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Abstract 
This thesis is about strategies to minimize the number of moves stacking cranes need to make to 

stack and retrieve containers of a container terminal. Several heuristics are compared to each other 

in different steps. First containers are just removed, then they are both placed and removed while all 

containers arrive before the first container leaves the container terminal and finally the containers 

arrive at- and leave the container terminal at the same time. 
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1 Introduction 
Containers are an essential part in transportation of goods these days. More and more goods are 

transported by containers each and every year. These containers are transshipped several times 

during their trip from production- to consuming market. 

 

This transshipment can happen immediately, but most of the time the container has to stay on a 

stack for a while. For the stacking of container space is needed. However, the amount of containers 

grows much more rapidly than the space available for the stacking of containers. Therefore more and 

more efficient container handling systems are needed. To be efficient automated container handling 

and transportation technology becomes more and more important as taught by Günther and Kim 

(2006), [1]. 

 

Containers are stacked at a so-

called container terminal. The 

terminal basically exists of a 

set of container blocks A 

container block can be seen in 

the picture at the right. Each 

block also has three 

dimensions: the stack, the 

lane and the tier. 

In this picture, there are three 

stacks, seven lanes and 4 tiers.    

The amount of stacks and 

lanes determine the amount of space needed   fig 1. A container block. Source: [9] 

 on the container terminal, where the amount of tiers give the height of a container block. This 

number of tiers can never be higher than the maximum number of tiers. Otherwise rail mounted 

gantry cranes (AMGs) cannot move newly arrived containers over these stacked containers.  

1.1 Container handling 
Once a container enters the port, it is unloaded and taken to the container yard. This is, most of the 

time, done by automated guided vehicles (AGVs). Every port can have a lot of AGVs, but once the 

container reaches the place containers are stacked, a rail mounted gantry crane does the actual 

placing. 

 

Unlike the vehicles, these RMGs are bound to a certain block and containers can only be stacked at a 

certain block by one or maybe two RMGs. These RMGs can handle one container at a time and they 

are only capable of moving a container that is at the top of a stack. This means that they have to be 

used efficiently.  

 

Stacking containers on top of each other can be very efficient. Because of the stacking, less space is 

needed and the RMGs do not need to move as much as when all containers were placed on the 

ground. This can save huge amounts of time and space, which both can be converted into money. 
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However, stacking containers also has disadvantages. If a container is not at the top of a stack, but it 

has to be removed, other containers need to be replaced. This causes extra movement of the RMGs 

and time-loss. If too much containers need to be replaced, the amount of money won due to less 

space cannot make up for the time lost due to reshuffling. For reshuffling, see example 1. Reshuffling 

and space are essential parts of the problem: how to optimally place and, if necessarily, reshuffle 

containers? 

 

 

 

 

 

 
 

 

2 Problem description 
The problem in this thesis is where to put newly arrived containers and where to place containers 

that need to be reshuffled, so that the total amount of container moves is minimal. This problem can 

be split into two sub-problems: the stacking of newly arrived containers and the removal of 

containers (where reshuffles are needed). 

2.1 Stacking containers 
Because of the ever larger ships that only visit a few ports and unload a lot of containers at one port, 

container terminals do have to handle a lot of containers very quickly. The containers have to be 

stacked at the quay, but due to limited space containers have to be stacked on top of each other.  

 

Because of this, containers need to be stacked as good as possible. It can save huge amounts of time, 

and thus money, if a container that has to leave the terminal can be removed immediately instead of 

first reshuffling other containers on top of it.  

 

Also, one has to take into account there are a lot of types of containers (20ft, 40ft, reefers, etc.). 

However, different kinds of containers are stacked at a different part of the container terminal and in 

this thesis we do not take it into account. Only one part of the terminal where only one type of 

container is handled will be looked at. 

 

Stacking and retrieving containers always happens in blocks. However, for simulation and heuristics it 

is much easier to have the entire stack of containers at a line, instead of in a block. There is not much 

Example 1. Reshuffling containers 

Here, container 3 needs to be replaced in order to remove container 1. 

       

       

      

      
Fig 2. Movement to get container 1 

If container number 1 had been on top of container 3, it would have been better 
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difference between these two: a block can easily be transferred to a line by placing the stacks next to 

each other. Looking at figure 1, in this thesis we got one stack, multiple lanes and multiple tiers. 

2.1.1 Perfect information 

To stack the containers in the best possible way, information about all containers that have arrived 

and still have to arrive is required.  The best way to stack the container arriving with perfect 

information about arrival and departure times is investigated by Borgman, van Asperen and Dekker 

(2010), [2]. 

2.1.2 Online information 

Unfortunately, most of the time it is not possible to know the arrival and departure times of 

containers that still have to arrive.  

The departure of containers on the terminal is also not exactly known. However, due to time slots for 

carriers and trucks a lot of this uncertainness is taken away. Missing information means during 

stacking it is only possible to take the already arrived containers into account.  

 

It therefore might be unavoidable that containers are stacked on top of other containers, which have 

to be removed earlier. This means that, time consuming, reshuffles have to be made and the 

efficiency level drops. This so called “online” information is most researched the past years. In 

examples by Borgman, van Asperen, and Dekker, (2010), [3] , Borgman  (2009), [4] and Froyland, 

Koch, Megow, Duane, and Wren (2008), [5] . 

2.1.3 Statistic information 

When the information about the not jet arrived containers is not available, it might still be predicted. 

This can be done by statistical analysis of the arrival of containers in the past. This might predict 

when new containers will arrive and when they will leave again. Hartmann (2004), [6] made an 

algorithm to stack the containers using statistics to find the optimal way of stacking containers. 

2.2 Removing containers 
Not only can the stacking of containers, but also the retrieval happen in many ways. The ideal 

situation would be when all containers are stacked in the right order. This means there is not a single 

container stacked on top of another container that has to leave earlier. That way, not a single 

reshuffle is needed.  

 

But it is not possible to have not a single container stacked “wrong” (so with an earlier-leaving 

container beneath it) in an entire container terminal, where thousands of containers are stacked. It 

would help if there are containers that leave on the same ship, so that their departure time is exactly 

the same. However, in this thesis I will only talk about containers being removed one by one in a 

specific order. One can assume in this part of the terminal are only containers meant to be loaded on 

trucks. 

 

The minimization of the number of needed reshuffles can be done by different kinds of algorithms. 

For example, one can use the Beam Search Algorithm by Wu and Ting, [7]. Other examples are the 

branch and bound algorithm and decision rule used by Kim and Hong (2006), [8]. 
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3 Plan 

3.1 Literature 
We start this thesis with a section about the literature used. What is already done in this literature 

and what conclusions can be drawn from it? By doing so, we try to learn a couple of things about 

container terminals. For example what they look like and how does the stacking of containers work? 

3.2 Retrieving containers 
Secondly a simple exercise is made for retrieving of containers once they are stacked. This is done 

both by hand and by the use of some (simple) heuristics, explained later in this thesis. The retrieval of 

containers is done only for a quay of 1 stack, 5 lanes and 5 tiers. 

3.3 Stacking containers 
But this thesis is not only about the retrieval of containers from an already existing stack in an 

optimal way, it is also about the optimal stacking of containers arriving at the terminal. This is the 

third, and last, part of this thesis. It is split into two different sub parts.  

3.3.1 All container arrive before first leaves 

For the first sub part, we are going to create a pile of containers. All the containers arrive before the 

first container leaves the place. Here, the containers that depart the quickest are placed on top as 

much as possible, the ones directly below that leave after these and so on. This is done at a bay 

where the amount of spaces is fixed. This pile is made with different amounts of containers. The 

expected amount of reshuffles is then calculated. This is done for different kinds of quays. We use 

the standard quay; 1 stack, 5 lanes and 5 tiers. Then we increase the size of the quay; 1 stack, 6-8 

lanes and 6-8 tiers. Afterwards the shape of the quay is changed; 1 stack, 10 or 20 lanes and 5 tiers. 

Finally, a larger quay is created; 1 stack, 120 lanes and 6 tiers. 

3.3.2 Online information 

The second sub part is about the “online” information of arrivals of containers. In this part several 

heuristics are tested and compared to each other. This by using simulation to determine the arrivals 

of containers and the time until the containers leave the terminal again. 

Afterwards, we draw conclusions for the algorithms and see how the heuristics hold against each 

other. 

4 Methodology 

4.1 Retrieving containers 
Several persons already constructed algorithms for the retrieval of containers. One is the beam 

search algorithm of Wu and Ting [7], the other is made by Kim and Hong [8]. However, in this thesis 

only a few simple heuristics (explained in chapter 7) are used to retrieve the containers. Furthermore 

the retrieval is done by hand for one particular stack. This can be done because small retrieval 

problems are used. 

4.2 Stacking containers 
Of course, the yard cannot be filled entirely. If done so, it is impossible to remove a container that is 

not at the top of a stack. Therefore a container terminal can only be filled for α percent of the 
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possible number of containers. If the terminal is filled more than α percent, new containers are 

automatically lost. These containers will leave on the same ship that sailed them into the harbor. 

Because there is no data, the arrival of containers is created by simulation. This is the time when a 

new container needs to be stocked. This container is therefore already unloaded from the ship and 

put on an AGV. The amount of time this container stays at the stack is determined when it arrives.  

4.2.1 All container arrive before first leaves 

Every container gets a random integer smaller than or equal to the amount of containers. Each 

integer can only be given once, because the containers leave one by one in order of their number. It 

does not matter when exactly the containers arrive, only in which order. 

4.2.2 Online information 

Although not correct in reality, the time a container spends at the terminal is considered to be 

exponentially or randomly distributed. The containers arrive one at a time. The inter arrival time of 

the containers is said to be constant. Therefore, every container arrives exactly one time unit after 

the previous one. Containers that cannot be placed are not put into a queue, but these are lost 

containers. 

5 Data, case generation and implementation 

5.1 Data 
For this thesis data is generated, not obtained from earlier research. This data is created by using the 

rand function of the mathematical program Matlab. To make it possible to repeat the research, a 

fixed seed is used. This seed sometimes is rand(‘state’,str2double(‘12345’)) and sometimes 

rand(‘state’,str2double(‘100’)). Which seed is used is always stated before the actual experiment. 

5.2 Case generation 
The arrival times of the containers are not important for our study purpose. The important thing is 

the order in which the containers arrive at the container terminal. We therefore set the arrival times 

of the containers on 0,1,2 etc. The departure times of these arriving containers can of course vary, 

but unfortunately we do not know the distribution of the leaving containers. We therefore use 

different kinds of discrete distributions: 

- the storage time of the containers is uniform distributed on time-interval [0,2]  

- the storage time of the containers is exponentially distributed with mean 1 

 

Of course, only for the online information we would like to know the precise time the containers 

depart. When removed after everything is stacked and just removed, it is only important to know the 

order of departure as well. Therefore the containers can get the numbers 1, 2, 3, etc. 

 

Every arrival or departure of a container is a time at which actions happen. This means that 

reshuffles happen at the same time a container arrives of leaves. Every reshuffle that is done to make 

the departure or arrival possible happens when that container arrives/departs.  
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5.3 implementation 
The simulation, as well as the heuristics to get the number of moves per case, is done in a 

mathematical program called Matlab. As said in the Data part, for all different kinds of heuristics the 

same seed is used, so that one is able to compare the outcome of the different heuristics. A Matlab-

code of these heuristics is in table A of the appendix. This heuristic is the heuristic described in 

section 8.2.2. 

6 Literature 
According to Günther and Kim (2006), [1], the primary objective for a container terminal is to be an 

interface between two different types of transportations. At least one of these transportations is 

most of the time done by ship. Due to the increase of container transport, container handling has to 

become more and more efficient. 

 

Borgman, van Asperen and Dekker (2010), [2] & [3], investigated the quality of some existing 

algorithms for the placement of containers. They found out that results obtained from smaller 

stacking areas are also valid for larger stacking areas. Also they showed that, if containers arrive and 

leave at the same side of the terminal (landside or quayside), models that take the moving distance 

into account perform better than models that do not. This is not important in this thesis, because we 

assume containers arrive by ship and leave by truck. Therefore every container has to cross the 

entire block eventually. 

 

Borgman (2009), [4], also used some algorithms for container stacking. He found out that random 

stacking and leveling are not very good strategies. The TVR algorithm (Travelling time Versus 

Reshuffles) performs much better than these two when we do not know information about 

containers. This algorithm however is not used, because we do not care about the distances (since 

every container has to cross the entire block). Also, when we have some information about the 

departure times of the containers it is better to use a LDT (Leveling with Departure Times) algorithm, 

which does not make use of distances the containers cover. 

 

Froyland, Koch, Megow, Duane and Wren (2008), [5], used an integer programming-based heuristic 

for the import and export of container at the land-side of a block. Although it performs well, it is not 

used in this thesis. This because the heuristic is not trying to minimize the total number of moves (or 

reshuffles), but the amount of resources used (AGVs & RMGs). 

 

Hartmann (2004), [6], did not try to find an optimal way to remove containers. Instead, he tried to 

make a model that generates real-life scenarios at a container terminal. These scenarios can be: the 

arrival of a deep-sea vessel, a truck or train etc. 

 

Wu and Ting, [7], used a beam search algorithm for the minimization of reshuffling containers at a 
container terminal. This beam search looks like a breadth-first branch-and-bound scheme, but it 
keeps only a few nodes in every step. The algorithm tells which nodes to keep. We do not use this 
algorithm in this thesis. 
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Kim and Hong (2006), [8], also focused on the removal of containers and an efficient way to 

reshuffle. The both used a branch-and-bound and a heuristic based rule to find an optimal solution 

for the stacking problem. They also proposed a procedure to estimate the expected amount of 

reshuffles. These branch-and-bound and heuristic rule are also not used in this thesis. 

7 Optimal removal of containers 

7.1 Problem 
In the first part of this thesis, we focus on the removal of containers of a container yard. No new 

containers will arrive and all the existing containers will be removed. This removal is done both by 

hand and by the use of simple heuristics. 

 

The container-removal problem looks as follows: 

 
As one can see, it is not possible to simply remove the containers one by one. Some reshuffles have 

to be done as well.  

7.1.1 Upper and Lower bound 

An upper and lower bound for this problem can be found easily. To start with the lower bound; one 

can easily see that a lower bound of the number of moves necessarily is 38. This number includes 

removal moves (20) and reshuffle moves (18). The lower bound of the number of reshuffles is 

calculated by the number of containers on top of an earlier-leaving container (15) plus the second 

time the three containers on top of container 1 have to be replaced (3). The first time, namely, they 

have to be placed on top of another stack with a container that has to leave earlier. 

 

Usually, it is not that simple to create a lower bound like this. An easy (but worse) alternative is the 

number of containers stacked on top of a container that has to leave earlier. 

 

An upper bound can be created by always replacing the containers as far to the left as possible. This 

way, an upper limit of 45 is obtained. This upper limit contains removals (20) and reshuffles (25). 

Example 2: container 1 has to be removed first etc. The empty blocks are spaces not used. 

 

 

 

 

 

 

 
 

 

 
 

Fig 3. Container block for problem.  
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7.1.2  Creation of quay 

The quay above is not the only way twenty containers can be stacked in 5 lanes with tier 4. The 

retrieving of containers is done by creating a stack containing twenty containers. These containers 

are placed in five lanes of four high. The places of the particular containers are chosen randomly, but 

for all heuristics, the same seed (seed: str2double(‘12345’)) is used. Although it is possible to place 

the containers in 20! (=2.43*10^18) different ways, in our research the placement is only done 10 

times 100 times (so in total 1,000 times) and 10 times 1,000 times (so 10,000 times). Three different 

aspect are registered: the amount of moves made to clear every one of the 1,000 or 10,000 stacks, 

the mean of these moves used to clear the stacks and the standard deviation of this mean. 

7.2 Method 

7.2.1 Heuristic one: always left heuristic 

This heuristic is a very simple one. If a container that needs to be removed is on top of a stack, it is 

simply removed, just like all other heuristics. If another container is on top of it, however, this 

container is reshuffled in a very simple way. This reshuffle container is placed as far to the left as 

possible. This means it is placed on top of the containers in the lane that is the most left, not 

maximally filled lane.  

7.2.1.1 Quality of heuristic one 

In section 7.1.1 this heuristic is referred to as an upper limit of the solution. This can be explained, by 

the fact that if place left is optimal, one should place the reshuffle container left. If it is not optimal, 

one should place the container somewhere else. This heuristic is expected to be worse than all the 

other heuristics. 

7.2.2 Heuristic two: based on entire piles 

If the problem above is solved by hand, one of course uses some (or in this case all) of the same 

assumptions this second heuristic is based on. In the figure on page 10 (fig. 4), the steps for removing 

a container using heuristic one are given. Step 1 is to check whether the container that has to be 

removed is on top of a lane. If that is true, the container is simply removed. If not, the top container 

of the lane in which the removal container is stacked will be reshuffled. This container will from now 

on be called the reshuffle container. 

 

Once determined the reshuffle container has to be reshuffled, various things are checked. The 

reshuffle container has a departure time. Based on this time, as well as the time of the other 

containers, decisions are made. The time of the reshuffle container is compared to the times of other 

containers, except of course of the containers in the same lane as the reshuffle container. 

 

The first check, so step number 2, is whether there exists at least one lane for which all containers 

have a later departure time than the reshuffle container. If so, check whether at least one of these 

lanes is not filled maximally, step 3. When maximally filled, it is impossible to put another container 

on top of it. When at least one of these stacks is not maximally filled, the reshuffle container is 

stacked on the, not maximally filled, lane with the container that leaves the quickest after the 

reshuffle container on top.  
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If there are no lanes for which all containers have a later departure time than the reshuffle container, 

or these lanes are all maximally filled, we arrive at step number 4. Here, the next check is made: is 

there an empty place (so, a lane of zero containers). If so, the reshuffle container is placed on the 

floor. If not, a next check is made. 

 

Since this check has to be made, we know the reshuffle container has to be placed on a lane with a 

container that has to leave earlier. This container therefore will have to be removed at least one 

other time. The check made now is step number 5 in the heuristic. 

Now we check whether there exists at least one lane for which the top container has to leave before 

the reshuffle container. If that is the case, it is better to place the reshuffle container over there, 

because when reshuffling is necessarily to get a container in that lane, the reshuffle container can be 

placed with the top container directly on top of it. 

Of course, if there exists at least one such lane, one has to check whether this/these stack(s) are 

filled maximally or not. If one or more such lane exists, the container is placed on top of the 

container that leaves the latest, so again the closest to the reshuffle container. 

 

When there is no lane for which the top container leaves before the reshuffle container, the 

reshuffle container is placed on the lane for which the top container leaves the soonest after it. This 

is step 5.2. This is not per se the container that leaves the soonest after it, but it is the container that 

leaves the soonest after it on a lane that is not filled maximally. Because this is the last possibility, 

there is always a possible place to stack the reshuffling container.  

  



 
10 

 

 

 
 

    
 

    

          

          

          

          

          

          

 

 

        

     

 

    

        

 

 

          

 

 

        

          

          

          

          

       

 

  

          

          

          

 

 

        

          

          

        

 

 

          

          

 

 

        

          

          

          

          

          

          

 

 

        

     

 

    

           
Fig 4. Decision tree for removal of a container 

7.2.2.1 Quality of heuristic two 

The decision tree in figure 4 does not always have to give the best results. For instance, it might not 

always be optimal to place the reshuffle container on the lane for which the top container has to 

leave the soonest after the reshuffle container. An example for when it is, and when it is not optimal 

are given in example 2, on the next page of the paper. What the best way to place a container is, is 

different for each container. A good idea might be to give a penalty for the different inconveniences 

14,193 
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7,425 
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6,768 

34,193 

20,000 

2,746 

4,453 
226 

14,193 
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and add these penalties for every possible place. We then put the container on the spot where the 

penalty is minimal. The idea of a heuristic with a penalty is explained in section 7.2.4. 

 

 
 

However, it might cost too much time for the amount of times such a choice actually needs to be 

made for a container. It is therefore a good idea to count the number of times each stage in the 

decision tree is visited. 

 

To check the quality improvement of each step in the heuristic, the containers are at first reshuffled 

randomly. After, the steps are added one by one, and if the container is not reshuffled after all added 

steps, the container is placed randomly. Then average number of moves after each added step is 

counted and these numbers are compared. Results are in section 7.3. 

7.2.3 Heuristic three: based on top containers 

This heuristic looks very much like the second heuristic. The difference is that this heuristic only takes 

the containers that are on top of a pile into account, instead of the entire piles. This heuristic also 

bears a striking resemblance to the LDT-algorithm for placing containers investigated in the papers of 

Borgman, van Asperen and Dekker (2010), [2] & [3]. There only is an extra in this heuristic: a reshuffle 

container cannot be placed at the same lane it came from. 

 

When a container needs to be reshuffled, all other top containers are checked. When there is at least 

one top container that leaves later than the “reshuffle” container the reshuffle container is placed on 

top of the container that leaves the latest after it. Of course, only the lanes not filled maximally are 

considered. This step pretty much looks like step 5.2 in heuristic one. The only difference is that now 

we do not know if there is a container in the pile that leaves before the reshuffle container. 

 

Example 3. Optimal placement 

 

 

      

      

     

    VS.    
Fig 5. Better to put container on top of high stack Fig 6. Better to put container on top of container leaves soonest after 

In figure 5 it is best to place the container at the higher stack, because it then blocks only 1 

available space for containers with a departure time between 1 and 3, instead of 3 free 

spaces. In figure 6 however, it is better to place the container at the lower stack, because 

the difference in departure times is only 0.3 instead of 4. So in figure 6 there is a much 

smaller probability that a new arrived container has to be placed on the ground. 
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When it is not possible to place the reshuffle container on top of a container leaving later, the 

heuristic checks whether there is an empty spot. If so, the reshuffle container is placed there on the 

ground. This step is the same as step 4 in heuristic one. 

 

If there is also no space available on the ground, the reshuffle container is placed on top of a 

container that has to leave before the reshuffle container. The reshuffle container is placed on top of 

the container that leaves the closest to the reshuffle container and that is stacked in a not maximally 

filled lane. This step looks like step 5 in heuristic one, only now we know for sure such a place is 

available. 

7.2.3.1 Quality of heuristic three 

Heuristic number two leaves out step 2 of heuristic one, and also the third step is made one time less 

(not after step number 2). This heuristic only compares the reshuffle container with the top 

container instead of the entire pile. Because done so, it is much more likely the reshuffle container is 

placed above a container that has to leave earlier. As a result more reshuffles are expected and also 

more moves in total than by the use of heuristic one. Also, the limitations for the previous heuristic 

hold for this heuristic as well. 

 

Even though this heuristic seems a simpler version of the second heuristic (where departure times of 

entire piles are checked), it still might be better to use this one. This heuristic has potentially a much 

lower computation and running time than the previous one. 

7.2.4 Penalty based heuristic 

The last heuristic we are going to use is the penalty based heuristic. If a container needs to be 

reshuffled, this heuristic will consider all lanes and assign a penalty for the placing of the reshuffle in 

every lane. The lane that gets the minimal total penalty will be the lane in which the reshuffle 

container will be placed. 

 

How are these penalties computed? First of all, a container cannot be reshuffled to the same lane it 

already was. Therefore, this lane will get a penalty so high, it is impossible for other lanes to get a 

higher penalty. The same happens for lanes that are already filled to the maximum. 

 

The rest of the lanes will get lower penalties. Since we do not like reshuffles to be made much, we 

give a high penalty for placing a container on top of a container that leaves before the reshuffle 

container. When this is unavoidable, we would like the reshuffle container to be placed on top of a 

container that leaves later than this reshuffle container. Therefore, an extra penalty is given for 

placing the container on top of a later leaving container, once known the reshuffle container leaves 

later than any of the containers in that lane. 

 

To solve the problem of heuristic one and two, which check the entire pile and top container 

respectively, we also give penalties for the absolute value of the difference in time the reshuffle 

container and the container on top of a lane leave. This penalty however is much smaller than the 

penalties indicated before. A last penalty is given for the number of spaces a container might block. 

The higher a pile is, the less spaces are blocked and the lower the penalty will be. 
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This penalties all have a value; these will be stated now. The lane in which a container is before it will 

be reshuffled, as well as the maximally filled lanes, will get a penalty of 10^10. This is quite high, but 

one can be sure that these lanes are not picked to reshuffle the container. 

 

If a container is placed at a lane with at least one container that leaves earlier than this reshuffle 

container, a penalty of 1000 will be awarded. If the reshuffle container is also placed on top of a 

container that leaves after the reshuffle container, an extra penalty of 100 is given to that lane. 

 

A penalty of 5 times the difference between the departure time of the top container and the 

reshuffle container is awarded to each lane, and it does not matter whether the top container leaves 

earlier or later (so the absolute value of the difference is used). For example: if the container that 

leaves first arrives and is placed on top of the container that leaves tenth, the penalty of this lane will 

be increased by 45 (5*10-1). 

 

The last penalty awarded to each lane is the squared difference between the maximum stacking 

height minus one and the actual stacking height of that lane after the placement of the reshuffle 

container. 

 

How large the penalties should be determined before. Everyone has his or her own preferences for 

the reshuffling and therefore can himself choose the height of the penalties. The penalties above are 

chosen so that the number of reshuffles was minimal (of course, compared to other penalties tried), 

and therefore also the total number of moves.  

7.2.4.1 Quality of penalty based heuristic 

This penalty based heuristic will most of the time reshuffle in the same way heuristic one (witch 

compared the departure time of the reshuffle container to the departure time of all containers in the 

lanes), but sometimes it will put a container on a higher stack so that we do not block to many 

spaces. Therefore this heuristic is expected to be somewhat better than heuristic one, but not much 

and for sure not significantly better. 

7.3 Results 
In the results we will do different things. First, we take a look at the heuristic shown in figure 4. We 

will try to figure out what happens if the steps are added one by one. After, we take a look at the 

results of removing the containers, when they are stacked in the way of figure 3. If done by hand, 

one should be able to remove all containers in 38 moves (18 reshuffles), the same amount as the 

lower bound, calculated in section 7.1.1 and also the different heuristics are compared to each other. 

7.3.1 Heuristic step by step 

Before we take a look at performance of the different kinds of heuristics, we check for heuristic two 

(that checks departure times of entire piles) how much every step in the heuristic contributes to the 

reducing of the number of reshuffles. 

Below is a table in which the steps of heuristic one are compared by their number of moves. Also the 

reducing in moves if the steps are added one by one is shown. Of course step 3 is not taken into 

account. This step (check whether pile is full) is used in all other steps. One has to take into account 

that there were 1,000 different kinds of stacks created, all with 20 containers. Therefore 20,000 
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times a container is removed, while on top of a lane. The difference between step 1 and 2 is 20,000 

times the removal of a container. 

 

Steps taken. Average No. of 
moves 

Runtime (sec.) Total no. 
times step 
considered  

Step 1/remove if top container 53.165 0.703 34,193 

Step 2/ reshuffle on pile all containers 
leave after 

37.293 1.302 14,193 

Step 3/ is pile maximally filled? n.a. n.a. 14,098 

Step 4/ reshuffle on ground 38.666 0.790 7,425 

Step 5/ reshuffle on container that 
leaves before 

44.948 1.622 4,679 

Step 5.2/reshuffle on container that 
leaves after 

46.714 1.858 226 

Steps 1,2(,3) and 4 35.232 1.230 n.a. 

Steps 1,2(,3),4 and 5 34.183 1.293 n.a. 

All Steps 34.193 1.271 n.a. 
Table 1. The number of moves using different steps of first heuristic. 

 

As one can see in the first column of the table all steps make sure a lower number of steps is used 

than when using random placement. Some steps have more effect than other. Especially the steps 

where the reshuffle container is placed on top of a pile only containing containers that leave after 

the reshuffle container and the step where the reshuffle container is placed on the ground floor if 

possible seem to work very well. 

 

If we add the steps one by one we see that in general the number of moves (and reshuffles) 

decreases when a step is added. This only does not hold true for the last step. If we once reach step 

5.2 without placing the reshuffle container, it seems better to place this container randomly on top 

of a container instead of on top of the first leaving one. 

In the rest of the results of chapter 7, these insights are not taken into account. We only reach this 

step in 226 cases, when 1,000 different stacks are used. This means an average of 0.226 times this 

step is taken per stack. Changing the heuristic for this would perhaps give some better results, but it 

will cost too much time for too few gains.  

 

If we take a further look at the number of times we reach the steps, we see that the second and third 

step are taken a lot of times, compared to the total number of times we enter the heuristic (34,193; 

the times we reach step 1). Afterwards, the number of times a step is reached is around half the 

times the previous step was reached. The number of times each step was reached is also placed in 

the figure of the heuristic in chapter 7.2.2. 

7.3.2 Different Heuristics 

Now, let’s see if the heuristics work good or not at the stack of containers from example 2. 

 

The first heuristic, the always left heuristic, can be considered as an upper limit, as said in section 

7.1.1 and 7.2.1.1, and the number of moves is equal to 45. The other three heuristics work clearly 
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better: number three (only look at top container) uses 41 moves and heuristic two and the penalty 

based heuristic only use 38 moves, the lower limit.  

 

Now, to check whether heuristic number two, the heuristic that check entire piles, and the penalty 

based heuristic are not just better in this particular case, the 1,000 and 10,000 different scenarios 

were created. In the rest of the section, we check which heuristic is the best.  

It is split into two parts. First, the mean of the number of moves made by the four heuristics and 

their standard deviations will be discussed. And secondly all 1,000 (not the 10,000) different amounts 

of moves are compared to each other in order to find out which heuristic is the best. 

7.3.2.1 Mean and standard deviations 

In the table below are the means and standard deviations of the four heuristics. The standard 

deviations are the standard deviations of 10 means over times 100 trials. The mean is the average of 

these 10 means. As one can see, the first heuristic, where a reshuffle container is placed left as much 

as possible, is much worse than the other heuristics. There is no test needed to show that this 

heuristic is significantly worse than the other three.  

 

Heuristics Mean Standard deviation Runtime (sec.) 

One/ left 42.103 0.6969 0.622 

Two /entire pile 34.193 0.3417 1.271 

Three/top container 35.358 0.4000 1.289 

Four/ penalty based 34.186 0.3223 0.771 
Table 2A: The results for removing containers, using four heuristics and 1,000 cases. 

 

However, is the second heuristic significantly better than the third one? To find an answer to this 

question, we take a look at the difference between the two heuristics. The difference between these 

two heuristics has a mean of 35.358-34.193=1.165 and a standard deviation of 

√(0.3417^2+0.4000^2)=0.5261. It is therefore possible to make a 95% confident interval: [1.165-

1.645*0.5261,1.165+1.645*0.5261]=[0.2996,2.0304]. Since zero is not in the 95% confidence 

interval, one can say there is significant reason to assume the means in the second heuristic are 

lower than the means in the third heuristic. And therefore there is significant reason to assume the 

second heuristic to be better than the third. 

The reason why this third heuristic was used – because it would save a lot of running time – also does 

not seem to hold true. The runtime of both heuristics seem to be comparable. 

 

If we take a look at the second and fourth heuristic we see that, just like the prediction, the penalty 

based heuristic is slightly better than the heuristic that checks entire lanes for their departure times, 

but the difference is by far not significant. In fact, they are almost equal (in 1,000 cases there was a 

total difference of 7 moves, so an average of 0.007). However, we do see that the penalty based 

heuristic is a lot faster than the heuristics that compares departure times (entire piles and top 

containers). It therefore still seems better to use the penalty based heuristic, because when 

problems become larger, it can be very valuable to save half of the time. 

 

To verify this, also the same heuristics were used to create 10 times 1,000 cases and compare their 

means, standard deviations and runtimes. The results are on the next page: 
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Heuristics Mean Standard deviation Runtime (sec.) 

One / left 41.9420 0.1408 7.339 

Two /entire pile 34.0626 0.1024 18.561 

Three /top container 35.2401 0.0841 16.588 

Four/ penalty based 34.0579 0.1044 7.720 
Table 2B: The results for removing containers, using four heuristics and 10,000 cases. 

 

As one can see the results are quite similar to the results of 1,000 observations, the standard 

deviations are only much smaller. Therefore in the next part only the 1,000 cases are considered. 

7.3.2.2 Comparison of heuristics every case 

The retrieval of containers is done with 1,000 different cases of 20 containers stacked. For the 

different heuristics, the same seed is used so that the results again can be compared.  

 

If we compare the second (where the reshuffle container is compared to entire piles) and third 

heuristic (where the reshuffle container is only compared to the top container), we see that in 65.2% 

of the cases the second heuristic is better than the third, while the third is better in only 12.6% of the 

cases. In the remaining 22.2% of the cases both heuristics perform the same. Due to this results it is 

clear that the second heuristic performs most of the time better, or at least not worse, than the third 

heuristic. 

 

If we compare the second and first (always place as left as possible) heuristic, it is very clear that the 

second heuristic is better than the first one. In 98.8% of the cases, the second heuristic actually 

performs better, and in 1% the performance is the same. Only in 0.2% the first heuristic is better. 

However, this is negligible. 

 

Also the third heuristic is much better than the first. In 95.8% of the cases, the third heuristic gives a 

better result than the first heuristic. In 2.5% of the cases they perform the same and in 1.7% of the 

cases the first heuristic is better. Even though the third heuristic is a lot better than the first, it still 

does not do as well as the second heuristic, compared to the first. 

 

If we compare the fourth (penalty based) heuristic with the second one, one can see that they are 

most of the time (94.8% of the cases) equal. Only sometimes any of the two heuristics is better. Also, 

when we compare the fourth heuristic to the first or third, the same results as with heuristic two are 

found. 
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Comparison Heuristic one 
(left) better 

Heuristic two 
(all) better 

Heuristic 
three (top) 
better 

Heuristic 
four better 
(penalty)  

Heuristics 
equal 

Heuristic one 
vs. two 

2 988 Inapplicable Inapplicable 10 

Heuristic one 
vs. three 

17 Inapplicable 958 Inapplicable 25 

Heuristic one 
vs. four 

2 Inapplicable Inapplicable 987 11 

Heuristic two 
vs. three 

Inapplicable 652 126 Inapplicable 222 

Heuristic two 
vs. four 

Inapplicable  16 Inapplicable 11 973 

Heuristic 
three vs. four 

Inapplicable Inapplicable 120 653 227 

Table 3: comparison of heuristics 

 

There is one strange result in the table: the results in 7.3.2.1 one could see that the penalty based 

heuristic performs little better than the heuristic which compares departure times of entire piles. In 

the table however this heuristic performs 16 times better than the penalty based heuristic and only 

11 times it performs worse. This would indicate that the second heuristic is slightly better than the 

fourth instead of the other way around. Therefore, another table is added, which will show the 

difference in moves of these two heuristics. Also an example is given of when the penalty based 

heuristic is better than the heuristic comparing departure times. 

 

Difference Penalty based heuristic Comparison based heuristic 

Times 1 move less needed 4 15 

Times 2 moves less needed 5 1 

Times 3 moves less needed 1 0 

Times 7 moves less needed 1 0 

Total times better 11 16 
Table 4: the number of times the two heuristics used a given amount of steps less 

 

As one can see, the heuristic which compares departure times of entire piles is better in 16 cases, but 

it only needs 1 reshuffle less in 15 of these cases. The penalty based heuristic however, is only better 

11 times, but 7 of these times it needs more than one reshuffle less. One time it even needs 7 

reshuffles less. Therefore, in total the penalty based heuristic uses somewhat less moves (and 

reshuffles), but the comparison based heuristic is better more often. As an example, below is the 

stack for which the penalty based heuristic uses 7 reshuffles less than the comparison heuristic. 
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Beside simple one-on-one comparisons, where only two heuristics are compared, also all three 

heuristics are compared in one time. The results are in the table below: 

 

The best heuristics Number of 
times the best 

Heuristic one (left)  

Heuristic two (all) 10 

Heuristic three (top) 119 

Heuristic four (penalty) 7 

Heuristics one and two  

Heuristics one and three  

Heuristics one and four  

Heuristics two and three 1 

Heuristics two and four 637 

Heuristics three and four 2 

Heuristics one, two and 
three 

 

Heuristics one, two and four 2 

Heuristics one, three and 
four 

1 

Heuristics two, three and 
four 

218 

All heuristics 3 

Total 1000 
Table 5: number of times a heuristic was the best one 

 

As one can see, the second and fourth heuristics were many times the best one (87.1% and 87.0%).  

Most of the time they were the best together (63.7%), or together plus heuristic three (21.8%). 

Heuristic three is the best in only 34.4% of the cases and heuristic one in 0.6%. This result thus again 

shows that the second and fourth heuristics are comparable. They both are better than the third, 

which is way better than the first one.  

Example 4. The stack for which the penalty based heuristic is much better 

 

 

 

 

 

 

 

 

 
 

 

Fig 7. The stack for which penalty based heuristic is much better 

The number of moves made by the penalty based heuristic is 35 for this stack, while the number 

of moves made by the heuristic that compares the departure times of entire piles uses 42 moves. 
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It might be a good idea to get the solution of the best heuristic in every case and see how many 

moves are then necessarily. The results are below: 

Heuristic Mean moves Standard deviation of moves 

Best in every single case 33.943 0.2986 
Table 6: the mean number of moves and standard deviation of the best heuristic in every case. 

 

Compared to the results in table 2A, this heuristic is not much better than the heuristic that 

compares the departure time of the reshuffle container to departure times of entire piles and the 

penalty based heuristic. It is somewhat smaller, yes, but the difference is not significant.  

8 Stacking and removing containers I 

8.1 Problem 
In this part, containers are not only removed, but also stacked in a way that is hopefully working well. 

For now, all containers arrive before the first container leaves.  This means a quay is created and 

emptied afterwards. This stacking and removing is done by the same three simple heuristics as in 

part 7. 

8.1.1 Creation of a quay 

Because now the quay is not created randomly, the containers are not necessarily stacked in lanes of 

equal height. An example of a stack, created with heuristic two (explained in 8.2.2) is below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As one can see, the containers are still not all placed in such a way that not a single reshuffle is 
necessarily. The number of reshuffles however has decreased dramatically, as will be seen later on. 
For the simulation of the order in which the containers arrived, the seed: 
rand('state',str2double('100')) was used. 

8.1.2 Upper and lower bound. 

Once the quay is created, it is easy to calculate a lower and upper bound for the number of moves 

made. Also, when the order in which the containers arrive is known, it is possible to calculate an 

upper bound by placing and reshuffling the containers as far to the left as possible. Calculating a 

Example 5: container 1 has to be removed first etc. empty blocks are spaces available 

 

 

 

 

 

 

 

 

 

 
 

Fig 8. A quay created by placing containers more cleverly 
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good lower bound is not that easy. One can take as lower bound the amount of containers arriving, 

but this is not always a good lower bound. 

8.2 Method 
Just like in chapter 7, four heuristics are used. These heuristics look a lot like the heuristics in chapter 

7. There are only small differences. 

8.2.1 Heuristic one: the always left heuristic 

This heuristic is a very simple one. Just like only the removal of containers, now also with the 

placement of containers always the most “left” possible place is chosen to drop a container. This 

means a new container is placed on top of the containers in the lane that is the most left, not 

maximally filled lane.  

8.2.1.1 Quality of heuristic one 

In section 8.1.2 this heuristic is referred to as an upper limit of the solution. This can be explained, by 

the fact that if place left is optimal, one should place the reshuffle container left. If it is not optimal, 

one should place the container somewhere else. Heuristic number three is expected to be worse 

than all the other heuristics. 

8.2.2 Heuristic two: compare departure time to that of entire piles 

This heuristic checks the departure time of an arriving container and compares this to the departure 

time of container in entire lanes. If there exists at least one lane for which all containers depart after 

the arriving container, a second check is made. This step, step 1, remarkably looks like step 2 in 

heuristic 7.2.2. 

 

The lanes gotten in step 1 just cannot be filled maximally, because than it is impossible to place 

another container on top of it. If there is at least one of these lanes not filled maximally, the arriving 

container is placed on the lane for which the top container leaves the soonest after it. This is step 2, 

and looks very much like step 3 in 7.2.2 

 

If it is not possible to place a container on top of a lane with all containers leaving after the arriving 

container, there is checked whether there is at least one empty lane. If that is true, the arriving 

container is place on the ground floor. Step 3 (this one) and Step 4 of 7.2.2 very much look alike. 

 

If there is also no empty space, the container has to be place on top of a stack that contains a 

container leaving before this container. That means the newly arrived container will have to be 

reshuffled in the future. To minimize this reshuffling, the container is preferably placed on top of a 

container that leaves before the now arriving container. This because when reshuffle is necessarily, 

the container that leaves the latest will be placed down. The check if a top container leaves before 

the arrival container is step 4. This step is the same as step 5 in the heuristic of 7.2.2 

 

An extra in this heuristic is that when the heuristic has come this far, it first checks whether the top 

container is the container that leaves the soonest in the lane. Preferably, we do not put a container 

on top of it now. If the top container does not leave the soonest, it is much less bad to put a 

container on top of it, since it already needed to be reshuffled. 
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Therefore, if possible, the newly arrived container is placed on the latest leaving top container, which 

is not the first container in the lane to leave. If not possible, we still try to place the container on a 

container that leaves earlier, even if this container is the first container to leave in the lane. When 

there is choice between two or more different lanes, choose the lane for which the top container 

leaves the closest to the newly arrived container. 

 

If the now arriving container is still not placed after checking all previous points, we place the 

container on top of the container which leaves after it. The lane in which the newly arrived container 

is place is chosen randomly. Again, the maximum amount of containers stacked on top of each other 

considered. This is step number 6 in this heuristic. 

8.2.2.1 Quality of heuristic one 

For the quality of this heuristic the same holds true as for the quality of the heuristic in 7.2.2. This 

heuristic is also not expected to give the best results at all times. 

8.2.3 Heuristic three: compare departure time to that of the top containers 

This heuristic, which is the leveling with departure times (LDT) heuristic discussed by Borgman, van 

Asperen and Dekker in [2], [3] and [4], pretty much looks like heuristic 7.2.3. The top containers are 

checked. If there exists at least one not maximally filled lane for which the top container leaves later 

than the newly arriving container, this new container is placed on top of it. The new container is 

placed on the container that leaves the soonest after the new one. See step 5 of heuristic in section 

7.2.2. 

 

If that is not possible, than the heuristic checks whether there is an empty spot. If so, the container is 

placed on one of these spots. If not, the heuristic goes to step 3. 

 

Step 3 is quite simple. Since the first two steps were not possible, this step is always possible (due to 

the limitations of the number of containers. The new arrived container is now placed on the 

container that leaves the closest before the new arrived container.  

8.2.3.1 Quality of heuristic three 

Just like in the previous chapter, this heuristic is expected to be little worse than the previous one, 

this because there is only looked at the top container instead of to the entire lane. This means more 

reshuffles can be necessarily. 

8.2.4 Heuristic four 

The fourth heuristic is the so-called penalty based heuristic. Not only are the containers reshuffled 

based on penalties, but they are also placed based on penalties. The penalties are just as large as 

they were in chapter seven (beside the penalty for placing the container at the same spot, because 

now there is no same spot) and the same criteria are “awarded” with a penalty; placing a container 

in a lane containing at least one container that leaves before. If that is true, another penalty on top 

of it if the top container departs after the newly placed container.  

 

The two other penalties are the penalties for blocking spaces and the absolute value of the time 

between departure of the top container of a lane and the newly arrived container. 
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8.2.4.1 Quality of heuristic four 

Just as in the previous chapter, this heuristic is expected to be somewhat better than heuristic one, 

where departure times of new containers are compared to departure times of containers in entire 

lanes, but the difference will not be significant. 

8.3 Results 
Again 1000 cases were created. In these cases the order in which the containers arrived differed. In 

this section, we check which heuristic works the best. It is split into several parts. First, the mean of 

the number of moves made by the four heuristics and their standard deviations will be discussed. 

Secondly, all 1000 different amounts of moves are compared to each other in order to find out which 

heuristic is the best. Then we change the size of the container block and the number of containers 

placed and finally also the shape of the container block is changed. 

8.3.1 Mean and standard deviations 

In the table below are the means and standard deviations of the three heuristics. The standard 

deviations are the standard deviations of 10 means over times 100 trials. The results are remarkable: 

the number of moves have dropped by 10.143 for heuristic two, 11.427 for heuristic three and 

10.999 for heuristic four. If we remember that 20 of the moves are necessarily for removing 

containers, we can calculate that for heuristic two 10.143/14.193=71.46%, for heuristic three 

11.427/15.358=74.40% and for heuristic four 10.099/14.186=71.19% of the reshuffles are not 

necessarily anymore because of the better placing. These results can be seen in figure 9: 

 

 
Fig 9: The reduction in reshuffles after placing according to the heuristics 

 

The always-left strategy, on the other hand, seems even to be worse than the random placing 

strategy, because the mean of moves has even increased by 1. 

As one can see in the table below, the first heuristic, where both container that arrives and a 

reshuffle container is placed left as much as possible, is much worse than the other heuristics. There 

is no test needed to show that this heuristic is significantly worse than the other three.  

 

Heuristics Mean Standard deviation Runtime (sec.) 

One / left 42.964 0.6227 1.016 

Two / all 24.038 0.3481 1.750 

Three / top container 23.896 0.3391 1.418 

Four/ penalty 24.087 0.3440 0.962 
Table 7: The results for stacking and removing containers, using three heuristics. 

All Containers 

Reshuffle 
reduction 

Reshuffles 
still 
needed 

Top Container 

Reshuffle 
reduction 

Reshuffles 
still 
needed 

Penalty 

Reshuffle 
reduction 

Reshuffles 
still 
needed 
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Remarkable is that the third heuristic (only compare to the top container) performs better than the 

second (compare with all containers in a pile), and performs better than the fourth one (based on 

penalties), even though it is just a fraction. This is counter-intuitive, because for the removing of 

containers, the second and fourth heuristic performed significantly better than the third one. With a 

test one can calculate what already can be seen.  The third heuristic is better than the second and 

fourth, but only a fraction, something like half the standard deviation of heuristic three. It can 

therefore be said that there is no significant difference between the three heuristics. An example of a 

stack created by the second and third heuristic, when the second heuristic performs better, is given 

below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Again, just like in chapter 7, the penalty based heuristic works a lot faster than the other heuristics 

(the always-left heuristic not taken into account). In this case, it does not matter that much, but once 

the problems become much larger, it might be better to use this heuristic. What also can be seen is 

that the third heuristic now also is somewhat faster than the second, which was the reason it was 

compared in this thesis. 

8.3.2 Comparison of heuristics every case 

The stacking and retrieval of containers is done with 1000 different cases of 20 containers arriving. 

For the different heuristics, the same seed is used so that the results again can be compared. This 

seed can be found in 8.1.1. 

 

If we compare the second (compare departure time of newly arrived container to the departure time 

of all containers in the lanes) and third heuristic (compare departure time of newly arrived container 

to the departure time of the top container in the lanes), we see that in 46.2% of the cases the second 

Example 6. Stacks created by heuristics two and three,  when heuristic two is better 

 

 

 

 

 

 

 

 
 

 

 

Fig 10. A stack created by heuristic three            Fig 11. A stack created by heuristic two 

Above are two stacks; the left one created by heuristic three and the right one by heuristic two. 

For both stacks the containers arrived in the exact same order, so the placement was really the 

difference. Heuristic three used only 28 moves to clear its stack, while heuristic two needed 35 

moves to do so. The main reason why the stack created by heuristic two is worse is that once a 

container cannot be placed on top of a pile where every container departs later, it is placed on top 

of a pile with an earlier leaving container on top. So in this case, there will never be placed a 

container on top of container number 20, even though that would be better. 
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heuristic is better than the third, while the third is better in only 43.2% of the cases. In the remaining 

10.6% of the cases both heuristics perform the same. Due to this result one could say that heuristic 

two performs little better than the third one, but again this is highly disputable. Again the two 

heuristics seem to perform quite the same. 

 

If we compare the second and first heuristic (always place as far to the left as possible), it is very clear 

that the second heuristic is better than the first one. In 99.5% of the cases, the second heuristic 

actually performs better. In 0.1% the performance is the same and in 0.4% the first heuristic is better. 

However, these two numbers are negligible. 

 

Also the third heuristic is much better than the first. In 99.9% of the cases, the third heuristic gives a 

better result than the first heuristic. In 0.0% of the cases they perform the same and in 0.1% of the 

cases the first heuristic is better. As one can see, the third heuristic performs even better compared 

to the first than the second heuristic. 

 

For the fourth heuristic (place based on penalties), one can see it is very much comparable to 

heuristic two. They are most of the times equal and also compared to heuristic one and three they 

give the same results. 

 

Comparison Heuristic one 
(left) better 

Heuristic two 
(all) better 

Heuristic three 
(top) better 

Heuristic 
four better 
(penalties) 

Heuristics 
equal 

Heuristic one 
vs. one 

995 Inapplicable 4 Inapplicable 1 

Heuristic one 
vs. three 

Inapplicable 999 1 Inapplicable 0 

Heuristic one 
vs. four 

Inapplicable Inapplicable 4 995 1 

Heuristic two 
vs. three 

462 432 Inapplicable Inapplicable 106 

Heuristic two 
vs. four 

47 Inapplicable Inapplicable 21 932 

Heuristic 
three vs. four 

Inapplicable 436 Inapplicable 461 103 

Table 8: comparison of heuristics for stacking and removing 

 

Beside simple one-on-one comparisons, where only two heuristics are compared, also all three 

heuristics are compared in one time. The results are in the table below: 

 

As one can see, the second heuristic was the best one in 56.3% of the cases. For heuristic three this is 

now also more than 50%, 53.5%, heuristic four is best in 55.3% and of heuristic one it became 0%. 

This result thus again shows that the second, third and fourth heuristics are much better than the 

first, but there is not one heuristic that is clearly better or worse than the others. 
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The best heuristics Number of times 
the best 

Heuristic one (left)  

Heuristic two (all) 13 

Heuristic three (top) 431 

Heuristic four (penalty) 6 

Heuristics one and two  

Heuristics one and three  

Heuristics one and four  

Heuristics two and three 3 

Heuristics two and four 446 

Heuristics three and four  

Heuristics one, two and three  

Heuristics one, two and four  

Heuristics one, three and four  

Heuristics two, three and four 101 

All heuristics  

Total 1000 
Table 9: number of times a heuristic was best stacking and removing 

8.3.3 Comparison of larger blocks 

To check if the results depend on the size of the block, the same research is done for blocks of 6-by-6 

and 30 containers, 7-by-7 and 42 containers, 8-by-8 and 56 and 9-by-9 and 72 containers (so that still 

the top tier could stay entirely empty). Also the same seed was used as in the previous parts. We 

now only compare the second heuristic (check entire lane) with the third heuristic (check top 

container). 

 

Heuristic two 
vs. three 

Heuristic two 
(all) better 

Heuristic three 
(top) better 

Heuristics 
equal 

5 by 5 462 432 106 

6 by 6 181 288 531 

7 by 7 264 427 309 

8 by 8 274 548 178 

9 by 9 243 690 67 
Table 10: the comparison of heuristic one and two for larger blocks 

 

The results looked quite like the results of the 5-by-5 block, even though the differences became 

somewhat larger (as did the standard deviations). The number of reshuffles necessarily seemed to 

double for every increase of the block with 1.  

 

Heuristic three seems to become somewhat better once the block becomes larger. An explanation 

for this is that the situation described in example 6 (page 23) is happening a lot more often once the 

number of containers increases while the block does not get longer. But these results do not mean 

that the first heuristic is much worse, because as a matter of fact, there will never be container 

terminals that stack more than 6 containers on top of each other. Therefore, also the next test is 

done. 
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8.3.4 Comparison of different shaped blocks 

To see which heuristic works better in a more realistic environment, a block with a higher amount of 

lanes than tiers is created. Remember, when there are more stacks, this can be converted into one 

stack with more lanes. The blocks created have 10 lanes and 5 tiers, with 40 containers, and 20 lanes 

and 5 tiers, with 80 containers. The amount of containers is chosen so that the same proportion of 

containers/space for containers is used as in the stack with 5 lanes and 5 tiers. We again use the 

same seed as before. 

 

Heuristic two 
vs. three 

Heuristic two 
(all) better 

Heuristic three 
(top) better 

Heuristics 
equal 

5 by 5 462 432 106 

10 by 5 20 16 974 

20 by 5 0 0 1000 
Table 11: the comparison of heuristic one and two for different shaped blocks, part 1. 

 

As one can see, the longer the block becomes, the less difference is there is between the two 

heuristics. This because there will be more places available to place a container and therefore less 

times a container has to be placed on top of (or on a pile in which there is) another container that 

departs before this new container. What is also striking is that the number of reshuffles decreases by 

a factor three every time the number of lanes doubles. For the 20 by 5 block, only 0.077 reshuffles 

are on average necessarily. 

 

Just to check whether the heuristics really look like each other when the quay becomes longer, we 

finally compare them in a block of 120 lanes, 6 tiers and 683 containers. This 683 is 1 less than the 

95% of the total spaces. Once the 95% is reached, there will be too many containers and they will not 

be placed. 

 

Heuristic two 
vs. three 

Heuristic two 
(all) better 

Heuristic three 
(top) better 

Heuristics 
equal 

120 by 6 0 0 1000 
Table 12: the comparison of heuristic one and two for different shaped blocks, part 2. 

 

In this case, it is for both heuristics in all 1000 cases place the containers in such a way that 

reshuffling is most of the times not necessarily. The average reshuffle is 0.012 for both heuristics. The 

heuristics thus perform quite well on a larger scale, and are quite fast as well. 1000 times placing and 

removing 683 containers in the best way (the reshuffling included) took 62 seconds for heuristic two 

and 57 for heuristic three. 

8.4 The departure time of not-yet arrived containers is already known  
In the previous section the departure time of the containers that had not arrived container were not 

known. Now, we see if we can place the containers more cleverly and make some reshuffles before 

all containers have arrived. 

 

The main idea is this: if a container arrives the first check is made. Once the heuristic reaches the 

check where a container would be placed on the ground, various other things are checked before. 
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First there is checked how many empty spaces are still available. If there are only one or two empty 

spaces available, we will place only the latest or second latest departing containers (of the containers 

that still have to arrive) on an empty spot.  

 

If another container arrives we place this container on a pile with a container that will leave earlier. 

Preferably, the container is placed on top of non-maximally filled lane with on top a container that 

leaves before the newly arrived container (and of them, the latest leaving container). Otherwise on 

top of a container that leaves after the new arrived container (and then the earliest leaving 

container).If a number of containers equal to the maximum stacking height have arrived, but still not 

one of the latest arriving containers, a entire lane is filled with these containers. 

 

If one of the latest container arrives, it will be placed on the ground floor. This container is than 

saved in the container block and all containers that were placed on top of an earlier leaving container 

are placed on top of this late leaving container. Of course, that placing happens in such a way, no 

further reshuffles are necessarily. 

 

In this section we only check whatever happens with the second heuristic if this extra information is 

used, the other heuristic are not considered. 

8.5 Results 
he results are split in two parts. Just like in section 8.3 first the means, standard deviations and 

runtimes are compared and after the 1000 separate cases are compared. To get these results the 

seed rand(‘state’,str2double(‘100’)) was used. 

8.5.1 Mean and standard deviation 

Below is the table with the mean and standard deviations of the number of moves made: 

 

Kind of information 
of departure time 

Mean moves Standard deviation 
moves 

Runtime (sec.) 

Not all known 24.038 0.3481 1.750 

All containers known 23.164 0.2668 2.998 
Table 13: the mean moves and standard deviations with different kinds of information. 

 

If one takes a look at this, it seems quite profitable to have the information about the departure time 

of the not yet arrived containers. The number of moves (and reshuffles) have decreased by almost 

one, which is almost 25% of the number of reshuffles needed. This reduction in number of moves is a 

significant one, so it is safe to say that there is significant reason to assume information decreases 

the number of reshuffles. On the other hand, the gains are not that high and the runtime of this 

program is much longer (71%). We do not know if the gains outweigh the extra costs for more 

computation time. Therefore, we compare the 1000 different cases in the section below. 

8.5.2 Different cases 

To take a look at the 1000 different cases, the next table is entered. 

Comparison Information better Information worse Does not matter 

Information vs. not 518 160 322 
Table 14: the comparison of 1000 cases  
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As one can see there are differences between knowing the information about jet to arrive container 

and not knowing. Knowing the departure times is profitable in 518 cases, which is more than 50%. In 

two third of the rest of the cases, there is no difference. Only in 160 cases the information gives a 

worse result. Again, this gain because of less reshuffles has to be weighed against the costs of extra 

information (extra time in computation, but also money to be paid in order to get the information of 

when a container leaves). If it is better to have the information also depends on the preferences of 

the management of container terminal operators. 

9 Stacking and removing containers II: online information 

9.1 Problem 
Now that the heuristics are compared to each other when precise information is available and all 

containers arrive before they leave, it is time to make the scenario somewhat more realistic.  

 

Therefore, we do now simulate the arrival and departure of containers, still both arriving and leaving 

one by one. This can be explained as follows: the containers can only be removed one by one out of a 

ship that stays at a dock. Also, on average, the same amount of containers has to leave as arrive. If 

not, the container terminal might either become empty (more leaving than arriving) or flow over 

(more arriving than leaving). A container might leave between two arrivals of containers, unloaded of 

the same ship.  All this is the same as it has been in the previous chapter. The difference between 

this chapter and chapter 8 is that we do not know the departure time of the containers, beside the 

fact that now containers can still arrive after the first container leaves. 

9.2 Method 
We do not know anything about the containers that still have to arrive, and now we still do know 

something about the departure times of the containers that have arrived. Unfortunately, we cannot 

say for sure what the departure time is. All we know is the distribution of the time the containers will 

stay at the terminal.  

 

This section is split into three sub-sections: the arrival and placement of containers, the departure of 

a container and reshuffles and the rest of the simulation. 

9.2.1 The arrival of containers 

Compared to when we do not know everything about the departure time of containers, a newly 

arrived container when we only know the distribution of the storage time of the containers is much 

harder to place. However, the containers are placed in exactly the same way as in chapter 8. We now 

only cannot use the real departure time of the containers (because we do not know this), but we use 

the expected departure time of the container. 

 

All the containers have the same distribution. Two different distributions are used: 

 The storage time is randomly distributed between 0 and 2 * the number of containers at the 

start of the simulation. This means the average storage time is the number of containers at 

the start of the simulation. 
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 The storage time is exponentially distributed with mean lambda. This lambda is equal to the 

number of containers at the start of the simulation. This also means the average storage time 

is equal to the number of containers at the beginning of the simulation. 

The containers that are already at the container terminal at the beginning of the simulation will have 

a different distribution. This is explained in 9.2.3. 

For both distributions it holds true that the average amount of containers at the container terminal 

will be close to the number of containers at the beginning of the simulation (since on average the 

same amount of containers arrive at- as leave the terminal). A next arrival is generated in the same 

way as in the previous section. 

 

If we have an expected value of the time containers leave, the placement can be done with five kinds 

of heuristics: the first one is the second heuristic of 8.2. This heuristic looks at the entire piles and 

compares the departure time of the first leaving container of that pile to the newly arrived container. 

The second one is the third heuristic of section 8.2. This heuristic only compared the top container of 

each pile to the new container. Then we have the penalty based heuristic of section 8.2 and the 

stacking of containers by using leveling (where containers are always placed in the lane with the least 

containers in it). The last heuristic is the random one, where a newly arrived container is placed 

randomly. 

9.2.2 The departure of containers 

If it is time for a container to leave the container terminal, one has to check where this container is 

and if there are any containers on top of it. If there are no containers on top of the departing 

container, we are very happy; now the container can be placed on a truck and leave the terminal 

without any reshuffle. If the container, however, is not on top of a lane, other containers have to be 

reshuffled. This reshuffling is done in the same way a new container would be placed. Of course, the 

lane they were in are not considered. 

 

The reshuffling happens with one of the heuristics of chapter 7. The combination in which the 

heuristics are used will be explained below. 

 

If we have an expected value of the time containers leave, the reshuffling can be done with four 

kinds of heuristics: the first one is the second heuristic of 7.2. This heuristic looks at the entire piles 

and compares the departure time of the first leaving container of that pile to the reshuffle container. 

The second one is the third heuristic of section 7.2. This heuristic only compared the top container of 

each pile to the reshuffle container. The third heuristic is the last heuristic of 7.2, where we make 

reshuffles based on penalties for all lanes. Then there is the leveling heuristic, where a reshuffle 

container is placed in the lane with the least containers stacked in it. The last heuristic is the random 

one, where a reshuffle container is reshuffled randomly. 

 

The heuristics are used in combination with the heuristics used for stacking. We use the second 

heuristic of section 7.2 with the second heuristic of section 8.2. We also use the third heuristics of 

section 7.2 and 8.2 together, the fourth heuristic of section 7.2 with the fourth heuristic of section 

8.2 and the leveling heuristics as well. Finally, both the random heuristics are used together. 
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But because heuristic two of 7.2 seemed significantly better than heuristic three and together with 

heuristic two in section 8.2 not better than both heuristics three, one might say heuristic three stacks 

the containers in a better way than heuristic two. Therefore we also use a sixth combination. This 

combination places the containers according to heuristic three of section 8.2 (check only the top 

containers) and reshuffles them according to heuristic two of 7.2 (check entire piles). This might give 

even better results for the simulation. 

9.2.3 The rest of the simulation 

The rest of the simulation consists of the input, the initialization, the scheduling of a next event, the 

‘main’ simulation and the replications.  

 

To start the input: the user of the simulation can set various variables as input. The times the 

simulation is repeated, the length of one simulation replication (in time units), the seed of the 

random generator and limit value of the percentage the terminal may be filled. Also one can enter 

the number of containers already at the terminal at the beginning of the simulation, the number of 

lanes a terminal has and the maximum height containers can be stacked at the terminal. 

 

Now let us continue with the initialization: the containers that are at the terminal at the beginning of 

the terminal must all have a place. These containers are chosen in a random order. If we know the 

distribution of the storage time of the containers, we compose the time they will leave the terminal 

and their expected departure time. We then place the containers based on their expected departure 

time. 

Furthermore, the starting time, the first arrival and the number of containers at the terminal are 

determined. 

 

After the initialization there is the scheduling of a next event. This is nothing more than the minimum 

of the list of all events that can happen (the arrival or the departure of a container). This function will 

indicate the time the event happens and whether it is a departure or an arrival. 

 

We also have the replicate function. This function makes sure that the main function of the 

simulation will be executed several times. Every time the results will be stored and after all 

replications means will be taken. 

 

The most important function is the main function. This main function will perform one replication. 

Every replication an initialization is made first. Afterwards, we will continue the simulation until the 

stopping criterion is reached (time is equal to the length of the simulation inputted). First, the next 

event is scheduled, than either an arrival or departure (with reshuffles) is simulated. Once the 

stopping criterion is reached, the time of a new arrival is set on infinity. The rest of the containers at 

the container terminal are then removed in order of departure time. Again reshuffles are made if 

necessarily. Finally the results for this replication are stored at the replication function. 

 

In appendix B one can find the simulation function, where the storage times are known to be 

randomly distributed. Comments will tell what happens at every part of the simulation. 
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9.3 Results 
Before we will discuss the results, the inputs have to be stated.  

To start with the seed of the random generator: we again used the same seed as in chapter 7, which 

was rand(‘state’,str2double(‘12345’)). 

Furthermore we use a starting number of 300 containers and the number of time units used is 300 as 

well. This means there will be 600 containers at the container terminal. 600 moves therefore are 

made for sure. All the extra number of moves is made because of the reshuffles. 

 

Of course we also need the size of the container terminal and a limit value of the stocking rate. These 

are inputs as well: the maximum stacking height is equal to 6 (so 6 containers on top of each other) 

and the number of lanes is equal to 60. This means a maximum of 360 containers can be placed at 

the container terminal. Of course we do not like 360 containers at the terminal, because now we 

cannot reshuffle a container if necessarily. We therefore set the maximum filling rate at 95%. Now a 

maximum of 342 containers can stay at the container terminal at the same time.  

 

We now know the input variables, so let’s go to the results of the simulation. As results there is the 

number of moves made using different heuristics and different kinds of distribution/knowledge for 

the storage time of a container.  

9.3.1 The number of moves for different kinds of information 

Below is the table in which the number of moves is. These moves are both removal (600) and 

reshuffle moves (the rest).  

As a reminder: for the first line the second heuristics of 7.2 and 8.2 are used. These heuristics 

compare the departure time of the reshuffle/new-to-place container to the departure times of all 

containers in the lanes. For the second line the third heuristics of 7.2 and 8.2 are used. These 

heuristics compare the departure time of the reshuffle/new-to-place container to the departure 

times of the top containers of the lanes. For the third line the second heuristic of 7.2 and the third 

heuristic of 8.2 are used. Below, line 4, we used the penalty based heuristics (fourth) of 7.2 and 8.2. 

Finally, for the last two lanes we used the leveling heuristic and random heuristics respectively. 

 

Heuristics used Storage times 
randomly distributed 

Storage times 
exponentially distributed 

2 stacking & 
reshuffling 

1441.32 1531.20 

3 stacking & 
reshuffling 

1448.12 1532.64  

3 stacking, 2 
reshuffling 

1439.05 1532.21 

Penalty stacking 
& reshuffling 

1443.47 1544.50 

Leveling 2135.99 2153.15 

Random stacking 2109.73 2074.98 
Table 15.  The number of moves made for different kinds of departure times and use of heuristics. 

 

As one can see are the results quite comparable. It does not seem to make much difference which 

heuristics are used to stack new containers or reshuffle, only the random stacking and the leveling 

work a lot worse (they have an extra number of moves of 50%), just like Borgman (2009), [4], already 
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found out before. Because now the exact departure time of the containers is not known, the number 

of reshuffles increases tremendously.  

 

The reason for the increased number of reshuffles is quite simple: containers are stacked based on 

their expected departure time. The order in which containers leave based on their real departure 

time however, is different. Therefore the wrong assumptions about the order in which the container 

depart are made at several occasions. So even though we think we placed the containers in an 

optimal way (based on expected departure times) we did not and need to reshuffle some containers. 

The simulations also are quite fast. One hundred times the arrival of 300 extra containers and the 

removal of 600 containers takes between 5 and 7 seconds for all heuristics. 

10 Conclusion 
In this thesis various heuristics were compared. This comparison was done in several ways: the 

removal of an already existing container stack, the creation of a container stack and then the 

removal of this container stack and the placement of new containers and removal of already placed 

containers at the same time. By doing so, we saw that the tested heuristics worked better than 

random stacking and reshuffling and also better than leveling and the always-place-as-far-to-the-left-

as-possible heuristic. 

 

There were three heuristics tested: 

- The first heuristic compares the departure time of a container that arrives or has to be 

relocated to the departure times of all containers. If there exists a lane in which all container 

leave after this “new” container, this container is placed there. If not, the container is 

(whenever possible) placed on the ground floor. Only then the heuristics takes a closer look 

at the top containers. 

- The second one is the so-called leveling with departure times (LDT) heuristic, which is already 

used in previous research ([2],[3] and [4]). This heuristic compares the departure time of a 

container that arrives or needs to be relocated to the departure times of the top containers 

at the stack. If there leaves no container later than this container a container is (if possible) 

placed on the ground floor. 

- The third heuristic is a heuristic based on penalties. For the placement of a new seq. 

reshuffle container this heuristic gives every lane a penalty. The container is then placed at 

the lane which has the lowest penalty. 

 

 Which of the heuristic used did not seem to matter that much, only when an already existing stack is 

removed it seemed better not to use the heuristic where the departure time of containers that need 

to be relocated is compared to the departure time of the top containers only.  

The other two heuristics, which are the heuristic where placement and reshuffling is based on 

penalties and the heuristic where the departure time of new arrived (and reshuffle) containers is 

compared to the departure times of all containers in the lanes, seem to give almost exactly the same 

results for every comparison. 
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Still it might be better to use the penalty based heuristic rather than another, because the 

computation time of this heuristic is a lot smaller than the computation time of the other two 

heuristics.  

 

Knowing information about the departure time of not yet arrived containers did seem to improve (so 

decrease) the number of moves made. However, it did cost extra time to run the programs in the 

mathematical program matlab. Therefore, and because in this world nothing (so information also 

not) is for free, it still might be better not to try to get information about the departure times of 

containers that still have to arrive. 
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Appendix 
 

Appendix A. The code of section 8.2.1 
function 

[containerstacks]=Placecontaineronplaceway3(containerstacks,container,... 

... maximumhoogte) 
welofgeencontainers=(containerstacks~=1200); 
containergeplaatst=0; 
keuze=[]; 
hoogtes=sum(welofgeencontainers); 
topcontainers=zeros(1,size(containerstacks,2)); 
for a=1:size(containerstacks,2) 
    if hoogtes(a)>0 
        topcontainers(a)=containerstacks(maximumhoogte-hoogtes(a)+1,a); 
    else topcontainers(a)=1200; 
    end 
end 
if any((topcontainers>container).*(topcontainers<1000))==1 
    keuze=[]; 
    for i=1:size(containerstacks,2) 
        if topcontainers(i)>container && topcontainers(i)<1000 && 

hoogtes(i)<maximumhoogte 
            keuze=[keuze;topcontainers(i)]; 
        end 
    end 
    if sum(keuze)~=0 
        [opdeze,~]=min(keuze); 
        [rij,kolom]=find(containerstacks==opdeze); 
        containerstacks(rij-1,kolom)=container; 
        containergeplaatst=1; 
    end 
end 
if containergeplaatst==0 && any(hoogtes==0)==1 
    [~,plek]=min(hoogtes); 
    containerstacks(maximumhoogte,plek)=container; 
    containergeplaatst=1; 
end 
if containergeplaatst==0 
   keuze=[]; 
   for i=1:size(containerstacks,2) 
       if topcontainers(i)<container && hoogtes(i)<maximumhoogte 
           keuze=[keuze;topcontainers(i)]; 
       end 
   end 
   [opdeze,~]=max(keuze); 
   [rij,kolom]=find(containerstacks==opdeze); 
   containerstacks(rij-1,kolom)=container; 
   containergeplaatst=1; 
end 
end 
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Appendix B. The simulation with randomly distributed storage times 

 
function SimulationofContainers 
% In this function the arrival and departure of containers at a container 
% terminal are simulated. because only the order of arrival matters, not 
% the actual time, we say that every 1 time unit a new container arrives. 
%   This function exists of a main function, a replicator function, an 
%   input function, the initialization, a function to get the next even and 
%   a arrival and departure function. 
clc; 
%get the input 
inputdata; 
% do the main function multiple times 
[~,meanmoves,meanpercentagenotplaced,meancontainers] = replicate; 
%print the results 
fprintf('The mean number of moves is: %.6f\n', meanmoves); 
fprintf('The average percentage not placed is: 

%.6f\n',meanpercentagenotplaced); 
fprintf('The average number of containers at the terminal is: 

%.6f\n',meancontainers); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function inputdata 
%gets the input for the simulation 
global T s alfa containers maximumhoogte aantallanes 
%enter the several data we require for the simulation 
prompt  = {'Times repeated','Length of simulation run',... 
    'Seed of random number 

generator','drempelwaarde','aantalcontainersbegin',... 
    'maximum hight','number of lanes'}; 
def     = {'100','300','12345','0.95','300','6','60'}; 
titel   = 'input'; 
lineNo  = 1; 
parmss  = inputdlg(prompt,titel,lineNo,def); 
s = str2double(parmss{1}); 
T  = str2double(parmss{2}); 
seed = str2double(parmss{3}); 
alfa = str2double(parmss{4}); 
containers = str2double(parmss{5}); 
maximumhoogte = str2double(parmss{6}); 
aantallanes = str2double(parmss{7}); 
l = RandStream.getDefaultStream; 
reset(l); 
%set the seed for the random generator, so we can compare the different 
%heuristics. 
rand('state',seed); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function runstat = main 
% Perform one replication 
global T moves maximumhoogte 
%initialize the different variables we will use 
[t, tE,containeraantal,aantalcontainers,eventlist, tDexp,containerstacks, 

nietgeplaatst]= initialization; 
containervar=[containeraantal,aantalcontainers]; 
while t<=T    % Stopping criterion 
    [t,i] = schedule_next_event(eventlist); % get next event 
    if i==1 % first event is arrival, so schedule a next arrival 



 
36 

 

        [tDexp,containervar,eventlist,containerstacks,nietgeplaatst] = 

arrivalrealisation(tDexp,t,tE,containervar,eventlist,containerstacks,nietge

plaatst); 
    else %since the next event is no arrival, it will be a departure, so 
        % schedule next departure 
        [containervar,containerstacks, eventlist, tDexp] = 

departurerealisation ( t,tE,containervar,i,containerstacks, eventlist, 

tDexp); 
    end 
    tE=t; 
end 
%if all containers have arrived, we also remove the containers that are 
%still at the terminal, so the terminal ends empty 
welofgeencontainer=(containerstacks~=12000); 
eventlist(1)=inf; 
%remove as long as there is at least one container at the terminal 
while sum(sum(welofgeencontainer))>0 
    %find the container that needs to be reshuffled 
    [~,i] = schedule_next_event(eventlist); 
    [rij,kolom]=find(containerstacks==tDexp(i-1)); 
    %if there is at least one container on top of the container that needs 
    %to be removed 
    if sum(welofgeencontainer(1:rij,kolom))>1 
        %reshuffle these containers 
        [ containerstacks ,moves ] = MoveWithContainersway2( 

containerstacks ,moves,rij,kolom,maximumhoogte ); 
        %remove the container that has to be removed. 
        containerstacks(rij,kolom)=12000; 
        moves=moves+1; 
        % no containers on top of the to remove container, remove it 
    elseif welofgeencontainer(rij,kolom)==1 
        containerstacks(rij,kolom)=12000; 
        moves=moves+1; 
    end 
    %expected and real departure time of this container is set to infinity 
    tDexp(i-1)=inf; 
    eventlist(i)=inf; 
    welofgeencontainer=(containerstacks~=12000); 
end 
%get the total number of moves and percentage not placed this simulation 
%run and the average number of containers at the terminal 
runstat(1)=moves; 
runstat(2)=nietgeplaatst/(T); 
runstat(3)=containervar(1)/T; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function [ matrix,meanmoves,meanpercentagenotplaced,meancontainers ] = 

replicate 
global s 
% number of replications is s. Do main function s times 
matrix=zeros(s,3); 
for i=1:s 
    runstat = main; 
    %stire results of this time 
    matrix(i,:)=runstat; 
end 
%get the mean number of moves and the mean percentage of containers not 
%placed 
meanmoves=mean(matrix(:,1)); 
meanpercentagenotplaced=mean(matrix(:,2))*100; 
meancontainers=mean(matrix(:,3)); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function [t,tE,containeraantal,aantalcontainers,eventlist,tDexp, 

containerstacks, nietgeplaatst]=initialization 
%initalize the variables 
global T containers maximumhoogte aantallanes moves 
%time is zero 
t=0; 
% the container terminal is set empty 
containerstacks=12000*ones(maximumhoogte,aantallanes); 
%first container arrives at time 1 
tA=1; 
tD=zeros(T+containers,1); 
tDexp=inf*ones(T+containers,1); 
for i=1:containers 
    j=12000; 
    %pick a container not used, this will give the contianers already at 
    %the terminal at t=0 in a random order 
    while sum(sum(containerstacks==j))>=1 
        j=ceil(containers*rand); 
    end 
    %the departure times of the containers are random distributed on the 
    %interval [0,2*containernumber], therefore their expected values are 

their 
    %containernumber. The actual departure time is somewhere in the 
    %interval. 
    tDexp(i)=j; 
    tD(i)=rand*2*j; 
    % the containers already stacked at t=0 are placed at the terminal by 
    % the heuristic based on the expected leaving time 
    

[containerstacks]=Placecontaineronplaceway2(containerstacks,tDexp(i),maximu

mhoogte); 
end 
%the actual leaving time of jet to arrive containers is set on infinity 
tD(containers+1:T+containers)=inf; 
%all events are the arrival of a new container and the departure of the 
%containers 
eventlist=[tA;tD]; 
%total number of moves starts at 0, same as the amount of containers not 
%placed because the terminal has already to much containers. 
moves=0; 
nietgeplaatst=0; 
%time of last event and total time any container has been at the terminal 
%are zero at beginning of simulation. number of containers at the terminal 
%is equal to the input number of containers. 
tE=0; 
containeraantal=0; 
aantalcontainers=containers; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function [t,i]=schedule_next_event(eventlist) 
%schedule the next event. This is the minimum time of the eventlist. i is 
%the spot this minimum time is at. 
[t,i]=min(eventlist); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function [tDexp,containervar,eventlist,containerstacks,nietgeplaatst] = 

arrivalrealisation(tDexp,t,tE,containervar,eventlist,containerstacks,nietge

plaatst) 
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%a container arrives 
global containers alfa maximumhoogte aantallanes 
%the total storage times increases by the time since the last event times 
%the number of containers at the terminal 
containervar(1)=containervar(1)+(t-tE)*containervar(2); 
%find out on which spots a container is located 
welofgeencontainer=(containerstacks~=12000); 
%if there will be too much containers at the terminal, do not place the 
%newly arrived container. 
if ((sum(sum(welofgeencontainer))+1)/(maximumhoogte*aantallanes))>alfa 
    eventlist(1)=eventlist(1)+1; 
    nietgeplaatst=nietgeplaatst+1; 
else %calculate expected time the just arrived container will leave. 
    tDexp(t+containers)=t+containers; 
    %update the arrival time of new container and real departure time of 
    %just arrived container 
    eventlist(1+t+containers)=t+rand*2*containers; 
    eventlist(1)=eventlist(1)+1; 
    %place the container based on the expected time the container will 

leave the terminal again 
    

[containerstacks]=Placecontaineronplaceway2(containerstacks,tDexp(t+contain

ers),maximumhoogte); 
    %one more container at the terminal 
    containervar(2)=containervar(2)+1; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
function [containervar,containerstacks, eventlist, tDexp] = 

departurerealisation (t,tE,containervar,i,containerstacks, eventlist, 

tDexp) 
%departure of a container 
global moves maximumhoogte 
%update the total time spend on the container terminal 
containervar(1)=containervar(1)+containervar(2)*(t-tE); 
%find the spot at the terminal were the leaving container is stacked. 
[rij,kolom]=find(containerstacks==tDexp(i-1)); 
welofgeencontainer=(containerstacks~=12000); 
%if there are containers on top of the leaving container 
if sum(welofgeencontainer(1:rij,kolom))>1 
    %remove these containers 
    [ containerstacks ,moves ] = MoveWithContainersway2( containerstacks 

,moves,rij,kolom,maximumhoogte ); 
    %container itself leaves the terminal 
    containerstacks(rij,kolom)=12000; 
    moves=moves+1; 
    %no containers on top of leaving container 
elseif welofgeencontainer(rij,kolom)==1 
    %remove leaving container 
    containerstacks(rij,kolom)=12000; 
    moves=moves+1; 
end 
%(expected) time this container leaves set to infinity 
tDexp(i-1)=inf; 
eventlist(i)=inf; 
%one container less at the terminal 
containervar(2)=containervar(2)-1; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 


