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Abstract

In this paper we consider both the uncapacitated and the capacitated economic

lot-sizing model, in which demand is a deterministic function of the price. We use

a constant price for all periods. Van den Heuvel and Wagelmans [2006] propose an

exact algorithm to determine the optimal price and lot-sizing decisions, using an

heuristic algorithm from Kunreuther and Schrage [1973]. They propose a theorem

on the maximum number of breakpoints dependent on T . However, the proof

contains a �aw discovered by the authors themselves. Geunes et al. [2009] apply

the algorithm and results from Van den Heuvel and Wagelmans [2006] on the

capacitated variant, but with the �aw in the proof it is uncertain whether their

results still hold. The goal of this paper is to determine whether the �aw in the

proof has e�ect on the proposed theorem and the obtained results. First, we will

try to disprove the theorem by looking for a contradicting result. After which we

will look at whether the �aw has any e�ect on the results of Geunes et al. [2009].
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Chapter 1

Introduction

The economic lot-sizing problem (ELSP) is a well-known problem in logistics. The

problem consists of multiple decisions that have to be made regarding production

or ordering. Over a planning horizon (T ), one has to determine when to produce

and how much has to be produced in order to meet the demand (Dt) in every

period t. This is in regard to the costs, which can be categorized as setup costs

(Kt), production costs (ct) and holding costs (ht), which are time-variant.

We can distinguish two main types of this problem. The problem can be either

uncapacitated or capacitated. Uncapacitated means that there are no restrictions

on how many items one can produce in one period. This type of problem will

only be restricted in the costs as one wants to have as much pro�t as possible,

thus minimizing the costs. In the capacitated problem there are restrictions on

the production in a period. This can be caused by for example limited storage

or production capacity on a machine. This restriction makes the problem more

complicated and harder to solve.

Instead of looking at the original ELSP, we will be looking at a joint pricing and

lot-sizing model. In contrast to the standard lot-sizing problem, we do not have

deterministic demand, but demand is a deterministic function of price. Therefore

it is not su�cient to solely minimize the costs, incurred by setup, production

and holding costs, but also to �nd an optimal price for which pro�t would be

maximized.

In this paper we will test the practical running time of an algorithm for a
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CHAPTER 1. INTRODUCTION 4

joint pricing and lot-sizing model proposed by Van den Heuvel and Wagelmans

[2006]. They derive an exact algorithm to determine the optimal price and lot-

sizing decisions for the uncapacitated economic lot-sizing problem where demand

is a function of the price. They also show that their algorithm comes down to

solving a number of lot-sizing problems which can be solved in polynomial time.

They claim that they can solve this problem in O(T 3 log T ) time, however it turned

out that there is a �aw in the proof. Geunes et al. [2009] generalize the model of

Van den Heuvel and Wagelmans [2006] to allow for constant production capacities

and propose an O(T 9) algorithm for this problem. Because of the assumption that

the original algorithm from Van den Heuvel and Wagelmans [2006] can be solved

in O(T 3 log T ) time, it will be interesting to see whether the O(T 9) algorithm still

holds and which problem size can still be solved within a reasonable amount of

time.

The goal of this paper is to see whether the theorem proposed by Van den

Heuvel and Wagelmans [2006] still holds and that only the proof is �awed or that

the theorem by itself is faulty. We will also observe whether the practical running

time corresponds to the proposed running time of the algorithm of Van den Heuvel

and Wagelmans [2006]. Furthermore, we will take a look at what e�ect the �aw

in the proof of the algorithm might have on the practical running time of the

algorithm Geunes et al. [2009] proposed for the capacitated case.



Chapter 2

Uncapacitated lot-sizing

First we will look at the uncapacitated ELSP and the algorithm provided by

Van den Heuvel and Wagelmans [2006]. They develop an exact algorithm for the

joint pricing and lot-sizing model that determines the optimal price and order-

ing decisions simultaneously. The algorithm makes use of a heuristic algorithm

proposed by Kunreuther and Schrage [1973] to determine the optimal price. For

a given price, and therefore demand, the optimal production plan can be found

by solving an instance of the ELSP, using the algorithm provided by Wagner and

Whitin [1958]. Since the Kunreuther-Schrage procedure is essentially a local search

with multiple starting points, it might not �nd the optimal solution, but instead

give two di�erent prices, of which one is lower and the other is higher than the

optimal price. Therefore an extra procedure is needed to restart the Kunreuther-

Schrage procedure. To this end they apply an idea often attributed to Eisner

and Severance [1976]. The Eisner-Severance procedure �nds a price inbetween the

two di�erent prices where the original Kunreuther-Schrage procedure ends with

which the Kunreuther-Schrage procedure can be restarted. This continues until

the Kunreuther-Schrage procedure ends up with the same prices for both starting

points, which indicates all possible solutions within the interval have been found.

One can then determine the optimal price from the obtained terminating prices.

This section will give a description of the original ELSP and the various pro-

cedures used in the exact algorithm of Van den Heuvel and Wagelmans [2006],

along with the algorithm itself. The algorithm has been implemented and run for
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CHAPTER 2. UNCAPACITATED LOT-SIZING 6

several generated test cases to determine the practical running time for the algo-

rithm. Although Van den Heuvel and Wagelmans [2006] propose a O(T 3 log T )

running time for their algorithm, we will implement the algorithm from Wagner

and Whitin [1958] such that it takes O(T 2) time, instead of O(T log T ) as pro-

posed by Federgruen and Tzur [1991] and Wagelmans et al. [1992]. This means

the algorithm will have a running time of O(T 4), to which we can compare our

results.

2.1 Problem description

First we will give a description of the original ELSP. We will use the same notation

as in Van den Heuvel and Wagelmans [2006]:

T : model horizon,

Dt: demand in period t,

Kt: setup costs in t,

ct: unit production costs in period t,

ht: unit holding costs in period t,

xt: production quantity in period t,

It: ending inventory in period t.

The problem can then be formulated as

C(D) = min
∑T

t=1 (Ktδ (xt) + ctxt + Itht)

s.t. It = It−1 −Dt + xt t = 1, . . . , T,

xt, It ≥ 0, t = 1, . . . , T,

I0 = 0,

where

δ (x) =

0 for x = 0

1 for x > 0
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and D is the demand vector of length T . The objective function of the model is

to minimize the total costs, which consists of the setup costs in periods t where

there is a production, the production costs of the amount of items made in each

period and the holding costs of the amount of items in the ending inventory of each

period. The �rst set of constraints ensures that the ending inventory of period t

equals the ending inventory of period t− 1 minus the demand in period t and plus

the amount of items produced in period t. The second set of constraints ensures

that there are nonnegative production quantities and ending inventory. Finally,

the third constraint is to ensure that the starting inventory is empty. This original

ELSP can be solved optimally with the algorithm provided by Wagner and Whitin

[1958] using dynamic programming in O(T 2) time.

Van den Heuvel andWagelmans [2006] assume that demand is not deterministic

as in the original ELSP, but a deterministic function of the price where the price p is

constant over all periods t. They use the demand function proposed by Kunreuther

and Schrage [1973],

Dt (p) = αt + βtd (p) ,

where d (p) is a di�erentiable non-increasing function and αt, βt ≥ 0. This ensures

that demand will not increase if the price increases. This is what you would

normally expect in human behaviour, one would not buy more of a product if it

becomes more expensive.

Now that we have introduced a price p, the objective is not to minimize the

total costs as in the original ESLP, but to maximize total pro�t. The objective

can now be formulated as

Π (D (p)) = maxp>0:D(p)≥0

{
T∑
t=1

pDt (p)− C (D (p))

}
,

where C (D (p)) is the total costs with price dependent demand. Kunreuther and

Schrage [1973] show that C (D (p)) is a concave piecewise linear function of the

so-called 'demand e�ect' d (p). This means that each line piece corresponds to

a speci�c production plan. We can then use the heuristic algorithm proposed

by Kunreuther and Schrage [1973], together with the procedure of Eisner and

Severance [1976] to determine the optimal price for which total pro�t is maximized.
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2.2 Methods

The exact algorithm proposed by Van den Heuvel and Wagelmans [2006] makes use

of many already existing algorithms. First we have the well-known algorithm from

Wagner and Whitin [1958] for obtaining an optimal solution of the uncapacitated

ELSP. This algorithm, which uses dynamic programming, runs in O(T 2) time.

However, Federgruen and Tzur [1991], Wagelmans et al. [1992] and Aggarwal and

Park [1993] have all independently improved this result to O(T log T ). We will take

a look at the original algorithm proposed by Wagner and Whitin [1958] instead of

the improved algorithms. We will also take a closer look at the procedures from

Kunreuther and Schrage [1973] and Eisner and Severance [1976] which are used to

determine the optimal price. Finally a pseudo-code of the exact algorithm will be

provided.

2.2.1 Wagner-Whitin algorithm

For the uncapacitated ELSP, Wagner and Whitin [1958] introduced the dynamic

lot-size model, which is a generalization of the economic order quantity model.

They provided an algorithm for �nding the optimal solution by using dynamic

programming. The algorithm basically looks at all periods and determines the total

costs if one would decide to start a new production in a period, incurring setup

cost Kt and production costs ct, or satisfy demand with current stock in inventory,

incurring holding costs ht from the period when the item was produced until when

it is removed from inventory. A new production can only be started when the

inventory is empty (zero-inventory property) and therefore we also assume the

starting inventory to be equal to zero (I0 = 0).

We can calculate the possible costs, which we will denote by Zkt, consisting of

the combined production and holding costs of starting a new production in period

k that supplies demand from periods k through t, by using the expression

Zkt = Kkδ (xk) + ckxk +
t∑

j=k+1

Dj

j∑
i=k

hi.

Using these costs, we can obtain the minimum possible cost for each period t
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through

Ft = mink=1,...,t (Zkt + Fk−1) for t = 1, . . . , T

where F0 = 0. One can then use backward induction to determine the optimal pro-

duction plan. This is done by determining the period k for which the cumulative

costs ZkT + Fk−1 is the smallest, or in other words, �nd the period k accompa-

nying FT . Then continue �nding the production period accompanying Fk−1 and

continue until the production period is equal to the �rst period in the horizon. It

is well known that the Wagner-Whitin algorithm has a worst case running time

of O(T 2). Even though it has been shown that this can be reduced to O(T log T ),

we implement the algorithm the old-fashioned way.

Example Consider a four-period problem withK = (10, 7, 4, 1), c = (1.2, 0.6, 0.6, 0.4),

ht = h = 0 and D = (4, 6, 9, 2). If we would start production in period t = 1 and

only produce the amount for that period, which is D1 = 4, this would incur the

costs Z11 = 10 + 1.2 ·4 = 14.8. However, if we would not only produce the amount

demanded in period t = 1, but rather the amount in both t = 1 and t = 2, we

would have Z12 = 10 + 1.2 · (4 + 6) = 22.0. If the demanded amount of period 2

was to be produced in the same period, the cost would be Z22 = 7 + 0.6 · 6 = 10.6.

The cumulative cost however would be Z22 + F1 = Z22 + Z11 = 25.4, as demand

in the �rst period needs to be satis�ed as well and Z11 is the only candidate for

t = 1 and therefore immediately the minimum. One can see that this is actually

less cost e�cient as if we would produce the amount for both periods in t = 1.

We can calculate these cumulative costs for each period and the results are shown

in Table 2.1. Now backward induction can be applied to determine the optimal

production plan. We can see that the minimum possible cost for period t = T is

F4 = Z∗24 = 32.0. Now we need to �nd F2−1 = F1, which is Z11 = 14.8 and we

can terminate the procedure as we have arrived at the �rst period. The optimal

production plan thus consists of producing in two periods, namely t = 1 and t = 2,

producing D1 = 4 in t = 1 and D2 +D3 +D4 = 17 in t = 2. The total cost of this

production plan is equal to F4 = 32.0.
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k\t 1 2 3 4

1 14.8 22.0 32.8 35.2
2 10.6 16.0 17.2
3 9.4 10.6
4 1.8

k\t 1 2 3 4

1 14.8 22.0 32.8 35.2
2 25.4 30.8 32.0
3 31.4 32.6
4 32.6

Table 2.1: Wagner-Whitin example costs and cumulative costs

2.2.2 Kunreuther-Schrage algorithm

Kunreuther and Schrage [1973] provide a heuristic algorithm which determines the

optimal price for which the total pro�t gets maximized when the demand function

of the ELSP is a deterministic function of the price. The algorithm works as

follows:

1. Set i := 0, start with some initial price pi and set Πi := −∞.

2. Set i := i+ 1.

3. Calculate the demand vector D (pi−1) and let Si be the optimal production

plan corresponding to problem C (D (pi−1)).

4. Calculate the price pi which maximizes the net pro�t Πi :=
∑T

t=1Rt (pi) −
Si (d (pi)).

5. If Πi − Πi−1 > 0, then go to step 2.

6. The terminating price is pi with corresponding net pro�t Πi.

In step 3 of the algorithm, we can use the aforementioned Wagner-Whitin algo-

rithm to �nd an optimal production plan given the demand D (pi−1). In step 4

we want to determine the optimal price given a �xed production plan, which we

obtain from step 3. We assume that this requires less time than solving the ELSP.

Kunreuther and Schrage [1973] show that the algorithm does not skip over

any optimum while determining the terminating price. This means that of two

consecutive prices generated by the Kunreuther-Schrage algorithm, the latter one

will always generate more pro�t than any price inbetween the two prices. Therefore

we can provide the algorithm with a lower and an upper bound on the optimal
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price p∗, pL and pU respectively. This will result in terminating prices p∗L and p∗U ,

for which the inequality p∗L ≤ p∗ ≤ p∗U will hold. Thus if the terminating prices

p∗L and p∗U are equal, we have found our optimal price p∗. Since this algorithm is

a local search, it may occur that p∗L and p∗U are not equal. This means that the

optimal price p∗has not been found yet and has to lie in between the terminating

prices. Therefore we need to restart the KS-procedure with a suitable price p̄ that

satis�es p∗L ≤ p̄ ≤ p∗U . To determine this new price, we make use of an idea from

Eisner and Severance.

2.2.3 Eisner-Severance method

The method from Eisner and Severance [1976] provides a way for us to �nd a

suitable p̄ that satis�es p∗L ≤ p̄ ≤ p∗U . This method works on a piecewise linear

concave function and since our objective function C (D (p)) satis�es these condi-

tions, we can apply this method to our problem. The method starts out with two

instances of the dependent variable of the function, which are p∗L and p∗U in our

case. Assume we have some algorithm that solves the optimization problem for a

�xed p, which is the Wagner-Whitin algorithm in our case. Assume that we want

to �nd all breakpoints in the interval [p∗L, p
∗
U ], because if we know there are break-

points within this interval, it means that there exists at least one line piece which

the KS-procedure has not reached yet due to termination. The Eisner-Severance

method can now be described as follows:

1. Apply the algorithm on the optimization problem with p = p∗L and p = p∗U .

2. Calculate the intersection point p̄ of the lines corresponding to p∗L and p∗U ,

say l∗L (p) and l∗U (p).

3. Perform the algorithm on the optimization problem with p = p̄.

4. If the objective value is equal to l∗L (p) and l∗U (p), there is no new line piece

between p∗L and p∗U . Otherwise, repeat the procedure recursively (go to step

1) with p∗L := p∗L and p∗U := p̄ and with p∗L := p̄ and p∗U := p∗U .

A graphical representation of this method is shown in Figure 2.2.1. One can see

that the piecewise linear concave function consists of three line pieces, namely
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Figure 2.2.1: The Eisner-Severance method

l∗L(p), l(p̄) and l∗U(p). If we apply the Wagner-Whitin algorithm on p∗L and p∗U , we

obtain the optimal production plans S∗L and S∗U with the corresponding lines l∗L(p)

and l∗U(p) respectively. Using these lines, we can calculate the intersection point p̄

and apply the Wagner-Whitin algorithm on this price to �nd line l(p̄). Since the

objective value will not be equal to l∗L (p) and l∗U (p), we can repeat this procedure

with p∗L := p∗L and p∗U := p̄ and with p∗L := p̄ and p∗U := p∗U . However, we will not

�nd new line pieces and the Eisner-Severance procedure terminates. If there would

be nBP breakpoints, the Wagner-Whitin algorithm needs to be applied 2nBP −1

times.

2.2.4 Exact algorithm

Van den Heuvel and Wagelmans [2006] propose an exact algorithm making use of

the aforementioned procedures to determine an optimal price and ordering deci-

sions simultaneously. The algorithm is as follows:

� Start the KS-procedure with pL < pU and let p∗Land p
∗
U be the terminating

prices
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� If p∗L = p∗U then

� Stop; the optimal price is p∗L

� Else

� Call Optim(p∗L, p
∗
U)

� End if

� Function Optim(pL, pU)

� p̄ = ES (SL, SU)

� If SL (d (p̄)) = SU (d (p̄)) then

∗ End function

� Else

∗ Perform the KS-procedure with p = p̄ and let p̄∗ be the terminating

price

∗ Check whether the found optimum is larger than the previous found

optimum and store the corresponding price and production plan.

∗ If p̄∗ > p̄, then

· Call Optim(pL, p̄); Call Optim(p̄∗, pU)

∗ Else

· Call Optim(pL, p̄
∗); Call Optim(p̄, pU)

∗ End if

� End if

� End function

The production plans SL and SU correspond to the prices pL and pU respectively.

The function ES applies one iteration of the ES method and returns a price p̄ that

satis�es pL ≤ p̄ ≤ pU . When it cannot �nd new production plans between SL

and SU , the Optim function terminates. If it does �nd one, the KS-procedure gets
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applied on the price p̄. The algorithm then calls the Optim function recursively for

the new price bounds. If the Optim function terminates while it has found a new

production plan, the corresponding p̄ will be noted down as a breakpoint in the

cost function. If the main Optim function terminates, we will have all breakpoints

between pL and pU .

2.3 Results

According to Van den Heuvel and Wagelmans [2006] the maximum number of

breakpoints one can �nd is equal to 1
2
T (T − 1). However, because of a �aw in

the proof, it is unsure whether only the proof is incorrect or also the theorem

itself. For this purpose, we will generate a vast amount of test cases according

to di�erent criteria. We want to look for di�cult instances where the amount of

breakpoints will be large. If the number of breakpoints for even one of the cases

exceeds the expected maximum number of breakpoints, we can be sure that the

theorem is �awed. If we are unable to do so, we cannot say anything conclusive

about the theorem, until the proof gets corrected, if possible. In this section we will

�rst observe the computation time of the algorithm as we let T vary, comparing

the practical running time with the theory. We will discuss how we choose our

parameters for our test cases, after which we will concentrate on the case of T = 5

and apply the algorithm to the test cases to look for possible instances where the

amount of breakpoints exceeds the theoretical amount. We choose this particular

T because the proof is supposedly �awed for T ≥ 5. All of the results have been

obtained by using the 64-bit version of MATLAB on a desktop computer with a

quad-core processor at 3.2 GHz and 4GB RAM.

2.3.1 Computation time for various T

First we will look at the development of the amount of breakpoints and the com-

putation time of one case for various T . For this purpose we will use an example

that generates a large number of breakpoints. We will use the same parameters as

in the example proposed by Van den Heuvel and Wagelmans [2006]:
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Dt(p) = D + p for t = 1, . . . , T,

Kt = (T − t+ 1)K for t = 1, . . . , T,

ct = T T−t+1 for t = 1, . . . , T,

where we will use D = αt = 0, βt = 1 and K = 100. We will use d(p) = p

rather than −p to mirror the objective function such that the breakpoints will

occur more often at smaller p than at larger p, which happens when d (p) is a

non-increasing function. We run the Optim-function using these parameters and

T = 4, . . . , 20. The results are shown in Table 2.2.

We can see that the number of breakpoints found by the function is equal to

the expected number of breakpoints according to Van den Heuvel and Wagelmans

[2006] up until T = 11. We can see for T ≥ 11 that the number of breakpoints

found is lower than the expected number of breakpoints. This is because the

breakpoints will lie closer to each other as T becomes larger. The algorithm will

eventually falter due to numerical imprecision as breakpoints lie too close to each

other. In order to let the function continue without ending up in an endless

recursion, a condition is implemented such that the recursion will only continue

when the calculated intersection point is di�erent from both the lower and upper

bound on p. However, this does have a disadvantage as some breakpoints will not

be calculated, resulting in the aforementioned loss of breakpoints. From T = 16

onwards the loss of breakpoints gets immense and the number of breakpoints found

even decreases as T increases.

If we look at the computation time, we can see that it behaves as one would

expect. The computation time increases as T increases and the problem gets

more complex. However, at T = 16 this trend halts and the computation time

does not increase that rapidly anymore. This is due to the numerical imprecision

of MATLAB and the computer which results in premature termination of the

function and therefore a loss of breakpoints. If the algorithm actually runs in

O(T 4) time, we should see a multiplication of the computation time by 24 = 16

if we double T . If we compare the computation times of T = (4, 5, 6, 7) with

the times of T = (8, 10, 12, 14) we can see a multiplication of (3.2, 7.6, 11.0, 12.2)

respectively. This stays well within the multiplication factor of 16. A plot of the

computation time against T can be seen in Figure 2.3.1. We can clearly see that
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T 1
2
T (T − 1) Breakpoints found Computation time in seconds

4 6 6 0.0219
5 10 10 0.0205
6 15 15 0.0276
7 21 21 0.0436
8 28 28 0.0703
9 36 36 0.1073
10 45 45 0.1562
11 55 53 0.2260
12 66 65 0.3036
13 78 78 0.4018
14 91 91 0.5313
15 105 104 0.6855
16 120 102 0.7607
17 136 103 0.8348
18 153 101 0.9009
19 171 96 0.9548
20 190 95 1.0144

Table 2.2: Performance of the Optim function for various T

the computation time does not increase at the same rate anymore from T = 16

onwards.

2.3.2 Generating test cases

To be able to have a widely diverse collection of test cases, we will vary many

parameters in the model. Since production plans are dependent on costs, it is

obvious to let the setup costs Kt, unit production costs ct and holding costs ht

vary. However, the holding costs ht can be incorporated in the unit production

costs ct by using

c∗t = ct +
T∑
i=t

hi

which gives the advantage of having one parameter less. One has to take into

account that this will in�ate the objective function, but will not a�ect the optimal

production plan. The excess on costs can also be easily subtracted at the end if

one wishes to have the proper costs. Next to the cost parameters, we also want to



CHAPTER 2. UNCAPACITATED LOT-SIZING 17

Figure 2.3.1: Graph of the computation time plotted against T

vary the demand function. Therefore we will also vary αt and βt. The term d (p)

in the demand function will be set to p, rather than −p, which is mentioned in the

example used by Van den Heuvel and Wagelmans [2006].

The four parameters, Kt, ct, αt and βt will be randomly generated, with a

predetermined range in which they have to fall. The ranges vary from [0, 100] up

to [0, 104], increasing the upper bound by a factor 10 each time. We will also look

at certain sorting orders in the parameters, like increasing or decreasing over time.

This simulates cases where, for example, the demand decreases over time due to

deterioration. One can think of computers for example. These orders might have

a large in�uence on the amount of breakpoints.

2.3.3 Simulating test cases

As we have seen in 2.3.1, computation time increases as T gets larger. Therefore we

will focus on a relatively small T to �nd us a subset of test cases which are prone to

having a large number of breakpoints. We choose T = 5 as this is the �rst T where

the proof of the algorithm of Van den Heuvel and Wagelmans [2006] shows a �aw
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and it should have relatively short computation times. We will draw three random

number sequences in each range for each parameter and combine them with each

other to construct test cases on which we can use the exact algorithm. Since we

have �ve ranges, from [0, 100] to [0, 104], from which we draw three numbers each

for each of the four parameters, we end up with (5 · 3)4 = 50, 625 test cases. We

can leave the randomly drawn number sequences for each parameter unsorted or

we can sort them either ascending or descending. This will be done to detect if

any particular behaviour of a certain parameter has a substantial in�uence on the

amount of breakpoints we can �nd. Since we have four parameters which we can

sort, we end up with 24 = 16 di�erent ways of sorting the parameters. For each

di�erent way of sorting new parameters will be generated. We will also look at

what happens when we leave the parameters unsorted. The results can be found

in Table 2.3. For the parameters, an u means the parameter is unsorted, d stands

for descending, whereas a stands for ascending.

From the results we can see that leaving the parameters unsorted results in only

two cases where the amount of breakpoints is six. This result is rather mediocre,

but it is what one would expect, as the parameters are completely random. What

is interesting is that the way the unit production costs c are constructed have a

large impact on the amount of breakpoints we can �nd. If we sort them descending,

we �nd a substantial amount of cases with a rather high amount of breakpoints,

whereas if we sort them ascending, we never �nd a breakpoint in any case whatso-

ever. This can be explained by the fact that if the unit production costs increase

during time, one would simply produce everything in the �rst period, where it is

the cheapest to produce items, since there is no capacity on the amount which

can be produced. This way the total demand in all periods will be satis�ed and

there will be only one setup cost, as there is no need to pay any other setup cost

other than in the �rst period. Even if the setup costs of later periods are cheaper

than that of the �rst period, one has to produce something in the �rst period, as

demand is nonzero in every period and one would incur the setup cost in the �rst

period no matter what.

Unfortunately we can not conclude anything on the other parameters as their

performances are rather close and none of them stand out. Looking at the com-

putation times, we can only conclude that the cases where c was sorted ascending
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α β K c Max breakpoints Number of cases Computation time (sec)

u u u u 6 2 221
d d d d 8 1 255
a d d d 8 3 248
d a d d 7 130 266
a a d d 7 50 256
d d a d 6 45 264
a d a d 7 1 255
d a a d 7 33 265
a a a d 9 3 262
d d d a 0 50625 214
a d d a 0 50625 214
d a d a 0 50625 215
a a d a 0 50625 214
d d a a 0 50625 213
a d a a 0 50625 214
d a a a 0 50625 216
a a a a 0 50625 219

Table 2.3: Results for test cases with several ways of sorting the parameters

took less time compared to where c was sorted descending and even when all the

parameters were unsorted. This can be explained by the fact that the algorithm

does not encounter any breakpoints, resulting in an early termination of the func-

tion.

These results were obtained from a relatively small sample with only 50, 625

cases per scenario. Many more cases need to be generated to be able to �nd a case

which possibly has more than the expected 10 breakpoints. From the previous

results we can say for certain that we do not need to take a look anymore at the

scenario where the unit production costs are sorted ascending. So now we are only

concerned about the scenarios with the unit production costs sorted descending.

We will hold on to the �ve ranges we had before, from [0, 100] to [0, 104], but we

will enlarge the amount of numbers drawn in each range from three to �ve for

each of the four parameters. This change translates into an increase from 50, 625

cases to (5 · 5)4 = 390, 625 test cases per scenario. We will be using the same eight

scenarios where the remaining parameters, which are α, β and K, can be sorted
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α β K Max breakpoints Number of cases Computation time (sec)

d d d 8 11 12025
a d d 9 4 13294
d a d 8 2 12818
a a d 7 484 12982
d d a 7 2 13134
a d a 7 4 13866
d a a 9 6 14052
a a a 8 14 11693

Table 2.4: Results for test cases with unit production costs sorted descending

either ascending or descending. The results can be found in Table 2.4.

We can see that there are two scenarios where there are cases with nine break-

points, being a/d/d and d/a/a respectively. However, these scenarios did not yield

cases with more than eight breakpoints in our previous results, where they merely

yielded cases with eight and seven breakpoints respectively. Furthermore, the sce-

nario a/a/a which yielded a maximum of nine breakpoints in certain cases in our

previous results, merely yields a maximum of eight breakpoints in this extended

test. Looking at these and the other scenarios, we can unfortunately not discover

a pattern regarding the sorting of the parameters α, β and K and the amount of

breakpoints found in the test cases.

Since it seems that sorting the three parameters α, β and K does not a�ect

the maximum amount of breakpoints found in the generated cases, we will now

let these three parameters be completely random and unsorted. We will keep the

�ve ranges the same and we will again draw �ve random numbers for each of

the parameters. The unit production costs will also be sorted descending again.

However, instead of conducting this test only once, we will perform this test ten

times, generating a total of 3, 906, 250 test cases. The test results are displayed in

Table 2.5.

From the results we can see that only three cases out of the 3, 906, 250 cases

have nine breakpoints. Inspecting these three cases, there was no pattern to be

found in the parameters. The three cases had nothing in common, aside from the

unit production costs being sorted descending. It does seem we had more suc-

cess with the amount of breakpoints in the cases where we sorted the parameters.
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Run Max breakpoints Number of cases Computation time (sec)

1 9 1 12179
2 8 20 11987
3 8 28 13757
4 8 20 14092
5 8 6 13644
6 9 1 12091
7 9 1 13299
8 8 10 13291
9 8 9 16749
10 7 169 14885

Table 2.5: Results for test cases with unsorted α, β and K and descending c

However, there is unfortunately no sorting pattern discovered which leads to con-

sistent results regarding the amount of breakpoints, aside from sorting the unit

production costs descending.

2.3.4 Simulating test cases with α = 0

If we look at the parameters we used in the example case for the computation

time of the exact algorithm for various T , where we found the same number of

breakpoints as expected by the theorem of Van den Heuvel and Wagelmans [2006]

up to T = 10, one can see we used D = αt = 0, while the other parameters are

nonzero. If we set αt = 0, it means demand is only dependent of βt and p. There

will be no scalar increase in demand, which means sudden jumps in demand over

time will occur less often. Demand will increase or decrease gradually due to mere

βt as p progresses, which might make for subtle changes in production plans. This

might result in more breakpoints in the objective function.

We will generate test cases as before, with �ve ranges from [0, 100] to [0, 104].

However, since we will only have three parameters now instead of four, being β,

K and c, we can increase the number of random numbers drawn in the speci�c

ranges. We will draw ten random numbers from each range for each of the three

parameters, resulting in (5 · 10)3 = 125, 000 test cases. We will sort the parameters

as well to see which scenario will generate cases with the most breakpoints. The

parameters β and K will be sorted both ascending and descending, while we keep
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β K Max breakpoints Number of cases Computation time (sec)

d d 10 4 16030
a d 9 13 18014
d a 8 7 16451
a a 9 21 15709

Table 2.6: Results for test cases with no α and unit production costs sorted de-
scending

α β K c Max breakpoints Number of cases Computation time (sec)

0 d d d 10 57 126728

Table 2.7: Results for ten million test cases with no α and β, K and c sorted
descending

the unit production costs c sorted descending, as we have found that sorting c

ascending will result in no breakpoints in the objective function at all. This makes

for four scenarios and we will run each scenario ten times, such that we have a

total of 1, 250, 000 test cases for each scenario. The results can be found in Table

2.6.

From the results we can see that we have found cases with ten breakpoints,

which is the maximum number of breakpoints proposed by Van den Heuvel and

Wagelmans [2006] for T = 5. These cases were found in the scenario where both

β and K are sorted descending. This result actually coincides with the example of

the worst case scenario used by Van den Heuvel and Wagelmans [2006]. We can

observe that these cases are quite rare as we have found only four cases out of a

total of 1, 250, 000 test cases.

Now that we have observed cases which contain the proposed maximum number

of breakpoints for T = 5, we can search for a possible case where there might be

even more breakpoints. Therefore we will generate a total of ten million test cases

where all three parameters β, K and c, again drawn from [0, 100] to [0, 104], are

sorted descending. The results are presented in Table 2.7. We can observe that

unfortunately we could not �nd a case with more than ten breakpoints among the

ten million test cases.
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2.4 Conclusion

Unfortunately we could not �nd any case in our simulations which contained more

than ten breakpoints, the number that Van den Heuvel and Wagelmans [2006]

suggested to be the maximum amount of breakpoints for T = 5, which would

disprove their theorem. It seems that only the way the unit production costs are

sorted have a consistent in�uence on the amount of breakpoints found. This is

because if unit production costs increase during time, everything can be produced

in the �rst period. The way the parameters α, β and K are sorted seems to have

no consistent e�ect on the amount of breakpoints found. However, it does seem

that leaving them unsorted makes it harder to �nd cases with a high amount of

breakpoints. If we set αt = 0, it seems that sorting the other parameters, β and K,

does have e�ect. We have only found cases which contained the maximum of ten

breakpoints in the scenario where α = 0 and all the other parameters are sorted

descending. This could have been expected if we take a look at the example of the

worst case scenario presented by Van den Heuvel and Wagelmans [2006], which

supports these properties, except for β which is constant.

In the end, we were unable to �nd a case which has more than ten breakpoints,

therefore we could not disprove the theorem of Van den Heuvel and Wagelmans

[2006]. We have seen that there are cases which would produce ten breakpoints,

but these are worst case scenarios and we have seen that they do not appear that

often in simulations or in practice. To disprove the theorem of Van den Heuvel and

Wagelmans [2006], one has to �nd a case which yields more than ten breakpoints

and thus far this has yet to happen. Until then, we are only sure that there is a

�aw in the proof of Van den Heuvel and Wagelmans [2006], but we are unable to

say anything about the credibility of the theorem itself.



Chapter 3

Capacitated lot-sizing

The uncapacitated ELSP is a fairly simple model and rather easy to understand

for the general public. However, in practice it is rarely the case that there is no

restriction on the amount one can produce or order. One can think of limited

storage room in the case of production or a limited amount of trucks and the

capacity of said trucks in the case of ordering. Capacities are a common hindrance

when it comes to logistics and it makes a problem much harder compared to its

uncapacitated counterpart. Due to the complexity capacities add to a problem,

many resort to heuristics and algorithms rather than trying to obtain an optimal

solution. More often than not it is computationally too demanding to obtain an

optimal solution and if it is possible, solving the problem often still takes quite

some time.

In this section we will take a closer look at a paper by Geunes et al. [2009],

which applies the algorithm from Van den Heuvel and Wagelmans [2006] to the

capacitated case with slight modi�cations. Instead of using the Wagner-Whitin

algorithm to solve cases, we have to take a look at a method introduced by Florian

and Klein [1971] which gives a heuristic solution to the capacitated ELSP. Fur-

thermore, we will revisit the Kunreuther-Schrage method and the Eisner-Severance

procedure as they need to be altered slightly to be applicable to the capacitated

problem. The characteristics of a solution of a capacitated ELSP is not like that of

its uncapacitated counterpart where one would obtain a concave piecewise linear

function of the price against the costs. If one would plot the price against the costs

24
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in the capacitated case, one would actually obtain a piecewise function consisting

of concave piecewise linear functions as in the uncapacitated case. We will take a

closer look at this phenomenon and explain why this occurs. We will also generate

test cases for the capacitated ELSP and the results will be compared to what one

would expect the results to be according to the article of Geunes et al. [2009].

3.1 Problem description update

Capacities introduce a new dimension to the problem as one has to take into

account that one may not produce the amount one wants as it might exceed the

capacity. Therefore one has to plan ahead of time and produce the amount that

would not be able to be produced because of capacity at an earlier point in time.

This of course generates holding costs from the moment it is produced until the

moment it gets sold, which would often be the point in time where there will be

more demand than there is capacity to produce it all in one go. Because holding

costs accumulate over time, one also does not want to produce the goods too early

from the time they would be demanded. Producing goods earlier and having a

stock of them, such that demand can be met even when the demand exceeds the

production capacity seems like a safe option, but this can eventually become very

pricy. So next to the trade-o� of production costs and holding costs of the original

ELSP, capacities introduce another trade-o� of the reliability of meeting demand

and holding costs.

One could think of capacities in many ways, such as production capacity, where

there are limited resources whether it be raw materials or labour, storage capacity,

where a warehouse has a certain size, or transport capacity, where ships and trucks

have limited space. Capacities can be either �xed or variable over time. One can

think of a warehouse in which a factory has to store its produced goods as a �xed

capacity, as its size would not change frequently over time, merely every now and

then when the company decides to expand its warehouse. As for variable capacity,

one could think of storage space rented from a third party company, which has to

provide storage space to other companies as well, so that the amount of space for

every company will vary every period their contract is renewed.

In this paper, we will concentrate on the case of �xed capacities, thus the
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capacity remains the same over time. Therefore we will introduce a new parameter

to the problem which is independent of time:

C: capacity of the storage (or transportation device) which cannot be

exceeded by the production quantity.

We also need to add a restriction to the original problem which incorporates this

capacity, such that the production quantity does not exceed the capacity. The

problem can now be formulated as

C(D) = min
∑T

t=1 (Ktδ (xt) + ctxt + Itht)

s.t. It = It−1 −Dt + xt t = 1, . . . , T,

0 ≤ xt ≤ C t = 1, . . . , T,

xt, It ≥ 0, t = 1, . . . , T,

I0 = 0.

3.2 Methods

Since the exact algorithm from Van den Heuvel and Wagelmans [2006] can not be

applied immediately to the capacitated lot-sizing problem, it needs to be adjusted

accordingly. First we will take a look at an algorithm developed by Florian and

Klein [1971], which can solve equal-capacity lot-sizing problems in O(T 4) time.

Then we will take a look at the cost function as it di�ers from the cost function

we know from the uncapacitated case. Since the structure of the cost function

is di�erent from the uncapacitated case, we need to adjust the exact algorithm

such that it takes this into consideration. Furthermore, because the Florian-Klein

algorithm is used rather than the Wagner-Whitin algorithm, the Eisner-Severance

method can be simpli�ed. These changes to the exact algorithm can be found at

the end of this section.

3.2.1 Florian-Klein method

Florian and Klein [1971] developed a dynamic programming shortest route algo-

rithm for problems with a �xed capacity in each period. They consider both the

nonbacklog as the backlog cases, where backlogging means that a customer will get
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its order or a part of it at a later time than when they asked for it. One can think

of the case where someone wants to buy a product, but the store does not have it

in stock anymore and it has to be reserved or ordered, for the customer to pick it

up at a later time. We will only look at the case where there is no backlogging, as

we want customers to receive their orders on time.

The optimal production plan in the capacitated case consists of independent

subplans in which the inventory level is nonzero in every period, except the last

period, where it is equal to zero. This is similar to the Wagner-Whitin algorithm

in the uncapacitated case where a new production can only be started when the

inventory is empty and therefore the starting inventory has to be empty (I0 = 0).

Furthermore, within each subplan the production level will be either zero or at

capacity, except for at most one period, in which it will be less than capacity. The

intuition behind this is to utilize production periods at its fullest and having at

most one period to produce the remainder, if any.

As in Florian and Klein [1971], we will call a period t a regeneration point if

It = 0, and we will de�ne the production sequence Suv as a subset of a feasible

production plan X that includes the components of X for all periods between the

two consecutive regeneration points u and v:

Suv = {xi, i = u+ 1, . . . , v|Iu = 0 = Iv; Ii > 0 for u < i < v}

where 0 ≤ u < v ≤ n. Since I0 = In = 0, at least one production sequence S0n

exists. Since the production level can be zero, at less than capacity or at capacity,

we have three values for each production level: 0, ε, C. Because of the fact that

there is only at most one period in which the production level will be at less than

capacity (ε) in an optimal production sequence, there will be k = b
∑v

i=u+1Di

C
c

periods in which the production level will be equal to C. The cumulative amount

Xj =
∑j

i=u+1 xi, j = u + 1, . . . , v produced over periods u + 1 to j can only be of

values {0, ε, C, C + ε, . . . , kC, kC + ε}.
With this, one can construct an acyclic network with vertices corresponding

to the possible values of Xj for each j = u + 1, . . . , v and with directed edges

(Xj, Xj+1) de�ned as follows:

� If Xj = mC, where m = 0, 1, . . . , k, then the terminal vertices of the edges
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have values Xj+1 = Xj + e with e = {0, ε, C};

� If Xj = mC + ε, where m = 0, 1, . . . , k, then the terminal vertices of the

edges have values Xj+1 = Xj + g with g = {0, C}.

This means that each vertex value contains information about whether the quantity

ε has been produced yet or not. If the second case of vertices is once reached, it

will remain in this class, as there is at most one period in which the production

will be at less than capacity (ε) and it can never return to the �rst case. The

costs for each vertex can be calculated by determining the cheapest option out of

the various possibilities a certain vertex has to be formed. For example, a vertex

X3 = C + ε, can either be formed by producing C while X2 = ε, or by producing ε

while X2 = C, or even by producing 0 while X2 = C+ε. The option with the least

costs will be determined and its cost will be assigned to the vertex X3. Vertices

with values associated with nonfeasible inventory levels, i.e.

Xj : Xj −
j∑

i=u+1

ri ≤ 0, j = u+ 1, . . . , v − 1

will be assigned an arbitrarily large cost, such that these vertices will not be cho-

sen in the optimal production sequence. The optimal production sequence and its

cost can be determined by using dynamic programming recursion using the periods

0, . . . , n as states:

f0 = 0

fv = minu=v−1,...,0 {duv + fu} , v = n, . . . , 1

where fv is the cost associated with an optimal production plan over periods

1, . . . , v and duv is the cost associated with following an optimal plan over periods

u+1, . . . , v, where Iu = Iv = 0 and It > 0 for all t = u+1, . . . , v−1. This solution

approach takes order O(T 4) time.

Example Consider the same four-period problem instance used in the example

in section 2.2.1 with K = (10, 7, 4, 1), c = (1.2, 0.6, 0.6, 0.4), ht = h = 0 and

D = (4, 6, 9, 2). In addition we will have a constant capacity of C = 7 in all
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u\v 1 2 3 4

0 14.8 27.2 35.4 37.8
1 10.6 +∞ +∞
2 +∞ +∞
3 1.8

u\v 1 2 3 4

0 ε Cε εCC εcc0
1 ε − −
2 − −
3 ε

Table 3.1: Florian-Klein algorithm example costs and production schemes

u\v 1 2 3 4

0 14.8 27.2 35.4 37.8
1 25.4 +∞ +∞
2 +∞ +∞
3 37.2

Table 3.2: Florian-Klein algorithm example cumulative costs

periods. The cost of the production sequence S01 can be calculated the same way

as before, where ε = 4 is produced in period t = 1 resulting in 10 + 1.2 · 4 = 14.8.

Now for S02 we need to produce a total of 10. Since the capacity C = 7, it is

not possible to produce it all in t = 1 as we did before in the uncapacitated case.

Now there are two possibilities, either produce C = 7 in t = 1 and ε = 3 in t = 2,

or produce ε = 3 in t = 1 and C = 7 in t = 2. However, since the demand

in t = 1 is equal to D1 = 4, it is not su�cient to produce ε = 3. Therefore

this solution is infeasible and will be assigned a cost of +∞, such that it will be

never selected as the best solution. The �rst possibility will incur a total cost of

10 + 1.2 · 7 + 7 + 0.6 · 3 = 27.2, which is automatically the optimal cost for S02

with the corresponding production scheme of (x1, x2) = (C, ε). We can calculate

this for every production sequence and the corresponding costs and production

schemes can be found in Table 3.1. The cumulative costs can be found in Table

3.2, which can be used to determine the optimal production sequence and its cost

by using dynamic programming recursion. One can see that f4 = d34 + f3 = 37.2

and f3 = d03 + f0 = 35.4. This results in the optimal production plan consisting

of two production sequences, namely S03 and S34, with corresponding production

schemes of (x1, x2, x3) = (ε, C, C) and x4 = ε. This means that the production in

t = 1 will be equal to ε = (4 + 6 + 9) mod 7 = 5, such that xt = [5, 7, 7, 2] with

corresponding costs of 37.2.
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Figure 3.2.1: Cost function Γ(p) plotted against p

3.2.2 Cost function

The optimal solution of a capacitated ELSP is not as simple as that of the unca-

pacitated ELSP, where its graph is a piecewise linear concave function. Instead,

the graphical representation of the optimal solution of a capacitated ELSP consists

of multiple piecewise linear functions. This is due to the fact that if demand is

increased, the production capacity of a certain production period will be reached

and a new production period has to be started. This will cause the costs to rise

signi�cantly again, due to newly induced setup and production costs. It may even

occur that a subplan needs to be altered in order to satisfy the new demand, as the

total demand will not be able to be met anymore by the available production in the

periods of the subplan. This will cause a jump in the graph, where a new function

starts above the point where the previous function ended, leaving a vertical gap.

This phenomenon can be seen in Figure 3.2.1. At certain prices p where new inter-

vals begin, for example at p = 0.84 and p = 2, one can observe pretty signi�cant

jumps in the costs. This happens when a di�erent subplan becomes better than

what was used before in the optimal production plan. This problem did not occur

in the uncapacitated case as production would just increase as demand rose.
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Let us call the cost function Γ. The value of this function at a certain point

p is equal to the minimum of the costs of all procurement plans that are valid

at point p. In the uncapacitated case the function Γ was piecewise linear and

everywhere concave. In the capacitated case however, Γ is still piecewise linear,

but will not necessarily be concave everywhere. Instead, it is piecewise linear and

concave on a certain interval of the prices, in which we only change the structure

of the optimal production plan to obtain the least costs. At the endpoint of such

an interval the production plan needs to be changed, as the current production

plan will become infeasible if p is increased beyond that point. This is caused by a

fractional production period reaching capacity C, such that production has to start

in a di�erent period which requires a change in the structure of the production

plan. Since the production plan will not be valid anymore outside this interval,

the cost of this production plan will be set to in�nite. This makes the function

Γ the lower envelope of a set of functions that is linear in p on some interval and

in�nite elsewhere.

We can calculate said endpoints by the following formula presented by Geunes

et al. [2009]:

pmtτ =
mC −

∑τ−1
j=t αj∑τ−1

j=t βj
for m = 1, . . . τ − t+ 1; τ = t+ 1, . . . , T ; t = 1, . . . , T

This means that there are O(T 3) endpoints that we need to take into consideration.

On any interval created by taking two consecutive values of pmtτ the optimal cost

function Γ is piecewise linear and concave. The endpoints can thus be sorted in

increasing order to create a contiguous sequence of O(T 3) intervals for all p ≥ 0

on which Γ is piecewise linear and concave. As for the last endpoint, we also want

an interval in which this is the lower bound. Therefore we need an upper bound

on p for this interval. For this purpose, we will calculate the p for which demand

can still be satis�ed in every period given the capacity. Let us call this pUB, then

because we have Dt (p) = αt + βtd (p) with d (p) = 1, we get

pUB = min
t

(
C − αt
βt

)
.

We choose the minimum of these prices, as higher prices would let the demand



CHAPTER 3. CAPACITATED LOT-SIZING 32

T 2 3 4 5 6 7 8 9 10 11
n(T ) 2 7 16 30 50 77 112 156 210 275

T 12 13 14 15 16 17 18 19 20
n(T ) 352 442 546 665 800 952 1122 1311 1520

Table 3.3: Number of endpoints as T increases

exceed production capacity in the period where the lowest price was found, as this

was the price with which demand would be equal to C.

As the amount of endpoints is dependent on T , we can calculate the amount of

endpoints to see how it develops as T increases. The results can be found in Table

3.3. We can see that the amount of endpoints increases rapidly as T becomes

larger. The amount is still reasonable at T = 5, but the rapidly increasing amount

afterwards will put a large strain on computation time. Upon closer inspection, it

seems the relation between the amount of endpoints n(T ) and T can be expressed

in the following cubic function:

n(T ) =
1

6
T 3 +

1

2
T 2 − 2

3
T,

which shows that the amount of endpoints is of the order O(T 3).

3.2.3 Modi�ed exact algorithm

Now that we have de�ned the intervals in which Γ is piecewise linear and concave,

we can apply the same exact algorithm from Van den Heuvel and Wagelmans [2006]

as in the uncapacitated ELSP on each interval, but with minor modi�cations. First

of all, it should be clear that instead of the Wagner-Whitin algorithm we will be

using the Florian-Klein method for the capacitated case. The Kunreuther-Schrage

algorithm and Eisner-Severance method remain the same, however, the way the

Eisner-Severance method is executed will be di�erent. In the uncapacitated case

there was a separate function which took two production plans SL and SU as inputs,

calculated the intercepts and slopes of the corresponding lines and produced a

suitable p̄. However, this approach is not needed in the capacitated case, since

the intercept and slope of a line can be calculated immediately during the Florian-

Klein method.
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First, we will have production sequence Suv which is a production plan for the

periods u+ 1, . . . , v. Let us de�ne F to be the set of periods in which production

is equal to the capacity C and let period e be the period in which the production

is at less than capacity. We can calculate the intercept of the line corresponding

to the production plan as follows:

r =
∑
t∈F

(Kt + (c∗t − c∗e)C) +Ke + c∗e

v∑
t=u

αt

and the corresponding slope can be calculated as

s = c∗e

v∑
t=u

βt.

The respective intercepts and slopes of the di�erent production sequences which

make up the best production plan for a given p can be simply added up to calculate

the intercept and slope for the production plan, which can then in turn be used

in the exact algorithm to calculate the intersection point p̄ and to see whether the

production plans are equivalent.

As mentioned before, we can apply the exact algorithm from Van den Heuvel

and Wagelmans [2006] on each interval. However, the exact algorithm can only

be applied on a closed interval. In our case, we have endpoints which de�ne the

consecutive intervals. These intervals however are left-open, which means it has

no minimum as the lower bound is not included in the interval. This is due to the

fact that an endpoint is a transition from one optimal production plan to another.

This endpoint is included in an interval as the upper bound, but is not included as

the lower bound. If it were, then it would result in the same optimal production

plan as in the interval before, where it was used as an upper bound, which is not

desired. Geunes et al. [2009] seem to have overlooked this issue and hence do not

explain how to tackle this problem.

We will use an unorthodox way to still be able to obtain a production plan on

the lower bounds of intervals by increasing the price p with a small ε = 2−24 =

5.96 · 10−8. This arti�cial increase in the demand will bring the function past

the endpoint, into the new interval. However, if this arti�cial increase proves to
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be too much of an increase, such that it surpasses the upper bound of the same

interval, the algorithm will not be run on that interval. We choose this option

instead of even further lowering the ε, since the machine epsilon of MATLAB is

equal to εm = 2 · 2−53 = 2.22 · 10−16. If we would lower our ε even further, the

algorithm will be more prone to numerical imprecisions as it would use numbers

with a di�erence close to εm.

According to Geunes et al. [2009] the overall solution approach for the capaci-

tated problem will run in O(T 9) time. This is because we now have the function

Γ which contains O(T 3) intervals and within each interval there are O(T 3) break-

points. This means we need to solve a total of O(T 6) equal-capacity lot-sizing

problems with the Florian-Klein method, each of which can be solved in O(T 3)

time, which results in a total time of O(T 9). However, because of the �aw in the

proof of the exact algorithm of Van den Heuvel and Wagelmans [2006], we can not

be sure whether there are actually O(T 3) breakpoints in each interval. Therefore

we also can not be sure whether the solution approach of Geunes et al. [2009] has a

running time of O(T 9). The only thing we can say for certain at this point is that

the running time will be at least O(T 6) due to the number of intervals and the

time to solve an equal-capacity lot-sizing problem with the Florian-Klein method.

3.3 Results

We are curious about how the running time of this algorithm will be in practice

compared to the proposed O(T 9) from Geunes et al. [2009]. Therefore we need to

simulate test cases again as we did for the uncapacitated part. Before we do that,

we are curious about how the algorithm performs on known test cases. Therefore

we will be using various cases depicted by Deng and Yano [2006]. After that, we

will take a look at how the computation time develops as we let T vary. Finally,

we will discuss how the test cases are chosen and how the algorithm fares on

these test cases regarding computation time. As with the results obtained in the

uncapacitated part, all of the results are obtained by using the 64-bit version of

MATLAB on a desktop computer with a quad-core processor at 3.2 GHz and 4GB

RAM.
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3.3.1 Known test cases

To be sure our algorithm performs well and will be giving optimal solutions, we

want to test our algorithm on certain known cases. The paper of Deng and Yano

[2006] o�ers some test cases we can use for this purpose. The model horizon for

these test cases is T = 6. We will be using the three demand scenarios speci�ed

in the paper, namely homogeneous demand (at = 10, for all t), a scenario with

increasing demand curves (a = (7.5, 8.5, 9.5, 10.5, 11.5, 12.5)) and a scenario with

seasonal demand (a = (10, 14, 6, 10, 14, 6)). The other parameters are as follows:

bt = 1, Kt = 10, ct = 1 and ht = 0.1 for all t. As always we can incorporate the

unit holding costs in the unit production costs as speci�ed in section 2.3.2. Do note

that Deng and Yano [2006] use a di�erent demand function than the one speci�ed

in Kunreuther and Schrage [1973], which is used throughout this paper. They use

an inverse demand function of the form pt = at − btDt, which can be rewritten

as Dt = at−pt
bt

. Since bt = 1 for all t and we will be using constant prices, this

simpli�es to Dt = at−p. Our demand function is of the form Dt (p) = αt+βtd (p),

which means that we obtain αt = at, βt = −1 and d (p) = p. Since Deng and Yano

[2006] are interested in optimal prices rather than optimal production plans, we

need to calculate the optimal prices in our algorithm as well. Since we have the

linear cost function readily available for each production plan within an interval,

we can determine the pro�t as follows:

Π (D (p)) =
∑

t (Dtp)− Γ (p)

=
∑

t ((αt + βtp) p)− (r + sp)

= p
∑

t αt + p2
∑

t βt − r − sp
= p2

∑
t βt + p (−s+

∑
t αt)− r

Then we can �nd the optimal price at which pro�t is maximized for each opti-

mal production plan on Γ as:

Π′ (D (p)) = 0

2p∗
∑

t βt + (−s+
∑

t αt) = 0

2p∗
∑

t βt = s−
∑

t αt

p∗ =
s−

∑
t αt

2
∑

t βt
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However, this resulting p∗ needs to lie within the interval in which the produc-

tion plan is de�ned. Otherwise the optimal price for the production plan is one

of the endpoints of the interval, more speci�cally, the endpoint with the higher

pro�t. This can be deduced intuitively, since Π (D (p)) is a quadratic function

with p∗ corresponding to its peak, if p∗ does not lie within [pL, pU ], then Π (D (p))

is either strictly increasing or decreasing on [pL, pU ], which makes the endpoint

with the higher pro�t the optimal p for that interval. Finally, we can determine

the optimal price for the test case by looking for the p∗ which corresponds to the

highest pro�t. This will be done for various capacities.

First we will look at the results for the case with homogenous demand. We

will let capacity C vary from 1 to 20, taking only the integer values. The optimal

prices found by Deng and Yano [2006] for both the constant price and the average

unit price can be found in Figure 3.3.1, while our results can be found in the left

graph of Figure 3.3.2. We can immediately see something peculiar. We would

expect our results to coincide with the results of Deng and Yano [2006] in the case

of constant prices. However, we can see that they roughly coincide with the results

of average unit prices instead.

To doublecheck that our prices are correct, we will calculate the optimal prices

through enumeration, where we gradually increase the price with 0.01 in the in-

terval [5, 9.5]. The results are displayed in Figure 3.3.2 on the right. We can see

that the prices obtained in both ways are nearly identical, except for C = 4 and

C = 11. These di�erences can be accounted to the imprecision of the iterative

method, as we used steps of 0.01 for the price. This minor di�erence can in�uence

the choice of the best price in the case of C = 11 or even the choice of subplans

for the optimal production plan in the case of C = 4. Overall, our two results

obtained through di�erent means are similar.

We can see that there are also some disparities between our results and that of

Deng and Yano [2006]. For example, one can see that for C = 4 we get p∗ = 6.8,

while Deng and Yano [2006] seem to get p∗ = 6, and for C = 10 we get p∗ = 6.67

and they get p∗ = 5.52. However, Deng and Yano [2006] make no notion on the

exact capacity values they use and the markers on the graphs can be misleading.

On closer inspection, it turns out that p∗ = 6.1 is obtained at C = 3.9 and we get

p∗ = 5.52 at C = 9.74, after which it immediately rises to p∗ = 6.75 at C = 9.75.
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Figure 3.3.1: Optimal Constant (left) and Average Unit Prices (right) as Functions
of Capacity: Homogenous Demands (Figures taken from Deng and Yano [2006],
p.749 and 751)

We can say that in general our results correspond to the results of Deng and Yano

[2006] for the homogenous demand case, albeit the case of average unit price and

not constant price.

If we look at the case with increasing demand, displayed in Figure 3.3.3, we

can see that the optimal constant and average unit prices obtained by Deng and

Yano [2006] lie fairly close to each other. The case with constant prices however,

obtains lower optimal prices than when average unit prices are used for every C.

Even though it is quite hard to see to which capacities and prices the markers

on the graphs belong, we can see that our results coincide more with the results

from Deng and Yano [2006] with constant prices, which is expected. This can be

seen between C = 9 and C = 10, where our optimal price slightly increases. The

same happens for Deng and Yano [2006] in the case of constant prices, whereas it

decreases when we look at the average unit price. Furthermore, we obtain a price

of around 5.55 for C = [15, . . . , 20], which is similar to the case of constant prices.

One might notice that our graph does not match that of Deng and Yano [2006]

completely. This is due to di�erent points being plotted, as we can see that Deng

and Yano [2006] do not have strict guidelines on the capacities they plot. This

can be seen clearly around C = 5 where there is a cluster of markers, whereas we

plot the prices for integer capacities. If we take capacities with steps of 0.1 and

plot the optimal prices, the resulting graph �uctuates even more as little changes
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Figure 3.3.2: Optimal Prices as Functions of Capacity: Homogenous Demands;
Left: Obtained through the algorithm; Right: Obtained through enumeration

in capacity change the optimal production plans and therefore the optimal price,

especially at lower C. This graph di�ers even more from the graph of Deng and

Yano [2006].

Finally, we take a look at the case of seasonal demand. The results can be found

in Figure 3.3.4. Again our results are similar to that of Deng and Yano [2006] in

the case of constant prices. We can see that Deng and Yano [2006] decided not to

plot points for the case of constant prices for C ≤ 6. Unfortunately, they do not

mention the reason behind this decision. In our results we can see that the optimal

price is rather high for C ≤ 6, after which it drops below 6.00 and stays there as

C increases. In C = [15, 20] we can see minor �uctuations in the price, with the

most notable one being the price getting back to 6.00 at C = 17. Unfortunately,

we can not see this in the results of Deng and Yano [2006], as it seems they obtain

the same optimal price at these values of C.

All in all we can say that our results roughly coincide with that of Deng and

Yano [2006]. It is hard to compare the results as Deng and Yano [2006] do not

report the exact capacity values plotted in the graph, nor give numerical values

for the prices for the cases with increasing and seasonal demands. Peculiar is that

our results for the case with homogenous demand coincide with their results on

average price, whereas for the other demand cases our results coincide with their

results on constant prices. One would think that our results would be similar to
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Figure 3.3.3: Left: Optimal Constant and Average Unit Prices as Functions of
Capacity: Increasing Demands (Figure taken from Deng and Yano [2006], p. 751);
Right: Optimal Constant Price for Increasing Demands

Figure 3.3.4: Left: Optimal Constant and Average Unit Prices as Functions of
Capacity: Seasonal Demands (Figure taken from Deng and Yano [2006], p. 751);
Right: Optimal Constant Price for Seasonal Demands
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theirs for constant prices, as we use time-indi�erent prices in our model. However,

it is hard to believe that it is coincidence that our results with constant prices

are the same as their results with average prices. It might be possible that the

�gures in Deng and Yano [2006] have been switched. Although this would also be

peculiar as one can see that for the cases with increasing and seasonal demand the

constant prices are always lower than the average prices. If the �gures for the case

of homogenous demand would be switched, it would mean that the optimal prices

would be higher when constant prices are used than when average prices are used.

3.3.2 Computational results for a single case

As with the uncapacitated case, we are interested in the development of the com-

putation time as we let T vary. Therefore we will look at a speci�c case which

we will run for various T . We will also look at the amount of endpoints and the

amount of breakpoints in each interval individually, instead of the total amount.

We can compare our results with the results from Geunes et al. [2009].

We will use the same parameters again as in section 2.3.1, which are as follows:

Dt(p) = D + p for t = 1, . . . , T,

Kt = (T − t+ 1)K for t = 1, . . . , T,

ct = T T−t+1 for t = 1, . . . , T,

with D = αt = 0, βt = 1 and K = 100. In addition to these parameters, we

set the capacity at C = 2, 5 and 10. We run the modi�ed exact algorithm over

all intervals using these parameters and T = 4, . . . , 20. The results are shown in

Table 3.4.

We can see that the computation time steeply rises as T gets larger. Whereas

the computation time in the uncapacitated case was merely a second for T = 20,

it is well over two minutes in the capacitated case. This can be accounted to

the number of intervals, which is equal to the number of endpoints n(T ), as the

algorithm needs to run for each interval consisting of two consecutive endpoints

n(T ) and where the last endpoint gets paired up with an upper bound on p.

Notice that the amount of endpoints found is smaller than what we would have

expected. This is caused by our choice of parameters, which generates many
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similar endpoints, such that the amount of unique endpoints is smaller. We cannot

detect a drop in the computation time anymore as T gets larger as we did before

in the uncapacitated case. This can be accounted to the low amount of total

breakpoints (bp) found, which means that in the capacitated case the problem gets

more intensive as T increases and there needs to be gradually more calculations. It

does not su�er from a drop in the total amount of breakpoints, which would cause

less calculations and therefore lower computation times, as what was the case in the

uncapacitated problem. As for the amount of breakpoints in each interval, there

was merely one case where there were two breakpoints in one interval, namely

at T = 4 with C = 5. For all the other cases there were either none or one

breakpoint in every interval for each C. The larger computation time in the case

of T = 4 for C = 5 compared to the time for C = 2 is due to this occurrence of

two breakpoints in one interval for C = 5. This is because the algorithm needed

to solve an additional equal-capacity lot-sizing problem with the Florian-Klein

method, which takes more time.

If we look at the computation times across the di�erent capacities, we can

not �nd a trend unfortunately. However, we do see that the computation time

is dependent on the amount of breakpoints found, as one would expect. As the

amount of breakpoints found is equal for di�erent C, the computation time only

di�ers slightly. Whereas if the amount of breakpoints is larger, one can see a

signi�cant increase in computation time. One can also see that the amount of

breakpoints is either equal or lower for larger C at the same T . This is the case

until T = 15. This is as expected since as C gets larger, one can produce more in

one production period, thus one would exceed the production capacity less often,

resulting in less breakpoints. This in turn means that there were less calculations

needed, thus resulting in lower computation times.

From T = 16 onwards this is not the case anymore, as the amount of break-

points seems to get larger for higher C. This can be explained as follows. Due to

the aforementioned formula used to calculate endpoints by Geunes et al. [2009],

the endpoints will have small values for a low C. Therefore the range on which

p can operate is limited. As C gets larger, p can get larger as well and therefore

demand will be able to rise. A large C for small T means that the problem is as

good as uncapacitated. However, as T becomes larger, there will be more total
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demand. At some point the total demand will surpass capacity C again, forcing

a new production period. This means that the problem will become more like a

capacitated problem again, which will have more possible production plans and

therefore generate breakpoints again. What happens with smaller C at large T is

that its endpoints remain small, thus demand can not increase as much. Therefore

the production plans are limited to low demands, which does not create much

diversity and thus not many breakpoints. This is why we see higher amounts of

breakpoints for C = 5 and C = 10 than for C = 2 for these larger T.

Figure 3.3.5 shows a plot of the computation times over T = 4, . . . , 20 for C = 2,

5 and 10. We can clearly see that the computation time does not su�er for higher

T as it did in the uncapacitated case. We can deduce in which order of time the

algorithm has run for this particular test case by looking at what happens when T is

doubled. This will be done only for C = 2 as we can see that the computation times

lie close to each other and the graphs are similar. We can see that by doubling

T , the computation times get multiplied by (19, 23.8, 23.5, 30.2, 27.5, 31.3, 32.3)

respectively. This seems to indicate that the algorithm has run in O(T 5) time,

since by doubling T , the computation time has been multiplied by about 25 = 32.

We would actually have expected this algorithm to run in at least O(T 7). This

is due to the fact that we should have O(T 3) intervals for which the Florian-

Klein method has to be run at least once, which runs in O(T 4) time as we have

implemented it in the traditional way. However, if we take a look at our results,

one can see that the number of endpoints found is greatly lower than what one

would expect. If T would be doubled, we can see that the amount of endpoints

is about a factor four larger. This means that we have about O(T 2) endpoints.

This is again due to the way we have chosen our parameters, which causes many

endpoints to be similar, resulting in a low amount of unique endpoints. For each

endpoint the Florian-Klein method has to be run, which totals an order O(T 6)

time. Do note that these results come from fairly small T . We would see this

e�ect better for larger T . Furthermore, these results have been obtained using a

mere example, not a worst case scenario, as it was in the uncapacitated case. This

explains why we are not even close to the proposed running time of O(T 9).



CHAPTER 3. CAPACITATED LOT-SIZING 43

T n(T ) Found endpoints
C = 2 C = 5 C = 10

time (s) bp time (s) bp time (s) bp

4 16 7 0.08 2 0.10 2 0.07 1
5 30 10 0.18 3 0.16 1 0.15 0
6 50 15 0.45 3 0.41 1 0.39 0
7 77 18 0.75 2 0.73 1 0.73 1
8 112 25 1.52 1 1.52 1 1.53 1
9 156 30 2.54 1 2.56 1 2.55 1
10 210 37 4.28 1 4.23 0 4.24 0
11 275 42 6.37 1 6.37 1 6.48 0
12 352 53 10.59 1 10.63 1 10.85 0
13 442 58 14.53 1 14.57 1 14.43 0
14 546 71 22.64 1 22.63 1 22.50 0
15 665 78 32.14 1 31.82 1 30.35 0
16 800 87 41.74 0 42.61 2 42.74 1
17 952 96 56.24 1 57.01 2 56.93 2
18 1122 113 79.48 1 80.04 1 79.99 1
19 1311 120 98.73 0 99.06 0 98.94 0
20 1520 139 138.16 1 141.01 4 141.26 4

Table 3.4: Computation time and number of total breakpoints of the modi�ed
exact algorithm for various T and C = 2, 5 and 10

Figure 3.3.5: Computation time for T = 4, . . . , 20 and C = 2, 5 and 10
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3.3.3 Computational results for multiple cases

Since one case does not say much about the computation time of the algorithm

in practice, we will generate a large amount of test cases and see how well the

algorithm performs on them. Because the algorithm takes more time to solve the

capacitated problems than the uncapacitated ones, we will have a smaller amount

of test cases this time compared to section 2.3.1. We will let the parameters α,

β, K, c be drawn from three ranges, namely from [0, 100] to [0, 102]. From each

range, we will draw one random number sequence for each parameter. All the

number sequences for these parameters will be sorted descending, as we have seen

in the uncapacitated case that this gave us the most amount of breakpoints. The

random drawn parameters from each range will be combined with each other,

such that we can see what kind of e�ect the scale of the parameters have on the

computation time and amount of breakpoints. This means we will have 24 = 16

test cases per range combination. Since we will have 34 = 81 range combinations,

this results in a total of 16 · 81 = 1296 test cases per T . Note that capacity C

is a single value instead of a time-variant sequence. Therefore we will generate C

individually for each case. Since we want all cases to be solvable, we will draw the

capacity C for each case as a random number from
[
maxt(

∑T
t=1Dt

t
), 2 ·maxt(Dt)

]
,

where Dt = αt + βt. We choose this minimum on C, since it needs to be able

to satisfy the demand in all periods, otherwise we will have an unsolvable case.

For the maximum, we want to allow a case to be treated as nearly uncapacitated

as well. However we do not want too many uncapacitated cases, so twice the

maximum demand should be a reasonable maximum for C.

First we will look at T = 4. In Table 3.5 we can see that there was one out of

1296 cases with a total of �ve breakpoints. Furthermore, the maximum amount

of breakpoints within an interval was two, which occurred in twelve cases. We are

now curious whether the various ranges of the parameters had any in�uence on the

results. Therefore we will group up all the cases with the same parameter ranges,

making 81 groups of 16 cases each. For each group we will determine the maximum

amount of breakpoints, the amount of breakpoints within an interval and for both

these statistics the number of cases that contained these numbers. Furthermore,

we are interested in the minimum amount of breakpoints in a group, so that we
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can see whether there is a group which has breakpoints in all sixteen cases. These

statistics can be found in Table 3.6, where we have chosen to display the groups

for which there were 4 or 5 breakpoints. We can see that for all the cases with 4

or more breakpoints the setup cost K was in the range of [0, 102]. Furthermore,

the unit production cost is low when there were 4 breakpoints found, in the range

of [0, 100]. However, in the case of 5 breakpoints the unit production cost was in

the range of [0, 101]. This seems to be inconsistent. The same can be said about

β. The only parameter which seems to have no consistent e�ect at all is α, as it

di�ers for each case.

To determine whether these parameters have a consistent e�ect on the amount

of breakpoints, we will also take a look at T = 5 and T = 6. The results are shown

for 6 breakpoints for T = 5 and for 8 to 11 breakpoints for T = 6 in Tables 3.7 and

3.8 respectively. We can see that for T = 5 the setup cost K is still large. However,

β seems to be fairly random, which means that it has no consistent e�ect on the

number of breakpoints. The unit production cost c on the other hand seems to

stay fairly low in most cases. If we take a look at T = 6, we can see that K is not

in the range of [0, 102] anymore for two of the four cases with a large number of

breakpoints. However, c is still low in all these cases.

If we take a look at the minimum amount of breakpoints within a group,

we can see that for some groups all the cases contained at least one or even two

breakpoints. Unfortunately, there seems to be no combination of parameter ranges

for which this occurs consistently. As for the maximum amount of breakpoints

within an interval, there are no cases where this number is extraordinarily high.

The breakpoints are well spread over the intervals, as one would expect from

randomly generated data.

In the end, it seems that the setup cost K and unit production cost c have an

e�ect on the amount of breakpoints, while α and β do not. This could be expected

as these costs shape the cost function Γ. If the contrast between K and c is big,

as it is in these cases, where K lies in the range [0, 102] and c in [0, 1], the total

cost will change dramatically if one would start a new production period. This in

turn could cause a breakpoint in Γ.

Now that we have seen that a relatively large K and small c have a signi�cant

e�ect on the amount of breakpoints found, we can generate more test cases using
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T max bp #cases max bp interval #cases time (sec)

4 5 1 2 12 174
5 6 7 3 1 570
6 11 1 3 1 1514
7 17 1 2 65 3541

Table 3.5: Results for test cases over T

factor
max bp #cases min bp max bp interval #cases

α β K c

0 0 2 0 4 1 1 1 16
0 2 2 0 4 2 0 1 15
1 2 2 0 4 3 2 1 16
1 2 2 1 5 1 1 2 2
2 2 2 0 4 1 0 2 2

Table 3.6: Results for T = 4: Range combinations with 4 and 5 breakpoints

factor
max bp #cases min bp max bp interval #cases

α β K c

0 0 2 2 6 1 1 2 2
0 1 2 1 6 1 0 1 15
1 1 2 1 6 2 2 2 2
2 0 2 0 6 1 1 2 3
2 1 2 0 6 1 2 1 16
2 2 2 0 6 1 2 2 1

Table 3.7: Results for T = 5: Range combinations with 6 breakpoints

factor
max bp #cases min bp max bp interval #cases

α β K c

0 0 1 0 11 1 2 2 1
0 1 2 1 10 1 2 3 1
1 1 2 0 8 1 2 2 1
2 0 0 0 9 1 0 1 13

Table 3.8: Results for T = 6: Range combinations with 8 to 11 breakpoints
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T Found endpoints max bp #cases max bp interval #cases time (s) avg time (s)

4 16 3 6 2 1 36.3 0.14
5 30 6 1 2 2 117.7 0.46
6 50 7 1 2 4 308.5 1.21
7 77 8 4 3 1 736.1 2.88
8 112 11 1 2 20 1528.8 5.97
9 156 10 2 2 16 2842.3 11.10
10 210 13 1 2 19 5368.7 20.97

Table 3.9: Results for �xed ranges for T = 4, . . . , 10

these parameter characteristics. Therefore we will not vary the ranges of the pa-

rameters anymore, but only draw random number sequences from predetermined

ranges. We will draw K from the interval [0, 102], c from [0, 1] and α and β from

[0, 102]. We choose the interval [0, 102] for α and β since we have seen for T = 4

and T = 5 that it produced cases which contained fairly large amounts of break-

points. For each parameter four random number sequences will be drawn from

their respective ranges and these sequences will be combined again to construct

44 = 256 test cases for each T . We have chosen for four random number sequences,

since 256 test cases seems like a fair amount to let our algorithm run on. We have

seen that for 1296 test cases the running time at T = 7 was already nearing an

hour. This would mean that for larger T the computation time would be many

hours. Therefore we have chosen a smaller amount of test cases, such that we will

have reasonable computation times for larger T . Again, C will be drawn randomly

for each case in the aforementioned way. The results can be found in Table 3.9.

We can see that we unfortunately do not obtain as many breakpoints as we

had hoped. The amount of breakpoints for T = 5 is similar to the maximum

amount we found when we looked at the various range combinations. However,

for the other T the amount of breakpoints is rather low compared to our previous

results. This was to be expected, as we could not �nd a range combination which

consistently produced a vast amount of breakpoints. The only parameters we were

sure of having an impact on the amount of breakpoints were K and c. The choice

of α and β might seem to be unfortunate, but these parameters seemed to have

little impact, which would probably mean that we would have obtained similar

results if we had chosen di�erent ranges for these parameters.
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If we take a look at the computation time, we can see that it rises vastly as

we increase T . Even though we have chosen a smaller set of test cases for each T ,

the computation time already comes close to an hour for T = 9. We can compare

the average time of a run with what we obtained in 3.3.2. We can see that the

running time of these cases with randomly generated parameters is larger than

with the constructed case. To be exact, the running times are larger by factors

(1.4, 2.3, 2.5, 3.5, 3.6, 4.0, 4.5) compared to the constructed case with C = 2. This is

due to the fact that α and β are time-dependent now, which causes more endpoints.

In fact, the amount of endpoints found coincides with the amount that we would

expect from Geunes et al. [2009].

Since it seems that even 256 test cases for each T might seem too much regard-

ing the computation time, we will look at the practical running time for one test

case for each T . We will take a look at T = 11, . . . , 20, as we already have results

for T up to 10. The results can be found in Table 3.10. We can see that we con-

tinue to �nd the expected amount of endpoints. The amount of total breakpoints

and breakpoints per interval found seems lackluster, but one should note that this

is merely for one test case. We can see that the computation time goes from a

mere 30 seconds at T = 11 to a hefty 1216 seconds at T = 20, which is about

20 minutes. If we calculate the factor the computation times have increased after

doubling T , we obtain (47.8, 51.3, 49.1, 50.8, 58.0) for going from T = (6, 7, . . . , 10)

to T = (12, 14, . . . , 20). These factors are within O(T 6), however, one should note

the sudden increase in factor at T = 20. This might indicate that the computation

time for even larger T have an even larger factor.

3.4 Conclusion

We know that solving an equal-capacity lot-sizing problem using the method from

Florian and Klein [1971] takes O(T 4) time. This result can be improved to O(T 3)

as Van Hoesel and Wagelmans [1996] show. From our results we can see that

for practical problems, where the parameters of the problem are not arti�cially

constructed, the number of endpoints is of the order O(T 3). This amount can

go down as parameters coincide in such a way that endpoints overlap each other.

However, this requires very speci�c values for the parameters and these are not
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T Found endpoints bp max bp interval time (sec)

11 275 3 1 32.70
12 352 4 1 57.80
13 442 3 1 86.15
14 546 8 1 147.71
15 665 9 1 207.90
16 800 5 1 293.38
17 952 5 1 436.63
18 1122 4 1 563.66
19 1311 18 1 881.14
20 1520 22 1 1216.27

Table 3.10: Results for one test case for T = 11, . . . , 20

prominent in practice. Within an interval the number of breakpoints is equal to

O(T 3) according to Geunes et al. [2009], using a theorem by Van den Heuvel and

Wagelmans [2006]. However, due to a �aw in the proof of this theorem, it is not

sure whether this theorem holds. As we have seen in the previous chapter, we

could not disprove this theorem unfortunately. Therefore we used simulations to

determine the practical running time of the algorithm suggested by Geunes et al.

[2009] to see whether their proposal still holds even with the �aw in the proof.

However, we were unable to even come close to their result of O(T 9), let alone �nd

a higher order of time.

It proved to be di�cult to �nd many breakpoints within an interval, as there is

no prede�ned worst case scenario which holds for the capacitated case. Therefore

our test cases did not come close to the proposed O(T 3) amount of breakpoints

within an interval. This resulted in lackluster computation times, where it seemed

that only the amount of endpoints and the Florian-Klein method had impact on

the computation time. We did try to �nd a certain direction towards a worst case

scenario, in the form of ranges on the parameters. However, this proved to be not

highly successful, as the amount of breakpoints within an interval remained low for

all scenarios. We did see that a relatively large setup cost K and relatively small

unit production cost c resulted in cases with a decent total amount of breakpoints.

However, the amount of breakpoints found seemed to be inconsistent throughout

T . This could also be ascribed to the fact that the number of test cases became
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smaller as T became larger. We were unable to generate many test cases for large

T as this would consume a lot of time.

In the end, we were unable to generate test cases such that they would approach

the computation time proposed by Geunes et al. [2009]. Therefore we could not

compare our results with theirs and determine whether the �aw in the proof of the

theorem by Van den Heuvel and Wagelmans [2006] has an e�ect on the algorithm

of Geunes et al. [2009].



Chapter 4

Conclusion

The economic lot-sizing problem is a well-known problem within the �eld of logis-

tics. However, it stays intriguing as we develop new methods and try to improve

the already existing methods. To this extent, Van den Heuvel and Wagelmans

[2006] proposed an exact algorithm to determine the optimal price and lot-sizing

decisions. Geunes et al. [2009] used this algorithm in turn to propose an algorithm

of their own, now for the capacitated case. Unfortunately, it turned out there was

a �aw in the proof of Van den Heuvel and Wagelmans [2006], which made it un-

certain whether their theorem still holds. This impacts the result of Geunes et al.

[2009] as well. Therefore, we tried to disprove the theorem, since if this would be

successful, we would have a clear answer.

Unfortunately, we were unable to do so. We were unable to �nd a counterex-

ample to disprove the theorem. We were able to isolate a scenario which would

contain many breakpoints. However, after simulating many test cases, we were un-

able to �nd a test case which contained more breakpoints than what was expected

from the theorem.

The capacitated lot-sizing problem is of a di�erent caliber than the uncapac-

itated problem. It is much harder to tackle and even though it is possible to

solve it, it is often not desired as it takes quite some time. We have seen that

the practical running time increases dramatically as the model horizon becomes

larger. Due to this, we could not conduct our simulations in the same way as for

the uncapacitated case. We started o� with a large set of test cases, prone to

51
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�nd test cases with many breakpoints, as we did before. However, as computation

time became larger, we had to decrease our amount of test cases. Therefore we

focussed on a certain pattern for the parameters, for which we thought we would

obtain cases with many breakpoints. After limiting our test cases, it still seemed

to be not enough, after which we even reduced the number of test cases to one per

model horizon T .

Whereas the choice of parameters to concentrate on was successful for the

uncapacitated case, it proved to be not that worthwhile for the capacitated case.

It is hard to de�ne a worst case scenario for the capacitated lot-sizing problem, as

one has to take into account many parameters and the structure of the problem

and costs. We did see that the computation time increased immensely as T became

larger, up to the point where one test case took up to twenty minutes. However,

we were unable to determine for a large number of T what the order of the running

time is. We were unable to show whether the �aw in the proof of the theorem by

Van den Heuvel and Wagelmans [2006] has an e�ect on the results of the algorithm

for the capacitated lot-sizing problem.

Further research

As there are many questions left open after this research, there are many points for

further research. First of all, we have stumbled upon a scenario which seemed that

Geunes et al. [2009] have overlooked while constructing their algorithm. They did

not take into account that the exact algorithm of Van den Heuvel and Wagelmans

[2006] is only de�ned on a closed interval. The construction of their endpoints into

intervals however suggest a left-open interval. We have remedied this by increasing

the endpoint with a small ε such that the lower bound of the interval could be

used in the algorithm. However, this is just a quick solution and by all means not

a proper way of doing it. One could search for a solution to do this in a proper

way.

Furthermore, the scenarios that we used for the capacitated case seemed to

have no consistent e�ect on the total amount of breakpoints found. Neither did it

a�ect the amount of breakpoints within an interval, even though we expect O(T 3)

breakpoints within each interval. It would be interesting to look for a worst case
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scenario in the capacitated lot-sizing problem, where one would consistently get

O(T 3) breakpoints within an interval, such that the algorithm from Geunes et al.

[2009] can be properly tested.

Finally, it is still not clear whether the theorem of Van den Heuvel and Wagel-

mans [2006] is correct, as there is no new proof available. It would be interesting

if someone would �nd a counterexample to disprove the theorem, or maybe even

come up with proof that the theorem still holds.
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