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Abstract

The purpose of this study was to investigate whether introducing time dependent surface dynamics
would improve the modeling of implied volatility surfaces. The aim of the research is therefore to see
whether models which incorporate these dynamics perform better than a benchmark model, currently
used at ORTEC Finance to model option price scenarios, that uses an implied volatility surface with a
constant shape, of which a single point is modeled over time.

Three different models are used; principal component analysis, the Heston model and a regression
model based on terms which are functions of moneyness and maturity. All three models and the bench-
mark model are calibrated on the implied volatility surface at the end of each month in the period
January 2005 till June 2012, for both the Standards & Poor 500 (SPX index) and the Euro Stoxx 50 (SX5E
index). Afterwards the calibrated parameters that follow from these models are modeled over time us-
ing regression models. These regression models are mostly AR(1) models with additional independent
variables like the return of the SPX index, realized volatility, VIX index or the consumer price index. A
final comparison of the performance of these models is made in terms of the mean absolute error over
time and surface.

Two of the three models are an improvement over the benchmark model in modeling the implied volatil-
ity surfaces of both the SPX index and the SX5E index. The Heston model is only a slight improvement
over the benchmark model, while the regression model shows better improvements. The regression
models contains five terms; a constant, moneyness divided by the square root of maturity, moneyness
squared divided by maturity, maturity and moneyness times the square root of maturity. The principal
component analysis shows an almost constant mean absolute error, which is higher than the mean abso-
lute error of the other models (and also the benchmark model). Since two of the three models that allow
the shape of the volatility surface to change over time are an improvement over the benchmark model,
it can be concluded that introducing time dependent surface dynamics does improve the modeling of
implied volatility surfaces.
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Samenvatting

Het doel van deze studie is het onderzoeken of door het introduceren van tijdsafhankelijke oppervlakte
dynamieken het modelleren van implied volatiliteit oppervlakken wordt verbeterd. Daarom wordt in
dit onderzoek bekeken of modellen die deze dynamiek bevatten beter presteren dan een benchmark
model dat een implied volatiliteit oppervlakte gebruikt met een constante vorm, waarvan een enkel
punt wordt gemodelleerd over tijd.

Drie verschillende modellen worden gebruikt; principale componenten analyse, het Heston model en
een regressie model gebaseerd op termen die functies zijn van moneyness en looptijd. Alle drie de
modellen en het benchmark model zijn gekalibreerd op implied volatiliteit oppervlakken aan het eind
van elke maand in de periode januari 2005 tot juni 2012, voor zowel de Standards & Poor 500 (SPX
index) als de Euro Stoxx 50 (SX5E index). Daarna zijn de gekalibreerde parameters, die volgen uit
deze modellen, gemodelleerd over de tijd met regressie modellen. Deze regressie modellen zijn gro-
tendeels AR(1) modellen met extra onafhankelijke variabelen zoals het rendement van de SPX index,
gerealiseerde volatiliteit, VIX index of de consumenten prijs index. Een vergelijking in prestatie van
deze modellen wordt gemaakt in termen van gemiddelde absolute fout in implied volatiliteit over tijd
en oppervlakte.

Twee van de drie modellen blijken een verbetering te zijn ten op zichten van het benchmark model in
het modelleren van implied volatiliteit oppervlakken voor zowel de SPX als de SX5E index. Het Heston
model laat een kleine verbetering zien, terwijl het regressie model een grotere verbetering laat zien.
Het regressie model bestaat uit vijf termen; een constante, moneyness gedeeld door de wortel van de
looptijd, moneyness kwadraat gedeeld door de looptijd, de looptijd en moneyness keer de wortel van
de looptijd. Principale componenten analyse resulteert in een bijna constante gemiddelde absolute fout
in implied volatiliteit over tijd, welke hoger is dan de gemiddelde absolute fout van de andere modellen
(ook het benchmark model). Omdat twee van de drie modellen die de vorm van het implied volatiliteit
oppervlakte laten veranderen over tijd een verbetering is ten opzichte van het benchmark model, kan
geconcludeerd worden dat door het introduceren van tijdsafhankelijke oppervlakte dynamiek wel het
modelleren van implied volatiliteit oppervlakten wordt verbeterd.
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CHAPTER 1

Introduction

A measure for the uncertainty of the returns provided by stock is the volatility, σ (Hull (2012)). Histori-
cal volatility is the standard deviation of the underlying price of the asset over a historical period. Next
to historical volatility, literature uses the implied volatility. The most used implied volatility, is the one
which follows from the famous formula of Black and Scholes (1973). Christensen and Prabhala (1998)
state that the implied volatility is widely regarded as the option market’s forecast of future return volatil-
ity over the remaining life of the relevant option. Some research indicate that the implied volatility is a
good predictor of the realized volatility (Jorion (1995), Beckers (1981), Chiras and Manaster (1978), Giot
(2003)), although other research indicate that the implied volatility is a biased predictor of future realized
volatility (Lamoureux and Lastrapes (1993), Day and Lewis (1992), Canin and Figlewski (1993)).

Lee (2002) explains Black-Scholes implied volatility as a language used to express the price of an option.
Many traders use the implied volatility to compare the values of options with different underlyings,
strikes and maturities. This means implied volatility is not only used as a predictor of future volatility,
its main use is to price options of different underlyings, strikes and maturities. To model the implied
volatility surface therefore means to model the prices of sets of options. Improvements in these models
lead to having a better idea of the returns and risks of options.

Under the Black-Scholes model the implied volatility of an option is constant over maturity and mon-
eyness. However, when the implied volatilities of different maturity and moneyness combinations are
calculated from market data, the implied volatility varies across maturity and moneyness. An implied
volatility surface can be constructed if one has the implied volatility of options with different maturity
and moneyness. The level and shape of the implied volatility surface change over time.

In available literature about modeling implied volatilities time series, usually only one implied volatility
is modeled over time. For example the Chicago Board Options Exchange Market Volatility Index (VIX)
is a popular measure of the implied volatility of S&P 500 index options and is the variable to be modeled.
The dependency of implied volatility on maturity and moneyness is not taken into account.

There are models available in literature from which the volatility surface can be constructed, the most
well-known being the model of Heston (1993). These models are not time dependent and from them one
can construct the volatility surface at one certain time step. This means that there are not many methods
to model the implied volatility surface in time. The Heston model is the most well-known and popular
of all stochastic volatility models (Gatheral (2006)).

There are not many scientific papers on the time dependent dynamics of the implied volatility surface.
Historical data show that the shape of the implied volatility surface is not constant over time. It is
therefore relevant to investigate possible time dependent dynamics of the implied volatility surface and
to construct ways to model the implied volatility surface, instead of only one implied volatility.

Thesis goal

At ORTEC Finance the implied volatility surface is kept constant by using the historical implied volatil-
ity surface relative to one reference point, which is modeled over time. ORTEC Finance constructs
scenarios for a wide range of economic and financial variables, used by institutional investors to sup-
port ALM analyses, asset allocations and risk studies. In reality the market data shows that the shape of
the implied volatility surface is not constant over time. The main motivation for this thesis is to improve
the modeling of the implied volatility surface by incorporating a dynamic surface over time, so that it
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4 Chapter 1: Introduction

can be used in the dynamic scenario generator (DSG), which uses a large dynamic factor model to con-
struct multivariate scenarios for economic and financial variables. The implied volatilities are used to
price options. Better scenarios from the DSG lead to better predictions in Asset Liability Management
studies, which are used by pension funds and insurance companies.

The idea behind this thesis is to develop a way to model the implied volatility surface, including time
dependent surface dynamics. The research question for thesis is therefore:

Does introducing time dependent surface dynamics improve models of the implied volatility surface?

Three models that are able to capture time dependent surface dynamics of the implied volatility sur-
face will be compared to a benchmark model with an implied volatility surface shape which does not
change over time. The first model is based on principal component analysis, for which the first two or
three principal component scores will be modeled over time. The second model is the Heston model,
for which the parameters will be modeled over time. While both models are already used in literature
to model implied volatility surface, the modeling of the component scores / parameters is a new con-
tribution to literature. The third model is a regression model, which uses terms like moneyness and
maturity to describe an implied volatility surface. Afterwards the coefficients of the regression model
are modeled over time. There is some literature available which uses principal component analysis on
the coefficients of such a regression model, and afterwards models the component scores over time us-
ing autoregressive models. In this thesis the coefficients of the regression model themselves are modeled
over time. All models are more thoroughly explained in Chapter 2 and 4.

Structure of the report

The second chapter of this thesis is a brief overview of available literature. The Heston model, ORTEC’s
model and various regression models are described. The third chapter gives an explanation of the data
that is used in this thesis.

The fourth chapter outlines the methods that are used in this thesis. The models mentioned in the
literature review are explained more thoroughly. Also the use of principal component analysis and the
COS method is outlined. The fifth chapter contains all results and is also a comparison between the
model of ORTEC and the various models described in this thesis.

The final chapter of this thesis contains the conclusions and recommendations for future work.



CHAPTER 2

Literature

In this section various literature is reviewed. First some literature is given which explains the implied
volatility surface. Then various literature describing regression models on the implied volatility surface
are discussed. Afterwards literature on the Heston model is discussed. Finally a summary is given of
the model that is currently used at ORTEC Finance.

2.1 Implied volatility surface

The uses of implied volatility are already discussed in Chapter 1. The implied volatility is calculated by
using the famous formula of Black and Scholes (1973) and Merton (1973). To calculate the value of an
option, Black and Scholes (1973) assume that the asset price St follows a log normal process with con-
stant volatility σ, along with other assumptions like no transaction costs, that the option is a European
option and that the underlying asset pays no dividends. The value of a call option c and put option p

are given by (Hull (2012)):

c = S0N(d1)−Ke−rτN(d2), (2.1)

p = Ke−rτN(−d2)− S0N(−d1), (2.2)

d1 =
ln
(

S0

K

)

+
(

r + σ2

2

)

τ

σ
√
τ

, (2.3)

d2 =
ln
(

S0

K

)

+
(

r − σ2

2

)

τ

σ
√
τ

, (2.4)

where N(x) is the cumulative probability distribution function for a standardized normal distribution,
S0 is the current index level, K is the exercise price or strike price, τ is the time to maturity and r is the
risk-free interest rate.

If one has the above information, including the price of a call or put option, it is possible to calculate
the implied volatility, which is the volatility implied by the Black-Scholes-Merton model. Although
the Black-Scholes model implicates a constant implied volatility across strike price and maturity, when
the implied volatilities are calculated for options of the same underlying asset for different maturities
and strike prices, the implied volatility tends to differ across strike price and maturity. Using the im-
plied volatility of different maturity and strike price combinations, it is possible to construct the implied
volatility surface. Usually the term moneyness is used instead of strike prices. Moneyness is defined as
the strike price divided by the spot price.

The most important shapes that can be seen in the implied volatility surface are the volatility skew and
volatility smile (Brigo and Mercurio (2002)). Peña et al. (1999) explain that the implied volatility appears
to be different across strike prices and Kamal and Gatheral (2010) state that the since the 1987 stock
market crash, implied volatility surfaces have been characterized by the volatility skew. The volatility
skew refers to the phenomenon that the trend that for a given expiration date, the implied volatilities
increase when the strike price decreases for strike prices below the spot price. For short maturities the
implied volatility surface has the shape of a V across strike prices, this is also called the volatility smile.
Peña et al. (1999) state that the volatility smile indicates that the Black-Scholes formula tends to misprice
deep in-the-money and deep out-of-the-money options.

5



6 Chapter 2: Literature

Instead of using the implied volatility from the Black-Scholes formula, model-free implied volatility
indices have been created. The VIX index is a measure of the average level of the implied volatility
surface (Simon (2003)). Ahoniemi (2008) state that the most widely followed index is the VIX index,
calculated by the Chicago Board Options Exchange from S&P 500 index option prices. Simon (2003)
explains the VIX index as an investor ’fear index’. Extreme values of the VIX index can be seen as
trading signals. When the VIX index is very high, markets are pessimistic, which leads to a period
of sustained increases in stock prices. For extreme low levels of the VIX index the market is set up
for disappointment and the odds of a downward market correction are raised. How the VIX index is
calculated is explained in Chapter 3.

2.2 Regression models

Some researchers proposed to model the implied volatility surface at a specific moment in time using a
multiple regression model. In these regression models the implied volatility depends on independent
variables which are functions of moneyness and maturity. Alentorn (2004) proposed three regression
models, the first representing a constant volatility, the second being able to capture the volatility smile
across moneyness and the third model also adds effects of maturity and a combined effect of maturity
and moneyness. A fourth extension was added by Badshah (2009). The fourth model includes a way to
capture the time to maturity curvature effect. The models are given below:

σ(m, τ, t) =β0,t + ε, (M1) (2.5)

σ(m, τ, t) =β0,t + β1,tM + β2,tM
2 + ε, (M2) (2.6)

σ(m, τ, t) =β0,t + β1,tM + β2,tM
2 + β3,tτ + β4,tMτ + ε, (M3) (2.7)

σ(m, τ, t) =β0,t + β1,tM + β2,tM
2 + β3,tτ + β4,tMτ + β5,tτ

2 + ε, (M4) (2.8)

where σ is the implied volatility, M is a function of the moneyness m and maturity τ (see Chapter 3) and
ε an error term. Alentorn (2004) found the best results with the third model, which captures the smile
across moneyness and the term structure across time to expiration. Badshah (2009) found that, both
model 3 and 4, perform better than the one dimensional smile model.

Roux (2007) proposed another parametric model of the volatility surface. The model of Roux (2007) is
as follows:

σ(m, τ, t)− VIXt = a0,t + a1,t logm+ a2,t
1√
τ
+ a3,t (logm)

2
+ a4,t

logm√
τ

+ a5,t
(logm)

2

√
τ

(M5) (2.9)

where m is the strike price divided by the current spot price (moneyness). The model is motivated
by a few empirical observations. The first being that if implied volatility is plotted as a function of
the logarithm of m, it tends to have a parabolic shape. The second observation is that if the implied
volatilities for a given strike are plotted against one over the square root of the maturity time, the shape
tends to be linear. The least squares procedure is used to estimate the model parameters. Instead of
minimizing the sum of the squared errors, a weighting scheme is used. The weight is the actual observed
value of implied volatility.

The model of Roux (2007) gives six parameters for every time step. Using principal component analysis
(PCA), the six parameters are reduced to two or three components. These principal components are
modeled using autoregressive processes of the form:

ki,t = αiki,t−1 + βiεi,t (2.10)

where ki,t is the i-th principal component at time t.

A benchmark regression model is the Practitioners Black Scholes model by Christoffersen and Jacobs
(2004), also known as the ad-hoc model of Dumas et al. (1998). It is a more simpler version of the above
models. It contains the following terms:

σ(m, τ, t) = B0,t +B1,tm+B2,tm
2 +B3,tτ +B4,tτ

2 +B5,tmτ, (PBS) (2.11)



2.3: Heston model 7

where again m is strike price divided by the current spot price (moneyness) and τ is the maturity in
years. In the original paper the strike price was used instead of the moneyness, but at every time step
there is simply a constant factor between the strike price and moneyness. The Practitioners Black Scholes
model was used by Christoffersen and Jacobs (2004) in a paper that stresses the importance of the loss
function in option valuation. It states that when models are compared, they should be based on the
same loss functions (e.g. relative or absolute sum of squared errors). If this is not the case, inappropriate
comparison will be made.

2.3 Heston model

Heston (1993) derived a closed-form solution for the price of a European call option on an asset with
stochastic volatility. The Heston model is used to model option prices, from which implied volatilities
can be constructed. The Heston model has five parameters, the mean reversion rate κ, the long term
variance θ, the initial variance V0, volatility of variance η and correlation parameter ρ.

The Heston models assumes that the spot asset at time t follows the diffusion process given below:

dS(t) = µSdt+
√

V (t)SdW1(t), (2.12)

where W1(t) is a Wiener process. The Heston model also includes a stochastic volatility process given
by:

dV (t) = κ [θ − V (t)] dt+ η
√

V (t)dW2(t), (2.13)

where W2(t) is another Wiener process. W1(t) and W2(t) are correlated with correlation coefficient ρ.

Guo (1998) applied the Heston model to PHLX currency options prices. He regressed the future variance
on the variance based on the Heston model, variance based on the White and Hull model and historical
variance. Whenever the Heston variance was present, the other variables played no role. Lin et al.
(2001) found that the Heston model was an improvement over the Black-Scholes model, using FTSE 100
index options as a test case. Fiorentini et al. (2002) used the Heston model in a thinly traded market, the
Spanish IBX 35 index. Their findings are that the Heston model tends to overprice the out-of-the-money
options and underprice the in-the-money options. Also, the correlation coefficients are very volatile.
Aboura (2003) compared the Heston model with the White and Hull model for French PXL European
call options. While the overall pricing performance of the models is the same, Heston’s model tends to
perform better at short term and deep-out-the-money calls. Bin (2007) did daily calibrations with the
Heston model and found that both the correlation coefficient and the mean reversion rate are volatile.

Bates (1996) proposed an extension of the Heston model. This extension consists of a jump in the stochas-
tic volatility model. This jump might explain why the skew of short expirations is so steep and why the
short-dated term structure of skew is inconsistent with any stochastic volatility model (Gatheral (2006)).

More details about the Heston model can be found in Sec. 4.3 in the methodology chapter.

2.4 ORTEC model

Equity implied volatilities are implemented as regression variables depending on log returns of the
underlying index, realized volatility and lagged implied volatilities. The implied volatility of the 12
month, ATM (100% moneyness) option is modeled. All other combinations of moneyness and matu-
rity are based on the historical implied volatility surface with the 12 month maturity, 100% moneyness
implied volatility as a reference point. The regression model:

IVt = α+
∑

i

βiRVt−i +
∑

j

γjRett−j +
∑

k

δkIVt−k + ut, ut ∼ IID(0, σ2), (2.14)

where IVt, RVt and Rett are the implied volatility (100% moneyness and 12 month maturity), the realized
volatility and the return of the underlying asset at time t, respectively.



8 Chapter 2: Literature

Afterwards skew tables (containing multiplication factors with the reference point, the 12 month, ATM
implied volatility) are used to calculate the implied volatilities of the other points (80% - 120% money-
ness and maturity of 1, 2, 3, 6, 18, 24 months). This means that the relative shape of the historical implied
volatility surface is kept constant over time and only the level is changed.



CHAPTER 3

Data

The data that are necessary for this research includes an implied volatility surface at different time steps
(months, more specific the last trading day of each month). For this research the implied volatility
surface of the Standards & Poor 500 (SPX index) and the Euro Stoxx 50 (SX5E index) is used. Daily
data is available in Bloomberg from January 2005 till June 2012 for the SPX index, while for the SX5E
index the data is available from January 2006 till June 2012. All implied volatility surfaces consist of
sixtythree points. The implied volatility is given for nine different values of moneyness and seven
different maturities, see table 3.1 for a summary. For some combinations the data is only available from
sixth month of 2005. The implied volatility surface of November 2010 of both the SPX and SX5E index
is shown in Fig. 3.1. For the SX5E index the 80% and 120% moneyness implied volatilities are only
available from November 2010 and onwards.

The mean level of the surfaces fluctuates around 0.20 with 0.10 and 0.45 as low and high peaks, re-
spectively. Some surfaces show the volatility smile, while all surfaces show that implied volatility of
in-the-money options tend to be higher than the implied volatility of out-of-the-money options. The
highest IV is 0.69/0.68, at the highest maturity and moneyness, and the lowest IV is 0.7/0.10, at the
highest maturity and lowest moneyness for the SPX/SX5E implied volatility surface. For low money-
ness the implied volatility tends to decrease with higher maturity, while for high moneyness the implied
volatility tends to increase with higher maturity.

τ m0.8

1

0

10

20

0.1

0.15

0.2

0.25

τ m0.8

1

0

10

20

0.1

0.15

0.2
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0.3

Figure 3.1: Implied volatility surface at the end of November 2010 of the SPX index (left) and SX5E index (right),
respectively. For every month an implied volatility surface can be constructed.

Moneyness m is the strike price divided by the spot price, this is also the definition used by Bloomberg.
In some papers, e.g. Badshah (2009), a different definition is used for moneyness. The definition that is
used in Badshah (2009) is:

M =
log

(

S
Ke−rτ

)

√
τ

, (3.1)

9
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Date January 2005 - June 2012
Moneyness 80%, 90%, 95%, 97.5%, 100%, 102.5%, 105%, 110%, and 120%

Maturity 1, 2, 3, 6, 12, 18 and 24 months

Table 3.1: Implied volatilities data summary

where K is the strike price, S the spot price, τ the maturity and r the risk free rate. In this thesis the
Bloomberg definition of moneyness will be used. The other moneyness definition, denoted as M , is
only used to explain the regression model by Badshah (2009). In this thesis for the regression model of
Badshah the risk free rate term will be taken out of the definition.

The risk free rate is necessary as an input of the Black-Scholes formula and Heston model. For the risk-
free rate the following tickers in Bloomberg will be used for the 1 year maturity and 2 year maturity,
respectively: USSA1 and USSA2. For the risk-free rate in the calibration of the SX5E index the following
tickers will be used for the 1 year and 2 year, respectively: EUSA1 and EUSA2.

Other variables that are used in the regressions are the monthly returns of the indices and the realized
volatility. The realized volatility of one month is computed from the daily returns of the indices in that
month, using the following formula:

RV =

√

12
∑

# Days

r2, (3.2)

where r is the daily return of index.

The VIX index, a model-free volatility measure, is available in Bloomberg and is calculated using the
two nearest expiration months of S&P 500 call and put options, Exchange (2003). More information
about the VIX index is given in Sec. 2.1. The calculation of the VIX index is done as follows:

VIX = 100

√

√

√

√

2

T

∑

i

∆Ki

K2
i

erTQ(Ki)−
1

T

[

F

K0
− 1

]2

, (3.3)

where T is the time to expiration of the option contract, F is the forward index level derived from option
prices, Ki is the strike price of the ith out-of-the-money option, ∆Ki the difference between the strike
prices, K0 is the first strike price below F , r is the risk-free interest rate up to the expiration of the option
contract and Q(Ki) is the midpoint of the bid-ask spread for each option with strike price Ki. The VIX
index is calculated using implied volatilities of only short maturities. The V2X is a similar index for the
European market.
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Methodology

This chapter includes various methods that will be applied in this thesis. First the principal component
analysis is explained. Secondly the regression models are given. Finally, the Heston model and the
benchmark are outlined.

4.1 Principal Component Analysis

Principal component analysis (PCA) is applied to the 63/49 time series of implied volatilities of fixed
moneyness and maturity combinations. This results in a reduced number of components which are
able to capture most of the variance in the 63/49 time series. The component scores of these limited
number of components are modeled using regression models. The problem with this method is that
only a limited number of points on the volatility surface is predicted. Only the fixed moneyness and
maturity combinations are predicted, other points will have to be interpolated.

Principal component analysis was first introduced by Pearson (1901). In PCA the variance in n variables
is described by a reduced number of components k (k ≤ n), which explain as much variance as possible.
PCA uses eigenvalue decomposition of the correlation matrix to find component scores and loadings. A
detailed explanation of PCA is given in Jolliffe (2002).

63/49 IV
time series

k IV principal
components,

various money-
ness/maturity
combinations

k modeled
IV principal
components

63/49 modeled
IV time series,

various money-
ness/maturity
combinations

PCA

Modeling

Transform back

Figure 4.1: Flow diagram of modeling the IV surface with PCA method.

11
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4.2 Regression models

The various regression models given in Chapter 2 are calibrated for every time step. This results in time
series of the parameters in the regression models, for which models will be constructed. An advantage
over the PCA model is that the implied volatility can be calculated of options which have moneyness
and maturity combinations which are different from the ones observed in the market data. Afterwards
one regression model is chosen for which the parameters will be modeled over time using regression
models.

90/78 months
of IV surfaces

Time series
of regression
parameters

Time series
model of

regression
parameters

Modeled IV
surfaces

Regression model

Modeling

Transform back

Figure 4.2: Flow diagram of modeling the IV surface with regression model method.

4.3 Heston model

The Heston model is calibrated for every time step, resulting in time series of the five parameters of the
Heston model. Afterwards time series are constructed of these parameters. Variables that are used are
the historical implied volatilities/VIX index, realized volatilities and return of the underlying asset (the
SPX index). The calibration procedure of the Heston model is explained in Sec. 4.3.3.

90/78 months
of IV surfaces

Time series
of the Heston

parameters

Time series
model of

the Heston
parameters

Modeled IV
surfaces

Heston calibration

Modeling

Transform back

Figure 4.3: Flow diagram of modeling the IV surface with the Heston method.

4.3.1 Heston model derivation

The derivation of the Heston model starts from the assumption that the spot asset at time t follows the
diffusion process given below:

dS(t) = µS(t)dt+
√

V (t)S(t)dW1(t), (4.1)

where W1(t) is a Wiener process. The volatility follows a diffusion process as well:

dV (t) = κ [θ − V (t)] dt+ η
√

V (t)dW2(t), (4.2)
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where W2(t) is another Wiener process. W1(t) and W2(t) are correlated with correlation coefficient ρ.

Assuming a constant interest rate r the price at time t of a unit discount bond that matures at time t+ τ

is given by:

P (t, t+ τ) = e−rτ . (4.3)

Heston (1993) shows that standard arbitrage arguments show that the value of any asset U(S, ν, t) must
satisfy the following partial differential equation:

1

2
V S2 ∂

2U

∂S2
+ ρηV S

∂2Pj

∂S∂V
+

1

2
η2V

∂2U

∂V 2
+ rS

∂U

∂S
+ (κ [θ − V (t)]− λ(S, V, t))

∂U

∂V
− rU +

∂U

∂t
= 0, (4.4)

where λ(S, V, t) is the price of volatility risk.

Fiorentini et al. (2002) found that the price of volatility risk is not significantly different from zero, and
therefore has no effect. In this thesis it is assumed that the price of volatility risk is zero. This reduces
the number of parameters from six to five.

A European call option, an option which can only be executed at the maturity date, with strike price K
and maturing at time T is constricted by the following boundary conditions:

U(S, V, T ) = Max(0, S ·K),

U(0, V, t) = 0,

∂U

∂S
(∞, V, t) = 1,

rs
∂U

∂S
(S, 0, t) + κθ

∂U

∂V
(S, 0, t)− rU(S, 0, t) + Ut(S, 0, t) = 0,

U(S,∞, t) = S. (4.5)

In analogy with the Black-Scholes formula, Heston (1993) guessed a solution in the following form:

C(S(t), V (t), τ) = S(t)P1 −Ke−rτP2 (4.6)

where the two terms stand for the present value of the spot asset upon optimal exercise and the present
value of the strike-price payment, respectively. Both terms in the above equation must satisfy the partial
differential equation given in Eq. (4.4). Substituting Eq. (4.6) in Eq. (4.4) leads to:

1

2
V
∂2Pj

∂x2
+ ρηV

∂2Pj

∂x∂V
+

1

2
η2V

∂2Pj

∂V 2
+ (r + ujV )

∂Pj

∂x
+ (a− bjV )

∂Pj

∂V
+
∂Pj

∂t
= 0, (4.7)

for j = 1, 2, where:

u1 = 1
2 , u2 = − 1

2 , a = κθ, b1 = κ+ λ− ρη, b2 = κ+ λ. (4.8)

The option price needs to satisfy the boundary conditions given in Eq. (4.5) and therefore the principal
differential equations must satisfy:

Pj(x, V, T ; ln[K]) = 1x≥ln[K], (4.9)

where x = lnS. P1 and P2 can be interpreted as risk-neutralized probabilities (Cox and Ross (1976)). Pj

is the conditional probability that the option expires in-the-money. These probabilities are not available
in closed form. However, Heston (1993) derived characteristic functions that satisfy the partial differen-
tial equations given in Eq. (4.4). The probabilities can be derived from these characteristic functions. The
final integrand used to calculated Pj and all needed functions, including characteristic Heston function



14 Chapter 4: Methodology

fj are given below:

Pj =
1

2
+

1

π

∫ ∞

0

Re

[

e−iφ lnK+iφxfj

iφ

]

dφ. (4.10)

fj = eCj+Djν (4.11)

Cj = rφiτ +
a

η2

(

(bj − ρηφi+ d) τ − 2 ln

[

1− gedτ

1− g

])

(4.12)

Dj =
bj − ρηφi+ d

η2

[

1− edτ

1− gedτ

]

(4.13)

gj =
bj − ρηφi+ d

bj − ρηφi− d
(4.14)

dj =

√

(ρηφi− bj)
2 − η2 (2ujφi− φ2) (4.15)

SVJ

Bates (1996) proposed an extension of the Heston model consisting of a jump in the stochastic volatility
model. Wilmott (2007) assumes that stochastic volatility model with jumps (SVJ) is given by:

dS(t) = µS(t)dt+ ηS(t)dW1 + (eα+δǫ − 1)S(t)dq, (4.16)

where ǫ ∼ N(0, 1) and dq is a Poisson process given by:

dq =

{

0 with probability 1-λJ
1 with probability λJ

(4.17)

This means that the SVJ model has three additional paramaters, compared to the normal Heston model.
The new parameters are α, mean jump, δ, jump variance, and λJ , probability of occurence of jump. In
case of jumps the characteristic function also changes. The characteristic function of the Heston model
is multiplied by the jump characteristic function (Gatheral (2003)):

fJump = e

−iφλJT



e
α+

δ2

2 −1



+λJT



e
iαφ−φ2 δ2

2 −1





. (4.18)

SVJJ

Jumps in stock prices are often followed by jumps in volatility. SVJJ models are able to deal with these
kind of jumps. An example is the model of Matytsin (1999). A disadvantage of the SVJJ model is the
additional number of parameters. Since in this thesis there is a limited number of data available of
implied volatilities the SVJJ model will not be considered. It is too difficult to calibrate SVJJ models with
only a limited amount of data, Nilsson (2008).

Feller condition

If the correlation coefficient is between -1 and 1, and the other four parameters are positive, the stochastic
volatility can not become zero when the Feller condition is satisfied (Albrecher et al. (2006)). The Feller
condition is given by:

2κθ > η2. (4.19)

The calibration procedure, explained in Section 4.3.3, obtains worse fits when the Feller condition needs
to be met. The restriction of the Feller condition will therefore not be used. The calibrated volatilities are
not zero anywhere, which means the region where the volatility can possibly be zero is not the region
studied in this thesis.
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4.3.2 COS method

Calibration is a big issue in the Heston model. Many local minima are present when trying to find the
five parameters. Fang and Oosterlee (2008) developed an option pricing method for European options
based on the Fourier-cosine series, called the COS method. This method can be applied to calculate the
Heston model, and therefore also used for calibration of the Heston model. The COS method shows
impressive speed compared to other techniques (e.g. Carr and Madan (1999)).

Fourier integrals and cosine series

Fang and Oosterlee (2008) starts the derivation of the COS method with the risk-neutral valuation for-
mula for pricing European options:

v(x, t0) = e−r∆tEQ[v(y, T )|x] = e−r∆t

∫

R

v(y, T )f(y|x)dy, (4.20)

where v is the option value, ∆t is the difference between the maturity T and the initial date t0, EQ[·]
is the expectation operator under risk-neutral measure Q, x and y are state variables at time t0 and T ,
respectively. Finally, f(y|x) is the probability density of y given x and r is the risk-free interest rate.

A closed form expression for the integral is available in Fourier space. Fang and Oosterlee (2008) uses
the FFT algorithm to return to the time domain. The probability density and its characteristic functions
form a Fourier pair, given by:

φ(ω) =

∫

R

eixωf(x)dx (4.21)

f(x) =
1

2π

∫

R

e−ixωφ(ω)dω (4.22)

Equation (4.22) includes the inverse Fourier integral, which can be solved using its Fourier-cosine series
expansion, extracting the series coefficients directly from the integrand.

A function in the domain [0, π], has the following cosine expansion series:

f(θ) =
∑

′∞

k=0
Ak · cos(kθ), (4.23)

where
∑

′

indicates that the first term of the summation is weighted by a half and the coefficients Ak are
given by

Ak =
2

π

∫ π

0

f(θ) cos(kθ)dθ. (4.24)

Functions supported in a different interval, e.g. [a, b] ∈ R, can easily be mapped on the domain [0, π] by
using the following transformations:

θ =
x− a

b− a
π, (4.25)

x =
b− a

π
θ + a. (4.26)

Equation (4.23) and Eq. (4.24) can therefore be rewritten to:

f(x) =
∑

′∞

k=0
Ak · cos

(

k
x− a

b− a
π

)

, (4.27)

Ak =
2

b− a

∫ b

a

f(x) cos

(

k
x− a

b− a
π

)

dx. (4.28)
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Any real function has a cosine expansion when it it finitely supported. A Fourier transform can only
exist when the integrands in Eq. (4.22) decay to zero at ±∞, and therefore a and b can be low finite
numbers without losing accuracy. They can be chosen in such a way that:

φ1(ω) =

∫ b

a

eiωxf(x)dx ≈
∫

R

eiωxf(x)dx = φ(ω). (4.29)

Ak can now rewritten to:

Ak =
2

b− a
Re

[

φ1

(

kπ

b− a

)

· e(−i kaπ
b−a )

]

, (4.30)

where Re [·] stands for the real part of the argument. Together with Eq. (4.29) it follows that Ak ≈ Fk,
where Fk is given by:

Ak =
2

b− a
Re

[

φ

(

kπ

b− a

)

· e(−i kaπ
b−a )

]

. (4.31)

Using the above approximation Eq. (4.27) can be rewritten in terms of Fk:

f1(x) =
∑

′∞

k=0
Fk cos

(

kπ
x− a

b− a

)

. (4.32)

Since the Fourier terms decay to zero at ±∞ the series can be truncated:

f2(x) =
∑

′N−1

k=0
Fk cos

(

kπ
x− a

b− a

)

. (4.33)

The difference between f2(x) and f(x) is an error because of the approximation of Ak by Fk and a
truncation error from going to f1(x) to f2(x).

According to Boyd (2001) cosine series expansion of entire functions, functions without singularities, ex-
hibits an exponential convergence. The series can therefore be used for highly accurate approximations
with no singularities on the domain [a, b].

Pricing European options

The risk-neutral valuation formula for pricing European options given in the Eq. (4.20) can now be
rewritten to:

v1(x, t0) = e−r∆t

∫ b

a

v(y, T )f(y|x)dy. (4.34)

Since the characteristic function is known, while the probability density function is not, the probability
density function is replaced by its cosine series:

f(y|x) =
∑

′∞

k=0
Ak(x) cos

(

kπ
y − a

b− a

)

, (4.35)

where

Ak(x) =
2

b− a

∫ b

a

f(y|x) cos
(

kπ
y − a

b− a

)

dy. (4.36)

The risk-neutral valuation formula can now again be rewritten, filling in Eq. (4.35) in Eq. (4.34) results
in:

v1(x, t0) = e−r∆t

∫ b

a

v(y, T )
∑

′∞

k=0
Ak(x) cos

(

kπ
y − a

b− a

)

dy. (4.37)

Fang and Oosterlee (2008) include a new definition,

Vk =
2

b− a

∫ b

a

v(y, T ) cos

(

kπ
y − a

b− a

)

dy, (4.38)
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which is used to rewrite the risk-neutral valuation formula again to:

v1(x, t0) =
1

2
(b− a)e−r∆t ·

∑

′∞

k=0
Ak(x)Vk. (4.39)

Finally, this formula can be truncated and Ak(x) can be replaced by Fk(x) which results in:

v(x, t0) ≈ e−r∆t
∑

′N−1

k=0
Re

[

φ

(

kπ

b− a
;x

)

e
−ikπ

a
b−a

]

Vk. (4.40)

Heston Model in COS

Fang and Oosterlee (2008) found a way to simplify Eq. (4.40) in case of a Heston model. The formula
then looks like:

v(x, t0, u0) ≈ Ke−r∆t · Re

[

∑

′N−1

k=0
ϕhes

(

kπ

b− a
;u0

)

Uk · eikπ
x−a
b−a

]

, (4.41)

where u0 is the initial volatility of the underlying, K is a vector of strike prices, ϕhes is the characteristic
function of the log-asset price in the Heston model given by:

ϕhes(ω;u0) = e
iωµ∆t+

µ0

η2

(

1−e−D∆t

1−Ge−D∆t

)

(λ−iρηω−D) · e
λv̄

η2

(

∆t(λ−iρηω−D)−2 log
(

1−Ge−D∆t

1−G

))

, (4.42)

where D and G are given by:

D =
√

(λ− iρηω)2 + (ω2 + iω)η2, (4.43)

G =
λ− iρηω −D

λ− iρηω +D
. (4.44)

Uk is derived from the coefficients for Plain Vanilla, Digital and Gap options in Fang and Oosterlee
(2008). It is given by:

Uk =

{ 2
b−a

(χk(0, b)− φk(0, b)) for a call,
2

b−a
(−χk(0, b) + φk(0, b)) for a put.

(4.45)

where χk(c, d) and ψk(c, d) are given by:

ψk(c, d) =
1

1 +
(

kπ
b−a

)2

[

cos

(

kπ
d− a

b− a

)

ed − cos

(

kπ
c− a

b− a

)

ec (4.46)

+
kπ

b− a
sin

(

kπ
d− a

b− a

)

ed − kπ

b− a
sin

(

kπ
c− a

b− a

)

ec
]

(4.47)

χk(c, d) =

{ [

sin
(

kπ d−a
b−a

)

− sin
(

kπ c−a
b−a

)]

b−a
kπ

k 6= 0

(d− c) k = 0
(4.48)

Truncation

Fang and Oosterlee (2008) use the following range for [a, b]:

[a, b] = [c1 − 12
√

|c2|, c1 + 12
√

|c2|], (4.49)

where c1 and c2 are given by:

c1 =µT + (1− e−λT ) ū−u0

2λ − 1
2 ūT (4.50)

c2 = 1
8λ3

[

ηTλe−λT (u0 − ū)(kλρ− 4η) + λρη(1− e−λT )(16ū− 8u0)

+2ūλT (−4λρη + η2 + 4λ2) + η2((ū− 2u0)e
−2λT + ū(6e−λT − 7) + 2u0) + 8λ2(u0)− ū)(1− e−λT )

]

.

(4.51)

Since calculating c1 and c2 takes up a lot of computational time, an arbitrary a and b can be chosen
which are always higher than the given range in Eq. (4.49). This way the integral takes a bit longer to be
calculated, but time is saved by not having to calculate both Eq. (4.50) and Eq. (4.51).
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4.3.3 Calibration

To calibrate the Heston parameters for one implied volatility surface the following steps are made. First
all implied volatilities on the implied volatility surface are translated to prices using the Black-Scholes
formula (Market price). Secondly, using the COS method for every combination of the five Heston pa-
rameters, moneyness, maturity and risk-free rate the price (COS price) can be calculated. The standard
MATLAB minimizing function fmincon (Matlab) is used to find five Heston parameters for which the
quadratic errors between the market price and COS price is as low as possible. Since there are many
local minima, hundreds of random starting points are used to finally obtain a good minima.

If five Heston parameters are known, the implied volatility surface can be calculated by first calculating
the prices (COS price) of all maturity/moneyness combinations. Afterwards the Black-Scholes formula
is used to obtain the implied volatility surface.

4.4 Regression models for parameters over time

The models for parameters over time are mostly AR models, with additional independent variables.
These variables can be macroeconomic variables like the consumer price index or gross domestic prod-
uct. The mostly used independent variables are the VIX/V2X index and the returns of the SPX/SX5E
index. Next to the well known t-test for the significance of each variable, three tests are performed for
every model. These tests are the Ljung-Box test, Breusch-Pagan test and Jarque-Bera test.

The Ljung-Box test (Ljung and Box (1978)) is used to see whether there is autocorrelation in the residuals
of the regression model. The null hypothesis of the test is ‘The data are serially correlated’, while the
alternative hypothesis is ‘The data are not serially correlated’. Under the null hypothesis the JB-statistic
has a chi-square distribution with 5 degrees of freedom, since the test is applied to autocorrelation over
5 lags.

The Breusch-Pagan test (Breusch and Pagan (1979) is used to see whether the residuals are heteroskedas-
tic. The null hypothesis of the test is ‘The residuals are homoskedastic’, while the alternative hypoth-
esis is ‘The residuals are heteroskedastic’. Under the null hypothesis the LM-statistic has a chi-square
distribution with k degrees of freedom, where k is the number of independent variables used in the
regression.

The Jarque-Bera test (Jarque and Bera (1987) is used to see whether the residuals are normally dis-
tributed. The null hypothesis is therefore ‘The residuals are normally distributed’, while the alternative
hypothesis is ‘The residuals are not normally distributed’. Under the null hypothesis the JB-statistic has
a chi-square distribution with 2 degrees of freedom. Sometimes after omitting the largest error the JB
test can no longer reject the null hypothesis. In these cases the JB statistic with omitting the x largest
error will be given in the results table as JB/(x).



CHAPTER 5

Results

This chapter is arranged in five different parts. First the results of the principal components are shown.
The variance explained by the first few components are shown and the regression models for the com-
ponents scores are given. The second part shows the results of the regression models. The time series
of the regression parameters are given, including models for these time series. The third part consists of
the results of the Heston model. Also included are the models for the time series of the Heston param-
eter. In the fourth part the results of the ORTEC Model, the benchmark, are shown. In the final part of
the results, all models are compared with the benchmark model.

5.1 Principal Component Analysis

In principal component analysis the number of variables is reduced to a limited number of components.
For this thesis there are sixty-three variables, which are all time series of implied volatility for different
moneyness/maturity combinations. For the SX5E index, the 80% moneyness and 120% moneyness data
are only available from the year 2010 and onwards, therefore these moneyness combinations will be left
out of the PCA analysis. For the SX5E index there are fourty-nine variables.

Table 5.1 contains the variance and cumulative variance explained by the first few components. For both
the SPX index and the SX5E, component one already explains 95% of the variance, which indicates that
there are high correlations between the different time series. The second component explains more than
2% of the variance. The third component only explains 1% and 0.5% for the SPX index and SX5E index,
respectively. Higher components explain even less and will therefore not be used in the further analysis.

Component Variance explained (%) Cumulative variance explained (%)
SPX SX5E SPX SX5E

1 94.89 96.32 94.89 96.32
2 2.66 2.24 97.55 98.56
3 1.07 0.45 98.62 99.01
4 0.51 0.29 99.13 99.29
5 0.40 0.20 99.53 99.49
6 0.17 0.14 99.70 99.63
7 0.09 0.11 99.78 99.74

Table 5.1: This table shows the variance explained and cumulative variance explained by the first seven principal
components. The number of variables is sixty three and forty nine for the SPX IV surface and SX5E IV surface,
respectively.

To construct an implied volatility surface from the first two components, the loadings of these com-
ponents are needed and the average implied volatility surface. The average implied volatility surface,
loadings (illustrated as a surface) of the first, second and third component of both the SPX index and
the SX5E index are shown in Fig. 5.1 and Fig. 5.2. The averaged implied volatility surfaces clearly show
a smile across moneyness at the 1 month maturity. At longer maturities the average implied volatility
surface of the SPX index is smooth and decreases with moneyness, while the average implied volatility
surface is less smooth for the SX5E index. The smile across moneyness remains in the surface even for
higher maturities.
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Figure 5.1: The average implied volatility surface of the SPX index (left) and the SX5E index (right).

The first and second components of both the SPX and SX5E surface are quite similar, not taking into
account the smile across moneyness for higher maturities of the SX5E index. The loadings of the first
components seem to have an opposite smile across moneyness for shorter maturities. The loadings
slightly decrease for longer maturities. Because all loadings of the first components are positive, this can
be seen as a level factor. The loadings of the second components decrease a lot with higher maturity.
The second component can be seen as a maturity factor, since it mostly differs across maturities. Again
the loadings for longer maturities are smooth for the SPX index, while they are not for the SX5E index.

The third component of the SPX index and the SX5E index are not similar. The third component of the
SPX index has a smile across moneyness for short maturities and has positive loadings in-the-money
while, the loadings are negative out-of-the-money. It can therefore be seen as a moneyness factor. The
third component of the SX5E index has a smile across moneyness over the entire surface. For the SX5E
index the loadings are actually positive out-of-the-money and negative in-the-money.
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Figure 5.2: The loadings of the first (top), second component (middle) and third component (bottom) for the SPX
index (left) and the SX5E index (right).
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5.1.1 Time series of components scores

The component scores of the first three components need to be modeled, so that the modeled implied
volatility surface can be constructed every month. The scores of the first two principal components
of the SPX index are shown in Fig. 5.3. The first components of SPX index and the SX5E index is
highly correlated with the VIX index (0.99) and V2X index (0.99), respectively. The second component
of both indices is more volatile. For both indices the second component is uncorrelated with the VIX
(V2X) index (0.11). There is however some correlation with the realized volatility and returns of the
underlying indices. The second component of the SPX index has a correlation coefficient of 0.25 with
the realized volatility and -0.39 with the returns of the underlying index. The second component of the
SX5E index has a correlation coefficient of 0.30 with the realized volatility and -0.42 with the returns of
the underlying index. There is some autocorrelation, with the first lag it is 0.61 and 0.51 for the SPX
index and SX5E index, respectively.
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Figure 5.3: The first component (top) and second component (bottom) for the SPX index (left) and SX5E index
(right).

SPX

The regression models for the principal components are AR(1) models with additional independent
variables such as macroeconomic variables. The first principal component has a very high correlation
with the VIX index, therefore the VIX index will be used as an independent variable as well. The ad-
dition of the US Treasury bill yield (3-month) increases the performance of the regression model. The
results of the regression are shown in Table 5.2. The regression model accounts for almost 99% of the
variance in the first component. The Ljung-Box test shows that there is no significant autocorrelation
in the errors, while the Breusch-Pagan test shows that the errors are not heteroskedastic. The Jarque-
Bera shows that the errors are not normally distributed, but after the removal of two outliers the null
hypothesis of normally distributed can not be rejected. In Table 5.2 the JB/(2) statistic is basically the
Jarque-Bera test done after omitting the two largest errors. The first component enhances the level of
the surface. Since the VIX index consists of a weighted average of the implied volatility of options with
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various moneyness and maturity combinations it makes sense that the VIX index has a positive effect
on the first principal component. The US treasy bill yield (3-month) has a negative effect on the first
principal component, which means that a high US treasury bill yield means a lower implied volatility
surface. The variable with the largest influence on the level of the implied volatility surface remains
however the VIX index.

Dependent variable: PCA1 (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C -0.9670 0.0301 -32.09 0.00 0.9287
PCA1t−1 0.2108 0.0235 8.98 0.00 0.5054
VIXt 4.4478 0.1241 35.83 0.00 0.9420
TBSRt (US) -1.1761 0.4342 -2.71 0.01 0.0850
R2 0.9895 LB χ2(5)=3.71 [0.592]
Adj. R2 0.9891 LM χ2(3)=1.91 [0.591]
N 83 JB χ2(2)=120.51 [0.000]
Std. Error 0.0608 JB/(2) χ2(2)=2.61 [0.271]

Table 5.2: Regression results of the first component of PCA, PCA2. (SPX Index).

For the second component the first lag of the second component is used, as well as the returns of the SPX
index and the nominal government long term bond (10y) yield (NGLR). The results, shown in Table 5.3,
indicate that almost 60% of the variance in the second component can be explained by the regression
model. Again the homoskedasticty and no autocorrelation hypotheses can not be rejected. After the
removal of the two largest errors, the hypothesis of normally distributed errors can not be rejected. The
second principal component has influence on how the surface is shaped across maturity. If the second
principal component is positive the implied volatility at higher maturities will be increased, while the
implied volatility at lower maturities will be decreased. A negative second principal component will in-
crease the implied volatility at lower maturities and decrease the implied volatility at higher maturities.
The returns have a negative impact on the second principal component, while the nominal government
long term bond yield has a positive effect on the second principal component.

Dependent variable: PCA2 (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C -0.1377 0.0312 -4.42 0.00 0.1982
PCAt−1 0.3958 0.0828 4.78 0.00 0.2244
Rett -0.7014 0.1432 -4.90 0.00 0.2328
NGLRt (US) 3.8704 0.8438 4.59 0.00 0.2103
R2 0.5873 LB χ2(5)=3.49 [0.625]
Adj. R2 0.5716 LM χ2(3)=3.15 [0.369]
N 83 JB χ2(2)=20.61 [0.000]
Std. Error 0.0632 JB/(1) χ2(2)=1.94 [0.378]

Table 5.3: Regression results of the second component of PCA, PCA2. (SPX Index).

The regression model of the third principal component includes one lag and the returns of the SPX in-
dex as independent variables. The model explains more than 60% of the variance in the third principal
component. All null hypotheses can not be rejected (no autocorrelation, homoskedastic errors, normal
distrubtion of errors). The third principal component has the largest effect accross moneyness. A posi-
tive third principal component increases the implied volatility of in-the-money options while decrease
the implied volatility of out-of-the-money options. There is also a smile across moneyness in the third
principal component for lower maturities. The returns of the SPX index have a positive effect on the
third principal component.



24 Chapter 5: Results

Dependent variable: PCA3 (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C 0.0025 0.0040 0.62 0.54 0.0047
PCA3t−1 0.7276 0.0655 11.11 0.00 0.6066
Rett 0.1314 0.0826 1.59 0.12 0.0307
R2 0.6183 LB χ2(5)=4.17 [0.526]
Adj. R2 0.6088 LM χ2(2)=5.58 [0.061]
N 83 JB χ2(2)=0.19 [0.909]
Std. Error 0.0367 - -

Table 5.4: Regression results of the third component of PCA, PCA3. (SPX Index).
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SX5E

Just as the first principal component of the SPX index, the first principal component of the SX5E index
has a very high correlation with an implied volatility index, the V2X index. As regressors the one month
lag of the first principal component is used, together with the V2X index and also the one month lag
of the V2X index. The model explains more than 99% of the variance in the first principal component.
Since the V2X is positively correlated with the first principal component and it has the biggest partial
R2 its coefficient is positive. There tends to be some overshooting, since the one month lag of the V2X
index has a negative coefficient.

Dependent variable: PCA1 (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C -0.6939 0.1010 -6.87 0.00 0.3959
PCA1t−1 0.4938 0.0756 6.53 0.00 0.3722
V2Xt 4.4676 0.0899 49.69 0.00 0.9717
V2Xt−1 -1.8210 0.3920 -4.65 0.00 0.2306
R2 0.9927 LB χ2(5)=10.05 [0.074]
Adj. R2 0.9924 LM χ2(3)=3.96 [0.266]
N 76 JB χ2(2)=0.60 [0.740]
Std. Error 0.0413 - -

Table 5.5: Regression results of the first component of PCA, PCA1. (SX5E Index).

The second principal component of the SX5E index has the same effect as the second principal compo-
nent of the SPX index. A positive second principal component increases the implied volatility at lower
maturities and decreases the implied volatility at higher maturities. Together the one month lag of the
second principal component, the returns of the SX5E index, the indirect real estate total return index, the
SX5E index and one month lag of the SX5E index are able to explain more than 55% of the variance in
the second principal component. The null hypothesis of normally distributed errors can only be rejected
if the two largest errors are removed. Both the returns of the SPX5e index and indirect real estate total
return index have a positive coefficient. The coefficient of the SX5E index is negative, but there is a lot
of overshooting since the coefficient of the one month lag of the SX5E index is positive and almost of the
same magnitude.

Dependent variable: PCA2 (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C -0.0323 0.0263 -1.23 0.22 0.0210
PCA2t−1 0.4035 0.0834 4.84 0.00 0.2505
Rett 0.8081 0.4629 1.75 0.08 0.0417
INREt (EU) 0.0004 0.0001 3.65 0.00 0.1598
SX5Et -0.0005 0.0002 -3.19 0.00 0.1267
SX5Et−1 0.0005 0.0002 3.05 0.00 0.1171
R2 0.5808 LB χ2(5)=7.53 [0.184]
Adj. R2 0.5509 LM χ2(5)=4.26 [0.512]
N 76 JB χ2(2)=209.41 [0.000]
Std. Error 0.0479 JB/(2) χ2(2)=1.05 [0.592]

Table 5.6: Regression results of the second component of PCA, PCA2. (SX5E Index).

The third principal component of the SX5E index shows almost no autocorrelation and it is has very
weak to no correlation with any of the possible independent variables. The highest percentage of vari-
ance explained was lower than 15%. Since there is so much room for errors, the third component is not
modeled and therefore also not taken into account in the final comparison. For the SX5E index only two
principal components will be used.
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5.2 Regression models

This section contains the results of the regression models. First five regression models and the Practition-
ers Black Scholes model are calibrated to the implied volatility surfaces. Afterwards a regression model
is chosen, for which time series of the parameters will be constructed. Finally, the modeled implied
volatility surfaces can be compared to the historical data.

5.2.1 Calibration

Six regression models are calibrated to the implied volatility surfaces. Table 5.7 and Table 5.8 contain the
minimum, maximum and mean of the R squared and adjusted R squared of the regression models of
all implied volatility surfaces of the SPX index and the SX5E index. Model 1 (M1) till Model 5 (M5) are
described in Section 2.2. The sixth model, the Practitioners Black Scholes model (PBS) is also described
in the same section.

Model R2 Adjusted R2

Mean Minimum Maximum Mean Minimum Maximum
M1 0 0 0 0 0 0
M2 0.741 0.280 0.969 0.732 0.256 0.968
M3 0.902 0.390 0.979 0.895 0.348 0.976
M4 0.918 0.440 0.986 0.912 0.391 0.984
M5 0.924 0.545 0.993 0.917 0.505 0.992
PBS 0.882 0.428 0.971 0.871 0.377 0.969

Table 5.7: This table shows minimum, maximum and mean of the R2 and adjusted R2 of the regression models on
all implied volatility surfaces of the SPX index.

Model R2 Adjusted R2

Mean Minimum Maximum Mean Minimum Maximum
M1 0 0 0 0 0 0
M2 0.719 0.332 0.961 0.707 0.303 0.959
M3 0.866 0.356 0.970 0.855 0.297 0.967
M4 0.883 0.386 0.976 0.870 0.314 0.973
M5 0.884 0.382 0.975 0.871 0.310 0.972
PBS 0.842 0.955 0.342 0.825 0.265 0.951

Table 5.8: This table shows minimum, maximum and mean of the R2 and adjusted R2 of the regression models on
all implied volatility surfaces of the SX5E index.

Model 3, 4 and 5 perform better than the Practitioners Black Scholes model. This indicates that us-
ing terms like the logarithm of moneyness instead of moneyness improve the modeling of the implied
volatility surfaces. The effects across moneyness are therefore not symmetric, but more asymmetric.

For both the SPX implied volatility surfaces and the SX5E implied volatility surface, Model 4 and 5
give the best results, closely followed by Model 3. Model 3 contains a term for the volatility smile
across moneyness, a term for the effects of maturity and a term for the combined effect of maturity and
moneyness. Model 4 adds a term that is able to deal with the maturity curvature effect. The addition of
the term for the maturity curvature effect only seems to be a marginal improvement. For this reason the
time series of the parameters of Model 3, and not Model 4, will be constructed and analyzed. Although
Model 5 has a good performance compared to the third model it has two independent variables that
have no significant coefficient for more than fifty months and sixty months for the SPX index and SX5E
index, respectively. After removing these two terms, the quadratic logarithm of moneyness and the
quadratic logarithm of moneyness divided by the square root of maturity, Model 5 has a worse overall
performance compared to Model 3. Therefore, only the parameters of Model 3 will be further analyzed.
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The maximum number of months that a coefficient is not significant in Model 3 is 20 for the SPX index.
For the SX5E index Model 3 has one coefficient which is not significant in 34 months of a total of 78
months.

It is also useful to see where the residuals of the above regression model are the largest. Table A.3
in Appendix A.2 contains the reduction of R squared for each maturity and moneyness of the third
regression model for both the SPX index and the SX5E index. It can be seen that the errors are the
largest at shorter maturities. For the SX5E index the reduction in R squared is also because of the large
error at a maturity of 2 years. The residuals at 80% and 120% moneyness for the SPX index are much
higher than residuals at the more near the at-the-money points. For the SX5E index the the errors are
not only larger, the higher errors are also more concentrated around the at-the-money points. The third
regression model is better at fitting the implied volatilities of near the at-the-money options with longer
maturities. The above results are also seen for the other regression models.

5.2.2 Time series of parameters

The parameters of Model 3 for both the SPX index and the SX5E index are shown in Fig. 5.4. The terms
that belong to the parameters B1, B2, B3 and B4 are visualized in Fig. A.1 in Appendix A.3. Only for the
constant it is clear that it follows the level of the SPX index and the SX5E index, respectively. The correla-
tion coefficient with the VIX index and V2X index is 0.994 and 0.996, respectively. The other parameters
are very volatile and therefore probably difficult to model. Table 5.9 shows the correlation coefficients of
the coefficients of the third regression model with the VIX/V2X index, returns of the underlying index,
realized volatility and the autocorrelation with the first lag of the coefficient themselves. Note that for
the SPX index the correlation with the VIX index is shown, while for the SX5E index the correlation with
the V2X index is shown.

All time series of the coefficients have quite high autocorrelation. Also, most coefficients have a strong
correlation with at least one of the mentioned variables. The most difficult parameters to model, based
on this table, are the B2’s of both the SPX index and the SX5E index. The B2 parameter belongs to the
term moneyness squared divided by maturity.
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Figure 5.4: The coefficients of regression model 3 for every month for the SPX index (left) and SX5E index (right).
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Correlated Model 3 - SPX Model 3 - SX5E
with B1 B2 B3 B4 B1 B2 B3 B4

VIX/V2X -0.61 -0.22 -0.78 0.00 -0.66 -0.32 -0.90 0.82
RV -0.54 -0.21 -0.83 0.11 -0.66 -0.21 -0.89 0.72
Ret 0.34 0.22 0.61 -0.19 0.40 -0.04 0.54 -0.32

1m Lag 0.74 0.64 0.68 0.82 0.66 0.41 0.65 0.92

Table 5.9: This table shows the correlations coefficients between the parameters of model 3 and VIX/V2X index,
realized volatility, returns of the underlying index and the one month lag for both the SPX index and the SX5E
index.

SPX

The B0 parameter is highly correlated with the VIX index and therefore the VIX index will be used as a
regressor. Additional regressors are the one month lag of the B0 parameter and the returns of the SPX
index. The regressors are able to explain more than 99% of the variance in parameter B0. The returns
of the SPX index have a negative effect on the B0 parameter, which means high returns will lead to a
lower implied volatility surface and vice versa. The null hypothesis of both the Ljung-Box test and the
Breusch-Pagan can not be rejected, while null hypothesis of the Jarque-Bera test can only not be rejected
after the removal of the two largest errors.

Dependent variable: B0 (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C 0.0145 0.0022 6.53 0.00 0.3364
B0t−1 0.1602 0.0291 5.51 0.00 0.2653
VIXt 0.6952 0.0276 25.21 0 .00 0.8832
Rett -0.0684 0.0298 -2.30 0.02 0.0591
R2 0.9917 LB χ2(5)=2.57 [0.776]
Adj. R2 0.9914 LM χ2(3)=2.19 [0.534]
N 88 JB χ2(2)=71.85 [0.000]
Std. Error 0.0078 JB/(2) χ2(2)=1.17 [0.558]

Table 5.10: Regression results B0 parameter of the regression model. (SPX Index).

In the regression model of the B1 parameter only the returns of the SPX index and the one month lag of
the B1 parameter are used as independent variables. Together they explain almost 65% of the variance
in the B1 parameter. The term which the B1 parameter belongs to goes from a negative value to a pos-
itive value along moneyness and is zero at 100% moneyness. The absolute value of the term decreases
with one over the square root over maturity. The return of the SPX index has a positive effect on the
B1 parameter. This means for higher returns the implied volatilities for in-the-money options are de-
creased, while the implied volatilities for out-of-the-money options are increased. Also the differences
across maturity are increased with higher absolute values of the returns of the SPX index. All three null
hypotheses (normality of errors, homoskedastic errors and uncorrelated errors) can not be rejected.

The B2 parameter is modeled as an AR(2) model. In the possible AR(1) models with different indepen-
dent variables the null hypothesis of the Ljung-Box test, the errors terms are uncorrelated, is always
rejected. The addition of the two-month lag parameter also increased the variance explained by the
regression model. The return of the SPX index is also included as regressor. The term that belongs to
the B2 parameter is always positive and decreases with one over maturity. Also, it has a smile across
moneyness. The results of the regression models indicate that positive returns of the SPX index would
increase the overall level of the implied volatility surface, but especially the implied volatilities at lower
maturity. Overall, the model explain more than 45% of the variance in the B2 parameter. The Jarque-Bera
test can only not be rejected after the exclusion of the largest error.

The B3 parameter is modeled using an AR(1) model with three additional independent variables, the



5.2: Regression models 29

Dependent variable: B1 (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C -0.0377 0.0084 -4.48 0.00 0.1908
B1t−1 0.7156 0.0623 11.49 0.00 0.6085
Rett 0.2968 0.0592 5.01 0.00 0.2280
R2 0.6534 LB χ2(5)=1.60 [0.902]
Adj. R2 0.6452 LM χ2(2)=3.47 [0.176]
N 88 JB χ2(2)=1.05 [0.591]
Std. Error 0.0265 - -

Table 5.11: Regression results B1 parameter of the regression model. (SPX Index).

Dependent variable: B2 (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C 0.0251 0.0090 2.78 0.01 0.0849
B2t−1 0.4186 0.1017 4.12 0.00 0.1695
B2t−2 0.2999 0.1009 2.97 0.00 0.0962
Rett 0.2297 0.1064 2.16 0.03 0.0532
R2 0.4838 LB χ2(5)=10.20 [0.070]
Adj. R2 0.4652 LM χ2(3)=0.78 [0.855]
N 87 JB χ2(2)=11.09 [0.004]
Std. Error 0.0473 JB/(1) χ2(2)=4.43 [0.109]

Table 5.12: Regression results B2 parameter of the regression model. (SPX Index).

return of the SPX index, the realized volatility of the SPX index and the US AAA corporate bonds excess
return. Almost 80% of the variance in the B3 parameter can be explained by the regression model. The
error terms are uncorrelated, but there seems to be some heteroskedasticity. After the exclusion of the
three largest errors, the null hypothesis of normally distributed error terms can not be rejected. Both the
realized volatility and the AAA corporate excess return index have a negative effect on the B3 parameter.
The returns of the SPX index however, have a positive effect. The term that belongs to the B3 parameter
is the maturity term. This means that a negative B3 parameter would decrease the overall level of the
implied volatility surface, but especially the implied volatilities of options with higher maturities.

Dependent variable: B3 (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C 0.2182 0.0944 2.3120 0.0233 0.0605
B3t−1 0.2552 0.0878 2.9056 0.0047 0.0923
Rett 0.1088 0.0287 3.7864 0.0003 0.1473
RVt -0.0884 0.0190 -4.6590 0.0000 0.2073
AAAt (US) -0.0019 0.0009 -2.1301 0.0361 0.0518
R2 0.7906 LB χ2(5)=5.53 [0.355]
Adj. R2 0.7805 LM χ2(4)=10.67 [0.031]
N 88 JB χ2(2)=14.68 [0.001]
Std. Error 0.0089 JB/(3) χ2(2)=2.33 [0.313]

Table 5.13: Regression results B3 parameter of the regression model. (SPX Index).

The fifth parameter of the regression model, B4, is modeled using three independent variables. The
one-month lag of the B4 parameter, the consumer price index level US and the gross domestic product
US explain more than 70% of the variance in the B4 parameter. The CPI has a negative impact on the
B4 parameter, while the GDP has a positive effect. The term that belongs to the B4 parameter goes
from negative to positive across moneyness. It is zero for the at-the-money options and increases with
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maturity. Both the null hypotheses of the Ljung-Box test and the Breusch-Pagan test can be rejected,
while the null hypothesis of the Jarque-Bera test can only be rejected after the exclusion of the largest
error.

Dependent variable: B4 (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C 0.2922 0.0884 3.31 0.00 0.1152
B4t−1 0.5282 0.0926 5.70 0.00 0.2792
CPIt (US) -0.0016 0.0004 -3.70 0.00 0.1398
GDPt (US) 0.0006 0.0003 1.91 0.06 0.0418
R2 0.7209 LB χ2(5)=4.08 [0.539]
Adj. R2 0.7109 LM χ2(3)=3.13 [0.372]
N 88 JB χ2(2)=248.17 [0.000]
Std. Error 0.0268 JB/(1) χ2(2)=0.90 [0.636]

Table 5.14: Regression results B4 parameter of the regression model. (SPX Index).
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SX5E

The B0 parameter of the SX5E index, which is highly correlated with the level of the surface is modeled
in similar way as the B0 parameter of the SPX index. Both the one month-lag of the B0 parameter and
the V2X index are used as regressors. Together they already explain more than 99% of the variance in the
B0 parameter. The null hypothesis of uncorrelated errors can not be rejected, just as the null hypothesis
of homoskedastic errors.

Dependent variable: B0 (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C 0.0064 0.0025 2.58 0.01 0.0836
B0t−1 0.0648 0.0167 3.89 0.00 0.1716
V2Xt 0.8163 0.0145 56.30 0.00 0.9775
R2 0.9932 LB χ2(5)=0.82 [0.976]
Adj. R2 0.9930 LM χ2(2)=4.36 [0.113]
N 76 JB χ2(2)=0.33 [0.847]
Std. Error 0.0068 - -

Table 5.15: Regression results B0 parameter of the regression model. (SX5E Index).

The B1 parameter is modeled as an AR(1) model with the realized volatility and return of the SX5E
index as additional regressors. The model explains more than 60% of the variance in the B1 parameter.
The return of the SX5E index has a positive effect on the B1 parameter, which means that in-the-money
options will have a decreased implied volatility for higher returns, while the out-of-the-money options
will have an increased implied volatility for higher returns. The realized volatility has an opposite effect,
meaning the in-the-money options will have an increased implied volatility and the out-of-the-money
options will have a decreased implied volatility. Again, the null hypotheses of the three tests can not be
rejected.

Dependent variable: B1 (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C -0.0547 0.0123 -4.43 0.00 0.2144
B1t−1 0.4934 0.0790 6.24 0.00 0.3512
RVt -0.1343 0.0384 -3.49 0.00 0.1449
Rett 0.1963 0.0746 2.63 0.01 0.0878
R2 0.6388 LB χ2(5)=4.32 [0.504]
Adj. R2 0.6237 LM χ2(3)=5.77 [0.123]
N 76 JB χ2(2)=4.90 [0.086]
Std. Error 0.0318 - -

Table 5.16: Regression results B1 parameter of the regression model. (SX5E Index).

The B2 parameter is very difficult to model. The highest percentage of variance explained is achieved
by the AR(1) model with the indirect real estate total return index of Europe as an additional regressor.
Only 30% of the variance in the B2 parameter can be explained. The indirect real estate total return
index has a positive effect on the B2 parameter. This means that a high indirect real estate total return
index means a larger difference between the implied volatilities of options with different maturities.
Options with short maturities will have a larger increase in implied volatility than options with longer
maturities, caused by the term that the B2 parameter belongs to. The error of the model seems to be
uncorrelated and homoskedastic. After the exclusion of the largest error term, the null hypothesis of
normally distrubted errors can not be rejected.

For modeling the B3 parameter, again the US AAA corporate excess return index is used as an indepen-
dent variable. Together with the V2X index and the realized volatility of the SX5E index, almost 90%
of the variance of the B3 parameter can be explained. All independent variables have a negative effect
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Dependent variable: B2 (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C 0.0444 0.0356 1.25 0.22 0.0209
B2t−1 0.1650 0.1102 1.50 0.14 0.0298
INREt (EU) 0.0004 0.0001 3.94 0.00 0.1754
R2 0.3114 LB χ2(5)=7.19 [0.207]
Adj. R2 0.2926 LM χ2(2)=2.84 [0.242]
N 76 JB χ2(2)=14.29 [0.001]
Std. Error 0.0931 JB/(1) χ2(2)=5.28 [0.072]

Table 5.17: Regression results B2 parameter of the regression model. (SX5E Index).

on the B3 parameter. The B3 parameter belongs to the maturity term, this means that if all independent
variables are high enough, the B3 parameter will be negative and the level implied volatility surface will
be reduced. This is especially the case for higher maturities. There is no autocorrelation between the
errors, but there does seem to be some heteroskedasticity. After the exclusion of the largest error, the
errors seem to be normally distributed.

Dependent variable: B3 (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C 0.6157 0.1037 5.93 0.00 0.3285
V2Xt -0.2236 0.0290 -7.71 0.00 0.4525
RVt -0.0476 0.0160 -2.97 0.00 0.1090
AAAt -0.0054 0.0010 -5.49 0.00 0.2951
R2 0.8900 LB χ2(5)=7.50 [0.186]
Adj. R2 0.8854 LM χ2(3)=8.64 [0.035]
N 76 JB χ2(2)=83.50 [0.000]
Std. Error 0.0072 JB/(1) χ2(2)=5.37 [0.068]

Table 5.18: Regression results B3 parameter of the regression model. (SX5E Index).

The B4 parameter is highly correlated with its one-month lag (0.92). The one-month lag of the B4 pa-
rameter, with the V2X index and return of the SX5E index, explain more than 90% of the variance in the
B4 parameter. The largest proportion of variance is explained by the one-month lag. The V2X index has
a positive effect on the B4 parameter, while the return of the SX5E index decreases the B4 parameter if
the returns increase. The null hypothesis of the Ljung-Box can not be rejected, but the null hypothesis of
the Breusch-Pagan test is rejected. This means that the errors are heteroskedastic. After the exclusion of
the largest error term, the null hypothesis of the Jarque-Bera test is not rejected.

Dependent variable: B4 (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C -0.0667 0.0230 -2.90 0.00 0.1048
B4t−1 0.7238 0.0528 13.72 0.00 0.7233
V2Xt 0.2643 0.0869 3.04 0.00 0.1138
Rett -0.3526 0.0963 -3.66 0.00 0.1569
R2 0.9086 LB χ2(5)=7.42 [0.191]
Adj. R2 0.9047 LM χ2(3)=18.17 [0.000]
N 76 JB χ2(2)=7.63 [0.022]
Std. Error 0.0407 JB/(1) χ2(2)=2.84 [0.242]

Table 5.19: Regression results B4 parameter of the regression model. (SX5E Index).
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5.3 Heston

In this section first the results of the Heston model with jumps (SVJ model) is discussed. Afterwards
the calibration of the Heston model will be discussed. From the first unrestricted calibration results,
restricted calibrations have been constructed. The results of the unrestricted and restricted calibrations
are shown in terms of fit with the implied volatility surface from the historical data. Secondly this section
contains the regression models of the calibrated parameters. Finally, the modeled implied volatility
surface can be compared to the historical data.

5.3.1 SVJ Model

Before going into a more detailed analysis of the results of the Heston models, it is wise to check whether
incorporating jumps is useful or not. The model with jumps has three additional parameters, which are
only necessary if a significant decrease in the difference between the modeled implied volatility surface
and the implied volatility surface from market data is found. Figure 5.5 shows the mean absolute error
of the American implied volatility surfaces computed from the calibrated Heston parameters and the
calibrated SVJ (Heston + Jumps) parameters. It can clearly be seen that only in a few cases the mean
absolute error is reduced. In most cases the mean absolute error is actually increased. A reason for
this to happen is that three additional parameters means a lot more possible local minima in which the
calibration procedure could get stuck. Also, the number of data points of each implied volatility surface
is quite low, which makes it difficult to calibrate a high number of parameters. Adding jumps to the
Heston model is in this case a bad idea and in the remainder of this section only the original Heston
model will be analyzed. Analysis of the SVJ model for the SX5E index shows similar results.
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Figure 5.5: The mean absolute error of the calibrated Heston model and SVJ model on market data (SPX index) for
every month.

5.3.2 Calibration

Unrestricted parameters

The first calibration of the Heston model was done with almost no restrictions on the parameters. The
only restrictions are that the mean reversion rate κ, initial variance V0, long term variance θ and the
volatility of variance η are to be positive and the correlation parameter is to be between -1 and 1. These
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restrictions are made because the parameters should be interpretable. Figure 5.6 and Fig. 5.7 show the
calibrated parameters over time of the SPX and SX5E index, respectively.

For the SPX index, the mean reversion rate, with a mean of 2.81 and standard deviation of 1.70, is quite
volatile with some high peaks. The initial variance, with a mean of 0.05 and standard deviation of
0.06, seems to have a similar shape as the mean volatility level over time and therefore also the same
shape as the VIX index over time. The correlation coefficient between the initial variance and the VIX
index is 0.96 . Since the VIX index is highly correlated with the realized volatility, the initial variance is
correlated with the realized volatility as well (0.93). The long term variance shows the same shapes as
the initial variance, but with a higher average level. Around the crisis the initial variance is higher than
the long term variance. The long term variance is less volatile than the initial variance, and therefore a
high correlation is expected with a VIX index from which the high frequency movements are filtered.
A Christiano-Fitzgerald filter (Christiano and Fitzgerald (2003)) has been applied to the VIX index, with
a minimum frequency of eight months and maximum frequency of infinity. The correlation between
the filtered VIX index and the long term variance is 0.91 . The volatility of variance is very volatile
and has weak correlation with both the VIX index and realized volatility (0.33 and 0.30). The volatility
of variance also has a weak negative correlation with the returns of the underlying SPX index (-0.25).
The correlation parameter is negative, which means a positive shock in the spot price is followed by a
negative shock in the stochastic volatility. The correlation parameter is negatively correlated with the
VIX index (-0.51).
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Figure 5.6: The calibrated Heston parameters of the SPX index over time. The top figures contain the mean reversion
rate (left), initial variance (middle) and long term variance (right). The bottom figures contain the volatility of
variance (left) and correlation coefficient (right).

Since the initial variance has a very high correlation with the VIX index and the long term variance has
a very high correlation with the filtered VIX index, the idea is to fix these parameters to these indices
using a simple regression. Afterwards the three other parameters, the mean reversion rate, the volatility
of variance and the correlation coefficient are calibrated again to try to obtain a better minima.

For the SX5E index, the mean reversion rate is much more volatile and higher than for the SPX index.
The mean reversion rate has a mean of 11.04 and standard deviation of 7.67, with peaks of almost 30.
The initial variance, with a mean of 0.09 and standard deviation of 0.07, again seems to have a similar
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Figure 5.7: The calibrated Heston parameters of the SX5E index over time. The top figures contain the mean rever-
sion rate (left), initial variance (middle) and long term variance (right). The bottom figures contain the volatility of
variance (left) and correlation coefficient (right).

shape to the mean volatility level. The correlation coefficient between the initial variance and the V2X
index is 0.94 . Since the V2X index is highly correlated with the realized volatility, the initial variance is
correlated with the realized volatility as well (0.90).

The long term variance also shows the same shapes as the initial variance, but with a higher average
level. Just as for the SPX index, around the crisis the initial variance is higher than the long term vari-
ance. For the SX5E index, the long term variance is less correlated with the V2X index (0.75), than the
correlation between the long term variance of the SPX index and the VIX index. Also, the correlation
with the filtered V2X index is a bit lower (0.73).

The volatility of variance is even more volatile for the SX5E index than for the SPX index. The volatility
of variance is also a lot higher for the SX5E index. The volatility of variance does have weak correlations
with the V2X index, realized volatility and returns of the underlying (-0.30, -0.30, 0.15). The directions
of these correlations are opposite of the same correlations of the volatility of variance of the SPX index.
For the SX5E index the correlation coefficient is also negative. The time series is however a lot more
volatile compared to the correlation parameter of the SPX index. A standard deviation of 0.20 for the
SX5E index compared to a standard deviation of 0.06 for the SPX index. The correlation parameter is
negatively correlated with the V2X index (-0.52).

It must be noted that for the SX5E index in five months during the crisis, the lowest minima that was
found by the calibration procedure produced really strange results such as a correlation coefficient of
+0.7 together with very low mean reversion rate and volatility of variance. An other minima with only
a slightly larger calibration error value (3.7E-4 versus 3.3E-4) belonged to parameter which were more
in line with the history. For these five months a minima with a slightly larger calibration error has been
taken, to obtain parameters which are more in line with the history.
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Dependent variable: V0 Dependent variable: θ
Indep. Variable Coefficient Indep. Variable Coefficient
Constant -0.0629 Constant -0.0303
VIX 0.5258 VIXFiltered 0.4037
R2 0.9299 R2 0.8308

Table 5.20: Simple regression results of the initial variance and long term variance calibrated parameters for the
SPX index.

Restricted parameters

Since for the SPX index the initial variance and long term variance are highly correlated with the VIX
index and filtered VIX index, respectively, a simple regression is used to restrict these parameters to
those respective indices. The results of the simple regression can be seen in Table 5.20. The other three
parameters only have the earlier mentioned restrictions to keep them interpretable.

Figure 5.8 shows the results of the newly calibrated mean reversion rate, volatility of variance and cor-
relation coefficient of the SPX index. It can clearly be seen that the parameters that follow from the
restricted calibration are even more volatile than the same parameters gotten from the unrestricted cal-
ibration. This means that whenever one or two parameters get fixed the other parameters maneuver
to very strange values to try and obtain the best fit. It is therefore not a good idea to use these newly
obtained time series of the mean reversion rate, volatility of variance and correlation coefficient. In the
remainder of this thesis the parameters from the unrestricted calibration will be used.
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Figure 5.8: The Heston parameters from the restricted calibration and unrestricted calibration of the SPX index
over time. The figures contain the mean reversion rate (left), the volatility of variance (middle) and correlation
coefficient (right). The blue line indicates the parameter is gotten from an unrestricted calibration, while the green
line indicates the parameter is gotten from the restricted calibration.

5.3.3 Time series of parameters

To model all Heston parameters regressions over time have been done. These are mostly AR(1) models,
with additional independent variables in the regression. Examples of these additional variables are
macroeconomic variables like gross domestic product (GDP) and consumer price index (CPI).

SPX

The mean reversion rate parameter κ of the Heston model should be positive, but when it is modeled
over time using a multiple regression model, predicted values are sometimes negative. To overcome
this problem, not the mean reversion rate is modeled, but its logarithm. The independent variables that
are used are the one-month lag of the logarithm of κ, the nominal US government long term bond (10y)
yield, the VIX index and consumer price index US. These variables explain almost 50% of the variance
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of the logarithm of κ. For all three tests the null hypothesis (uncorrelated errors, homoskedastic errors,
normally distributed errors) can not be rejected. The predicted value of the mean reversion rate κ is
found by taking the exponent of ’the predicted logarithm of κ plus half of the standard error of the
model squared’. Both CPI and NGLR have a positive effect on the logarithm of κ, and therefore also on
κ itself. The VIX index has a negative effect on κ. The mean reversion rates is a measure of how quick the
volatility goes to the long term variance. A very high mean reversion rate means a flat volatility surface,
at all maturities the volatility surface equals the long term variance. The calibrated mean reversion rates
show no mean reversion rate higher than 10, therefore the predicted mean reversion rates will be capped
at 10.

Dependent variable: log κ (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C -4.3726 1.8415 -2.37 0.02 0.0636
log κt−1 0.2121 0.1005 2.11 0.04 0.0509
CPIt (US) 0.0176 0.0074 2.36 0.02 0.0628
NGLRt (US) 41.9197 9.9221 4.22 0.00 0.1770
VIXt -0.9140 0.5186 -1.76 0.08 0.0361
R2 0.4981 LB χ2(5)=1.33 [0.932]
Adj. R2 0.4739 LM χ2(4)=2.51 [0.643]
N 88 JB χ2(2)=1.19 [0.551]
Std. Error 0.4218 - -

Table 5.21: Regression results logarithm of mean reversion rate parameter of the Heston model κ. (SPX Index).

The initial variance is highly correlated with the level of the implied volatility surface and therefore also
the VIX index. For the same reason as the mean reversion rate, the logarithm of the initial variance is
modeled instead of the initial variance itself. Another reason is that when the initial variance is modeled
the errors tend to be autocorrelated. Almost 95% of the variance in the logarithm of V 0 can be explained
by its one month-lag, the VIX index and the one-month lag of the VIX index. The errors terms are
uncorrelated, but there is some heteroskedasticity. After removing the largest error, the null hypothesis
of normally distributed errors can not be rejected. The coefficient of the VIX index is positive, but there
seems to be some overshooting, making the coefficient of the one-month lag of the VIX index negative.
The initial variance is measure of how high or low the short term variance is. The calibrated initial
variances show no initial variance lower than 0.015, therefore the predicted initial variances will be
floored at 0.01.

Dependent variable: log V 0 (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C -1.7166 0.4209 -4.08 0.00 0.1653
log V 0t 0.6628 0.0805 8.23 0.00 0.4464
VIXt 6.8509 0.4601 14.89 0.00 0.7252
VIXt−1 -4.1372 0.7418 -5.58 0.00 0.2702
R2 0.9413 LB χ2(5)=3.71 [0.591]
Adj. R2 0.9392 LM χ2(3)=22.78 [0.000]
N 88 JB χ2(2)=36.44 [0.000]
Std. Error 0.2154 JB/(1) χ2(2)=2.78 [0.249]

Table 5.22: Regression results logarithm of the initial variance parameter of the Heston model V 0. (SPX Index).

Although the long term variance can not be negative, it is not modeled as a logarithm. The predicted
values of the long term variance of both the SPX and SX5E index stay positive. Also the long term
variance has a high correlation with the level of the implied volatility surface. The VIX index is therefore
included as regressor. Also the one-month lag of the long term variance and the nominal US government
long term bond (10y) yield are regressors in this model. More than 90% of the variance in the long term



38 Chapter 5: Results

variance parameter can be explained. The largest proportion of variance is explained by the VIX index.
The errors are not correlated, but there is some heteroskedasticity. Also, the five largest errors need to
be removed before the null hypothesis of normally distributed errors is no longer rejected. The nominal
US government long term bond yield has a negative effect on the long term variance, which means the
long term variance is decreased when this yield increases. The long term variance is an indication of
how high or low the volatility is at higher maturities. The calibrated long term variances show no long
term variance higher than 2, therefore the predicted long term variances will be capped at 2.

Dependent variable: θ (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C 0.0306 0.0104 2.93 0.00 0.0929
θt−1 0.4270 0.0586 7.28 0.00 0.3869
VIXt 0.1940 0.0188 10.32 0.00 0.5591
NGLRt (US) -0.9188 0.2164 -4.25 0.00 0.1767
R2 0.9301 LB χ2(5)=4.09 [0.536]
Adj. R2 0.9276 LM χ2(3)=12.02 [0.007]
N 88 JB χ2(2)=198.30 [0.000]
Std. Error 0.0117 JB/(5) χ2(2)=4.07 [0.131]

Table 5.23: Regression results long term variance parameter of the Heston model θ. (SPX Index).

The volatility of variance is the most difficult parameter of the Heston model to predict. For the same
reasons as the mean reversion rate, the logarithm of the volatility of variance is modeled instead of the
volatility of variance itself. The one-month lag of the logarithm of η, the consumer price index (US)
and the nominal US government long term bond (10y) yield explain almost 50% of the variance in the
volatility of variance. The errors are uncorrelated and normally distributed, but the errors seem to be
heteroskedastic. All regressors have a positive effect on the predicted value of the volatility of variance.
The volatility of variance especially influences the shape of the volatility surface at the lower maturities.
Based on the calibrated volatility of variances, the predicted volatility of variance is capped at 2.

Dependent variable: log η (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C -7.4194 1.7416 -4.26 0.00 0.1777
log θt−1 0.3766 0.0891 4.23 0.00 0.1755
CPIt (US) 0.0302 0.0071 4.23 0.00 0.1755
NGLRt (US) 21.9324 6.9216 3.17 0.00 0.1068
R2 0.4981 LB χ2(5)=3.52 [0.621]
Adj. R2 0.4802 LM χ2(3)=16.67 [0.001]
N 88 JB χ2(2)=5.72 [0.057]
Std. Error 0.3514 - -

Table 5.24: Regression results logarithm of volatility of variance parameter of the Heston model η. (SPX Index).

The correlation coefficient has the highest correlation with its one-month lag. The one-month lag of the
correlation coefficient, together with the consumer price index US is able to account for more than 75%
of the variance in the correlation coefficient. The null hypotheses are all rejected, which means the errors
are not correlated, are not heteroskedastic and are normally distributed. The correlation coefficient stays
between zero and minus one. Sometimes the predicted value is lower than minus one, in these cases
the value is set to minus one. A higher consumer price index increases the negative correlation of the
volatility and the spot price. A positive correlation means that the volatility will increase with strike
price (and therefore moneyness). A negative correlation means that the volatility will decrease with
strike price.
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Dependent variable: ρ (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C 0.6452 0.2301 2.80 0.01 0.0847
ρt−1 0.6882 0.0759 9.07 0.00 0.4916
CPIt (US) -0.0041 0.0013 -3.25 0.00 0.1105
R2 0.7767 LB χ2(5)=8.89 [0.114]
Adj. R2 0.7714 LM χ2(2)=4.38 [0.111]
N 88 JB χ2(2)=1.02 [0.600]
Std. Error 0.0804 - -

Table 5.25: Regression results correlation coefficient parameter of the Heston model ρ. (SPX Index).

SX5E

Again the logarithm of the mean reversion rate parameter is modeled. For the SX5E index the one-
month lag of the logarithm of the mean reversion rate is used as regressor. In addition the exchange
rate of euros to dollars and the indirect real estate total return index of Europe are used. More than 60%
of the variance in the logarithm of the mean reversion rate can be explained by the model. The error
terms are neither heteroskedastic, nor autocorrelated. After the exclusion of the largest error, the null
hypothesis of the Jarque-Bera test can not be rejected. Both a higher indirect real estate index and higher
EUR/USD exchange rate will decrease the value of the mean reversion rate. For the SX5E index the
predicted mean reversion rate is capped at 30 and floored at 0.3.

Dependent variable: log κ (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C 5.3359 1.4376 3.71 0.00 0.1606
log κt−1 0.4509 0.1036 4.35 0.00 0.2083
INREt (EU) -0.0020 0.0007 -2.81 0.01 0.0988
EUR/USDt -4.6719 1.6231 -2.88 0.01 0.1032
R2 0.6244 LB χ2(5)=8.51 [0.130]
Adj. R2 0.6087 LM χ2(3)=6.14 [0.105]
N 76 JB χ2(2)=14.70 [0.001]
Std. Error 0.5671 JB/(1) χ2(2)=3.71 [0.157]

Table 5.26: Regression results logarithm of the mean reversion rate parameter κ of the Heston model. (SX5E Index).

When modeling the initial variance parameter the errors tend to be autocorrelated, however the loga-
rithm of the initial variance parameter does not have this problem and is therefore modeled. The errors
of the model of the logarithm of the initial variance parameter are not correlated. The V2X index has the
highest correlation with the logarithm of V0, and is therefore used as independent variable. The model
explain more than 87% of the variance in the logarithm of the initial variance. The errors are not het-
eroskedastic and after the exclusion of the two largest errors the null hypothesis of normally distributed
errors can not be rejected. The calibrated initial variances show no initial variance lower than 0.015,
therefore the predicted initial variances will be floored at 0.01.

The long term variance is modeled using its one-month lag and the V2X index as regressors. The model
explains more than 80% of the variance of the long term variance parameter. The V2X index has a
positive effect on the long term variance, which makes sense, since both are highly correlated with
the overall average level of the implied volatility surface. The null hypothesis of uncorrelated error and
homoskedastic errors can not be rejected. After the exclusion of the two largest errors the null hypothesis
of normally distributed errors can not be rejected as well. Based on the calibrated volatility of variances,
the predicted volatility of variance is capped at 3 and floored at 0.25.

Again the volatility of variance is difficult to model. The logarithm of η is modeled using the V2X index,
the one-month lag of the logarithm of the volatility of variance and the EUR/USD exchange rate as
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Dependent variable: log V0 (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C -4.7217 0.0917 -51.52 0.00 0.9729
V2Xt 7.5379 0.3267 23.07 0.00 0.8780
R2 0.8780 LB χ2(5)=10.58 [0.060]
Adj. R2 0.8763 LM χ2(1)=3.50 [0.061]
N 76 JB χ2(2)=41.67 [0.000]
Std. Error 0.2653 JB/(2) χ2(2)=2.19 [0.334]

Table 5.27: Regression results logarithm of the initial variance parameter V 0 of the Heston model. (SX5E Index).

Dependent variable: θ (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C -0.0023 0.0039 -0.60 0.55 0.0049
θt−1 0.4280 0.0575 7.44 0.00 0.4311
V2Xt 0.1482 0.0151 9.81 0.00 0.5687
R2 0.8189 LB χ2(5)=4.62 [0.463]
Adj. R2 0.8139 LM χ2(2)=0.53 [0.765]
N 76 JB χ2(2)=398.19 [0.000]
Std. Error 0.0103 JB/(2) χ2(2)=2.60 [0.273]

Table 5.28: Regression results long term variance parameter θ of the Heston model. (SX5E Index).

independent variables. The model only explains a bit more than 35% of the variance in the volatility of
variance parameter. Both the V2X index and the EUR/USD exchange rate have a negative effect on the
volatility of variance. All null hypotheses can not be rejected. The volatility of variance is capped at 3
and floored at 0.25.

Dependent variable: log η (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C 2.1144 0.8358 2.53 0.01 0.0816
log ηt−1 0.4004 0.0998 4.01 0.00 0.1828
V2Xt -1.4364 0.5742 -2.50 0.01 0.0800
EUR/USt -2.2381 1.1149 -2.01 0.05 0.0530
R2 0.3685 LB χ2(5)=7.21 [0.283]
Adj. R2 0.3422 LM χ2(3)=3.81 [0.206]
N 76 JB χ2(2)=0.70 [0.702]
Std. Error 0.4463 - -

Table 5.29: Regression results logarithm of the volatility of variance parameter η of the Heston model. (SX5E Index).

The correlation coefficient calibrated from the SX5E index is much more volatile than the correlation
coefficient calibrated from the SPX index. It is therefore much more difficult to model. The one-month
lag of the correlation coefficient and the V2X index are used as independent variables and only explain
30% of the variance in the correlation coefficient. When the V2X index is high, the correlation coefficient
becomes even more negative. There is not autocorrelation in the errors, but there is some heteroskedas-
ticity. After the exclusion of the largest error, the remaining errors are normally distributed.

Since the correlation coefficient can not be lower than minus one, the predicted correlation coefficients is
floored at -1. An attempt was made to model the Fisher transformation of the correlation coefficient. The
Fisher transformation (Fisher (1915)) maps the real domain [−1, 1] to [−∞,∞]. Although the mapping
would be a good reason to use the Fisher transformation, the Fisher transformation of the correlation
coefficient has no high correlations with other variables and only 15% of the variance could be explained.
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Dependent variable: ρ (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C -0.3999 0.0751 -5.33 0.00 0.2799
ρt−1 0.1854 0.1074 1.73 0.09 0.0392
V2Xt -0.7475 0.1790 -4.18 0.00 0.1929
R2 0.3008 LB χ2(5)=1.28 [0.937]
Adj. R2 0.2816 LM χ2(2)=10.27 [0.006]
N 76 JB χ2(2)=11.16 [0.004]
Std. Error 0.1329 JB/(1) χ2(2)=1.81 [0.404]

Table 5.30: Regression results correlation coefficient ρ of the Heston model. (SX5E Index).

5.4 Benchmark: ORTEC Model

All results are compared to model currently used by ORTEC Finance, explained in Sec. 2.4. An average
relative implied volatility surface is used to compute the modeled implied volatility surface from one
modeled reference point, the 1 year ATM implied volatility. Figure 5.9 shows the average relative im-
plied volatility surface of the SPX index and the SX5E index. The skew tables are given in Table A.1 and
Table A.2, respectively. Both average IV surfaces have a smile across moneyness at the lower maturities.
The average IV surface of the SPX index tends to be smoother at longer maturities than the average
IV surface of the SX5E index. The latter one has a dent (lower implied volatility) at 100% moneyness,
compared to in-the-money and at-the-money implied volatilities.

Overall, the implied volatility tends to be lower for higher moneyness. In the comparison section the
calibrations will be compared to the average relative implied volatility surface multiplied with the ref-
erence point retrieved from the data (not modeled reference point). Afterwards all modeled implied
volatility surface will be compared with the average relative implied volatility surface multiplied with
the modeled reference point.

5.4.1 Time series of reference point

The reference point is modeled using a linear regression model with realized volatility, underlying re-
turns and lagged 1 year ATM implied volatility as independent variables. For realized volatility and
returns one lagged term is also added. The results for the SPX index and SX5E index are shown in Table
5.31 and Table 5.32, respectively. The model fits quite well, with an adjusted R2 of 0.96 and 0.92 for
the SPX index and SX5E index, respectively. Figure 5.10 shows the regression model fit of the reference
points of both implied volatility surfaces.

Dependent variable: 1y ATM Implied Volatility (SPX Index)
Variable Coefficient Std. Error t p Part. R2

C 0.0255 0.0049 5.17 0.00 0.2436
IVt−1 0.7888 0.0316 24.96 0.00 0.8824
RVt 0.1092 0.0202 5.39 0.00 0.2596
Rett -0.2825 0.0390 -7.24 0.00 0.3873
Rett−1 0.0680 0.0351 1.94 0.06 0.0432
R2 0.9635 F(5,83) 437.2 [0.000]
Adj. R2 0.9618 LB χ2(5)=12.53[0.033]
N 89 JB χ2(2)=1.37 [0.567]
Std. Error 0.0133 LM χ2(5)=22.28 [0.000]

Table 5.31: Regression results 1y ATM implied volatility (SPX Index).

Lee (2012) states that the coefficients have reasonable interpretation, since positive changes in realized
volatility and negative changes in underlying returns result in positive changes in implied volatility.
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Figure 5.9: The average relative implied volatility surface of the SPX index (left) and the SX5E index (right). The
average is taken over the period January 2005 - June 2012.

Dependent variable: 1y ATM Implied Volatility (SX5E Index)
Variable Coefficient Std. Error t p Part. R2

C 0.0364 0.0078 4.64 0.00 0.2326
IVt−1 0.6775 0.0417 16.25 0.00 0.7881
RVt 0.1749 0.0256 6.83 0.00 0.3968
Rett -0.1325 0.0415 -3.20 0.02 0.1257
Rett−1 0.0384 0.0393 0.98 0.33 0.0133
R2 0.9284 F(5,71) 177.2 [0.000]
Adj. R2 0.9243 LB χ2(5)=10.03[0.126]
N 77 JB χ2(2)=6.89 [0.009]
Std. Error 0.0167 LM χ2(5)=21.43 [0.001]

Table 5.32: Regression results 1y ATM implied volatility (SX5E Index).

Both models contain significant heteroskedasticity (see Breusch Pagan statistic LM), but Lee (2012) state
that the issue does not appear to be severe enough to warrant a more complex model. A possible solution
could be to model the reference point in logs rather than levels.

It may seem like the other models have an unfair advantage compared to the benchmark model, since
they are modeled using the VIX index. Attempts were made to improve the regression model of the 12
month ATM implied volatility by including the VIX index as independent variable. These attempts all
failed, since the R squared of those models were lower than the R squared of the two models given in
this section.
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Figure 5.10: The regression model fit of the 1 year ATM implied volatility of the SPX index (left) and the SX5E index
(right).
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5.5 Comparison

In this section the results of the various models are compared to the historical data, with the current
ORTEC model used as a benchmark. The mean absolute error of the modeled implied volatility surfaces
will be compared. Since some models do not model the edges of the implied volatility surface very well,
the errors in certain segments of the surface will also be compared. A first comparison is done after the
calibration step of all four models. Afterwards a comparison is shown between the models with implied
volatility surface constructed from parameters/components/reference points modeled over time. All
best and worst fits of the four models are shown in Appendix A.4.

5.5.1 After calibration

Figure 5.11 contains the mean absolute error of all (possible) calibrated points of the four models (PCA,
Heston, regression, benchmark) with the market data. For both indices (SPX/SX5E) there is room for
improvement if the benchmark is compared to the three other models. At this stage, especially PCA
seems to be a big improvement over the benchmark model. The Heston model and regression model
also look promising, but have a worse performance than PCA for the SX5E index. For the SPX index all
three models seem to have the same absolute errors over time. It must be noted that for the SX5E index
PCA only models the 90%-110% moneyness implied volatility surface. Errors on the edges (deep in-the-
money and deep out-of-the-money) tend to be higher, and therefore it makes sense the PCA calibrations
have a smaller mean absolute error than the other models.

Especially around the crisis the benchmark model tends to have a large mean absolute error. For the
three other models there is no larger error in the crisis for the SPX index, compared to other times. For
the SX5E index the error of the Heston model and regression model does increase during the crisis.
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Figure 5.11: The mean of the absolute errors of four calibrated models over time of the SPX index and SX5E index.
The four models are the Heston model, principal component analysis, regression model and the benchmark model.
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5.5.2 Final comparison

The final comparison is made between all four models; PCA, Heston model, regression model and the
model of ORTEC (Benchmark). The shapes of the implied volatility surfaces modeled by the first three
models are able to change over time, while the relative shape of the model of ORTEC is not. For every
month the average absolute error with market data has been calculated over all (possible) modeled
points. Figure 5.12 contains this mean absolute error over time for all four models.

It is immediately clear from Fig. 5.12 that the principal component analysis has the largest errors, al-
though they are quite constant over time. The mean absolute error of the principal component analysis
has no peaks during for example the crisis, while other models do show a large peak in the mean ab-
solute errors during this time. In the calibration comparison the principal component analysis was the
best model, apparently it is very difficult to model the scores of the principal components and therefore
the mean absolute error is increased a lot after using the modeled scores of the principal components.

For both indices the regression models has the lowest mean absolute error over time. Although it does
not beat the benchmark model every month. Especially during the crisis time the regression model does
not show a peak as high as the Heston model and benchmark model. The Heston model seems to have
an overall performance which is equal to the benchmark model. During the crisis the peak in the mean
absolute error is higher than the mean absolute error of the other models.

Figure 5.14 and Fig. 5.13 show the time-averaged absolute error of each point on the volatility surface.
These figures clearly show that all models, but especially the Heston model, have problems with mod-
eling the shorter maturities. At shorter maturities the edges of moneyness (80% / 120%) the averaged
absolute error is even larger. The average absolute error surface of the principal component analysis
actually looks like a basket, which means that it has difficulty with modeling all edges (short/long ma-
turities and low/high moneyness). These figures also show that the regression model has the smallest
absolute errors.

The time and surface averaged absolute error (one value) of every model is given for both the SPX index
and the SX5E index in Table 5.33. Since shorter maturities show larger errors an additional averaged
absolute error is shown which is averaged over time and the segment of the surface which has a maturity
of 3 months or higher. Also, for studies with a short-term horizon sometimes the relative surface of the
previous month is used for the benchmark model instead of the averaged relative surface. The time and
surface averaged absolute error of this way of modeling the benchmark model is also shown.

The averaged absolute error of PCA for the SPX is, as expected after seeing the figures in this section,
much higher than the averaged absolute errors of the other models. For the SX5E index the PCA model
shows a similar performance as the benchmark model. It must be noted however that the PCA model
for the SX5E index only models 49 points of the implied volatility surface. The Heston model only shows
slight improvements over the benchmark model for the SPX index, but much better improvements for
the SX5E index. The regression model shows the biggest improvements in terms of minimizing the aver-
aged absolute error in modeling the implied volatility surfaces. Even though excluding the errors of the
one-month and two-month maturity points decreases the average absolute error, the same conclusions
about the performance of each model compared to the others can still be drawn as when the one-month
and two-month maturity points are included.
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Figure 5.12: The mean of the absolute errors of four modeled IV surfaces of the SPX index and SX5E index over
time. The four surfaces are created using the Heston model, principal component analysis, regression model and
the benchmark model. The parameters or components of these models are modeled over time.

Mean absolute error per model
SPX SX5E

Model All 3-24m All 3-24m
Benchmark 0.0192 0.0150 0.0218 0.0188

Benchmark (1mnth) 0.0155 0.0121 0.0210 0.0196
Regression 0.0131 0.0112 0.0123 0.0118

Heston 0.0185 0.0140 0.0164 0.0139
PCA 0.0407 0.0340 0.0210 0.0196

Table 5.33: Mean absolute error per model, averaged over the whole surface. Also the average over a surface,
excluding the 1 month and 2 month maturity, are shown.
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Figure 5.13: Time averaged absolute error for every point of the modeled implied volatility surface of the benchmark
model (top left), regression model (top right), Heston model (bottom left) and PCA (bottom right) for the SPX index.
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Figure 5.14: Time averaged absolute error for every point of the modeled implied volatility surface of the benchmark
model (top left), regression model (top right), Heston model (bottom left) and PCA (bottom right) for the SX5E
index.





CHAPTER 6

Conclusion

The conclusion of this thesis consists of conclusions that can be made for the various models and a final
conclusion which answers the research question: Does introducing time dependent surface dynamics
improve models of the implied volatility surface?

Using principal component analysis more than 99% of the variance in the data can be explained by
the first two and three components for the SX5E and SPX index, respectively. The first component has
only positive loadings and can be seen as a level factor. The second component varies across maturity
(decreasing from a positive value to negative value with higher maturity) and can therefore be seen
as a maturity factor. The third component of the SPX index varies mostly across moneyness and can
therefore be seen as a moneyness factor.

In the case of this thesis the SVJ model is not an improvement over the Heston model. For the SVJ
model three additional parameters need to be calibrated. This probably means that there are a lot more
local minima, which makes it difficult to find a better fit of the implied volatility surface. For the SPX
index it was tried to restrict two parameters of the Heston model to the VIX index and then recalibrate
the other three parameters. This restricted calibration showed worse performance than the unrestricted
calibration, because the other three parameters reached very strange and more volatile values trying to
find a better fit.

Some parameters of the Heston model are better modeled as logarithms, i.e. the mean reversion rate,
initial variance and volatility of variance. The predicted values do need to be capped or floored to not
obtain values that are too high or low. An attempt was made to model the Fisher transformation of the
correlation coefficient, but did not improve the modeling of this parameter.

After analyzing five different regression models, the third regression model was chosen for further anal-
ysis. The terms in the third regression model are a constant, moneyness divided by the square root of
maturity, moneyness squared divided by maturity, maturity and moneyness time the square root of ma-
turity. The fourth model was not chosen, since it only showed marginal improvements by adding an
additional term. The fifth model also showed better performance in terms of R2, but had two param-
eters which are not significant in more than half of the months. Principal component analysis can be
used to reduce the number of parameters to a lower amount of component, but the component scores
are very difficult to model, so this was not done.

All models had at least one parameter that could be very nicely modeled with the VIX index. This was
usually a term that stands for the level of the surface. After calibration of the surfaces a comparison was
made between all models. At this stage the PCA showed the best results (lowest mean absolute error),
while the regression model and Heston model showed similar performance. All three models showed
improvements over the benchmark model, which indicates that there are improvements possible over
using a constant surface.

After modeling all parameters over time a final comparison was made between the models. The princi-
pal component scores are probably not good enough modeled, because the performance of this model
was the worst. It must be noted that the mean absolute error of the PCA model was more or less
constant, while other models showed peaks in the mean absolute error during the crisis. The Heston
model model showed marginal improvements over the benchmark model for the SPX index, but bigger
improvements over the benchmark model for the SX5E index. For both indices the regression model
showed the best performance in terms of minimizing the averaged mean absolute error over the whole
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surface and time. All models show the largest errors in implied volatility at smaller maturities, which
are more volatile than implied volatility of longer maturities, and therefore more difficult to model.

Two of three models which are able to model changes in the shape of surface over time show improve-
ments over the benchmark model, which only uses a constant shape. The regression model shows
the biggest improvements, reducing the mean absolute error by more than one-third. This means that
adding time dependent surface dynamics definitely improves the modeling of the implied volatility
surface.

6.1 Recommendations

Recommendations for future research are given below:

• Implicitly a higher weight in calculating errors is given to short maturities, since there are just more
market data on short maturities than long maturities. A higher weight can be given to the points
that are more relevant. If one wants a better performance at longer maturities, higher weights
could be given to these points. In some literature, e.g. Moodley (2005), the spread in bid-ask prices
is used as a weight. Hamida and Cont (2005) suggest to use the implied volatility as weights.

• The local minima of the Heston model are a huge problem in the calibration procedure. Using a
simple minimizer from a lot of different starting positions is not really an efficient way to find the
best or one of the best minima. Differential Evolution, by Storn and Price (1997), is a promising
minimizer which might work better than the previously mentioned method. Even after finding a
local minimum it will keep searching for a given amount of time to even better minimum. If this
minimizer works better, the SVJ model could be given another shot.

• Christoffersen and Jacobs (2004) state that when comparing models, the same loss functions should
be used in the estimation stage. In this thesis the loss function in obtaining the parameters of the
Heston model is based on prices, while for other models the loss function is based on implied
volatilities. In future research the performance of the Heston model with a loss function based
on implied volatilities should be compared with the performance of the Heston model with a loss
function based on prices.

• Two models used in this thesis to describe the implied volatility surface are principal compo-
nent analysis and a regression model. Park et al. (2009) modeled time series with semi parametric
factor dynamics. The model they used is similar to principal component analysis, but uses an
unobserved nonparametric function of independent variables instead of a linear combination of
independent variables. A simple form of the equation is:

Yt,j = ZT
t m(Xt,j) + εt,j , (6.1)

where Yt,j is the dependent variable, Z is an unobserved L-dimensional process,m() are unknown
real-valued functions of the independent variables Xt,j . Before estimation, one should determine
the number of dynamic functions (also the dimension of Z). Park et al. (2009) applied the above
model on intraday implied volatilities based on the German stock index DAX (ODAX) prices.

Afterwards the time series of the estimated component scores/parameters Ẑt,k (k ≤ J) can be
modeled over time in similar fashion as the component score of principal component analysis.

• In a few years, when there is more data available, it would be a good idea to test the actual perfor-
mance (out of sample) of these models!

• The next step after modeling a better implied volatility surface, would be to model a better volatil-
ity cube. A volatility cube contains the implied volatilities of swaptions. The term cube comes
from the three-dimensional aspect of swaptions. Options have only two dimensions (moneyness
and maturity), while swaptions have three dimensions (moneyness, tenor of the underlying swap
and maturity of the option), Trolle and Schwartz (2010). For the volatility cube there is no nice
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model such as the Heston model, but since the regression model worked very well for the volatil-
ity surface, it could also work for the volatility cube. First one would have to identify stylized
facts or trends and afterwards try to incorporate them into terms of moneyness, tenor and matu-
rity. Principal component analysis could also work, although it will be difficult to find data for all
necessary points of the volatility cube.
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A.1 Average Skew IV Surface

τ \m 80% 90% 95% 97.5% 100% 102.5% 105% 110% 120 %
1M 1.66 1.40 1.13 1.00 0.89 0.81 0.79 0.83 0.85
2M 1.45 1.25 1.08 1.00 0.92 0.85 0.80 0.74 0.73
3M 1.42 1.21 1.08 1.01 0.96 0.90 0.85 0.77 0.74
6M 1.36 1.19 1.09 1.05 1 0.96 0.92 0.85 0.77
12M 1.30 1.17 1.10 1.07 1.04 1.00 0.97 0.92 0.84
18M 1.28 1.65 1.11 1.08 1.05 1.03 1.00 0.96 0.89
24M 1.27 1.69 1.12 1.09 1.07 1.05 1.02 0.98 0.91

Table A.1: Average implied volatility (Jan 2005 - Dec 2011) relative to the 1 year ATM implied volatility of the SPX
index.

τ \m 80% 90% 95% 97.5% 100% 102.5% 105% 110% 120 %
1M 1.89 1.41 1.18 1.08 0.99 0.94 0.89 0.94 1.23
2M 1.54 1.28 1.13 1.07 0.99 0.94 0.89 0.84 0.86
3M 1.43 1.23 1.12 1.06 1.00 0.95 0.91 0.84 0.79
6M 1.34 1.18 1.09 1.05 1 0.97 0.93 0.87 0.79
12M 1.24 1.13 1.07 1.03 1.00 0.99 0.96 0.91 0.83
18M 1.18 1.09 1.04 1.01 1.01 1.03 1.00 0.96 0.87
24M 1.12 1.07 1.02 0.99 1.02 1.07 1.04 1.00 0.91

Table A.2: Average implied volatility (Jan 2006 - Dec 2011) relative to the 1 year ATM implied volatility of the SX5E
index.
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A.2 Regression Model 3: Reduction in R squared

This appendix contains a table with the maximum, minimum and mean reduction in R2 of Regression
model 3 over different maturities and moneyness. The results of the other regression models are more or
less the same, not in magnitude, but in the sense that short maturities contribute more to the reduction
in R2, than long maturities. Also for all models the 80% moneyness and 120% show the largest errors.

SPX SX5E
τ Mean Maximum Minimum Mean Maximum Minimum
1 0.0457 0.4077 0.0070 0.0396 0.2681 0.0060
2 0.0173 0.1055 0.0025 0.0107 0.1107 0.0012
3 0.0117 0.0621 0.0016 0.0121 0.1386 0.0018
6 0.0114 0.0406 0.0014 0.0162 0.0711 0.0017

12 0.0049 0.0188 0.0002 0.0120 0.0489 0.0006
18 0.0009 0.0042 0.0000 0.0116 0.0624 0.0007
24 0.0052 0.0174 0.0000 0.0295 0.1402 0.0013
m

0.8 0.0201 0.0766 0.0017 0.0117 0.0566 0.0031
0.9 0.0161 0.0392 0.0018 0.0132 0.0429 0.0021

0.95 0.0061 0.0484 0.0014 0.0126 0.0371 0.0042
0.975 0.0051 0.0647 0.0003 0.0223 0.0791 0.0030

1.0 0.0072 0.0804 0.0001 0.0144 0.1372 0.0005
1.025 0.0095 0.0941 0.0003 0.0246 0.2879 0.0019
1.05 0.0095 0.1021 0.0008 0.0124 0.0726 0.0023
1.1 0.0097 0.1026 0.0003 0.0195 0.0830 0.0044
1.2 0.0138 0.0823 0.0010 0.0354 0.0584 0.0140

Table A.3: This table shows mean, maximum and minimum reduction of the R2 the third regression model over
different maturities and moneyness for the SPX and the SX5E index.
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A.3 Terms of Regression Model 3
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Figure A.1: The four terms that belong to the B1 (top left), B2 (top right), B3 (bottom left) and B4 (bottom right)
coefficient of regression model three.
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A.4 Worst and best fits
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Figure A.2: The implied volatility surface from historical data (left) and the modeled (Benchmark) implied volatility
surface (right) of the SPX index, at July 2005 (top) and September 2008 (bottom). July 2005 has the best fit, while
September 2008 has the worst fit.
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Heston
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Figure A.3: The implied volatility surface from historical data (left) and the modeled (Heston) implied volatility
surface (right) of the SPX index, at September 2009 (top) and November 2008 (bottom). September 2009 has the best
fit, while November 2008 has the worst fit.
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Figure A.4: The implied volatility surface from historical data (left) and the modeled (PCA) implied volatility
surface (right) of the SPX index, at December 2008 (top) and September 2008 (bottom). December 2008 has the best
fit, while September 2008 has the worst fit.
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Regression
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Figure A.5: The implied volatility surface from historical data (left) and the modeled (Regression) implied volatility
surface (right) of the SPX index, at January 2009 (top) and November 2005 (bottom). January 2009 has the best fit,
while November 2005 has the worst fit.
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A.4.2 SX5E
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Figure A.6: The implied volatility surface from historical data (left) and the modeled (Benchmark) implied volatility
surface (right) of the SX5E index, at July 2008 (top) and October 2008 (bottom). July 2008 has the best fit, while
October 2008 has the worst fit.
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Figure A.7: The implied volatility surface from historical data (left) and the modeled (Heston) implied volatility
surface (right) of the SX5E index, at February 2010 (top) and October 2008 (bottom). February 2010 has the best fit,
while October 2008 has the worst fit.
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Figure A.8: The implied volatility surface from historical data (left) and the modeled (PCA) implied volatility
surface (right) of the SX5E index, at June 2007 (top) and September 2008 (bottom). June 2007 has the best fit, while
September 2008 has the worst fit.
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Figure A.9: The implied volatility surface from historical data (left) and the modeled (Regression) implied volatility
surface (right) of the SX5E index, at February 2010 (top) and September 2008 (bottom). February 2010 has the best
fit, while September 2008 has the worst fit.
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