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Abstract

The objective of this thesis is to examine the predictive performance of begin-of-the-day

volatility in forecasting end-of-the-day volatility using intra-day data; to search for an e�cient

timing window to make our forecast and to assess the process of forecast revisions during the

day. For this we develop three methods that make use of diurnal patterns: the average

seasonal over the last K days, an exponentially weighted average seasonal and a Flexible

Fourier Form alternatively we build a method on Mincer-Zarnowitz bias adjustments. As

the actual volatility is an unobserved variable several high-frequency volatility estimators:

Realized Variance, Bipower variation, Realized Range, Two Time Scales and Kernel estimation

are proposed to base ex-ante forecasts and measure ex-post forecasting performance. We

conclude that begin-of-the-day volatility is a highly predictive measure for end-of-the-day

volatility and can be improved by scaling and bias adjustments. The assessment of e�cient

timing samples leads us to believe that roughly the �rst 15-20 min are most informative,

with the remark that omitting the �rst 0-10 minutes of return data could be bene�cial as

noise prevails during this interval. Furthermore, correlations between lagged and current

volatility forecast revisions is found to be small yet statistically signi�cant, implying our

models inherited some build in smoothing property.

Keywords: Integrated Volatility, Diurnal Patterns, Volatility Forecasting , Flexible Fourier

Form, Intra-day Data, Fixed Event Forecast revisions
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1 Introduction

Volatility �gures prominently in the arena of risk management, is central to portfolio formation and

constitutes a pivotal role as input parameter for a variety of derivative pricing models. Creating

more accurate forecast and developing a greater understanding of the nature of volatility and its

determinants is therefore of utmost importance to investors, banks, insurance companies, pension

funds, institutions, corporations, governments and all others that are exposed to volatility risk.

Since the introduction of Autoregressive Conditional Heteroskedasticity (ARCH) type models

by Engle (1982) and Generalized Autoregressive Conditional Heteroskedasticity (GARCH) type

models as proposed Bollerslev (1986) there has been a proliferation for models of this type1.

A di�erent class of volatility models comprises of Stochastic Volatility models, �rst proposed

by Taylor (1982) based on the ideas of Black (1976) and further developed by Nelson (1991)

amongst others. Although these models create a nice mindset practically they do, however,

have some drawbacks bound to their potentially restrictive parametric nature and empirically

dubious underlying assumptions. Therefore, new non-parametric integrated volatility (IV) type

estimators, build upon the theory quadratic variation, have been gaining ground. Being non-

parametric, rapidly adjusting, intuitive and observable measures of volatility they do indeed have

their advantages.

Most well known estimator of ex-post integrated volatility is the Realized Variance (RV), i.e.

the sum of frequently sampled squared returns, as discussed by Barndor�-Nielsen and Shephard

(2002). In an ideal world this would be an unbiased, consistent and highly e�cient estimator of the

true integrated volatility. With the use of high frequency intra-day data containing microstructure

noises like bid-ask bounce, discretization, liquidity e�ects, minimum tick sizes, misrecordings etc.

this however no longer holds. Therefore other methods of ex-post volatility estimation have been

proposed like Realized Bipower Variation (BPV) see Barndor�-Nielsen and Shephard (2003),

Realized Range (RR) see Martens and Dijk (2007), Two Time Scales (TTS) see Zhang et al.

(2005) and Kernel estimation see Barndor�-Nielsen et al. (2008) among other methods.

In this research the focus is on predicting daily variance2 using high frequency intra-day data.

Speci�cally return data close to the start of open outcry trade is used to forecast daily variance as

obtained through above mentioned IV measures. The informational content of begin-of-the-day

volatility in itself is tested but forms a highly biased predictor for daily volatility. In order to rescale

begin-of-the-day volatility we build upon the empirical regularity that intra-day volatility exhibits

1For a thorough list of available ARCH derivatives see Bollerslev (2008)
2During this research daily variance is de�ned as the integrated variance over open outcry trade only.

1



strong cyclical behavior in the sense that start and end of the day volatility is on average high, with

a gradual decline to the middle. Creating a distinct U, J, or inverse J-shape throughout the trading

day, see Wood et al. (1985), Muller et al. (1990) and Baillie and Bollerslev (1991). Subsequently

these shapes can thus be exploit to rescale begin-of-the-day volatility to daily proportions. Three

approaches are conducted to obtain this assumed deterministic intra-day seasonal pattern. A

simple Moving Average method is used to obtain the periodic volatility component as the average

volatility over a preceding interval up to the forecast; a Exponentially Weighted Moving Average

(EWMA) is used as faster adjusting alternative to the former and a more advanced Fourier Flexible

Form (FFF) is used to model the dynamics of intra-day volatility patterns. Additionally a bias

adjustment method to begin-of-the-day variance is built upon Mincer-Zarnowitz coe�cients using

rolling window MZ regressions.

Through this framework we extend the research of Frijns and Margaritis (2008) and Harju

and Hussain (2008) in four ways: (1) We use multiple measures of ex-post volatility to gain

robustness. (2) We do not restrict ourselves to start-of-the-day volatility samples but rather loop

over di�erent start and ending times as to obtain the most e�cient estimation sample. Hereby

basically investigating whether early return data, just after start open outcry trade, actually

increases forecasting ability or weakens it due to the large noise to signal ratio inherent to this data.

(3) Evaluate performance using additional measures and (4) enhance forecasting performance by

a not earlier conducted bias-adjustment methods and through techniques of Kalman Filtering

on the unobserved Mincer-Zarnowitz α and β states. Furthermore, related to the search for an

e�cient forecasting period, revisions on end-of-the-day volatility forecasts through the day will

be evaluated. Under weak-form market e�ciency lagged revisions and current revisions should

be independent and thus have zero correlation. If this is not the case one could, in the spirit

of Franses et al. (2011), investigate whether it is overreaction to news, some kind of smoothing

behavior or something else causing correlation in forecast revisions.

To our knowledge Frijns and Margaritis (2008) are the �rst and only to have investigated

forecasting power of start-of-the-day volatility to end-of-the-day volatility. They �nd that �rst-

hour volatility in itself is highly predictive for end-of-the-day volatility and leads to coe�cients

of determination, R2, as high as 68% where less than 30% of daily volatility is observed by that

time. Rescaling with an average seasonal leads to improvements and forecast combinations using

FFF seasonals with GARCH(1,1) forecasts are superior to any single prediction. Our �nding on

S&P500 index futures returns and US 30 year treasury bond futures returns support their earlier

work. We �nd a squared robust correlation (R2
MAD) between forecasts and daily volatility of
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0.68 in S&P500 after just 30 minutes of start-of-the-day volatility in itself, equaling only 13%

of total daily variance. Rescaling by an (Exponentially Weighted) Moving Average Seasonal or

FFF seasonal further improves upon these �gures, where the latter improves mainly in terms of

smaller HMSPE. Subsequently adjusting forecasts using Kalman Filtered Mincer-Zarnowitz states

reduces Heteroskedasticity-consistent Mean Squared Prediction Error (HMSPE) by a factor 2 as

compared to FFF forecasts. US30 volatility proves somewhat harder to predict yet has greater

bene�t from seasonal modeling. After 30 minutes, equaling on average 14% of daily variance,

squared correlations are on average 0.51. However adjusting these forecasts using FFF seasonal

scaling and again Mincer-Zarnowitz α and β states, improves predictability appreciably. Through

Kalman �ltering procedures R2
MAD on average grew up to 0.57 whereas HMSPE diminishes by

a factor 4 against FFF. However simpler alternative found in scaling FFF forecasts by Mincer-

Zarnowitz regression coe�cients obtained from rolling window regressions yields similar, and

during early start of the day even better, results. Leading to R2
MAD of up to 0.75 after 30 minutes

and diminishing HMSPE up to a factor 2 compared to FFF forecasts.

Choosing an e�cient data sample to base forecasts could improve R2
MAD �gures even further.

Dependent on the security at hand, the �rst 0-10 minutes of return data should be omitted in

order to increase correlation. Evidently the noise during this early interval corrupts forecasts

more than it favors them. Furthermore in terms of e�ciency one could argue that, as additional

R2
MAD is outweighed by the additional daily variance needed, a saturation point is found. For

S&P500 and US30 such can be found at respectively 15 and 20 minutes after start open outcry

trade. Meaning roughly interval [5-15] and [5-20] minutes after start of open outcry trade are

most e�cient to base forecasts for resp. S&P500 and US30 volatility.

For the remainder of this thesis the plan is as follows. Section 2 is used to discuss the data, it's

high frequency features and some stylized facts. Section 3 concentrates on di�erent methods for

obtaining ex-post volatility measures, di�erent kinds of ex-ante volatility models and statistical

evaluation procedures and bias adjustments. Section 4 is used to evaluate forecasting performance

and other statistics. Concluding remarks are given in section 5.
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2 Data

This section will describe the data used for this thesis with addition of theoretical as well as

practical implications. Some stylized facts are given; potential hazards are highlighted and some

adjustments are made.

2.1 Data description

Data provided for this research comprehends 10 second price levels3 for the Standard & Poor's 500

Index futures (henceforth S&P500) starting at 05:00:10 GMT 2003/07/01 up until 21:15:00 GMT

2009/12/31, totaling 6 and a half years or 1642 active trading days. This index is calculated

by Standards & Poor's Corporation as the capitalization weighted average of the greatest 500

US based companies which meet their admission requirements. Globally it is seen as the most

reliable indicator of stock market developments and therefore much used as subject of research.

For reasons of comparability we propose to do the same.

Second data series contains 10 second price levels for 30 year US Treasury Bonds futures

(henceforth US30) over the period 05:11:50 GMT 2003/07/01 up until 22:00:00 GMT 2009/12/31

totaling 6 and a half years or 1622 active trading days. Throughout the whole sample electronic

trading was available having some substantial implications as: reduced cost of transactions; greater

liquidity; increased transparency and tighter spreads, thereby diminishing the microstructure noise

e�ects.

As a basis for later end-of-the-day or daily volatility calculations, i.e. the variable of interest

in forecasting, we take the open outcry trading hours in the regarding securities. For the S&P500,

whose constituents are solely traded on the NYSE, AMEX or NASDAQ, this means we start

at 9:30 EST and end on 16:15 EST. For the US30, traded mostly in New York and Chicago,

this means we start at 8:20 EST and end on 17:00 EST. Subsequently all data is used to create

forecasts yet with the di�erence that after-trade and overnight returns are not in itself part of the

daily volatility as de�ned here4.

3For reasons that will become clear in the methodology section, calendar-time-sampling (CTS) is used with 10
second price levels obtained as the last available price from tick-by-tick data. This does impose some stickiness of
prices resulting in negative autocorrelation in the return series as further explained in section 2.2.1. Alternatively
one could use business-time-sampling (BTS) or tick-time-sampling (TTS).

4Ignoring overnight return observations in the creation of daily volatility using high frequency intra-day data
is in accordance with Andersen et al. (2001); Thomakos and Wang (2003); Corsi et al. (2008); Wu (2010). Overall
there is no consensus on the in- or exclusion of overnight return observations in daily volatility constructed from
volatility measures using high frequency intra-day data. For a further exposition on di�erent choices de�ning daily
volatility, see Ahoniemi and Lanne (2010).
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The price levels are converted to continuously compounded return series by taking the loga-

rithms and subtracting the previous value. For ease of notation we normalize the daily interval to

unity. The return over the i-th interval of length ∆ on day t, for i = 1, 2, ..., n and n the number

of daily increments, can then be calculated as:

rt,i = ln(Pt,i∆)− ln(Pt,(i−1)∆) (1)

Where Pt,i∆ is the price level at day t after i time intervals of length ∆.

2.2 Stylized facts of high frequency intra-day data

The use of high frequency intra-day data is both revealing and problematic. It has opened up all

new possibilities to observe volatility in far greater detail than ever before. Features like diurnal

patterns, that would otherwise be hidden in lower data aggregations, can now be revealed. It,

however, also poses new di�culties concerning mostly the impact of microstructure noise. Irregular

spacing resulting in stickiness of prices; price discreteness; minimum tick-size see Munnix et al.

(2010) and bid/ask spread see Gatheral and Oomen (2010), are just some of the noise constituents

corrupting high frequency data. As so, Andersen and Bollerslev (1998b) �nd that these errors

have the tendency to mask the strong persistence in underlying latent volatility dynamics. It

would therefore be bene�cial to (1) select our data carefully, (2) cautiously clean our data and (3)

adjust our models as to cope with these disruptive sources. For the interested reader an intuitive

and more thorough discussion on microstructure e�ects is included in Appendix A: Microstructure

e�ects and can be read before continuing.

2.2.1 Data cleaning

Careful cleaning of high-frequency data is an important task. Obvious errors like misrecordings,

wrong placement of decimals or outliers can have tremendous impact on volatility estimation.

Yet so can cleaning of data, altering it's statistical properties, see Falkenberry (2001) amongst

others. Hansen and Lunde (2006) on the other hand show that volatility estimation can improve

by tossing out vast amounts of data. In our case we keep removal to a minimum and propose the

following adjustments:

1. We delete days with no open outcry trade where open outcry is de�ned as 9:30 EST until

16:15 EST for S&P500 index futures returns and 8:20 EST until 17:00 EST for the US30

year treasury bonds futures returns. These mostly constitute holidays and some recording
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errors. For the S&P500, 32 such days were deleted from our sample, for the US30 these

constitute to 24 days being deleted.

2. We check for outliers caused by decimal misplacement or other recording errors. None such

errors were found throughout both series.

3. Due to the �nancial crisis of last couple of years, rather extreme return observations found

their way into the S&P500 and US30 data sets. Creating large jumps in the price process,

these observations are both interesting and potentially hazardous to later conclusions. In

order to overcome such events two options may be considered: 1) thoroughly clean all data

series as to su�ce underlying model assumptions in an ordinary setting. Yet such rigorous

cleaning could alter statistical properties and damage data integrity. Second, one could rely

on robust performance measures. The latter is chosen throughout this thesis and indeed

has major in�uence. The introduction to section 4 lays bare a graphical illustration to the

potency of ordinary statistics to distort conclusions.

Remaining spikes in the daily pattern are due to regular recurring events like business �gures

or macro-economic news announcements and should therefore not be altered. They form an

integral part of the daily trade pattern and should be accounted for when estimating a seasonal

pattern. Most evident spikes are summed in table 1 and synchronize well with general timing of

macroeconomic news announcements and trading routines. As can be seen from �gure 1 and 2,

the S&P500 data is quite sensitive to the opening of exchange markets as well as macroeconomic

news announcements whereas for the US30 macroeconomic announcements have by far the greatest

impact.
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S&P 500 index US 30y Treasury

Spikes at: Cause: Spikes at: Cause:

08:30.00-08:30.10 Macroeconomic news announcements at 8:30 08:20.00-08:20.10 Opening markets New York and Chicago

09:30.00-09:30.10 Opening markets New York and Chicago 08:30.00-08:30.10 Macroeconomic news announcements at 08:30

10:00.10-10:00.20 Macroeconomic news announcements at 10:00 10:00.00-10:00.10 Macroeconomic news announcements at 10:00

16:00.00-16:00.10 Brokers clean their sheets 13:01.30-13:01.40 Unknown

16:14.30-16:14.40 Electronic trading about to close 14:59.00-14:59.10 Just ahead of open outcry close

16:30.00-16:30.10 Reopening electronic trading desks 16:59.50-17:00.00 Just ahead of close electronic trading

18:00.00-18:00.10 Reopening electronic trading desks 18:30.00-18:30.10 Reopening electronic trading desks

Note 1: All New York based exchanges open at 9:30 and close at 16:00 Note 1: Bond trade opens at 08:20 and closes at 15:00

Note 2: S&P500 data assembly is temporarily closed from: Note 2: US30 data assembly is temporarily closed from 17:00-18:30

Note 2: 09:15-09:30, 16:15-16:30 and 17:30-18:00

Table 1: Volatility spikes in the 10 seconds absolute return series for the S&P500 index and US 30 year
treasury bonds together with their most likely cause. Evidently spikes synchronize with timing
of macroeconomic news announcements and recurring practices/routines. (time of day is given
in EST)

2.2.2 Diurnal patterns

Another stylized fact of high-frequency data, especially for equity returns, is that it exhibits greater

volatility during the start and end of the day with a gradual decline to the middle. Among the

�rst to notice this typical U-, J- or inverted J-shaped pattern in equity data were Wood et al.

(1985) and Harris (1986). Muller et al. (1990) and Baillie and Bollerslev (1991) found equal

characteristics for foreign exchange markets and Harju and Hussain (2006, 2008) further assess

the implications of these patterns. It is this empirical regularity that will be utilized in this paper

to produce superior volatility forecasts. As can be seen in �gure 1, S&P500 future returns exhibit

a comparable U-shaped pattern, which is far more pronounced for high �rst-hour volatility days

than is the case for low �rst-hour volatility days. They do, however, not support earlier �ndings

that high volatility days tend to follow an inverse J-shape where low volatility days experience

more of a U-pattern. Yet this could be due to round the clock electronic trading. As securities

are restricted to mere traditional trading hours, overnight information can only demonstrate itself

during daytime trading. Resulting in higher start-of-the-day volatility and therefore a more inverse

J-shaped pattern. Figure 2 shows the average absolute daily return for the US 30 future returns.

These exhibit a less stylized shape, although high volatility days now do on average follow a

inverse J like pattern.
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Figure 1: Mean absolute S&P 500 index futures return series at 5 minute sampling frequency over period
2003/07/01 - 2009/12/31 and seasonal shapes for 20% lowest and highest �rst hour volatility
days. The seasonal shape during open outcry trading hours, i.e. 09:30 - 16:15, is far more
pronounced for high volatility days than is the case for low volatility days. Note that electronic
trading, or at least the assembly of data by Standard & Poor's Corporation, is paused during
the following periods: 09:15-09:30, 16:15-16:30 and 17:30-18:00.

In line with Andersen and Bollerslev (1997) the autocorrelation patterns for both S&P500

and US30 absolute return series were plotted to gain a more thorough insight in this seasonal

e�ect. The correlograms of these series together with autocorrelation plots for deseasonalized

returns are presented in Appendix A: �gure A.35. It is evident from these plots that the S&P500

and US30 data both experience strong cyclical behavior with peaks at the 1 day lag due to the

seasonal. When deseasonalized however, much of the cyclical e�ect is taken away, leaving a smooth

geometric decay. Only little peaks at the daily lag remain indicating that the seasonal component

is not totally �ltered out, yet it did a pretty good job.

5Deseasonalizing of returns is done by �tting a Fourier Flexible Form to the day and subsequently calculating
returns as rt,n,deseason ≡ rt,n/st,n with st,n the seasonal component of returns estimated by a Fourier Flexible
Form as discussed in section 3.2.5. As is done in this section we take J = 1 and P = 1 for S&P500 index future
returns and J = 1 and P = 2 for US 30 year treasury bond futures returns. To account for the �at non trading
times during the day, an extra dummy variable was introduced in deseasonalizing as to adjust for this.
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Figure 2: Mean absolute US 30 futures return series at 5 minute sampling frequency over period
2003/07/01 - 2009/12/31 and seasonal shapes for 20% lowest and highest �rst hour volatil-
ity days. The seasonal shape during open outcry trading hours, i.e. 08:20 - 17:00, is less erratic
than is the case for low volatility days. The seasonal shape is however clearly less stylized than
the one for equity future returns. Note that electronic trading is paused during the period:
17:00-18:30.

Correlations for absolute S&P500 series are up to 0.4 and the mean level dies out only at

a very slow rate. They are all positive implying that a volatile start of the day is most often

followed by a volatile day overall, as consistent with extensive literature documenting volatility

clustering in asset returns, dating back at least to at least Mandelbrot (1963) and Fama (1965).

The correlations for absolute US 30 year treasury bond futures feature about the same properties.

They also exhibit strong cyclical behavior caused by intra-day seasonal volatility patterns. Biggest

di�erence is to be found in the lower overall level of correlations, around 0.2, demonstrating again

the less pronounced diurnal pattern US bond future returns face. Taking 24 hour trading the

autocorrelations even turn negative confronting half a day lag, whereas this trend disappears

looking at the open outcry returns only6. It seems that a day starting rough settles down stronger

6Open outcry return series are taken from 9:30-16:15 for S&P500 data and 8:20-17:00 for US30 data, as opposed
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in the after trading hours, as if to take a breath.

2.3 Data statistics

After adjusting the sample, e.g. cleaning for outliers and removing sparse trading days the fol-

lowing summary statistics for 5 minute return series and open-outcry-only 5 minute returns series

can be obtained.

S&P 500 S&P 500* US 30 US 30*

Minimum [%] -2,8422 -2,7886 -5,1923 -2,1815

Maximum [%] 4,3634 3,7844 3,3424 3,3424

Mean [%] 1,9443E-05 -8,7488E-05 -2,7858E-06 1,0129E-04

Median [%] 0,0000 0,0000 0,0000 0,0000

Standard Deviation 0,0814 0,1254 0,0426 0,0582

Skewness 1,1662 0,2860 -6,6170 0,5015

Kurtosis 110,1776 34,3244 953,0225 105,1092

AC(1) return -0,0249 -0,0216 -0,0455 -0,0349

AC(1) absolute return 0,4366 0,3813 0,3068 0,2667

Percentage of daily volatility 100,0000 54,8850 100,0000 59,0105

Percentage zero returns 30,1062 7,8728 46,2801 27,8947

Table 2: Descriptive statistics for 5 minute S&P500 index returns and US 30 year treasury bond futures
returns from July 1st, 2003 until December 31, 2009. Series denoted with a star (*) are taken
over open-outcry trade only.

The S&P500 is most volatile, especially during regular trading hours, with a standard devi-

ation of 0.1254 or an annualized standard deviation of approximately 33.78%7. Al returns are

highly leptokurtic, sample minimum/maximum returns are between 34/53 and 121/78 standard

deviations from their mean for resp. S&P500 and US30. Assuming normality the probability of

observing such extreme values are practically zero. First order return autocorrelations are small,

negative, yet signi�cant for both markets, this can typically be attributed to market microstruc-

ture e�ects, see Hansen and Lunde (2004). Whereas �rst order autocorrelations for absolute

returns are high and highly signi�cant implying a great deal of volatility persistence.

to round the clock returns for the standard sample. This yields better insight in daily volatility faced by the majority
of (institutional) investors.

7Approximate annualized Standard Deviations are obtained as std5m ·
√

288 ·
√

252, for 288 daily 5 minute
increments and approximately 252 trading days a year. Note that this is an approximation as the 'square root
of time rule' only holds for i.i.d. return data. For further elaboration on this matter see Danielsson and Zigrand
(2006).
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3 Methodology

This section discusses the methodologies used in creating ex-post volatility measures and ex-ante

volatility forecasts. Furthermore methods for interpretation of Mincer-Zarnowitz regressions are

presented and variance forecast revision are discussed. Let us start by explaining what integrated

volatility (IV) is and why we use it.

3.1 Integrated Volatility

Volatility is the degree to which �nancial returns (log price di�erences or relative price changes)

�uctuate over time. Widely it is seen as the most important measure of risk. Measuring, modeling

and understanding this latent variable has therefore been a point of great attention. On lower data

aggregations ARCH type models form a workable solution to modeling volatility, working with high

frequency data though, this approach seems ill suited. As noted by Andersen and Bollerslev (1997)

"ARCH models imply a geometric decay in the return autocorrelation structure and simply cannot

accommodate strong regular cyclical patterns" as often observed in high frequency intra-day data.

The parameter-free di�usion models reviewed in this section are better suited to handle this type

of data. To put our mindset in mathematical terms, we take the price process Xt,i = ln(Pt,i) to

follow an Itô process,

dXt = µtdt+ σtdBt (2)

where Bt is a standard Brownian motion, µt is a drift term and σt the instantaneous volatility of

returns process Xt, assumed to follow a càdlàg process. Integrated variance is now de�ned as the

integral:

IV =

1ˆ

0

σ2
t dt (3)

The integral of the instantaneous variance between successive time stamps 0 and 1. The desig-

nation Integrated Volatility and Integrated Variance are in practice used alongside each other to

denote a measure of riskiness. Here we will however reserve the name integrated volatility for

the square root of integrated variance. If prices Pt,i could be observed continuously and without

error this would be the whole story. Taking Realized Variance (RV) as measure would, as can

be seen later on, make IV visible and proxy it in a unbiased, consistent and highly e�cient way.

Unfortunately, in reality we do not observe such true log prices Xt,i but rather a proxy Yt,i,
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Yt,i = Xt,i + εt,i (4)

where noise constituents εt,i are mutually independent and and jointly independent of X. Consist-

ing of earlier mentioned market microstructure e�ects, this noise has a major e�ect on volatility

estimation when using truly high frequency data like one second prices or even higher. Making the

increments in�nitely small the volatility of the true price process diminishes to zero. The volatil-

ity of the error term however stays more or less the same yielding an exploding noise-variance to

signal-variance ratio dependent on the sample rate. Following the theory of quadratic variation

this can be made clear following the understated formulas

rt,i = ∆Yt,i = ∆Xt,i∆ + ∆εt,i4 with ∆Yt,i = Yt,i∆ − Yt,(i−1)∆

V ar(rt) =
n∑
i=1

(∆Yt,i∆)2 =
n∑
i=1

(∆Xt,i∆)2 +
n∑
i=1

(∆εt,i4)2 + 2
n∑
i=1

(∆Xt,i∆,∆εt,i4) (5)

Giving the conditional mean of the variance of rt:

E [V ar(rt)|Xprocess] =
n∑
i=1

(∆Xt,i∆)2 + E

[
n∑
i=1

(∆εt,i4)2

]

with
n∑
i=1

(∆εt,i4)2 =
n∑
i=1

ε2
t,i4 +

n∑
i=1

ε2
t,(i−1)∆ − 2

n∑
i=1

εt,i∆εt,(i−1)∆

so that E

[
n∑
i=1

(∆εt,i4)2

]
= 2nσ2

ε,t

E [V ar(rt)|Xprocess] =
n∑
i=1

(∆Xt,i∆)2 + 2nσ2
t,ε (6)

where V ar(rt) is the RV estimate,
∑n

i=1 (∆Xt,i∆)2 is the true IV when 4 → 0 and therefore

n→∞, σ2
ε is the variance of the error term and n is the number of daily increments. As sampling

rate grows, so does the error variance with a factor 2n. When n goes to in�nity the error variance

explodes taking over all of the estimated variance. We are now actually consistently measuring

noise variance instead of IV.

One question though naturally comes to mind: why do we actually want to obtain the variance
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of Xt rather than the variance of Yt. As in principle Yt conceals the variance of market prices so

this is the variance we face in practice. Mean reason is that the error variance is tied to transaction

costs and is arti�cially created by the mechanics of the trading system whereas the variance of Xt

tells us more about the volatility of the underlying process. Moreover as mentioned above, the

variance of Yt would depend on data frequency which is not a desirable feature. Hence V ar(Xt) is

our target for this research. In the remainder of this subsection we brie�y go through a selection

of well-known IV estimation measures. Again for the interested reader a thorough expositions

of the variance estimators, all underlying assumption, sensitivities and details on implementation

are to be found in Appendix B.

3.1.1 Realized Variance

Realized variance (RV) is the �rst and most basic measure of integrated volatility. According to the

theory RV can recover the volatility de�ned by the quadratic variation of a semi martingale price

process8. Using high frequency returns it can be estimated by
∑n

1 (Yt,i∆−Yt,(i−1)∆)2, resulting in

the formula for realized variance.

RVt =
n∑
i=1

r2
t,i (7)

where rt,i is the return
(
Yt,i∆ − Yt,(i−1)∆

)
over period [i − 1, i]. In an ideal world with no mar-

ket frictions this would be an unbiased, consistent and highly e�cient estimator for integrated

variance. One would merely have to drive up the sampling frequency to obtain a more accurate

estimate and as n→∞, realized variance converges to IV. Unfortunately reality is not this struc-

tured. Practical implementation has to confront the fact that prices are not recorded continuously

and markets are not frictionless. Leading RV to be biased and inconsistent resulting in great errors

if one was to use RV on high sampling frequencies without correction.

Having its �aws, the ease of computation makes RV a much used IV estimation technique

nonetheless. To deal with the bias in practice, another solution is favorite. Sparse sampling is

used as to mitigate microstructure e�ects. Though this tactic merely limits the in�uence of noise

rather than corrects for it, Hansen and Lunde (2006) advocate it works quite well.

8See Jacod and Shiryaev (1987) and Barndor�-Nielsen and Shephard (2003) for further exposition on quadratic
variation (QV) assuming semimartingale properties for log price process.
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3.1.2 Realized Bipower Variation

Due to its quadratic form realized volatility is quite sensitive to outliers and jumps in the return

process. A more robust estimator can be found in Realized Bipower Variation (BPV). By taking

the product of subsequent return observations it mitigates the in�uence of outliers and is far less

a�ected by jumps in the (log) price process.

For this research Realized Bipower Variation is de�ned as:

BPVt =
n−1∑
i=1

|rt,i||rt,i+1|, r = s = 1 (8)

Details on working, implementation and derivation are again given in Appendix B

3.1.3 Realized Range

Another intuitive measure of volatility estimation is the Realized Range (RR) which makes use

of the di�erence in maximum and minimum observed prices during a certain period of time.

Properly scaled, daily high-low range is up to 5 times more e�cient than realized variance using

daily squared returns. Or correspondingly performs similar to realized variance sampled at 4 to

8 times higher frequency. If this result holds for every sampling rate, in theory we'd have an

ever more e�cient estimator than RV. In this mindset Martens and Dijk (2007) proposed to use

high-low range with intra-day data and dubbed the resulting estimator Realized Range.

To formalize the setting we again take P t,i∆ to be the last observed price in the i-th interval

of length 4, as we have already assumed in equation (1). Ht,i = sup(i−1)∆<j<i∆Pt,j is the highest

observed price or supreme and Lt,i = inf(i−1)∆<j<i∆Pt,j is the lowest observed price or in�mum.

The scaled high-low range estimator is than de�ned as

(lnHt,i − lnLt,i)2

4ln2
(9)

Aggregating over the n daily intervals gives the realized range:

RRt =
1

4ln2

n∑
i=1

(lnHt,i − lnLt,i)2 (10)

To further improve upon this method Martens and Dijk propose the use of a bias adjusted RR

estimator. It is this bias adjusted RR version that will be used throughout this research. Further

details and intuition can be found in Appendix B.
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3.1.4 Two Time Scales Estimation

First two volatility estimators have one thing in common. Taking the empirically much used 5

minute intervals, they throw away vast amounts of data just to reduce the in�uence of microstruc-

ture e�ects. In our case this sparse sampling encompasses throwing away approximately 97% of

the data. Pure silliness from a statistical point of view. Zhang et al. (2005) therefore developed

a new high frequency estimator which uses all data: Two Time Scale estimation

In mathematical terms they pursue the following:

TTSt =
N

N − n̄

(
1

K

K−1∑
k=0

RV
(k)
t − n̄

N
RV all

t

)
(11)

with,

RV
(k)
t =

∑
r2
t,i for i = 1 +

k

K
, 2 +

k

K
, ..., n− 1 +

k

K

RV all
t =

N∑
j=1

r2
t,j for j = 1, 2, ..., N

n̄ =
N −K + 1

K

With N the number of observed prices per day; n the number of intervals (e.g. 288 5min intervals)

and K = N/n. That is, the two time scales estimator takes the average RV for day t over multiple

subsamples and corrects the bias with n̄
N times the realized variance for day t calculated using all

available data. For further details on this measure it is advised to read the appropriate section in

Appendix B.

3.1.5 Realized Kernel Estimation

The last discussed and widely accepted estimator of integrated variance we test here is the Realized

Kernel (RK). These type estimators, as introduced by Barndor�-Nielsen et al. (2008), are based

on the ideas of Hansen and Lunde (2004). They noticed that microstructure noise causes the

high frequency intra-day returns to be autocorrelated resulting in biased RV estimation. They

�gured that the empirical autocorrelation function up to a certain lag H can thus be used to

correct the bias in RV through a correction that works in the same way as in which robust

covariance estimators of Newey and West (1987) achieve their consistency. The realized kernels
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are build upon the same principle. The kernel function, Kt(Yt,∆), consists of RV,γ0(Yt,∆), which

gets corrected by the empirical autocorrelations,
∑H

h=1 k
(
h−1
H

)
{γh(Yt,∆) + γ−h(Yt,∆)}, to adjust

for market frictions. Formally, the kernel function of Barndor�-Nielsen et al. can thus be written

as:

Kt(Yt,∆) = γ0(Yt,∆) +

Ht∑
h=1

k

(
h− 1

Ht

)
{γh(Yt,∆) + γ−h(Yt,∆)} (12)

γh(Yt,∆) =
K∑
j=1

(Yt,∆,j − Yt,∆,j−1) (Yt,∆,j−h − Yt,∆,j−h−1) =
K∑
j=1

(Rt,∆,jRt,∆,j−h) (13)

Where Ht is the bandwidth parameter which is to be estimated and can be seen as the estimated

number of autocorrelations needed to bias adjust the Kernel estimate; k(x) is the chosen kernel

weighing function; γ0(Yt,∆) the realized variance; γh(Yt,∆) the h-th order autocovariance of the

observed log return series; K equals the size of sparse sampling intervals: N/n; and Yt,∆,j is the

observed log price level at time j in increment ∆ during day t.

As weighing function the Parzen kernel is used. Given by

k(x) =


1− 6x2 + 6x3

2 (1− x)3

0

0 ≤ x ≤ 0.5

0.5 ≤ x ≤ 1

x > 1

(14)

And the preferred bandwidth equals

H∗t = c∗ · ξ4/5
t ·K3/5, with c∗ =

{
k”(0)2´ 1

0 k(x)2dx

}1/5

and ξ2
t =

ω2
t√

n
´ n

0 σ4
t dt

(15)

Where an accent denotes the derivative of the function and double accents denote the second

derivative, not a transpose.

A graph containing all above estimated IV measures is included in Appendix B.
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3.2 Forecasting

Now that ex-post measures of volatility have been developed we can focus on actual forecasting.

Here fore we explore 3 models, a seasonal moving average, a exponentially weighted moving average

seasonal and a Fourier Flexible Form. Forecasting performance is subsequently benchmarked

against a RandomWalk and a GARCH(1,1) model as estimated on daily return data and compared

to begin-of-the-day volatility as reference point.

3.2.1 Begin-of-the-day volatility (reference)

Objective of this paper is to asses the forecasting performance to daily volatility through e�cient

timing using begin-of-the-day volatility. A natural starting and convenient reference point is thus

to test the forecasting value of begin-of-the-day volatility in itself and subsequently assess added

value by more advanced models later on. If we take RVt =
∑n

i=1 r
2
t,i to be the end-of-the-day

realized variance for day t with i = 1, ..., n ranging over open outcry trade, begin-of-day variance

can be written as

RV n∗
t =

n∗∑
i=1

r2
t,i (16)

with 1 ≤ n∗ ≤ n and shifting for di�erent subsets as n∗� [1, ..., n]. Note that RV in 16 could be

substituted by every other measure: BPV, RR, TTS or Kernel estimates. Furthermore, in line

with research by Bedendo and Hodges (2004) on S&P500 futures contracts, we make use of the

widely popular 5 minute sampling intervals for all measures.

To investigate the informativeness of RV n∗
t we run MZ regressions as discussed in section 3.3.1

with RV n∗
t as dependent variable c.q. 'forecast'. Obviously such 'forecasts' are biased and should

be scaled �rst, yet the correlation between Realized daily volatility and RV n∗
t is invariant to scaling

and can as such be used to review forecasting potential of the regressor. Resulting regression

R2
MAD coe�cient thus indicates the degree in which forecasts are correlated to daily variance.

Formally this correlation should in turn be adjusted acknowledging we do not actually know true

daily integrated variance obliging us to use RVt in stead of IVt in the regression. However research

to the proper adjustment within our setting is left to further research. Furthermore to make the

squared correlation coe�cients better comparable among di�erent subsets of information we have

to take in to account the variance already observed. Solutions to these problems will be discussed

in section 3.3.
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3.2.2 Direct MZ Scaling

Begin-of-the-day volatility should be scaled to daily proportions in order to form an unbiased

estimate of daily volatility. To do so one could utilize the seasonal pattern as attempted in

following sections. Alternatively one could track the bias as apparent from Mincer-Zarnowitz

regressions and subsequently utilize these to bias adjust forecasts without the need of explicitly

estimating a seasonal pattern. Using an (arbitrarily chosen) 20 day rolling window, Mincer-

Zarnowitz regressions can be performed obtaining α and β estimates over the whole sample. These

estimates are thus used to adjust Begin-of-the-day variance measurements to form unbiased daily

variance forecasts, i.e.

RV n∗
t,scaled = α[t−20,t−1] + β[t−20,t−1]RV

n∗
t (17)

Where α and β are estimated via OLS MZ regressions and RV can be replaced by any other

volatility measure. According statistics can thereafter again be obtained via MZ regressions.

3.2.3 Seasonal Moving Average

To further improve upon our reference 'model' we follow the methods set out by Taylor and Xu

(1997). They were among the �rst to use an average seasonal, over every interval i = 1, ..., n using

the previous H days, as the proposed seasonal for a coming day. The intuition behind this is that

securities, especially equity, typically exhibit quite a persistent U, J or inverse J shaped volatility

pattern throughout the day. The idea is that if the pattern remains persistent, begin-of-the-day

volatility can be scaled to end-of-day volatility using this diurnal shape. Furthermore the shape

tends to shift between U and J for respectively low and high volatility periods, see Andersen and

Bollerslev (1994). By taking the average seasonal over the previous H days one can accommodate

for this shifting behavior, making the method a bit more �exible. To assess the sensitivity of the

seasonal to arbitrarily chosen H we take the average over 1 month i.e. 22 days and 1 year i.e. 252

days (in previous work by Frijns and Margaritis (2008) a 200 day interval was chosen). For the

interval length ∆ we take 5 minutes, thus ranging i from 1 up to n = 288. Our seasonal forecast

can now be calculated as

st,i,temp =
1

H
·
h=H∑
h=1

r2
t−h,i (18)

The seasonal is thus obtained as the average realized variance on interval i over the previous H

days. Note again that multiple competing measures may be used to replace RV. However as the

18



seasonal is now build of only 5 minute intervals this would create a rather arbitrary and erratic

diurnal signatures having low predictive value. In addition to the methods used in Frijns and

Margaritis (2008) we therefore smooth the obtained open outcry seasonal using a moving average

�lter over respectively 30 (2.5 hours) and 10 (1 hour) timestamps for S&P500 and US30 futures

data9. Note that the edges of the seasonal c.q. near start and end of open outcry use less than the

30 resp 10 timestamps and that the aftertrade/overnight seasonal was left as was. The smoothed

seasonal can thus be written as:

st,i,smooth = st,i =
1

a

i+a/2∑
i−a/2

st,i,temp (19)

with a the �lter span being an integer value. Hereby creating a �exible seasonal curve in that

sense that it adjusts for shifting shapes and reduces the in�uence of outliers by a Moving Average

Filter. To see why this makes sense take a random seasonal using (18) from S&P500 data. Figure

3 depicts the original and �ltered seasonals for a = {10, 20, 30, 40}. The un�ltered series can

hardly be thought persistent and are therefore less usable for forecasting purposes.

Figure 3: Original and �ltered seasonals for S&P500 futures returns using a MA �lter with span: 10, 20,
30 and 40 times the standard 5 minute interval length.

Division of the summation of st,i over the daily intervals,
∑n

i=1 st,i, by the seasonal summation

up to n∗, and multiplication by the readily observed start-of-the-day variance now represents the

estimator of integrated volatility.

9As the US30 futures returns are far less erratic than is the case for S&P500 futures, these need less of a �lter
to smooth out undesirable spikes. 150 and 60 minute span values, 'a', are obtained as empirical optimum to a one
year estimation sample. Alternatively one might try estimating parameters H and a, though such an approach
might be quite hard to impossible.
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RV n∗
t

˜IVt
=

∑n∗

i=1 st,i∑n
i=1 st,i

→ ˜IVt = RV n∗
t ·

∑n
i=1 st,i∑n∗
i=1 st,i

(20)

∑n
i=1 st,i/

∑n∗
i=1 st,i can thus be seen as a scaling factor, scaling the begin-of-the-day variance up to

daily proportions. Thus if the seasonal over the pastH trading days contains valuable information,

e.g. having a (slightly) di�erent shape as opposed to the overall average shape, R2 statistics could

bene�t and increase. However di�erences are not expected to be big as (20) is merely a rescaled

version of (16).

3.2.4 Exponentially Weighted Moving Average Seasonal

In addition to simply taking the (equally weighted) moving average over the past H days, one

can also de�ne the seasonal as the exponentially weighted moving average (EWMA) over previous

days. That is we weight past volatility observations by (1− λ)λlag, where λ is the decay factor,

so that we can write the seasonal as

st,i,temp =
t−1∑
h=1

(1− λ)λh−1 ·RVt−h,i (21)

By de�ning the seasonal this way more weight is given to recent observations, making the seasonal

faster adjustable depending on the parameter setting of the decay facter, lambda. Assessment

of return volatility as measured on interval i for days 1 to T over both S&P500 and US30 data,

returns a parameter value lambda of approximately 0.9410. Furthermore to ensure the sum of

weights converged to approximately one, an expanding estimation sample is taken of at least 252

days.

Final seasonal is then again obtained as st,i,smooth = st,i = 1
a

∑i+a/2
i−a/2 st,i,temp. Further details

for this model equal those of the seasonal moving average discussed before.

3.2.5 Fourier Flexible Form

Another method for explicit modeling of the diurnal pattern concerns �tting a functional form.

This method, roughly developed by Gallant (1984), was in current form �rst applied to high

frequency intra-day data by Andersen and Bollerslev (1997, 1998b) and later by Harju and Hussain

10For the whole sample of S&P500 and US30 return data, EWMA volatility forecasts were created for every
interval over consecutive days. Looping over di�erent values of lambda and maximizing the Mincer-Zarnowitz
regression R2

MAD lead to the optimal value of lambda: around 0.88 for S&P500 and 0.97 for US30 data. The mean
0.925 is rather close to 0.94 as suggested in RiskMetrics as developed by J.P. Morgan in the early '90s, be it for
daily volatility.
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(2006, 2008); Frijns and Margaritis (2008); Martens (2001) amongst others for modeling as well

as �ltering of high frequency data11. The Fourier Flexible Form (FFF) basically �ts a highly

�exible function through the estimated volatility data, accurately following the seasonal over the

previous H days. And as daily volatility is not bound by economic or �nancial law or equilibrium

we may �nd ourselves free to �t any �exible form12. There are a few advantages to this method:

to start all data is used to form an average seasonal throughout the day, as opposed to data only

within the same daily interval; second, FFF will produce a smooth function reducing the potential

hazardous in�uence of outliers; third, the shape of the seasonal can be made dependent on other

variables. The last property is especially interesting as it enables us to make the FFF dependent

on start-of-the-day volatility and reviewing �gure 1 and 2 �rst hour volatility can have quite an

in�uence on the seasonal pattern for the rest of the day.

In accordance to Andersen and Bollerslev intra-day returns are decomposed as

rt,i = E [rt,i] + σt,ist,iZt,i (22)

Additionally assuming intraday return volatility to be homoskedastic though a single day after

the seasonal component has been stripped o� leads to

rt,i = E [rt,i] +
σtst,iZt,i

N1/2
(23)

Where Zt,i is a zero mean, unit variance i.i.d. random variable assumed to be independent of σt,i;

st,i is a deterministic intra-day periodic component; rt,i is the return over interval i; E [rt,i] is the

unconditional expectation of the return and N is the number of daily return intervals. By taking

squares on both sides and subsequently applying logarithmic transformations we can rewrite (23)

as

ln(r2
t,i) = ln(E [rt,i]

2) + ln

(
σ2
t s

2
t,iZ

2
t,i

N

)
→

11Apart from modeling daily volatility using Fourier Flexible Forms one can also use them to �lter the diurnal
pattern from intra-day data. As so, one can further investigate the dynamics properties driving daily volatility.
Such a �ltering approach works quite well as can be seen from A.3.

12Research brought forth a whole line of di�erent �exible forms. Problems like choosing a suitable FFF have
again a whole line of literature amongst themselves, see Thompson (1988); Muller et al. (1990); Dacorogna et al.
(1993). Alternatively to FFF one can for instance use Cubic- or quadratic-Spline functions and quite some other
Taylor, Laurent or Fourier inspired �exible forms to obtain a seasonal pattern.
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xt,i ≡ 2 · ln (|rt,i − E [rt,i]|)− ln
(
σ2
t

)
+ ln(N)−E[ln(Z2

t,i)] = ln
(
s2
t,i

)
+ ln

(
Z2
t,i

)
−E[ln(Z2

t,i)] (24)

Modeling of the functional form is then based on ordinary least squares (OLS) regression of

xt,i = f(θt;σt, i) + εt,i, where εt,i ≡ ln(Z2
t,i) − E[ln(Z2

t,i)], and f(θt;σt, i) takes the parametrized

form13:

ln
(
s2
t,i

)
= f(θt;σt, i) =

J∑
j=0

σjt ·

[
µ0,j + µ1,j

i

N1
+ µ2,j

i2

N2
+

D∑
d=1

λd,jIi=Dd

+
P∑
p=1

(
γp,j · cos

(
pi2π

N

)
+ δp,j · sin

(
pi2π

N

)) (25)

The �rst part of this functional form is used to catch linear and quadratic terms that may partly

shape the daily seasonal pattern. The terms N1 and N2 herein are normalizing constants de�ned

as N1 = (N + 1) /2 and N2 = (N + 1) · (N + 2) /6. Furthermore some dummy variables, Ii ,are

taken into account to accommodate sudden jumps in the seasonal shape, mostly located near

the beginning and the end of the day. The second part of the form �ts a certain number of

sinusoids to further imitate the diurnal pattern. Last, if J > 0 the whole form is multiplied by

the standard deviation, σjt . Making the overall shape a function of start-of-the-day volatility.

This last property could be of critical value since Andersen and Bollerslev (1994) found di�erent

diurnal shapes speci�c to high and low volatility periods and �gure 1 and 2 lead to the same

conclusion.

Practical estimation is best performed by �rst generating the series xt,i as de�ned in equation

(24). E [rt,i] can therefore be replace by the mean return, r̄t, and σ
2
t by its estimated counterpart

σ̂2
t as obtained from daily realized variances or competing measures. Subsequently treating x̂t,i

as the dependent variable enables us to estimate the FFF coe�cients via ordinary least squares

regression14. With regard the coe�cients J and P , optimal values are searched for by means of a

grid leading to the lowest Schwartz Information Criterion (SIC) or Akaike information Criterion

13Note that the breakdown of xt,i contains the term −E[ln(Z2
t,i)] in addition to the regular form of Andersen

and Bollerslev. This additional term is needed to make the OLS residual term mean zero without adding this
term to the constant from seasonal parametrization. Omitting this term would thus lead to biased estimates of the
seasonal pattern. A simulation of the seasonal can be found in Appendix B: Seasonal simulation experiment and
con�rms this.

14Note that the Fourier Flexible Form is originally designed for �tting average volatility patterns across n intra-
day intervals. OLS estimation on multiple days can however be conducted. Utilizing the additional information
from previous H days enhances the e�ciency of the estimation.
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(AIC)15. These measures lay di�erent weights on the inclusion of additional parameters and as

such they give quite di�erent optimal values. During this research we test for the informativeness

of start-of-the-day volatility, therefore it seems sensible to take at least J = 1. For the P parameter

SIC is followed as AIC seems to have the tendency to take in too many parameters in comparison

to the number of observations, n. Concluding, we set J = 1 and P = 1 for S&P500 and J = 1 and

P = 2 for US30 data. During the discussion slightly di�erent parameter settings are considered

to gain some insight in the sensitivity to this choice16. Last parameter, D, relates to the number

of dummy variables which can accommodate abrupt changes, e.g. near the opening and closing

of the market. D is set to 3 for S&P500 and 4 for US30, one dummy at the start of the day,

one for the end, one to accommodate the consistent presence of 10:00 AM EST Macroeconomic

news announcements and one additional fourth dummy to accommodate 08:30 AM EST news

announcements for US30 series only.

Once f̂(θ̂t;σt, i) is obtained, the intra-day seasonal volatility can be retrieved as: ŝt,i =

exp
(
f̂(θ̂t;σt, i)/2

)
. The seasonal forecast than equals ŝt+1,i = exp

(
f̂(θ̂t;σ

n∗
t+1, i)/2

)
, where σn

∗
t+1

represents the start-of-the-day volatility up until n∗. Now that the seasonal pattern for day t+ 1

has been predicted, we proceed in the same manner as before. That is, equation (20) is followed

to obtain the �nal forecast and (28) leads to the desired statistics17. Note that in order to �t

the seasonal pattern to absolute returns one has to multiply by the daily volatility and divide

by the square root of the number of intra-day intervals, i.e. σt · ŝt,i/
√
N . To illustrate this �t

on the average absolute return series for S&P 500 index future returns and US 30 year treasury

bonds future returns, two graphs are included in �gure 4. The �t on the average seasonal patterns

are remarkably well. FFF therefore seems an appropriate method to estimate diurnal patterns.

However it must be held in mind that the �t shown here is over the average diurnal pattern. The

daily volatility pattern as developed through above mentioned measures is far less stylized c.q.

much more erratic.

15The SIC, aka BIC, weights the model �t against the amount of parameters to be estimated using the following
formula: SIC(p) = ln(σ̂2

p)+ p·ln(n)
n

, where p is the number of explanatory variables, σ̂2
p is the Maximum Likelihood

estimator of the error variance and n is the number of daily observations. AIC takes the form AIC(p) = ln(σ̂2
p)+ 2p

n
.

Note that for SIC and AIC to be comparable among models they have to be estimated against the same dependent
variable, as is the case here.

16See Appendix B, �gure B.3 and B.4 for some graphical �ts and SIC/AIC statistics on mean absolute daily
volatility for J ranging from 0,...,2 and P ranging from 1,...,9.

17Note that the �exible Fourier Form will only be �tted to the periods over which we have de�ned end-of-the-day
volatility, i.e. 09:30 until 16:15 ET for S&P 500 index and 8:20 up until 17:00 for US 30 year treasury bonds.
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(a) FFF �t to mean absolute S&P500 returns (b) FFF �t to mean absolute US30 returns

Figure 4: Fourier �exible form �t on absolute S&P 500 index and US 30 year treasury bond returns data
using respectively J=1, P=1 and J=1, P=2. The red line are the �tted values and the blue
line the average observed absolute return over 5 minute intervals during open outcry trading
times. The S&P 500 data depicts an apparent diurnal pattern whereas this is less pronounced
in US 30 data.

3.2.6 Random Walk (Benchmark 1)

Most basic yet sometimes hard to beat 'model' is the random walk (RW). This method assumes

non predictable future states whereby the best forecast is simply given by the current value. The

random walk is created by taking end-of-the-day variance as obtained by realized variance or

competing measures based of 5 minute intra-day returns. Stated in a formula RW is given by:

σ2
RW,t+1 = σ2

RW,t + εt = RVt + εt so that

σ̂2
RW,t+1 = RVt (26)

3.2.7 GARCH(1,1) model (Benchmark 2)

It might strike that we do not use Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) or other ARCH type models estimated on intra-day data to benchmark our forecasting

performance. The reason is that standard ARCH models assume exponential decay in the return

autocorrelation function making them fundamentally unable to cope with the strong daily cyclical

behavior as apparent from �gure A.3. Supplemented with a seasonal model to capture the intraday

periodicity, however, GARCH could be of value. Such a model has earlier been proposed by
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Andersen and Bollerslev (1997). Here we use a GARCH(1,1) model estimated on daily return

data to benchmark forecasting performance. Furthermore we assess whether GARCH forecasts

make a signi�cant addition to the FFF forecasts described below.

For readers unfamiliar with the GARCH(1,1) model, this model it is expressed as:

rt = µ+ εt with εt ∼ N(0, σ2
t ) and

σ2
t = α0 + α1ε

2
t−1 + α2σ

2
t−1 (27)

That is, the estimated variance for day t is equal to a constant plus α1 times the squared previous

return innovation and α2 times the previous variance. By modeling volatility this way it is made

dependent on time so that it can account for conditional heteroskedasticity, the property that

return series experience periods of high and low volatility. Subsequently it is made dependent on

its own past, the autoregressive property.

3.3 Statistical evaluation

Statistical evaluation of the above stated models over di�erent times of the day will be conducted

by Mincer-Zarnowitz type regressions. As the regression coe�cients will play a signi�cant role

in the sections to come and especially later evaluation, some additional explanation and intu-

itive visualization is included in Appendix B:Mincer-Zarnowitz regression coe�cients, for the non

familiar reader.

3.3.1 Mincer-Zarnowitz regressions

To assess the forecasting performance of above stated models, Mincer-Zarnowitz type regressions

are used. Noting however that true integrated volatility is unobserved normal MZ regressions

are infeasible. Using an unbiased estimator of σt, the feasible alternative RVt = α + β · σ̂2
t + εt

normally still yields unbiased and consistent estimates of α and β, protecting the validity of the

test. Estimates will however become less accurate as the variance of (σ2
t −RVt) grows, losing power

to detect deviations from optimality. As the residuals from the MZ regressions will in general be

heteroskedastic, Patton and Sheppard (2008) argue that size and �nite sample power properties

can be improved using Generalized Least Squares (GLS), resulting in smaller standard errors of
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the estimates and guarding against heteroskedasticity. That is, we use the regression18

RVt
σ̂2
t

=
α

σ̂2
t

+ β + εt (28)

Great advantage to this method lies in the lower weights attributed to extreme observations,

lowering the in�uence of outliers on the regression coe�cients α and β. This however comes at

the cost of lower R2. To see this note that OLS minimizes the total sum of squares, SSerr =∑(
RVt −

(
α+ β · σ̂2

t

))2
, and thereby maximizes R2 as de�ned by R2 = 1 − SSerr/SStot. In fact,

in the GLS estimation procedure, R2 is not well de�ned, see Buse (1973); Battese and Gri�ths

(1980); Blomquist (1980). That is, under the use of GLS coe�cients the SSerr can become

greater that SStot, leading to R2 values in the range of [−inf, 1]. Clearly losing its appealing

interpretation as the percentage of variance explained. Despite the common use of GLS standard

textbooks do not ellaborate on the goodness of �t in such settings, nor has research delivered an

unambiguous procedure.

To nonetheless obtain a goodness of �t measure in the interval [0, 1] we note that under the

OLS setting R2 also equals corr
(
RVt, σ̂

2
t

)2
. Which forms a more direct and intuitive goodness of

�t measure, invariant to OLS, WLS or GLS setting. Using a squared robust correlation statistics

as summed by Lee et al. (2006); Shevlyakov and Smirnov (2011) could therefore yield a solu-

tion. Through simulation studies they �nd that under a contaminated normal distribution rMAD

approximates the underlying correlation best, yielding least bias. r2
MAD is therefore used as to

compare forecasting statistics. To formalize:

rMAD =
MAD2 (u)−MAD2 (v)

MAD2 (u) +MAD2 (v)

u =
x−med (x)√

2MAD (x)
+

y −med (y)√
2MAD (y)

and v =
x−med (x)√

2MAD (x)
− y −med (y)√

2MAD (y)

MAD (x) = med {|x1 −med (x)| , ..., |xn −med (x)|}

Whether such a squared robust correlation coe�cient still caries the same interpretation in terms

of explained variance as its normal counterpart is not further examined here and might be an

18The use of squared returns in MZ regressions has caused concern among researchers as statistical inference
relies on fourth powers of the returns. Greatly magnifying the impact of large return observations. Often proposed
alternative lies in the use of transformed series, e.g. |rt| = α + β

√
σ̂2
t + εt or ln

(
r2
t

)
= α + βln

(
σ̂2
t

)
+ εt. Patton

and Sheppard (2008) however ague that such regressions can result is size distortions.
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interesting topic for further research.

As mentioned above, the normal MZ regression is infeasible due to volatility being an unob-

served variable. Acknowledging this, the R2 of the feasible MZ regressions should be adjusted

accordingly. Using correlation statistics instead to infer R2, adjustments are unsure. The normal

adjustments (details on this can be found in Appendix B: R2) are therefore omitted and the quest

for an appropriate adjustment in this conjuncture is left to future research. As the MZ model is

wrongly speci�ed this leads to arti�cially small standard errors, in turn leading to over-rejection

of H0 : α = 0, β = 1. Such adjustments could therefore bene�t this research, leading to keener

conclusions.

3.3.2 Variance Ratio, HMSPE and Marginal R2

To further asses the performance, we additionally introduce the Variance Ratio (VR), HMSPE

(Hetroskedasticity-consistent Mean Squared Prediction Error) and what we shall call the marginal

R2: R2
marg. These additional features make the squared correlation somewhat better comparable

along estimation time i. The HMSPE is a hetroskedasticity consistent equivalent of the MSPE

and is preferred here as especially S&P500 data contains heteroskedastic periods

HMSPE =
1

T

T−1∑
t=0

(
1− RVt+1

˜IV t+1

)
(29)

The variance ratio is de�ned as the average proportion of daily variance already observed up until

the point of estimation,

V Rn
∗

=
1

T

T∑
t=1

RV ∗t
RVt

, (30)

This is an important additional feature since the regression outcome will on average only become

better as more of the volatility reveals itself. Ultimately reaching 1 as all realized variance is ob-

served. O�setting these results against the variance ratio gives better insight in true performance.

Take for example a R2 as high as 0.8 after just 1 hour of trading, yet if 90% of daily variance is

already observed by that time such results are not at all impressive.

A second measure is found in the combination of the squared correlation (henceforth abbre-

viated as: R2
MAD) and variance ratio. If an estimation sample begins at the start of the day

and continues up until the end it will most certainly have a R2
MAD of approximately 1. This is

clearly not the most e�cient forecast en should therefore be penalized. Although mathematically

disputable the Variance Ratio could act as such a penalty. That is by subtracting the percentage
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of observed volatility from the R2
MAD a single measures, R2

marg, is again obtained giving some

extra insight in the marginal e�ects of extra observations on R2
MAD. In fact measuring e�ciency

as the increase in information should at least lead to an equal percentage increase of R2
MAD

19.

3.3.3 Mincer-Zarnowitz alpha, beta and errors terms

In addition to R2
MAD, R

2
marg and VR statistics it is of interest how Mincer-Zarnowitz parameters

α̂ and β̂ evolve as a function of both t and n∗. That is, how they evolve over time as high or

low volatility periods often associated with recessions and expansions respectively pass by. Giving

inside in the performance during these di�erent regimes. And, how the parameters behave through

the day yielding insights potentially enabling the creation of better, i.e. unbiased, forecast as their

evolution might be predictable. One certainty is beforehand obvious, as n∗ → n parameter values

of α̂ and β̂ inevitably go to their boundaries of respectively 0 and 1. The properties of εt in (31),

especially the variance thereof, is also closely related to the development of n∗. Diminishing as

the forecasts include more of the days volatility, eventually reaching zero for n∗ = n. First glance

at these features can be obtained by OLS estimation of α and β for all n∗.

RVt = αn∗ + βn∗ · ˜IV t + εt (31)

Furthermore relaxing the condition of �xed parameters over time, i.e. replacing αn∗ and βn∗ by

αn∗,t and βn∗,t respectively, these parameters can be approximated by OLS regression using a

rolling window around the timestamps. Though taking to long a window could blunt interesting

developments due to for instance crisis periods, it could also result in low accuracy due to the

in�uence of outliers. Too short a window on the other hand could also induce high estimation

insecurity on the accurateness of coe�cient estimates. An optimum can likely be found but since

this is not a road we embark to follow, instead we treat αn∗,t and βn∗,t as unobserved time series

and reveal them using Kalman Filtering, a somewhat arbitrary 20 day rolling window is chosen

for illustrative purposes.

Some illustrative results are depicted in �gure 5 and 6. Figure 5 shows the evolution of αn∗

and βn∗ over the time of day accompanied by their 95% con�dence intervals. It stands out that

the MZ regression coe�cients behave in quite a stylized way as n∗ → n, that is they seem to follow

19The observation of additional volatility information on the current day must especially be held in mind
comparing forecast performance to a GARCH(1,1) benchmark, as this model has no such additional information.

To adjust for this the following (robust) correlation could be used: corr
(
RVt −RV n

∗
t , ˜IV t

)
. However as the

main target here is to see whether this additional information improves over conventional estimation methods,
adjustments need not be made.
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some sort of exponential from the beginning at start of open outcry trade towards their boundaries

of 0 and 1 at the end of the day. Figure 6 shows the evolution of αn∗=30min,t and βn∗=30min,t over

time using 20 day rolling window OLS regressions, taking RV as volatility measure, �xing the

daytime at 30 minutes after start of open outcry trade and using the Seasonal Moving Average

with H=22 days to forecast the intraday variance pattern. It can be seen from this �gure that

the evolution of α is highly correlated to the stock price volatility (0.6785 and 0.4235 for resp.

S&P500 and US30). Meaning forecasting performance decreases during more volatile periods, as

can be expected. The e�ects on beta (correlations of resp. 0.2051 and -0.3384) are somewhat less

pronounced.

(a) MZ α (n∗) (b) MZ b (n∗)

Figure 5: Figures depict the evolution of separately GLS-estimated Mincer-Zarnowitz regression coe�-
cients combined with their 95% con�dence intervals. Separately, mend in the sense that GLS
regressions are performed for every 5 minute interval i in n over time t = 1, ..., T .
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(a) MZ α (n∗)

(b) MZ b (n∗)

(c) Daily variance, σ2

Figure 6: Figures depict the evolution of MZ α and β over time for i = 6 (30 minutes after opening)
with H=22 and their correlation to the daily volatility. MZ α en β estimates are obtained from
moving window OLS regressions over 20 subsequent days.

Moreover these features: the stylized form and evolution, seem robust over time and through

di�erent volatility measures, forecasting methods, estimation sample (H) and security type making

30



them susceptible to modeling. This is the road we will follow next. A �rst attempt to model the

unobserved states of alpha and beta over time, t = 1, ..., T , is made. This is done by modeling the

states as multivariate AR(1) models for n∗ = 1, ..., n, yielding the so called seemingly unrelated

time series equation (SUTSE) model:

αt,n∗ = cα,n∗ + ϕ1,n∗αt−1,n∗ + ζt,n∗ for n
∗ = 1, ..., nwith ζt ∼ N (0, Qζ) (32)

βt,n∗ = cβ,n∗ + ϕ2,n∗βt−1,n∗ + ηt,n∗ for n
∗ = 1, ..., nwith ηt ∼ N (0, Qη) (33)

Which can be written more conveniently in state space notation as

xt = C + Fxt−1 + ωt with ωt ∼ N

 0, Qζ 0

0, 0 Qη

 (34)

With xt a [2n × 1] vector of unobserved states {αt,n∗ , βt,n∗}
′
; C a [2n × 1] vector of constants; F

a [2n × 2n] diagonal matrix of slope coe�cients and ω a [2n × 1] vector of mean zero, normally

distributed i.i.d. error terms with blockdiagonal covariance matrix. Note that the assumption of

blockdiagonal Q is not required within the state space c.q. Kalman �lter setting. It is merely

taken as to forestall the curse-of-dimensionality by lowering the number of parameters to be

estimated. In fact one could expect high volatility periods to create larger, more erratic alphas as

indeed observed in �gure 6 sub a). Countered by lower betas as the correlation between forecast en

predicted value drops during highly volatile periods. Consequently resulting in negative correlation

between unobserved states α and β.

For the retrieval of unobserved states α and β Kalman �ltering techniques are conducted. The

measurement equation for this purpose is de�ned by:

RVt = αt,n∗ + βt,n∗ · ˜IV t,n∗ + vt,n∗ for n
∗ = 1, ..., n (35)

with ˜IV t,n∗ = RV n∗
t

∑n
i=1 st,i∑n∗

i=1 st,i
and vt ∼ N (0, R)

Which again put in state space form becomes

zt = Htxt + vt with vt ∼ N (0, R) (36)
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With zt a [n × 1] vector of end-of-the-day variance measurements; Ht a [n × 2n] transition matrix

containing a diagonal matrix of ones to accommodate the constant term and a second additive di-

agonal matrix containing ˜IV t, i.e.
[
In ˜IV t

]
; xt a [2n × 1] state vector [αt,1, ..., αt,n, βt,1, ..., βt,n]′;

vt a [n × 1] vector of mean zero, normally distributed error terms with [n × n]covariance matrix

R. For the interested reader initial values, intuitive examples, explanations to and details on

Kalman Filtering and smoothing can be found in Appendix B: The Kalman Filter.

Expectation Maximization (EM)

The standard Kalman �lter as discussed above assumes transition matrix F , constants vector

C, initial states distribution, x0 ∼ N (µ0,Σ0) and the state and observations covariance matrix,

respectively Q and R, to be known. Originating from physics this is not an odd thing as these

matrices can, it that case, often be derived with quite some precision by di�erential equations or

repeated experiments, e.g. on the sensors accuracy. In economics none such recurring real time

experiments can be set up (apart from simulation) and no such a priori knowledge can thus be

obtained. Therefore one would like to estimate the quantities θ = {µ0,Σ0, C, F,Q,R}. There

are a few possibilities to do such a thing, yet �rst we need a data likelihood function before an

estimation algorithm can take over.

Given the state space model, the data likelihood can be written as: L (Z) =
∏T
t=1 p (zt|Zt−1)

with Zt = {z1, z2, ..., zt} or by log transformation as the sum: lnL (Z) =
∑T

t=1 p (zt|Zt−1). As

vt is assumed N (0, R), the measurement equation has multivariate normal distribution with

conditional mean E[zt|Zt−1] = Htxt and conditional variance var (zt|Zt−1) = HtPt|t−1H
′
t+R = St.

Now noting that the multivariate normal probability density function is given by

2π−n/2 |St|−
1/2 exp

(
−1

2

(
zt −Htxt|t−1

)′
S−1
t

(
zt −Htxt|t−1

))
(37)

The data likelihood can be written as:

lnL (Zt; θ) =

T∑
t=1

ln
(

2π−
n/2
)

+
T∑
t=1

ln
(
|St|−

1/2
)

+
T∑
t=1

−1

2

(
zt −Htxt|t−1

)′
S−1
t

(
zt −Htxt|t−1

)

lnL (Zt; θ) = −n
2

T∑
t=1

ln (2π)− 1

2

T∑
t=1

ln (|St|)−
1

2

T∑
t=1

e′tS
−1
t et with et=zt −Htxt|t−1
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Ignoring the constant term as this has no e�ect on the maximization and multiplying by -2 we

get

− 2lnL (Zt; θ) =
T∑
t=1

ln (|St|) +
T∑
t=1

e′tS
−1
t et (38)

Yielding the prediction error decomposition as �rst written down by Schweppe (1965). Equation

(38) can now be minimized to obtain estimates for θ. Here we discuss two possible options to

tackle such a problem.

First, as the likelihood is often a highly complicated possibly nonlinear function of the unknown

parameters, θ, estimates are often obtained by iterative (numerical) procedures based on Newton-

Raphson type optimization algorithms to minimize the likelihood in (38). See for example the

Newton-Raphson, Gauss-Newton (scoring), Davidson-Fletcher-Powell methods or the numerical

quasi-Newton procedure of Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the Berndt-Hall-Hall-

Hausman (BHHH) method. Generally the procedure involves the following steps:

1. Select initial values say θ(0).

2. Run the Kalman Filter to get (new) states using the initial parameter values, θ(0). Obtain

a set of innovation et and error covariances St

3. Run the Newton-Raphson procedure to obtain a new set of parameters θ(1)

4. Repeat step 2 using the new parameters, θ(j). Repeat step 3 to get θ(j+1) and keep iterating

until the likelihood has converged or the di�erence decreased to a predetermined small

amount, that is −2lnL
(
Zt; θ(j)

)
≈ −2lnL

(
Zt; θ(j+1)

)
This procedure, advocated by for instance Jones (1980), does however have some drawbacks. First

it needs the gradient matrix (Jacobian) of �rst order partial derivatives to determine the direction

of a step and the Hessian to modify the step size. In practice it is often infeasible or impossible to

obtain such expression analytically and one is therefore designated to rely on feasible numerical

evaluation methods. Second drawback lies in the fact that sequential iteration not necessarily

improve the likelihood. Advantage on the other hand is that the algorithm is generally fast and

standard errors of the estimates can be obtained as a byproduct of the estimation procedure.

Second, Shumway and Sto�er (1982) showed how the conceptually simpler expectation max-

imization algorithm of Dempster et al. (1977) could be used for parameter estimation. Basically

the algorithm consists of Two alternating steps, an Expectation or E-step where one calculates the
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conditional expectation of the complete data likelihood measured by the so called Q-function and

the Maximization or M-step where new parameters θ are collectively estimated by maximizing

this conditional likelihood.

However before we jump into the speci�cs, let again start from the data likelihood. Their basic

idea was that if we can observe states, Xt = x1, x2, ..., xt, and measurements, Zt = z1, z2, ..., zt,

than we could consider these the complete data {Xt, Zt} with the joint density20:

fθ (Xt, Zt) = fµ0,Σ0 (x0) ·
T∏
t=1

fC,F,Q (xt|xt−1)

T∏
t=1

fR (zt|xt)

Under the assumption of Gaussian error terms for the initial states and independent and mul-

tivariate normally distributed error terms vt and ωt, that is x0
[2nx2n]

∼ N (µ0,Σ0), xt
[2nx2n]

∼

N (C + Fxt−1, Q), zt
[nxn]

∼ N (Hxt, R), the complete data likelihood, lnL (X,Z; θ), may be written

a

lnL (X,Z; θ) = ln
(

2π−
2n/2
)

+ ln
(
|Σ0|−

1/2
)
− 1

2
(x0 − µ0)′Σ−1

0 (x0 − µ0) +

T∑
t=1

ln
(

2π−
2n/2
)

+
T∑
t=1

ln
(
|Q|−1/2

)
+

T∑
t=1

(
−1

2
(xt − C − Fxt−1)′Q−1 (xt − C − Fxt−1)

)
+

T∑
t=1

ln
(

2π−
n/2
)

+
T∑
t=1

ln
(
|R|−1/2

)
+

T∑
t=1

(
−1

2
(zt −Htxt)

′R−1 (zt −Htxt)

)
(39)

Note that due to the determinant in 39 covariance matrices Σ0 and Q had to be split in two

diagonal blocks, corresponding to the α and β part, in order to correctly calculate the likelihood.

For the latter matrix multiplication no such adjustment has to be made. Further, again ignoring

the constant term and multiplying by a factor -2 we get:

− 2lnL (X,Z; θ) = ln (|Σ0|) + (x0 − µ0)′Σ−1
0 (x0 − µ0) +

T · ln (|Q|) +

T∑
t=1

(xt − C − Fxt−1)′Q−1 (xt − C − Fxt−1) +

T · ln (|R|) +

T∑
t=1

(zt −Htxt)
′R−1 (zt −Htxt) (40)

Where we emphasize that the quantities in this equation are dependent on current parameters

20x0, xt and zt are assumed mutually independent of each other and for all t. Their joint density may therefore
be written as the product of their marginal densities.
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θ. Next step is to minimize (40) conditional on all measurements and parameter estimates form

last iteration. This can be done by the Kalman Smoother and One-Lag Covariance smoother

equations, formulas here fore can be found in Appendix B: table B.3. This smoothing basically

consists of a backward recursion through the Kalman �lter, estimating the optimal states, in

the sense of mean squared error (MSE), having already observed all the data, i.e. E [xt|ZT ].

Consequently we get:

argmin : Qfunction
(
θj |ZT , θj−1

)
= E

[
−2lnL (X,Z; θ) |ZT , θj−1

]

Qfunction
(
θj |ZT , θj−1

)
= ln (|Σ0|) + tr

(
Σ−1

0

[(
x0|T − µ0

) (
x0|T − µ0

)′
+ P0|T

])
+

T ·ln (|Q|)+tr
(
Q−1

[
S11 − S1C

′ − S10F
′ + T

(
CC ′

)
− CS′1 + CS′0F

′ − FS′10 + FS0C
′ + FS00F

′])+

T · ln (|R|) + tr

(
R−1

[
T∑
t=1

((
zt −Htxt|T

) (
zt −Htxt|T

)′
+HtPt|TH

′
t

)])
(41)

with

S0 =
T∑
t=1

(
xt−1|T

)

S1 =

T∑
t=1

(
xt|T

)

S00 =

T∑
t=1

(
xt−1|Tx

′
t−1|T + P Tt−1

)

S10 =
T∑
t=1

(
xt|Tx

′
t−1|T + Pt,t−1|T

)

S11 =
T∑
t=1

(
xt|Tx

′
t|T + Pt|T

)
As we are now conditioning on ZT , already knowing all measurements, we thus take the smoothed

state estimates from the Kalman Smoother. xt|T denotes these smoothed state estimate, i.e.

E [xt|z1, ..., zT ]; Pt|T equals the smoothed state covariance, Pt|T = cov (xt|z1, ..., zT ) and Pt,t−1|T =

cov (xt, xt−1|z1, ..., zT ) is the lag-one smoothed covariance. For the transformation we made use
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of the matrix trace properties 'tr': x′Ax = tr (x′Ax) = tr (Axx′) in which the �rst equality holds

as long as x is a vector or scalar and
∑
tr (Axx′) = tr

∑
(Axx′). Furthermore note that through

the de�nition of the covariance, E [xx′] = cov(x, x′) +E [x]E [x]′, holds. Translated to the situa-

tion at hand this clari�es where the extra covariance term comes from: E
[∑T

t=1(xtx
′
t)|ZT ; θ

]
=∑T

t=1E [xtx
′
t|ZT ; θ] =

∑T
t=1

(
Pt|T + xt|Tx

′
t|T

)
. More thorough derivations to (41) can be found

in Appendix B: Unconstrained EM M-step derivations.

Calculation of (41) comprehends the Expectation or E-step from the EM algorithm. The

Maximization step or M-step is used to obtain new optimal estimates by minimizing (41) with

respect to the parameters at iteration j. If all data, i.e. the measurements and states {zt, xt}, were

known and an error distribution was assumed, standard Maximum Likelihood Estimates (MLE)

could be obtained through multivariate normal theory. Yet as we do not have all data EM gives

us a iterative procedure to obtain MLE of θ based on the incomplete data, zt, by successively

maximizing the conditional expectation of the complete data likelihood.

To obtain the M-step estimates, additive parts of the Q-function can be optimized separately,

yielding the updated parameters θj = {µ0,Σ0, C, F,Q,R}. This can be done by taking the partial

derivative of the Q-function and solving when set equal to zero. In that case we get the following

updating formulas for the unrestricted parameters:

µ0,(j) = x0|T (42)

Σ0,(j) =
(
x0|T − µ0

) (
x0|T − µ0

)′
+ P0|T (�xed) (43)

C(j) = T−1 (S1 − FS0) → C(j) = T−1
(
S1 −

(
S10 − T−1S1S

′
0S
−1
00

) (
I − T−1S0S

′
0S
−1
00

)−1
S0

)
(44)

F(j) =
(
S10 − CS′0

)
S−1

00 → F(j) =
(
S10 − T−1S1S

′
0S
−1
00

) (
I − T−1S0S

′
0S
−1
00

)−1
(45)

Q(j) = T−1
(
S11 − S1C

′ − S10F
′ + T

(
CC ′

)
− CS′1 + CS′0F

′ − FS′10 + FS0C
′ + FS00F

′) (46)
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R(j) = T−1
T∑
t=1

((
zt −Htxt|T

) (
zt −Htxt|T

)′
+HtPt|TH

′
t

)
(47)

Completing the M-step (Thorough derivations of equation (42) - (47) can be found in Appendix B).

Note that the initial mean and covariance cannot be estimated simultaneously so it is conventional

to �x one or both.

To summarize the general procedure:

1. Initialize the procedure by selecting initial values for the unknown parameters θ(0) and �x

either µ0 or Σ0 or both. For iterations j = 1, 2, ...

2. Perform the E-step: Compute the complete-data likelihood −2lnL (X,Z; θ), through equa-

tion (41)

3. Use the Kalman Filter, the Kalman Smoother and the One-Lag Covariance Smoother to

obtain smoothed values for xt,n|T , Pt,n|T and Pt,t−1,n|T , for t = 1, ..., T using parameters

θ(j−1). Use these to calculate S0, S1, S00, S10 and S11

4. Perform the M-step: Update the estimates µ0, Σ0, C, F, Q, R to get θ(j)

5. Repeat steps 2-4 until the maximum number of iterations has been reached or convergence

has succeeded to desired precision, i.e. the likelihood and the estimates remain stable.

Or put Graphically:

Figure 7: Schematic representation of the EM-algorithm
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Although EM is generally considered one of the most powerful algorithms for maximum likeli-

hood estimation in incomplete data problems, being computationally relatively simple and numer-

ically stable, it does also have it's drawbacks. Advantage that the EM procedure does not need

the second order partial derivatives of the likelihood function with respect to the parameters is

countered by the disadvantage that standard errors of the parameter estimates cannot be obtained

directly. This matrix can however be approximated by perturbing the likelihood function in the

neighborhood of the maximum or alternatively by use of nonparametric bootstrap procedures

as shown by Sto�er and Wall (1991). Second little inconvenience is the additional need for the

Kalman Smoother and One-Lag Covariance smoother next to the the Kalman Filter.

Normally this procedure would su�ce. In our case however one would like to impose some

restrictions and/or parametrizations on the parameter space θ as to diminish the number of

estimates. Unfortunately in that case elegant parameter updating formulas as (42) - (47) are

hard to �nd or may not exist at all enforcing the need for yet another algorithm within the EM

algorithm for numerical optimization of the likelihood function, (41). For this purpose a simple

yet e�ective custom made Newton Raphson like algorithm was developed. Details can be found

in Appendix B: Newton Raphson Algorithm
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Restrictions and Parametrizations

In order to obtain the model proposed in the former Kalman Filter section, at least two parameter

restrictions are to be imposed. First of which is on the AR coe�cients matrix F . As we propose

an AR(1) model over every instance i through the day and not a �rst order Vector Autoregressive

model or 'VAR(1)', F should be a diagonal matrix having AR coe�cients on the diagonal and

zeros elsewhere. Furthermore we assume the eigenvalues of F to be less than 1 in absolute value

to secure stability of the �lter21. This assumption can be weakened, see Harvey (1991) section

4.3, but it is retained for simplicity. Second restriction lies in the blockdiagonal matrix Q with

Qζ and Qη on its diagonal and zeros elsewhere.

Further restrictions are not per see needed in small dimensional problems. But parameter esti-

mation could seriously degrade in higher dimensional cases as the amount of parameters to be es-

timated increases exponentially. Some restrictions or parametrizations could in this case help con-

�ne the estimation errors, be it at cost of some additional estimation bias. Which basically makes it

a bias-variance tradeo� problem as to obtain lower MSPE
(
MSPE (R) = bias (R)2 + variance (R)

)
.

Matrices suitable to such an approach are in this case R and Q.

To start with R: as n∗ → n in (B.31), α and β will with certainty converge to respectively 0

and 1. Both reaching these limits as all of the days volatility is incorporated in the prediction.

Moreover, as can be seen from �gure 5, α and β follow on average quite a smooth path towards

their end values. It will therefore come as no surprise that vt will also follow a resembling stylized

path with the estimation insecurity tightening (decreasing covariances) as n∗ comes closer to n.

The covariance of vt is therefore also bounded by zero for σv,nσv,n, i.e.

R (n× n) =


σ2
v,1 · · · σv,1σv,n
... ↘

...

σv,nσv,1 · · · 0


The way in which this decrease manifests itself could be parsimoniously parametrized or alter-

natively restricted as to estimate it using less parameters than the original problem. It should

however be noted that R is the covariance matrix of the measurement equation and should there-

fore be at least positive semi-di�nite. If not, R wouldn't actually be a covariance matrix! More

strictly, as R is used in a Maximum Likelihood Estimation procedure here, it should be positive

de�nite and well-conditioned. That is all eigenvalues of the matrix must be > 0 so that it is non-

21In a diagonal matrix the eigenvalues are the same as the diagonal elements themselves, meaning all AR
coe�cients must be between -1 and 1.
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singular (i.e. full rank) and the ratio of maximum and minimum singular value is not too large.

Furthermore it must be noted that the implied correlation matrix should always be within the

boundaries of [−1, 1]. If these properties are not satis�ed one would encounter problems invert-

ing the covariance matrix as needed in MLE, yielding inaccurate estimates and therefore wrong

likelihood values. Additionally if the determinant of R becomes smaller than zero, the likelihood

even yields imaginary outcomes by log transformation on det(R). A seriously unwanted e�ect.

Luckily positive de�niteness of the matrix also excludes such occurrences.

For Q the same approach was taken. As can be seen from equation (B.28) and (B.29), when

n∗ → n, ϕ→ 1. This is again a direct consequence of the way we predict end-of-the-day volatility

and consequently what the outcome of α and β will be when n∗ → n. The pattern in which Q

diverges to zero is however far less stylized and cannot sensible be parametrized.

Q (2n× 2n) =



σ2
ζ,1 · · · σζ,1σζ,n 0 · · · 0
... ↘

...
...

. . .
...

σζ,nσζ,1 · · · 0 0 · · · 0

0 · · · 0 σ2
η,1 · · · ση,1ση,n

...
. . .

...
... ↘

...

0 · · · 0 ση,nσ1 · · · 0


(48)

For this research a number of parametrizations, restrictions and enhancements are put on trial. De-

tails here fore and graphical representations ofR, Qζ andQη together with their parametrized/restricted

counterparts based on a �rst year estimation sample from rolling window M-Z regressions can be

found in Appendix B: Restrictions and Parametrizations.
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3.4 Forecast Revisions

Preliminary results on the R2
MAD from previous section Minzer-Zarnowitz regressions proof fore-

cast do on average improve during the day, especially after open outcry trading has started.

Therefore we now turn to the investigation on how revisions of these forecasts evolve over time

and what inherent properties they possess. If consecutive revisions are correlated we could inves-

tigate whether it is overreaction to news, some kind of smoothing behavior or other forces that

drive forecasts and their revisions. Subsequent these patters may be usable to enhance volatility

forecasting performance or at least give a more thorough insight in the forecasting process.

To obtain the desired results the regression,

ˆIV t,i − ˆIV t,i−1 = α+ β
(

ˆIV t,i−1 − ˆIV t,i−2

)
+ εt,i, (49)

is used. Under weak-form market e�ciency news reaching the market should be implemented

adequately and direct. Hence it should hold that consecutive forecast revisions are uncorrelated,

i.e. β = 0. Resent studies by for example Clements (1997) or Isengildina et al. (2006) �nd

however, that this hypothesis is often rejected. Leading to the case β > 0 commonly referred

to as "forecast smoothing" or β < 0, referred to as "over reaction", that is overreaction to news

which gets partly undone during the next forecasting round. Franses et al. (2011) on the other

hand �rst decompose forecast in a model-based part and an expert intuition part. Their research

exposes that a β 6= 0 could have multiple causes, depending on intuition- and news variance and

mutual covariances. However as our forecast consist only of econometric model predictions we

adhere to their special case (i) and should thus expect β to equal zero22.

22Note that former research is solely performed on longer horizon forecast revisions for e.g. macroeconomic
variables. Hence empirical �ndings on positive or negative β coe�cients do not carry forth to this research.
Theoretical �ndings however do.
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4 Results and discussion

Throughout this section above stated methods and models are put to the test. Interesting �ndings

will be reported and graphically supported. Furthermore the impact of and sensitivity to ad hoc

parameter choices are discussed.

4.1 Forecasting results and Statistical evaluation

Economic forecasts and volatility forecasts all the same usually get updated as time goes by,

incorporating the newly available information to make more accurate forecasts. However, as news

reaching the market contains varying degree of signal to noise, forecasts could also worsen. To

gain a thorough insight in this process the evolution and properties of the R2
MAD,α̂ and β̂ from

Mincer-Zarnowitz type regressions, as proposed in (25), are o�set against starting and stopping

time of intra-day volatility observations.

Yet before we proceed we brie�y discuss the sensitivity to extreme return observations. Through-

out this research we rely on robust performance measures as to strengthen conclusions in the

potential presence of extreme observations, and indeed such more advances procedures prove

worthwhile. Take �gure 8 for example, sub a) and b) display the squared correlations for respec-

tively OLS and GLS Mincer-Zarnowitz regressions on US30 data. It then becomes remarkably

clear that extreme returns observations poses the potency to distort conclusions in an ordinary

(OLS) setting.

(a) R2 frontier including outliers (b) R2
MAD frontier excluding outliers

Figure 8: Displayed �gures show R2 resp. R2
MAD from OLS-MZ and GLS-MZ regressions on US30 data

with Moving Average Seasonal forecasts using H=22. Figure a) is unadjusted for heteroskedas-
ticity/outliers in the return series. In �gure b) strange distortions are resolved due to the more
robust performance measure, consequently following a smoother path. Producing irrefutable
evidence for the R2 sensitivity to extreme return observations and the value of robust statistics.
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To elaborate upon the gain through the models employed we start by discussing the perfor-

mance of 'Begin-of-the-day volatility' as basis and subsequently deal with the four models (MZS,

MA, EWMA, FFF) and compare these to conventional benchmarkes as RW and GARCH(1,1).

Subsection 2 continues with the properties of MZ αand β as estimated through Kalman Filtering

and subsection 3 elaborates upon properties of forecast revisions.

4.1.1 Begin-of-the-day variance (reference)

To test whether the idea of scaling begin-of-the-day variance has some forecasting potential, i.e.

forms an informative regressor, statistics hereof are included in this discussion. Subsequently it is

of interest whether scaling this variance to daily proportions by Mincer-Zarnowitz coe�cients or

a diurnal pattern like the Seasonal Average, Exponentially Weighted Moving Average or Fourier

Flexible Form improves the correlation to end-of-the-day variance. Note again that begin-of-the-

day variance in itself is not a complete forecast. It is biased by construction as estimates are

unscaled. MZ β can therefore not be expected to equal 1.

For evaluation we do not only look at statistics of �rst 15, 30, 60 and 120 minute intervals but

rather for an e�cient timing interval which will be sought for by maximization of R2
MAD. Table

3 displays the results for S&P500 and US30 data.
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S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
5
m
in
u
te
s

RV 0, 2561
(0,0049)

∗ 15, 8645
(2,5868)

∗ 0,4875 0,0730 0,4145 0,8642 0, 1636
(0,0094)

∗ 10, 0993
(3,2247)

∗ 0,2989 0,0978 0,2011 0,8309

BPV 0, 1649
(0,0027)

∗ 10, 7495
(2,4899)

∗ 0,4738 0,0701 0,4037 0,8688 0, 1027
(0,0049)

∗ 7, 7055
(2,0507)

∗ 0,2808 0,0869 0,1940 0,8462

RR 0, 0995
(0,0056)

∗ 13, 8934
(0,5038)

∗ 0,6454 0,0690 0,5765 0,8685 0, 0898
(0,0043)

∗ 10, 9593
(0,8843)

∗ 0,4614 0,0768 0,3846 0,8587

TTS 0, 1829
(0,0064)

∗ 12, 9811
(0,5822)

∗ 0,6163 0,0692 0,5471 0,8691 0, 1269
(0,0079)

∗ 10, 9710
(1,5133)

∗ 0,4070 0,0945 0,3125 0,8338

Kernel 0, 1785
(0,0068)

∗ 11, 9005
(0,4845)

∗ 0,6206 0,0755 0,5451 0,8579 0, 1263
(0,0054)

∗ 10, 6478
(1,0351)

∗ 0,4507 0,0946 0,3561 0,8328

Mean 0,1764 13,0778 0,5687 0,0714 0,4974 0,8657 0,1219 10,0766 0,3798 0,0901 0,2897 0,8405

(a) Statistics for volatility measured from start of the day up until 15 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

3
0
m
in
u
te
s

RV 0, 1723
(0,0042)

∗ 7, 3480
(0,3320)

∗ 0,6294 0,1265 0,5028 0,7706 0, 1163
(0,0145)

∗ 7, 0886
(1,8380)

∗ 0,5033 0,1498 0,3535 0,7436

BPV 0, 1090
(0,0020)

∗ 6, 6374
(0,3355)

∗ 0,6111 0,1308 0,4803 0,7634 0, 1005
(0,0039)

∗ 2, 1281
(0,9914)

0,4115 0,1385 0,2730 0,7597

RR 0, 0670
(0,0048)

∗ 7, 9053
(0,2147)

∗ 0,7406 0,1256 0,6150 0,7683 0, 0724
(0,0063)

∗ 6, 5220
(0,5753)

∗ 0,5558 0,1305 0,4253 0,7658

TTS 0, 1301
(0,0058)

∗ 7, 1567
(0,2299)

∗ 0,6881 0,1286 0,5595 0,7647 0, 0974
(0,0106)

∗ 6, 7296
(0,9136)

∗ 0,5025 0,1481 0,3544 0,7437

Kernel 0, 1266
(0,0071)

∗ 7, 1470
(0,2300)

∗ 0,7239 0,1308 0,5931 0,7607 0, 1005
(0,0096)

∗ 6, 5541
(0,7479)

∗ 0,5770 0,1448 0,4322 0,7478

Mean 0,1210 7,2389 0,6786 0,1285 0,5501 0,7655 0,0974 5,8045 0,5100 0,1423 0,3677 0,7521

(b) Statistics for volatility measured from start of the day up until 30 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

6
0
m
in
u
te
s

RV 0, 1319
(0,0061)

∗ 3, 6538
(0,1297)

∗ 0,7627 0,2430 0,5196 0,5872 0, 0920
(0,0077)

∗ 3, 7911
(0,3810)

∗ 0,5753 0,2270 0,3483 0,6212

BPV 0, 0828
(0,0029)

∗ 3, 5792
(0,1178)

∗ 0,7469 0,2390 0,5079 0,5929 0, 0525
(0,0019)

∗ 3, 8826
(0,2470)

∗ 0,5427 0,2159 0,3268 0,6370

RR 0, 0497
(0,0057)

∗ 4, 0415
(0,1126)

∗ 0,7977 0,2477 0,5500 0,5748 0, 0556
(0,0059)

∗ 4, 1482
(0,2854)

∗ 0,6583 0,2090 0,4493 0,6385

TTS 0, 0994
(0,0075)

∗ 3, 8609
(0,1269)

∗ 0,8015 0,2438 0,5577 0,5828 0, 0745
(0,0082)

∗ 4, 1378
(0,3600)

∗ 0,6399 0,2254 0,4145 0,6209

Kernel 0, 0872
(0,0078)

∗ 3, 9218
(0,1156)

∗ 0,8055 0,2471 0,5584 0,5771 0, 0774
(0,0093)

∗ 4, 1190
(0,3652)

∗ 0,6708 0,2196 0,4512 0,6277

Mean 0,0902 3,8114 0,7829 0,2441 0,5387 0,5830 0,0704 4,0157 0,6174 0,2194 0,3980 0,6291

(c) Statistics for volatility measured from start of the day up until 60 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
2
0
m
in
u
te
s

RV 0, 0798
(0,0073)

∗ 2, 4128
(0,0743)

∗ 0,8711 0,3933 0,4777 0,3868 0, 0478
(0,0090)

∗ 2, 4255
(0,1897)

∗ 0,7862 0,3909 0,3953 0,3963

BPV 0, 0458
(0,0039)

∗ 2, 4852
(0,0705)

∗ 0,8589 0,3857 0,4732 0,3965 0, 0272
(0,0026)

∗ 2, 4205
(0,1196)

∗ 0,7801 0,3841 0,3959 0,4048

RR 0, 0338
(0,0057)

∗ 2, 5005
(0,0643)

∗ 0,8889 0,4035 0,4853 0,3699 0, 0327
(0,0079)

∗ 2, 5058
(0,1822)

∗ 0,8381 0,3748 0,4632 0,4064

TTS 0, 0705
(0,0078)

∗ 2, 4419
(0,0736)

∗ 0,8877 0,3937 0,4941 0,3837 0, 0396
(0,0097)

∗ 2, 5090
(0,1934)

∗ 0,8253 0,3912 0,4341 0,3930

Kernel 0, 0556
(0,0077)

∗ 2, 5094
(0,0654)

∗ 0,9011 0,3958 0,5053 0,3800 0, 0459
(0,0126)

∗ 2, 5010
(0,2296)

∗ 0,8356 0,3806 0,4550 0,4036

Mean 0,0571 2,4700 0,8815 0,3944 0,4871 0,3834 0,0386 2,4724 0,8131 0,3843 0,4287 0,4008

(d) Statistics for volatility measured from start of the day up until 120 min.
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S&P500 US30

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE
O
p
en

O
u
tc
ry

m
a
x
im
u
m

RV 09:30 10:10 0, 1563
(0,0055)

∗ 4, 9651
(0,2000)

∗ 0,7128 0,1779 0,5349 0,6871 08:20 09:45 0, 0771
(0,0071)

∗ 3, 0628
(0,2455)

∗ 0,7026 0,2819 0,4207 0,5406

BPV 09:30 10:15 0, 0885
(0,0029)

∗ 4, 5634
(0,1656)

∗ 0,7257 0,1923 0,5333 0,6641 08:25 10:10 0, 0336
(0,0024)

∗ 2, 5950
(0,1310)

∗ 0,7679 0,3566 0,4113 0,4610

RR 09:30 10:00 0, 0670
(0,0048)

∗ 7, 9053
(0,2147)

∗ 0,7406 0,1256 0,6150 0,7683 08:40 10:10 0, 0335
(0,0075)

∗ 3, 7356
(0,2561)

∗ 0,8352 0,3473 0,4879 0,5696

TTS 09:30 09:50 0, 1682
(0,0064)

∗ 9, 9273
(0,4086)

∗ 0,6647 0,0892 0,5755 0,8332 08:20 10:00 0, 0480
(0,0081)

∗ 2, 9814
(0,2040)

∗ 0,7883 0,3233 0,4650 0,4797

Kernel 09:30 09:50 0, 1516
(0,0074)

∗ 9, 6662
(0,3582)

∗ 0,6940 0,0955 0,5985 0,8220 08:35 10:05 0, 0422
(0,0118)

∗ 3, 9729
(0,3236)

∗ 0,8243 0,3394 0,4849 0,5784

Mean 9:30 10:01 0,1263 7,4054 0,7076 0,1361 0,5714 0,7549 8:28 10:02 0,0469 3,2695 0,7837 0,3297 0,4540 0,5259

(i) Statistics for the maximum based on R2
marg over open outcry trade.

S&P500 US30

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE

2
4
h
o
u
r
m
a
x
im
u
m

RV 16:15 08:35 0, 7905
(0,0025)

∗ −3, 9259
(0,3935)

∗ 0,6898 0,0000 0,6898 0,7692 18:25 08:35 0, 0345
(0,0175)

∗ 1, 8736
(0,1988)

∗ 0,6796 0,0978 0,5818 16,1001

BPV 04:20 08:30 0, 0734
(0,0025)

∗ 6, 7204
(0,2414)

∗ 0,6845 0,0000 0,6845 0,7405 20:10 08:30 0, 0349
(0,0044)

∗ 2, 1167
(0,1411)

∗ 0,6291 0,0504 0,5786 0,4063

RR 16:15 09:00 0, 5406
(0,0007)

∗ −4, 2321
(0,3059)

∗ 0,7112 0,0000 0,7112 0,7098 01:00 08:35 0, 0662
(0,0090)

∗ 2, 1489
(0,2196)

∗ 0,7168 0,0768 0,6399 0,4500

TTS 16:30 09:30 0, 3728
(0,0118)

∗ 0, 3287
(0,3346)

∗ 0,7149 0,0000 0,7149 0,6644 18:05 08:45 0, 0159
(0,0177)

1, 8844
(0,1841)

∗ 0,7408 0,1330 0,6078 11,8562

Kernel 16:15 09:10 0, 7629
(0,0028)

∗ −2, 7417
(0,4354)

∗ 0,7229 0,0000 0,7229 0,7735 18:25 08:35 0, 0125
(0,0216)

1, 9407
(0,2030)

∗ 0,7132 0,0946 0,6187 8,3767

Mean 13:55 8:57 0,5081 -0,7701 0,7047 0,0000 0,7047 0,7315 15:13 8:36 0,0328 1,9929 0,6959 0,0905 0,6054 7,4379

(j) Statistics for the maximum based on R2
marg over 24 hour trade.

Table 3: Overall reference statistics for S&P500 and US30 futures. Standard errors of the estimates are
given between parenthesis and a star (*) is appointed to estimates of α and β signi�cantly
di�erent from respectively 0 and 1 on a 95% con�dence level.

Beholding sub-table a-d) there are a few di�erences between the two time series. Observing

only the �rst 15 minutes of S&P500 index futures returns we are able to produce an average R2
MAD

up to 0.57 observing only 7% of daily variance itself. Doubling this to 30, 60 and 120 minutes

leads to a steady increase up to respectively 0.68, 0.78, and even 0.88 with respectively 13%, 24%,

39% of daily variance observed. This is a major increase upon Random Walk and GARCH(1,1)

statistics which on average respectively reach R2
MAD of 0.70 and 0.55. Begin-of-the-day variance

can therefore be thought a high potential regressor in the sense that scaled to daily proportions

it could form an unbiased and highly predictive forecast23. US30 volatility seems only somewhat

less predictable. Here the �rst 15, 30, 60, 120 min. on average lead to R2
MAD of 0.38 (VR =

9%), 0.51 (VR = 14%), 0.62 (VR = 22%) and 0.81 (VR = 38%) resp. Meaning it takes up to

approximately 30 minutes of intraday data to beat the random walk (R2
MAD= 0.51) and only

20 minutes to overtake GARCH (R2
MAD= 0.45) taken from start of open outcry trading to beat

23Note that the comparison between RW/GARCH and begin-of-the-day based forecasts is intended to illustrate
the potential gain on conventional methods in using begin of the day volatility. For a fair comparison on predictive
performance, readily observed variance should �rst be subtracted from end-of-day variance.
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GARCH predictability. In terms of HMSPE both series immediately defeat RW and GARCH.

However this can be thought more due to small daily volatility �gures occurring more frequently

than due to more accurate 'predictions'. As such large volatility �gures are simply dwarfed and

potential errors therefore con�ned.

Sub-tables e/f) present us with some other interesting insights. When obtaining maximum

R2
MAD for S&P500, �rst 5 minutes of data is sometimes left aside, for US30 this even comprises

of the �rst 5-10 minutes. As the penalty term, VR, is calculated as the percentage of variance one

could have observed until stopping time, this means that the R2
MAD for an interval starting at start

of open outcry trade actually has lower R2
MAD. In other words omitting these �rst observations

leads to higher predictability in terms of correlation. One could therefore argue that data from

the �rst few minutes of the day is corrupted in such a way that it contains more noise than signal.

The high information value especially at the beginning of the day can further be assessed by

the R2
MAD and R2

marg frontiers. In the case of realized variance, these plots are shown in �gure 9.

They can be seen as the di�erent squared correlation coe�cients obtained from begin-of-the-day

volatility while diversifying starting and stopping time by 5 minute intervals. It then becomes

clear that the frontier is upward sloping as more of the days volatility reveals itself, i.e. additional

information leads to an almost continues growing ability to forecasts. Furthermore it gives clear

insight in the marginal e�ect of new information as the slope decreases over time.
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(a) R2
MAD frontiers in 3D and top view

(b) R2
marg frontiers in 3D and top view

Figure 9: Sub-�gure a) reveals the R2
MAD for US30 data using Realized Variance as proxy. Sub-�gure

b) shows the R2
marg. Note that in both cases half of the graph takes the lowest possible point

or is left blank as the start of observations cannot overtake the stopping time.

Plots displayed above represent R2
MAD and R2

marg for Realized Variance. Similar plots can

be obtained for other measures but were omitted due to the marginal extra insight (they are

available upon request). Analyzing these �gures, there are again a few notable appearances. First

of which is the steeper rise in R2
MAD near the start of open outcry markets, demonstrating higher

informational value during these periods, directing the correlation steeply upwards. R2
marg on the

other hand rises near the opening to its maximum and steadily declines afterward as the penalty

for observing more of the days return volatility becomes more severe. Meaning the extra R2
MAD

to be gained from additional observations is in time overruled by the additional return volatility

needed obtain such predictions.

Expanding these �gures to incorporate overnight information in the same manner as done

before (�gure 9 can be thought only the tip of an iceberg as similar forecasts can be estimated
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using overnight information), �gure 10 displays some new interesting �ndings. For instance we

see that the information obtained overnight does not seem to create an additional advantage over

RW predictions (black striped line). Near the start of the day an advantage can be observed

yet this is not consistent among other volatility measures and cannot be preserved as compared

to open outcry data only (red line). This latter property could however well be due to the way

end-of-the-day variance is de�ned (variance over open outcry trade returns only, therefore not

including overnight returns) then by the estimates being actually less informative.

(a) S&P500: R2
MAD (b) US30: R2

MAD

Figure 10: R2
MAD coe�cient lines: �rst including overnight information (blue line), second using open

outcry information only (red line), third a comparative line is inserted for Random Walk
estimation (black striped line), forth is a comparative line for GARCH(1,1) estimation (green
striped line). The vertical dotted line indicates start of open outcry markets.

4.1.2 Direct Mincer-Zarnowitz Scaling

As mentioned, Begin-of-the-day variance needs to be scaled to daily proportions in order to create

an unbiased forecast. MZ regression coe�cients could be used for such adjustments. Associ-

ated R2
MAD frontiers using RV are depicted in �gure 12. Henceforth only top-viewed �gures are

presented as these are easier interpretable.

48



(a) S&P500: R2
MAD (b) US30: R2

MAD

Figure 11: Figures display the squared correlations of forecasts and estimated daily variance �gures, i.e.
R2
MAD, for S&P500 as well as US30 futures return data using Realized Variance as volatility

proxy. Note that in both cases half the graph is left blank as the start of observations can
never overtake the stopping time.

Evidently such method not only creates unbiased estimates but also increases correlation

signi�cantly. Considering table 4, overall R2
MAD is drastically higher than is the case for begin-

of-the-day variance. Moreover the advantage is withhold over time (15, 30, 60, 120 min) and is

present for both securities. Where greatest pro�t is pleasingly gained near start of open outcry

trade. After just 15 minutes of return observations squared correlations are up to 0.7 growing to

0.75, 0.8 and 0.88 for resp. 30, 60 and 120 minutes.

Obtaining the most e�cient sample (table 4e) S&P500 and US30 now only need 15 resp 20

minutes of return observations to reach saturation in the sense that more extra observed variance

is needed than can be gained in estimation. Reliable forecasts can therefore be obtained far earlier

in the day, where it is again noted that US30 estimation notoriously leaves the �rst 5 minutes of

observations out of estimation. For S&P500 this comprises of the �rst 0 to 5 minutes.
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S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
5
m
in
u
te
s

RV 0, 0430
(0,0130)

∗ 0, 9361
(0,0349)

0,6934 0,0733 0,6202 1,2734 0, 0075
(0,0084)

0, 9922
(0,0455)

0,6925 0,0974 0,5952 0,4921

BPV 0, 0189
(0,0070)

∗ 0, 9558
(0,0324)

0,6833 0,0703 0,6130 1,9638 0, 0092
(0,0039)

∗ 0, 9535
(0,0396)

0,7317 0,0863 0,6454 0,4354

RR 0, 0297
(0,0085)

∗ 0, 9352
(0,0303)

∗ 0,7048 0,0691 0,6357 0,6934 0, 0039
(0,0066)

0, 9986
(0,0442)

0,7065 0,0764 0,6300 0,3235

TTS 0, 0377
(0,0117)

∗ 0, 9378
(0,0309)

∗ 0,6909 0,0695 0,6214 0,7387 0, 0061
(0,0089)

0, 9991
(0,0487)

0,7039 0,0942 0,6097 0,4059

Kernel 0, 0371
(0,0119)

∗ 0, 9398
(0,0299)

∗ 0,6907 0,0757 0,6151 0,7824 0, 0040
(0,0106)

1, 0123
(0,0527)

0,7079 0,0941 0,6139 0,4003

Mean 0,0333 0,9409 0,6926 0,0716 0,6211 1,0903 0,0061 0,9911 0,7085 0,0897 0,6188 0,4114

(a) Statistics for volatility measured from start of the day up until 15 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

3
0
m
in
u
te
s

RV 0, 0387
(0,0111)

∗ 0, 9309
(0,0305)

∗ 0,7282 0,1269 0,6013 0,9626 0, 0062
(0,0085)

0, 9972
(0,0466)

0,7230 0,1492 0,5737 0,5215

BPV 0, 0141
(0,0065)

∗ 0, 9707
(0,0308)

0,7121 0,1312 0,5808 1,2526 0, 0678
(0,0048)

∗ 0, 4384
(0,0514)

∗ 0,7527 0,1378 0,6149 0,3982

RR 0, 0270
(0,0074)

∗ 0, 9294
(0,0268)

∗ 0,7340 0,1259 0,6082 0,5986 0, 0017
(0,0068)

1, 0098
(0,0455)

0,7525 0,1300 0,6225 0,3402

TTS 0, 0402
(0,0107)

∗ 0, 9184
(0,0293)

∗ 0,7705 0,1290 0,6415 0,5852 0, 0027
(0,0095)

1, 0156
(0,0523)

0,7553 0,1476 0,6077 0,4281

Kernel 0, 0465
(0,0112)

∗ 0, 9124
(0,0288)

∗ 0,7395 0,1311 0,6083 0,5883 0, 0010
(0,0109)

1, 0214
(0,0547)

0,7626 0,1443 0,6183 0,5170

Mean 0,0333 0,9324 0,7369 0,1288 0,6080 0,7975 0,0159 0,8965 0,7492 0,1418 0,6074 0,4410

(b) Statistics for volatility measured from start of the day up until 30 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

6
0
m
in
u
te
s

RV 0, 0231
(0,0089)

∗ 0, 9575
(0,0258)

0,7919 0,2432 0,5487 0,4769 0, 0034
(0,0089)

1, 0077
(0,0494)

0,7620 0,2266 0,5354 0,3799

BPV 0, 0144
(0,0052)

∗ 0, 9498
(0,0258)

0,7897 0,2393 0,5504 0,6479 0, 0043
(0,0034)

0, 9879
(0,0358)

0,7813 0,2153 0,5660 0,3105

RR 0, 0536
(0,0092)

∗ 0, 8538
(0,0347)

∗ 0,8251 0,2479 0,5771 0,3891 0, 0007
(0,0067)

1, 0146
(0,0458)

0,7794 0,2085 0,5709 0,2855

TTS 0, 0346
(0,0097)

∗ 0, 9315
(0,0276)

∗ 0,8076 0,2441 0,5635 0,3616 0, 0006
(0,0093)

1, 0217
(0,0515)

0,7825 0,2251 0,5574 0,3497

Kernel 0, 0649
(0,0125)

∗ 0, 8754
(0,0336)

∗ 0,8171 0,2473 0,5698 0,3778 −0, 0022
(0,0112)

1, 0332
(0,0565)

0,7874 0,2191 0,5683 0,4729

Mean 0,0381 0,9136 0,8063 0,2444 0,5619 0,4507 0,0014 1,0131 0,7785 0,2189 0,5596 0,3597

(c) Statistics for volatility measured from start of the day up until 60 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
2
0
m
in
u
te
s

RV 0, 0267
(0,0075)

∗ 0, 9366
(0,0228)

∗ 0,8781 0,3939 0,4842 0,3423 −0, 0005
(0,0083)

1, 0197
(0,0476)

0,8811 0,3906 0,4905 0,3075

BPV 0, 0150
(0,0045)

∗ 0, 9412
(0,0232)

∗ 0,8708 0,3864 0,4843 0,5145 0, 0017
(0,0030)

0, 9968
(0,0324)

0,8667 0,3835 0,4833 0,2404

RR 0, 0356
(0,0067)

∗ 0, 8975
(0,0265)

∗ 0,8918 0,4041 0,4877 0,2828 0, 0014
(0,0069)

1, 0070
(0,0483)

0,8737 0,3743 0,4994 0,3092

TTS 0, 0586
(0,0102)

∗ 0, 8749
(0,0306)

∗ 0,8941 0,3943 0,4999 0,2876 −0, 0008
(0,0084)

1, 0220
(0,0486)

0,8814 0,3907 0,4907 0,2841

Kernel 0, 0514
(0,0100)

∗ 0, 8930
(0,0278)

∗ 0,9002 0,3963 0,5039 0,2766 −0, 0028
(0,0108)

1, 0311
(0,0564)

0,8837 0,3803 0,5034 0,4926

Mean 0,0375 0,9087 0,8870 0,3950 0,4920 0,3408 -0,0002 1,0153 0,8773 0,3839 0,4935 0,3268

(d) Statistics for volatility measured from start of the day up until 120 min.
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S&P500 US30

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE
O
p
en

O
u
tc
ry

m
a
x
im
u
m

RV 09:30 09:40 0, 4874
(0,0281)

∗ −0, 0031
(0,0785)

∗ 0,7004 0,0519 0,6485 1,5975 08:25 08:35 0, 0073
(0,0088)

0, 9970
(0,0476)

0,7007 0,0974 0,6033 0,4354

BPV 09:30 09:40 0, 0191
(0,0082)

∗ 0, 9746
(0,0381)

0,6807 0,0497 0,6310 2,3744 08:25 08:35 0, 0061
(0,0036)

0, 9755
(0,0370)

0,7375 0,0863 0,6512 0,4198

RR 09:35 09:40 0, 0277
(0,0089)

∗ 0, 9453
(0,0310)

0,6975 0,0475 0,6500 1,9010 08:25 08:40 0, 0026
(0,0066)

1, 0069
(0,0441)

0,7347 0,0971 0,6376 0,3087

TTS 09:30 09:40 0, 0515
(0,0134)

∗ 0, 9179
(0,0354)

∗ 0,6884 0,0468 0,6417 0,9883 08:25 08:45 0, 0025
(0,0090)

1, 0154
(0,0494)

0,7525 0,1326 0,6199 0,3624

Kernel 09:35 09:55 0, 0280
(0,0098)

∗ 0, 9499
(0,0251)

∗ 0,7461 0,1134 0,6328 0,7295 08:25 08:35 0, 0093
(0,0109)

0, 9942
(0,0543)

0,7201 0,0941 0,6260 0,4660

Mean 9:32 9:43 0,1227 0,7569 0,7026 0,0619 0,6408 1,5181 8:25 8:38 0,0056 0,9978 0,7291 0,1015 0,6276 0,3985

(i) Statistics for the maximum based on R2
marg over open outcry trade.

S&P500 US30

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE

2
4
h
o
u
r
m
a
x
im
u
m

RV 21:20 09:15 0, 0520
(0,0125)

∗ 0, 9231
(0,0341)

∗ 0,7249 0,0000 0,7249 1,4093 05:20 08:35 0, 0212
(0,0080)

∗ 0, 9307
(0,0438)

0,7285 0,0974 0,6311 0,9304

BPV 01:50 09:35 0, 0264
(0,0068)

∗ 0, 9234
(0,0320)

∗ 0,7305 0,0276 0,7030 1,8146 06:35 08:35 0, 0057
(0,0032)

0, 9657
(0,0327)

0,7531 0,0863 0,6668 0,4608

RR 22:50 09:05 0, 0783
(0,0152)

∗ 0, 8178
(0,0547)

∗ 0,7454 0,0000 0,7454 1,2962 03:35 08:40 0, 0053
(0,0062)

0, 9833
(0,0419)

0,7589 0,0971 0,6618 0,6126

TTS 00:00 09:30 0, 0387
(0,0108)

∗ 0, 9401
(0,0292)

∗ 0,7237 0,0000 0,7237 0,9624 07:10 08:50 0, 0037
(0,0088)

1, 0040
(0,0484)

0,7810 0,1476 0,6334 0,5738

Kernel 21:30 09:15 0, 0540
(0,0119)

∗ 0, 9191
(0,0304)

∗ 0,7325 0,0000 0,7325 1,1690 06:35 08:35 0, 1089
(0,0080)

∗ 0, 5422
(0,0437)

∗ 0,7528 0,0941 0,6587 0,6198

Mean 13:30 9:20 0,0499 0,9047 0,7314 0,0055 0,7259 1,3303 5:51 8:39 0,0290 0,8852 0,7549 0,1045 0,6504 0,6395

(j) Statistics for the maximum based on R2
marg over 24 hour trade.

Table 4: Overall Mincer-Zarnowitz bias adjusted variance forecasting statistics for S&P500 and US30
futures. Standard errors of the estimates are given between parenthesis and a star is appointed
to estimates of α and β signi�cantly di�erent from respectively 0 and 1 on a 95% con�dence
level.

4.1.3 Seasonal Moving Average

Second, a deterministic assumed diurnal pattern is obtained through the Seasonal Moving Average

method and subsequently used for scaling begin-of-the-day variance. Associated R2
MAD frontiers

using RV are depicted in �gure 12.

Figure 12 clearly shows the similarities and dissimilarities between both securities. It is appar-

ent that estimating US 30 year treasury bond future return volatility is somewhat more di�cult.

However the gain from using a diurnal patterns is also greater. From the tables it becomes clear

that the coe�cients of determination for US30 data increase over the full range of the day as

compared to the reference point - begin-of-the-day variance.
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(a) S&P500: R2
MAD (b) US30: R2

MAD

Figure 12: Figures display the squared correlations of forecasts and estimated daily variance �gures, i.e.
R2
MAD, for S&P500 as well as US30 futures return data using Realized Variance as volatility

proxy. Note that in both cases half the graph is left blank as the start of observations can
never overtake the stopping time.

After half an hour of open outcry trade the di�erence is up to 0.05 in favor of the Seasonal

Moving Average where the sensitivity to parameter choice H (backward estimation window for

seasonal) seems negligible. Looking at mutual in stead of average performance statistics, about the

same margins can be gained. Nonetheless mutual statistics can be somewhat apart, demonstrating

the usefulness of comparing multiple measures instead of just one. Sensitivity to the moving

average �lter span 'a', is small. Omitting this �lter all together would result in the loss of just

half a percent and therefore still a gain as compared to begin-of-the-day variance. This in contrast

to S&P500 data where the smoothing �lter has a greater e�ect: the di�erences here mount up to

0.04. This greater impact was to be expected as the un�ltered seasonal shape of S&P500 series

is far more erratic than is the case for US30 data. Nonetheless, even using the �lter the Seasonal

Moving Average method on average performs on par with begin-of-day variance. This might feel

somewhat counter intuitive as the S&P500 on average seems to experience a stronger diurnal

pattern. Yet this is also the problem: on average the seasonal is quite well behaved, on a daily

scale however, the seasonal is far less stylized due to the volatile nature of the S&P500 series.

US30 series on the other hand experience a less stylized average seasonal pattern yet one that is

more persistent through time and thereby more predictable. In other words US30 data strokes

better with the deterministic assumption on the seasonal pattern.
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S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
5
m
in
u
te
s

RV 0, 2548
(0,0049)

∗ 0, 6122
(0,0996)

∗ 0,4755 0,0730 0,4025 4,0545 0, 1359
(0,0055)

∗ 0, 8182
(0,1540)

0,3701 0,0978 0,2723 3,8770

BPV 0, 1634
(0,0028)

∗ 0, 3891
(0,0908)

∗ 0,4714 0,0701 0,4013 4,1770 0, 0804
(0,0033)

∗ 0, 6695
(0,0983)

∗ 0,3675 0,0869 0,2807 2,9452

RR 0, 1022
(0,0055)

∗ 0, 5066
(0,0188)

∗ 0,6234 0,0690 0,5545 2,0110 0, 0905
(0,0029)

∗ 0, 5460
(0,0384)

∗ 0,5254 0,0768 0,4486 2,0350

TTS 0, 1844
(0,0064)

∗ 0, 4991
(0,0228)

∗ 0,5909 0,0692 0,5217 2,4565 0, 1233
(0,0049)

∗ 0, 6565
(0,0762)

∗ 0,4870 0,0945 0,3924 3,2921

Kernel 0, 1804
(0,0068)

∗ 0, 4561
(0,0191)

∗ 0,6481 0,0755 0,5726 3,0248 0, 1266
(0,0036)

∗ 0, 6186
(0,0558)

∗ 0,5110 0,0946 0,4164 3,2562

Mean 0,1770 0,4926 0,5619 0,0714 0,4905 3,1448 0,1113 0,6618 0,4522 0,0901 0,3621 3,0811

(a) Statistics for volatility measured from start of the day up until 15 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

3
0
m
in
u
te
s

RV 0, 1707
(0,0042)

∗ 0, 5657
(0,0258)

∗ 0,6235 0,1265 0,4969 1,7687 0, 1149
(0,0083)

∗ 0, 8670
(0,1780)

0,5273 0,1498 0,3775 1,1071

BPV 0, 1088
(0,0020)

∗ 0, 4755
(0,0247)

∗ 0,6224 0,1308 0,4916 2,2580 0, 0726
(0,0026)

∗ 0, 6667
(0,1003)

∗ 0,4618 0,1385 0,3233 1,0031

RR 0, 0718
(0,0047)

∗ 0, 5819
(0,0163)

∗ 0,7108 0,1256 0,5852 1,1372 0, 0803
(0,0041)

∗ 0, 6434
(0,0501)

∗ 0,6271 0,1305 0,4967 0,7099

TTS 0, 1321
(0,0058)

∗ 0, 5501
(0,0179)

∗ 0,6940 0,1286 0,5654 1,3520 0, 1049
(0,0060)

∗ 0, 7856
(0,0886)

∗ 0,5893 0,1481 0,4412 0,9909

Kernel 0, 1316
(0,0070)

∗ 0, 5406
(0,0179)

∗ 0,7303 0,1308 0,5995 1,4037 0, 1152
(0,0057)

∗ 0, 7150
(0,0739)

∗ 0,5944 0,1448 0,4496 0,9589

Mean 0,1230 0,5428 0,6762 0,1285 0,5477 1,5839 0,0976 0,7355 0,5600 0,1423 0,4177 0,9540

(b) Statistics for volatility measured from start of the day up until 30 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

6
0
m
in
u
te
s

RV 0, 1358
(0,0060)

∗ 0, 5671
(0,0206)

∗ 0,7593 0,2430 0,5163 0,8807 0, 0983
(0,0050)

∗ 0, 7859
(0,0684)

∗ 0,6163 0,2270 0,3892 0,4503

BPV 0, 0847
(0,0028)

∗ 0, 5279
(0,0177)

∗ 0,7643 0,2390 0,5254 0,9818 0, 0549
(0,0015)

∗ 0, 7711
(0,0491)

∗ 0,5826 0,2159 0,3668 0,4463

RR 0, 0589
(0,0055)

∗ 0, 6154
(0,0176)

∗ 0,8139 0,2477 0,5662 0,7018 0, 0658
(0,0042)

∗ 0, 7484
(0,0471)

∗ 0,7076 0,2090 0,4986 0,3029

TTS 0, 1054
(0,0073)

∗ 0, 6069
(0,0202)

∗ 0,8106 0,2438 0,5668 0,7152 0, 0868
(0,0053)

∗ 0, 8276
(0,0635)

∗ 0,7015 0,2254 0,4761 0,4102

Kernel 0, 0973
(0,0075)

∗ 0, 6059
(0,0183)

∗ 0,8066 0,2471 0,5595 0,7300 0, 0946
(0,0059)

∗ 0, 7952
(0,0626)

∗ 0,7072 0,2196 0,4876 0,3886

Mean 0,0964 0,5846 0,7909 0,2441 0,5468 0,8019 0,0801 0,7856 0,6630 0,2194 0,4437 0,3997

(c) Statistics for volatility measured from start of the day up until 60 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
2
0
m
in
u
te
s

RV 0, 0908
(0,0068)

∗ 0, 7342
(0,0232)

∗ 0,8689 0,3933 0,4756 0,2580 0, 0574
(0,0068)

∗ 0, 8782
(0,0619)

∗ 0,8020 0,3909 0,4111 0,1783

BPV 0, 0529
(0,0036)

∗ 0, 7274
(0,0211)

∗ 0,8505 0,3857 0,4648 0,2907 0, 0306
(0,0022)

∗ 0, 8716
(0,0407)

∗ 0,7948 0,3841 0,4106 0,1768

RR 0, 0477
(0,0053)

∗ 0, 7649
(0,0203)

∗ 0,8951 0,4035 0,4916 0,2120 0, 0425
(0,0063)

∗ 0, 8352
(0,0569)

∗ 0,8418 0,3748 0,4670 0,1269

TTS 0, 0824
(0,0073)

∗ 0, 7537
(0,0231)

∗ 0,8885 0,3937 0,4949 0,2195 0, 0537
(0,0072)

∗ 0, 8821
(0,0619)

0,8225 0,3912 0,4313 0,1613

Kernel 0, 0731
(0,0072)

∗ 0, 7629
(0,0204)

∗ 0,9032 0,3958 0,5074 0,2152 0, 0620
(0,0094)

∗ 0, 8558
(0,0723)

∗ 0,8420 0,3806 0,4614 0,1575

Mean 0,0694 0,7486 0,8812 0,3944 0,4869 0,2391 0,0492 0,8646 0,8206 0,3843 0,4363 0,1602

(d) Statistics for volatility measured from start of the day up until 120 min.
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S&P500 US30

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE
O
p
en

O
u
tc
ry

m
a
x
im
u
m

RV 09:30 10:25 0, 1373
(0,0063)

∗ 0, 5558
(0,0213)

∗ 0,7551 0,2288 0,5262 1,0248 08:20 09:50 0, 0827
(0,0054)

∗ 0, 8297
(0,0613)

∗ 0,7289 0,2929 0,4359 0,2782

BPV 09:30 10:10 0, 0965
(0,0029)

∗ 0, 4770
(0,0198)

∗ 0,7220 0,1748 0,5472 1,8268 08:20 10:10 0, 0331
(0,0021)

∗ 0, 8600
(0,0406)

∗ 0,7929 0,3566 0,4363 0,2029

RR 09:35 09:55 0, 0739
(0,0043)

∗ 0, 6026
(0,0164)

∗ 0,7173 0,1074 0,6099 1,1831 08:20 08:55 0, 0775
(0,0040)

∗ 0, 6826
(0,0491)

∗ 0,6529 0,1442 0,5087 0,5470

TTS 09:30 10:25 0, 1091
(0,0073)

∗ 0, 5876
(0,0201)

∗ 0,8006 0,2287 0,5719 0,8252 08:20 09:20 0, 0868
(0,0053)

∗ 0, 8276
(0,0635)

∗ 0,7015 0,2254 0,4761 0,4102

Kernel 09:30 09:55 0, 1398
(0,0070)

∗ 0, 5155
(0,0176)

∗ 0,7157 0,1131 0,6026 1,6918 08:20 09:35 0, 0885
(0,0065)

∗ 0, 8084
(0,0637)

∗ 0,7469 0,2507 0,4962 0,3042

Mean 9:31 10:10 0,1113 0,5477 0,7421 0,1706 0,5716 1,3103 8:20 9:34 0,0737 0,8016 0,7246 0,2540 0,4706 0,3485

(i) Statistics for the maximum based on R2
marg over open outcry trade.

S&P500 US30

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE

2
4
h
o
u
r
m
a
x
im
u
m

RV 16:15 09:10 0, 8072
(0,0032)

∗ −1, 2949
(0,2102)

∗ 0,6930 0,0000 0,6930 2,7760 20:40 08:45 0, 0487
(0,0156)

∗ 0, 9250
(0,1048)

0,7260 0,1351 0,5909 0,7084

BPV 16:15 09:20 0, 0638
(0,0031)

∗ 1, 0269
(0,0298)

0,7030 0,0000 0,7030 1,9555 18:35 08:30 0, 0392
(0,0040)

∗ 0, 8176
(0,0563)

∗ 0,6507 0,0504 0,6003 0,6214

RR 16:45 07:45 0, 0864
(0,0042)

∗ 1, 0091
(0,0280)

0,7021 0,0000 0,7021 4,9876 02:25 08:35 0, 0670
(0,0076)

∗ 0, 7118
(0,0667)

∗ 0,7267 0,0768 0,6499 0,5460

TTS 16:15 09:30 0, 3961
(0,0149)

∗ 0, 1722
(0,1626)

∗ 0,7130 0,0000 0,7130 1,7532 20:30 08:45 0, 0398
(0,0145)

∗ 0, 9586
(0,0960)

0,7564 0,1330 0,6233 0,6722

Kernel 01:25 08:30 0, 1074
(0,0067)

∗ 1, 0048
(0,0277)

0,7092 0,0000 0,7092 2,9517 00:25 08:35 0, 0466
(0,0174)

∗ 0, 9292
(0,1028)

0,7352 0,0946 0,6406 0,9634

Mean 13:23 8:51 0,2922 0,3836 0,7041 0,0000 0,7041 2,8848 12:31 8:38 0,0483 0,8685 0,7190 0,0980 0,6210 0,7023

(j) Statistics for the maximum based on R2
marg over 24 hour trade.

Table 5: Overall Moving Average Seasonal variance forecasting statistics for S&P500 and US30 futures.
Standard errors of the estimates are given between parenthesis and a star is appointed to es-
timates of α and β signi�cantly di�erent from respectively 0 and 1 on a 95% con�dence level.

Being able to forecast the dynamics of a time series as caught in R2
MAD is however not

su�cient to create reliable forecasts. One can for instance always forecast twice the real value and

subsequently get a R2
MAD of 1 whereas the forecasts are clearly biased and therefore unreliable,

see Appendix B: Mincer-Zarnowitz regression coe�cients. Reviewing MZ α and β statistics from

table 5 one can conclude variance forecasts are far from unbiased resulting in big (H)MSPE,

starting at triple or more the amount compared to the Mincer-Zarnowitz scaled forecasts, yet

swiftly declining as more intra-day data is obtained. Interestingly β is always estimated smaller

than one and α always bigger than zero, meaning forecasts for highly volatile days are most often

understated whereas forecasts for calm days are in general overstated. Possible reason can be

found in extreme observations which, in some numbers, can even adjust GLS estimates to be

drawn downward. To see this note that extreme observations only have little in�uence on the

regression slope coe�cient as the number of smaller observations is generally far larger. Extreme

predictions on the other hand cause the estimates to be biased downward.
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Lastly adding overnight information the story remains much the same as for begin-of-the-day

variance. Figures are therefore omitted yet are available upon request.

4.1.4 Exponentially Weighted Moving Average Seasonal

The Exponentially Weighted Moving Average was added to the set as to be faster adjusting to

changing diurnal patterns as a result of higher or lower return volatility regimes. This could lead

to better estimation as the seasonal is to be estimated more accurately yielding more accurate

scaling factors and thus forecasts. Con�ding table 6 such an approach does produces higher R2
MAD

statistics for S&P500 data than is the case for an equally weighted seasonal. Moreover HMSPE

decreases. For US30 no signi�cant improvements are observed on R2
MAD and HMSPE actually

increases little.
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S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
5
m
in
u
te
s

RV 0, 2522
(0,0048)

∗ 0, 6398
(0,1047)

∗ 0,4882 0,0730 0,4152 3,1544 0, 1445
(0,0052)

∗ 0, 6260
(0,1381)

∗ 0,3877 0,0978 0,2899 4,4727

BPV 0, 1599
(0,0026)

∗ 0, 4178
(0,0886)

∗ 0,4655 0,0701 0,3954 3,3030 0, 0800
(0,0031)

∗ 0, 6138
(0,0879)

∗ 0,3334 0,0869 0,2465 3,5519

RR 0, 0953
(0,0051)

∗ 0, 5344
(0,0180)

∗ 0,6697 0,0690 0,6008 1,5152 0, 0902
(0,0028)

∗ 0, 5141
(0,0357)

∗ 0,5124 0,0768 0,4356 2,4193

TTS 0, 1755
(0,0060)

∗ 0, 5326
(0,0224)

∗ 0,6026 0,0692 0,5334 1,8954 0, 1138
(0,0044)

∗ 0, 6624
(0,0674)

∗ 0,4761 0,0945 0,3816 3,6123

Kernel 0, 1726
(0,0063)

∗ 0, 4831
(0,0187)

∗ 0,6862 0,0755 0,6107 2,2769 0, 1235
(0,0033)

∗ 0, 5836
(0,0494)

∗ 0,5248 0,0946 0,4302 3,5933

Mean 0,1711 0,5215 0,5824 0,0714 0,5111 2,4290 0,1104 0,6000 0,4469 0,0901 0,3568 3,5299

(a) Statistics for volatility measured from start of the day up until 15 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

3
0
m
in
u
te
s

RV 0, 1690
(0,0043)

∗ 0, 5858
(0,0274)

∗ 0,6780 0,1265 0,5515 1,3651 0, 1149
(0,0071)

∗ 0, 7821
(0,1504)

0,5532 0,1498 0,4034 1,2725

BPV 0, 1047
(0,0020)

∗ 0, 5076
(0,0252)

∗ 0,6624 0,1308 0,5316 1,7526 0, 0713
(0,0023)

∗ 0, 6308
(0,0885)

∗ 0,4762 0,1385 0,3377 1,1790

RR 0, 0687
(0,0043)

∗ 0, 6052
(0,0157)

∗ 0,7403 0,1256 0,6147 0,8357 0, 0814
(0,0038)

∗ 0, 6000
(0,0462)

∗ 0,5948 0,1305 0,4643 0,8283

TTS 0, 1258
(0,0054)

∗ 0, 5782
(0,0176)

∗ 0,7582 0,1286 0,6297 1,0038 0, 1017
(0,0053)

∗ 0, 7405
(0,0785)

∗ 0,5641 0,1481 0,4161 1,1015

Kernel 0, 1271
(0,0065)

∗ 0, 5647
(0,0175)

∗ 0,7721 0,1308 0,6413 1,0353 0, 1132
(0,0050)

∗ 0, 6698
(0,0633)

∗ 0,6409 0,1448 0,4961 1,0718

Mean 0,1191 0,5683 0,7222 0,1285 0,5938 1,1985 0,0965 0,6846 0,5658 0,1423 0,4235 1,0906

(b) Statistics for volatility measured from start of the day up until 30 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

6
0
m
in
u
te
s

RV 0, 1295
(0,0057)

∗ 0, 5970
(0,0204)

∗ 0,7838 0,2430 0,5407 0,6737 0, 0993
(0,0044)

∗ 0, 7276
(0,0597)

∗ 0,6614 0,2270 0,4344 0,5095

BPV 0, 0818
(0,0028)

∗ 0, 5565
(0,0182)

∗ 0,7637 0,2390 0,5247 0,7636 0, 0588
(0,0015)

∗ 0, 6656
(0,0480)

∗ 0,6147 0,2159 0,3988 0,5085

RR 0, 0576
(0,0051)

∗ 0, 6359
(0,0170)

∗ 0,8407 0,2477 0,5930 0,5127 0, 0684
(0,0040)

∗ 0, 7018
(0,0448)

∗ 0,7057 0,2090 0,4967 0,3448

TTS 0, 1011
(0,0068)

∗ 0, 6338
(0,0198)

∗ 0,8336 0,2438 0,5898 0,5301 0, 0869
(0,0048)

∗ 0, 7797
(0,0578)

∗ 0,6853 0,2254 0,4599 0,4533

Kernel 0, 0934
(0,0069)

∗ 0, 6305
(0,0176)

∗ 0,8271 0,2471 0,5799 0,5331 0, 0929
(0,0054)

∗ 0, 7646
(0,0566)

∗ 0,7182 0,2196 0,4986 0,4354

Mean 0,0927 0,6108 0,8098 0,2441 0,5656 0,6026 0,0813 0,7278 0,6771 0,2194 0,4577 0,4503

(c) Statistics for volatility measured from start of the day up until 60 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
2
0
m
in
u
te
s

RV 0, 0887
(0,0063)

∗ 0, 7621
(0,0225)

∗ 0,8888 0,3933 0,4955 0,2013 0, 0610
(0,0059)

∗ 0, 8283
(0,0544)

∗ 0,8240 0,3909 0,4332 0,2041

BPV 0, 0539
(0,0035)

∗ 0, 7471
(0,0216)

∗ 0,8787 0,3857 0,4930 0,2282 0, 0323
(0,0020)

∗ 0, 8294
(0,0368)

∗ 0,8046 0,3841 0,4204 0,1937

RR 0, 0481
(0,0049)

∗ 0, 7851
(0,0197)

∗ 0,9120 0,4035 0,5085 0,1600 0, 0457
(0,0059)

∗ 0, 7983
(0,0538)

∗ 0,8486 0,3748 0,4738 0,1430

TTS 0, 0817
(0,0068)

∗ 0, 7789
(0,0227)

∗ 0,9095 0,3937 0,5159 0,1680 0, 0569
(0,0065)

∗ 0, 8387
(0,0563)

∗ 0,8461 0,3912 0,4549 0,1816

Kernel 0, 0729
(0,0068)

∗ 0, 7854
(0,0199)

∗ 0,9122 0,3958 0,5164 0,1632 0, 0651
(0,0085)

∗ 0, 8155
(0,0656)

∗ 0,8447 0,3806 0,4641 0,1777

Mean 0,0691 0,7717 0,9002 0,3944 0,5059 0,1841 0,0522 0,8220 0,8336 0,3843 0,4493 0,1800

(d) Statistics for volatility measured from start of the day up until 120 min.
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S&P500 US30

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE
O
p
en

O
u
tc
ry

m
a
x
im
u
m

RV 09:30 10:05 0, 1604
(0,0050)

∗ 0, 5242
(0,0219)

∗ 0,7189 0,1592 0,5597 1,4717 08:20 10:10 0, 0654
(0,0055)

∗ 0, 8125
(0,0521)

∗ 0,8126 0,3640 0,4486 0,2305

BPV 09:30 10:20 0, 0834
(0,0029)

∗ 0, 5375
(0,0187)

∗ 0,7647 0,2090 0,5557 1,0434 08:30 10:05 0, 0436
(0,0016)

∗ 0, 7420
(0,0353)

∗ 0,7766 0,3403 0,4363 0,2227

RR 09:35 09:55 0, 0729
(0,0041)

∗ 0, 6226
(0,0162)

∗ 0,7582 0,1074 0,6508 0,8754 08:35 09:20 0, 0719
(0,0039)

∗ 0, 7749
(0,0503)

∗ 0,7202 0,2090 0,5112 0,2344

TTS 09:30 10:00 0, 1258
(0,0054)

∗ 0, 5782
(0,0176)

∗ 0,7582 0,1286 0,6297 1,0038 08:30 10:00 0, 0642
(0,0052)

∗ 0, 8605
(0,0494)

∗ 0,7939 0,3233 0,4706 0,2052

Kernel 09:30 10:00 0, 1271
(0,0065)

∗ 0, 5647
(0,0175)

∗ 0,7721 0,1308 0,6413 1,0353 08:20 09:25 0, 0908
(0,0054)

∗ 0, 7705
(0,0546)

∗ 0,7419 0,2301 0,5118 0,4027

Mean 9:31 10:04 0,1139 0,5655 0,7544 0,1470 0,6074 1,0859 8:27 9:48 0,0672 0,7921 0,7690 0,2933 0,4757 0,2591

(i) Statistics for the maximum based on R2
marg over open outcry trade.

S&P500 US30

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE

2
4
h
o
u
r
m
a
x
im
u
m

RV 19:30 09:30 0, 1159
(0,0069)

∗ 1, 1076
(0,0376)

∗ 0,7193 0,0000 0,7193 1,2003 20:40 08:45 0, 0487
(0,0156)

∗ 0, 9250
(0,1048)

0,7260 0,1351 0,5909 0,7084

BPV 16:30 09:20 0, 0681
(0,0030)

∗ 1, 0390
(0,0308)

0,7008 0,0000 0,7008 1,8952 18:35 08:30 0, 0392
(0,0040)

∗ 0, 8176
(0,0563)

∗ 0,6507 0,0504 0,6003 0,6214

RR 18:40 09:25 0, 0899
(0,0042)

∗ 1, 1129
(0,0314)

∗ 0,7407 0,0000 0,7407 1,1891 02:25 08:35 0, 0670
(0,0076)

∗ 0, 7118
(0,0667)

∗ 0,7267 0,0768 0,6499 0,5460

TTS 16:25 08:25 0, 8631
(0,0026)

∗ −1, 5969
(0,1296)

∗ 0,7309 0,0000 0,7309 3,2103 20:30 08:45 0, 0398
(0,0145)

∗ 0, 9586
(0,0960)

0,7564 0,1330 0,6233 0,6722

Kernel 16:30 08:30 0, 7758
(0,0037)

∗ −1, 0639
(0,1779)

∗ 0,7505 0,0000 0,7505 3,9307 00:25 08:35 0, 0466
(0,0174)

∗ 0, 9292
(0,1028)

0,7352 0,0946 0,6406 0,9634

Mean 17:31 9:02 0,3826 0,1197 0,7284 0,0000 0,7284 2,2851 12:31 8:38 0,0483 0,8685 0,7190 0,0980 0,6210 0,7023

(j) Statistics for the maximum based on R2
marg over 24 hour trade.

Table 6: Overall Exponentially Weighted Moving Average Seasonal variance forecasting statistics for
S&P500 and US30 futures. Standard errors of the estimates are given between parenthesis and
a star is appointed to estimates of α and β signi�cantly di�erent from respectively 0 and 1 on
a 95% con�dence level.

4.1.5 Fourier Flexible Form

In addition to the diurnal pattern constructed from simple (weighted) average past volatility, we

estimate a Fourier Flexible Form which will be �tted to the seasonal pattern. This form is made

dependent on begin-of-the-day volatility via σ in (25) as to enable the form to adjust for di�erent

diurnal shapes during high and low volatility days. Moreover it is made as to cope with recurring

macroeconomic news announcements at 8:30 and 10:00 A.M. EST. Supplemented with earlier

discussed parameter values {H, J, P, D} this leads to the frontier found in 13 and according

statistics in table 7. Note that the FFF seasonal was estimated over open outcry trading hours

only, therefore we are unable to use this seasonal to construct forecasts outside of these hours.

Alternatively one could try �tting the seasonal on data including overnight information, though we

chose not to as 24 hour seasonal estimation would most likely result in worse seasonals during more

important open outcry trading hours. Moreover a clear diurnal pattern for overnight information

seems absent implying that estimating a pattern would result in arbitrariness.
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(a) S&P500: R2
MAD (b) US30: R2

MAD

Figure 13: Figures display squared correlations of forecasts and estimated daily variance �gures, i.e.
R2
MAD, for S&P500 as well as US30 futures return data using Realized Variance as volatility

proxy and taking H=22. Where H=22 is taken as for the calculations to be feasible. H=252
is computationally to expensive to create such graphs. Note that in both cases half of the
graph takes the lowest possible point or is left blank as the start of observations can never
overtake the stopping time.

Figures 1 and 2 already demonstrated the important in�uence of begin-of-the-day volatility

on the diurnal pattern. Explicitly allowing the seasonal to be a function hereof has indeed some

considerable e�ects. From table 7 it can be seen that S&P500 R2
MAD statistics on average only

improve little or even decrease some as compared to other forecasting methods. Though R2
MAD

statistics keep on par with earlier methods, bias decreases considerably as MZ α and β esti-

mates are well closer their optimal values and HMSPE even halves. US30 data, especially using

H=22, also bene�ts seasonal parametrization by FFF. With R2
MAD increasing on average 0.07

over the best alternative and decreased HMSPE, this could well be pointed a signi�cant all-round

improvement.

As for the sensitivities to parameters J and P, their in�uence is generally small as long as

J ≥ 1 and P ≥ 1. Taking J = 0 would undo the advantages to this method, principally relegating

FFF to a Seasonal Moving Average method, and thereby obtaining similar performance. Whereas

P = 0 leads to the elimination of the (co)sine function and thereby a huge part of the ability to

�t the seasonal pattern. Other way around, increasing P and J does not yield much advantage.

This might be due to the fact that it makes the seasonal somewhat more susceptible to noise and

creates additional parameters to be estimated, possibly being redundant as the general seasonal

shape is not so complex as to require the additional freedom.
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S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
5
m
in
u
te
s

RV 0, 2579
(0,0056)

∗ 0, 7978
(0,1054)

0,4828 0,0730 0,4098 1,0225 0, 1369
(0,0078)

∗ 0, 6120
(0,1196)

∗ 0,3824 0,0978 0,2846 2,0177

BPV 0, 1608
(0,0030)

∗ 0, 6455
(0,0951)

∗ 0,4748 0,0701 0,4047 0,8851 0, 0799
(0,0045)

∗ 0, 5733
(0,0807)

∗ 0,3790 0,0869 0,2921 1,3385

RR 0, 0691
(0,0065)

∗ 0, 8224
(0,0271)

∗ 0,6418 0,0690 0,5728 0,5186 0, 0755
(0,0042)

∗ 0, 6229
(0,0403)

∗ 0,5376 0,0768 0,4608 0,7617

TTS 0, 1544
(0,0076)

∗ 0, 7562
(0,0301)

∗ 0,6159 0,0692 0,5466 0,7291 0, 1098
(0,0069)

∗ 0, 5941
(0,0625)

∗ 0,5016 0,0945 0,4071 1,8024

Kernel 0, 1527
(0,0079)

∗ 0, 6798
(0,0256)

∗ 0,6345 0,0755 0,5590 0,8452 0, 1160
(0,0050)

∗ 0, 5465
(0,0456)

∗ 0,5351 0,0946 0,4405 1,6783

Mean 0,1590 0,7403 0,5700 0,0714 0,4986 0,8001 0,1036 0,5898 0,4671 0,0901 0,3770 1,5197

(a) Statistics for volatility measured from start of the day up until 15 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

3
0
m
in
u
te
s

RV 0, 1588
(0,0051)

∗ 0, 7732
(0,0311)

∗ 0,6467 0,1265 0,5201 0,5690 0, 1039
(0,0124)

∗ 0, 6382
(0,1223)

∗ 0,5483 0,1498 0,3985 1,0452

BPV 0, 1009
(0,0026)

∗ 0, 7170
(0,0308)

∗ 0,6426 0,1308 0,5117 0,6262 0, 0806
(0,0038)

∗ 0, 4043
(0,0698)

∗ 0,4637 0,1385 0,3252 0,8512

RR 0, 0444
(0,0053)

∗ 0, 8531
(0,0215)

∗ 0,7213 0,1256 0,5958 0,3481 0, 0542
(0,0063)

∗ 0, 6826
(0,0479)

∗ 0,6344 0,1305 0,5039 0,5041

TTS 0, 1037
(0,0067)

∗ 0, 7764
(0,0231)

∗ 0,7142 0,1286 0,5856 0,4783 0, 0815
(0,0095)

∗ 0, 6512
(0,0680)

∗ 0,6163 0,1481 0,4682 0,9745

Kernel 0, 0981
(0,0079)

∗ 0, 7732
(0,0231)

∗ 0,7480 0,1308 0,6172 0,4614 0, 0857
(0,0089)

∗ 0, 6328
(0,0583)

∗ 0,6526 0,1448 0,5078 0,8540

Mean 0,1012 0,7786 0,6946 0,1285 0,5661 0,4966 0,0812 0,6018 0,5831 0,1423 0,4407 0,8458

(b) Statistics for volatility measured from start of the day up until 30 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

6
0
m
in
u
te
s

RV 0, 1129
(0,0071)

∗ 0, 7622
(0,0259)

∗ 0,7763 0,2430 0,5332 0,3645 0, 0775
(0,0075)

∗ 0, 6736
(0,0557)

∗ 0,6266 0,2270 0,3996 0,4982

BPV 0, 0702
(0,0035)

∗ 0, 7614
(0,0239)

∗ 0,7491 0,2390 0,5101 0,3475 0, 0476
(0,0021)

∗ 0, 6657
(0,0366)

∗ 0,5952 0,2159 0,3793 0,4534

RR 0, 0357
(0,0062)

∗ 0, 8241
(0,0225)

∗ 0,8184 0,2477 0,5707 0,2733 0, 0385
(0,0062)

∗ 0, 7745
(0,0457)

∗ 0,7268 0,2090 0,5177 0,2738

TTS 0, 0815
(0,0083)

∗ 0, 7908
(0,0253)

∗ 0,8016 0,2438 0,5579 0,3097 0, 0600
(0,0081)

∗ 0, 7321
(0,0538)

∗ 0,7005 0,2254 0,4751 0,4611

Kernel 0, 0689
(0,0085)

∗ 0, 7994
(0,0230)

∗ 0,8118 0,2471 0,5647 0,3000 0, 0625
(0,0092)

∗ 0, 7294
(0,0555)

∗ 0,7039 0,2196 0,4844 0,3896

Mean 0,0738 0,7876 0,7914 0,2441 0,5473 0,3190 0,0572 0,7150 0,6706 0,2194 0,4512 0,4152

(c) Statistics for volatility measured from start of the day up until 60 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
2
0
m
in
u
te
s

RV 0, 0685
(0,0077)

∗ 0, 8626
(0,0261)

∗ 0,8787 0,3933 0,4853 0,1617 0, 0386
(0,0088)

∗ 0, 7847
(0,0553)

∗ 0,8203 0,3909 0,4294 0,2352

BPV 0, 0377
(0,0042)

∗ 0, 8966
(0,0249)

∗ 0,8642 0,3857 0,4785 0,1603 0, 0219
(0,0028)

∗ 0, 7895
(0,0357)

∗ 0,8123 0,3841 0,4281 0,2293

RR 0, 0282
(0,0059)

∗ 0, 8796
(0,0226)

∗ 0,8958 0,4035 0,4922 0,1379 0, 0218
(0,0079)

∗ 0, 8324
(0,0547)

∗ 0,8667 0,3748 0,4918 0,1525

TTS 0, 0620
(0,0082)

∗ 0, 8630
(0,0259)

∗ 0,8903 0,3937 0,4966 0,1437 0, 0311
(0,0095)

∗ 0, 8076
(0,0566)

∗ 0,8507 0,3912 0,4594 0,2224

Kernel 0, 0472
(0,0081)

∗ 0, 8841
(0,0230)

∗ 0,9048 0,3958 0,5090 0,1361 0, 0360
(0,0122)

∗ 0, 8100
(0,0672)

∗ 0,8537 0,3806 0,4731 0,1852

Mean 0,0487 0,8772 0,8868 0,3944 0,4923 0,1479 0,0299 0,8048 0,8407 0,3843 0,4564 0,2049

(d) Statistics for volatility measured from start of the day up until 120 min.
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S&P500 US30

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE
O
p
en

O
u
tc
ry

m
a
x
im
u
m

RV 09:30 10:15 0, 1266
(0,0070)

∗ 0, 7430
(0,0272)

∗ 0,7422 0,1963 0,5459 0,4893 08:20 09:50 0, 0622
(0,0076)

∗ 0, 7453
(0,0533)

∗ 0,7476 0,2929 0,4547 0,2957

BPV 09:30 10:10 0, 0816
(0,0036)

∗ 0, 7508
(0,0272)

∗ 0,7161 0,1748 0,5413 0,5071 08:20 10:15 0, 0229
(0,0028)

∗ 0, 7857
(0,0359)

∗ 0,8041 0,3710 0,4331 0,2401

RR 09:35 09:55 0, 0485
(0,0049)

∗ 0, 8582
(0,0212)

∗ 0,7192 0,1074 0,6118 0,3858 08:20 09:15 0, 0404
(0,0069)

∗ 0, 7645
(0,0511)

∗ 0,7198 0,1968 0,5229 0,2940

TTS 09:30 09:55 0, 1186
(0,0068)

∗ 0, 7796
(0,0249)

∗ 0,6999 0,1069 0,5930 0,5082 08:20 09:05 0, 0699
(0,0088)

∗ 0, 6815
(0,0597)

∗ 0,6888 0,1899 0,4989 0,6368

Kernel 09:30 10:00 0, 0981
(0,0079)

∗ 0, 7732
(0,0231)

∗ 0,7480 0,1308 0,6172 0,4614 08:20 08:50 0, 0857
(0,0089)

∗ 0, 6328
(0,0583)

∗ 0,6526 0,1448 0,5078 0,8540

Mean 9:31 10:03 0,0947 0,7810 0,7251 0,1432 0,5818 0,4704 8:20 9:27 0,0562 0,7220 0,7226 0,2391 0,4835 0,4641

(i) Statistics for the maximum based on R2
marg over open outcry trade.

Table 7: Overall Fourier Flexible Form seasonal forecasting statistics for S&P500 and US30 futures. Stan-
dard errors of the estimates are given between parenthesis and a star is appointed to estimates
of α and β signi�cantly di�erent from respectively 0 and 1 on a 95% con�dence level. Note that
a whole grid of regressions was computationally to expensive using H=252 therefore start has
been locked at 09:30.

4.1.6 Random Walk (benchmark)

To check whether forecasts improve upon the most basic of models a Random Walk was added as

benchmark. Table 8 outlines the performance statistics which can be obtained by such method.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

RV 0, 1266
(0,0115)

∗ 0, 8581
(0,0416)

∗ 0,6790 0,0000 0,6790 1,0843 0, 0859
(0,0097)

∗ 0, 7880
(0,0636)

∗ 0,4968 0,0000 0,4968 2,9248

BPV 0, 0847
(0,0077)

∗ 0, 8237
(0,0483)

∗ 0,6646 0,0000 0,6646 1,5609 0, 0487
(0,0044)

∗ 0, 7504
(0,0563)

∗ 0,5057 0,0000 0,5057 2,3720

RR 0, 0968
(0,0083)

∗ 0, 8283
(0,0379)

∗ 0,7200 0,0000 0,7200 1,8937 0, 0574
(0,0070)

∗ 0, 7948
(0,0537)

∗ 0,5676 0,0000 0,5676 1,3728

TTS 0, 1090
(0,0107)

∗ 0, 8880
(0,0373)

∗ 0,6928 0,0000 0,6928 0,9449 0, 0895
(0,0113)

∗ 0, 7681
(0,0736)

∗ 0,5167 0,0000 0,5167 3,2599

Kernel 0, 1269
(0,0116)

∗ 0, 8522
(0,0375)

∗ 0,7312 0,0000 0,7312 1,4438 0, 0941
(0,0132)

∗ 0, 7721
(0,0762)

∗ 0,4841 0,0000 0,4841 3,5566

mean 0,1088 0,8501 0,69752 0,0000 0,69752 1,38552 0,0751 0,7747 0,5142 0,0000 0,5142 2,6972

Table 8: Random Walk variance forecasting statistics for the �ve volatility measures. Standard errors
of the estimates are given between brackets and a star is appointed to estimates of α and β
signi�cantly di�erent from respectively 0 and 1 on a 95% con�dence level.

4.1.7 GARCH (1,1) model (benchmark)

A second benchmark, the GARCH(1,1) model is used to put the performance statistics in a more

global context. However, although this model is designed for volatility forecasting in the presence

of heteroskedasticity, it is known to perform questionable dealing with high frequency volatility

measures. Reason is that GARCH is slow in catching up, that is it will take many observations

to adjust the conditional variance to a new level whereas IV measures adjust instantly. See
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for example Andersen and Bollerslev (1997); Andersen et al. (2003). Indeed for S&P500 data,

GARCH performs worse that the RW on R2
MAD and HMSPE statistics however not excessive.

For US30 data R2
MAD is again lower than RW but though HMSPE is better. Table 9 presents

further �gures.

S&P500 US 30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

RV −0, 1762
(0,0239)

∗ 1, 3346
(0,0485)

∗ 0,5497 0,0000 0,5497 2,0392 0, 0530
(0,0099)

∗ 0, 7812
(0,0506)

∗ 0,4259 0,0000 0,4259 0,7374

BPV −0, 1048
(0,0144)

∗ 0, 7914
(0,0292)

∗ 0,5783 0,0000 0,5783 9,1545 0, 0212
(0,0048)

∗ 0, 4563
(0,0243)

∗ 0,4620 0,0000 0,4620 4,5485

RR −0, 1213
(0,0170)

∗ 0, 9763
(0,0344)

0,5463 0,0000 0,5463 6,7706 0, 0447
(0,0062)

∗ 0, 5702
(0,0318)

∗ 0,4619 0,0000 0,4619 1,3606

TTS −0, 1752
(0,0237)

∗ 1, 3427
(0,0481)

∗ 0,5294 0,0000 0,5294 1,7447 0, 0508
(0,0099)

∗ 0, 7810
(0,0507)

∗ 0,4401 0,0000 0,4401 0,7237

Kernel −0, 1816
(0,0241)

∗ 1, 4001
(0,0488)

∗ 0,5578 0,0000 0,5578 2,2407 0, 0643
(0,0111)

∗ 0, 7894
(0,0568)

∗ 0,4405 0,0000 0,4405 0,5712

mean -0,1518 1,1690 0,5523 0,0000 0,5523 4,3899 0,0468 0,6756 0,4461 0,0000 0,4461 1,5883

Table 9: GARCH(1,1) volatility forecasting statistics for the �ve volatility measures. Standard errors
of the estimates are given between brackets and a star is appointed to estimates of α and β
signi�cantly di�erent from respectively 0 and 1 on a 95% con�dence interval.

Note that for GARCH parameter estimation an expanding window is used of at least 252

observations, which is rarther small for GARCH estimation. Simulation studies to the e�ects of

small sample sizes on ML estimates in the GARCH(1,1) model by Ng (2006) �nd that at least

1000 observations should be used for the likelihood function to converge to the global maximum.

However given the data sample (especially the challenging periods near the end) and for reasons

of comparability to other forecasting methods this smaller estimation period was chosen.

Summarizing, Begin-of-the-day variance forms a high potential regressor for daily volatility. In

itself, it has higher correlation to daily variance then the RW after just 30 minutes of observations,

equaling about 13% of daily variance. Compared to the GARCH(1,1), 15-20 minutes of observa-

tions even su�ce to outperform in terms of correlation (VR=8%). Up-scaling these early variance

�gures to daily proportions using a seasonal shape or Mincer-Zarnowitz bias adjustment method

leads to further improvements in terms of R2
MAD as well as HMSPE. The Fourier Flexible Form

can herein generally be addressed best seasonal scaling, especially when HMSPE is concerned. Yet

scaling by Mincer-Zarnowitz coe�cients seems more e�ective during the start of the day. In terms

of e�ciency it stands out that roughly the �rst 15 minutes of observations for S&P500 and �rst

20 minutes of observations for US30 are most informative. Using a seasonal scaling however 35

resp. 90 minutes of observations are needed for S&P500 and US30. After this period the increase

in squared correlation is outweighed by the extra variance observed in making the new forecast.
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Interestingly the �rst few, 0-10 minutes, often lead to worse correlations than under exclusion of

such evidently noisy measurements. To my knowledge now earlier research has been conducted

on this subject and no rejection be it conformation on this matter has been found. However, the

loss in correlation is generally small.

4.2 Kalman Filter and EM convergence

For a forecast that is reliable, with reliable meaning having small MSPE, high R2 or R2
MAD is

not su�cient. Knowledge of the bias and variance of the estimates is needed to for a complete

picture. Throughout the day Mincer-Zarnowitz α and β inevitably become better, reaching resp.

0 and 1 at days end. Yet it becomes well clear from above presented tables that forecasts based

on the intraday seasonal are, especially during start of the day, far from unbiased. Frijns and

Margaritis assign the reason that α and β deviate from 0 and 1 to realized variance being a noisy

measure of actual volatility, perhaps causing a downward bias. However, this reasoning might

be wrong as the MZ response variable, explanatory variable and seasonal are all built from the

same volatility measure. Here a similar yet less strong bias is found but the reason for this lies

in the properties of MZ OLS and GLS regressions. As OLS regressions are highly sensitive to

outliers and heteroskedasticity, i.e. errors are not from one and the same distribution, estimates

are heavily corrupted. To demonstrate the impact see �gure 14 where forecasts are plotted against

their real value. On average forecasts seem to create a cone like pattern around the 45º angle

(striped black line). The red line depicts the OLS regression line and is heavily susceptible to the

few extreme observations. The blue line represents the GLS alternative. This, and the fact that

small values occur far more often make it that MZ OLS β estimates are by construction downward

biased. To see this note that outliers in the response variable only cause little shifts mainly in the

constant term, correctly predicted outliers have big in�uence on β but typically occur just very

rarely whereas outliers in the regressors occur more often and thereby cause serious damage to the

β estimate. If, as in our case, there is any suspicion of outliers and/or heteroskedasticity in the

MZ errors one should therefore seriously consider outlier and heteroskedasticity robust estimation

procedures.
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Figure 14: MZ regression estimates get heavily corrupted by outliers and heteroskedasticity. Plotted
�gure shows S&P500 daily Realized Variance plotted against FFF variance forecasts using
RV measure. Additional OLS and GLS regression lines are displayed along a 45º perfect
forecast line.

Nonetheless, trusting GLS �gures some bias remains. If this bias is implicitly caused by the

forecasting method or other consistent source, we might again be able use the �tted Mincer-

Zarnowitz bias coe�cients and subsequently use them to bias adjust forecasts. In fact using the

Kalman Filter we are able to reproduce MZ α and β coe�cients and create proper forecasts for

these states: αt+1 and βt+1. Indeed such adjustments seem possible, generating higher R2
MAD

and lower HMSPE.

Before we endeavor such an approach let us �rst again substantiate the claim with a proof

of concept. Again using the earlier mentioned 20 day rolling window Mincer-Zarnowitz regres-

sions, α and β estimates are obtained over the whole sample as approximations to their un-

observed states. These estimates are subsequently used to recreate the 21st day forecast, i.e.

RV n∗
t,scaled = α[t−20,t−1] + β[t−20,t−1]RV

n∗
t , resulting in the graphical adjustments and accompany-

ing statistics found in �gure 15. Overall improvements over MA seasonal in terms of bias and

variance explained are undeniable, though on par with earlier conducted direct MZ scaling (see

section 4.1.2). Note that the di�erence between these two lies in the additional use of a seasonal

scaling before proceeding to MZ bias adjustment.
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α̂ β̂ R2
MAD MSPE HMSPE

Normal forecasts S&P500 0, 1972
(0,0045)

∗ 0, 4866
(0,0261)

∗ 0,6344 4,5622 1,6366

Bias adjusted forecasts S&P500 0, 0456
(0,0113)

∗ 0, 9052
(0,0320)

∗ 0,7101 0,5703 0,7899

Normal forecasts US30 0, 1149
(0,0083)

∗ 0, 8670
(0,1780)

0,5273 1,0696 1,1071

Bias adjusted forecasts US30 0, 0095
(0,0087)

0, 9869
(0,0475)

0,7214 0,3159 0,5154

Figure 15: Normal and bias adjusted forecasts and statistics for S&P500 (omitting Sept, Oct and Nov
2008) and US30 after 30 minutes of begin-of-the-day returns. A proof of concept considering
the possibility to adjust regular forecasts using Mincer-Zarnowitz α and β estimates. Forecasts
are based on AVG Seasonal using the RV measure and H=252.

As the concept seems to work we basically shrink the 20 rolling window to a single observa-

tion. Obtaining α and β estimates from regression would in such case be impractical, yet Kalman

Filtering with the Expectation Maximization algorithm and encapsulated Maximum Likelihood

Estimation helps unveiling the unobserved α and β states. Taking the preferred parametrizations,

such that F and Q are diagonal matrices and R a full matrix with σ2
ij = σ2

ji = σ2
ii for i = 1, ..., n,

and using earlier calculated starting values, stable convergence is obtained for S&P500 (omitting

Sept, Oct and Nov 2008) and US30 data series. Note that the great heteroskedasticity during

Sept, Oct, Nov 2008 return observations (Highest volatility ever recorded) seriously degrade, even

diverge ME parameter estimation, thereby jeopardizing Kalman Filter performance. Reason lies

in the extreme observations that do not concord the normality assumption underlying Maximum

Likelihood Estimation. Consequently the Newton Raphson algorithm swings wild creating spuri-

ous estimates which in turn damage further Kalman Filtering precedure. Therefore S&P500 data

series omitting this interval are considered in this section. Figures can subsequently be compared

to the S&P500 FFF forecasts statistics also omitting Sept, Oct, Nov 2008 which are to be found

in Appendix C. For US30 series a mere single observation was excluded from the sample regard-

ing extreme volatility on March 18, 2009. During this day the Federal Open Market Committee

(FOMC) released a press announcement that the Federal Reserve would purchase an additional

$750 billion of agency MBS, an additional $100 billion in agency debt, and $300 billion of longer-
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term Treasury securities, consequently provoking an extreme upwards jump in the US 30 year

treasury bond futures. In terms of the robust R2
MAD and HMSPE this single observation has

little in�uence. Within the Maximum Likelihood estimation such an extreme returns is however

highly unlikely and again damages parameter estimation as well as further kalman �ltering.

As the likelihood has converged, parameters should also have converged to their ML estimates.

A quick check on the estimates of F learns that all AR(1) coe�cients are indeed as required

between -1 and 1, guarding the stability of the �lter. With the conspicuousness though that most

ϕ2,n∗ estimates are very close to 1, implying the AR models for beta are rather close to a random

walk whereas ϕ1,n∗ estimates are wider spread over the interval [−1, 1], see table 10. Interestingly

ϕ2,n∗ estimated values are consistent with �rst order autocorrelation coe�cients found over the 20

day rolling window experiment, and are therefore approximately equal to the starting values to the

algorithm. Therefor we recheck the convergence using with random initial values. Approximately

the same ending values can then be found.

Subsequently the hidden states α and β can be reviewed for every half an hour throughout the

day. The correlation coe�cient to daily variance is about 0.4 and visual interpretation of �gure

16 lies bare a predominant link between the two as was to be expected. In times of great volatility

forecasts fail to perform and consequently yield greater bias as supported by the greater α and

more erratic β states.

Figure 16: Filtered and smoothed Mincer-Zarnowitz α and β states
(
α̂t|T , β̂t|T

)
concerning US30 data on

i=30 minutes after start of open outcry markets as obtained from Kalman �ltering/smoothing.
States are based on FFF forecasts using H=252, the Realized Variance measure and omitting
March 18, 2009. Additionally correlations of smoothed states to daily variance are given.
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Again using these states, that is the ex-ante predicted states for every time instance t = 1, ..., T

- not the ex-post smoothed states, to bias adjust forecasts produces the �gures found in table 10.

Sub table a-d) displays some statistics on the alpha and beta states. From here it is clear that mean

alpha and beta levels come closer to their ending values 0 and 1 as expected. More interesting

statistics can be found in sub table e-h). For US30 overall R2
MAD but in particular MSPE and

HMSPE seem to experience great bene�t from bias adjustments. MSPE/HMSPE is brought back

with a major factor 6 at the start naturally declining to a factor 2 at two hours in. Favorably

biggest improvements in correlation and bias can thus be found near the start of open outcry

markets. As was to be expected since bias is greatest near the start.

For S&P500 smaller but improvements nonetheless can be observed in MSPE and HMSPE but

not in R2
MAD. Correlations actually seem to decrease. Reason here fore might lie in the greater

volatility of this time series experiences, being inconsistent with the assumption of normality. It

would therefore be interesting to check performance under less strict assumptions as possible with

a particle �lter, imposing a more �exible error distribution.

To visualize the bias adjustments and their forecasting performance �gure 17 plots the fore-

casts against realized values and compares them to the original ones (original in sub�g-a and

corresponding bias adjusted directly beneath in sub�g-b). It can be seen from �gure 17 that fore-

casts are indeed tighter pact around 45º black dashed line of perfect forecast, implying a decrease

of MSPE and HMSPE. As indeed supported by table 10.

Promising as these �gures are, it should for a start be noted that this is just a �rst exploration

to Mincer-Zarnowitz bias adjustments. Consequently more research should be conducted to test

the sustainability of such results in other timeseries and settings. Though if such results can be

con�rmed, bias adjusting forecasts in such a manner could be performed in the widest of settings.

Second it should be noted that similar, perhaps better performance can be much simpler obtained

via direct MZ scaling of begin-of-the-day variance as conducted in section 3.2.2 or through scaling

by rolling window MZ regression coe�cients as done in �gure 15.
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(a) Realized Variance vs Original FFF Variance Forecasts

(b) Realized Variance vs Bias Adjusted FFF Variance Forecasts

Figure 17: Figures comparing realized variance vs. original variance forecasts & realized variance vs.
bias adjusted variance forecasts. Figures where made for S&P500 and US30 data using FFF
forecasts for 30 resp. 60 minutes using the Realized Variance measure. Kalman adjusted
forecasts evidently improve upon original forecasts as they are far tighter gathered around
the 45º line of perfect forecast.
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S&P500 US30

Alpha Beta Alpha Beta

C1 ϕ1 α C2 ϕ2 β C1 ϕ1 α C2 ϕ2 β

1
5
m
in
u
te
s

RV 0,4084 0,2349 0,5337 0,0013 0,9737 0,0532 0,0591 0,7650 0,2507 0,0015 0,9859 0,0959

BPV 0,3123 -0,0365 0,3013 0,0023 0,9743 0,0814 0,0497 0,6575 0,1445 0,0012 0,9836 0,0763

RR 0,2677 0,1589 0,3187 0,0050 0,9654 0,1408 0,0608 0,6713 0,1846 0,0008 0,9911 0,0915

TTS 0,4192 0,0598 0,4460 0,0051 0,9619 0,1322 0,0715 0,7149 0,2501 0,0008 0,9922 0,0852

Kernel 0,4055 0,1332 0,4681 0,0034 0,9691 0,1107 0,0859 0,6377 0,2367 0,0010 0,9915 0,1232

Mean 0,3627 0,1101 0,4135 0,0034 0,9689 0,1037 0,0654 0,6893 0,2133 0,0011 0,9889 0,0944

(a) Statistics for volatility measured from start of the day up until 15 min.

S&P500 US30

Alpha Beta Alpha Beta

C1 ϕ1 α C2 ϕ2 β C1 ϕ1 α C2 ϕ2 β

3
0
m
in
u
te
s

RV 0,5211 -0,0453 0,4985 0,0039 0,9598 0,0918 0,1065 0,5498 0,2363 0,0021 0,9840 0,1239

BPV 0,2973 -0,0599 0,2805 0,0034 0,9704 0,1136 0,0506 0,6403 0,1402 0,0015 0,9804 0,0829

RR 0,1982 0,3577 0,3088 0,0050 0,9665 0,1547 0,0617 0,6551 0,1786 0,0011 0,9891 0,1064

TTS 0,4012 0,0391 0,4175 0,0063 0,9619 0,1622 0,1205 0,4967 0,2391 0,0015 0,9866 0,1063

Kernel 0,4511 -0,0163 0,4439 0,0049 0,9670 0,1455 0,1308 0,4146 0,2233 0,0023 0,9858 0,1568

Mean 0,3738 0,0550 0,3898 0,0047 0,9651 0,1335 0,0940 0,5513 0,2035 0,0017 0,9852 0,1153

(b) Statistics for volatility measured from start of the day up until 30 min.

S&P500 US30

Alpha Beta Alpha Beta

C1 ϕ1 α C2 ϕ2 β C1 ϕ1 α C2 ϕ2 β

6
0
m
in
u
te
s

RV 0,3805 0,1656 0,4560 0,0046 0,9705 0,1529 0,0617 0,7014 0,2063 0,0035 0,9828 0,2049

BPV 0,2415 0,0601 0,2570 0,0046 0,9737 0,1747 0,0460 0,6461 0,1298 0,0028 0,9788 0,1323

RR 0,1608 0,4126 0,2739 0,0063 0,9721 0,2296 0,0524 0,6786 0,1627 0,0020 0,9885 0,1693

TTS 0,3993 -0,0328 0,3865 0,0058 0,9731 0,2160 0,0646 0,6817 0,2027 0,0029 0,9859 0,2033

Kernel 0,4203 -0,0558 0,3982 0,0068 0,9687 0,2196 0,0773 0,5929 0,1897 0,0032 0,9873 0,2549

Mean 0,3205 0,1099 0,3543 0,0056 0,9716 0,1986 0,0604 0,6602 0,1783 0,0029 0,9847 0,1930

(c) Statistics for volatility measured from start of the day up until 60 min.

S&P500 US30

Alpha Beta Alpha Beta

C1 ϕ1 α C2 ϕ2 β C1 ϕ1 α C2 ϕ2 β

1
2
0
m
in
u
te
s

RV 0,3673 0,0205 0,3751 0,0077 0,9733 0,2868 0,0529 0,6868 0,1685 0,0062 0,9802 0,3066

BPV 0,1111 0,5087 0,2260 0,0082 0,9686 0,2666 0,0324 0,6921 0,1049 0,0052 0,9798 0,2507

RR 0,4250 -0,9100 0,2225 0,0096 0,9739 0,3619 0,0383 0,7203 0,1366 0,0042 0,9846 0,2706

TTS 0,1560 0,5363 0,3362 0,0087 0,9729 0,3203 0,0521 0,6950 0,1706 0,0045 0,9853 0,2937

Kernel 0,4350 -0,2220 0,3549 0,0101 0,9680 0,3007 0,0615 0,6065 0,1561 0,0057 0,9846 0,3550

Mean 0,2989 -0,0133 0,3030 0,0089 0,9713 0,3073 0,0474 0,6801 0,1473 0,0052 0,9829 0,2953

(d) Statistics for volatility measured from start of the day up until 120 min.

68



S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
5
m
in
u
te
s

RV −0, 1403
(0,0229)

∗ 1, 4924
(0,0566)

0,3911 0,0728 0,3183 0,5142 −0, 0651
(0,0104)

∗ 1, 6214
(0,0585)

∗ 0,5168 0,0978 0,4190 0,2124

BPV −0, 0760
(0,0131)

∗ 1, 4498
(0,0548)

∗ 0,3568 0,0697 0,2871 0,5334 −0, 0421
(0,0059)

∗ 1, 7215
(0,0617)

∗ 0,4709 0,0869 0,3840 0,2803

RR −0, 0757
(0,0096)

∗ 1, 2366
(0,0303)

∗ 0,3872 0,0692 0,3180 0,3670 −0, 0601
(0,0082)

∗ 1, 6879
(0,0587)

∗ 0,4398 0,0768 0,3630 0,1513

TTS −0, 1051
(0,0154)

∗ 1, 3151
(0,0374)

∗ 0,4029 0,0693 0,3336 0,4081 −0, 0828
(0,0103)

∗ 1, 7348
(0,0588)

∗ 0,4878 0,0945 0,3933 0,1911

Kernel −0, 1041
(0,0147)

∗ 1, 2790
(0,0339)

∗ 0,4030 0,0756 0,3274 0,3494 −0, 0587
(0,0095)

∗ 1, 5213
(0,0499)

∗ 0,5818 0,0946 0,4872 0,1433

Mean -0,1002 1,3546 0,3882 0,0713 0,3169 0,4344 -0,0618 1,6574 0,4994 0,0901 0,4093 0,1957

(i) Bias adjusted FFF forecasting statistics for start of the day up until 15 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

3
0
m
in
u
te
s

RV −0, 1637
(0,0188)

∗ 1, 5052
(0,0463)

∗ 0,4728 0,1269 0,3459 0,4706 −0, 0708
(0,0090)

∗ 1, 6137
(0,0506)

∗ 0,6059 0,1498 0,4561 0,1897

BPV −0, 0910
(0,0110)

∗ 1, 4672
(0,0457)

∗ 0,4658 0,1308 0,3350 0,4914 −0, 0456
(0,0054)

∗ 1, 7187
(0,0559)

∗ 0,5282 0,1385 0,3897 0,2642

RR −0, 0839
(0,0090)

∗ 1, 2537
(0,0285)

∗ 0,5342 0,1262 0,4080 0,3360 −0, 0662
(0,0074)

∗ 1, 7036
(0,0524)

∗ 0,5248 0,1305 0,3943 0,1391

TTS −0, 1201
(0,0142)

∗ 1, 3274
(0,0344)

∗ 0,4900 0,1291 0,3609 0,3655 −0, 0856
(0,0094)

∗ 1, 7224
(0,0531)

∗ 0,5596 0,1481 0,4115 0,1767

Kernel −0, 1152
(0,0139)

∗ 1, 2912
(0,0322)

∗ 0,5114 0,1311 0,3803 0,3151 −0, 0654
(0,0086)

1, 5272
(0,0447)

∗ 0,6398 0,1448 0,4950 0,1317

Mean -0,1148 1,3690 0,4948 0,1288 0,3660 0,3957 -0,0667 1,6571 0,5717 0,1423 0,4293 0,1803

(j) Bias adjusted FFF forecasting statistics for start of the day up until 30 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

6
0
m
in
u
te
s

RV −0, 1672
(0,0159)

∗ 1, 4804
(0,0395)

∗ 0,6049 0,2443 0,3606 0,4000 −0, 0577
(0,0068)

∗ 1, 4703
(0,0379)

∗ 0,6922 0,2270 0,4652 0,1524

BPV −0, 0956
(0,0089)

∗ 1, 4473
(0,0374)

∗ 0,6069 0,2400 0,3669 0,4126 −0, 0447
(0,0044)

∗ 1, 6569
(0,0456)

∗ 0,6252 0,2159 0,4093 0,2325

RR −0, 0832
(0,0080)

∗ 1, 2425
(0,0258)

∗ 0,6667 0,2495 0,4172 0,2724 −0, 0582
(0,0057)

∗ 1, 5881
(0,0399)

∗ 0,6828 0,2090 0,4738 0,1164

TTS −0, 1201
(0,0128)

∗ 1, 3133
(0,0315)

∗ 0,6362 0,2455 0,3907 0,3033 −0, 0633
(0,0066)

∗ 1, 5020
(0,0373)

∗ 0,6681 0,2254 0,4427 0,1390

Kernel −0, 1185
(0,0121)

∗ 1, 2816
(0,0284)

∗ 0,6641 0,2486 0,4155 0,2551 −0, 0510
(0,0061)

∗ 1, 3782
(0,0314)

∗ 0,7325 0,2196 0,5129 0,1021

Mean -0,1169 1,3530 0,6358 0,2456 0,3902 0,3287 -0,0550 1,5191 0,6802 0,2194 0,4608 0,1485

(k) Bias adjusted FFF forecasting statistics for start of the day up until 60 min.

S&P500 US30

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
2
0
m
in
u
te
s

RV −0, 1563
(0,0111)

∗ 1, 4076
(0,0281)

∗ 0,7912 0,3955 0,3957 0,2828 −0, 0505
(0,0046)

∗ 1, 3548
(0,0256)

∗ 0,8434 0,3909 0,4525 0,0960

BPV −0, 0911
(0,0061)

∗ 1, 3893
(0,0262)

∗ 0,8164 0,3876 0,4288 0,3002 −0, 0357
(0,0027)

∗ 1, 4633
(0,0283)

∗ 0,8353 0,3841 0,4512 0,1443

RR −0, 0756
(0,0064)

∗ 1, 2168
(0,0212)

∗ 0,8328 0,4059 0,4269 0,1930 −0, 0482
(0,0039)

∗ 1, 4441
(0,0274)

∗ 0,8411 0,3748 0,4663 0,0804

TTS −0, 1149
(0,0097)

∗ 1, 2805
(0,0244)

∗ 0,8181 0,3958 0,4223 0,2116 −0, 0552
(0,0047)

∗ 1, 3925
(0,0266)

∗ 0,8572 0,3912 0,4660 0,0926

Kernel −0, 1111
(0,0091)

∗ 1, 2523
(0,0220)

∗ 0,8264 0,3978 0,4286 0,1781 −0, 0453
(0,0044)

∗ 1, 2943
(0,0227)

∗ 0,8809 0,3806 0,5003 0,0664

Mean -0,1098 1,3093 0,8170 0,3965 0,4205 0,2331 -0,0470 1,3898 0,8516 0,3843 0,4673 0,0959

(l) Bias adjusted FFF forecasting statistics for start of the day up until 120 min.

Table 10: Forecasting statistics after Mincer-Zarnowitz type bias adjustments to FFF forecasts on
S&P500 (omitting Sept, Oct, Nov 2008) and US30 data. Standard errors of the estimates
are given between parenthesis if available and a star is appointed to estimates of α and β
signi�cantly di�erent from respectively 0 and 1 on a 95% con�dence level. Note that S&P500
forecasts can be compared to table C.1-C.4, to be found in Appendix C.
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4.3 Forecast Revisions

In general one has to know the Loss Function in order to make statements about a forecasters

e�ciency. It could for instance be that clients start mistrusting forecasters whom adjust their

predictions rather rapidly, seeming overly sensitive to new information. As such, some degree

of smoothing behavior, i.e. β > 0, could be desirable and as such be perfectly rational. Here

however we deal with forecasts from econometric models where no such behavior has deliberately

been imposed. Our Loss Function is of quadratic form implied by OLS regression. Optimal value

of β in (49) is therefore without doubt 0, meaning consecutive forecasts are uncorrelated and no

smoothing or overreaction pervades our predictions. To test whether such is indeed the case we

look at α and β from (49) and some general statistics of the revisions.

S&P500/US30 forecast revision statistics over open outcry trade for AVG forecasts (H=252)

Mean StdDev Skewness Kurtosis α̂ β̂ R2 AC1 AC2 AC3

S&P500

RV -0,0177 0,2943 -1,2900 112,7791 −0, 0157
(0,0009)

∗ 0, 1125
(0,0030)

∗ 0,0127 0, 1125∗ 0, 1095∗ 0, 1067∗

BPV -0,0115 0,1540 -3,2460 113,1707 −0, 0072
(0,0004)

∗ 0, 3716
(0,0028)

∗ 0,1381 0, 3716∗ 0, 1141∗ 0, 0878∗

RR -0,0109 0,1306 -1,0410 96,1944 −0, 0097
(0,0004)

∗ 0, 1130
(0,0030)

∗ 0,0128 0, 1130∗ 0, 1210∗ 0, 1096∗

TTS -0,0121 0,2029 -0,1280 104,9098 −0, 0099
(0,0006)

∗ 0, 1812
(0,0029)

∗ 0,0328 0, 1812∗ 0, 0669∗ 0, 0759∗

Kernel -0,0200 0,2192 -4,0988 114,9233 −0, 0166
(0,0007)

∗ 0, 1720
(0,0030)

∗ 0,0296 0, 1719∗ 0, 1725∗ 0, 1225∗

Mean -0,0145 0,2002 -1,9608 108,3955 -0,0118 0,1901 0,0452 0,1901 0,1168 0,1005

US30

RV -0,0018 0,0453 0,4772 135,7472 −0, 0014
(0,0001)

∗ 0, 1808
(0,0026)

∗ 0,0327 0, 1808∗ 0, 1255∗ 0, 0918∗

BPV -0,0004 0,0203 2,9147 117,5915 −0, 0003
(0,0001)

∗ 0, 3228
(0,0025)

∗ 0,1042 0, 3228∗ 0, 0640∗ 0, 0523∗

RR -0,0008 0,0234 2,9144 119,5758 −0, 0006
(0,0001)

∗ 0, 1606
(0,0026)

∗ 0,0258 0, 1606∗ 0, 1021∗ 0, 0690∗

TTS -0,0009 0,0374 3,3053 136,8181 −0, 0007
(0,0001)

∗ 0, 2763
(0,0026)

∗ 0,0763 0, 2763∗ 0, 0692∗ 0, 0543∗

Kernel -0,0015 0,0390 2,1005 143,9498 −0, 0012
(0,0001)

∗ 0, 1883
(0,0026)

∗ 0,0355 0, 1883∗ 0, 1278∗ 0, 0961∗

Mean -0,0011 0,0331 2,3424 130,7365 -0,0008 0,2258 0,0549 0,2258 0,0977 0,0727

Table 11: Forecast revision statistics, distribution as well as autocorrelations for H=22. Standard errors
of the estimates are given between parenthesis and a star indicates the parameter to be signi�-
cantly di�erent from 0 on a 95% con�dence interval. Revisions are taken over open outcry trade
with start of day volatility beginning at the start of open outcry trade and last observation
just before closing at 16:15 and 17:00 hours EST for resp. S&P and US30. For the creation of
these statistics the 0,1% largest and negative and positive values were deleted from the sample.
These solely consist of October 2008 observations, the most volatile week ever recorder in his-
tory. The explosive observations found at this time severely alter the autocorrelation function
and revisions distribution properties
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SP 500/US30 forecast revision statistics over open outcry trade for FFF forecasts (H=252)

Mean StdDev Skewness Kurtosis α̂ β̂ R2 AC1 AC2 AC3

S&P500

RV -0,0013 0,1761 5,3635 105,3757 −0, 0013
(0,0005)

∗ 0, 0204
(0,0030)

∗ 0,0004 0, 0204∗ 0, 0234∗ 0, 0434∗

BPV 0,0000 0,0822 4,4138 93,8970 0, 0000
(0,0002)

0, 3230
(0,0028)

∗ 0,1043 0, 3230∗ 0, 0277∗ 0, 0376∗

RR -0,0015 0,0861 4,4998 103,4734 −0, 0014
(0,0003)

∗ 0, 0342
(0,0030)

∗ 0,0012 0, 0342∗ 0, 0469∗ 0, 0523∗

TTS -0,0009 0,1376 4,8779 105,6767 −0, 0007
(0,0004)

0, 1273
(0,0030)

∗ 0,0162 0, 1273∗ 0, 0085∗ 0, 0297∗

Kernel -0,0059 0,1423 0,9504 88,1547 −0, 0055
(0,0004)

∗ 0, 0798
(0,0030)

∗ 0,0064 0, 0798∗ 0, 0816∗ 0, 0646∗

Mean -0,0019 0,1249 4,0211 99,3155 -0,0018 0,1169 0,0257 0,1169 0,0376 0,0455

US30

RV -0,0004 0,0350 8,7044 144,9330 −0, 0004
(0,0001)

∗ 0, 0716
(0,0027)

∗ 0,0051 0, 0716∗ 0, 0273∗ 0, 0250∗

BPV 0,0002 0,0143 7,2583 97,5274 0, 0001
(0,0000)

∗ 0, 2941
(0,0025)

∗ 0,0865 0, 2941∗ 0, 0247∗ 0, 0130∗

RR -0,0001 0,0164 7,9270 123,0677 −0, 0001
(0,0000)

0, 1327
(0,0026)

∗ 0,0176 0, 1327∗ 0, 0573∗ 0, 0265∗

TTS -0,0004 0,0299 8,9136 153,2527 −0, 0003
(0,0001)

∗ 0, 2089
(0,0026)

∗ 0,0436 0, 2089∗ 0, 0330∗ 0, 0155∗

Kernel -0,0006 0,0307 9,2171 172,3894 −0, 0006
(0,0001)

∗ 0, 1080
(0,0026)

∗ 0,0117 0, 1080∗ 0, 0426∗ 0, 0237∗

Mean -0,0003 0,0253 8,4041 138,2341 -0,0002 0,1631 0,0329 0,1631 0,0370 0,0207

Table 12: Forecast revision statistics, distribution as well as autocorrelations for H=252. Standard errors
of the estimates are given between parenthesis and a star indicates the parameter to be signi�-
cantly di�erent from 0 on a 95% con�dence interval. Revisions are taken over open outcry trade
with start of day volatility beginning at the start of open outcry trade and last observation
just before closing at 16:15 and 17:00 hours EST for resp. S&P and US30. For the creation of
these statistics the 0,1% largest and negative and positive values were deleted from the sample.
These solely consist of October 2008 observations, the most volatile week ever recorder in his-
tory. The explosive observations found at this time severely alter the autocorrelation function
and revisions distribution properties

From table 11 and 12 it can be seen that revisions are skewed, leptokurtic, zero mean dis-

tributed. α̂ is most often signi�cant for Seasonal Moving Average forecast revisions but on average

fairly small which is in accordance with the idea that there is no reason to expect a systematic bias

in the forecast revisions, see Nordhaus (1987). The leptokurtic properties can mainly be addressed

to the presence of somewhat extreme observations caused by rapid forecast adjustments at the

start of the day. As begin-of-the-day variance still changes signi�cantly the variance of the end-

of-day variance estimates remains high, causing high Kurtosis. Interestingly S&P500 and US30

revisions do not agree on the sign of the skewness using the Season Moving Average forecasts,

meaning S&P500 revisions have a greater probability mass for being positive. For US30 it is the

other way around and for FFF forecasts both are positively skewed.

The e�ciency of forecasts, as Nordhaus cites, is deduced from the capability of incorporating

all past information. Forecasts are said to be weakly e�cient if they minimize E
[
ε2
t |Ft

]
. Where

εt is the forecast error and Ft the set of all past forecasts. Under weak form market e�ciency or

rational expectations, the expected value of the forecast error is zero which implies all conditional
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expectations of forecast revisions should be zero and subsequently β should be zero. In the tables

above β̂ is signi�cant and positive everywhere meaning the models experience an implied smooth-

ing property where Bipower Variation especially stands out. For US30 forecast revisions such

signi�cance is however limited to the �rst few lags. S&P500 revisions on the other hand experi-

ence a far more signi�cant cyclical pattern with a peak at the one day lag (81 lags: 81*5min=6:45

uur open outcry trade) which might imply there is still some cyclical behavior left in the S&P500

series not caught by the seasonal pattern. However autocorrelation coe�cients for both series are

generally low.

(a) S&P500 revisions histogram & autocorrelation function

(b) US30 revisions histogram & autocorrelation function

Figure 18: S&P500 and US30 revisions distribution and autocorrelation functions for Seasonal Moving
Average forecasts using RV measure.
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5 Conclusion

This thesis has reviewed the forecasting ability of begin-of-the-day variance to daily variance

in a broad sense. Multiple methods have been used to forecast daily variance and have been

tested against two benchmarks. Furthermore these models have been tested on two time series o�

di�erent origin and using multiple volatility measures as to gain a robust view upon predictability

and model performance. Parameter choices therein have been diversi�ed and where possible

justi�ed. Furthermore in order to cope with the de�ant S&P500 data sample, including the

�nancial crisis and highest volatility ever recorded, robust regressions and performance measures

we used.

Summarizing we can conclude that that high frequency return data from begin-of-the-day

contains valuable information about end-of-the-day volatility. In itself, it has higher correlation

to daily variance then the RW after just 30 minutes of observations, equaling about 13% of daily

variance. Compared to the GARCH(1,1) benchmark, 15-20 minutes of observations even su�ce

to outperform in terms of correlation (VR=8%). Scaling these early variance �gures to daily

proportions using a seasonal shape leads to further improvements in terms of R2
MAD as well as

HMSPE. The Fourier Flexible Form can herein generally be addressed best, especially as HMSPE

is concerned, leading to squared correlations of about 0.65-0.70 after half an hour when only 13%

of daily volatility of observed. Yet a simple scaling by Mincer-Zarnowitz coe�cients outperforms

all seasonal scaling methods in terms of R2
MAD and during the �rst 30 minutes also on HMSPE.

Leading to squared correlations of up to 0.75 after 30 minutes of returns for both securities.

Additionally adding overnight information to the data set does, however, not improve estimation

considerably. Reason can partly be found in the way daily variance is de�ned (over open outcry

returns only) but might also be due to an other type of investors active through night- or daytime.

An interesting new �nding during our quest for better predictions lies in Mincer-Zarnowitz

regression coe�cients. In general these regressions are used to obtain ex-post performance statis-

tics. During this research we took an di�erent approach and tried to model MZ coe�cients α

and β as unobserved states using Kalman Filtering. Subsequently we engaged in forecasting these

values and using them to eliminate forecasting bias which resulted in major improvements over

unadjusted forecasts in terms of MSPE and HMSPE. For US30 decreases up to a factor 6 were

achieved where, favorably, the biggest gain is to be found near the start of open outcry trade. As

was expected since bias is highest during that time. However this is just a �rst exploration on

such adjustments, with no earlier documentation on this matter, further research should reveal
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sustainability of such improvements over di�erent samples, securities and settings. Yet if such is

con�rmed, bias adjustments should be applicable to a wide variety of forecasts. Second, the sim-

pler more practical estimation procedure through direct MZ scaling of begin-of-the-day variance

or MZ scaling of AVG/EWMA/FFF forecasts delivered similar and during early start of open

outcry trade even better results.

In terms of e�ciency it stands that roughly the �rst 15 minutes of observations for S&P500

and �rst 20 minutes of observations for US30 are most informative. After this period the increase

in squared correlation is outweighed by the extra variance observed in making the new forecast.

Interestingly the �rst few, 0-10 minutes, often lead to worse correlations than under exclusion of

such evidently noisy measurements. To my knowledge now earlier research has been conducted

on this subject and no rejection be it conformation on this matter has been found. However, the

loss in correlation is generally small.

Two last remarks are to be made. First on FFF performance sensitivity where it is to be

noted that the estimation sample should not be chosen too short. This could lead to unstable

parameter estimation and consequently worse performance. An estimation sample of 252 days is

therefore preferred over the alternatively tested 22 days. Second, mutual comparison forecasting

performance over di�erent volatility measures leads to the conclusion that they are overall quite

comparable. However inherent properties of the volatility estimators do now and then in�ict un-

expected behavior. Relying on multiple measures is therefore preferable as to reduce the in�uence

of chance.

Further research

Concluding, this research added a broad discussion to the literature. Helping to understand the

dynamics of volatility, being possibly useful for risk managing and derivative pricing. Yet a variety

of complementing research could be conducted to strengthen (or reject) conclusions found here.

Other data samples should be investigated; other security types reviewed and other parametriza-

tions tested. Additionally one could conduct research on the proper R2 be it R2
MAD correction

due to testing against RV instead of IV. Such adjustments are omitted within this research yet

would form a worthwhile addition. Another interesting road could be to test similar hypothesis

in other, i.e. European, Asian or emerging markets or under di�erent return observations, e.g.

midquotes. Furthermore, simulation studies would create a controlled environment to help test

the limits and sensitivities of methods employed to a variety of return distributions.

Further elaboration of the Kalman Filter and EM approach conducted in section 3.3.3 should
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be considered to test robustness and sensitivities of results obtained here. Additionally more

advanced models could be created for α and β; other parametrizations for {R, Q} chosen and

possibly combined by shrinkage procedures; Analytical expressions to the EM likelihood function

under restrictions could perhaps be obtained or another algorithm allowing for non normal error

distribution as a Particle Filter might be used.

Results make an attractive impression ratifying additional research with possible future im-

plementation in risk management applications.
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Appendix A

Microstructure e�ects

The 10 second trade prices used for this research are exposed to sources of noise, also known as

microstructure e�ects. As these e�ects play a pivotal role during this research, let us start by

shamming some light on their origin and possible future accommodations to prevent such noise

in the �rst place. The best way to gain insight might be through some illustrations. Figure A.1

for instance shows the arti�cially generated stickiness of prices inherent to the way we organize

our data. Meaning the true timing of price changes is di�erent than the timing used during this

research. This feature results in negative bias in realized volatility estimation, Bandi and Russell

(2005). This can easily be observed as spikes in the log prices can only be dwarfed, not ampli�ed,

resulting in lower observed volatility than was actually there.

Figure A.1: Stale or Sticky prices cause negative �rst order autocorrelation in the return series and
negative bias in realized volatility estimation.

The bid/ask spread is a second highly in�uential source of noise and should be circumvented

if possible. Gatheral and Oomen (2010) e.g. found a 50% e�ciency gain to be obtained through

using mid-quote data for RV instead of normal price quotes. The noise induced bias in realized

variance can intuitively be explained using �gure A.2. Similar to reality, bid and ask prices are

observed randomly, showing a more erratic observed price path and thus greater variance than was

truly there. Consequently trade data enforces a positive bias on realized variance overestimating

true integrated volatility of the underlying price process.
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Figure A.2: High frequency mid-quote data is far less noisy than trade data at the same sampling
frequency.

Beside the above mentioned there are numerous others e�ects all imposing their own di�-

culties on the volatility measures. Realized Range for instance becomes biased due to discrete

price observations rather than the potentially higher and lower unobserved prices from a continues

process. Realized Volatility on the other hand remains unbiased under this type of noise. Re-

capitulating, there are many di�erent sources of microstructure noise. As so their true in�uence

might be hard to predict and thus di�cult to adjust for. One can however attempt to minimize

noise by careful selection of data sources. In practice nonetheless the direction of sparse sampling

is often chosen as to mitigate the in�uence of noise. This approach is further discussed in section

3.1.1.
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Figure A.3: Autocorrelation functions up to 10 dag lags for (absolute) S&P500 index returns and open
outcry only (absolute) S&P500 index returns, as well as (absolute) US 30 year treasury
bond futures returns and open outcry only (absolute) US 30 year treasury bond returns.
Both autocorrelation functions show a strong cyclical behavior as the result of strong diurnal
patterns. Graphs 2 and 4 only take open outcry returns into account resulting in higher
overall correlation. Autocorrelations for return observations are depicted in red; absolute
returns in blue and deseasonalized absolute returns in black.
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Figure A.4: Histogram of 10 second and 5 minute S&P500 index returns accompanied by a �tted normal
distribution with the same mean and variance. As can be seen in the descriptive statistics
on page 10 the distributions are quite symmetrical, have fat tails and greater mass in the
middle. Note that due unavoidable memory issues within Matlab an abundance of zero
returns has been left out of the histogram.

Figure A.5: Histogram of 10 second and 5 minute US 30 year treasury bond returns accompanied by a
�tted normal distribution with the same mean and variance. The return distributions of US
30 year treasury bonds do not look as �uent as is the case for S&P500 index returns. This is
most probably due to the greater tick-size the US Government uses for US treasury bonds,
i.e. 1/32nds of a dollar apposed to 1/100th of a dollar for regular securities on the New York
Stock Exchange (NYSE). Furthermore the US bonds only consist of 1 security as apposed to
the weighted average of 500 securities for the S&P500 index wearing the e�ect even further
down. For a proper evaluation of the impact of tick-size see: Munnix et al. (2010). Note
that due unavoidable memory issues within Matlab an abundance of zero returns has been
left out of the histogram.
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Positive Negative

Day Date Return [%] Day Date Return [%]

Tu 2008/10/28 7,95 Th 2008/10/09 -9,01

Mo 2008/10/13 7,69 We 2008/10/15 -8,34

Th 2008/11/13 5,86 Mo 2008/12/01 -6,64

We 2008/11/26 5,43 Tu 2008/10/07 -6,48

We 2008/01/23 5,37 Mo 2008/09/29 -6,44

We 2008/12/03 4,92 Th 2008/11/20 -5,56

Mo 2009/03/23 4,74 We 2008/11/19 -5,03

Fr 2008/12/05 4,31 Tu 2008/10/14 -4,69

Th 2009/03/12 4,24 Mo 2009/02/23 -4,49

Mo 2008/10/20 4,21 Tu 2009/01/20 -4,05

Table A.1: Ten most extreme positive and negative end-of-the-day return observations for S&P500 index
returns as measured from 09:30 until 16:15 over 10 second intervals. If there is a highly likely
cause to the event these are stated in the last column. However it seems notoriously di�cult
to designate a unambiguous cause in terms of unexpected events or news.

Positive Negative

Date Return [%] Date Return [%]

We 2009/03/18 4,47 We 2008/01/23 -2,68

Th 2008/11/20 3,55 Tu 2003/07/15 -2,53

Tu 2008/11/04 2,25 Fr 2004/04/02 -2,28

Tu 2008/12/16 2,23 Fr 2009/01/02 -2,27

Mo 2008/09/29 2,13 Th 2009/05/21 -2,14

Fr 2004/01/09 1,95 Th 2003/07/31 -2,13

Tu 2004/06/15 1,81 Tu 2008/09/30 -2,10

We 2003/08/06 1,77 Mo 2009/06/01 -1,98

Mo 2007/11/26 1,75 We 2009/05/27 -1,97

Mo 2008/09/15 1,74 Fr 2008/10/24 -1,95

Table A.2: Ten most extreme positive and negative end-of-the-day return observations for US30 year
treasury bond returns as measured from 08:20 until 17:00. If a likely cause can be deter-
mined this is stated in the last column. However it seems notoriously di�cult to designate a
unambiguous cause in terms of unexpected events, or news.
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Appendix B

Realized Variance

Realized variance (RV) is the �rst and most basic measure of integrated volatility. According to

the theory RV can recover the volatility de�ned by the quadratic variation of a semi martingale

price process24. Using high frequency returns it can be estimated by
∑n

1 (Yt,i∆ − Yt,(i−1)∆)2,

resulting in the formula for realized variance.

RVt =

n∑
i=1

r2
t,i (B.1)

where rt,i is the return
(
Yt,i∆ − Yt,(i−1)∆

)
over period [i− 1, i]. In an ideal world with no market

frictions, i.e. εt,i = 0 for every t and i, this would be an unbiased, consistent and highly e�cient

estimator for integrated variance25. One would merely have to drive up the sampling frequency to

obtain a more accurate estimate and as n→∞, realized variance converges to IV. Unfortunately

reality is not this structured. Practical implementation has to confront the fact that prices are not

recorded continuously and markets are not frictionless. Leading RV to be biased and inconsistent

resulting in great errors if one was to use RV on high sampling frequencies without correction.

To mitigate the bias problems lots of correction methods have been proposed, see for example

Andersen and Bollerslev (1998a); Andersen et al. (1999b, 2005); Asai et al. (2012) among many

others. Additional problems appear when the log price process also exhibits jumps, as can often

be observed in intra-day data. Stated in terms of integrals and using our research speci�c time

notation t, i instead of a general t, the di�usion process of (2) can be written as

Xt,i =

ˆ 1

0
µt,idi+

ˆ 1

0
σt,idBt,i + Jt,i (B.2)

Where Jt,i =
∑Ni

j=1Cj is a �nite activity jump process, meaning it has a �nite number of jumps,

Ni, in any bounded time interval and Cj denotes the size of the jump in question. Calculation of

RV over Xt,i in (B.2) now estimates not only IV but additionally the quadratic jump components.

Quadratic variation thus calculates:

QVt =

1ˆ

0

σ2
t,idi+

Ni∑
j=1

C2
j (B.3)

24See Jacod and Shiryaev (1987) and Barndor�-Nielsen and Shephard (2003) for further exposition on quadratic
variation (QV) assuming semimartingale properties for log price process.

25RV converges at rate
√
n, see Barndor�-Nielsen and Shephard (2002)
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Delivering the important �nding that realized variance is an inconsistent measure of IV in the

presence of jumps. This second component can however be disentangled from integrated variance

by consistent estimation of IV as done by Realized Bipower Variation (discussed in the next

section).

Having its �aws, the ease of computation makes RV a much used IV estimation technique

nonetheless. To deal with the bias in practice, another solution is favorite. Sparse sampling is

used as to mitigate microstructure e�ects. Though this tactic merely limits the in�uence of noise

rather than corrects for it, Hansen and Lunde (2006) advocate it works quite well. Empirical

evidence has shown that the optimal trade-o� between noise induced bias and variance of the

volatility estimates lies somewhere from 5 up to 30 minutes sampling intervals26. Zhang et al.

(2005) formally prove this by determining the optimal sampling frequency trade-o� by means of

minimizing the root mean squared error, RMSE =
(
bias2 + var

) 1
2 .

Realized Bipower Variation

Due to its quadratic form realized volatility is quite sensitive to outliers and jumps in the return

process. A more robust estimator can be found in Realized Bipower Variation (BPV). It is closely

related to realized variance in the sense that BPV can be written as a generalization of RV,

i.e. taking r = 2, s = 0 in equation (B.5) boils down to RV. But it has one major advantage

over realized variance. By taking the product of subsequent return observations it mitigates the

in�uence of outliers and is far less a�ected by jumps in the (log) price process. Again this can be

shown by extending equation (2) with a �nite activity jump process, Jt,i. i.e.:

Xt,i =

ˆ 1

0
µt,idi+

ˆ 1

0
σt,idBt,i + Jt,i (B.4)

De�ning a dummy, dt,i, to track these jumps

dt,i =


1, Jt,i = Jt,i+1 = 0

1, Jt,i 6= 0, Jt,i+1 6= 0

0, elsewhere

The Realized Bipower Variation, normally de�ned as

26Schwert (1998) uses 15-minute returns for construction of daily stock market volatilities, Taylor and Xu (1997)
and Andersen et al. (1999a) exploit 5-minute returns for daily exchange rate volatility measurement. Areal and
Taylor (2002) also use 5 minute returns for FTSE-100 index futures contracts and Bedendo and Hodges (2004) use
5 minute returns on S&P500 future return series as well. Furthermore Zhang et al. (2005) shows approximately
7.5 minutes to be the optimal weigh-o� in terms of RMSE.
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{(
1

n

)1−(r+s)/2
}
n−1∑
i=1

|rt,i|r|rt,i+1|s, r, s ≥ 0 (B.5)

with n the number of daily increments, rt,i the return over [i− 1, i], can now be written as

{(
1

n

)1−(r+s)/2
}
n−1∑
i=1

|rt,i|r|rt,i+1|sdt,i +

{(
1

n

)1−(r+s)/2
}
n−1∑
i=1

|rt,i|r|rt,i+1|s (1− dt,i) (B.6)

Barndor�-Nielsen and Shephard show that the in�uence of the jump process in the �rst term

converges to zero as 1
n → 0 and when s+ r < 2, due to the �nite number of jumps. Additionally

they prove that these conditions may be relaxed to max(r, s) < 2 as long as the probability of

observing two contiguous jumps converges to zero at rate 1
n , which is the case taking a �nite

activity jump process. Next they prove that the second term also converges to 0 as long as s < 2

and r < 2, completing the result that realized Bipower Variation is una�ected by the presence of

jumps and thus converges to IV.

Taking r = s = 1, (B.5) simpli�es to the realized Bipower Variation as used in this research.

BPVt =
n−1∑
i=1

|rt,i||rt,i+1|, r = s = 1 (B.7)

Note that, as is the case for RV, a sampling frequency has to be chosen. The same argument

holds as above, sample to scarce and lose e�ciency, sample to frequent and the estimation bias

due to microstructure e�ects could take over.

Realized Range

Another intuitive measure of volatility estimation is the Realized Range (RR) which makes use

of the di�erence in maximum and minimum observed prices during a certain period of time.

Properly scaled, Parkinsen (1980) shows that daily high-low range is up to 5 times more e�cient

than realized variance using daily squared returns. Correspondingly Andersen and Bollerslev

(1998a) show that daily high-low range performs similar to realized variance sampled at 4 to 8

times higher frequency. If this result holds for every sampling rate, in theory we'd have an ever

more e�cient estimator than RV. In this mindset Martens and Dijk (2007) proposed to use high-

low range with intra-day data and dubbed the resulting estimator Realized Range. Simulation

studies on their part, excluding market frictions, support the �nding that RR is unbiased and

more e�cient in terms of RMSE for every sampling rate from 1 minute up to a day. Adding
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noise induced by infrequent trading and bid-ask bounce, however, has the e�ect that RR becomes

biased. Suggesting there is again an optimal trade-o�, by simulation found to lay somewhere

at ∆ = 45 minutes. The bias adjusted realized range on the other hand does not su�er from

microstructure e�ects and thus bene�ts from greater sampling frequency.

To formalize the setting we again take P t,i∆ to be the last observed price in the i-th interval

of length 4, as we have already assumed in equation (1). Ht,i = sup(i−1)∆<j<i∆Pt,j is the highest

observed price or supreme and Lt,i = inf(i−1)∆<j<i∆Pt,j is the lowest observed price or in�mum.

The scaled high-low range estimator is than de�ned as

(lnHt,i − lnLt,i)2

4ln2
(B.8)

Aggregating over the n daily intervals gives the realized range:

RRt =
1

4ln2

n∑
i=1

(lnHt,i − lnLt,i)2 (B.9)

This version of the RR estimator is however somewhat sensitive to macroeconomic noise con-

stituents. As prices are observed about continuously the high price will likely be a ask price

whereas the low price will likely be a bid, exactly overestimating the range by the bid/ask spread.

On the other hand infrequent trading induces a negative bias due to unobserved intermediary

prices. Among other proposed bias-adjustments, Martens and Dijk suggested to multiply by the

ratio of daily range, RRDailyt−l , over the previous q days to the realized range over the same previous

q days. The idea is that noise is of little concern dealing with daily range. The realized range over

n intra-day intervals on the other hand is surely a�ected. The ratio between the two could thus

be used to scale the original estimates. Resulting in a bias-adjusted realized range estimator:

RRAdjt =

(∑q
l=1RR

Daily
t−l∑q

l=1RRt−l

)
RRt (B.10)

What remains is the choice of q. Here we naturally follow Martens and Dijk and use q = 66 days

or approximately 3 months. Note to this bias adjustment is that it could make disproportional

adjustments when dealing with highly volatile data in the sense that sudden high returns average

out in a daily accumulation to end-of-day Realized Range but do not with the Daily Range.

Consequently the adjustment term in B.10 can get rather large. Our S&P500 index futures

sample is typically such a challenging one.
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Two Time Scales Estimation

First two volatility estimators have one thing in common. Taking the empirically much used 5

minute intervals, they throw away vast amounts of data just to reduce the in�uence of microstruc-

ture e�ects. In our case this sparse sampling encompasses throwing away approximately 97% of

the data. Pure silliness from a statistical point of view. To quote Zhang et al.: �It is di�cult

to accept that throwing away data, especially in such quantities, can be an optimal solution".

Ultimately we'd like to create an unbiased and consistent estimator which uses all data, assuming

this leads to more accurate estimation o� course. Zhang et al. (2005) therefore develop a proce-

dure, based on earlier work of Zhou (1996) on scaled Brownian motion plus noise, that uses both a

higher and a lower data aggregation: the so called Two Time Scale (TTS) variance estimator. The

argument is that low frequency RV estimation reduces bias to IV estimates rather than corrects

for it. The relative size of this bias is proportional to the sampling frequency and can be corrected

for by consistent estimation of the noise variance in the return process. Now recall that when n

goes to in�nity equation (6) estimates just that. Thus by combining these we should be able to

get an unbiased and consistent estimator of IV27. To further improve e�ciency Zhang et al. take

the average RV over di�erent subsamples as opposed to plain RV with sparse sampling. That

is, when one observes N daily prices and samples with intervals of length ∆ = 1/n, there are

K = N/n di�erent ways to lay these samples on the interval. In our case for example we have

10-second prices (N = 8640) and a sparse sampling frequency of 5-minutes (n = 288). There are

thus 30 di�erent possible subsample grids to base 5 minute RV estimates on. Starting the �rst

returns from 9:30.00-9:35.00, one could also use 9:30.10-9:35.10 or 9:30.20-9:35.20 etc. to compute

RV. Averaging these di�erent sparsely sampled RV measures results in the average RV used in

TTS estimation. The practical problem what to do with the begin and end of a trading session

can be solved by proportionally in�ating the daily volatility estimator with a factor N
N−n̄ . This

factor originates from the fact that not all N but rather N − n̄ observations are utilized by the

K subsumples. In our case this is of lesser importance since we trade around the clock. Days can

thus be molted together leaving us with only the begin and end at July 2003 and December 2009.

These spots are manually altered by division through half the amount of subsamples.

In mathematical term we pursue the following:

27Note that this approach implicitly assumes the error terms to be independent. Empirically a highly question-
able property as debated by Hansen and Lunde (2004, 2006) whom �nd persistence up until a 2 minute lag.
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TTSt =
N

N − n̄

(
1

K

K−1∑
k=0

RV
(k)
t − n̄

N
RV all

t

)
(B.11)

with,

RV
(k)
t =

∑
r2
t,i for i = 1 +

k

K
, 2 +

k

K
, ..., n− 1 +

k

K

RV all
t =

N∑
j=1

r2
t,j for j = 1, 2, ..., N

n̄ =
N −K + 1

K

That is, the two time scales estimator takes the average RV for day t over multiple subsamples

and corrects the bias with n̄
N times the realized variance for day t calculated using all available

data.

Realized Kernel Estimation

The last discussed and widely accepted estimator of integrated variance we test here is the Realized

Kernel (RK). These type estimators, as introduced by Barndor�-Nielsen et al. (2008), are based

on the ideas of Hansen and Lunde (2004). They noticed that microstructure noise causes the

high frequency intra-day returns to be autocorrelated resulting in biased RV estimation. They

�gured that the empirical autocorrelation function up to a certain lag H can thus be used to

correct the bias in RV through a correction that works in the same way as in which robust

covariance estimators of Newey and West (1987) achieve their consistency. The realized kernels

are build upon the same principle. The kernel function, Kt(Yt,∆), consists of RV,γ0(Yt,∆), which

gets corrected by the empirical autocorrelations,
∑H

h=1 k
(
h−1
H

)
{γh(Yt,∆) + γ−h(Yt,∆)}, to adjust

for market frictions. Formally, the kernel function of Barndor�-Nielsen et al. can thus be written

as:

Kt(Yt,∆) = γ0(Yt,∆) +

Ht∑
h=1

k

(
h− 1

Ht

)
{γh(Yt,∆) + γ−h(Yt,∆)} (B.12)

γh(Yt,∆) =

K∑
j=1

(Yt,∆,j − Yt,∆,j−1) (Yt,∆,j−h − Yt,∆,j−h−1) =

K∑
j=1

(Rt,∆,jRt,∆,j−h) (B.13)
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Where Ht is the bandwidth parameter which is to be estimated and can be seen as the estimated

number of autocorrelations needed to bias adjust the Kernel estimate; k(x) is the chosen kernel

weighing function; γ0(Yt,∆) the realized variance; γh(Yt,∆) the h-th order autocovariance of the

observed log return series; K equals the size of sparse sampling intervals: N/n; and Yt,∆,j is the

observed log price level at time j in increment ∆ during day t. Note that since we estimate the

realized kernel on contaminated Yt series we get

Kt(Yt,∆) = Kt(Xt,∆) +Kt(Xt,∆, εt,∆) +Kt(εt,∆, Xt,∆) +Kt(εt,∆) (B.14)

Barndor�-Nielsen et al. (2011) show that as K → ∞, K(εt,∆)
p→ 0, Kt(Xt,∆)

p→ IV and that

the dependence between εt and Xt is asymptotically unimportant. Making Kt(Yt,∆) a consistent

estimator of IV.

First step for estimation is choosing the weighing function. Here we take the Parzen kernel

given by

k(x) =


1− 6x2 + 6x3

2 (1− x)3

0

0 ≤ x ≤ 0.5

0.5 ≤ x ≤ 1

x > 1

(B.15)

This kernel has some desirable properties: it satis�es the smoothness conditions k′(0) = k′(1) = 0

and is guaranteed to produce a non-negative estimate. Furthermore we take a �at-top kernel, i.e.

h−1
H - imposing unit weight on the �rst autocovariance - as these are to produce unbiased and

faster converging estimates28. For the optimal estimation of bandwidth H we follow the practical

estimation procedures laid out by Barndor�-Nielsen et al. (2009). Their preferred bandwidth

equals

H∗t = c∗ · ξ4/5
t ·K3/5, with c∗ =

{
k”(0)2´ 1

0 k(x)2dx

}1/5

and ξ2
t =

ω2
t√

n
´ n

0 σ4
t dt

(B.16)

Where an accent denotes the derivative of the function and double accents denote the second

derivative, not a transpose. c∗ is only dependent of the chosen weighing function and can thus

28Smooth Flat-top kernels converge at the optimal rate of K1/4, they can however not be guaranteed to produce
non-negative volatility estimates. The non-negative kernels of Barndor�-Nielsen et al. (2011) do not have these
problems although they have to sacri�ce some e�ciency. Consequently the convergence rate falls to K1/5.
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already be calculated. k”(x)2 = −12 + 36x for 0 ≤ x ≤ 0.5 and k”(x)2 = 12(1 − x)3 for

0.5 ≤ x ≤ 1. The denominator
´ 1

0 k(x)2dx equals 0.269 yielding c∗ =
(

122

0.269

)1/5
= 3.5134.

Obtaining an estimate for ξt is notoriously more di�cult. We start by estimating ω2
t which is

the variance of the error or noise term, V ar(εt), previously used in two time scales estimation.

Here we take the same approach as during TTS estimation, using all available data to consistently

estimate noise variance, with the addition of a little twist. For ω̂2
t to be a sensible estimator of

ω2
t , the error terms must be independent of each other through time. That is E[εt,iεt,i−q] should

be 0 for every q. Since there is overwhelming evidence that such is not the case for q = 1, see

Barndor�-Nielsen et al. (2009), a modi�cation has to be made. Following Barndor�-Nielsen et al.

we take

ω̂2
t,z =

RV all
t,z

2nt,z
, z = 1, ..., q (B.17)

That is, we calculate the realized variance using every q-th trade of day t and divide by twice

the number returns nt
29. Subsequently varying the starting point of q and taking the average of

the ω2
t estimates gives the �nal estimate: ω̂2

t = 1
q

∑q
z=1 ω̂

2
t,z. Following Hansen and Lunde (2006);

Barndor�-Nielsen et al. (2009) we take q = 12 so that subsequent returns in RV all
t,z are always 2

minutes apart, better complying the independence assumption30.

For the estimation of so called integrated quarticity (IQ): n
´ n

0 σ4
udu, we pose that this is

roughly the same as IV 2
t when σ2

t does not vary too much over the interval [0, n]31. The square

root of IQ can thus be estimated by a preliminary version of ˆIVt. Therefore realized variances are

used based on sparse sampling with 20 min intervals as to reduce the in�uence of noise and use

subsampling - in the same manner as done for the TTS estimator by shifting the starting points

- to further improve e�ciency32. ξ̂2
t now becomes

29Assuming the log prices to follow an Itô process as stated in equation (2), the conditional mean of
V ar(Yt) conditional on the process of Xt equals V ar(Xt) + 2nω2

t as stated in equation (6). Taking ∆ → 0,
V ar(Xt,i∆/(i−1)∆) → 0 stating that the conditional mean of V ar(Yt), which can be estimated by RV allt , is a

consistent estimator of the error variance: 2nω2
t , giving ω̂

2
t =

RV all
t

2nt
.

30Hansen and Lunde (2006) argue that ω̂2
t,z should be large relative to V ar(Xt)/2nt in estimating ω2

t . As this is
not always the case, especially for highly liquid assets where noise constituents are limited, this leads to an upward
bias in ω̂2

t . This in turn leads to a bigger, more conservative, choice of H. This is not a bad thing as in theory
to large a bandwidth does less damage than to small a one. Furthermore larger values of H actually increase
robustness to serial dependence in εt,i

31Note that this is a questionable yet necessary assumption as for example the bid-ask spread is typically found
to by greater during the opening and closing of open outcry markets, creating a diurnal spread curve. Relaxation
of this assumption for the estimation of integrated quarticity is however beyond of the scope of this thesis.

32Shephard et al. (2006) elaborate on the possible gains from subsampling for the realized kernel as a whole.
They �nd that it does not improve estimation unless an inappropriate weighing function was chosen. In other cases
it could even hurt.
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ξ̂2
t =

ω̂2
t

RV
subsample,sparse(20M)
t

(B.18)

resulting in the last ingredient to estimate the bandwidth parameter H∗in an optimal way33.

Ĥ∗t = c∗ · ξ̂4/5
t ·K3/5 (B.19)

Last remarks are placed upon end-e�ects and a possible solution, jittering. For consistency our

estimator we need Kt(εt,∆)
p→ 0 as n→∞ in equation (B.14). As the �rst and last observation of

a sample are often heavily contaminated with microstructure noise, this property is typically not

satis�ed making the kernel estimator inconsistent. The problem can be overcome by averaging

the �rst and last observation over its m direct neighbors, also known as jittering. However,

theoretically important, in practice optimal choice for m is often 1. Making these e�ects of no

practical importance.

A graph containing all above estimated IV measures has been included. Measures are more

or less in line with one another yet react di�erently to extreme return observations.

33This is the optimal solution in an asymptotic Mean Squared Error sense, see Barndor�-Nielsen et al. (2009).
Alternative methods that seek optimal �nite sample behavior have been proposed by Bandi and Russell (2006).
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Figure B.1: Integrated Variance estimators with the estimated average annual standard deviation in-
cluded between brackets. On average the Bipower Variation estimator seems to produces
lowest annual volatility in both cases. Further rankings vary over the two securities but
overall all �gures seem to be in quite a close range. Most notable is the high peaks and an-
nual standard deviation of the S&P500 as measured by the Realized Range. As pointed out
earlier the bias does some seemingly disproportionate adjustment through the high volatility
period.
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Seasonal simulation experiment

To con�rm the suspicion that the Fourier Flexible Form OLS regression should be altered as

compared to Andersen and Bollerslev (1997) a little simulation experiment is set up where the

return components from the return decomposition, ri = E [ri] + σisiZi, are already known. To

simulate these return paths we take: E [ri] = 0, σi = [0.5, 0.1, 0.01], Zi ∼ N (0, 1) and si follows

the parametrization:

ln
(
s2
i

)
= f(θ; i) = µ0 + µ1

i

N1
+ µ2

i2

N2
+ γ · cos

(
i2π

N

)
+ δ · sin

(
i2π

N

)
(B.20)

with θ = {µ0 = −5, µ1 = 7, µ2 = −3, γ = 2, δ = −1} and where N = 100 and N1 and N2

are normalizing constants as noted in section 3.2.6. Seasonal patterns are now estimated via

regression xi = f(θ; i) + εi with the two di�erent forms for xi

1. Bollerslev xi ≡ 2 · ln (|ri − E [ri]|)− ln
(
σ2
)

+ ln(N) = ln
(
s2
i

)
+ ln

(
Z2
i

)
− E[ln(Z2

i )] (B.21)

2. Adjusted xi ≡ 2 · ln (|ri − E [ri]|)− ln
(
σ2
)

+ ln(N)−E[ln(Z2
i )] = ln

(
s2
i

)
+ ln

(
Z2
i

)
−E[ln(Z2

i )]

(B.22)

with εi = ln
(
Z2
i

)
−E[ln(Z2

i )]. Figure B.2 shows some graphical illustrations from the simulation

experiment. It can clearly be seen that the unaltered seasonal pattern consistently underestimates

the true seasonal pattern. The altered version on the other hand shows an unbiased course through

the simulated daily seasonal as set out beforehand.

(a) σ = 0.5 (b) σ = 0.1 (c) σ = 0.01

Figure B.2: Seasonal simulation experiment: the unadjusted seasonal is clearly biased, yielding to low a
seasonal pattern regardless of the choice for σ. The second approach with xi as in (B.22)
gives an unbiased estimate.
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Figure B.3: Fitted Flexible Fourier Form on mean absolute S&P 500 index return data for di�erent
values of J and P accompanied by SIC and AIC values. The �t gradually improves as the
amount of parameters increase. Note however that it is not the objective to track the ex-
post volatility to our best capabilities but to make sensible forecasts. Tracking with to many
parameters would induce noise in the forecast and enlarge parameter estimation uncertainty.

102



Figure B.4: Fitted Flexible Fourier Form on mean absolute US 30 year treasury bond return data for
di�erent values of J and P accompanied by SIC and AIC values. The �t gradually improves
as the amount of parameters increase. Note however that it is not the objective to track
the ex-post volatility to our best capabilities but to make sensible forecasts. Tracking with
to many parameters would induce noise in the forecast and enlarge parameter estimation
uncertainty.
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Mincer-Zarnowitz regression coe�cients

The Mincer-Zarnowitz regression is generally a simple ordinary least squares regression of the

forecast on the (realized) true value, taking the form Rrealization = α + βPprediction + εt . In our

case however it is replaced by the more robust GLS counterpart. Al the same, conjunction of the

estimates α̂ and β̂ gives us some information about how accurate the prediction was. Aim is to

have α = 0 and β = 1 as we'd than have a perfect prediction in the sense that it is unbiased. Both

requirements should therefore simultaneously be tested using a F-test. Too visualize the setting

take the following diagram from Mincer and Zarnowitz (1969). Additional it gives clear insight in

how the much used Mean Squared Error is composed, MSE = E
[
(R− P )2

]
= 1

n

∑n
i=1

(
ε2
i

)
.

LPF Line of perfect forecast, Rrealization
RL Regression line, α̂+ β̂Pprediction
R Mean Realization

P Mean Prediction

E Mean Point

α̂ Estimated error constant

β̂ Estimated slope error

Figure B.5: Mincer-Zarnowitz regression coe�cients - Prediction/Realization diagram.

Figure B.6: Mincer-Zarnowitz diagram example for variance forecasts using FFF variance estimation on
US 30 year bond futures return data. Notice that the bias and therefore MSPE tends to
decline as one moves further from start of open outcry trade, i.e. 15, 30, 60, 120 minutes in.
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R2

As mentioned the coe�cient of determination, R2, from Mincer-Zarnowitz regressions should be

adjusted for the fact that volatility in itself cannot be observed. Consequently the R2 from

MZ-regressions has to be adjusted. To see this, take the following infeasible and feasible Mincer-

Zarnowitz regressions:

MZIV : IVt = γ + δ ˜IV t + εt (B.23)

MZRV : RVt = α+ β ˜IV t + εt (B.24)

Where RV can again be replaced by any other volatility measure. Instead of the infeasible �rst

regression we would like to perform, we are bound to use the feasible second one. The R2 which

we subsequently calculate is given by

R2
RV =

β̂2
∑T

t=H

(
˜IV t − ˜IV

)2

∑T
t=H

(
RVt −RV

)2 , instead of: R2
IV =

δ̂2
∑T

t=H

(
˜IV t − ˜IV

)2

∑T
t=H

(
IVt − IV

)2 (B.25)

Where δ̂ and β̂ are OLS estimates from regression (B.23) and (B.24) respectively, and ˜IV , IV and

RV are the averages of respectively ˜IV t, IVt and RVt. Thus to obtain R2
IV we need to multiply

R2
RV by the factor

∑T
t=1

(
RVt −RV

)2∑T
t=1

(
IVt − IV

)2 ·
(
δ̂

β̂

)2

(B.26)

to accommodate for the bias. First part in this formula equals the adjustment proposed by

Andersen et al. (2005) creating a partly adjusted R2, second part,
(
δ̂/β̂

)2
, was proposed by Asai

et al. (2012) creating what they call the fully corrected R2.

Theoretically sound, empirically though, there are still a few obstacles to overcome. The

needed IV cannot be observed and consequently δ cannot be estimated. To resolve this issue let

us start with the estimation of the �rst part of equation (B.26) as suggested by Andersen et al.

They argue that realized variance, or any other measure, can be written as the integrated variance

plus an error term: RVt = IVt + εt. The Variance of RV thus consists of both, variances for the

two constituents and a covariance term, V ar(RVt) = V ar(IVt) + V ar(εt) + 2Cov(IVt, εt) where

V ar(εt) = 2nE [RQt] + O(n), n is the number of daily increments, RQ is the realized quarticity
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and O(n) is of order n, generally to be neglected. Taking the results of Andersen et al. (2002) the

covariance term is generally small and therefore also negligible. Hence the variability of IV will

on average be overstated by 2nE [RQt]. In particular they state that, ignoring the O(n) term,

the R2 is on average underestimated by the factor V ar(RVt)/
(
V ar(RVt)− 2 1

nE [RQt]
)
equaling

the �rst part of equation (B.26). Furthermore they state that RQt can consistently be estimated

by n · 1
3 ·
∑n

i=1 r
4
t,i completing the result in a practical sense. Note must however be made that

for their results to be con�dently accurate the sample frequency, n, is recommended to be greater

than 48. That is one measurement every 8:26 minutes for a normal open outcry 'S&P500' day,

once every 10:50 minutes for the 'US30' day or once every 30 minutes for a 24 hour day. All well

within our range.

For the second part one can follow the procedure of Asai et al. (2012). They countered that

the partly corrected R2 of Andersen et al. in turn overestimates the true R2, sometimes even

exceeding one. They show algebraically that the second part of (B.26) is formally needed to

correct this. However δ cannot be estimated from regression (B.23) as IV is still unobserved. To

work around this, take again RVt = IVt + εt and write the estimated MZ-coe�cient as

δ̂ =

∑(
˜IV t − ˜IV

) (
IVt − IVt

)
∑(

˜IV t − ˜IV
)2 and replace IVt by RVt − εt

δ̂ =

∑(
˜IV t − ˜IV

) (
RVt −RVt

)
∑(

˜IV t − ˜IV
)2

︸ ︷︷ ︸
β̂

−

∑(
˜IV t − ˜IV

)
εt∑(

˜IV t − ˜IV
)2 +

∑(
˜IV t − ˜IV

)
εt∑(

˜IV t − ˜IV
)2

︸ ︷︷ ︸
0

→

δ̂ = β̂ −

∑(
˜IV t − ˜IV

)
εt∑(

˜IV t − ˜IV
)2 (B.27)

Where the average error, εt, is assumed zero. This leaves us with a last unknown, εt. The

procedure is as follows: (1) create estimates for β through equation (B.24) and calculate the

regression R2; (2) multiply R2 with the factor V ar(RVt)/
(
V ar(RVt)− 2 1

n

[
n · 1

3 ·
∑n

i=1 r
4
t,i

])
to

obtain the partly adjusted R2; (3) create estimates for εt through conducting �ltering techniques
34;

(4) replace εt by its estimate ε̂t in equation (B.27); (5) multiply the partly adjusted R2 by the

estimate of
(
δ̂/β̂

)2
creating the fully corrected R2.

34Asai et al. (2012) recommend particle �lters when volatility models are considered since the distribution of ε
is highly likely non Gaussian. The use and implementation of such �lters for this purpose is however beyond the
scope of this thesis.
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The Kalman Filter

The Kalman Filter (KF) as �rst developed by Rudolf Emil Kálmán in the article Kalman (1960)

is a highly popular recursive estimation algorithm used to obtain estimates of unobserved states

through noisy measurements. Its popularity comes from its recursive nature making it compu-

tationally attractive; the fact that it uses all available information using an optimal weighing

between signals; the relative ease of implementation and its excellent performance. In our setting

the �lter is used to model and predict the unobserved state variables α and β as measured through

a Mincer-Zarnowitz type regression.

Before we jump into the speci�cs of implementation lets begin with some background informa-

tion on the Kalman Filter, creating a sense of what is actually going on and why it works so well.

To do this we take an easy to visualize example, take for instance a car and its position. The cars

position at time t is not known with certainty and can only be measured with some error. Starting

in state 1, the car drives a bit. Due to general laws of physical we are able to predict where the

car will be at time t + 1. This new state, divided from state 1 by the mean velocity of the car

multiplied by the time interval, is not known exactly due to some error is the evolution of states.

Think of this as wheels that might be slipping, the speed not being displayed 100% accurate and

so on. In short there is a newly predicted state, the conditional mean, surrounded by insecurity

caught in a state estimation covariance creating the whole conditional probability density function

(pdf). Luckily we then get a new measurement from the cars on-line GPS system. The di�erence

from the GPS measurement and the earlier predicted measurement is used to obtain a measure

for the insecurity surrounding this new signal. A weighing function, called the Kalman gain, is

then used to combine the two precarious signals, the estimation and the new measurement, to

one optimal position estimate having smaller variance than either of the two signals. Graphically

this process can be illustrated by �gure B.7.
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Figure B.7: The �gure gives a graphical representation on how the recursive Kalman Filter algorithm
calculates the optimal new state by joining a noisy measurement with a precarious state
prediction. From the updated state 2 the next cycle of the �lter is entered.

Additional pleasing feature of the KF algorithm is that all estimated probability density func-

tions are conditional on the past in a recursive way. Making the mathematics tractable and

computationally fast as just one new data point has to be reviewed every time. For a very in-

tuitive and more thorough exposition of the Kalman Filter one could read the �rst chapter of

Maybeck (1979).

Now that the general idea is somewhat clear let us proceed with the more speci�c situation

at hand. Before we initiate state estimation some de�nitions and equations have to be set. First

and foremost are the state equations, governing the evolution of states through time, and the

measurement equation revealing how these states are connected to potentially noisy measurements.

As this is a �rst approach in modeling these states a simple but potentially restrictive �rst order

autoregressive model, 'AR(1)', is proposed for both states. These can therefore be written as:

αt,n∗ = cα,n∗ + ϕ1,n∗αt−1,n∗ + ζt,n∗ for n
∗ = 1, ..., nwith ζt ∼ N (0, Qζ) (B.28)

βt,n∗ = cβ,n∗ + ϕ2,n∗βt−1,n∗ + ηt,n∗ for n
∗ = 1, ..., nwith ηt ∼ N (0, Qη) (B.29)

Or more conveniently abbreviated in state-space notation as:

xt = C + Fxt−1 + ωt with ωt ∼ N

 0, Qζ 0

0, 0 Qη

 (B.30)

with
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C (2n× 1) =



cα,1
...

cα,n

cβ,1
...

cβ,n


, F (2n× 2n) =



ϕ1,1 0 · · · 0

0
. . .

ϕ1,n
. . .

...
...

. . . ϕ2,1

. . . 0

0 · · · 0 ϕ2,n


,

ωt (2n× 1) =



ζt,1
...

ζt,n

ηt,1
...

ηt,n


, Q (2n× 2n) =



σ2
ζ,1 · · · σζ,1σζ,n 0 · · · 0
...

. . .
...

...
. . .

...

σζ,nσζ,1 · · · 0σζ,nσζ,n 0 · · · 0

0 · · · 0 σ2
η,1 · · · ση,1ση,n

...
. . .

...
...

. . .
...

0 · · · 0 ση,nσ1 · · · ση,nση,n


Where xt is a vector, containing unobserved state {αt,n∗ , βt,n∗}

′
and ωt is an i.i.d. random normal

error term with mean zero and block-diagonal covariance matrix {Qζ , Qη}. This process noise

covariance Q can be seen as a measure of the uncertainty in the state dynamics during the time

interval between measurement updates. See for example �gure B.7, the variance of the predicted

state 2 is greater than was the case for (updated) state 1 due to this extra insecurity.

Second is the measurement equation which relates the measurements to the estimated process

states. For this purpose we take equation (31) and rewrite this to a state-space form.

RVt = αt,n∗ + βt,n∗ · ˜IV t,n∗ + vt,n∗ for n
∗ = 1, ..., n (B.31)

with ˜IV t,n∗ = RV n∗
t

∑n
i=1 st,i∑n∗

i=1 st,i
and vt ∼ N (0, R)

Put in state-space form:

zt = Htxt + vt with vt ∼ N (0, R) (B.32)
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Ht (n× 2n) =


1 0 0 ˜IV t,1 0 0

0
. . . 0 0

. . . 0

0 0 1 0 0 ˜IV t,n

 , xt (2n× 1) =



αt,1
...

αt,n

βt,1
...

βt,n


,

vt (n× 1) =


vt,1
...

vt,n

 , R (n× n) =


σ2
v,1 · · · σv,1σv,n
...

. . .
...

σv,nσv,1 · · · σv,nσv,n


Where RV n∗

t is the measurement of a volatility measure on day t up to time n∗; ˜IV t,n∗ is

the predicted end-of-the-day volatility, st,i is the deterministic seasonal pattern from FFF or

(Exponentially Weighted) Moving Average seasonal; vt,i is assumed a mean zero, i.i.d. random

normal variable with covariance matrix R assumed independent of ωt; H the transition matrix and

zt the end-of-the-day variance measurements as obtained by various volatility measures like RV .

Essentially equation (B.30) and (B.32) already summarize the equations needed for the Kalman

Filter, the rest is more straightforward yet insightful and will be worked out below.

Next section reveals the working of updates and predictive iterations by the Kalman Filter. It

is actually nothing more than a mathematical exposition of what was already made clear in �gure

B.7. Lets start with a state prediction, or one step ahead forecast. By equation (B.30) it is easily

shown that the predicted state (conditional mean), conditional on the current state is given by

x̂t|t−1 = C + Fx̂t−1|t−1 (B.33)

The predicted covariance of the state estimate equals

P t|t−1 = FPt−1|t−1F
′ +Q (B.34)

That is the former corrected covariance pre- and post-multiplied by the transition matrix, in-

creased by the variance from state equation insecurity. So now we have predicted the conditional

mean and the covariance of the state, thereby obtaining the whole conditional pdf of the forecasts

for a one-step ahead future states. Next to the algorithm is the updating step. We start with

the measurement residual, being the di�erence between the measurement forecast from the mea-

surement equation and the actual measurement zt = RVt. Subsequent the residual covariance is
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measured by (B.36).

et = zt −Htx̂t|t−1 (B.35)

St = HtPt|t−1H
′
t +R with R = cov (vt,i) (B.36)

Above equations mainly yield insight in the accuracy of the measurements. These quantities will

be needed to assess how much weight must be attached to future measurement predictions. In

the formula for the actual weigh-o�, the so called Kalman gain, the inverse of the covariance of

measurement residuals is therefore taken.

Kt = Pt|t−1H
′
tS
−1
t (B.37)

This function thus directs optimal weight to the new signal/measurement, optimal in the sense

of smallest MSPE, conditional on its past performance as measured by residual covariance. That

is, the bigger the residual covariance, the smaller the Kalman gain and the less weight is put

to the new measurement update. If on the other hand St is small, there is strong belief in the

new measurement and high weight is directed toward its value. In the extreme case when the

estimation error covariance explodes the Kalman gain converges to zero and visa versa. With

that all the ingredients to create an updated state estimate are obtained. The update can be

calculated as

x̂t|t = x̂t|t−1 +Ktet (B.38)

and the updated covariance estimate becomes

Pt|t = (I −KtHt)Pt|t−1 (B.39)

Completing the circle for a next recursive step. However in order to initiate the recursions one

must �rst obtain initial values and as research in other directions of science yet on the Kalman

Filter has shown that poor estimates of the input noise statistics may seriously degrade Kalman

performance and even provoke divergence of the �lter, see Fitzgerald (1971); Sangsuk-lam and

Bullock (1990), these must be selected sensibly. Therefore the �rst year of observations is taken

as estimation sample to obtain initial values. For the problem at hand this will be done in the
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following way.

By use of an arbitrarily chosen 20 day moving window for Mincer-Zarnowitz regressions we

approximated time series for alpha and beta. Associated means can then be obtained. Last value

of these time series can be used as initial states, µ0. The time series themselves can be used to

estimate an AR(1) model. thereby one can obtain initial values for C and F based on the �rst

year and obtain Qζ and Qη from regression residuals. Once α and β time series are obtained these

can also be used to gain proxy's for the measurement error from equation (B.32) and subsequently

produce the measurement error covariance R0. Last remaining initial value is Σ0 which we initiate

at 1e−3I[n×n]. The choice of this parameter is of somewhat arbitrary yet of lesser concern as the

algorithm adjusts it and it is found to converge as long as the initial value is not taken to be zero.

Summarizing we get:

Summing Kalman Filter and Kalman Smoother variables:

xt 2n× 1 - State vector
zt n× 1 - Observation vector
Ht n× 2n - Linear transition matrix
C 2n× 1 - vector of unconditional state constants
F 2n× 2n - Process noise covariance matrix
Q 2n× 2n - Process noise covariance matrix
R n× n - Measurement noise covariance matrix

Table B.1: Kalman Filter and Smoother variables

Kalman Filter Equations

Model forecast step/prediction-step: x̂t|t−1 = C + Fx̂t−1|t−1

P t|t−1 = FPt−1|t−1F
′ +Q

Data assimilation step/update-step: et = zt −Htx̂t|t−1

St = HtPt|t−1H
′
t +R

Kt = Pt|t−1H
′
tS
−1
t

x̂t|t = x̂t|t−1 +Ktet
Pt|t = (I −KtHt)Pt|t−1

Table B.2: Kalman Filter Equations. An recursive algorithm to reveal unobserved time series from noisy
measurements and the state equation. The �lter is optimal in a mean squared prediction
error (MSPE) kind of sense.
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Kalman Smoother Equations

ut−1 = H ′tSt
(
zt −Htx̂t|t−1

)
+ L′tut with Lt = F (I −KtHt)

Ut−1 = H ′tStHt + L′tUtLt
x̂t|T = x̂t|t−1 + Pt|t−1ut−1

Pt|T = Pt|t−1 + Pt|t−1Ut−1Pt|t−1

Pt,t−1|T =
(
I − Pt|t−1Ut−1

)
Lt−1Pt−1|t−2

with �nal calculations for t=0:
x̂0|T = x̂0 + P0F

′u0

P0|T = P0 − P0F
′U0FP0

P1,0|T =
(
I − P0|1U0

)
FP0

Table B.3: Kalman Smoothing Equations. Basically smoothing the �lter estimated states through a
backward recursion of the �lter. Estimating the optimal states, in the sense of mean squared
error (MSE), having already observed all the data, i.e. E [xt|ZT ]. Note that we made use
of the following starting conditions: uT = 0 and UT = 0. Furthermore Pt,t−1|T has been
included being the lag-one covariance smoother needed for the Expectation Maximization
algorithm.
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Unconstrained EM M-step derivations

Complete data likelihood function:

− 2lnL (X,Z; θ) = ln (|Σ0|) + (x0 − µ0)′ Σ−1
0 (x0 − µ0) +

T · ln (|Q|) +

T∑
t=1

(xt − C − Fxt−1)′Q−1 (xt − C − Fxt−1) +

T · ln (|R|) +

T∑
t=1

(zt −Htxt)′R−1 (zt −Htxt)

Conditional expectation of likelihood function under current parameters:

Qfunction
(
θj |ZT , θj−1

)
= E

[
−2lnL (X,Z; θ) |ZT , θj−1

]

Qfunction
(
θj |ZT , θj−1

)
= ln (|Σ0|) + tr

(
Σ−1

0

[(
x0|T − µ0

) (
x0|T − µ0

)′
+ P0|T

])
+

T · ln (|Q|) + tr
(
Q−1 [S11 − S1C

′ − S10F
′ + T

(
CC′

)
− CS′1 + CS′0F

′ − FS′10 + FS0C
′ + FS00F

′])+

T · ln (|R|) + tr

(
R−1

[
T∑
t=1

((
zt −Htxt|T

) (
zt −Htxt|T

)′
+HtPt|TH

′
t

)])

with

S0 =

T∑
t=1

(
xt−1|T

)

S1 =

T∑
t=1

(
xt|T

)

S00 =

T∑
t=1

(
xt−1|Tx

′
t−1|T + Pt−1|T

)

S10 =

T∑
t=1

(
xt|Tx

′
t−1|T + Pt,t−1|T

)

S11 =

T∑
t=1

(
xt|Tx

′
t|T + Pt|T

)
Where we used x′Ax = tr (x′Ax) = tr (Axx′) which holds as long as x is a vector or scalar;∑
tr (Axx′) = tr

∑
(Axx′) andE

[∑T
t=1(xtx

′
t)|Zn; θ

]
=
∑T

t=1E [xtx
′
t|Zn; θ] =

∑T
t=1

(
Pt|T + xt|Tx

′
t|T

)
.

The latter property follows from the covariance de�nition: cov (x, x) = E
[
(x− E (x)) (x− E (x))′

]
=

E [xx′]−E [x]E [x]′ → E (xx′) = cov (x, x) +E (x)E (x)′ and results in the extra conditional co-

variance terms in the Q-function. To see this we work out the last 'R' term line of the Complete

data likelihood function. The rest takes some paperwork but follows in much the same way.
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E

[
T · ln

(∣∣∣R(θj−1)

∣∣∣)+

T∑
t=1

(zt −Htxt)′R−1

(θj−1)
(zt −Htxt) |ZT , θj−1

]
=

E

[
T · ln

(∣∣∣R(θj−1)

∣∣∣)+ tr

(
R−1

(θj−1)

T∑
t=1

(zt −Htxt) (zt −Htxt)′
)
|ZT , θj−1

]
=

E

[
T · ln

(∣∣∣R(θj−1)

∣∣∣)+ tr

(
R−1

(θj−1)

T∑
t=1

(
ztz
′
t − ztx′tH ′t −Htxtz′t +Htxtx

′
tH
′
t

))
|ZT , θj−1

]
=

now noting that E
[
xtx
′
t|ZT , θj−1

]
= cov

(
xt|T , xt|T

)
+ E

[
xt|ZT , θj−1

]
E
[
xt|ZT , θj−1

]′
= Pt|T + xt|Tx

′
t|T

T · ln
(∣∣∣R(θj−1)

∣∣∣)+ tr

(
R−1

(θj−1)

T∑
t=1

(
ztz
′
t − ztx′t|TH ′t −Htxt|T z′t +Htxt|Tx

′
t|TH

′
t +HtPt|TH

′
t

))
=

T · ln
(∣∣∣R(θj−1)

∣∣∣)+ tr

(
R−1

(θj−1)

[
T∑
t=1

((
zt −Htxt|T

) (
zt −Htxt|T

)′
+HtPt|TH

′
t

)])
= (B.40)

Yielding the last line from the Q-function. Note that we put some extra emphasis on the condi-

tionality of parameter R on the last iteration, θj−1.

In order to obtain the minimum of the Qfunction one has to calculate the �rst order partial

derivatives with respect to the parameters θ = {µ0,Σ0, C, F,Q,R}, and zero this partial derivative
to gain the optimal analytical solution.

δQfunction
δµ0

=
δ
[
tr
(

Σ−1
0

(
x0|T − µ0

) (
x0|T − µ0

)′)]
δµ0

=

Σ−1
0

(
x0|T − µ0

)
+
(
Σ−1

0

)′ (
x0|T − µ0

)
=

2Σ−1
0

(
x0|T − µ0

)
= 0

µ0 = x0|T

δQfunction
δΣ0

=
δ
[
ln (|Σ0|) + tr

(
Σ−1

0

[(
x0|T − µ0

) (
x0|T − µ0

)′
+ P0|T

])]
δΣ0

=(
Σ−1

0

)′ − (Σ−1
0

[(
x0|T − µ0

) (
x0|T − µ0

)′
+ P0|T

]
Σ−1

0

)′
=

Σ′0
(
Σ−1

0

)′
Σ′0 −

[(
x0|T − µ0

) (
x0|T − µ0

)′
+ P0|T

]′
=

Σ′0 −
[(
x0|T − µ0

) (
x0|T − µ0

)′
+ P0|T

]′
= 0

Σ0 =
(
x0|T − µ0

) (
x0|T − µ0

)′
+ P0|T

where the symmetry property of the covariance matrix is used, i.e. Σ′0 = Σ0
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δQfunction
δC

=
δ
[
tr
(
Q−1 [−S1C

′ + T (CC′)− CS′1 + CS′0F
′ + FS0C

′]
)]

δC
=

−
δ
[
tr
(
Q−1S1C

′)]
δC

+
δ
[
tr
(
Q−1T (CC′)

)]
δC

−
δ
[
tr
(
Q−1CS′1

)]
δC

+
δ
[
tr
(
Q−1CS′0F

′)]
δC

+
δ
[
tr
(
Q−1FS0C

′)]
δC

=

−Q−1S1 + 2TQ−1C −Q−1S1 +Q−1FS0 +Q−1FS0 =

− 2Q−1S1 + 2TQ−1C + 2Q−1FS0 =

−Q−1S1 + TQ−1C +Q−1FS0 =

−S1 + TC + FS0 = 0 → C = T−1 (S1 − FS0)

C = T−1
(
S1 −

(
S10 − T−1S1S

′
0S
−1
00

) (
I − T−1S0S

′
0S
−1
00

)−1
S0

)

δQfunction
δF

=
δ
[
tr
(
Q−1 [−S10F

′ + CS′0F
′ − FS′10 + FS0C

′ + FS00F
′]
)]

δF
=

−
δ
[
tr
(
Q−1S10F

′)]
δF

+
δ
[
tr
(
Q−1CS′0F

′)]
δF

−
δ
[
tr
(
Q−1FS′10

)]
δF

+
δ
[
tr
(
Q−1FS0C

′)]
δF

+
δ
[
tr
(
Q−1FS00F

′)]
δF

=

−Q−1S10 +Q−1CS′0 −Q−1S10 +Q−1CS′0 +
(
S00F

′Q−1)′ +Q−1FS00 =

− 2Q−1S10 + 2Q−1CS′0 + 2Q−1FS00 =

S10 + CS′0 + FS00 = 0

S10 + CS′0 + FS00 = 0 → F =
(
S10 − CS′0

)
S−1

00

F =
(
S10 − T−1S1S

′
0S
−1
00

) (
I − T−1S0S

′
0S
−1
00

)−1

where the symmetry property of the S00 matrix is used, i.e. S′00 = S00

δQfunction
δQ

=

δT · ln (|Q|) + tr
(
Q−1 [S11 − S1C

′ − S10F
′ + T (CC′)− CS′1 + CS′0F

′ − FS′10 + FS0C
′ + FS00F

′]
)

δQ
=

T
(
Q−1)′ − (Q−1 [S11 − S1C

′ − S10F
′ + T

(
CC′

)
− CS′1 + CS′0F

′ − FS′10 + FS0C
′ + FS00F

′]Q−1)′ =

T
(
QQ−1Q

)′ − (QQ−1 [S11 − S1C
′ − S10F

′ + T
(
CC′

)
− CS′1 + CS′0F

′ − FS′10 + FS0C
′ + FS00F

′]Q−1Q
)′

=

TQ′ −
(
S11 − S1C

′ − S10F
′ + T

(
CC′

)
− CS′1 + CS′0F

′ − FS′10 + FS0C
′ + FS00F

′)′ = 0

Q = T−1 (S11 − S1C
′ − S10F

′ + T
(
CC′

)
− CS′1 + CS′0F

′ − FS′10 + FS0C
′ + FS00F

′)
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δQfunction
δR

=
δ
[
T · ln (|R|) + tr

(
R−1

[∑T
t=1

((
zt −Htxt|T

) (
zt −Htxt|T

)′
+HtPt|TH

′
t

)])]
δR

=

T ·
(
R−1)′ −(R−1

[
T∑
t=1

((
zt −Htxt|T

) (
zt −Htxt|T

)′
+HtPt|TH

′
t

)]
R−1

)′
=

T ·
(
RR−1R

)′ −(RR−1

[
T∑
t=1

((
zt −Htxt|T

) (
zt −Htxt|T

)′
+HtPt|TH

′
t

)]
R−1R

)′
=

T ·R′ −

(
T∑
t=1

((
zt −Htxt|T

) (
zt −Htxt|T

)′
+HtPt|TH

′
t

))′
= 0

R = T−1
T∑
t=1

((
zt −Htxt|T

) (
zt −Htxt|T

)′
+HtPt|TH

′
t

)
To obtain the above calculated partial derivatives of the Q-function a few matrix derivative rules

were used: tr (A+B) = tr (A) + tr (B), δln|X|
δX =

(
X−1

)′
, δA′XA

δX = AA′, δX′AX
δX = AX + A′X,

δtr(X−1B)
δX = −

(
X−1BX−1

)′
, δtr(XA)

δX = A′, δtr(X
′A)

δX = A , δtr(AXBX)
δX = B′X ′A′ +A′X ′B′.
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Newton Raphson Algorithm

Simple custom made Newton Raphson algorithm using the marginal gradients (Jacobian) and

�xed step-size. The second order partial numerical derivative (Hessian) was replaced by an easier

decreasing step-size to save computational time. Boundaries are taken account for and the likeli-

hood is checked for imaginary parts and positive de�niteness of covariance matrices. Furthermore

steps are only taken when the likelihood f(j) decreases thus minimizing −2lnL (X,Z; θ).

Algorithm. pseudocode - Newton Raphson Algorithm

while abs ( f(jinit) - f(j) ) > tolerance

for i=1 : parameters

f(j)=f(jo)

calculate gradient: grad(i)=( f(jo(i) + step ) - f(j) ) / step

if grad(i) 6=imaginary & gradient < 0

if ( jo(i) + step ) < upper-boundary(i)

if ( fjnew < fj & fjnew6=imaginary & covar = positive-de�nite)

jo(i)=jo(i)+step

end

step = step/2

end

elseif grad(i) 6=imaginary & grad > 0

if ( jo (i) - step ) > lower-boundary(i)

if ( fjnew < fj & fjnew6=imaginary & covar = positive-de�nite)

jo=jo-step

end

end

step = step/2

end

end

iteration = iteration+1

end
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Restrictions and Parametrizations

By laws of statistics it is clear that estimation insecurity, that is, the standard errors of the

estimates, increase as more parameters need to be estimated on the same sample. Other way

around also holds, decreasing standard errors for less parameters. Main objective of restricting

and parametrizing the covariance matrix is therefore to dwarf standard errors and hopefully

enhance estimation precision, that is lower MSPE, bearing in mind that parametrization also

induces some extra bias. During this research a few trials were put to the test:

1. As i→ n the covariance of vt, caught in matrix R, decreases towards zero as a simple result of

having already obtained all data with which the volatility measure itself was constructed (see

B.8). R could therefore be parametrized by a logistic function
(

1− 1
1+exp−(γ1+γ2n∗)

+ en∗
)

over the diagonals of R. Noting that R must be symmetric this reduces the number of

estimates from 1
2n (1 + n) to 2n as we only estimate γ1 and γ2 instead of σv,iσv,i. However

problems occur with this method as the parameterized covariance matrix is no longer bound

to be positive de�nite. Consequently yielding obscure likelihood values. Second more general

problem to the procedure is that as errors are highly correlated to direct neighbors (up to

0.98) eigenvalues are close to one. Consequently the ratio between maximum and minimum

singular value explodes, Yielding a ill-conditioned matrix.

R (n× n) =


σ2

1,1 (γ1, γ2) σ2σ1 (γ3, γ4) · · · σnσ1 (γ2n−1, γ2n)

σ1σ2 (γ3, γ4) ↘ ↘
...

... ↘ ↘
...

σ1σn (γ2n−1, γ2n) · · · · · · 0


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(a) Measurement Equation covariance ma-
trix, R

(b) Fitted covariance matrix

Figure B.8: Reducing covariance of vt as i → n for S&P500 data using FFF forecasting and RV as
measure. Figure a) exhibits a noticeable ridge at approximately 14:15 p.m. Reason for this
pattern remains ambiguous. Due to this ridge the �tted covariance matrix in �gure b) is
somewhat troubled.

2. Second trial comprehended estimating variances and complementing rows and columns with

their diagonal element. Thereby reducing the number of parameters from 1
2n (1 + n) to n.

The resulting matrix could be ill-conditioned yet reducing the dimensionality such problems

can be circumvented. Furthermore as long as the covariances decrease as i → n, correla-

tion boundaries are satis�ed. The positive de�nite covariance property however cannot be

guaranteed but could be checked upon initiation and withheld during estimation.

3. Third possibility is to reduce to covariance matrix to a diagonal one. This reduces the

number of parameters from 1
2n (1 + n) to n and is bound to produce all positive eigenvalues

as variances need to be positive. Thereby protecting the su�cient positive de�nite property

(which includes positive determinant).

R (n× n) =


σ2
i=1 0 · · · 0

0 σ2
i=2

. . .
...

...
. . .

. . . 0

0 · · · 0 σ2
i=n


4. Fourth option to reduce insecurity and improve conditioning is by simply diminishing the

dimensions of the problem. As the measurement errors are highly correlated, mounting

to 0.98, taking errors time-wise further apart could help lower dependence and singularity

problems during estimation.
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5. Fifth option to reduce standard errors would be to obtain estimates for the unconstrained as

well as a constrained covariance matrix and take an optimally weighted average of both by

a procedure called shrinkage, see Ledoit and Wolf (2003) and the well readable exposition

by Schafer and Strimmer (2005). This procedure has some advantages as the resulting

shrinkage covariance estimate will automatically be positive de�nite. Moreover even if the

target (constrained covariance matrix) is strongly misspeci�ed, shrinkage will lead to a

reduction of MSE; and, as analytical expressions can be obtained for the optimal shrinkage

intensity, the procedure is computationally inexpensive. However a further exposition on

the possible gains of such a method is left for later research.

As a workable solution to this �rst survey it was chosen to reduce dimensionality from 5 minute

intervals to half an hour, making the matrix better conditioned. The diagonal is then estimated

and the rest of the matrix complemented following the second bullet, subsequently yielding un-

dermentioned parametrization. Furthermore an extra e�ort is made to obtain good initial values

(better than random values between the boundaries) so that MLE converges more easily.

(a) Initial (b) Parametrized

Figure B.9: Parametrization of R based on �rst year estimation sample for US 30 year treasury bond
futures using the RV measure and FFF forecasts.

For Q similar restrictions can be imposed though a logit function would not make sense

as no exponential decay is present. Furthermore it is noted that the third option reduces the

assumed SUTSE (seemingly uncorrelated timeseries estimation) model to a mere multivariate

AR(1) setting, removing all mutual correlations. For Q it was chosen to reduce the dimensionality

similar to R and further restricted to a diagonal matrix:
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Q (2n× 2n) =



σ2
ζ,1 · · · 0 0 · · · 0
... ↘

...
...

. . .
...

0 · · · σ2
ζ,n 0 · · · 0

0 · · · 0 σ2
η,1 · · · 0

...
. . .

...
... ↘ ↓

0 · · · 0 0 · · · σ2
η,n


(B.41)

(a) Covariance state equation α: Qζ (n∗) for resp. S&P500 and US30

(b) Covariance state equation β: Qη (n∗) for resp. S&P500 and US30

Figure B.10: α- and β-block of blockdiagonal covariance matrix Q of state equation residual ωt as i→ n
as estimated on �rst year estimation sample. Graphs display a far less stylized pattern
than covariance matrix R.
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Appendix C

Annualized standard deviation of S&P data omitting Sept, Oct, Nov 2008

Figure C.1: Annualized standard deviation of S&P500 data by the 5 volatility measures. First including,
second excluding Sept, Oct, Nov 2008 data. Note the scale on which graphs are plotted for
a sense on the extremity of di�erences.
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S&P500 - BOD S&P500 - MA

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
5
m
in
u
te
s

RV 0, 2599
(0,0050)

∗ 15, 0971
(2,6750)

∗ 0,4471 0,0728 0,3742 0,8645 0, 2597
(0,0050)

∗ 0, 6029
(0,1039)

∗ 0,4436 0,0728 0,3708 3,7650

BPV 0, 1659
(0,0028)

∗ 10, 0676
(2,5910)

∗ 0,4499 0,0697 0,3802 0,8695 0, 1645
(0,0028)

∗ 0, 3828
(0,0949)

∗ 0,4368 0,0697 0,3671 3,7793

RR 0, 1095
(0,0054)

∗ 12, 8351
(0,4868)

∗ 0,6209 0,0692 0,5517 0,8681 0, 1089
(0,0054)

∗ 0, 4839
(0,0184)

∗ 0,6150 0,0692 0,5458 1,8574

TTS 0, 1910
(0,0066)

∗ 12, 1705
(0,6047)

∗ 0,5843 0,0693 0,5150 0,8690 0, 1910
(0,0066)

∗ 0, 4804
(0,0240)

∗ 0,5778 0,0693 0,5086 2,3068

Kernel 0, 1869
(0,0069)

∗ 11, 1777
(0,4965)

∗ 0,5762 0,0756 0,5006 0,8578 0, 1862
(0,0069)

∗ 0, 4416
(0,0198)

∗ 0,6054 0,0756 0,5298 2,8391

Mean 0,1826 12,2696 0,5357 0,0713 0,4643 0,8658 0,1821 0,4783 0,5357 0,0713 0,4644 2,9095

(a) Statistics for volatility measured from start of the day up until 15 min.

S&P500 - BOD S&P500 - MA

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

3
0
m
in
u
te
s

RV 0, 1972
(0,0045)

∗ 6, 2328
(0,3316)

∗ 0,6270 0,1269 0,5001 0,7701 0, 1972
(0,0045)

∗ 0, 4866
(0,0261)

∗ 0,6344 0,1269 0,5075 1,6366

BPV 0, 1159
(0,0020)

∗ 5, 9500
(0,3228)

∗ 0,5925 0,1308 0,4617 0,7634 0, 1156
(0,0020)

∗ 0, 4388
(0,0241)

∗ 0,6113 0,1308 0,4805 2,0244

RR 0, 0787
(0,0053)

∗ 7, 3887
(0,2329)

∗ 0,7103 0,1262 0,5841 0,7672 0, 0807
(0,0053)

∗ 0, 5580
(0,0178)

∗ 0,7081 0,1262 0,5819 1,0492

TTS 0, 1432
(0,0064)

∗ 6, 6651
(0,2470)

∗ 0,6621 0,1291 0,5330 0,7638 0, 1435
(0,0064)

∗ 0, 5216
(0,0194)

∗ 0,6610 0,1291 0,5319 1,2799

Kernel 0, 1411
(0,0076)

∗ 6, 6851
(0,2455)

∗ 0,7027 0,1311 0,5716 0,7601 0, 1429
(0,0075)

∗ 0, 5175
(0,0192)

∗ 0,7030 0,1311 0,5718 1,3106

Mean 0,1352 6,5843 0,6589 0,1288 0,5301 0,7649 0,1360 0,5045 0,6636 0,1288 0,5347 1,4601

(b) Statistics for volatility measured from start of the day up until 30 min.

S&P500 - BOD S&P500 - MA

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

6
0
m
in
u
te
s

RV 0, 1377
(0,0062)

∗ 3, 4633
(0,1343)

∗ 0,7536 0,2443 0,5092 0,5852 0, 1384
(0,0061)

∗ 0, 5543
(0,0216)

∗ 0,7443 0,2443 0,4999 0,8122

BPV 0, 0855
(0,0029)

∗ 3, 3970
(0,1206)

∗ 0,7450 0,2400 0,5051 0,5914 0, 0858
(0,0028)

∗ 0, 5186
(0,0185)

∗ 0,7363 0,2400 0,4964 0,8870

RR 0, 0575
(0,0059)

∗ 3, 8437
(0,1175)

∗ 0,7731 0,2495 0,5236 0,5721 0, 0624
(0,0056)

∗ 0, 6026
(0,0185)

∗ 0,7924 0,2495 0,5429 0,6509

TTS 0, 1075
(0,0078)

∗ 3, 6733
(0,1336)

∗ 0,7857 0,2455 0,5403 0,5803 0, 1103
(0,0075)

∗ 0, 5896
(0,0213)

∗ 0,7991 0,2455 0,5536 0,6780

Kernel 0, 0960
(0,0081)

∗ 3, 7504
(0,1220)

∗ 0,7681 0,2486 0,5195 0,5749 0, 1017
(0,0078)

∗ 0, 5931
(0,0194)

∗ 0,7905 0,2486 0,5419 0,6843

Mean 0,0968 3,6256 0,7651 0,2456 0,5195 0,5808 0,0997 0,5717 0,7725 0,2456 0,5269 0,7425

(c) Statistics for volatility measured from start of the day up until 60 min.

S&P500 - BOD S&P500 - MA

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
2
0
m
in
u
te
s

RV 0, 0873
(0,0075)

∗ 2, 3080
(0,0781)

∗ 0,8644 0,3955 0,4690 0,3838 0, 0923
(0,0071)

∗ 0, 7302
(0,0247)

∗ 0,8692 0,3955 0,4737 0,2302

BPV 0, 0503
(0,0039)

∗ 2, 3733
(0,0731)

∗ 0,8388 0,3876 0,4512 0,3936 0, 0535
(0,0037)

∗ 0, 7262
(0,0224)

∗ 0,8482 0,3876 0,4606 0,2519

RR 0, 0409
(0,0058)

∗ 2, 3973
(0,0674)

∗ 0,8863 0,4059 0,4804 0,3665 0, 0499
(0,0055)

∗ 0, 7568
(0,0215)

∗ 0,8829 0,4059 0,4770 0,1891

TTS 0, 0783
(0,0080)

∗ 2, 3433
(0,0778)

∗ 0,8752 0,3958 0,4794 0,3807 0, 0852
(0,0076)

∗ 0, 7438
(0,0246)

∗ 0,8851 0,3958 0,4893 0,1987

Kernel 0, 0641
(0,0080)

∗ 2, 4183
(0,0693)

∗ 0,8908 0,3978 0,4930 0,3770 0, 0757
(0,0075)

∗ 0, 7556
(0,0218)

∗ 0,8995 0,3978 0,5017 0,1944

Mean 0,0642 2,3680 0,8711 0,3965 0,4746 0,3803 0,0713 0,7425 0,8770 0,3965 0,4805 0,2129

(d) Statistics for volatility measured from start of the day up until 120 min.
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S&P500 - BOD S&P500 - MA

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE
O
p
en

O
u
tc
ry

m
a
x
im
u
m

RV 09:30 10:10 0, 1642
(0,0056)

∗ 4, 6235
(0,2061)

∗ 0,6990 0,1790 0,5200 0,6855 09:30 10:10 0, 1661
(0,0057)

∗ 0, 4805
(0,0220)

∗ 0,7062 0,1790 0,5272 1,5233

BPV 09:30 10:10 0, 0982
(0,0030)

∗ 4, 7086
(0,2049)

∗ 0,6949 0,1753 0,5196 0,6911 09:30 10:10 0, 0989
(0,0030)

∗ 0, 4638
(0,0206)

∗ 0,7108 0,1753 0,5355 1,6619

RR 09:35 09:55 0, 0805
(0,0048)

∗ 11, 4820
(0,3486)

∗ 0,6929 0,1079 0,5850 0,8443 09:30 09:55 0, 0844
(0,0053)

∗ 0, 5385
(0,0175)

∗ 0,7011 0,1079 0,5932 1,2194

TTS 09:30 10:10 0, 1218
(0,0069)

∗ 5, 0187
(0,1800)

∗ 0,7430 0,1786 0,5643 0,6830 09:30 10:25 0, 1139
(0,0076)

∗ 0, 5707
(0,0213)

∗ 0,7923 0,2302 0,5621 0,7827

Kernel 09:30 09:50 0, 1637
(0,0076)

∗ 9, 0314
(0,3726)

∗ 0,6677 0,0957 0,5720 0,8217 09:30 09:55 0, 1488
(0,0074)

∗ 0, 4976
(0,0188)

∗ 0,6986 0,1134 0,5853 1,5838

Mean 9:31 10:03 0,1257 6,9728 0,6995 0,1473 0,5522 0,7451 9:30 10:07 0,1224 0,5102 0,7218 0,1612 0,5607 1,3542

(i) Statistics for the maximum based on R2
marg over open outcry trade.

S&P500 - BOD S&P500 - MA

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE

2
4
h
o
u
r
m
a
x
im
u
m

RV 16:15 09:05 0, 7912
(0,0025)

∗ −3, 8403
(0,4010)

∗ 0,6561 0,0000 0,6561 0,7569 16:15 09:05 0, 8079
(0,0033)

∗ −1, 3901
(0,2152)

∗ 0,6785 0,0000 0,6785 2,9327

BPV 04:15 08:30 0, 0706
(0,0025)

∗ 6, 6582
(0,2397)

∗ 0,6410 0,0000 0,6410 0,7397 21:55 08:30 0, 0551
(0,0022)

∗ 0, 9885
(0,0270)

0,6814 0,0000 0,6814 1,8063

RR 17:10 08:35 0, 1117
(0,0038)

∗ 3, 1440
(0,1080)

∗ 0,6865 0,0000 0,6865 0,7290 16:15 09:20 0, 5445
(0,0008)

∗ −1, 2374
(0,1256)

∗ 0,6820 0,0000 0,6820 2,1514

TTS 16:15 09:30 0, 3518
(0,0114)

∗ 0, 3962
(0,2951)

∗ 0,6739 0,0000 0,6739 0,6470 16:15 09:30 0, 4091
(0,0160)

∗ 0, 0692
(0,1799)

∗ 0,6883 0,0000 0,6883 1,7176

Kernel 16:15 09:05 0, 7630
(0,0029)

∗ −3, 0111
(0,4563)

∗ 0,6831 0,0000 0,6831 0,7428 16:15 09:30 0, 7806
(0,0038)

∗ −1, 1906
(0,2743)

∗ 0,6837 0,0000 0,6837 2,1769

Mean 14:02 8:57 0,4177 0,6694 0,6681 0,0000 0,6681 0,7231 17:23 9:11 0,5194 -0,5521 0,6828 0,0000 0,6828 2,1570

(j) Statistics for the maximum based on R2
marg oven 24 hour trade.

Table C.1: Overall Begin-of-the-day (BOD) and moving average (MA) seasonal forecasting statistics
for S&P500 (omitting Sept, Oct, Nov 2008) futures taking H=252. Standard errors of the
estimates are given between parenthesis and a star is appointed to estimates of α and β
signi�cantly di�erent from respectively 0 and 1 on a 95% con�dence level.
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S&P500 - EWMA S&P500 - FFF

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
5
m
in
u
te
s

RV 0, 2570
(0,0050)

∗ 0, 6191∗
(0,1085)

0,4483 0,0728 0,3754 3,0168 0, 2622
(0,0057)

∗ 0, 7361
(0,1071)

∗ 0,4473 0,0728 0,3745 0,9763

BPV 0, 1612
(0,0027)

∗ 0, 4026
(0,0921)

∗ 0,4465 0,0697 0,3768 3,1579 0, 1619
(0,0031)

∗ 0, 5955
(0,0980)

∗ 0,4679 0,0697 0,3982 0,8130

RR 0, 1023
(0,0050)

∗ 0, 5087
(0,0178)

∗ 0,6599 0,0692 0,5907 1,4600 0, 0803
(0,0062)

∗ 0, 7647
(0,0262)

∗ 0,6177 0,0692 0,5485 0,5251

TTS 0, 1824
(0,0062)

∗ 0, 5095
(0,0235)

∗ 0,5907 0,0693 0,5215 1,8367 0, 1639
(0,0077)

∗ 0, 7091
(0,0310)

∗ 0,5878 0,0693 0,5186 0,7132

Kernel 0, 1789
(0,0065)

∗ 0, 4644
(0,0194)

∗ 0,6535 0,0756 0,5780 2,2012 0, 1635
(0,0080)

∗ 0, 6358
(0,0262)

∗ 0,6002 0,0756 0,5247 0,8487

Mean 0,1764 0,5009 0,5598 0,0713 0,4885 2,3345 0,1664 0,6882 0,5442 0,0713 0,4729 0,7753

(a) Statistics for volatility measured from start of the day up until 15 min.

S&P500 - EWMA S&P500 - FFF

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

3
0
m
in
u
te
s

RV 0, 1979
(0,0047)

∗ 0, 4919
(0,0277)

∗ 0,6611 0,1269 0,5342 1,3224 0, 1860
(0,0055)

∗ 0, 6563
(0,0314)

∗ 0,6248 0,1269 0,4979 0,5630

BPV 0, 1132
(0,0020)

∗ 0, 4569
(0,0246)

∗ 0,6346 0,1308 0,5038 1,6768 0, 1086
(0,0025)

∗ 0, 6433
(0,0296)

∗ 0,5960 0,1308 0,4652 0,6103

RR 0, 0783
(0,0050)

∗ 0, 5763
(0,0174)

∗ 0,7351 0,1262 0,6089 0,8083 0, 0539
(0,0059)

∗ 0, 8078
(0,0235)

∗ 0,6942 0,1262 0,5680 0,3610

TTS 0, 1371
(0,0060)

∗ 0, 5470
(0,0192)

∗ 0,7345 0,1291 0,6054 0,9919 0, 1159
(0,0074)

∗ 0, 7287
(0,0250)

∗ 0,6781 0,1291 0,5490 0,4906

Kernel 0, 1394
(0,0071)

∗ 0, 5367
(0,0189)

∗ 0,7596 0,1311 0,6284 1,0051 0, 1131
(0,0084)

∗ 0, 7247
(0,0247)

∗ 0,7019 0,1311 0,5707 0,4723

Mean 0,1332 0,5218 0,7050 0,1288 0,5761 1,1609 0,1155 0,7121 0,6590 0,1288 0,5302 0,4994

(b) Statistics for volatility measured from start of the day up until 30 min.

S&P500 - EWMA S&P500 - FFF

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

6
0
m
in
u
te
s

RV 0, 1327
(0,0058)

∗ 0, 5790
(0,0213)

∗ 0,7723 0,2443 0,5280 0,6555 0, 1205
(0,0072)

∗ 0, 7206
(0,0268)

∗ 0,7543 0,2443 0,5099 0,3633

BPV 0, 0833
(0,0028)

∗ 0, 5407
(0,0189)

∗ 0,7612 0,2400 0,5212 0,7406 0, 0739
(0,0035)

∗ 0, 7219
(0,0244)

∗ 0,7359 0,2400 0,4960 0,3429

RR 0, 0616
(0,0052)

∗ 0, 6189
(0,0179)

∗ 0,8259 0,2495 0,5764 0,5012 0, 0445
(0,0063)

∗ 0, 7833
(0,0235)

∗ 0,8033 0,2495 0,5538 0,2783

TTS 0, 1063
(0,0070)

∗ 0, 6131
(0,0209)

∗ 0,8176 0,2455 0,5721 0,5264 0, 0910
(0,0085)

∗ 0, 7513
(0,0267)

∗ 0,7961 0,2455 0,5506 0,3150

Kernel 0, 0984
(0,0072)

∗ 0, 6140
(0,0187)

∗ 0,8075 0,2486 0,5589 0,5234 0, 0791
(0,0088)

∗ 0, 7632
(0,0244)

∗ 0,7808 0,2486 0,5322 0,3039

Mean 0,0964 0,5932 0,7969 0,2456 0,5513 0,5894 0,0818 0,7481 0,7741 0,2456 0,5285 0,3207

(c) Statistics for volatility measured from start of the day up until 60 min.

S&P500 - EWMA S&P500 - FFF

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

1
2
0
m
in
u
te
s

RV 0, 0916
(0,0066)

∗ 0, 7482
(0,0239)

∗ 0,8861 0,3955 0,4907 0,1904 0, 0757
(0,0079)

∗ 0, 8299
(0,0276)

∗ 0,8739 0,3955 0,4784 0,1587

BPV 0, 0557
(0,0036)

∗ 0, 7328
(0,0228)

∗ 0,8550 0,3876 0,4673 0,2134 0, 0421
(0,0042)

∗ 0, 8617
(0,0260)

∗ 0,8499 0,3876 0,4623 0,1555

RR 0, 0513
(0,0051)

∗ 0, 7695
(0,0209)

∗ 0,9078 0,4059 0,5019 0,1502 0, 0347
(0,0061)

∗ 0, 8480
(0,0239)

∗ 0,8889 0,4059 0,4829 0,1347

TTS 0, 0857
(0,0071)

∗ 0, 7613
(0,0241)

∗ 0,8995 0,3958 0,5037 0,1604 0, 0693
(0,0085)

∗ 0, 8325
(0,0275)

∗ 0,8897 0,3958 0,4939 0,1410

Kernel 0, 0769
(0,0070)

∗ 0, 7707
(0,0212)

∗ 0,9006 0,3978 0,5027 0,1548 0, 0548
(0,0084)

∗ 0, 8566
(0,0245)

∗ 0,8895 0,3978 0,4916 0,1332

Mean 0,0722 0,7565 0,8898 0,3965 0,4933 0,1738 0,0553 0,8458 0,8784 0,3965 0,4818 0,1446

(d) Statistics for volatility measured from start of the day up until 120 min.
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S&P500 - EWMA S&P500 - FFF

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE
O
p
en

O
u
tc
ry

m
a
x
im
u
m

RV 09:30 10:05 0, 1721
(0,0052)

∗ 0, 4831
(0,0227)

∗ 0,7303 0,1602 0,5701 1,4418 09:30 10:15 0, 1378
(0,0072)

∗ 0, 6898
(0,0283)

∗ 0,7263 0,1976 0,5287 0,4936

BPV 09:30 10:10 0, 0940
(0,0029)

∗ 0, 4918
(0,0206)

∗ 0,7103 0,1753 0,5350 1,3797 09:30 10:10 0, 0861
(0,0036)

∗ 0, 7058
(0,0277)

∗ 0,6949 0,1753 0,5195 0,5015

RR 09:35 09:55 0, 0825
(0,0046)

∗ 0, 5924
(0,0177)

∗ 0,7353 0,1079 0,6274 0,8479 09:40 10:05 0, 0540
(0,0047)

∗ 0, 7860
(0,0219)

∗ 0,7477 0,1595 0,5882 0,4733

TTS 09:30 10:00 0, 1371
(0,0060)

∗ 0, 5470
(0,0192)

∗ 0,7345 0,1291 0,6054 0,9919 09:30 09:55 0, 1300
(0,0073)

∗ 0, 7325
(0,0265)

∗ 0,6754 0,1071 0,5682 0,5158

Kernel 09:30 10:00 0, 1394
(0,0071)

∗ 0, 5367
(0,0189)

∗ 0,7596 0,1311 0,6284 1,0051 09:30 09:55 0, 1192
(0,0083)

∗ 0, 7074
(0,0245)

∗ 0,6950 0,1134 0,5817 0,5438

Mean 9:31 10:02 0,1250 0,5302 0,7340 0,1407 0,5933 1,1333 9:32 10:04 0,1054 0,7243 0,7079 0,1506 0,5573 0,5056

(i) Statistics for the maximum based on R2
marg over open outcry trade.

S&P500 - EWMA S&P500 - FFF

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE

2
4
h
o
u
r
m
a
x
im
u
m

RV 16:15 09:30 0, 7995
(0,0030)

∗ −1, 7073
(0,2166)

∗ 0,7030 0,0000 0,7030 2,1892

BPV 16:15 09:20 0, 0692
(0,0030)

∗ 1, 0234
(0,0321)

0,6955 0,0000 0,6955 1,8518

RR 16:30 09:30 0, 5424
(0,0008)

∗ −1, 4512
(0,1193)

∗ 0,7260 0,0000 0,7260 1,8322 Infeasible due to seasonal

TTS 16:15 09:00 0, 9459
(0,0359)

∗ −2, 2840
(7,8013)

0,7159 0,0000 0,7159 2,3531

Kernel 16:30 09:15 0, 7751
(0,0036)

∗ −1, 1818
(0,2212)

∗ 0,7143 0,0000 0,7143 2,4973

Mean 16:21 9:19 0,6264 -1,1202 0,7109 0,0000 0,7109 2,1447

(j) Statistics for the maximum based on R2
marg oven 24 hour trade.

Table C.2: Overall Exponentially Weighted Moving Average (EWMA) and Fourier Flexible Form (FFF)
Seasonal variance forecasting statistics for S&P500 futures taking H=252. Standard errors of
the estimates are given between parenthesis and a star is appointed to estimates of α and β
signi�cantly di�erent from respectively 0 and 1 on a 95% con�dence level.
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S&P500 - MZS - 15 min S&P500 - MZS - 30 min

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

RV 0, 0528
(0,0130)

∗ 0, 9011
(0,0360)

∗ 0,6462 0,0731 0,5731 0,9136 0, 0454
(0,0114)

∗ 0, 9061
(0,0321)

∗ 0,7042 0,1273 0,5770 0,7783

BPV 0, 0244
(0,0071)

∗ 0, 9233
(0,0338)

∗ 0,6236 0,0699 0,5537 1,3280 0, 0195
(0,0063)

∗ 0, 9358
(0,0306)

∗ 0,6801 0,1312 0,5489 0,9264

RR 0, 0379
(0,0080)

∗ 0, 8974
(0,0291)

∗ 0,6819 0,0694 0,6125 0,6336 0, 0318
(0,0077)

∗ 0, 9076
(0,0285)

∗ 0,7142 0,1265 0,5877 0,5708

TTS 0, 0470
(0,0118)

∗ 0, 9054
(0,0321)

∗ 0,6705 0,0695 0,6009 0,6129 0, 0470
(0,0113)

∗ 0, 8947
(0,0315)

∗ 0,7493 0,1296 0,6197 0,5414

Kernel 0, 0497
(0,0121)

∗ 0, 8987
(0,0311)

∗ 0,6452 0,0758 0,5694 0,5935 0, 0563
(0,0117)

∗ 0, 8805
(0,0307)

∗ 0,7058 0,1315 0,5743 0,5344

Mean 0,0424 0,9052 0,6535 0,0715 0,5819 0,8163 0,0400 0,9049 0,7107 0,1292 0,5815 0,6703

(a) Statistics for volatility measured from start of the day up until 15 min and 30 min.

S&P500 - MZS - 60 min S&P500 - MZS - 120 min

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

RV 0, 0287
(0,0091)

∗ 0, 9357
(0,0270)

∗ 0,7848 0,2446 0,5402 0,4290 0, 0293
(0,0079)

∗ 0, 9263
(0,0244)

∗ 0,8719 0,3961 0,4758 0,2763

BPV 0, 0170
(0,0054)

∗ 0, 9337
(0,0275)

∗ 0,7612 0,2403 0,5209 0,5655 0, 0167
(0,0047)

∗ 0, 9299
(0,0247)

∗ 0,8622 0,3884 0,4738 0,3794

RR 0, 0594
(0,0097)

∗ 0, 8255
(0,0376)

∗ 0,8138 0,2498 0,5641 0,3506 0, 0390
(0,0071)

∗ 0, 8809
(0,0285)

∗ 0,8800 0,4065 0,4735 0,2440

TTS 0, 0401
(0,0102)

∗ 0, 9110
(0,0298)

∗ 0,7920 0,2458 0,5462 0,3413 0, 0635
(0,0108)

∗ 0, 8563
(0,0331)

∗ 0,8719 0,3965 0,4755 0,2404

Kernel 0, 0744
(0,0131)

∗ 0, 8424
(0,0362)

∗ 0,7926 0,2488 0,5438 0,3401 0, 0571
(0,0105)

∗ 0, 8732
(0,0300)

∗ 0,8876 0,3984 0,4892 0,2377

Mean 0,0439 0,8897 0,7889 0,2459 0,5430 0,4053 0,0411 0,8933 0,8747 0,3972 0,4776 0,2756

(b) Statistics for volatility measured from start of the day up until 60 min and 120 min.

S&P500 - MZS - Open Outcry maximum S&P500 - MZS - 24 h maximum

start stop α̂ β̂ R2
MAD V R R2

marg HMSPE start stop α̂ β̂ R2
MAD V R R2

marg HMSPE

RV 09:30 09:40 0, 5289
(0,0291)

∗ −0, 1557
(0,0833)

∗ 0,6687 0,0519 0,6168 1,1440 18:40 08:45 0, 1181
(0,0216)

∗ 0, 7847
(0,0608)

∗ 0,7024 0,0000 0,7024 1,1580

BPV 09:30 09:35 0, 3331
(0,0197)

∗ −0, 2268
(0,0961)

∗ 0,6286 0,0275 0,6010 1,8479 16:15 09:05 0, 0462
(0,0093)

∗ 0, 8487
(0,0446)

∗ 0,6661 0,0000 0,6661 2,1285

RR 09:30 09:40 0, 0615
(0,0101)

∗ 0, 8298
(0,0368)

∗ 0,6609 0,0478 0,6130 0,7954 22:55 09:15 0, 0385
(0,0092)

∗ 0, 9060
(0,0338)

∗ 0,7154 0,0000 0,7154 0,9420

TTS 09:30 10:00 0, 0470
(0,0113)

∗ 0, 8947
(0,0315)

∗ 0,7493 0,1296 0,6197 0,5414 23:40 09:30 0, 0505
(0,0124)

∗ 0, 9084
(0,0344)

∗ 0,6946 0,0000 0,6946 0,8404

Kernel 09:35 09:55 0, 0346
(0,0101)

∗ 0, 9282
(0,0265)

∗ 0,7183 0,1136 0,6047 0,5886 20:10 09:15 0, 0956
(0,0202)

∗ 0, 8352
(0,0529)

∗ 0,7056 0,0000 0,7056 0,9258

Mean 9:31 9:46 0,2010 0,4540 0,6852 0,0741 0,6110 0,9835 20:20 9:10 0,0698 0,8566 0,6968 0,0000 0,6968 1,1989

(e) Statistics for the maximum based on R2
marg over open outcry trade.

Table C.3: Overall Mincer Zarnowits scaled (MZS) variance forecasting statistics for S&P500 futures,
taking a rolling window of length 20 days. Standard errors of the estimates are given be-
tween parenthesis and a star is appointed to estimates of α and β signi�cantly di�erent from
respectively 0 and 1 on a 95% con�dence level.
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Random Walk GARCH(1,1)

α̂ β̂ R2
MAD V R R2

marg HMSPE α̂ β̂ R2
MAD V R R2

marg HMSPE

RV 0, 1254
(0,0119)

∗ 0, 8378
(0,0442)

∗ 0,6439 0,0000 0,6439 0,8659 −0, 1570
(0,0249)

∗ 1, 2822
(0,0514)

∗ 0,5315 0,0000 0,5315 1,2399

BPV 0, 0822
(0,0080)

∗ 0, 8091
(0,0509)

∗ 0,6472 0,0000 0,6472 1,2637 −0, 0898
(0,0150)

∗ 0, 7524
(0,0310)

∗ 0,5247 0,0000 0,5247 5,7043

RR 0, 0905
(0,0086)

∗ 0, 8263
(0,0399)

∗ 0,7091 0,0000 0,7091 1,1653 −0, 1053
(0,0176)

∗ 0, 9347
(0,0364)

0,5263 0,0000 0,5263 2,3114

TTS 0, 1093
(0,0111)

∗ 0, 8672
(0,0396)

∗ 0,6655 0,0000 0,6655 0,6869 −0, 1589
(0,0248)

∗ 1, 2969
(0,0511)

∗ 0,5276 0,0000 0,5276 0,9109

Kernel 0, 1162
(0,0120)

∗ 0, 8557
(0,0394)

∗ 0,7085 0,0000 0,7085 0,9132 −0, 1649
(0,0249)

∗ 1, 3531
(0,0515)

∗ 0,5204 0,0000 0,5204 0,7670

mean 0,1047 0,8392 0,6748 0,0000 0,6748 0,9790 -0,1352 1,1239 0,5261 0,0000 0,5261 2,1867

Table C.4: Random Walk and GARCH(1,1) variance forecasting statistics for the �ve volatility mea-
sures. Standard errors of the estimates are given between brackets and a star is appointed
to estimates of α and β signi�cantly di�erent from respectively 0 and 1 on a 95% con�dence
level.
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