH
specifications. They examine the volatility process in Australian electricity prices. TARCH models
are used to examine the volatility of the electricity prices for five US markets (Hadsel et al , 2004).
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2 DATA

Chan and Gray (2006) use the EGACRH models to analyze the returns.
This paper focuses on the volatility in the Norwegian electricity market. The idea is that the

volatility is not constant and not directly observable during the considered period. Our purpose
is to develop time series models to estimate the volatility (σ2

t ) and forecast σ2
t . We will make

use of different GARCH models. The conditional volatility of a time series can be measured with
a GARCH model. We will examine GARCH models in two different ways. In the first case we
consider GARCH models fit to the returns of the 24 hours separately and in the second case we
consider GARCH models fit to the returns of daily spot prices (average of the 24 hours). We
will try to examine whether the use of the 24 hours separately generates more accurate volatility
estimates and forecasts. The data of 24 hours separately is more valuable data than taking the
average of the 24 hours. Our expectation is that the use of the 24 hours separately generates more
accurate volatility estimates and forecasts.

This paper is organized as follows. Section 2 describes the dataset and the characteristics
of electricity prices. Section 3 discusses the specification of different GARCH models and the
evaluation of GARCH models. Section 4 discusses the estimation and the evaluation of volatility
with different GARCH models. Section 5 discusses the volatility forecasts with different GARCH
models. Section 6 presents the results of GARCH models obtained by two different ways and
section 7 states our conclusions.

2 Data

In this paper we will work with data from Nord Pool Spot. Nord Pool Spot runs the largest
power market in Europe and offers both day-ahead and intraday markets to its customers. There
are trading 350 companies from 20 countries on this market. The Norwegian power market is no
longer solely Norwegian since 1996. The Norwegian power market has had a common Scandina-
vian market for buying and selling electricity. Now all of Scandinavia has a single market with
daily trading of spot and forward contracts over the Scandinavian power exchange Nord Pool in
Oslo.1

2.1 Data Description

The data obtained from Nord Pool Spot consist twenty-four time series, one for each hour during a
day, of daily (seven days a week) system prices. The prices are given in Norwegian kroner( NOK)
per MWh with two decimal points. The data comprise electricity prices between May 4,1993 and
March 9,2010,that is more than 18 years of data, totaling 6519 daily observations. The obtained
data misses some values and the most of the missing values are around the fourth week of March
at 3:00 AM. The incomplete data is caused by the transition from standard time to the summer
time. The missing values are replaced by the mean of the preceding and following value for the
electricity spot prices. We will generate a new time series by calculating the average of the 24
hourly prices and we will refer to this average as the daily spot price.

Pt = 1
24

24∑
m=1

Pt,m with m = 1, ....., 24 and t = 1, ....., T

The daily spot prices and the first differences of log daily spot prices for the considered pe-
riod are shown in figure 1. The (log)return is defined as the first differences of spot prices
(rt = ln(Pt/Pt−1)). From the graph of the daily spot prices one can observe several spikes. For ex-
ample, daily spot prices reached a maximum value of 1090.02 NOK/MWh in February 2010. The
dynamics of the returns show clear patterns of volatility clustering. The basic statistical properties
of the returns such as mean, skewness and kurtosis of the data are shown in table 1. The returns

1see www.nordpoolspot.com for more information

4



2.2 Seasonality 2 DATA

Figure 1: The dynamics of the daily spot prices and returns

(a) (b)

In the left chart the dynamics of the daily spot prices are displayed. The right chart displays the
dynamics of the first differences of log daily spot prices (returns). The considered period is from

May,4,1992 to March 9,2010,totaling 6519 daily observations.

are obtained by using the daily spot prices. The mean of the returns takes on a value of 0.000343
(0.03%). The standard deviation of the returns is equal to 0.123043 (12,3%). This results in an
annualized volatility of 2,3507 (235,07%), so the returns are very volatile2. The kurtosis is equal
to 91,02, which indicates that the data frequently contains extreme returns. We reject the null
hypothesis of normality because the kurtosis significantly differs from three. The returns have fat
tails. Table A.1 in the Appendix shows the basic statistical properties of the returns obtained
by using the 24 hours separately. The most volatile hours are 8 AM, 9 AM and 7 AM with a
standard deviation of 23,28%, 22,96% and 21,18% respectively. The annualized volatilities for
these hours are 444,7%, 438,68% and 404,62% respectively. The kurtosis of all hours significantly
differs from three, so we reject the null hypothesis of a normal distribution of the returns. This
means that the occurrence of extremely low and high returns has a higher probability than for a
normal distribution with the same variance.

Table 1: Basic statistical properties

Returns

Mean 0.000343
Median -0.005322
Maximum 2.501104
Minimum -2.834008
Std. Dev. 0.123043
Skewness 0.007391
Kurtosis 91.025440

The basic statistical properties of the (log)returns. The returns are obtained by using the daily
spot prices.

2.2 Seasonality

The electricity spot prices show some features of intra-week and intra-year seasonality. Figure 2
shows the average hourly spot prices for every day of the week. The average price for every day
of the week are also shown in figure 2.

2Annualized volatility is obtained by multiplying the standard deviation by the square root of 365
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2.2 Seasonality 2 DATA

Figure 2: Intra-week seasonality

The left chart displays the average hourly spot prices for every day of the week for the considered
period. The left table shows the average price for every day of the week for the considered period.

From the figure one can observe that the daily spot prices on weekdays differ from the daily spot
prices on weekend days. The difference in prices are simply caused by less electricity consumption
during the weekends. F-tests confirm that there is a significant difference between the daily spot
prices on weekdays and weekend days.3 The daily electricity spot prices during cold season are
higher than during warm season. Cold season is defined as the month October through April and
warm season as the month May through September (Johnson et al, 1999). Figure 3 displays the
average monthly spot prices and the average spot prices during cold and warm season.

Figure 3: Intra-year seasonality

The left chart displays the average monthly spot prices. The left table shows the average spot
prices during cold and warm season for the considered period.

A formal F-test is performed to confirm the difference between prices. From the result of the
F-test we can conclude that there is a significant difference between the daily spot prices during
cold and warm season.4

3The following regression model yt = α + µ1D1,t + µ2D2,t + ut is used to check the presence of seasonality,
where D1,t is a dummy variable for Saturday and D2,t for Sunday. The F-tests with null hypothesis that α = µ1
and α = µ2 give the values 1951.24 (0,000) and 2048.89 (0,000) respectively with the p-values in the parentheses.

4The F-test takes on a value of 234,51 with a p-value of 0,0000
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2.3 Dealing with data

The existence of price spikes (outliers) during the considered period may affect the values of pa-
rameter estimates of the volatility process (Carnero,et al.,2001; Verhoeven and McAleer, 2000).
This existence of price spikes may cause explosive volatility process. This is not an appealing
result due to the fact that the predictions of the model are meaningless. This problem creates to
do any possible risk management analysis based on returns. We will try to solve this problem by
performing several methods based on the literature which are explained below:

Method 1:
All returns bigger than 4 standard deviations have been substituted by the sample mean( Carnero,
et al 2001).

Method 2:
The seasonal effects and individual spikes are treated pre-whitening the data by removing sea-
sonalities and outlier effects. Thomas and Mitchell (2005) use an OLS framework to remove
seasonalities and outlier effects before fitting the various GARCH models to the data. The filtered
data are derived by capturing the residuals (εt) from the following regression model.

RPt = α0 +

6∑
j=1

β2,jDAYj +

12∑
k=1,6=9

β3,kMTHk +

2010∑
l=1992,6=2001

β4,lY Rl +

Rs∑
o=0

β5,oSPIKEo (1)

where: RPt represents the returns at time t, DAYj represents the dummy variable for each day
of the week. MTHk represents the dummy variable for each month. Y Rl represents the dummy
variable for each year and SPIKEs represents a set of Rs dummy variables, one for each extreme
spike(a filter for outliers at three standard deviations), with Rs representing the number of ex-
treme returns.

Method 3:
This method eliminate the weekly component by applying moving average-based deseasonalization
technique beforehand. First, we estimate the trend for the vector of daily spot prices [x1, ......, x6519]
by applying a moving average filter specially chosen to elimate the weekly component and to
dampen the noise (Trueck et al, 2007):

m̂t = median(xt−3...., xt...., xt+3), t = 4......6516 (2)

Secondly, the average wk of the deviations ((xk+7j − m̂k+7j), 3 < k + 7j ≤ 6516) is calculated
for each k=1,...,7. Since these average deviations do not necessarily sum to zero, the seasonal
component sk can be estimated as

ŝk = wk −
1

7

7∑
i=1

wi (3)

where k=1,....,7 and ŝk = ŝk−7 for k > 7. The deseasonalized data is the defined as yt = xt − ŝt
for t=1,....,6519 and is used to calculate the returns and fit the GARCH models. In this case the
returns are calculated in two different ways.

A) As mentioned before , the returns are defined as (rt = ln(Pt/Pt−1)). In this case the nega-
tive prices are removed.

B) In the second case the returns are defined as (Pt − Pt−1)/|Pt−1|). The denominator is
specified as the absolute value to allow for the presence of negative prices.
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3 MODELS

Method 4:
This is the same method as method 3, but the deseasonalized data is used to detect and replace
the outliers( bigger than 3 standard deviations). The outliers were replaced by the median of all
prices having the same weekday and month (Trueck et al, 2007). The (log)return is defined as the
first differences of spot prices (rt = ln(Pt/Pt−1)). In this case there are not negative prices.

3 Models

Lucia and Schwartz (2002) noted that volatility clustering is a characteristic of electricity markets.
As mentioned before the dynamics of the returns show clear patterns of volatility clustering.
Clustered volatility motivate the use of GARCH models.

3.1 The mean equation

As mentioned before returns are defined as the first differences of log prices. We assume the
following mean equation for the daily price returns (Franses and van Dijk,2000).

rt = µ+ εt (4)

where rt is the daily (log)return and εt is not white noise with the following properties.

E[εt|It−1] = 0 (conditional mean zero)
E[ε2t |It−1] = σ2

t (time-varying conditional variance)

where It−1 is called the information set available at time t-1.

We also note that

E[rt|It−1] = µ and V [rt|It−1] = E[(rt − µ)2|It−1] = σ2
t

Equation (1) can also be written as follows;

rt − µ = εt = ztσt (5)

where zt ∼ i.i.d.(0, 1).
The idea is that the conditional variance (σ2

t ) of εt is not constant. On the other hand we still
assume that the unconditional variance is constant.

E[ε2t ] = E[E[ε2t |It−1]]=E[σ2
t ] = σ̄2

3.2 The basic GARCH model

For the purpose of this research the GARCH(1,1) will be examined. Hansen and Lunde (2004)
concluded that it is difficult to find a volatility model that outperforms the simple GARCH(1,1).
The GARCH(1,1) conditional variance equation (3) can be defined as follows, ( Engle, 1982 and
Bollerslev,1986).

σ2
t = ω + αε2t−1 + βσ2

t−1 (6)

where ω > 0, α > 0 and β > 0. These restrictions guarantee that the conditional variance is
positive (σ2

t > 0). From equation (3) one can see that the current conditional volatility depends

8



3.3 The GJR-GARCH model 3 MODELS

on a mean value, the lagged squared residuals and yesterday’s conditional volatility. The intuitive
idea behind this model is that the volatility changes only gradually over time, such that σ2

t will
be closely related to σ2

t−1. Given the value of β, large (small) changes in σ2
t−1 will be followed by

large (small) changes in σ2
t . Since E[ε2t |It−1] = σ2

t , the GARCH(1,1) model (3) can be written as
an ARMA(1,1) model for ε2t

ε2t = ω + (α+ β)εt−1 + vt + βvt−1 (7)

where vt = ε2t − σ2
t and E[vt|It−1] = 0. Equation (4) shows that large (small) changes in εt−1 will

be followed by large (small) changes in εt.
If α+β < 1, GARCH(1,1) is covariance stationary. This means that the variance reverts back

to its unconditional mean σ̄2 = ω
1−α+β .

The general GARCH(p,q) conditional variance equation is given by equation 5:

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βjσ
2
t−j (8)

The squared residuals ε2t can be written as an ARMA(max(p,q),q) model. If

p∑
i=1

αi +

q∑
i=1

βi < 1,

GARCH(p,q) is covariance stationary and the unconditional variance of εt is

σ̄2 =
ω

1− (

p∑
i=1

αi +

q∑
i=1

βi)

(9)

3.3 The GJR-GARCH model

The GARCH(p,q) model cannot capture the asymmetric effects of positive and negative shock.
The sign of the shock have no influence on the conditional volatility. This means that positive
and negative shock of the same magnitude have the same effect on the conditional volatility. In
practice, we observe that negative shocks (bad news) tend to have a larger impact on volatility
than positive shocks( good news). Large negative returns often led to the start of periods of
high volatility. For this reason different nonlinear GARCH models are developed over the years
(Franses and van Dijk,2000). These nonlinear GARCH models are designed to capture the effects
of positive and negative shocks or other types of asymmetries. In our paper we will make use of
GJR-GARCH model( Glotsen, Jagannathan and Runkle,1993). The GJR-GARCH model obtained
from the GARCH(1,1) model (3) is given by

σ2
t = ω + αε2t−1 + γε2t−1It−1 + βσ2

t−1 (10)

where It−1 = 1 if εt−1 < 0 and 0 otherwise. The restrictions ω > 0, α+γ
2 and β > 0 guarantee that

the conditional variance is positive. A good news has an impact of α and a bad news has a impact
of α + γ on the conditional variance. If γ > 0, the impact of bad news is bigger and a leverage
effect is present. If α+γ

2 + β < 1 is satisfied, the unconditional variance of εt is σ2 = ω
1−α+γ

2 −β
.

The general GJR-GARCH(p,q) conditional variance equation is given by equation 8:

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

r∑
k=1

γkε
2
t−kIt−k +

q∑
j=1

βjσ
2
t−j (11)

9



3.4 The EGARCH model 4 ESTIMATION OF GARCH MODELS

3.4 The EGARCH model

Another extension of the GARCH model which capture the asymmetric effects of positive and neg-
ative shock is the Exponential GARCH ( EGARCH) model. The EGARCH model was introduced
by Nelson (1991). The specification of the conditional variance is given by equation 9:

log(σ2
t ) = ω +

p∑
i=1

αi

∣∣∣∣ εt−iσt−i

∣∣∣∣+

r∑
k=1

γk
εt−k
σt−k

+

q∑
j=1

βj log(σ2
t−j) (12)

The advantage of the EGARCH model over the pure GARCH specification is that the conditional
variance are guaranteed to be non-negative, even if the parameters are negative. In the EGARCH
the log(σ2

t ) is modeled instead of σ2
t . If γk < 0, bad news (leverage effects) have a larger impact

on the conditional variance. The impact on the conditional variance is asymmetric if γk 6= 0.

Covariance stationarity requires

q∑
j=1

βj < 1.

4 Estimation of GARCH models

The parameters in GARCH models can be estimated by Maximum Likelihood. Maximum like-
lihood estimation involves finding the values for the parameters that maximize the following log
likelihood function.

θ̂ML = argmax lnL(θ) = argmax

T∑
t=1

lt(θ) (13)

where θ = (µ, ω.α, β) is the set of all parameters that are to be optimized and lt = ln(f(rt|It−1; θ)) =
lnf(rt|rt−1, rt−2, ...θ). Maximum Likelihood estimates are consistent and asymptotically normal
under certain regularity conditions. To define the specific log likelihood function, GARCH model
requires an assumption about the conditional distribution of the error term. The three assump-
tions are: normal (Gaussian) distribution, Student’s t-distribution with fixed degrees of freedom
ν = 10, and the generalized error distribution with fixed parameter τ = 1.5. In case zt (2) is
assumed to have a normal distribution, the contribution to the log- likelihood for observation t is:

lt = −1

2
log(2π)− 1

2
logσ2

t −
1

2

ε2t
σ2
t

(14)

As mentioned in the ” Data ” section, the returns have a fat-tailed distribution. Huismann and
Huurman( 2003) emphasize that a fat-tailed distribution of prices is a characteristic of electricity
markets. Due to the fact of fat-tailed distribution, it may be more appropriate to use the student’s
t-distribution or the generalized error distribution. For the GARCH model with the Student’s t-
distribution , the log- likelihood contributions are of the form:

lt = −1

2
log

(
π(ν − 2)Γ(υ2 )2

Γ( (υ+1)
2 )2

)
− 1

2
logσ2

t −
(ν + 1)

2
log

(
1 +

ε2t
σ2
t (ν − 2)

)
(15)

The degree of freedom ν > 2 controls the tail behavior and Student’s t-distribution approaches
the normal as ν →∞. For the GED, the contribution to the log-likelihood for observation t is:

lt = −1

2
log

(
Γ( 1

τ )3

Γ( 3
τ )( τ2 )2

)
− 1

2
logσ2

t −
(

Γ( 3
τ )(ε2t )

σ2
tΓ( 1

τ )

) τ
2

(16)

where the tail parameter τ > 0. The generalized error distribution is fat-tailed if τ < 2 and a
normal distribution if τ = 2.

We consider the GARCH model in two different ways. In the first case we consider the GARCH
model fit to the returns of the 24 hours separately. We estimate the parameters of the GARCH
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4.1 Evaluating GARCH Models 4 ESTIMATION OF GARCH MODELS

model and the conditional volatility for each hour separately. In the second case we consider
the GARCH model fit to the returns of the daily spot prices. The basic GARCH model and its
extensions which examined in this paper are summarized in table 2.

Table 2: GARCH variants

GARCH(1,1) σ2
t = ω + αε2t−1 + βσ2

t−1

GARCH(2,2) σ2
t = ω + α1ε

2
t−1 + α2ε

2
t−2 + β1σ

2
t−1 + β2σ

2
t−2

GJR-GARCH(1,1) σ2
t = ω + αε2t−1 + γε2t−1It−1 + βσ2

t−1

GJR-GARCH(2,2) σ2
t = ω + α1ε

2
t−1 + α2ε

2
t−2 + γ1ε

2
t−1It−1 + γ2ε

2
t−2It−2 + β1σ

2
t−1 + β2σ

2
t−2

EGARCH(1,1) log(σ2
t ) = ω + α| εt−1

σt−1
|+ γ εt−1

σt−1
+ βlog(σ2

t−1)

This table gives the summary of the different conditional variance equations which are used for
the purpose of this research

4.1 Evaluating GARCH Models

As mentioned in the previous section we will consider the GARCH model for the daily spot prices
and the 24 hours separately. The estimated GARCH models can be evaluated using a number of
statistical diagnostics. The properties of the standardized residuals can be used to assess whether
an estimated GARCH model is any good. The standardized residuals can be described as:

ẑt = rt−µ̂
σ̂t

If the GARCH model is correctly specified, the standardized residuals should have the follow-
ing properties;

- No autocorrelations in the ẑt: If the mean equation is correctly specified, the standardized
residuals should not display serial correlation. We will check the correlogram of the standardized
residuals and use Ljung-Box Q-test for remaining autocorrelation in the mean equation.

- No autocorrelations in the squared ẑt: To test the remaining autocorrelation in the variance
equation and to check the specification of the variance equation the correlogram of the squared
standardized residuals can be plotted. The Engle’s LM test can be used to test whether the
standardized residuals exhibit additional ARCH (Engle,1992). The ARCH-LM test is a test for
presenting of conditional heteroscedasticity in the data. The test is based on a regression of the
squared residuals on a constant and q of its lags. ARCH-LM tests the null hypothesis of no remain-
ing ARCH effects. The variance equation is correctly specified if there should be no ARCH left in
the standardized residuals. The residuals are obtained by estimating the model for the conditional
mean. The LM test for ARCH(1) is performed for the residuals of the different GARCH(1.1). For
the residuals of different GARCH(2,2) we perform the LM test for ARCH(2).

- Kurtosis 3, if normality is assumed
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5 FORECASTING

5 Forecasting

In this section we will discuss the out-of-sample forecasting ability of the basic GARCH model and
its extensions. The different GARCH models can be used to forecast volatility and can be judged
by this ability. We forecast the one-day ahead volatility. The one-day ahead volatility are obtained
by static ( a series of rolling single-step-ahead) forecasts using Eviews 7. The data is divided into
in-sample and out-of-sample. The in-sample data contains the first 3259 daily observations. The
GARCH model will be estimated over the in-sample data. The estimated parameters are used to
obtain one-day ahead volatility forecasts.

5.1 Forecasts with the basic GARCH

The h-step daily forecast can be formed as follows:

σ̂t+h|t = ω

h−2∑
i=0

(α+ β)i + (α+ β)h−1σ2
t+1 (17)

We can rewrite equation (6) if α+ β < 1, such that GARCH model is stationary.

σ̂t+h|t = σ̄2 + (α+ β)h−1(σ2
t+1 − σ̄2) (18)

where σ̄2

(1−α−β) is the unconditional variance of εt.

The one-step ahead forecast can be described based on GARCH(1,1) model as follows:

σ̂2
t+1|t = E[σ2

t+1|It ] = E[ω + αε2t + βσ2
t |It] = ω + αε2t + βσ2

t = σ2
t+1 (19)

where σ̂2
t+1|t is the one day ahead volatility forecast. The one-step ahead conditional variance

forecast for the GARCH(2,2) is given by equation 17:

σ̂2
t+1|t = ω + α1ε

2
t + α2ε

2
t−1 + β1σ

2
t + β2σ

2
t−1 (20)

5.2 Forecasts with the GJR-GARCH

The one-step-ahead conditional variance forecast for the GJR-GARCH(p,q) is given by

σ̂2
t+1|t = ω +

q∑
i=1

[αiεt−i+1] + γε2t It +

p∑
j=1

[βjσt−j+1] (21)

From equation (18), the one-step ahead conditional variance forecast for GJR-GARCH(1,1) and
GJR-GARCH(2,2) are given by equation (19) and (20) respectively.

σ̂2
t+1|t = ω + αεt + γε2t It + βσt (22)

σ̂2
t+1|t = ω + α1εt + α2εt−1 + γε2t It + β1σt + β2σt−1 (23)

5.3 Forecasts with the EGARCH

The one-step-ahead conditional variance forecast for the EGARCH(p,q) is given by

logσ̂2
t+1|t = ω +

q∑
i=1

[∣∣∣∣ εt−i+1

σt−i+1

∣∣∣∣+ γi

(
εt−i+1

σt−i+1

)]
+

p∑
i=1

βj log(σ2
t−i+1). (24)

From equation (18), the one-step ahead conditional variance forecast for EGARCH(1,1) is given
by equation (22).

logσ̂2
t+1|t = ω +

[∣∣∣∣ εtσt
∣∣∣∣+ γ1

(
εt
σ

)]
+ βlog(σ2

t ). (25)
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5.4 Evaluating volatility forecasts

Now we will describe how the daily volatility forecasts are evaluated. The mean-squared predic-
tion error (MSPE) criterion is used to evaluate out-of-sample volatility forecasts. The MSPE is
defined as follows (Zivot,2008);

MSPE =
1

P

P∑
i=1

(σ2
t+i − σ̂2

t+i|t+i−1)2 (26)

where P is the out-of-sample data and σ̂2
t+i|t+i−1 are the one-step forecasts obtained by using

the in-sample parameter estimates and the relevant information sets. The MSPE is the aver-
age squared difference between the actual conditional variance and the corresponding volatility
forecast. Mean absolute error are also used in the literature to evaluate out-of-sample volatility
forecasts (Zivot,2008).

MAE =
1

P

P∑
i=1

|σ2
t+i − σ̂2

t+i|t+i−1| (27)

Models with smaller MSPE and MAE are ” better ”. The actual conditional variance σ2
t+i is

unobservable. Because of this complication the daily squared return r2
t+i is used as a proxy. The

MSPE and MAE exhibit an important shortcoming. The shortcoming refers to the use of the
proxy. As mentioned before we assume that rt = ztσt, with zt ∼ i.i.d.(0, 1). The daily squared
return r2

t+1 is an unbiased estimate of σ2
t+1 due to the fact that E[r2

t+1|It] = σ2
t+1. On the other

hand, r2
t+1 = z2

t+1σ
2
t+1 is a noisy estimate of σ2

t+1 due to its asymmetric distribution. This leads
to the conclusion that quite accurate volatility forecasts are no good. We will evaluate volatility
forecasts by regressing r2

t+1 on σ̂2
t+1|t.

r2
t+1 = β0 + β1σ̂

2
t+1|t + ut+1. (28)

” Good ” volatility forecasts are characterized by β0 ≈ 0, β1 ≈ 1 and high regression R-squared.

5.5 Evaluating the average volatility forecasts

We will compare the conditional volatility forecasts obtained by the daily spot prices with the
average conditional volatility forecasts obtained by the 24 hours separately. In the case of the
average volatility forecasts we use the hourly volatility forecasts and average these hours to forecast
the daily volatility of the returns. The forecast error can be defined as et+h|t = σ2

t+i − σ̂2
t+i|t+i−1

where σ2
t+i is the squared returns of the daily spot prices. In the first case σ̂2

t+i|t+i−1 is volatility

forecasts obtained with the daily spot prices and in the second case σ̂2
t+i|t+i−1 is the average

volatility forecasts obtained with the 24 hours separately.
We make use of the Diebold Mariano test to determine whether these differences are sta-

tistically significant. DM-statistic tests the null hypothesis that one model model has superior
predictive performance over another model (Diebold and Mariano,1995). Suppose we have model
i and model j, respectively with forecast errors ei,t+h|t and ej,t+h|t. The loss differential of the
Diebold- Mariano (DM) is defined as

dt+h = e2
i,t+h|t − e

2
j,t+h|t

and the null hypothesis of equal predictive accuracy is H0 : E[dt+h] = 0. The DM test statistic
can be defined as:

DM =
d̄√

V (d̄t+h)
P

∼ N(0, 1) (29)
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where d̄ = 1
P

T+P∑
t=T

dt+h, V (d̄t+h) = 1
P−1

T+P−1∑
t=T

(dt+h−d̄)2 and P is a set of out-sample observations.

6 Empirical Results

The empirical parameter estimates of the basic GARCH(1,1) have α + β > 1 for the daily spot
prices and the 24 hours separately. The fitted GJR-GARCH(1,1) model for the daily spot prices
and hours 1-11 and 14-17 are not covariance stationary. We will try to solve this problem by
performing several methods based on the literature as described before. The results of several
methods to deal with the data are shown in table 3.

Table 3: Non-covariance stationary hours

GARCH(1,1) GJR-GACRH(1,1)

Original data Daily spot prices, 1-24 Daily spot prices, 1-11,14-17
Method 1 1-12,14-19,23,24 3-9
Method 2 1-6 -
Method3a Daily spot prices, 1-24 1-6
Method3b Daily spot prices, 1-24 Daily spot prices, 1-7, 10, 14, 18-24
Method 4 1-24 2-9, 15

This table displays the remaining non-covariance stationary hours. The estimates of the GARCH
models are obtained using the returns after dealing the data by different methods. We will

assume that the errors follow a Normal distribution.

From table 3 one can see that method 2 is the best way to solve the problem of non-covariance
stationary GARCH processes. The fitted GARCH(1,1) model for the time series of hour 1,2,3,4,5,and
6 are not covariance stationary. The fitted GJR-GARCH(1,1) model for the daily spot prices and
24 hours separately are covariance stationary. From now we will work with returns after applying
method 2. The estimation of various GARCH models and the forecasts are based on returns
after applying method 2 to the original data. The non-covariance stationary GARCH process can
be explained by the deregulation process. The prices in the spot market has been dramatically
influenced by this deregulation process and it has caused the increase in volatility of electricity
prices. Before the deregulation process the prices were predictable and there was little uncertainty
in electricity prices.

6.1 Evaluating estimates of GARCH models

The GARCH model for the daily spot prices and the 24 hours separately are estimated under the
assumption that the errors follow a normal distribution, student’s t- distribution, and generalized
error distribution. After the parameters of various GARCH models are estimated, the next step
will be diagnostic checking on the adequacy for GARCH models. We evaluate the standardized
residuals of various GARCH models. We check the correlogram of the standardized residuals for re-
maining autocorrelation in the mean equation. We check the correlogram of squared standardized
residuals which consist of (partial) autocorrelations for remaining autocorrelation in the variance
equation. We also test the remaining ARCH in the variance equation. The mean equation of the
GARCH(1,1) and GARCH(2,2) fitted to the daily spot prices and the 24 hours separately fails to
exclude the autocorrelation in the standardized residuals, regardless the assumptions about the
errors. The results of analyzing the specification of the variance equation are shown in table 4.
This table also shows the standaridized residuals of hours which are normally distributed. From
table 4 one can see that the squared standardized residuals of GARCH(1,1) and GARCH(2,2)
fitted to the daily spot prices consist no autocorrelation. We can also not reject the ARCH LM

14



6.1 Evaluating estimates of GARCH models 6 EMPIRICAL RESULTS

test and conclude that the conditional heteroscedasticity is no longer present in the data. The
standardized residuals are not normally distributed. These results are valid regardless the assump-
tion about the errors. The fitted GARCH(1,1) and GARCH(2,2) for most of the hours between
hour 6 and hour 19 consist autocorrelation. We conclude the same for the ARCH LM test per-
formed to the hours between 6 and 19. We reject the null hypothesis and can conclude that the
conditional heteroscedasticity is present in the data of these hours. The standardized residuals
of the fitted GARCH for hours between 20 and 4 consist no autocorrelation and the conditional
heteroscedasticity is no longer present, regardless the assumptions about the errors.

Table 4: Diagnostic Checking basic GARCH model

GARCH(1,1) GACRH(2,2)

error: Normal
No autocorrelation Daily spot prices, 1-4, 20-24 Daily spot prices, 1-5,20-24

ARCH LM Daily spot prices,1-4, 20-24 Daily spot prices, 1-7,9,10,12,13,15,18-24
Normally distributed - -

error: Student’s t
No autocorrelation Daily spot prices, 1-4,20-24 Daily spot prices, 1-6,18,20,21,24

ARCH LM Daily spot prices, 1-5,7,17,19-24 Daily spot prices, 1-9,11,12,14,15,17-24
Normally distributed - -

error: GED
No autocorrelation Daily spot prices, 1-4,20-24 Daily spot prices,1-6,19-24

ARCH LM Daily spot prices,1-5,7,8,20-24 Daily spot prices, 1-7,10,12,14,15,18-24
Normally distributed - -

This table shows the hour numbers which squared standardized residuals contain no
autocorrelation and do not reject the ARCH-LM test. The standardized residuals of hours which

are normally distributed are included in this table.

Table 5: Diagnostic Checking GJR-GARCH model

GJR-GARCH(1,1) GJR-GACRH(2,2)

error: Normal
No autocorrelation Daily spot prices, 2-4, 21-24 Daily spot prices, 1-5,19-24

ARCH LM Daily spot prices,2-4, 21-24 Daily spot prices, 1-5,7,10,12,18-24
Normally distributed - -

error: Student’s t
No autocorrelation Daily spot prices, 2-5,21-24 Daily spot prices, 1-5,20-24

ARCH LM Daily spot prices, 1-5,7,8,19-24 Daily spot prices, 1-6,8-13,17-24
Normally distributed - -

error: GED
No autocorrelation Daily spot prices, 2-5,21-24 Daily spot prices,1-5,20-24

ARCH LM Daily spot prices, 2-5,7-9,20-24 Daily spot prices, 1-5,8-10,12,18-24
Normally distributed - -

This table shows the hour numbers which squared standardized residuals contain no
autocorrelation and do not reject the ARCH-LM test. The standardized residuals of hours which

are normally distributed are included in this table.

The mean equation of the GJR-GARCH(1,1) and GJR-GARCH(2,2) fitted to the daily spot
prices and the 24 hours separately fails to exclude the autocorrelation in the standardized residu-
als, regardless the assumptions about the errors. The results of evaluating the specification of the
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variance equation and normally distributed hours are shown in table 5. The squared standardized
residuals of the fitted GJR-GARCH(1,1) and GJR-GARCH(2,2) for the daily spot prices consist
no autocorrelation. From the results in table 5 one can see that the conditional heteroscedastic-
ity is no longer present in the data and the standardized residuals are not normally distributed.
These results are valid regardless the assumption about the errors. Analyzing the hours sepa-
rately we can see that the fitted GJR-GARCH(1,1) and GJR-GARCH(2,2) for the hours between
6 and 19 consist autocorrelation. Most of the hours between 5-20 for the fitted GJR-GARCH(1,1)
model present conditional heteroscedasticity in the data. Hours between 18 -5 for the fitted GJR-
GARCH(2,2) present no longer conditional heteroscedasticity regardless the assumption about the
errors.

Also in the case of the EGARCH(1,1) fitted to the daily spot prices and the 24 hours separately
the mean equation fails to exclude the autocorrelation in the standardized residuals, regardless the
assumptions about the errors. The results of evaluating the specification of the variance equation
are shown in table 6. This table also shows the standardized residuals of hours which are normally
distributed.

Table 6: Diagnostic Checking E-GARCH(1,1) model

E-GARCH(1,1)

error: Normal
No autocorrelation Daily spot prices, 4,11,14,

ARCH LM Daily spot prices,4,11,24
Normally distributed -

error: Student’s t
No autocorrelation Daily spot prices, 3,4,11,24

ARCH LM Daily spot prices, 3-5,11,24
Normally distributed -

error: GED
No autocorrelation Daily spot prices, 23,24

ARCH LM Daily spot prices, 2, 24
Normally distributed -

This table shows the hour numbers which squared standardized residuals contain no
autocorrelation and do not reject the ARCH-LM test. The standardized residuals of hours which

are normally distributed are included in this table.

From the results of table 6 one can see that the squared standardized residuals of EGARCH(1,1)
fitted to the daily spot prices consist no autocorrelation. We can also not reject the ARCH-LM
test and conclude that the conditional heteroscedasticity is no longer present in the data. The
standardized residuals are not normally distributed. The results of the fitted EGARCH(1,1)
model for the 24 hours separately are also shown in the table 6. Most of the 24 hours consist
autocorrelation regardless the assumption of the errors. We can see the same results for ARCH
LM test performed to the residuals of the 24 hours separately. We reject the null hypothesis and
can conclude that the conditional heteroscedasticity is present in most of the 24 hours data.

6.2 Forecasting performance of various GARCH models

We forecast the one-day ahead conditional volatility of the daily spot prices and the 24 hours
separately with various GARCH models. We evaluate the out-of sample by using MSPE and
MAE criteria. We also perform a simple linear regression to check for ” good ” volatility forecast
as mentioned before. We will also compare the conditional volatility forecast of the daily spot
prices with the conditional volatility forecast of the average of the 24 hours.
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6.2.1 Forecasting performance of the basic GARCH

Figure 4 shows the forecasting performances of the fitted GARCH(1,1) model for daily spot prices
and the 24 hours separately. Smaller MSPE, MAE values are preferred.

Figure 4: MSPE and MAE

(a) (b)

(c) (d)

This figure displays the forecast performances of the fitted GARCH(1,1) and GARCH(2,2) for
the daily spot prices and the 24 hours separately. Figure 4(a) and 4(b) shows the MSPE of

volatility forecasts obtained with GARCH(1,1) and GARCH(2,2) respectively. Figure 4(c) and
4(d) shows the MAE of the volatility forecasts.

From the figure one can see that the MSPE of hours 20-24 are smaller than the MSPE of the
daily spot prices regardless the assumption about the errors. The MAE of the hours 1, 20-24
are smaller than the MAE of the daily spot prices regardless the assumption about the errors.
The results of the simple linear regression for the volatility forecasts of the daily spot prices and
the 24 hours separately can be found in figure 5. The volatility forecast are good if the R2 is
relatively high and b0 and b1 are close to zero and one, respectively. All of the values of b0 is close
to zero, but none of the values of b1 is close to 1. Also the R2 values of the daily spot prices and
the 24 hours separately are quite low. The highest value is about 0,17 regardless the assumption
of the errors. It is notable that the volatility forecast obtained by fitting the GARCH(1,1) for
the daily spot prices is the worst forecast with R2 = 0,03, b0 = 0, 002, and b1= 0,42 when we
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assume normally distributed error terms. The R2, b0, and b1 are equal to 0,03, 0,002, and 0,43
respectively, if we assume that the errors follow a Student’s t-distribution. When we assume that
the errors follow a generalized error distribution, the R2, b0, and b1 are equal to 0,03, 0,002, and
0,46 respectively. The forecast performances of the fitted GARCH(2,2) model for the daily spot
prices and the 24 hours separately can be found in figure 4. The results are the same as the results
obtained from GARCH(1,1). The results of the simple linear regression for the volatility forecasts
of the daily spot prices and the 24 hours separately are shown in figure 5. As noted in the case of
GARCH(1,1) all of the values of b0 is close to zero, but none of the values of b1 is close to 1. Also
the R2 values of the daily spot prices and the 24 hours separately are quite low. Also in the case
of GARCH(2,2) the volatility forecast obtained for the daily spot prices is the worst forecast with
the lowest R2. It is notable that the results for GARCH(1,1) are about the same as the results
for GARCH(2,2) when comparing the histograms and the charts.

Figure 5: Parameter estimates of b0, b1 and R2

(a) (b)

(c)

This figure shows the parameters estimates of the simple linear regression. We regress the
squared returns on a constant and the out-of-sample volatility forecasts . Figure 5(a) gives R2 ,

5(b) gives β0, and 5(c) gives β1

6.2.2 Forecasting performance of the GJR-GARCH model

The MSPE and MAE of the one-day ahead volatility forecast obtained with the GJR-GARCH
are calculated. Figure A.1 in the Appendix shows the forecast performances of the fitted GJR-
GARCH(1,1) model. From the figure one can observe that the MSPE of hours 20-24 and the MAE
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of the hours 1, 20-24 are smaller than the MSPE and MAE of the daily spot prices. These results
are valid regardless the assumption about the errors. Figure A.2 in the Appendix shows the results
of the simple linear regression. As noted in the case of GARCH(1,1) and GARCH(2,2) all of the
values of b0 is close to zero, but none of the values of b1 is close to 1. The R2 values of the daily
spot prices and the 24 hours separately are quite low. The volatility forecast obtained by fitting
the GJR-GARCH(1,1) for the daily spot prices is the worst forecast under different assumptions
of the error terms. For example, R2 = 0,03, b0 = 0, 002, and b1= 0,49 under the assumption
that the errors follow a generalized error distribution. There is no clear difference between the
results of volatility forecast obtained with GJR-GARCH(1,1) and GJR-GARCH(2,2) model. The
forecast performances of the fitted GJR-GARCH(2,2) model for the daily spot prices and the 24
hours separately can be found in figure A.1 in the Appendix. Also, the volatility forecast obtained
by fitting the GJR-GARCH(2,2) for the daily spot prices is the worst forecast when comparing
the results of the simple regression model. The results are shown in figure A.2 in the Appendix.
It is also notable that the results of the basic GARCH are about the same as the results of the
GJR-GARCH.

6.2.3 Forecasting performance of the EGARCH model

Figure A.3 in the Appendix shows the forecast performances of the fitted EGARCH(1,1) model
for daily spot prices and the 24 hours separately. From the figure we can observe that the MSPE
of hours 20-24 and the MAE of the hours 1,20-24 are smaller than the MSPE and MAE of the
daily spot prices under the different assumption about the errors. The results of the simple linear
regression for the volatility forecasts of the daily spot prices and the 24 hours separately can be
found in figure A.4 in the Appendix. The volatility forecast obtained by fitting the EGARCH(1,1)
for the daily spot prices is the worst forecast when comparing the results of the simple regression
model. When comparing the results of the different GARCH models, we can see that there is no
clear difference between the basic GARCH,GJR-GARCH and EGARCH models.

6.2.4 Forecasting the average volatility forecasts.

We will compare the conditional volatility forecasts obtained by the daily spot prices with the
average conditional volatility forecasts obtained by the 24 hours separately. Figure 6 shows the
MSPE and MAE for various GARCH models under different assumptions about the errors.

Figure 6: MSPE and MAE

(a) (b)

Figure 6 (a) displays the forecast performances MSPE and MAE of volatility forecasts of daily
spot prices. Figure 6(b) shows the MSPE and the MAE of the average volatility forecasts.
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Figure 7: DM-statistics

This figure exhibits the value of the DM-statistics. DM-statistic tests the null hypothesis that the
model with the average volatility forecasts has superior predictive performance over the model
with the volatility forecasts of the daily spot prices. The difference between forecast errors are

significant if the value of the DM-statistics is bigger than 1,96. This value is based on 5% level of
significance

From the histograms we can observe that the MSPE and the MAE of the average volatility
forecasts are smaller than the MSPE and the MAE of the volatility forecasts of the daily spot prices.
We test the difference between the forecasts by means of the Diebold-Mariano test statistic. The
results can be found in figure 7. From the figure we can see that the difference between the forecasts
are significant at 5 % level of significance. The model with the average volatility forecasts generates
significant better forecasts for the daily volatility of the returns than the volatility forecast of the
daily spot prices.

7 Conclusion and future research

This section present the conclusions and summary of the research. We also made suggestions for
future work. This research was undertaken to examine whether the use of the time series for the
24 hours separately generates more accurate volatility estimates and forecasts. In our research
we have used GARCH models to estimate and forecast the conditional volatility. We assume
three different assumption about the conditional distribution error term. The assumptions are
the normal (Gaussian) distribution, student’s distribution and the generalized error distribution.
We have examined the GARCH(1,1), GARCH(2,2), GJR-GARCH(1,1), GJR-GARCH(2,2), and
EGARCH(1,1).

First, we have tried to solve the problem of explosive volatility process by performing several
methods based on the literature. The method of Thomas and Mitchell (2005) provides the best
solution for our data. As mentioned before, the non-covariance stationary GARCH process can
be explained by the deregulation process. The estimation of the conditional volatility are based
on the returns after applying the method of Thomas and Mitchell (2005). The mean equation of
the GARCH(1,1) and the GARCH(2,2) fitted to the daily spot prices and the 24 hours separately
are not correctly specified, because the mean equation fails to exlude the autocorrelation in the
standardized residuals. The mean equation is not correctly specified under the different assump-
tions about the errors. The squared standardized residuals of GARCH(1,1) and GARCH(2,2)
fitted to the daily spot prices consist no autocorrelation and we also not reject the ARCH-LM
test. From this results we can conclude that the the conditional variance equation in both models
is correctly specified when we use the daily spot prices. The conditional variance equation in both
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models is not correctly specified when using most of the hours between 5 and 20. The squared
standardized residuals consist autocorrelation and we reject the ARCH-LM test for these hours.
These results are valid regardless the assumption about the errors. The estimated GARCH(1,1)
and GARCH(2,2) model can not be described as good for the daily spot prices and for the 24
hours separately under the different assumptions of the errors. From the results of the GJR-
GARCH model we can conclude that the mean equation of the fitted GJR-GARCH(1,1) and the
GJR-GARCH(2,2) for the daily spot prices and the 24 hours separately is not correctly specified.
The conditional variance equation of the GJR-GARCH(1,1) and the GJR-GARCH(2,2) is cor-
rectly specified when using the daily spot prices. The conditional variance equation of the hours
between 6 and 19 is not correctly specified, because the squared standardized residuals consist
autocorrelation and we reject the ARCH-LM test for these hours. The mean equation of the
EGARCH(1,1) fitted to the daily spot prices and the 24 hours separately are not correctly speci-
fied, because the mean equation fails to exlude the autocorrelation in the standardized residuals.
The conditional variance equation of the fitted EGARCH(1,1) model for most of the 24 hours is
not correctly specified. The final conclusion is that the use of the 24 hours does not generate more
accurate estimates of the conditional volatility.

If we analyze the results of the one-day ahead forecast with the GARCH(1,1) and GARCH(2,2),
we can conclude that the volatility forecast of daily spot prices is the worst forecast. These results
are valid regardless the assumption about the errors. Also, in the case of GJR-GARCH(1,1),
GJR-GARCH(2,2), and EGARCH(1,1) the same conclusions can made. The one- day ahead
volatility forecast of the daily spot prices is the worst forecast when comparing with the one-day
ahead volatility forecast of the 24 hours separately. We have also compared the one-day ahead
volatility forecast of the daily spot prices with the average one-day ahead volatility forecast of
the 24 hours separately. We conclude that the model with the average one-day ahead volatility
forecast generates significant better forecast for the daily volatility of the returns.

The increasing of p and q of the GARCH(p,q) and its extensions is a suggestion for future
research. In this paper we focus on p=1,2 and q=1,2. Another suggestion is to correct the mean
equation of different GARCH models and create forecast for the returns.
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A APPENDIX

A Appendix

Table A.1: Basic statistical properties of the 24 hours.

Hour Mean Median Minimum Maximum Std.Dev. Skewness Kurtosis

1 0,000339 0,000285 2,462434 -2,854073 0,105647 -0,047927 181,3889
2 0,000338 0,000489 2,26996 -2,160926 0,126808 -0,021891 66,84951
3 0,000336 0,000527 2,462434 -3,40214 0,159499 -1,335476 85,20798
4 0,000337 0,000649 2,462434 -2,854073 0,164226 -0,327852 55,83455
5 0,000339 0,0002 4,513907 -7,122105 0,206388 -4,71279 286,5153
6 0,000341 -0,001428 2,598682 -2,854073 0,182841 0,167012 56,08852
7 0,000325 -0,004738 2,97244 -2,854073 0,211788 0,93841 44,02153
8 0,000337 -0,007709 3,000051 -2,931107 0,232765 1,012468 35,18209
9 0,000342 -0,00956 2,788606 -3,126761 0,229618 0,767591 34,42517

10 0,000342 -0,008849 2,46411 -2,802264 0,186919 0,52335 37,63817
11 0,00034 -0,007557 2,46411 -2,802264 0,164697 0,396251 44,61251
12 0,000354 -0,006454 2,46411 -2,802264 0,147655 0,357046 55,14081
13 0,000354 -0,006927 2,456908 -2,802264 0,14053 0,498235 70,53911
14 0,000348 -0,007818 2,456908 -2,802264 0,143237 0,551472 66,5262
15 0,000345 -0,008135 2,456908 -2,802264 0,144724 0,621075 64,29948
16 0,000342 -0,008062 2,456908 -2,802264 0,144952 0,638907 64,20996
17 0,000344 -0,006691 2,467691 -2,802264 0,140923 0,805087 70,52185
18 0,000349 -0,005112 2,467691 -2,802264 0,146532 0,76933 70,2249
19 0,000361 -0,003497 2,497874 -2,802264 0,125883 0,252408 90,23454
20 0,000363 -0,001353 2,497874 -2,802264 0,10978 -0,389689 137,0247
21 0,000349 -0,000423 2,497874 -2,802264 0,102448 -0,661249 171,0197
22 0,00034 -0,0000135 2,467691 -2,802264 0,103893 -0,091687 187,7173
23 0,000332 0,000295 2,467691 -2,802264 0,099089 -0,240596 224,6618
24 0,000329 0,000831 2,467691 -2,802264 0,099331 -0,238179 222,3207
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A APPENDIX

Figure A.1

(a) (b)

(c) (d)

This figure displays the forecast performances of the fitted GARCH(1,1) and GARCH(2,2) for
the daily spot prices and 24 hours sepaarately. Figure 4(a) and 4(b) shows the MSPE of volatility
forecasts obtained with GJR-GARCH(1,1) and GJR-GARCH(2,2) respectively. Figure 4(c) and

4(d) shows the MAE of the volatility forecasts.
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Figure A.2

(a) (b)

(c)

This figure shows the parameters estimates of the simple linear regression. We regress the
squared returns on a constant and the out-of-sample volatility forecasts . Figure 5(a) gives R2 ,

5(b) gives β0, and 5(c) gives β1
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A APPENDIX

Figure A.3

(a) (b)

This figure displays the forecast performances of the fitted EGARCH(1,1) for the daily spot prices
and 24 hours separately. Figure 4(a) and 4(b) shows the MSPE and the MAE of volatility

forecasts obtained with the GARCH(1,1) model respectively.
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A APPENDIX

Figure A.4

(a) (b)

(c)

This figure shows the parameters estimates of the simple linear regression. We regress the
squared returns on a constant and the out-of-sample volatility forecasts . Figure 5(a) gives R2 ,

5(b) gives β0, and 5(c) gives β1
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