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Abstract
The internet provides a lot of information to users. To help users find the items of their interest in this information overload, recommender systems have been developed. In this thesis we explored movie recommender systems based on three recommendation methods: content-based, collaborative filtering and a hybrid recommendation one based on the previous two. The algorithms that we used are the decision tree learning and the neural networks. The algorithms were implemented by using the data mining software Weka. To test these recommender systems, we combined the movie data from the Internet Movie Database and the rating data provided by Netflix. The results show that the proposed hybrid recommender systems does not perform better or worse than the content-based recommender systems and collaborative filtering recommender systems.
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Chapter 1

Introduction
1.1 Background
Nowadays the World Wide Web provides a new way of communication and has a great impact on both academic research and daily life. A lot of information can be found on the Internet and is easily accessible. In order to help users to deal with the information overload and find the information or items of their interest, so-called recommender systems have been developed. These recommender systems are used for several purposes, like proposing web pages, movies, restaurants, interesting articles and so on. There are various recommendation methods that can be used to find the preferences of a user and each recommendation method has its strengths and weaknesses. To reduce these weaknesses and take advantage of the strengths of different recommendation methods, these methods are combined in hybrid recommender systems. In this thesis, recommender systems for movies will be examined. The properties, advantages and disadvantages of the movie recommenders and their recommendation methods will be explored. We will also consider some recommendation methods that have not been used (yet) for a movie recommender.

In addition, this thesis will propose hybrid recommender systems for movies that uses both a content-based (CB) recommendation method and a collaborative filtering (CF) method. By combining these two recommendation methods, we hope to build systems with a higher accuracy of predictions. These methods need to be based on data mining algorithms like neural networks or decision trees. We also hope to improve the prediction quality of recommenders based on these prediction algorithms compared to other systems proposed in the literature. The predictive accuracy of all these recommender systems will be tested on real life movie data: content information and rating information of movies. The content information will be extracted from a movie and TV site, the Internet Movie Database (IMDb) [1], and the rating information is from Netflix [2], which is an online movie-renting site. Each of these recommenders will predict the number of stars given to the movies by a user, so the prediction can tell to which extent the user will like or dislike the movie.
1.2 Motivation
In our previous work [3] we explored the hybridization method combining the content-based method and the collaborative filtering, both based on the naïve Bayesian classifier. The proposed recommendation methods in that work used two classes: it predicts if a user would like or dislike a movie. In this paper we want to explore hybridization methods that also combine the content-based method and the collaborative filtering, but these methods will be based on neural networks or decision trees. We wanted to explore these combinations, because these combinations has not been researched in the literature before and it will be interesting to see how these hybridization methods will perform compared to other recommendation methods. In addition, in this paper we want to examine the preference of a user more accurate. In other words, we will also look to which extent a user will like or dislike a movie. So instead of only predicting if a user will like or dislike a movie, as we did in our previous work, the prediction will also be divided into five different ratings, from one star till five stars. Here a rating of one star means that the user did not like the movie at all and a rating of five stars means that the user liked the movie very much.
1.3 Goal

In this thesis we will examine the performance of the proposed hybrid recommender system. The following research question will be answered:
How does a hybrid recommender for movies based on neural network or decision tree perform, that combines a content-based recommender for movies, which uses text mining, with a collaborative filtering recommender for movies, which uses user ratings?
To answer the research question, the following sub questions need to be answered first:

1. How can these two algorithms be used individually for a content-based recommender or collaborative filtering for movies.?

2. How can one devise a hybrid recommender based on each of these algorithms, that combines a content-based with a collaborative filtering, both based on one of these algorithms?
For the first sub question, we will work with content-based and collaborative filtering systems separately, so we will not work with hybrid systems. For both of these recommendation methods we will create a recommender based on neural network and decision tree, so we will have four different recommender systems:
1)
A content-based recommender system based on neural network (CB-NN).

2)
A content-based recommender system based on decision tree (CB-DT).

3)
A collaborative filtering system based on neural network (CF-NN).

4)
A collaborative filtering system based on decision tree (CF-DT).
The second sub question means that we will work with hybrid recommender systems based on the aforementioned algorithms separately, for both the content-based part and the collaborative filtering part of the system. In addition, we have the following two hybrid recommender systems:

5)
A hybrid recommender system based on neural network, combining content-based and collaborative filtering (H-NN).

6)
A hybrid recommender system based on decision tree, combining content-based and collaborative filtering (H-DT)
The performance of the hybrid recommender H-NN will be compared with the recommenders  CB-NN and CF-NN and the hybrid recommender H-DT will be compared with the recommender CB-DT and CF-DT. These recommenders will also be compared with the content-based, collaborative filtering and the hybrid recommender systems based on naïve Bayesian classifier.
1.4 Methodology

In order to answer the research question and the sub questions, we have taken the following steps:

1. Study literature

2. Collect datasets

3. Implement algorithms

4. Experiment

1. Study literature
To answer the research questions, some literature about recommender systems and data mining algorithms have to be studied first. Especially recommender systems for movies will be examined. In the literature, various recommendation methods and algorithms have been discusses. The recommendation methods used in this thesis are the content-based method and collaborative filtering. The algorithms that are used are neural network and decision tree. Beside these recommendation methods and algorithms, some literature about hybrid recommenders will be studied to find a combination of recommendation methods to improve the prediction of accuracy of the individual methods.

2. Collect datasets

The performance of the prediction of these recommender systems will be tested on movie data and user ratings from the Internet. The dataset consists of user rating-data from Netflix, which is an online movie-renting site, and the movie data from IMDb, which is a movie and TV site. The Netflix dataset contains movie titles with their ratings given by users and the movie data from IMDb contains information about movies, like the genre of a specific movie, the actors and directors etc. Both data were collected and combined in [3] to get data that contains both rating information and content information of movies. The user rating-data from Netflix was made available to support participants in the Netflix Prize, where users can compete to improve the current recommender system of Netflix: CinematchSM. The movie data from IMDb were extracted from their site. 

3. Implement algorithms

The recommender systems for this research will be built in JAVA, which is an object-oriented programming language developed by Sun Microsystems. For the implementation of the algorithms we will use Weka [4], which is a data mining software in JAVA. It is a collection of machine learning algorithms for data mining tasks and some of these algorithms will be used to do the predictions of the ratings.

4. Experiment

After collecting the datasets and building the systems, we test each system on the collected datasets. The performances of the systems will be evaluated by computing the Mean Absolute Error (MAE) and the accuracy of the predictions. The MAE is the average of the difference between each prediction and the actual rating. At the end, the results of the evaluation will be compared with each other to answer the research questions.
1.5 Structure
This thesis contains the following chapters:

Chapter 2 – Related work. In this chapter we briefly discuss the difference between various recommendation methods and their properties. We will also discuss the hybrid recommendation methods distinguished in the literature. Further, some movie recommender systems used by other researchers are presented and the algorithms neural networks and decision trees are briefly introduced.
Chapter 3 – Neural Networks - Backpropagation describes the backpropagation algorithm and presents the implementation of this algorithm for the content-based method, the collaborative filtering, and the hybrid method. For each of these methods an example of the implementation will be given.
Chapter 4 – Decision tree learning – C4.5 describes the C4.5 algorithm and will also present the implementation of the decision tree for the content-based method, the collaborative filtering, and the hybrid recommendation. This chapter also gives an example of the implementation for these three methods.
Chapter 5 – Implementing algorithm - Weka. This chapter describes the data mining software Weka and the algorithms used for the recommendations: Multilayer Perceptron for the backproagation algorithm and J48 for the C4.5 algorithm.

Chapter 6 – Experiments & Results discusses the datasets used for this thesis and provides the experiments and results of the proposed recommendation methods. Further, a comparison with the recommendation methods proposed in [3] will be shown.
Chapter 7 – Conclusion. In the final chapter we summarize the thesis and answer the sub questions and the research question. This chapter ends with future work that can be further explored.
Chapter 2
Related work
This chapter gives a short explanation of the recommender system and describes the various recommendation methods. We will discuss the hybrid recommender system and explains some combination methods identified in the literature. Some examples of other movie recommender systems will be given by providing their recommendation methods, the algorithms used to make predictions, and which data were used to evaluate the recommender systems. Finally, this chapter introduces the algorithms that are used in this thesis, namely neural networks and decision tree learning. These algorithms will be further discussed in detail in the following two chapters.
2.1 Recommender systems

Recommender systems are employed to help users find their items based on their preferences. They produce individualized recommendations as output or have the effect of guiding the user in a personalized way to find interesting or useful items in a large amount of other items [5]. To produce recommendations, these systems need background data, input data and an algorithm. Background data is the information that the system has before it produces any recommendation. Input data is the information that is communicated to the system by the user in order to produce recommendations. An algorithm in the system is needed to combine the input data and the background data to produce a recommendation. Based on these three points, Burke [5] distinguished five different recommendation methods: 
1) A collaborative recommender system collects ratings of items, recognizes similarities between users based on their ratings, and produces new recommendations based on inter-user comparisons. 
2) Content-based recommender systems produce recommendation based on the associated features of an item: it learns a user’s interests profile based on the features present in items that the user has rated before.
3) A recommender system based on demographic categorizes users based on personal attributes and finds interesting items based on demographic classes. 
4) Utility-based systems evaluate the match between a user’s need and the set of options available: it recommends items based on a computation of the utility of each item for the user. 5) Knowledge-based recommenders also make such evaluations, but they have knowledge about how a particular item meets a particular user’s need.

2.2 Hybrid recommender systems

Hybrid recommender systems are recommender systems that combine two or more recommendation methods into one recommender system for a better performance. The following combination methods are identified by Burke [5]:  
1) A weighted hybrid recommender system calculates the score of a recommended item from the results of the recommendation methods that the system uses. 
2) Switching hybrid recommender systems uses some criterion to switch between the recommendation methods used in the system to do the recommendation. 
3) In a mixed hybrid recommender, recommendations from the different recommendation methods are presented together. 
4) Hybrid recommender systems based on feature combination combine the features of the different recommendation methods in the system and use these features in a single recommendation algorithm to produce recommendations. 
5) In a cascade hybrid recommender system, one recommendation method is used first to produce a ranking of recommended items and a second recommendation method refines this ranking of items. 
6) A hybrid recommender based on feature augmentation method uses the output of one recommendation method as input for another recommendation method used in the recommender system. 
7) Meta-level hybrid recommenders use the model learned by the first recommendation model as input to another recommendation method.

2.3 Movie recommender systems
There are various movie recommender systems proposed and discussed in the literature. This section shows some examples of movie recommender systems with their recommendation method, the used algorithms and data.

Christakou and Stafylopatis [6] proposed a hybrid movie recommender system based on neural networks. They combined content-based and collaborative filtering to provide more precise recommendations concerning. The content-based part of the system was based on neural network and for the collaborative filtering part they used the Pearson formula to find the correlation between a user and other users. To test their proposed hybrid recommender they used the MovieLens data set. 

Our proposed hybrid movie recommenders [3] also combined the content-based method with collaborative filtering to get a higher accuracy of performance. Both methods were based on a naïve Bayesian classifier. For the evaluation of the recommenders, we combined the movie data from IMDb and the rating data from Netflix.

Symeonidis et al. [7] constructed a feature-weighted user profile to disclose the duality between users and features. The outline of their approach consisted of four steps: 1) constructing a content-based user profile from both collaborative and content features; 2) quantifying the affect of each feature inside the user’s profile and among the users; 3) creating the user’s neighbourhood by calculating the similarity between each user to provide recommendations; 4) providing a Top-N recommendation list for each test user based on the most frequent feature in his neighbourhood. The experimental results were performed with IMDb and MovieLens data sets.

Golbeck and Hendler [8] proposed FilmTrust, a website that integrates Semantic Web-based social networks, augmented with trust, to create predictive movie recommendations. For their work, they applied collaborative filtering where the recommendations were generated to suggest how much a given user may be interested in a movie that the user already found.

2.4 Neural networks 

One of the algorithms we have used for this research is neural networks. Neural networks, or artificial neural networks, consist of layers of connected nodes, where each node produces a non-linear function of its input. The input to a node may come from other nodes or directly from the input data.  Some nodes are also identified with the output of the network. The complete network therefore represents a very complex set of interdependencies which may incorporate any degree of nonlinearity, allowing very general functions to be modelled [9]. Artificial neural networks are designed to solve a variety of problem in pattern recognition, clustering/categorization, function approximation, prediction/forecasting, optimization, associative memory, and control [10]. The goal of pattern recognition is to classify an input pattern represented by a feature vector in one of the specified classes. The task of clustering/categorization is to explore the similarity between patterns and to put similar patterns in a cluster. Function approximation finds an estimate of an unknown function. Prediction/forecasting algorithms predict a sample at some future time. The task of an optimization algorithm is to find a solution that satisfies a set of constraints such that the function of an objective is maximized or minimized. In associative memory, the goal is to access the memory by their content where the content in the memory can be recalled even by a partial input or distorted content. In model-reference adaptive control, the task is to generate a control input such that the system follows a desired trajectory that is determined by the reference model. In this thesis, the neural networks are designed to solve the problem in pattern recognition. Further description of neural networks used for this research is explained in chapter 3.
2.5 Decision trees learning 
The other algorithm we have used for this research is decision tree learning. Decision tree learning is among the most widely used and practical algorithm for inductive inference [11]. It is an algorithm for approximating discrete-value target function, where a decision tree represents the learned function. The decision trees can also be seen as a set of if-then rules for a better human readability. Decision trees sort instances down the tree from the root to a leaf node that classifies the instances. In each node of the tree an if-then rule of an attribute of the instance is applied and each branch descending from that node represents one of the possible values for this attribute. To classify an instance, one starts at the root of the tree and tests the attribute specified by this node and then moves down the branch of the tree that represents the value of the attribute applicable for this instance. In general, decision trees can be seen as a disjunction of conjunction of attribute values of instances, where each path from the root is a conjunction of attribute tests and the tree itself is a disjunction of these conjunctions. Many decision trees have been developed and they are all best suited to problems with these characteristics:
· instances are represented by pairs of attribute-value

· the target function has discrete output values

· disjunctive descriptions may be required

· the training data may contain errors

· the training data may contain missing attribute values

Chapter 4 will further discuss the decision tree learning algorithm used for this thesis.
Chapter 3

Neural Networks - Backpropagation
One of the algorithms we used in this thesis is the neural networks. This chapter will give a more detailed description of the algorithm and presents the implementation of this algorithm in the recommender system. We will go further into details of the neural networks algorithm we have used for both the content-based part of the recommender system and the collaborative filtering part, the backpropagation algorithm. Further, this algorithm is explained by examples for both of the recommendation methods. Finally the hybrid recommendation method based of these two recommendation methods using the backpropagation algorithm will be presented and explained by an example.
3.1 Backpropagation algorithm
The neural networks we have used is an acyclic directed graph of sigmoid units based on backpropagation algorithm. Table 1 shows the backpropagation algorithm [6] we will use for the networks. The sigmoid units are like perceptrons, but they are based on a smoothed, differentiable threshold function. A sigmoid unit first computes a linear combination of its input, then applies a threshold to result, where the threshold is a continuous function of its input. The sigmoid unit computes its output o as follows:
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 is called the sigmoid function. Its output ranges between 0 and 1, increasing monotonically with its input. 

Table 3.1: Backpropagation algorithm for feedforward networks containing two layers of sigmoid units.
	BACKPROPAGATION(training_examples, η, nin, nhidden, nout)
Each training example is a pair of the form [image: image7.png]
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 is the vector of network input values, and  [image: image11.png]


 is the vector of target network output values.

η is the learning rate, nin is the number of network inputs,  nhidden the number of units in the hidden layer, and nout the number of output units.

The input from unit i into unit j is denoted xji, and the weight from unit i to unit j is denoted wji.

· Create a feed-forward network with nin inputs, nhidden hidden units, and nout output units.

· Initialize all network weights to small random numbers

· Until the termination condition is met, Do

A. For each [image: image13.png]


 in ​training_examples, Do

Propagate the input forward through the network:
1. Input the instance [image: image15.png]e~



 to the network and compute the output ou of every unit u in the network.
Propagate the errors backward through the network:

2. For each network output unit k, calculate its error term [image: image17.png]
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3. For each hidden unit h, calculate its error term [image: image23.png]


h
[image: image25.png]


h [image: image27.png]


 oh (1 – oh) [image: image29.png]0
L keoutputs WinOx



                                  (3.3)
4. Update each network weight wji
wji  [image: image31.png]
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wji                                                       (3.4)
where
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The network structure we will use is a layered network of two layers (one hidden layer and one output layer) with feedforward connections from every unit in one layer to every unit in the next. Each network will have 5 outputs which will be the five rating categories. The output with the highest value, which we will denote as h, will be taken as the network prediction, which is often called a 1-of-n output encoding. The number of hidden nodes will depend on the accuracy and the training time of each network and will be further examined in chapter 6. The number of inputs depends on the available types of characteristics features in the dataset. For example, if the whole dataset contains only 5 different types of a particular characteristic, then the network will contain only 5 inputs. The learning rate, the momentum and other parameters of the algorithm will also be discussed in chapter 5. 
3.2 Neural Networks for content-based recommendation

A neural network of the content-based recommendation will be constructed for each user. The content-based method will use the genre, contributors and the movie plot of a movie combined, which we will call movie-description. To train and classify the network for a user, we use a matrix that contains vectors of the movies that the user has rated with the characteristic features that are available in the dataset with their ratings. First we create a set of different words, the vocabulary, found in the movie-descriptions of the movies that the user has rated. Then, for each rated movie, we look if a word in the vocabulary appeared in the movie-description of the movie. The presence of the word found in each movie represent the characteristic features for content-based recommendation. The matrix for the content-based network for a particular user will look like: 

	Movies rated by user
	Distinct words in the movie-descriptions of the movies rated by user
	Ratings given by user

	…
	…
	…


The neural network will accept an input for each of the different words in a dataset and the value of an input is the presence of the word in the movie-description, where present is marked as 1 and not present is marked as 0. The next paragraph shows how this matrix is filled with 0’s and 1’s.
3.2.1 Example content-based recommendation
Consider a user, user1, who has rated the following three simplified movies from a training set with the movie-descriptions and ratings:
	Movies rated by user1
	Movie-descriptions of the movie rated by user1
	Ratings given by user1

	Movie1
	actor1, actor2, director1, genre1, plot1, plot2, plot3
	4 stars

	Movie2
	actor1, actor3, director2, genre1, plot1, plot3, plot4
	4 stars

	Movie3
	actor1, actor3, director2, genre2, plot2, plot3, plot4
	2 stars


And a test set with the movie-description and ratings:

	Movies rated by user1
	Movie-descriptions of the movies rated by user1
	Ratings given by user1

	Movie4
	actor3, actor4, director3, genre3, plot1, plot3, plot5
	5 stars

	Movie5
	actor2, actor3, director1, genre2, plot2, plot4,  plot5
	3 stars


The vocabulary with the distinct words found in the training set will be:

actor1, actor2, actor3, director1, director2, genre1, genre2, plot1, plot2, plot3, plot4
Notice that the words actor4, director3, genre3, plot5 are not considered in the vocabulary with the distinct words, since the neural networks only trains with the words that are encountered in the training set.
When we look at the presence of the words found in the movie-description, the matrix with vectors of the movies that user1 has rated in the training set will become:
	Movies rated by user1
	Presence of the words founds in movie-description
	Ratings given by user1

	
	a1
	a2
	a3
	d1
	d2
	g1
	g2
	p1
	p2
	p3
	p4
	

	Movie1
	1
	1
	0
	1
	0
	1
	0
	1
	1
	1
	0
	4

	Movie2
	1
	0
	1
	0
	1
	1
	0
	1
	0
	1
	1
	4

	Movie3
	1
	0
	1
	0
	1
	0
	1
	0
	1
	1
	1
	2


And the matrix with vectors of the movies in the test set will become:

	Movies rated by user1
	Presence of the words founds in movie-description
	Ratings given by user1

	
	a1
	a2
	a3
	d1
	d2
	g1
	g2
	p1
	p2
	p3
	p4
	

	Movie4
	0
	0
	0
	1
	0
	0
	0
	1
	0
	1
	0
	5

	Movie5
	0
	1
	1
	0
	1
	0
	1
	0
	1
	0
	1
	3


The neural network for this user will have eleven input nodes, because there are eleven distinct words. The presence of each distinct word found in a movie-description are used as input in the neural networks. Since there are 5 different ratings possible, the neural networks will have 5 output nodes. When we create a network with two nodes in the hidden layer, the neural networks for user1 will look like:
11 input nodes

2 hidden nodes

5 output nodes

The neural networks can then be trained with the matrix with vectors of the movies that the user has rated in the training set. The inputs for each node for the first vectors will be:

Input node1 = 1, input node2 = 1, … , input node10 = 1, input node11 = 0

After propagating the first vector forward through the networks, the output of each unit in the network is calculated using equations (3.2) Then the error terms of each units are calculated with equations (3.3) and the weights are updated with equation (3.4). These steps are repeated for each vector until the number of training times or some other condition is reached. With the trained network, the matrix with vectors of the movies that the user has rated in the test set can be classified. The input of each vector in the test set are propagated forward once through the trained network and the output of every unit in the network are calculated, without calculating the error terms and updating the weights. The predicted class will be the output node with the highest value, the h-value. For example, let us say that for the first movie vector in the test set the output values are:
Output node1 = 0.233, output node2 = 0.112, output node3 = 0.186, output node4 = 0.308, output node5 = 0.679
The predicted class of the first movie in the dataset will be “5 stars” since output node5 has the highest value of the output nodes.

3.3 Neural Networks for collaborative filtering recommendation
The neural network part of the collaborative filtering considers the ratings of other users who has rated the same movies. For each user a neural network will be constructed and will also have 5 outputs, one for each rating category. The number of inputs are the number of other users who have rated at least one of the movies that a particular user has seen so far, which we will call common users. The network for a user will be trained by using a matrix that contains the movies that the current user has rated and the ratings that common users have given to those movies. The matrix of a user will have the size:

	Movies rated by user
	Ratings given by common users
	Ratings given by user

	…
	…
	…


Each input represents one of common users and the value of an input is the rating the common user gave to the movie that current user has rated. When one of the common users has not rated a particular movie, the input value will be ?. The next paragraph will show how we fill this matrix with the ratings and ?.
3.3.1 Example collaborative filtering
Consider the same user who has rated the movies in the previous section and the following users with their ratings for those movies:

	Movies rated by user1
	Ratings of user2
	Ratings of user3
	Ratings of user4
	Ratings of user5
	Ratings of user6

	Movie1
	?
	2
	?
	3
	4

	Movie2
	?
	?
	3
	5
	4

	Movie3
	?
	1
	4
	5
	?

	Movie4
	?
	?
	?
	1
	?

	Movie5
	5
	4
	?
	3
	?


The numbers in this matrix is the number of stars that other users, common users, gave to the movies that user1 has rated. A ? means that a common user has not rated a particular movie. The matrix with vectors of the movies that user1 has rated in the training set will become:

	Movies rated by user1
	Ratings of common users
	Ratings given by user1

	
	Ratings of user3
	Ratings of user4
	Ratings of user5
	Ratings of user6
	

	Movie1
	2
	?
	3
	4
	4

	Movie2
	?
	3
	5
	4
	4

	Movie3
	1
	4
	5
	?
	2


Notice that the ratings of user2 are not considered in this matrix since user2 has not rated one of the movies that user1 has rated in the training set and the neural networks only trains with the ratings of the training set.
The matrix with vectors of the movies in the test set for user1 will become:
	Movies rated by user1
	Ratings of common users
	Ratings given by user1

	
	Ratings of user3
	Ratings of user4
	Ratings of user5
	Ratings of user6
	

	Movie4
	?
	?
	1
	?
	5

	Movie5
	4
	?
	3
	?
	3


In this case the neural network for this user contains four input nodes, because four other users have rated at least one of the movies rated by user1 in the training set. For each movie in the training set, the rating of the common user will be used as input in the neural networks. As in the neural networks for content-based recommendation, the neural networks will have 5 output nodes. A neural networks for collaborative filtering for user1 with two nodes in the hidden layer will look like:
4 input nodes

2 hidden nodes

5 output nodes

The neural networks for collaborative filtering can now be trained with the matrix containing vectors of the ratings of movies that the user has given in the training set. The inputs for each node with the first vector will be:

Input node1 = 2, input node2 = ?, input node3 = 3 , input node4 = 4
As with the content-based version of neural networks, the output of each node in the network is calculated, the error terms of each node is calculated, and the weights are updated using equations (3.2), (3.3), and (3.4) respectively after propagating the first vector through the networks. After training the networks with the training set, the trained neural networks can classified the movies from the test set as with the content-based neural networks.
3.4 Neural networks for hybrid recommendation
The hybrid recommendation part of the neural networks will combine the characteristics of the content-based recommendation and collaborative filtering. This is done by the feature combination method by considering both the movie-description of the movies that a user has rated and the users who have rated the same movies that this user has rated. In other words, the hybrid recommendation will combine the presence of words found in each movie-description and the ratings of common users of a particular user. Like the content-based neural networks and the collaborative one, the neural networks of hybrid recommendation have 5 output nodes. The number of input nodes are the number of distinct words in the vocabulary for the user plus the number of common users. The hybrid neural networks for a user will be trained by using a matrix that contains vectors of the movies that the user has rated with the presence of the words in the movie-description and the ratings that the common users has given to these movies. The size of the matrix will be:
	Movies rated by user
	Distinct words in the movie-descriptions of the movies rated by user
	Ratings given by common users
	Ratings given by user

	…
	…
	…
	…


There will be an input node for each distinct word in the movie-description and for each common user, and the values will be the presence of the words found in the movie-description and the rating of the common user respectively. The presence is marked as 1 for present and 0 for not present as in the content-based neural networks and the ratings can have the values 1 till 5 or a ? if a common user has not rated a movie as in the collaborative filtering networks.
3.4.1 Example hybrid recommendation
When we consider the same user, user1, from the previous examples, the matrix with vectors of the movies that user1 has rated in the training set will become:
	Movies rated by user1
	Presence of the words founds in movie-description
	Ratings of common users
	u1

	
	a1
	a2
	a3
	d1
	d2
	g1
	g2
	p1
	p2
	p3
	p4
	u3
	u4
	u5
	u6
	

	Movie1
	1
	1
	0
	1
	0
	1
	0
	1
	1
	1
	0
	2
	?
	3
	4
	4

	Movie2
	1
	0
	1
	0
	1
	1
	0
	1
	0
	1
	1
	?
	3
	5
	4
	4

	Movie3
	1
	0
	1
	0
	1
	0
	1
	0
	1
	1
	1
	1
	4
	5
	?
	2


For the presence part of this table, 1 means that a word is present in the movie-description and 0 means that a word is not present. For the common users part, the numbers in this matrix is the number of stars that the common users gave to the movies that user1 has rated, and a ? means that a common user has not rated the movie. The matrix for the test set will become:
	Movies rated by user1
	Presence of the words founds in movie-description
	Ratings of common users
	u1

	
	a1
	a2
	a3
	d1
	d2
	g1
	g2
	p1
	p2
	p3
	p4
	u3
	u4
	u5
	u6
	

	Movie4
	0
	0
	0
	1
	0
	0
	0
	1
	0
	1
	0
	?
	?
	1
	?
	5

	Movie5
	0
	1
	1
	0
	1
	0
	1
	0
	1
	0
	1
	4
	?
	3
	?
	3


For this example the hybrid neural networks for this user will have fifteen input nodes, because there are eleven distinct words in the vocabulary plus four other users who have rated at least one of the movies rated by user1 in the training set. The hybrid neural network will use the presence of the distinct words and the ratings of the common users is input for each movie in the training set. As in the neural networks for content-based recommendation and the collaborative filtering, the hybrid neural networks will have 5 output nodes. When we create a hybrid neural networks with two nodes in the hidden layer for this user, the neural networks will look like:

15 input nodes

2 hidden nodes

5 output nodes

The hybrid neural networks will be trained with the matrix containing vectors of movies rated by user1 in the training set. The inputs for each node with the first vector will be:

Input node1 = 0, input node2 = 0, … , input node14 = 1 , input node15 = ?
Like the content-based version and the collaborative version of neural networks, the output of each node in the network is calculated using equations (3.2), the error terms of each node is calculated using equations (3.3), and the weights are updated using equations (3.4 after propagating the first vector through the networks. After the hybrid networks is trained with the training set,  the neural networks can classify the movies from the test set as with the previous neural networks.
3.5 Summary

In this chapter we introduced the neural networks algorithm we used for the recommender systems, the backpropagation algorithm. We also presented the layered networks that will be used for the recommender systems. Further, we explained how the neural networks will be used for content-based recommendation by using the genre, contributors and the plot of a movie, the movie-description. The movie-description will then be transformed in a vector with the presence of vocabulary words found in the movie-description. The implementation of neural networks for content-based recommendation was then explained by an example of movies with movie-description rated by a user. We then explained the neural networks for collaborative filtering which uses the ratings of users who rated the same movies, the common users. The implementation of the collaborative filtering method was then explained by an example of a user and the ratings of common users who rated the same movies as this user. Finally, we explained the neural networks for hybrid recommendation based on the feature combination method that uses both the content-based method, the vector with the presence of vocabulary words found in the movie-description, and the collaborative filtering method, the ratings of common users. The implementation was explained by the examples of the movie-descriptions and common users used in content-based and collaborative examples respectively.
Chapter 4
Decision tree learning – C4.5
The other algorithm we implemented in the recommender system is decision tree learning.

In this chapter we will further explain this algorithm and describe the implementation of the algorithm. We will start with describing the algorithm we used for the content-based part and the collaborative filtering part of decision tree learning, the  C4.5 algorithm. Further we will describe the content-based part and the collaborative filtering part of the decision tree learning method and explain the implementations for these parts with examples. And in the last section the hybrid recommendation of the decision tree learning will be presented and explained with an example.
4.1 C4.5 algorithm

The decision tree will be built in two phases, the growing and the pruning phase. The tree will be built and pruned using C4.5 algorithm [12], which is based on the ID3 algorithm. ID3 algorithm learns decision trees by constructing them top-down, starting with an attribute to be tested at the root of the tree. Table 4.1 shows the algorithm we will use to build the decision tree. 
4.1.1 Build the decision tree
To find the first attribute, each instance attribute is evaluated using a statistical test to determine how well it alone classifies the training examples. The statistical test that we will use is the gain ratio [11]. In order to use the gain ratio, we calculate the information gain [11], that measures how well a given attribute separates the training examples according to their classification. The information gain uses the entropy [11], that characterizes the (im)purity of an arbitrary collection of examples. 
Table 4.1: C4.5 algorithm to build a tree that classifies the movievectors.
	
C4.5(S, Target_attribute, Attributes)
Target_attribute is the continuous-valued attribute whose value is to be predicted by the tree. Attributes is a list of other continuous-valued attributes that may be tested by the learned decision tree. Returns a tree that correctly classifies the given training examples S.

· Create a Root node for the tree

· If all S belong to one class i, Return the single-node tree Root, with label = i
· If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in S
· Otherwise Begin

A. For each attribute A in Attributes where the number of values = 1: Attributes = Attributes – {A}

B. For each attribute A in Attributes
1. sort S on the values of the attribute A as {v1, v2, . . . , vm} and create m – 1 candidate thresholds c that can split S into subsets S1 and S2, one corresponding to A < c and one corresponding to A [image: image38.png]


 c as c = [image: image40.png]


, …, [image: image42.png]



2. for each of the m – 1 candidate thresholds c, calculate [image: image44.png]GainRatio (5, A)



 using eq. (4.1) – (4.6)

3. c [image: image45.png]


 threshold that produces the greatest gain ratio among the m – 1 candidate thresholds to split S using attribute A
C. (A,c)[image: image47.png]


 the attribute-threshold combination that best (with highest gain ratio) splits S
D. Add two new tree branches below Root, branch 1 corresponding to A < c and branch 2 corresponding to A ≥ c
E. Let S1 be the subset of S that has value A < c for A and S2 be the subset that has value A[image: image49.png]


 c for A
F. Below branch 1 add the subtree

C4.5(S1, Target_attribute, Attributes) 

And below branch 2 add the subtree

C4.5(S2, Target_attribute, Attributes) 

· End

· Return Root


Given a collection S where the target attribute can take on k different values, the entropy of S can be defined as:

[image: image51.png]Entropy(S)
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(4.1)
where pi is the proportion of S belonging to class i. With this entropy we can calculate the information gain, Gain(S, A) of an attribute A, relative to a collection of examples S as follows:
[image: image53.png]Gain(s,4) = Entropy(s) — Zpevam.m% Entropy(s,)





(4.2)
where Values(A) is the set of all possible values for attribute A, and Sv is the subset of S for which attribute A has values v. In this equation, the first term is the entropy after S is partitioned using attribute A. The second term describes the expected entropy which is the sum of the entropies of each subset Sv, weighted by the expected reduction in entropy caused by knowing the value of attribute A. The gain ratio incorporates the split information [11], that is sensitive to how broadly and uniformly the attribute splits the data:
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(4.3)
where S1 through Sk are the k subsets of examples resulting from partitioning S by the k-valued attribute A. The GainRatio measure is defined in terms of the Gain measure, as well as the SplitInformation that discourages the selection of attributes with many uniformly distributed values:
[image: image57.png]Can(34)
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(4.4)
For attributes with continuous values, new discrete-valued attributes are dynamically defined that partition the continuous attribute value into a discrete set of intervals. For an attribute A that is continuous-valued, the algorithm can dynamically create a new boolean attribute Ac that is true if A < c and false otherwise. The threshold c is the value that produces the greatest gain ratio. To find the threshold c, the collection of examples S is first sorted on the values of the attribute A as {v1, v2, . . . , vm}. Any threshold value lying between vi and vi+1 can split A, so there are only m – 1 candidate thresholds. These candidate thresholds can then be evaluated by computing the gain ratio of each candidate threshold.
In equations (4.2) till (4.4) it is assumed that the values of the attributes are known. When the value of an attribute is unknown, it is not possible to calculate the gain, the split information, and thus the gain ratio of an attribute. To calculate the gain of an attribute whether the values is known or not, the gain has to be modified as follows [12]:

Let F be the fraction that the value of an attribute A is known. Then the gain can be calculated as:
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where only the known values of A are taken into account by [image: image62.png]Entropy(S)



 and [image: image64.png]Soevatuss(a) g ENEropy(S,)



. The split information can be modified by considering the cases of A with unknown values as an extra group:
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(4.6)
The attribute that best classifies the training examples is selected and used as the test at the root node of the tree. A child node of the root node is created for each of the two subsets that are split by that attribute and its threshold, and the training examples are sorted with weights for each case to the appropriate child node [12]. If the case has a known value, the weight for that case is 1. If the case does not have a known value, the weight for this case is the probability that this case will have the outcome of the appropriate child node. The subsets that are created for the root node are collections of possible fractional cases. This process is then repeated using the training examples associated with each child node to select the best attribute to test at that point in the tree. During this process, the algorithm never backtracks to consider earlier choices.

4.1.2 Pruning the decision tree
The tree that is built will overfit the training set since it perfectly classify the examples of the training set which might be noisy or too small to be represent a sample of the true target function [11]. To avoid overfitting, the C4.5 algorithm prunes the tree by removing one or more subtrees and replacing these subtrees with leaves or branches so that the tree can be simplified. The replacement of the subtrees and is done by examining each subtree, starting at the bottom of the tree, and removing the subtree in favor of a leaf or a branch if it would lead to a lower estimated error. The class of this leaf will be the most frequent class of the cases belonging to the substituted subtree. This will be repeated until no further improvement can be made by replacing a subtree. The estimated error of a leaf can be calculated as follows [12]: 

Let N be the training examples in a leaf of the tree, and E the misclassified training examples in this leaf, then the error rate for this leaf is E/N. When one considers this as observing E events in N trials and E/N as the probability that an error occurs, then the upper limit on this probability can be found from the confidence limit for the binomial distribution for a given confidence level CF: U​​CF(E, N). The C4.5 algorithm equates the predicted error rate at a leaf with this upper limit. So a leave with N training examples and predicted error rate of U​​CF(E, N) would predict N * U​​CF(E, N) errors. The predicted errors of a subtree is the sum of the predicted errors of its leaves. 
4.1.3 Classifying cases
After the decision tree is built and pruned, the decision tree can be used to classify unseen cases. Starting at the root of the decision tree, an attribute of a case is tested at each decision node of the tree to decide through which branch the cases will descend to the next decision node. This will be repeated until a leaf is reached. The predicted class of the case will be the most frequent class of this leaf. When a case has unknown values and an attribute with an unknown value is encountered at a decision node, all possible branches of this node are explored and the resulting classifications are combined arithmetically. The predicted class of this case will be the class with the highest probability.

4.2 Decision tree learning for content-based recommendation
The decision tree learning part of the content-based recommendation will be constructed for every user and will also use the genre, contributors and the movie plot of a movie combined to build the tree and classify movies. To use the decision tree learning method, we have to transform the movie description into a numerical representation as we did for the content-based neural network. So the movie-description will be represented by 1’s and 0’s for present and not present of the vocabulary words found in the movie-description. With the transformed movie vectors the decision tree can be build. To build the tree with the C4.5 algorithm, we use the same type of matrix with movie vectors we used for the content-based neural networks. So the matrix will also have the size:

	Movies rated by user
	Distinct words in the movie-descriptions of the movies rated by user
	Ratings given by user

	…
	…
	…


In this matrix, the attributes that will be used to build the decision tree are the distinct words in the vocabulary. So the root of the tree will be one of the distinct words in this matrix. From the root, the tree will be constructed top-down, where the child nodes represents the values of the distinct words, present or not present. The next paragraph shows an example of how the decision tree will be built using this matrix.

4.2.1 Example content-based recommendation
For the example of the content-based recommendation for building the decision tree, we consider the same user1 with the transformed movie vectors of section 3.2.1. The transformed movie vectors of the training set will be called S . To find the attribute that will be used at the root of the tree, we use the C4.5 algorithm described in Table 4.1. The list of attributes here is:

Attributes: a1, a2, a3, d1, d2, g1, g2, p1, p2, p3, p4

First we remove the attributes that has only one value, since these attributes will only have one subtree in the decision tree. So the attributes a1 and p3 will be removed from the list of attributes, because they only have 1 as value. The list of attributes remains:

Attributes: a2, a3, d1, d2, g1, g2, p1, p2, p4
For each of the rest of the attributes we calculate the gain ratio using equations (4.1) till (4.4). For a2, for example, the gain ratio will be calculated as follows: the entropy (equation 4.1) is calculated as:
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 (0/3) = 0 + 0.528 + 0 + 0.390 + 0 = 0.918
The information gain (equation 4.2) of a2 can then be calculated as follows:
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 = 0.918 – 2/3 * 1 – 1/3 * 0 =

  0.251
The spit information (equation 4.3) is calculated as:
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 = 0.390 + 0.528 = 0.918

With the information gain and the split information of a2, the gain ratio (equation 4.4) can be calculated:
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 = 0.251 / 0.918 = 0.273
The attribute with the highest gain ratio will be selected as the root note since this attribute best splits the training set. Below this root two branches are added, one for which this attribute’s value is 0, and one for which this attribute’s value is 1. For each of these branches a new training set is create by dividing S into S0 and S1, where S0 has examples where the attribute’s value is 0, and where S1 has examples where the attribute’s value is 1. Below these branches a new subtree is created with the new created training sets, where the C4.5 algorithm described in Table 4.1 is used to find the root of that subtree. These steps are repeated until there are no attributes left. 

The tree that is created will be pruned to avoid overfitting. Starting at the bottom of this tree, the estimated error of each leaf is calculated as described in section 4.1.2. The estimated error of the subtree where each leaf belongs to is calculated as the sum of the estimated errors of its leaves. If the subtree has a higher estimated error than the leaf by which it can be substituted, the subtree will be replaced by a leaf. The class of this leaf will be the most frequent class found in the cases of this leaf. The replacements of the subtrees will be repeated until the estimated error of the tree cannot be improved.

The built and pruned tree after implementing the C4.5 algorithm will be used to classify the examples in the test set. Starting at the root of the tree, at each node an example is tested by the attribute belonging to that node to decide if the example descends by the 0-branch or 1​-branch of that node. This is done until a leaf is reached that decides to which class that example belongs.
4.3 Decision tree learning for collaborative filtering 

For the decision tree learning of collaborative filtering the ratings of common users are considers. A decision tree will be built for each user and uses the same type of vectors that were used for collaborative filtering part of neural networks. So the number of attributes will be the number of common users for each user. The matrix that will be used to build the decision tree for collaborative filtering for a user will be the same as the matrix used to train the collaborative filtering networks with the size:

	Movies rated by user
	Ratings given by common users
	Ratings given by user

	…
	…
	…


The attributes that will be used to build the decision tree are the common users and one of these will be the root of the decision tree. From the root of the tree, the tree will be built top-down where each node represents an attribute-threshold combination of common user, that separates the ratings into two subsets. In the next paragraph we show an example of how the thresholds are found for a common user and how the decision tree will be built using these thresholds for collaborative filtering.

4.3.1 Example collaborative filtering
To illustrate the collaborative filtering for building the decision tree, we consider the same ratings of user1 and common users of paragraph 3.3.1. As in building the content-based recommendation of decision tree, the C4.5 algorithm described in paragraph 4.1 will be used to find the root of the decision tree and build the decision tree for collaborative filtering. Let the ratings of the training set be S, then the list of attribute will be:

Attributes: u3, u4, u5, u6
The attributes with only one known value will be removed, because the attribute will have one subtree only. In this case the attribute u6 will be removed, because it only has the known value 4 in the training set. The final list of attributes will become:

Attributes: u3, u4, u5
For the other attributes we search for the threshold c that best splits S into S1, where attribute A < c, and S2, where attribute A [image: image85.png]


 c. This is done by creating candidate thresholds for each attribute and calculating the gain ratio for each attribute-threshold combination. To find these  thresholds, we sort the known values of an attribute A as {v1, v2, . . . , vm} and create m – 1 candidate thresholds c that can split S into subset S1, where A < c,  and subset S2, where A [image: image86.png]
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. For attribute u3 for example, there is only one candidate threshold since u3 has 2 known values: v1 = 1 and v2 = 2. The threshold c for u3 will be [image: image92.png]il



 = 1.5. With this threshold the gain ratio is calculated using equations (4.1) and (4.4) till (4.6) instead of equations (4.1) till (4.4) since this attribute has at least one unknown value: the entropy (4.1) is the calculated the same as was done in section 4.2.1:
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 (0/3) = 0 + 0.528 + 0 + 0.390 + 0  = 0.918
The information gain is calculated using equation (4.5). For attribute u3, two of the three values are known, so the fraction that attribute u3 is known is 2/3. The information gain can then be calculated as:
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 = 2/3 * (0.918 – 1/3 * 1 – 1/3 * 1) = 0.167

The spilt information is calculated using equation (4.6):
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 = 0.528 + 0.528 + 0.528 = 1.584

With the information gain and the split information, the gain ratio can be calculated for attribute u3 using equation (4.6):
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 = 0.167 / 1.584 = 0.105
 The same is done for attributes u4 and u5: first the candidate thresholds are created, then the gain ratios are calculated for each attribute-threshold combination. Among these attribute-threshold combinations, the one with the highest gain ratio will be selected as the root of the decision tree, since this combination (A,c) best splits training set S. Below this root, two branches are added: one that corresponds to A < c and one that corresponds to A [image: image111.png]


 c. For one branch a new training set S1 is created where the attribute of (A,c) has the value A < c and for the other branch another training set S2 is created where the attribute of (A,c) has the value A [image: image112.png]


 c. Below each branch a new subtree is created using the new created subsets. The root of each subtree will be found with the C4.5 algorithm described in Table 4.1. These steps will be repeated until there are no attributes left.

After the tree is built it will be pruned to counter overfitting as is done for the decision tree for content-based recommendation. First, the estimated error is calculated for each leaf, then the estimated errors of the subtrees are calculated as the sum of the estimated errors of their leaves. A subtree is replaced by a leaf if the leaf has a lower estimated error then the subtree and the class of the new leaf will be the most frequent class found in the leaf. This will be repeated for all subtrees until no replacement can improve the estimated errors.

With the created decision tree, the examples in the test set can be tested to predict the correct class. For each example in the test set, one starts at the root of the tree and tests at each node if that example descends by the branch corresponding to A < c or the branch corresponding to A [image: image113.png]


 c. This is done by comparing the attribute of that example belonging to that node with the threshold of that node. When an attribute with an unknown value is encountered, both branched of this node are explored and the resulting classifications are combined arithmetically. The class with the highest probability will be the predicted class of the example.
4.4 Decision tree learning for hybrid recommendation
Like the hybrid part of neural networks, the decision tree learning for hybrid recommendation is based on the feature combination method and combines the characteristic features used for the content-based and collaborative filtering recommendation. The combination will be done by taking the movie-description of the movies rated by a user and the common users of a user into account. The characteristic features that will be used are the presence of words found in the movie-description and the ratings of common users of a user. The number of attributes that will be used to build a decision tree for each user are the number of distinct words in the vocabulary for a particular user plus the number of common users of this user. To build the decision tree of a user, a matrix will be used that contains the vectors of the movies rated by the user with the presence of the words in the movie-description and the ratings of common users for these movies, as in the matrix for training the hybrid neural networks. The matrix will have the size:

	Movies rated by user
	Distinct words in the movie-descriptions of the movies rated by user
	Ratings given by common users
	Ratings given by user

	…
	…
	…
	…


To build the decision tree, both the attributes common users and distinct words in the vocabulary will be used in this matrix. The root of the tree will be one of the common users or one of the distinct words. The child nodes of the root will be either an attribute-threshold combination of a common user or the values of the distinct words, present or not present, depending on what the root node is. In the next paragraph we show how the decision tree will be built top-down using the attribute-threshold combinations of common users and the values of the distinct words.
4.4.1 Example hybrid recommendation
For this example we look at user1 with the transformed movie vectors and the common users of paragraph 3.4.1. To find the root node and build the decision tree for hybrid recommendation, we use the C4.5 algorithm as described in Table 4.1. Let the ratings and the transformed movie vectors of section 3.4.1 be S, then the list of attributes will be:

Attribute: a1, a2, a3, d1, d2, g1, g2, p1, p2, p3, 
p4, u3, 
u4, u5, 
u6
We will remove all attributes with one known value, since these attributes will have one subtree. In this example we remove the attributes a1, p3 and u6, because these attributes have only one known values, namely 1 for attributes a1 and p3 and 4 for attribute u6. The remaining list of attributes becomes:

Attributes: a2, a3, d1, d2, g1, g2, p1, p2, p4, u3, u4, u5
For the remaining attributes with known values, the distinct words in the vocabulary, we calculate the gain ratio using equation (4.1) till (4.4) as is done in section 4.2.1. For a2 for example, the calculated entropy (equation 4.1) was 0.918. With this entropy we calculated the information gain (equation 4.2): 0.251. The calculated split information (equation 4.3) was 0.918. Finally, we calculated the gain ratio (equation 4.4): 0.273 This is done for all the attributes of distinct words in the vocabulary. 

For each of the other attributes, the common users, we first search for a threshold c that best splits S into two subsets, where one subset belongs to A < c and the other subset to A [image: image115.png]


 c, as is done in section 4.3.1. With the threshold-attribute combination, we can calculate the gain ratio by using equations (4.1) and (4.4) till (4.6), because the these attributes can have at least one unknown value. For example, for u3 the threshold c was 1.5. Using this threshold, the entropy (equation 4.1) was calculated: 0.918. With the entropy we calculated the information gain (equation 4.5) of this threshold-attribute combination: 0.167. The split information (equation 4.6) was 1.584. With the information gain and split information we found the gain ratio (equation 4.4)  of the attribute: 0.105. This is done for all the attributes of common users.
After the gain ratios have been calculated for all distinct words in the vocabulary and common users, the attribute with the highest gain ratio will be the root of the decision tree. Depending on this node, two branches are added:
1) If the root is one of the distinct words, one branch corresponds to attribute’s value = 0. For this branch, a new training set S0 is created by selecting the examples of S where the attribute’s value = 0. The other branch corresponds to attribute’s value = 1. For this branch, a new training set S1 is created by selecting the examples of S where the attribute’s value = 1.
2) If the root is one of the common users, one branch corresponds to A < c. For this branch, a new training set S0 is created by selecting the examples of S where the attribute of (A,c) has the value A < c. The other branch corresponds to attribute’s to A [image: image117.png]


 c. For this branche, a new training set S1 is create by selecting the examples of S where the attribute of (A,c) has the value A [image: image119.png]


 c.
Below these branches a new subtree is created using the corresponding new training set. The roots of the new subtrees can be found with the C4.5 algorithm. This will be repeated until there are no attributes left. 

To counter the overfitting of the built decision tree, the decision tree will be pruned. As is done for the decision tree for content-based recommendation and the decision tree for collaborative filtering, the estimated error is calculated for each leaf as described in section 4.1.2. Then the estimated error of each subtree is calculated by summing up the estimated error of its leaves. If a subtree can be replaced by a leaf with a lower estimated error then the sum of the estimated error of its leaf, the subtree will be replaced by a leaf and the class of the leaf will be the most frequent class of the leaf. The replacement will be repeated for all subtrees until the estimated errors cannot be improved.

After the decision tree is built, it can be used to predict the right class of the examples in the test set. An example can be classified by starting at the root of the decision tree and testing the value of the attribute that belongs to the root node. Depending on the value of the tested attribute, the example descends by one of the branches. If the tested attribute is one of the distinct words, the example descends by the 0-branch if the value of the attribute is 0, otherwise by the 1​-branch. If the tested attribute is one of the common users, the examples descends by the branch corresponding to A < c if the value of the attribute smaller than threshold c, otherwise by the branch corresponding to A [image: image121.png]


 c. If an attribute of an example has an unknown value, both branches of the node are explored and the resulting classifications are combined arithmetically. The predicted class of an example will be the class with the highest probability.
4.5 Summary

This chapter introduced the C4.5 algorithm we used as the decision tree learning for the recommender system. We started with describing the algorithm for building a decision tree and also explained how the algorithm could be used for examples with unknown values. We then explained the pruning process to avoid overfitting of the decision tree and how the decision tree could be used to classify unseen examples. We further explained how the decision tree could be used for content-based recommendation which uses the movie-descriptions of the movies. As in the content-based recommendation for neural networks, a movie-description will be transformed in a vector with presence of distinct words of the vocabulary found in the movie-description. An example of movies rated by a user was used to show the implementation of the decision tree learning for content-based recommendation. Further, we showed how the decision tree could be used for collaborative filtering by using the ratings of common users. With an example of a user and the common users, that was used for neural networks for collaborative filtering, we explained the implementation of the decision tree for collaborative filtering. We then described the decision trees for hybrid recommendation by combining the content-based method, the vector with the presence of distinct words of the vocabulary found in the movie-description, and the collaborative filtering method, the ratings of the common users, as was done in the neural networks for hybrid recommendation. Finally, by an example of the combination of the movie-descriptions and the common users we explained the implementation of the decision tree for hybrid recommendation.
Chapter 5

Implementing algorithms - Weka

This chapter describes the data mining software Weka we used to implement the algorithms in our recommender systems. First we describe the software and how we used this software in our recommender systems. We further discuss the machine learning algorithms of Weka we used for the backpropagation algorithm and the C4.5 algorithm: Multilayer Perceptron and J48 respectively. For both machine learning algorithms we discuss the options of the algorithms and explain which options we used and which values we applied to train the systems make recommendations.
5.1 Weka

Weka is a software toolkit for standard machine learning techniques by the University of Waikato. It stands for Waikato Environment for Knowlegde Analysis. The collection of various machine learning algorithms are used for data mining tasks. Of these machine learning algorithms we used the algorithms Multilayer Perceptron and J48, which will be further described in the following two sections. The algorithms in Weka can be applied directly to datasets or it can be called from a Java code. In our recommender systems the two algorithms we used, are called from our Java code. The Weka-software has various tools for data pre-processing, classification, regression, clustering, association rules, and visualization. Our recommender systems uses the tool for classification. 
5.2 Multilayer Perceptron 

Multilayer Perceptron is a classifier that uses backpropagation to classify cases. It builds a neural network where all the nodes are sigmoid, except if the classes are numeric. In that case the output of a node will be unthresholded linear units. This classifier can be used for cases with date class, binary class, nominal class, missing values and numeric class. The attributes of the cases can be empty nominal attributes, nominal attributes, missing values, numeric attributes, binary attributes, date attributes and unary attributes. The minimum number of instances for this classifier to work is 1. This algorithm in Weka has various options and in our recommender systems we used the default value for some of the options and for other options we changed the value:
· GUI: This will show a gui interface. This interface allows a user to pause and change the neural network during training, like adding nodes, connecting nodes, removing connections between node, and so on. Values: true, false. Default value: false. We used the default value since it is not necessary in our application to use the gui interface to pause and change the neural network during training. Our application is built to predict the classes of movies for a user without the user interacting with the system.
· autoBuild: This option will add and connect up the hidden layers. When it is set true, the network is built automatically. Otherwise it is left up to the user. Values: true, false. Default value: true. For this option we also used the default value, because we do use nodes in the hidden layers that need to be connected. Otherwise the user has to connect the hidden layers himself.
· decay: This option will let the learning rate decrease. The current learning rate is determined by dividing the starting learning rate by the epoch number. By decreasing the learning rate, the network may be stopped from diverging from the target output and the general performance may be improved. Values: true, false. Default value: false. We will experiment with both values to see if changing the default value can improve the general performance of the recommender systems.
· hiddenLayers: The hidden layers of the neural networks is defined by this option. Values: positive whole numbers, separated by comma, for the number of nodes in each hidden layer. It is also possible to use one of the wildcard values: ‘a’ = the average of the number of attributes plus the number of classes, ‘i’ = number of attributes, ‘o’ = number of classes, ‘t’ = the number of attributes plus the number of classes. Default value: ‘a’. In chapter 6 we will describe which values we use for the hidden layers.
· learningRate: This determines the amount by which the weights in the network are updated. Values: number between 0 and 1. Default value: 0.3. The value of this option will also be experimented to see if the general performance improves if the default value is changed.
· momentum: This option defines the momentum that is applied to the weights in the network when it is updated. Values: number between 0 and 1. Default value: 0.2. This will also be experimented in chapter 6 to see if the general performance will improve by changing the default value.
· nominalToBinaryFilter: This option is used for preprocessing the instances with the filter. If there are nominal attributes in the data, the performance of the network may improve by preprocessing the instances with the filter. Values: true, false. Default value: true. This will be also be tested in chapter 6.
· normalizeAttributes: The attributes will be normalized by this option. The performance of the network may improve when the attributes are normalized. Values: true, false. Default value: true. We will use the default value for this option.
· normalizeNumericClass:  The class will be normalized if it is numeric by this option. The performance of the network may improve when the class is normalized. The class will be normalized between -1 and 1. Values: true, false. Default value: true. The performance will be tested with both values in chapter 6.
· reset: This option resets the network with a lower learning rate when the network diverges from the target output. This option can only be set if the gui-option is set to false. When this option is set to false and the network diverges from the answer, the network will fail the training process and return an error message. Values: true, false. Default value: true. We use the default value, because otherwise our network will fail the training process if it diverges from the target output.
· seed: This option defines the seed that is used to initialize random generator. Random number are used to set the initial weights of the connections between nodes and for randomizing the training data. Values: positive whole numbers. Default value: 0. Since we do not have to initialize different random generators for our experiments, we use the default value for this option.
· trainingTime: This defines the number of epochs that the network will be trained if the validationSetSize-option is set to 0%. Otherwise the value of this option is ignored during the training of the network.Values: positive whole numbers. Default value: 500. In chapter 6 we will explain whether we used this option or the validationSetSize-option.
· validationSetSize: The percentage of the training set that will be used for the validation set is determined by this option. The training of the network will stop when the times that the error on the validation set gets worse in a row reaches the value of validationThreshold. When this option has the value 0, the network will be trained using the value of trainingTime. Values: whole numbers between 0 and 99. Default value: 0. In chapter 6 we will explain whether we use this option or the trainingTime-option.
· validationThreshold: This defines the times that the validation set error can get worse in a row before the training stops. Values: positive whole numbers. Default value: 20. When we use the validationSetSize-option, we will experiment with this option, otherwise the value of this option will not influence the performance of the network.
5.3 J48
The J48 classifier generates a pruned or unpruned tree based on the C4.5 algorithm. It can be used for cases with binary class, nominal class and missing class values. The attributes of the cases can be binary attributes, nominal attributes, empty nominal attributes, date attributes, missing values, unary attributes and numeric attributes. The minimum number of instances for this classifier to work is 0. There are various options that can be set and for some of the options we used the default value in our recommendation and for other options we changed the value:

· binarySplit: This will use the binary splits on nominal attributes when the trees are built. Values: true, false. Default value: false. We will test if this option influences the performance of our recommender systems by looking at both of the values.
· confidenceFactor: This option defines the confidence factor that is used for pruning. The smaller the confidence factor, the more pruning. Values: float number. Default value: 0.25. For this option we will test various values to see if this option can influence the performance of the recommender systems.
· debug: Whether the classifier outputs additional info to the console. Values: true, false. Default value: false. We will use the default option, because we do not need the additional info.

· minNumObj: Determines the minimum number of instances for each leaf. Values: positive whole numbers. Default value: 2. We will test various numbers for this option to see if it has an influence on our trees.
· numFolds: Defines the number of folds for reduced error pruning, where one of the folds is used as the pruning set. Values: positive whole number. Default value: 3. This option will also be tested in chapter 6.
· reducedErrorPruning: If this option is set to true, the reduced error pruning is used instead of C4.5 pruning. Values: true, false. Default value: false. We will test both value to see which type of pruning has the best result for our trees.

· saveInstanceData: This defines whether the training data is saved for visualization. Values: true, false. Default value: false. We will use the default value because our classifier is called from our java code and the training data is not used.
· seed: This option defines the seed that is used to randomize the data when reduced error pruning is used. Values: positive whole numbers. Default value: 1. We use the default value for this option, because it is not necessary to randomize the data with different seeds.
· subtreeRaising: This defines if the subtree raising operation is considered when pruning. Values: true, false. Default value: true. Both values will be tested in chapter 6.
· unpruned: If this option is set to true, the tree will not be pruned. Values: true, false. Default value: false. We will test whether it is better to prune the trees or to let the trees unpruned.
· useLaplace: Defines whether counts at the leaves of the tree are smoothed based on Laplace. Values: true, false. Default value: false. We will test both values in chapter 6.
Chapter 6

Experiments & Results
In this chapter we discuss the experiments we have performed with the recommender systems. We also discuss the results of these experiments. First we describe the datasets we used for the recommender systems and how we combined the datasets to make content-based and hybrid recommendation possible. Then we describe the experimental methodology. We will describe which users will be used for the final experiments and how the final experiments are set. Further, we discuss which parameter values will be tested in the parameter optimization and which users will be used to find the optimal parameters for the final experiments. Finally, we will present the results of the experiments and compare the performance of the recommender systems with each other and with the recommender systems of [3].
6.1 Datasets
To test the performance of our recommender systems, we use the same datasets we used in [3]: the user rating-data from Netflix and the movie data from IMDb. The dataset of Netflix was collected from October 1998 till December 2005. It contains more than 100 million ratings from 480 thousand randomly chosen users for 17 thousand movies. The average number of ratings of each user is 200 ratings and the average number of ratings for each movie is 5500. Each movie is rated on a scale from 1 star, which means a very bad movie, to 5 stars, which is a very good movie. The content of a rated movie, like the genre, the director, the actors and the plot outline of the movie was extracted from the IMDb website and put in a bag of words. This bag of words was then combined with the movie title and the ratings to make content-based and hybrid recommendation possible. For a quicker turn-around, we searched for 3000 movies on IMDb and found 2032 movies that matched the movie titles. The number of users was diminished to 2560. The average number of ratings of each user became 30 ratings and the average number of ratings for each movie became 38.
6.2 Experimental methodology
The recommender systems that we will evaluate were discussed in chapter 1:

1) Content-based neural networks (CB-NN)

2) Collaborative filtering neural networks (CF-NN)

3) Content-based decision tree (CB-DT)

4) Collaborative filtering decision tree (CF-DT)

5) Hybrid neural networks based on content-based method and collaborative filtering method (H-NN)

6) Hybrid decision tree based on content-based method and collaborative filtering (H-DT)

For the performance of the recommender systems, we will measure the accuracy,  the MAE and the accuracy of  the like-dislike classes. To measure the accuracy of the like-dislike classes, we will look at the Confusion Matrix of a recommender system. We will split the Confusion Matrix into the classes 1 till 3 stars for the dislike-class and classes 4 and 5 stars for the like-class. In other words, we will look at the times that a recommender system classified 1, 2 or 3 stars when the users actually rated 1, 2, or 3 stars and the times that 4 and 5 stars were predicted when the users actually rated 4 and 5 stars. The number of correctly predicted like-dislike classes will then be divided by the number of predictions of the recommender system to measure the accuracy of the like-dislike class for the recommender system.
In the experiments of [3] we selected 10 users who rated more than 200 movies. Each of these users had a test set of 30 movies. To compare the results of the recommender systems of [3] with the results of recommender systems proposed in this thesis, we selected the same 10 users and their rated movies from [3]. In this experiment the users have the same test set as in [3] and a training set of 60 movies. Table 6.1 shows the characteristics of the 10 users. 

Table 6.1: The characteristics of the users for the final experiment
	Id:
	9557
	3321
	10679
	7576
	2213
	3998
	12812
	2976
	11796
	5980

	Number of distinct words:
	854
	856
	848
	866
	848
	868
	892
	906
	864
	746

	Number of common users:
	1942
	1817
	1826
	2128
	1952
	1979
	2021
	2131
	2049
	1889


The distinct words are counted from the movie-descriptions in the training set. The result is the number of distinct words. This number is also the number of attributes for the content-based part of the neural networks and the content-based part of the decision trees. Likewise the distinct words, the common users are counted in the training set. The total number of this count will also be the number of attributes for the collaborative filtering part of the neural networks and the collaborative filtering part of the decision trees.
6.3 Parameter Optimization
Before we start with the final experiments, we first explore which parameter values will be used for the parameters discussed in chapter 5 to get the best performance of the recommender systems. From the 10 users selected for the final experiment, we selected the first three users for the parameter optimization. After the parameter optimization, we make the final experiments based on the parameter values optimized in the parameter optimization.
For the neural networks, the parameters and parameter-values that will be tested in the parameter optimization are shown in Table 6.2. The default parameter values are bold.
Table 6.2: Parameters of the neural networks and their parameter values that will be tested. The default values of the parameters are bold.
	Parameters
	Parameter values

	Decay
	true; false

	HiddenLayers
	0; 2; 4; 6; 8; 10; 2,2; 2,2,2

	LearningRate
	0; 0.05; 0.1; 0.2; 0.3; 0.4; 0.5

	Momentum
	0; 0.05; 0.1; 0.2; 0.3; 0.4; 0.5

	NominalToBinaryFilter
	true; false

	TrainingTime
	100; 300; 500; 700; 1000

	ValidationSetSize
	0; 10; 20; 30; 40; 50

	ValidationThreshold
	10; 20; 30; 40; 50


We start the optimization with the default values, except for the hiddenLayers. For this parameter we used the value “2” as default, because there are many attributes for each user. Since the normal default value “a” means that the number of nodes in the hidden layer are the average of the number of attributes plus the number of class, it takes too much time to make recommendations with hiddenLayers = “a”. For each parameter, starting with decay, we test for which parameter-value the recommender systems have the lowest MAE. When we found the parameter-value that gives the lowest MAE, we continue the optimization with this parameter-value and test the next parameter. Note that the trainingTime-parameter is only considered when the validationSetSize-parameter is set to 0. Also note that the validationSetSize-parameter and the validationThreshold-parameter are used in combination with each other. The validationSetSize-parameter defines the percentage of the training set that will be used for validation set. The network will stop training when the times that the error on the validation set gets worse in a row has reached the value of the validationThreshold-parameter.
The parameters and parameter-values that will be tested in the parameter optimization for the decision trees are shown in Table 6.3. The default value of the parameters are bold.
Table 6.3: Parameters of the decision tree and their parameter values that will be tested. The default values of the parameters are bold.
	Parameters
	Parameter values

	BinarySplit
	true; false

	ConfidenceFactor
	0.05; 0.1; 0.2; 0.25; 0.3; 0.4

	MinNumObj
	1; 2; 4; 6; 8; 10

	NumFolds
	2; 3; 4; 5; 6; 7

	ReducedErrorPruning
	true; false

	SubtreeRaising
	true; false

	Unpruned
	true; false

	UseLaplace
	true; false


As with the optimization of the parameters of the neural networks, we start with the default values. Starting with binarySplit, we test which parameter-value gives the lowest MAE for the recommender systems. Once the best parameter-value is found, we continue the optimization with this parameter-value for the current parameter and test the next parameter.
Beside the parameters discussed in chapter 5, we introduce two parameters that will be explored first to get the best performance of the recommender systems: the same-movie-ratio and the minimum-word-frequency. The same-movie-ratio is the percentage of the movies that a common user in the training set must have rated in common with a particular user to be considered as an attribute in the neural networks and the decision tree of this particular user. For example, when the same-movie-ratio is set to 10%, for each decision tree or neural networks of a particular user, only the ratings of the common users who have rated at least 10% of the movies that this particular user has rated in the training set are considered to build the neural networks or decision tree.
The minimum-word-frequency is the minimum frequency that a word should appear in the movie-descriptions in the training set of a particular user to be considered as an attribute in the neural networks and the decision tree of this particular user. When the minimum-word-frequency is set to 3 for example, for each neural networks of a particular user, only the words that appeared at least three times in the movie-descriptions in the training are put in the vocabulary of this particular user to build the neural networks of decision tree. 

With these two parameters the list of attributes becomes smaller for the recommender systems. This results in a faster building of the neural networks and decision trees and faster recommendation. Because the list of attributes becomes smaller by remove the attributes that appear less in the training set, we hope to improve that performance by reducing the sparsity problem. The parameter values for these two parameters are shown in Table 6.4.
Table 6.4: The same-movie-ratio and minimum-word-frequency parameters and the parameter values that will be tested. The parameter value 0% for same-movie-ratio means that a common user has rated at least one movie in common with a particular user.
	Parameters
	Parameter-values

	Same-movie-ratio
	0%; 10%; 20%; 30%; 40%; 50%

	Minimum-word-frequency
	1; 2; 3; 4; 5; 6; 7; 8; 9; 10


For each recommender system, we test for which parameter value the recommender systems have the lowest MAE with the default values of the Weka-parameters. The same-movie-ratio parameter will be optimized for the collaborative filtering and hybrid recommenders and minimum-word-frequency for the content-based and hybrid recommenders. After we found the parameter value that gives the lowest MAE for a recommender system, we continue the optimization of the Weka-parameters for the recommender system with this parameter value.
6.3 Results
We first started the optimization by finding the best parameter value for the same-movie-ratio and minimum-word-frequency parameters for each recommender system. The results of the optimization of these two parameters is shown in Table 6.5. This table shows the recommender systems: rec-sys; the same-movie-ratio values: smr; the minimum-word-frequency values: mwf; the average accuracy of the like-dislike classes: like-dislike; the average MAE: MAE; and the average accuracy of the recommender systems: acc. To compare the performance of the recommender systems after the optimization of the two parameters with the performance of the recommender systems without the optimization, we added the results of the recommender systems without the optimization in Table 6.6.
Table 6.5: Results of the optimization of the same-movie-ratio and minimum-word-frequency parameters for each recommender system for users 9557, 3321, 10679.
	Rec-sys
	smr
	mwf
	like-dislike
	MAE
	acc

	CB-NN
	-
	4
	63.33%
	0.2295
	45.56%

	CF-NN
	20%
	-
	66.67%
	0.2098
	52.22%

	H-NN
	10%
	5
	73.33%
	0.1855
	56.67%

	CB-DT
	-
	2
	68.89%
	0.2288
	43.33%

	CF-DT
	50%
	-
	56.67%
	0.2662
	45.56%

	H-DT
	20%
	2
	70%
	0.2279
	43.33%


Table 6.6: Performance of the recommender systems without the optimization of the same-movie-ratio and minimum-word-frequency parameters  for users 9557, 3321, 10679.
	Rec-sys
	smr
	mwf
	like-dislike
	MAE
	acc

	CB-NN
	-
	1
	63.33%
	0.2585
	40.00%

	CF-NN
	0%
	-
	62.22%
	0.2162
	52.22%

	H-NN
	0%
	1
	73.33%
	0.2219
	48.89%

	CB-DT
	-
	1
	57.78%
	0.2486
	37.78%

	CF-DT
	0%
	-
	52.22%
	0.2677
	42.22%

	H-DT
	0%
	1
	57.78%
	0.2486
	37.78%


As we can see from the two tables, the average MAE for all the recommender systems with the optimized parameters did improve compared to the recommender systems without the optimization. The average accuracy of the like-dislike classes did improve for most of the recommender system after the optimization, except for the CB-NN and the H-NN. For the CB-NN, the average accuracy of the like-dislike classes was 63.33% for both the optimized and non-optimized parameters. For the H-NN, the average accuracy of the like-dislike classes was also the same for the optimized and non-optimized parameters, namely 73.33%. The average accuracy of the recommender system also improved for most of the recommender systems, except for the CF-NN where the average accuracy was 52.22% for the optimized and non-optimized parameters. 
The result of the H-DT with the lowest MAE was the same for the parameter values:
	smr
	mwf
	like-dislike
	MAE
	acc

	0%
	2
	70%
	0.2279
	43.33%

	10%
	2
	70%
	0.2279
	43.33%

	20%
	2
	70%
	0.2279
	43.33%


Since the parameter values smr = 20% and mwf = 2 gives the smallest list of attributes and therefore makes the fastest recommendation possible, we continue the optimization with these parameter values.
With the parameter values found in Table 6.5 we continued the optimization of the Weka-parameters for the neural networks and decision trees. The results of the optimization that produces the lowest MAE for the recommender system are shown in Table 6.7. The parameters that belong to each result is shown in Appendix.
Table 6.7: Results of the optimization of the Weka-parameters for each recommender system for users 9557, 3321, 10679.
	Rec-sys
	smr
	mwf
	like-dislike
	MAE
	acc

	CB-NN
	-
	4
	65.56%
	0.2220
	47.78%

	CF-NN
	20%
	-
	68.89%
	0.1997
	54.44%

	H-NN
	10%
	5
	74.44%
	0.1847
	56.67%

	CB-DT
	-
	2
	68.89%
	0.2222
	45.56%

	CF-DT
	50%
	-
	61.11%
	0.2479
	48.89%

	H-DT
	20%
	2
	68.89%
	0.2244
	44.44%


When we compare the results of the optimization of the Weka-parameters with the results in Table 6.5, we see that the average MAE improved for all recommender systems. The average accuracy of the like-dislike class improved for the systems: CB-NN, CF-NN, H-NN and CF-DT. For the other two recommender systems, this average descended from 70% to 68.89% for the H-DT and remained 68.89% for the CB-DT. The average accuracy of the recommender system improved for almost all of the recommender systems, except for the H-NN where this average remained 56.67%.
After we found the parameter values that produced the lowest MAE during the optimization of the set of users used for the optimization, we performed the final experiments with all the users described in section 6.2. The results of the final experiment is shown in Table 6.8. To see whether the optimization of the Weka-parameters improved the results of the final experiment, we added Table 6.9 where the default value for the Weka-parameters are used.
Table 6.8: Results of final experiments with the optimized values of the Weka-parameters for each recommender system for users 9557, 3321, 10679, 7576, 2213, 3998, 12812, 2976, 11796 and 5980.
	Rec-sys
	smr
	mwf
	like-dislike
	MAE
	acc

	CB-NN
	-
	4
	67%
	0.2220
	46%

	CF-NN
	20%
	-
	65.67%
	0.2237
	47.67%

	H-NN
	10%
	5
	67.33%
	0.2241
	46.67%

	CB-DT
	-
	2
	60.67%
	0.2406
	40.67%

	CF-DT
	50%
	-
	62.67%
	0.2457
	47.67%

	H-DT
	20%
	2
	62.33%
	0.2299
	44.00%


Table 6.9: Results of final experiments with the default values of the Weka-parameters for each recommender system for users 9557, 3321, 10679, 7576, 2213, 3998, 12812, 2976, 11796 and 5980.
	Rec-sys
	smr
	mwf
	like-dislike
	MAE
	acc

	CB-NN
	-
	4
	62.67%
	0.2292
	44%

	CF-NN
	20%
	-
	65%
	0.2196
	48%

	H-NN
	10%
	5
	68.33%
	0.2203
	47.33%

	CB-DT
	-
	2
	61%
	0.2332
	41.33%

	CF-DT
	50%
	-
	61.67%
	0.2520
	48%

	H-DT
	20%
	2
	61.33%
	0.2348
	41.33%


From the tables 6.8 and 6.9 we can see that optimizing the Weka-parameters has not improved the performance of all the recommender systems in the final experiment. The results that did better on one of the experiments is marked green and the results that did worse is marked red. The average MAE improved for three of the six recommender systems: CB-NN, CF-NN, and H-DT. For the other three recommender systems, namely CF-NN, CB-DT, and H-NN, the average increased from 0.2196 to 0.2237, from 0.2332 to 0.2406, and from 0.2203 to 0.2241 respectively. The average accuracy of the like-dislike class improved for four recommender systems: CB-NN, CF-NN, CF-DT, and H-DT. The average got worse for CB-NN, where it decreased from 61% to 60.67% and for H-NN, where it decreases from 68.33% to 67.33%. The average accuracy only improved for CB-NN and H-DT. For the other four recommender systems, the average decreased from 48% to 47.67% for CF-NN, from 41.33% to 40.67% for CB-DT, from 48% to 47.67% for CF-DT, and from 47.33% to 46.67% for H-DT. As we can see from the two tables, the optimization improved the results of all three measures for CB-NN and H-DT and the results of all three measure got worse for CB-DT and H-NN.
In Table 6.8 we can see that the hybrid recommender systems did not perform better than the content-based recommender systems and collaborative filtering recommender systems separately. The best results among the neural networks and decision trees are marked bold. 
Among the neural networks with optimized Weka-parameters, the CB-NN has the best average MAE: 0.2220. The hybrid neural networks did perform better than the content-based and collaborative filtering when we look at the average accuracy of the like-dislike class. The H-NN has an average accuracy of 67.33%. For the average accuracy of the neural networks, the CF-NN has the best performance with an average accuracy of 47.67%.
Among the decision trees with optimized Weka-parameters, the best average MAE is achieved by H-DT. The average MAE of the hybrid decision tree is 0.2299. The CF-DT has the highest average accuracy of the like-dislike class: 62.67%. The highest accuracy of the decision trees is also achieved by the CF-DT with an average of 47.67.

The results of the recommender systems with the optimized values of the Weka-parameters can be compared with the results of the naïve Bayesian recommender systems proposed in [3]. The naïve Bayesian recommender systems are: content-based naïve Bayesian: CB-NB; collaborative filtering naïve Bayesian: CF-NB; hybrid naïve Bayesian 1: H-NB1; hybrid naïve Bayesian 2: H-NB2; and hybrid naïve Bayesian 3: H-NB3. The results of these recommender systems are shown in Table 6.10. The highest accuracies are marked bold. The accuracies of the naïve Bayesian recommender systems are also based on the same users, training set and test set as the recommender systems based on neural networks and decision trees. The results of the recommender systems based on the neural networks and the decision trees are the average accuracy of the like-dislike class. Table 6.10 shows that the H-NB1 and H-NB2 outperforms the rest of the systems with an average accuracy of 69.33%. The table also shows that the H-NN outperformed all of the naïve Bayesian recommender systems, except for the H-NB1 and H-NB2. The decision trees recommender systems performed worse than the all the other recommender systems.
Table 6.10: Results of final experiments with the optimized values of the Weka-parameters and the naïve Bayesian recommenders proposed in (Mendes, 2007).
	Rec-sys
	like-dislike / acc

	CB-NB
	65.33%

	CF-NB
	67%

	H-NB1
	69.33%

	H-NB2
	69.33%

	H-NB3
	63.67%

	CB-NN
	67%

	CF-NN
	65.67%

	H-NN
	67.33%

	CB-DT
	60.67%

	CF-DT
	62.67%

	H-DT
	62.33%


6.5 Summary

In this chapter we described the experiments and the results of these experiments. We started with describing the datasets of Netflix and IMDb that were used for these experiments and in [3]. We then discussed the experimental methodology. Here we described the training and test set, the users used for the final experiments, and the three measures for the performance of the recommender systems: the average accuracy of the like-dislike classes, the average MAE, and the average accuracy of the recommender system. Further, we described the parameter optimization. Here we presented the parameter values that will be used for the optimization of the Weka-parameters of both the neural networks and decision trees recommender systems. We also introduced the same-movie-ratio parameter and the minimum-word-frequency parameter with their parameter values that will be optimized for the neural networks and decision trees recommender systems. Finally, we presented the results of the parameter optimization and final experiments. First we showed the results of the optimization of the same-movie-ratio and minimum-word-frequency, where the optimization improved the average MAE for all the recommender systems. The optimization of the two parameters also improved the average accuracy of the like-dislike classes and the average accuracy of the recommender system for most of the recommender systems. We then showed the results of the optimization of the Weka-parameters for the neural networks and decision trees. The optimization of the Weka-parameters also improved the average MAE for all the recommender systems and improved the average accuracy of the like-dislike classes and the average accuracy of the recommender system for most of the recommender systems. With the optimized values we performed the final experiments, where the results showed that the optimization of the Weka-parameters did not improve the performance of all the recommender system. At the end we compared the results of the final experiments with the results of the naïve Bayesian recommender systems proposed in [3], where the results showed that two of the hybrid naïve Bayesian recommender systems outperformed all of the other recommender systems.
Chapter 7

Conclusion

This chapter summarizes the thesis and draws a conclusion of the thesis. First we summarize the previous chapters and answer the sub questions and the research question. Then we will present the future work where possibilities to improve the recommender systems will be addresses.
7.1 Summary
This thesis started with the research question:

How does a hybrid recommender for movies based on neural network or decision tree perform, that combines a content-based recommender for movies, which uses text mining, with a collaborative filtering recommender for movies, which uses user ratings?
This question can be answered by answering the following two questions:

1. How can these two algorithms be used individually for a content-based recommender or collaborative filtering for movies.?

2. How can one devise a hybrid recommender based on each of these algorithms, that combines a content-based with a collaborative filtering, both based on one of these algorithms?
To answer these questions, we started with discussing the related work where we described the recommender system and some recommendation methods. We also discussed the hybrid recommendation methods and gave some examples of movie recommender systems.
Then we described the algorithms that we used in our proposed recommender systems. We first explained the neural networks algorithm that we used: the backpropagation algorithm. This algorithm was implemented for the content-based, collaborative filtering and hybrid methods. With the implementation of the content-based and collaborative filtering method, we can answer the first sub question for the neural networks:

· The content-based method used the movie-description to create vectors with the presence of words found in the movie-description. These vectors was used to train the neural networks and classify the movies.
· The collaborative method used the ratings of common users to created vectors with their ratings that was used to train the neural networks and classify the movies. 
With the implementation of the hybrid method, the second sub question can be answered:
· The hybrid method used both the movie-description and the ratings of common users to create vectors that contains both content-based and collaborative filtering data. The vectors was then used to train the neural networks and classify the movies.
We then explained the decision trees algorithm that we used in our proposed recommender systems: the C4.5 algorithm. This algorithm was also implemented for the content-based, collaborative filtering and hybrid method. The implementation of the content-based and collaborative filtering method answers the first sub question for the decision trees:
· The content-based method used the movie-description to create vectors with the presence of words found in the movie-description. The vectors was then used to build the decision trees and classify the movies.

· The collaborative method used the ratings of common users to created vectors with their ratings that was used to build the decision trees and classify the movies. 
The implementation of the hybrid method answers the second sub question:
· The hybrid method used the movie-description and the ratings of common users to create vectors that contains content-based and collaborative filtering data. These vectors were used to train the neural networks and classify the movies.

After describing the algorithms, we described the data mining software Weka we used for the implementation of the algorithms in our recommender systems. We discussed the machine learning algorithms of Weka we used for the backpropagation algorithm, the Multilayer Perceptron, and for the C4.5 algorithm, the J48. For both machine learning algorithms we explained the various parameters and explained for which parameters we used the default value and for which parameters we changed the value for our recommender systems.
In the last chapter we discussed the experiments and the results of the experiments. We first explored the parameter values of the Weka-parameters for the Multilayer Perceptron and the J48 to get the best performance of the recommender systems. Along with the Weka-parameters, we introduced two parameters to get better performance of the recommender systems, the same-movie-ratio and the minimum-word-frequency. The results of the optimization showed that the performance of the recommender systems generally improved by optimizing the same-movie-ratio, the minimum-word-frequency parameters and the Weka-parameters. After optimizing the parameters, we performed the final experiments. The results of the final experiments showed that the optimization of the Weka-parameters did not improve the performance of all the recommender systems. The results also showed that the hybrid recommender systems did not perform better or worse than both the content-based recommender systems and the collaborative filtering recommenders systems. We also compared the results of the final experiments with the results of the naïve Bayesian recommenders proposed in [3]. In this comparison we saw that two of the five naïve Bayesian recommenders performed better than the neural networks recommender systems and the decision tree recommender systems. The comparison also shows that the hybrid neural networks recommender system outperformed the other naïve Bayesian recommender systems and that the decision trees recommender systems is outperformed by all other recommender systems.
With the results of the final experiments we can answer the research question:
· Compared to the content-based recommender systems and the collaborative recommender systems, the hybrid recommender systems does not perform better or worse than the other two recommender systems separately. Compared to the naïve Bayesian recommender systems proposed in (Mendes, 2007), the hybrid neural recommender system outperforms three of the five naïve Bayesian recommender systems. The decision trees recommender systems performs worse than all naïve Bayesian recommender systems.
7.2 Future work

These are the possibilities that can be addressed in future work to improve the performance of the recommender systems:
· Our hybrid recommendation methods are only based on the feature combination method. Other hybridization methods could also be explored to see how these methods perform compared to each other and to the content-based and collaborative recommender systems. 
· For the optimization of the Weka-parameters, we selected three users to find the parameter values to get the best performance of the recommender systems. The optimization could also be done for each user separately on a part of the training set to see if the performance will improve. This way each user would have its own optimized Weka-parameter values.
· It would be interesting to see if the performance of the recommender systems can improve if the same-movie-ratio and minimum-word-frequency parameters is optimized for each user separately. This could be done by optimizing the parameters on a part of the training set for each user.
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Appendix A
Results of the optimization of the smr and mwf parameters
Table A1: Results of the optimization of the minimum-word-frequency parameters for CB-DT recommender system for users 9557, 3321, 10679.
	mwf
	like-dislike
	MAE
	acc

	1
	57.78%
	0.2486
	37.78%

	2
	68.89%
	0.2288
	43.33%

	3
	67.78%
	0.2493
	43.33%

	4
	58.89%
	0.2565
	40.00%

	5
	57.78%
	0.2517
	38.89%

	6
	65.56%
	0.2477
	42.22%

	7
	53.33%
	0.2827
	28.89%

	8
	55.56%
	0.2672
	33.33%

	9
	64.44%
	0.2691
	35.56%

	10
	62.22%
	0.2718
	34.44%


Table A2: Results of the optimization of the same-movie-ratio parameters for CF-DT recommender system for users 9557, 3321, 10679.
	smr
	like-dislike
	MAE
	acc

	0
	52.22%
	0.2677
	42.22%

	0.1
	50.00%
	0.2689
	38.89%

	0.2
	48.89%
	0.2692
	38.89%

	0.3
	48.89%
	0.2692
	38.89%

	0.4
	52.22%
	0.2670
	41.11%

	0.5
	56.67%
	0.2662
	45.56%


Table A3: Results of the optimization of the same-movie-ratio and minimum-word-frequency parameters for H-DT recommender system for users 9557, 3321, 10679.
	smr
	mwf
	like-dislike
	MAE
	acc

	0
	1
	57.78%
	0.2486
	37.78%

	0
	2
	70.00%
	0.2279
	43.33%

	0
	3
	66.67%
	0.2477
	44.44%

	0
	4
	64.44%
	0.2586
	40.00%

	0
	5
	64.44%
	0.2551
	40.00%

	0
	6
	62.22%
	0.2670
	40.00%

	0
	7
	63.33%
	0.2668
	43.33%

	0
	8
	60.00%
	0.2672
	40.00%

	0
	9
	55.56%
	0.2707
	37.78%

	0
	10
	60.00%
	0.2692
	34.44%

	0.1
	1
	57.78%
	0.2486
	37.78%

	0.1
	2
	70.00%
	0.2279
	43.33%

	0.1
	3
	66.67%
	0.2477
	44.44%

	0.1
	4
	64.44%
	0.2586
	40.00%

	0.1
	5
	64.44%
	0.2551
	40.00%

	0.1
	6
	62.22%
	0.2670
	40.00%

	0.1
	7
	63.33%
	0.2668
	43.33%

	0.1
	8
	60.00%
	0.2672
	40.00%

	0.1
	9
	50.00%
	0.2689
	38.89%

	0.1
	10
	50.00%
	0.2689
	38.89%

	0.2
	1
	57.78%
	0.2486
	37.78%

	0.2
	2
	70.00%
	0.2279
	43.33%

	0.2
	3
	66.67%
	0.2448
	45.56%

	0.2
	4
	64.44%
	0.2586
	40.00%

	0.2
	5
	65.56%
	0.2409
	45.56%

	0.2
	6
	66.67%
	0.2561
	46.67%

	0.2
	7
	67.78%
	0.2603
	43.33%

	0.2
	8
	61.11%
	0.2743
	34.44%

	0.2
	9
	62.22%
	0.2718
	34.44%

	0.2
	10
	62.22%
	0.2718
	34.44%

	0.3
	1
	57.78%
	0.2486
	37.78%

	0.3
	2
	70.00%
	0.2288
	43.33%

	0.3
	3
	67.78%
	0.2484
	43.33%

	0.3
	4
	62.22%
	0.2587
	42.22%

	0.3
	5
	65.56%
	0.2409
	45.56%

	0.3
	6
	62.22%
	0.2606
	41.11%

	0.3
	7
	63.33%
	0.2648
	37.78%

	0.3
	8
	70.00%
	0.2571
	50.00%

	0.3
	9
	63.33%
	0.2705
	36.67%

	0.3
	10
	63.33%
	0.2705
	36.67%

	0.4
	1
	57.78%
	0.2486
	37.78%

	0.4
	2
	70.00%
	0.2288
	43.33%

	0.4
	3
	67.78%
	0.2484
	43.33%

	0.4
	4
	58.89%
	0.2556
	40.00%

	0.4
	5
	65.56%
	0.2376
	45.56%

	0.4
	6
	66.67%
	0.2470
	45.56%

	0.4
	7
	58.89%
	0.2794
	34.44%

	0.4
	8
	67.78%
	0.2477
	45.56%

	0.4
	9
	70.00%
	0.2593
	44.44%

	0.4
	10
	70.00%
	0.2593
	44.44%

	0.5
	1
	57.78%
	0.2486
	37.78%

	0.5
	2
	68.89%
	0.2288
	43.33%

	0.5
	3
	67.78%
	0.2484
	43.33%

	0.5
	4
	58.89%
	0.2556
	40.00%

	0.5
	5
	65.56%
	0.2427
	44.44%

	0.5
	6
	66.67%
	0.2478
	41.11%

	0.5
	7
	58.89%
	0.2785
	30.00%

	0.5
	8
	66.67%
	0.2462
	44.44%

	0.5
	9
	68.89%
	0.2578
	43.33%

	0.5
	10
	68.89%
	0.2578
	43.33%


Table A4: Results of the optimization of the minimum-word-frequency parameters for CB-NN recommender system for users 9557, 3321, 10679.
	mwf
	like-dislike
	MAE
	acc

	1
	63.33%
	0.2585
	40.00%

	2
	60.00%
	0.2350
	42.22%

	3
	57.78%
	0.2453
	36.67%

	4
	63.33%
	0.2295
	45.56%

	5
	58.89%
	0.2569
	38.89%

	6
	60.00%
	0.2596
	35.56%

	7
	63.33%
	0.2487
	37.78%

	8
	64.44%
	0.2440
	40.00%

	9
	66.67%
	0.2484
	42.22%

	10
	63.33%
	0.2313
	43.33%


Table A5: Results of the optimization of the same-movie-ratio parameters for CF-NN recommender system for users 9557, 3321, 10679.
	smr
	like-dislike
	MAE
	acc

	0
	62.22%
	0.2162
	48.89%

	0.1
	65.56%
	0.2114
	52.22%

	0.2
	66.67%
	0.2098
	52.22%

	0.3
	63.33%
	0.2351
	43.33%

	0.4
	68.89%
	0.2175
	50.00%

	0.5
	75.56%
	0.2165
	55.56%


Table A6: Results of the optimization of the same-movie-ratio and minimum-word-frequency parameters for H-NN recommender system for users 9557, 3321, 10679.
	smr
	mwf
	like-dislike
	MAE
	acc

	0
	1
	73.33%
	0.2219
	48.89%

	0
	2
	61.11%
	0.2194
	40.00%

	0
	3
	80.00%
	0.2035
	53.33%

	0
	4
	71.11%
	0.2309
	45.56%

	0
	5
	70.00%
	0.2099
	52.22%

	0
	6
	68.89%
	0.2220
	45.56%

	0
	7
	77.78%
	0.2000
	54.44%

	0
	8
	66.67%
	0.2281
	43.33%

	0
	9
	68.89%
	0.2100
	50.00%

	0
	10
	66.67%
	0.2342
	42.22%

	0.1
	1
	73.33%
	0.2228
	43.33%

	0.1
	2
	72.22%
	0.2142
	44.44%

	0.1
	3
	80.00%
	0.1918
	54.44%

	0.1
	4
	80.00%
	0.1911
	56.67%

	0.1
	5
	73.33%
	0.1855
	56.67%

	0.1
	6
	62.22%
	0.2409
	40.00%

	0.1
	7
	70.00%
	0.2142
	47.78%

	0.1
	8
	67.78%
	0.2276
	44.44%

	0.1
	9
	70.00%
	0.2367
	42.22%

	0.1
	10
	70.00%
	0.2292
	44.44%

	0.2
	1
	67.78%
	0.2432
	41.11%

	0.2
	2
	72.22%
	0.2257
	46.67%

	0.2
	3
	73.33%
	0.1975
	54.44%

	0.2
	4
	75.56%
	0.2124
	48.89%

	0.2
	5
	65.56%
	0.2077
	47.78%

	0.2
	6
	71.11%
	0.2149
	48.89%

	0.2
	7
	72.22%
	0.2144
	48.89%

	0.2
	8
	62.22%
	0.2207
	44.44%

	0.2
	9
	74.44%
	0.2118
	48.89%

	0.2
	10
	72.22%
	0.2229
	45.56%

	0.3
	1
	55.56%
	0.2424
	46.67%

	0.3
	2
	63.33%
	0.2281
	41.11%

	0.3
	3
	77.78%
	0.2046
	50.00%

	0.3
	4
	71.11%
	0.2131
	47.78%

	0.3
	5
	68.89%
	0.2260
	45.56%

	0.3
	6
	74.44%
	0.2041
	53.33%

	0.3
	7
	71.11%
	0.2161
	50.00%

	0.3
	8
	72.22%
	0.2184
	48.89%

	0.3
	9
	68.89%
	0.2413
	42.22%

	0.3
	10
	67.78%
	0.2199
	50.00%

	0.4
	1
	76.67%
	0.2136
	50.00%

	0.4
	2
	65.56%
	0.2363
	41.11%

	0.4
	3
	70.00%
	0.2215
	47.78%

	0.4
	4
	68.89%
	0.2259
	47.78%

	0.4
	5
	68.89%
	0.2197
	45.56%

	0.4
	6
	62.22%
	0.2373
	38.89%

	0.4
	7
	63.33%
	0.2466
	40.00%

	0.4
	8
	73.33%
	0.2125
	50.00%

	0.4
	9
	73.33%
	0.2174
	50.00%

	0.4
	10
	70.00%
	0.2198
	44.44%

	0.5
	1
	64.44%
	0.2058
	52.22%

	0.5
	2
	68.89%
	0.2332
	42.22%

	0.5
	3
	74.44%
	0.2154
	47.78%

	0.5
	4
	72.22%
	0.2055
	50.00%

	0.5
	5
	66.67%
	0.2358
	40.00%

	0.5
	6
	70.00%
	0.2290
	43.33%

	0.5
	7
	71.11%
	0.2192
	46.67%

	0.5
	8
	73.33%
	0.2209
	47.78%

	0.5
	9
	71.11%
	0.2121
	46.67%

	0.5
	10
	74.44%
	0.2192
	45.56%


Appendix B

Results of the optimization of the Weka-parameters

Table B1: Parameters of the CB-DT recommender system and their optimized parameter values for users 9557, 3321, 10679.
	Parameters
	Parameter values

	binarySplit
	false

	confidenceFactor
	0.25

	minNumObj
	1

	numFolds
	3

	reducedErrorPruning
	false

	subtreeRaising
	true

	unpruned
	false

	useLaplace
	false


Table B2: Parameters of the CF-DT recommender system and their optimized parameter values for users 9557, 3321, 10679.
	Parameters
	Parameter values

	binarySplit
	true

	confidenceFactor
	0.4

	minNumObj
	1

	numFolds
	3

	reducedErrorPruning
	false

	subtreeRaising
	false

	unpruned
	true

	useLaplace
	false


Table B3: Parameters of the H-DT recommender system and their optimized parameter values for users 9557, 3321, 10679.
	Parameters
	Parameter values

	binarySplit
	false

	confidenceFactor
	0.1

	minNumObj
	2

	numFolds
	3

	reducedErrorPruning
	false

	subtreeRaising
	true

	unpruned
	false

	useLaplace
	false


Table B4: Parameters of the CB-NN recommender system and their optimized parameter values for users 9557, 3321, 10679.
	Parameters
	Parameter values

	decay
	false

	hiddenLayers
	2

	learningRate
	0.1

	momentum
	0.4

	nominalToBinaryFilter
	true

	trainingTime
	500

	validationSetSize
	0

	validationThreshold
	20


Table B5: Parameters of the CF-NN recommender system and their optimized parameter values for users 9557, 3321, 10679.
	Parameters
	Parameter values

	decay
	false

	hiddenLayers
	2

	learningRate
	0.2

	momentum
	0.2

	nominalToBinaryFilter
	true

	trainingTime
	1000

	validationSetSize
	0

	validationThreshold
	20


Table B5: Parameters of the CF-NN recommender system and their optimized parameter values for users 9557, 3321, 10679.
	Parameters
	Parameter values

	decay
	false

	hiddenLayers
	2

	learningRate
	0.3

	momentum
	0.2

	nominalToBinaryFilter
	true

	trainingTime
	1000

	validationSetSize
	0

	validationThreshold
	20
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