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Abstract

In order to acquire insight into consumer preferences for products and services that are

described by certain attributes, choice experiments are employed. For e�ciency, this should

be done by means of an optimal experimental design, which gives the most precise estimates

for the parameters in the corresponding statistical model. Sometimes attributes of products

and services can be mixtures of ingredients. Although mixture models are commonly used

in industrial experiments, they have never been introduced in choice modeling. This master

thesis aims at introducing mixtures in the choice context, since often consumer products and

services can be described as mixtures of ingredients. An algorithm to construct semi-Bayesian

D-optimal experimental designs is presented for the multinomial logit model when choices are

based on a mixture of ingredients. The resulting designs are D-optimal and based on a mix-

ture coordinate-exchange algorithm. Further, some features of them are discussed. It is shown

that designs, when prior parameter values required for choice models are not assumed to be

zero, di�er from the utility neutral designs, where such an assumption is made. We also show

that semi-Bayesian designs di�er from and perform better than locally optimal ones (and the

utility neutral designs) for most of the time. As often it is di�cult to obtain accurate prior

parameter values, parameter misspeci�cation is also investigated. It is demonstrated that

monotonous misspeci�cations in true parameters do not distort the outcome, and might help

to design more robust designs.

Keywords: Bayesian design; Choice experiments; D-optimality; Experimental design; Halton

sequences; Mixture coordinate-exchange algorithm; Mixture experiment; Multinomial logit

model; Optimal design
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1 Introduction

The easiest way to �gure out consumer preferences for di�erent products and services is asking

what they think they would choose in certain situations and obtaining stated preference data. It is

also the only means to obtain data on products that are not on the market yet. However, surveys

have the drawback of being expensive and not widely available. They also trade higher amount of

information (at higher costs) against the decreasing quality of that information, as respondents

tend to get bored and tired if the process of �lling out a questionnaire is too long. In order to

obtain consumer preferences information, choice experiments are employed.

Choice experiments intend to capture consumer preferences for di�erent attributes of various

goods and precisely predict future purchasing behaviour. By using them, real marketplace choices

and decisions can be modeled and applied to evaluate market demand (Carson et al., 1994). In a

choice experiment, a product or service is characterized by a combination of attribute levels called

a pro�le or an alternative. Respondents then choose one from a group of pro�les called a choice

set. They repeat this task for several other choice sets presented to them. All submitted choice

sets make up the experimental design (Kessels et al., 2009). Such a choice experiment allows us

to estimate the importance of each attribute and its levels based on the respondents' preferences.

It is important to know which experiments are optimal to carry out as they are expensive

and might be of complicated nature to implement. An optimal experimental design is one which

provides the most precise estimates of the parameters of the choice model. Optimal designs can

reduce experimental costs by allowing econometric models to be used with as few experimental

observations as possible. The more e�cient design allows a researcher to reduce the number of

questions asked in the survey or the number of respondents involved in the process. In case of a

non-optimal design, a greater number of observations (and, thus, greater expense) is needed to

estimate the parameters with the same precision as with an optimal design. In order to design a

choice experiment optimally, one has to select the choice sets that result in accurately estimated

model parameters and precise predictions. Thus, the design of the choice experiment determines

what model(s) can be used with what levels of precision (Kessels et al., 2011). Techniques for

�nding such optimal tailor-made experiments are available in the literature.

Up to now, standard choice models are typically applied in the choice modeling literature.

Meanwhile, to model the dependence of the product quality on ingredient proportions in agricul-

tural and industrial statistics, experiments with mixtures are common (Cornell, 2002). In general,

a mixture experiment involves varying the proportions of k (k ≥ 2) mixture components and mea-

suring one or more response variables. When constraints on the proportions are imposed (such

as, lower and/or upper bounds on the k components and/or on M linear combinations of compo-

nents), we have a constrained mixture experiment (Piepel, et al., 2005). Consumer products and
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services are also often based on a mixture of ingredients. Examples include:

� taste experiments involving the mixing of di�erent blends to determine optimal proportions

for each ingredient

� choices between transportation modes depend on di�erent types/mixtures and amounts of

costs (toll, fuel) and travel times (congested, free �ow)

� cake formulations when using �our, sugar, water, baking powder, and shortening (Cornell,

2002)

� tobacco blends which consist of �ue-cured tobacco, burley, turkish blend, and processed

tobacco (Cornell, 2002)

Thus, mixture models perfectly �t within the context of consumer products and services to mea-

sure how the attributes of them jointly a�ect consumer preferences.

The aim of this master thesis is to introduce mixture models in the choice context and de-

velop an algorithm to set up optimal choice experiments involving mixtures. It is relevant both

scienti�cally and practically as mixture models have not yet been used in the context of choice

experiments and are present only in industrial setting, and as it may be seen from the reasoning

above, it might be a convenient way to handle some sort of choice problems in the �eld.

In the next section, what has been done in the �elds of choice modeling, optimal choice

experiments and mixture models is brie�y reviewed, and the multinomial logit model for choice

experiments, mixture models and optimal design criteria are introduced. Then, the algorithm itself

is presented. The two main steps are outlined and separately discussed in detail by describing

all substeps needed and techniques used. Then, benchmark approach for the designs constructed

in this master thesis is introduced. Finally, the developed algorithm is implemented for several

di�erent experimental settings and results are discussed. The last section contains a conclusion.
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2 Models and Design Criteria

In this section, we review literature and previous research �rst. Then, we describe multinomial

logit and mixture models. Finally, we introduce design criteria used in optimal design theory and

discuss the D-optimality criterion, that is chosen to be used in this master thesis, in more detail.

2.1 Literature and Previous Research

Choice experiments are popular in marketing as they can imitate consumer actual behavior.

Quite a few authors work on developing e�cient algorithms for designing optimal experimental

designs. However, so far, mixture experiments, choice experiments and optimal designs have

not been combined into one setting and have mostly been analyzed separately. For instance,

Goos et al. (2012) propose a new approach for modeling the impact of investments in di�erent

types of media advertising, namely, mixture-amount modeling. The model separates the impact

of the media mix from the impact of the total amount of advertising e�ort. Piepel et al. (2005)

combine both mixture experiments and an optimal design idea in a unique and challenging nuclear

waste glass constrained mixture experiment design problem. They propose a new coordinate-

exchange algorithm for mixture experiments without using candidate points, as in this application

it was impossible to generate and store the huge number of them needed for 19 or 21 mixture

components. Goos and Donev (2006, 2007) describe an algorithmic approach to designing blocked

experiments involving mixture components, when �xed and/or random blocks are present, where

blocks represent groups of mixture blends where each group of block is assumed to di�er from the

other groups or blocks by an additive constant.

On the other hand, choice experiments and optimal design concepts have been considered,

among others, by Huber and Zwerina (1996), who investigate the usefulness of reasonable prior

values for the coe�cients in the model for designing e�cient choice designs; Sándor and Wedel

(2001), who provide more e�cient designs for stated choice experiments based on prior information

about parameter values and uncertainty associated with them; Kessels et al. (2006), who elaborate

on the G- and V-optimality criteria (which together with D- and A-criteria are used to design

optimal experiments in optimal design theory, and are brie�y discussed in subsequent sections) for

the multinomial logit model to design e�cient choice experiments, and compare their prediction

performances with those of the D- and A-optimality criteria. Further, Kessels et al. (2009) present

a much faster algorithm for generating Bayesian optimal designs for D-, A-, G- and V-optimality

criteria, while simultaneously improving the statistical e�ciency of the designs.

All papers written so far study either mixture experiments or choice experiments and not the

two techniques together. There also exist quite a few articles that involve optimal design ideas.
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However, mixture models have not been introduced in choice modeling yet and have been used

only in an industrial context. This master thesis aims at contributing to the existing literature and

combining all three techniques into one setting by considering mixture experiments, multinomial

logit models for data from choice experiments, and an optimal design idea.

As there are many di�erent concepts prevalent in optimal design theory, it is necessary to

outline the ones that will be used in this master thesis. In a mixture choice experiment, a product

or service is represented by a combination of ingredient proportions that sum up to one and make

up an alternative. A group of alternatives presented to a respondent is called a choice set. Every

row in a design matrix X constitutes an alternative for a certain product or service.

2.2 Multinomial Logit Model

To model discrete choices among di�erent alternatives, the multinomial logit (MNL) model is

commonly used. It relies on random utility theory, in which the utility of each alternative j,

j = 1, . . . , J , in choice set s, s = 1, . . . , S, perceived by respondent is a linear function of observed

alternative speci�c characteristics plus an additive error term,

Ujs = x′jsβ + εjs,

where xjs is a k × 1 vector containing the attribute levels of alternative j in choice set s, and β

is a k × 1 vector of parameter values representing the e�ects of the attribute proportions on the

utility. The alternative j in a choice set s is chosen if it gives the highest utility, and, thus, the

probability that respondent chooses alternative j in choice set s is

pjs = P{Ujs = max{U1s, . . . , UJs}} = P{x′jsβ + εjs > max
k=1,...,J,k 6=j

{x′ksβ + εks}}.

The stochastic components εjs are assumed to be mutually independent and to follow a so-

called log Weibull distribution (also known as a type I extreme value distribution). In this case,

the distribution function of each εjs is given by

F (t) = exp(− exp(−t)).

Under these assumptions, the MNL probability that respondent chooses alternative j in choice

set s becomes

pjs =
exp(x′jsβ)

J∑
t=1

exp(x′tsβ)

, (1)

where β can be estimated using maximum likelihood. Because the same parameter vector β
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is attached to every respondent, it is assumed in this model that people's preferences for the

attribute levels are homogeneous across the population (Kessels et al., 2011; Verbeek, 2008).

2.3 Mixture Models

In order to model choice as a function of mixtures of ingredients, a mixture model is required,

which has been developed in application areas other than choice modeling and applied only in the

context of linear models. It is a type of regression model in which the k explanatory variables xi

(0 ≤ xi ≤ 1) are the proportions of ingredients. The mixture constraint

k∑
i=1

xi = x1 + x2 + · · ·+ xk = 1 (2)

has a substantial impact on the models that can be �tted. The �rst major consequence of the

mixture constraint is that the linear model cannot contain an intercept. Otherwise, the model's

parameters cannot be estimated uniquely. If we embed mixtures in MNL models, modeling

becomes even more complicated than in the industrial context, as the ingredient proportions of

the mixture sum to 1. In a MNL model, it is not enough to leave an intercept out. In addition,

one of the x's should be dropped out of the random utility model as well, in order to ensure

identi�cation. It is important to stress that the algorithm for designing an optimal experimental

design (to be developed in this thesis) should be indi�erent to which one of them is selected to

be left out.

Another consequence of the mixture constraint is that all cross-products of proportions, xixj ,

and the squares x2i should not be included simultaneously as this also leads to perfect collinearity.

To see this, note that

x2i = xi(1−
k∑

j=1
j 6=i

xj) = xi −
k∑

j=1
j 6=i

xixj ,

for every proportion xi. Thus, the square of a proportion is a linear combination of that proportion

and its cross-products with all other k− 1 proportions composing the mixture. The same applies

to higher powers of ingredient proportions, too.

Often, additional constraints on the proportions of ingredients are imposed, such as, lower

and/or upper bounds on the k components,

Li ≤ xi ≤ Ui.

However, in some cases it is not di�cult to rede�ne the design problem for pseudocomponents,

which are linear transformations of the original mixture variables, and for which the constraints
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in Equation (2) and 0 ≤ xi ≤ 1 still apply (Goos and Donev, 2006). Constraints on M linear

combinations of components can also be introduced

Cm ≤
k∑

i=1

Amixi ≤ Dm,

where m = 1, . . . ,M . In this thesis, however, we do not consider this kind of constraints.

The mixture constraint given in Equation (2) and the aforementioned consequences naturally

lead to the family of Sche�é mixture models (Goos et al., 2012). The �rst-order Sche�é model for

a continuous dependent variable is given by

y =
k∑

i=1

βixi + ε, (3)

whereas the second-order Sche�é model is given by

y =

k∑
i=1

βixi +

k−1∑
i=1

k∑
j=i+1

βijxixj + ε. (4)

The so-called special-cubic model can be written as

y =

k∑
i=1

βixi +

k−1∑
i=1

k∑
j=i+1

βijxixj +

k−2∑
i=1

k−1∑
j=i+1

k∑
k=j+1

βijkxixjxk + ε. (5)

The interpretation of a model coe�cient βi in Equation (3) is the expected response if xi is

100%, i.e., if a product consists of an ingredient i only. We cannot interpret it as the e�ect of an

ingredient i, since changing the proportion xi requires at least one other proportion to be changed

as well. Otherwise, the mixture constraint in Equation (2) is violated. It is therefore di�cult to

interpret individual parameters βi.

If we expect interaction e�ects like synergism (interaction of ingredients such that the total

e�ect is greater than the sum of the individual e�ects) or antagonism (interaction of ingredients

such that the total e�ect is smaller than the sum of the individual e�ects), we should use the

second- or third-order model in Equation (4) or Equation (5). However, the numbers of terms in

the second- or third-order Sche�é mixture models increase rapidly with the number of proportions

k (Goos et al., 2012; Sche�é, 1958). As a result, estimating these models requires a larger number

of observations.
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2.4 Design Criteria

In order to design an optimal experimental design, which results in accurately estimated parameter

values, a target function is required. In optimal design theory, there exist di�erent design criteria,

namely, D-, A-, G-, and V-optimality criteria, which all are functions of the Fisher information

matrix on the parameters. The D- and A-optimality criteria have been developed to attain precise

estimation of the parameters β, while the G- and V-optimality criteria are concerned with accurate

response predictions. The A-optimality criterion aims at designs that minimize the trace of the

variance-covariance matrix. The G- and V-optimality criteria are de�ned with respect to a design

region χ consisting of all possible choice sets that can be composed from some candidate pro�les.

The G-optimal design minimizes the maximum prediction variance over the design region χ, and

the V-optimal design minimizes the average prediction variance over this region (Kessels et al.,

2009).

This master thesis focuses on the D-optimality criterion, which is the most commonly used

one in practice and performs well in terms of other criteria, too (Goos, 2002). The D-optimality

criterion seeks to maximize the determinant of the information matrix, or to minimize its inverse,

the determinant of the variance-covariance matrix of the parameter estimators.

For the MNL model, the total information matrix I is obtained as the sum of the information

matrices of the S choice sets Is, and is described as

I(X,β) =

S∑
s=1

Is(X,β) =

S∑
s=1

X′s(Ps − psp
′
s)Xs, (6)

with Xs = [x′js]j=1,...,J , ps = [p1s, . . . , pJs]
′, and Ps = diag[p1s, . . . , pJs] (Kessels et al., 2006).

From Equation (6), it can be seen that the information matrix depends on the parameter values

through the probabilities, which are unknown before the analysis. If one vector for the unknown

parameter values is taken, the resulting design from minimizing the inverse of the determinant

of the information matrix in Equation (6) is called a locally optimal1 design, as it is optimal for

only one parameter vector.

However, if we take a prior distribution π(β) of possible parameter values, the criterion ex-

pression for the design matrix X = [x′js]j=1,...,J ;s=1,...,S for estimating β in the MNL model in

Equation (1) becomes

DB =

∫
R
p

{det(I−1(X,β))}1/pπ(β)dβ, (7)

1In this thesis, there are two di�erent, but valid meanings of the term locally optimal :

� The algorithm can give locally optimal designs, because it is a heuristic optimization algorithm
� The designs are called locally optimal, because they are optimal for only one β vector
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where the exponent 1/p ensures that it is independent of the dimension p of the parameter vector

β. Minimizing this function over X for the prior distribution of parameter values, π(β), results

in the DB-optimal design (Kessels et al., 2006, 2011). The criterion is denoted by DB, and the

approach is referred to as a semi-Bayesian approach rather than a Bayesian approach, since it

does not involve the posterior distribution based on Bayes's theorem. If a degenerate distribution

(i.e., the distribution which takes a single value) for π(β) is assumed, we denote the criterion

value by D, as no Bayesian approach is applied in this case.
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3 Algorithmic Approach

In this section we present an algorithm that minimizes Equation (7) through a local search, in

order to design an e�cient experimental design for multinomial logit model that contains mixtures.

The use of more e�cient designs leads to an expectation that a lower number of respondents

will be needed to produce statistically signi�cant parameter estimates when compared to less

e�cient designs. For instance, if the D-error of one design is 50% of the D-error of another design,

it means that the design is twice as good and requires 50% fewer respondents to obtain parameter

estimates, which are just as accurate as in the less e�cient design.

Two complicating issues arise when obtaining an optimal design for mixtures. First, a starting

design, which is feasible in the sense that its proportions satisfy the mixture constraint in Equation

(2), is required. Second, an ingredient proportion value cannot be changed independently of the

other proportions in a design. If one proportion changes, then at least one other one must change,

in order to maintain the sum of the mixture ingredient proportions equal to one.

The algorithm for designing an e�cient experimental design for multinomial logit model for

mixtures is based on two steps: (1) a feasible starting design has to be generated, and (2) the

mixture coordinate-exchange algorithm is applied to improve the starting design. Steps (1) and

(2) are subsequently repeated user-speci�ed number of times. The repetition may help to avoid a

locally optimal, but poor design. There are many substeps and issues that arise throughout the

whole process. They all are described in the following subsections, where the techniques used in

each of the steps are discussed.

3.1 Generating a Starting Design

To obtain the starting design, we sample proportions uniformly from the unit simplex. Speci�cally,

a uniform sample from the set C = {(c1, c2, . . . , cK)|0 ≤ ci ≤ 1, c1 + c2 + · · · + cK = 1}, where

K is the dimension of the simplex, is required. One way to obtain such a starting design could

be by randomly generating numbers, which are uniformly distributed in the interval (0,1), for

every ingredient proportion. Then, for every alternative, the random values have to be divided

by the sum of all generated ingredient proportions for that alternative. The division is performed

to obtain proportions that sum up to one. The problem with this approach is that it generates

non-uniformly distributed points on the simplex.

An elegant way of obtaining a starting design with more evenly spread points is by generating

independent and identically distributed random samples from an exponential distribution. It is

performed as follows. First, numbers xi are sampled from (0, 1) uniformly, and values equal to

− ln(xi) are returned. This is done for k samples (i.e., for every ingredient proportion), and the
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resulting values are normalized by dividing each result by the sum of all proportions for a certain

alternative. The resulting list of numbers is a uniform sample from the simplex (Geomblog, 2012).

How much better the latter technique covers the design region than the former one, we present

in Figure 1, where two designs are plotted. The triangular graph that is used to plot designs

involving three ingredients is called a ternary plot. It has lines parallel to the three sides of an

equilateral triangle (see Figure 1 again). The vertices of the simplex (or triangle) represent the

single-component mixtures and are denoted by xi = 1, xj = 0 for i, j = 1, 2, and 3, i 6= j. The

interior points of the triangle represent mixtures in which none of the three components is absent,

that is, x1 > 0, x2 > 0, and x3 > 0. The centroid of the triangle corresponds to the mixture with

equal proportions (13 ,
1
3 ,

1
3) from each of the components (Cornell, 2002).

(a) Samples, drawn pseudo-randomly
from the standard uniform distribution
on the interval (0, 1) and normalized af-
terwards

(b) Samples, generated pseudo-
randomly from an exponential
distribution and normalized afterwards

Figure 1: Starting designs obtained by two di�erent sampling techniques

In Figure 1, two starting designs for a design problem consisting of 3 ingredients, 64 alternatives

and 4 choices in a choice set are generated using two di�erent methods discussed above. It can

clearly be seen that the second approach generates points which are much more evenly spread on

the simplex.

3.2 Improving the Starting Design

To improve the starting design, a mixture coordinate-exchange algorithm is used. The algorithm

starts with the �rst ingredient proportion of the initial design and optimizes it using the method

of Brent (1973), which is a one-dimensional optimization algorithm, based on a combination of

golden section search and successive parabolic interpolation. The proportion is optimized in such

a way, that the pairwise ratios of the remaining ingredient proportions remain �xed and the

DB-criterion value is minimized. Next, another proportion is optimized.
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If we denote a reference mixture by s = (s1, s2, . . . , sk), the proportions of a point x =

(x1, x2, . . . , xk) for a ∆i change in the ith ingredient are

xi = si + ∆i,

and

xj = sj −
∆isj
1− si

for all j = 1, 2, . . . , i− 1, i+ 1, . . . , k.

Changing proportions in such a way, which is known as exchanges along Cox e�ect directions (Cor-

nell, 2002; Piepel, 1982), helps to overcome the issue that proportions in a mixture model cannot

be changed independently. This makes the method di�erent from the Meyer and Nachtsheim

(1995) coordinate-exchange algorithm. If the minimal value of the objective function is smaller

than the current minimum, then the current minimum is replaced and the alternative's current

proportions for the ingredients are replaced by the new proportions, corresponding to the new

optimum. The process proceeds till all ingredients in all rows of the starting design matrix have

been considered for optimization. If any improvements are made, the entire process is repeated,

starting with the �rst ingredient proportion for the �rst alternative in the new current design.

The algorithm stops when no improvements have been performed in a complete pass through all

the ingredients in every row of a design matrix X.

In order to avoid ending up at a local minimum, it is advisable to repeat the entire mixture

coordinate-exchange algorithm using many random starting designs. Although this does not

guarantee convergence to a global optimum, it reduces the chance of �nding a locally optimal

design (Piepel et al., 2005).

3.3 The Prior Distribution

The complicating issue in the search of an optimal design is the fact that probabilistic choice

models are nonlinear in the parameters, i.e., the information matrix in Equation (6) depends on

the unknown parameters through the probabilities. As a consequence, researchers have to assume

values for the parameters before deriving the experimental design. When a single vector is taken

for the parameter values, the resulting design is locally optimal. A special case of a locally optimal

design is the design for which zero parameter values are assumed. This transforms the nonlinear

design problem for the MNL model, described in Equation (1), into a linear one. This assumption

causes the probabilities pjs of all J alternatives in a choice set s to be equal to 1/J , which re�ects

a situation where respondents have no preference for any of the alternatives in a choice set. Such

designs are called utility neutral optimal designs. Utility neutral designs are used as a benchmark

in this thesis. They are discussed in detail in Section 4.
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An alternative to opting for locally optimal designs is to rely on Bayesian techniques, where a

prior distribution for the parameters is assumed. Recently it has become popular to rely on the

semi-Bayesian approach that was introduced in the marketing literature by Sándor and Wedel

(2001), and has been widely used for discrete choice experiments (Bliemer et al., 2009; Kessels

et al., 2006, 2009, 2011, among others). It is a more robust strategy as it averages a design

criterion over a prior distribution of likely parameter values, π(β). As Sándor and Wedel (2001)

showed, even if priors are misspeci�ed (or not well speci�ed), more e�cient experimental designs

are obtained, since the prior uncertainty is taken into account. A semi-Bayesian DB-optimal

design minimizes Equation (7) for the assumed prior parameter distribution.

However, in order to choose a good π(β), identi�cation of parameters has to be considered.

When mixtures are embedded in MNL models, all proportions of di�erent ingredients sum up to

one. As a result, due to the identi�cation issue, parameters for ingredient proportions cannot be

estimated independently, but only with respect to a base parameter.

Let us consider a numerical example for a problem with three ingredients. In such a case,

prior parameter values for the ingredient proportions, τi, i = 1, 2, 3, are generated with respect to

the last parameter, τ3, and we have

β =

 β1

β2

 =

 τ1 − τ3
τ2 − τ3

 , β ∼ π(β), (8)

where π(β) is a prior distribution over which the DB-criterion value in Equation (7) is integrated.

It is easier to start by specifying a prior distribution for all the parameters, τi, i = 1, 2, 3,

though. Usually it is chosen to be a multivariate normal distribution. There are di�erent ways

to get mean and variance-covariance matrix for the prior distribution of parameter values τi,

i = 1, 2, 3, in Equation (8). Huber and Zwerina (1996) argue that a set of reasonable and useful

priors might be obtained through a small pilot test that provides coe�cients in need. An educated

guess of experienced managers may also be an option. Any other way can be used to obtain prior

mean values for the parameters and associated uncertainty with them, too. If a prior distribution

is assumed to be a multivariate normal distribution with mean τ 0 = (τ01, τ02, τ03)
′, and variance-

covariance matrix a diagonal matrix with ones on the diagonal, we have


τ1

τ2

τ3

 ∼ N


τ01

τ02

τ03

,


1 0 0

0 1 0

0 0 1


 = N (τ |τ 0,Σ

′
0) = π(τ ),
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which, according to the reasoning above, boils down to τ1 − τ3
τ2 − τ3

 ∼ N
 τ01 − τ03

τ02 − τ03
,

 2 1

1 2

 ,

and, eventually, we get

β =

 β1

β2

 =

 τ1 − τ3
τ2 − τ3

 ∼ N
 τ01 − τ03

τ02 − τ03
,

 2 1

1 2

 = N (β|β0,Σ0) = π(β).

In such a way the values for the parameters are generated not independently but with respect to

one of the parameters, namely, the last one, τ3, and identi�cation of the parameters is assured.

In the subsequent parts of the thesis, the initial distribution for the parameter values (i.e., the

one which can be obtained, say, by interviewing managers) is denoted by π(τ ) = N (τ |τ 0,Σ
′
0),

while the one, which it boils down to, is denoted by π(β) = N (β|β0,Σ0).

3.4 A Multi-Dimensional Integral for Design Selection

The integral that serves as the design selection criterion is often high dimensional and has to be

evaluated many times during the search for an optimal design. If the prior parameter distribution

is taken to be a multivariate one with mean β0 and variance-covariance matrixΣ0, the expectation

of a design selection criterion represented in Equation (7) becomes

DB =

∫
R
p

{det(I−1(X,β))}1/pπ(β)dβ

=

∫
R
p

{det(I−1(X,β))}1/p(2π)−
p
2 |Σ0|−

1
2 e−

1
2
(β−β0)

′Σ−1
0 (β−β0)dβ, (9)

where p represents the number of parameters.

Computation of the integral in Equation (9) is complex, since it cannot be evaluated analyt-

ically. Hence, it has to be approximated numerically: draws for β are taken from a multivariate

normal prior distribution and the values of the integrand in DB are averaged over all draws. In

order to sample from a multivariate normal distribution, we transform univariate standard normal

draws into the multivariate normal ones. This transformation is done by using Cholesky decom-

position of the prior distribution's covariance matrix: Σ0 = DD′. It leads to β = β0 +Dν, where

the vector ν has elements drawn from independent standard normal distributions. We have

(β − β0)
′Σ−10 (β − β0) = ν ′D′(D′)−1D−1Dν = ν ′ν =

p∑
j=1

ν2j ,
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where νj is the jth element of ν, and

dβ = |D|dν = |Σ0|
1
2dν.

Equation (9) can then be written as

DB =

∫ ∞
−∞

. . .

∫ ∞
−∞
{det(I−1(X,β0 +Dν))}1/p(2π)−

p
2

p∏
j=1

e−
ν2j
2 dν1 . . . dνp

=

∫ ∞
−∞

. . .

∫ ∞
−∞
{det(I−1(X,β0 +Dν))}1/p

p∏
j=1

φ(νj)dν1 . . . dνp, (10)

where φ(νj) = (2π)−
1
2 e−

ν2j
2 is the density function corresponding to a univariate standard normal

distribution.

To approximate the integral in Equation (10), R draws are taken from φ(νj) for each of the p

parameters. The rth draw for the jth parameter, νrj , is computed as νrj = Φ−1(urj), where Φ(·)

is the standard normal cumulative distribution function and urj , r = 1, 2, . . . , R, is a set of points

sampled from a uniform distribution on the interval (0, 1). The integral in Equation (10) is then

approximated by

DB =
1

R

R∑
r=1

{det(I−1(X,β0 +DΦ−1(ur))}1/p =
1

R

R∑
r=1

{det(I−1(X,β0 +Dνr)}1/p,

where νr = Φ−1(ur) = [Φ−1(ur1), . . . ,Φ
−1(urp)]

′ (Yu et al., 2010). From this expression, one

can clearly see that, as the number of draws R increases, the computation time required to

evaluate the DB-criterion value also increases. This increase is linear with respect to the number

of samples as the function has to be evaluated for each of the R draws. To make the algorithm

computationally less intensive, the draws (ur)Rr=1 are obtained using Halton sequences, described

in the next section.

As Cholesky decomposition is as twice as fast in calculating a determinant of a symmetric,

positive de�nite matrix, it is chosen to use it when calculating the determinant in Equation (7).

If A has real entries and is symmetric and positive de�nite, then it can be decomposed as

A = LLT ,

where L is a lower triangular matrix with strictly positive diagonal entries, and LT denotes the

transpose of L. The determinant in Equation (7) is equal then to the square of the product of the

diagonal elements of the Cholesky factor L (Weisstein, 2012).



3 ALGORITHMIC APPROACH 15

3.5 Systematic Sampling Using Halton Sequences

In the semi-Bayesian approach, numerous draws are required from the prior parameter distribution

for constructing e�cient stated choice designs. The semi-Bayesian DB-criterion value is calculated

as the average of all the DB-error values over the draws. The most common way to take the draws

is the Pseudo-Monte Carlo sampling. However, this is a very non-systematic approach as the

draws are sampled independently of each other which might make the samples to be unevenly

scattered. As a result, this method leads to a large variability in the results, especially when the

number of random draws is small, as di�erent sets of them are likely to produce di�erent coverage

of the distribution space (Bliemer et al., 2009). To reduce this lack of stability, researchers often

use a large number of samples. However, even though this method is easy to implement, the

computation time for the expected DB-error increases linearly with the required number of draws

for evaluating the multi-dimensional integral (Yu et al., 2010).

To make the sampling more systematic, it is performed using deterministic numbers called

Quasi-Monte Carlo (QMC) samples rather than computer-generated pseudo-random numbers.

Examples of such approaches are (1) Halton sequences, (2) Faure sequences, (3) modi�ed Latin

hypercube sampling, (4) extensible shifted lattice points, (5) a Gauss-Hermite quadrature ap-

proach, and (6) a method using spherical-radial transformations. In this master thesis, Halton

sequences are chosen. QMC samples are more evenly scattered throughout the integration domain

which helps to improve the accuracy of the integral approximation (Yu et al., 2010). The main

advantage of opting for a systematic sampling scheme, such as Halton sequences, is that many

fewer draws, and, hence, much smaller computing times, are required to compute the integral.

Halton sequences (Halton, 1960) are constructed according to a deterministic method which is

based on prime numbers and where a di�erent prime number (base) is utilized for every dimension.

In each dimension, the nth element in the Halton sequence based on a prime number b is generated

by expanding n in terms of the base b, according to the formula

n =

m∑
s=0

isb
s = i0b

0 + i1b
1 + i2b

2 + · · ·+ imb
m,

where is ∈ {0, . . . , b − 1} (s = 0, 1, . . . ,m) and so choice of is depends on n, and m is chosen so

that bm ≤ n < bm+1. The nth element of the one-dimensional Halton sequence based on prime b

is then obtained as

φb(n) =
m∑
s=0

isb
−(s+1) = i0b

−1 + i1b
−2 + · · ·+ imb

−(m+1). (11)

Equation (11) gives a Halton sequence which is uniformly distributed in (0, 1). A p-dimensional
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Halton sequence is constructed by combining p one-dimensional sequences based on p consecutive

primes b1, b2, . . . bp. The nth p-dimensional Halton draw, xn, is

xn =
(
φb1(n), φb2(n), . . . , φbp(n)

)
, n = 1, 2, . . . .

As an example, consider the sequence of R = 7 points being computed by taking base 2. For

n = 4, m is determined to be equal to 2, as 22 ≤ 4 < 22+1. We then can express the integer

n = 4 as 0 × 20 + 0 × 21 + 1 × 22. The fourth element of the sequence is, hence, equal to

φ2(4) = 1× 2−3 = 1/8. The �rst element of the sequence is obtained by φ2(1) = 1× 2−1 = 1/2,

while the remaining ones are equal to φ2(2) = 0× 2−1 + 1× 2−2 = 1/4, φ2(3) = 3/4, φ2(5) = 5/8,

φ2(6) = 3/8 and φ2(7) = 7/8, respectively (Yu et al., 2010). It is clear that the points are

generated in a very systematic way and cover the (0, 1) interval evenly.
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4 Benchmark Approach

In this section, designs that are taken as benchmark designs in this master thesis are discussed.

The approach that we develop in this thesis can be complex, as the choice model is non-linear

in parameters. This makes it necessary to assume prior parameter values and uncertainty about

them, which is not simple. In order to avoid such di�culties encountered by non-linear choice

models, the assumption that β = 0 could be used, which makes the design problem linear and

simpli�es it. In such cases, standard software for generating optimal designs can be used to

construct a design.

The most similar designs among them to the problems analyzed here are known as mixture

experiments in blocks. Block designs for mixture experiments are groups of mixture blends where

each group or block is assumed to di�er from the other groups or blocks by an additive constant,

which captures variation across "trials". Examples of blocks in an industrial environment are

di�erent vendors supplying the raw material, or di�erent shifts of plant personnel running the

experiments, or separate technicians and/or laboratories performing the experiments (Cornell,

2002). In our choice setting, the blocks can be seen as choice sets.

In a general setting with �xed blocking variables and a linear regression model, the statistical

model corresponding to a blocked mixture experiment can be written as

y = Xβ + Zγ + ε, (12)

where X is the (J × S) × p design matrix corresponding to the components of the mixture, and

Z is the design matrix corresponding to the indicator variables for the �xed blocks. The vectors

β, γ, and ε represent the mixture variable coe�cients, the �xed block e�ects, and the random

errors, respectively (Goos and Donev, 2007).

Kessels et al. (2011) explain that blocked designs for the linear model are essentially the same

as utility neutral choice designs, and that optimizing these designs gives exactly the same result.

Thus, under one scenario, namely, when β = 0, optimal designs for blocked experiments and

utility neutral choice experiments are equal. This gives us a possibility to compare two solutions

and check to what extent our algorithm is able to replicate the results obtained by standard

techniques.

Consider the utility neutral design problem for 3 ingredients, 18 alternatives and one choice set

(so no blocks are present) for a special-cubic model (i.e., when all cross terms are included in the

model). The D-optimal design for a linear model is constructed by JMP®2 software and depicted

in Figure 2. It is in accordance with the well known fact that, if there is one block or choice set,

2www.jmp.com
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D-optimal J × S-alternative designs, where J is the number of choice sets in the design, and S

is the number of choices in a choice set, for models that can be described by Sche�é canonical

polynomial models have a minimum support, i.e., they are designs which have observations at as

many distinct combinations of the experimental variables as there are parameters in the statistical

model to be estimated. The points are replicated int(J ×S)/p or int(J ×S)/p + 1 times, where p

is the number of columns in the design matrix X. For the �rst-order Sche�é model, the D-optimal

points are the k vertices of the simplex. For the second-order model, the k+k(k−1)/2 D-optimal

points are the vertices and the edge midpoints (Goos and Donev, 2006). In case of the special-

cubic model with three ingredients, the middle point of the simplex is added to the optimal ones.

By having a symmetric design with observations at the corners of the design region and at or

close to the midpoints of the edges, D-optimal designs cover the entire experimental region well.

Figure 2: Utility neutral optimal design for a special-cubic model with 3 ingredients, 18 alterna-
tives and one choice set

The same results should be obtained when using the algorithm developed in this master thesis.

To test this, we consider the utility neutral design as before with 3 ingredients, 18 alternatives

and one choice set. All three possible scenarios are investigated, namely, when only main e�ects

are taken into account, and when two- and three-ingredient interactions are included into the

model. The design is optimized for 10,000 random starts. We present the designs obtained for

every case mentioned before in Figures 3a, 3b, and 3b, respectively. Unfortunately, the algorithm

is not accurate enough to arrive at single points on edges and in the middle of the simplex for

10,000 random starts. It is also not fast enough to be tried with highly greater numbers of them.

However, convergence to the optimal points can be seen when increasing the number of random

starts. The exact points of the designs in Figure 3 are given in Tables 15, 16, and 17 in the

Appendix.

To get an insight about the speed of the algorithm, it took around 39 minutes to optimize

the design for 3 ingredients, 18 alternatives and one choice set with two- and three-ingredient
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(a) Main e�ects only (b) Main e�ects and two-ingredient in-
teractions

(c) Main e�ects, two- and three-
ingredient interactions

Figure 3: Utility neutral optimal designs for 10,000 random starts for a model with 3 ingredients,
18 alternatives and one choice set when the number of ingredient cross terms included in the
model di�ers

interactions for 10,000 random starts, when utility neutral design was assumed. All computations

were performed in MATLAB 7.12.0 using an ASUS laptop with 2.20 GHz Intel Core i7 processor

and 4 GB RAM.

However, when we consider blocks (or choice sets) in the design, it is possible that using

vertices, midpoints and centroids is no longer optimal. There are no theoretical results that say

what blocked designs should look like, and the same goes for the utility neutral designs.

When we assume experimental designs with blocks (or choice sets), it is interesting to inves-

tigate the division into choice sets. Both JMP and our algorithm provide this. Consider the next

example, which divides the optimal design points into choice sets. The design we consider is the

utility neutral design for 3 ingredients, 12 alternatives and 4 choices in a choice set (hence, �xed

blocks of size 4 are assumed), when two-ingredient and three-ingredient interaction terms are also

included in the model. Figures 4b - 4d give the three choice sets of the optimal design, optimized

using the approach of this thesis, while Figure 4a plots all the optimal points in one �gure. By

analyzing these plots we are able to see which mixtures in an optimal experiment are grouped

together into choice sets. The points of the design can be seen in Table 13 in the Appendix.

The algorithm presented in this thesis is able to replicate results of a standard software (namely,

JMP), as it can be seen from the examples above. However, it can be used only for linear mixture

(and the utility neutral choice) models, and when it is not the case, such techniques cannot be

applied any more. Then, the algorithm presented in this thesis has to be employed.
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(a) All choice sets (b) First choice set

(c) Second choice set (d) Third choice set

Figure 4: Utility neutral optimal design for 3 ingredients, 12 alternatives and 4 choices in a choice
set, when division into choice sets is ignored and also when alternatives are divided into three
choice sets, when the utility neutral design is assumed
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5 Results

In this section, we consider a number of di�erent settings for experimental designs and discuss the

results. First, we present some basic features for the designs analyzed. Then, we show that D-

optimal designs when prior parameter values are not assumed to be zero di�er substantially from

the utility neutral designs. Further, we show that semi-Bayesian designs di�er from and perform

better than locally optimal ones (and the utility neutral designs) for most of the time. Since it is

often di�cult to obtain reasonable prior values for the parameters, their misspeci�cation is also

investigated.

Sections 5.1-5.3 consider locally optimal experimental designs, while Section 5.4 and Section

5.5 compare semi-Bayesian designs to the locally optimal ones.

5.1 Basic Features

In this section, we investigate how the D-value is a�ected by di�erent characteristics of the ex-

periment for utility neutral optimal experimental designs. For this reason, we vary some of them

while generating optimal experiments. First, the total number of alternatives has been increased

from 12 to 24 for four di�erent design problems. The results can be seen in Table 1. The last

four columns in the table represent the four di�erent designs. The �rst column gives the number

of alternatives. The notations for the column names should be read as follows, 2/2/2 int. means

that the design is optimized for 2 ingredients, 2 choices in a choice set when two-ingredient in-

teractions are included. The designs are optimized for 100 random starts assuming the utility

neutral model. It is clear that when the number of alternatives increases, the D-value decreases,

meaning that we are able to generate more e�cient optimal designs, which is rather intuitive, as

we obtain more information by adding extra observations. The pattern stays the same for many

other design variations. The dashes for the design with 3 ingredients, 3 choices in a choice set

and main e�ects only (column 3) mean that such designs cannot be generated, as the number of

choices in a choice set does not divide the corresponding numbers of alternatives evenly.

Number of alternatives 2/2/2 int. 2/4/2 int. 3/3/1 int. 3/4/2 int.

12 2.7267 3.8474 1.1907 10.5596
16 2.2466 3.1765 - 8.4183
20 1.9240 2.7357 - 6.9376
24 1.7099 2.4239 0.7501 5.9467

Table 1: D-criterion value for di�erent number of alternatives in the utility neutral design, 100
random starts

A similar intuitive pattern should be present when the number of random starts is increased.



5 RESULTS 22

The designs from Table 1 are taken and optimized for 1,000 random starts instead of 100. Table

2 shows the resulting D-values. The reasoning holds true, the D-values for 1,000 random starts

are lower than the ones when 100 random starts are considered. The exception is the design with

3 ingredients, 3 choices in a choice set and main e�ects only; the D-values for it are equal for

both cases. But they are never larger than the ones for 100 random starts. Besides, the pattern

discussed previously is also the case here, the D-values decrease with the number of alternatives

in the design.

Number of alternatives 2/2/2 int. 2/4/2 int. 3/3/1 int. 3/4/2 int.

12 2.7263 3.8474 1.1907 10.5481
16 2.2445 3.1633 - 8.3939
20 1.9235 2.7216 - 6.9182
24 1.7038 2.4211 0.7501 5.9003

Table 2: D-criterion value for di�erent number of alternatives in the utility neutral design, 1,000
random starts

By comparing D-criterion values in Tables 1 and 2, we can notice that they tend to converge

and the di�erence in them is pretty small when we move from 100 random starts to 1,000. Thus,

it might be interesting to explore the change in D-values when the number of random starts is

increased. Figure 5 provides such information, where we have the logarithm of the number of

random starts on the horizontal axis and the D-value on the vertical axis. This investigation

is performed for experimental problem consisting of 3 ingredients, 24 alternatives and 4 choices

in a choice set, when two- and three-ingredient interactions are included in the model and the

utility neutral design is assumed. From Figure 5 it is clear that the largest decrease in D-criterion

appears at the beginning, when we move from one random start to a little bit higher numbers of

them. However, this decrease is not that salient when we have a larger number of random starts

and D-values tend to converge. The exact D-values obtained are provided in Table 3.

# of random starts D-value # of random starts D-value

1 6.0146 20 5.9437
2 5.9906 50 5.9302
3 5.9840 100 5.9173
4 5.9565 1,000 5.9003
5 5.9551 10,000 5.8930
10 5.9544 100,000 5.8864
15 5.9466

Table 3: D-criterion value for a di�erent number of random starts

If the number of alternatives is held constant at 24 alternatives and only the choice set size is
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Figure 5: D-criterion values for a di�erent number of random starts

D-value D-value

2/2/2 int. 1.7071 3/2/3 int. 11.4188
2/3/2 int. 1.8906 3/3/3 int. 12.5391
2/4/2 int. 2.4243 3/4/3 int. 14.6056
2/6/2 int. 3.2001 3/6/3 int. 19.1001
2/8/2 int. 3.8433 3/8/3 int. 23.7783
2/12/2 int. 5.0412 3/12/3 int. 35.4455

Table 4: D-criterion value for di�erent sizes of a choice set, 24 alternatives, 100 random starts,
when the utility neutral design is assumed

varied (2, 3, 4, 6, 8 or 12 choices in a set), the D-value increases. An example of this is given in

Table 4, where 12 designs are considered. Their names are coded in the same manner as before,

and they are optimized for 100 random starts assuming the utility neutral design. More e�cient

designs are obtained for smaller choice sets. For the extreme case, where only one choice set with

24 choices in it is assumed, the D-values are very high, 8.2655 for the two-ingredient problem and

63.9157 for the three-ingredient problem.

The result obtained means that we have more information in smaller sets, which can be

explained by the following example. Assume that we have three alternatives, A, B, and C, and

two di�erent choice designs. The �rst one consists of two choice sets of size two (A and B, B and

C), and the second one of only one choice set, which is larger and contains all three alternatives
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(A, B, C). Let us say that we get the following information after the experiment, there have been

A and B chosen from the two choice sets, respectively, under the �rst design, and A, under the

second one. The results imply that A is preferred over B, and B is preferred over C for the �rst

design, while A is preferred over both B and C for the second one. We have no information

what relationship exists between B and C under the second scenario. Meanwhile, under the �rst

scenario, from A � B and B � C, we get A � C. Thus, there is more information under the

�rst experimental design, where we have smaller choice sets, what could explain why the designs

obtained for smaller choice sets are more e�cient.

5.2 Comparison With Utility Neutral Designs

The algorithm presented in this master thesis can generate optimal experiments not only for utility

neutral designs but also for locally optimal designs, i.e., the designs, where parameter values τ

are not assumed to be zero. As it is always complicating to �nd accurate prior parameter values,

it is important to investigate how the utility neutral designs di�er from the locally optimal ones.

This is done in this section.

The way in which the utility neutral design di�ers in look from locally optimal designs can

be seen by comparing Figure 6c (the utility neutral design) and Figure 7 (Figures 6a and 6b give

designs for smaller numbers of random starts for the same design as in Figure 6c). Designs in

Figures 6c and 7 are generated using 100,000 random starts for 3 ingredients, 20 alternatives,

and 2 choices in a choice set. Two-ingredient and three-ingredient interactions are included in the

model. The design in Figure 6c is obtained by assuming a linear model, while the ones in Figures

7a, 7b, and 7c are locally optimal ones obtained by replacing one, two and all elements in the

parameter vector τ by 1.4, respectively. The exact optimal points can be inspected in Tables 18,

19, and 20 in the Appendix. In Figures 8 and 9 the designs obtained by a more "drastic" move

of the parameter vector τ are displayed, i.e., instead of 1.4 in the aforementioned example, the

values of 5 and 10 are used, respectively. The exact optimal points for the three designs under

two di�erent situations can be inspected in Tables 21, 22, and 23 for the value of 5, and in Tables

24, 25, and 26 for the value of 10 in the Appendix.

The further parameter vectors from zero, the more distinct in look the resulting designs are.

The observed pattern is that with τ getting further from 0 design points become more scattered

and, thus, more "important", what is logical, as by assigning higher values to the parameters

representing di�erent alternatives, we are not imposing equal preferences over the alternatives

any more. This higher scatter is observed both on the edges and in the middle of the design

simplex. Designs get less and less symmetric. Also, more points move towards the center of the

experimental region. By subsequently inspecting Figures 6c, 7a, 8a, and 9a, which are obtained
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(a) 100 random starts (b) 10,000 random starts (c) 100,000 random starts

Figure 6: Utility neutral designs for a di�erent number of random starts, for the design problem
with 3 ingredients, 20 alternatives, and 2 choices in a choice set

(a) τ = (1.4, 0, 0, 0, 0, 0, 0) (b) τ = (1.4, 1.4, 0, 0, 0, 0, 0) (c) τ = (1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4)

Figure 7: Designs for 100,000 random starts when τ is being moved away from 0, for the design
problem with 3 ingredients, 20 alternatives, and 2 choices in a choice set

by moving the �rst element in τ further and further from 0, it is clearly seen that optimal points

move to the right on the simplex. It seems rather intuitive, as by increasing the value for the

�rst element in parameter vector τ we let the �rst ingredient dominate. As a result, the optimal

design found proposes those mixtures, where the proportion for the �rst ingredient is lower (i.e.,

the right part of the experimental region), so we can learn more from such experiments. Moreover,

for the designs with parameter vectors which are furthest away from the zero vector (i.e., when

τ = (5, 5, 5, 5, 5, 5, 5) and τ = (10, 10, 10, 10, 10, 10, 10)), one corner point is not part of the

optimal design any more.

For an even more extreme case, when zero elements in τ are exchanged by 30, the designs are

given in Figure 10. In this instance, the corner point representing (1, 0, 0) is not optimal any

longer for the design with τ = (30, 0, 0, 0, 0, 0, 0), and all the optimal points move to the right,
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(a) τ = (5, 0, 0, 0, 0, 0, 0) (b) τ = (5, 5, 0, 0, 0, 0, 0) (c) τ = (5, 5, 5, 5, 5, 5, 5)

Figure 8: Designs for 100,000 random starts when τ is being moved away from 0 more drastically,
for the design problem with 3 ingredients, 20 alternatives, and 2 choices in a choice set

(a) τ = (10, 0, 0, 0, 0, 0, 0) (b) τ = (10, 10, 0, 0, 0, 0, 0) (c) τ = (10, 10, 10, 10, 10, 10, 10)

Figure 9: Designs for 100,000 random starts when τ is being moved away from 0 more drastically,
for the design problem with 3 ingredients, 20 alternatives, and 2 choices in a choice set

giving even lower proportion values to the �rst ingredient, what follows from the reasoning above.

When the second proportion is also allowed to dominate together with the �rst one by choosing

τ = (30, 30, 0, 0, 0, 0, 0) vector for parameter values, the corner point (0, 0, 1) is also not among

the optimal ones any more. The exact design points for the three cases are given in Tables 27,

28, and 29 in the Appendix.

The reasoning that when a certain ingredient is dominating, the according proportion is lower

for it in the optimal design is only partially supported, when actual numbers are considered. Table

5 gives certain characteristics of the distribution of the proportions when di�erent parameter

values are assumed. The �rst column gives measures of characteristics when the parameter vector

consists of zeros only, except for the �rst parameter, the value for which varies from 1.4 to 30,

while in the second column the �rst two elements of the vector are varied from 1.4 to 30. For every
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(a) τ = (30, 0, 0, 0, 0, 0, 0) (b) τ = (30, 30, 0, 0, 0, 0, 0) (c) τ = (30, 30, 30, 30, 30, 30, 30)

Figure 10: Designs for 100,000 random starts when τ is being moved away from 0more drastically,
for the design problem with 3 ingredients, 20 alternatives, and 2 choices in a choice set

parameter value that is di�erent from zero (i.e., 1.4, 5, 10, 30), three di�erent characteristics are

provided, namely, the mean of an ingredient proportion in the optimal design, and the percentage

of proportions that are lower than 0.5 and 0.4. Only the �rst ingredient is considered for the

parameter vector when only one element in it is di�erent from zero, and all three ingredients in

the second case.

(τ, 0, 0, 0, 0, 0, 0) (τ, τ, 0, 0, 0, 0, 0)
τ x1 x1 x2 x3

1.4
mean 0.3276 0.3169 0.3661 0.3169
< 0.5 75% 80% 70% 70%
< 0.4 55% 60% 55% 55%

5
mean 0.3255 0.3190 0.3618 0.3191
< 0.5 80% 75% 75% 70%
< 0.4 60% 60% 55% 60%

10
mean 0.2389 0.3458 0.3384 0.3158
< 0.5 90% 70% 75% 70%
< 0.4 85% 65% 60% 65%

30
mean 0.2958 0.3352 0.3280 0.3368
< 0.5 80% 70% 65% 80%
< 0.4 60% 70% 65% 65%

Table 5: Characteristics of distributions of ingredient proportions in optimal designs for di�erent
parameter values

From Table 5 we can see that for the parameter vector (τ, 0, 0, 0, 0, 0, 0), where τ is varied

from 1.4 to 30, the mean value of the �rst ingredient tends to decrease, and the proportions of

ingredient values below both 0.4 and 0.5 tend to increase. However, it is not always so when
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(τ, τ, 0, 0, 0, 0, 0), where τ varies from 1.4 to 30, is considered. To get insight about the �rst two

ingredients, it is easier to investigate the third one, since if proportions for the �rst two decrease,

the proportion for the third one should increase. The mean proportion for the third ingredient

increases when we move from τ = 1.4 to τ = 5 and to τ = 30. The percentage of proportions of

the �rst two ingredients smaller than 0.4 or 0.5 does not always increase with every increase in τ

considered.

The same characteristics for the utility neutral optimal design are given in Table 6. By

comparing Tables 5 and 6, we can see that when we move the �rst coordinate further from zero,

the average value and the number of observations smaller than 0.4 and 0.5 for it decrease. The

�rst coordinate in such a case gets lower and lower values. But it is not always so when we change

the �rst two coordinates. However, we can explain this by some choice sets that "investigate"

a trade-o� between the �rst two ingredients in the experiment. Nevertheless, even though the

reasoning outlined above does not hold perfectly when all points in optimal designs are taken into

account, this pattern is observed in the graphs provided earlier in this section.

(0, 0, 0, 0, 0, 0, 0)
x1 x2 x3

mean 0.3521 0.3199 0.3279
<0.5 60% 75% 65%
<0.4 55% 60% 55%

Table 6: Characteristics of distributions of ingredient proportions in the utility neutral optimal
design

It can also be interesting to strengthen the reasoning above by investigating how the optimal

points are allocated when one of the interaction terms dominates in the choice problem. Let us

compare locally optimal designs under two situations, namely, when τ = (0, 0, 0, 0, 0, 0, 0) and

τ = (0, 0, 0, 10, 0, 0, 0) for the design problem consisting of 3 ingredients, 20 alternatives and 2

choices in a choice set. In the latter situation we make the interaction of the �rst two ingredients

dominate. The optimal designs are plotted in Figure 11, from where it can be seen that optimal

points move slightly down and to the right in the second graph, meaning that lower values for

the �rst and second proportions are optimal now. To get more insight into this, values of all the

proportions can be seen in Tables 30 and 31 in the Appendix. If we calculate the mean proportions

for both ingredients for the �rst design problem and for the second one, we get 0.3455, 0.3323 and

0.3020, 0.3428, respectively. Thus, on average, the �rst proportion decreases by approximately

13%, while the second one slightly increases by 3%.

Assuming utility neutral designs might seem attractive, as it helps to reduce computation time
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(a) τ = (0, 0, 0, 0, 0, 0, 0) (b) τ = (0, 0, 0, 10, 0, 0, 0)

Figure 11: Designs for 100,000 random starts for di�erent τ s for the design problem with 3
ingredients, 20 alternatives, and 2 choices in a choice set

and avoids the necessity to choose a prior distribution for the parameters. However, it must be

kept in mind that the situation described by them is rather unrealistic, as it is hard to believe

that respondents have equal preferences over alternatives. It is widely known that, for instance,

consumers prefer low prices to high ones, certain brands are consistently desired over others, and

that other features of a product are equally liked by consumers (Huber and Zwerina, 1996). In

the context of this thesis, not all ingredients might be equally important to the respondents.

Moreover, after investigating utility neutral designs and designs when consumers are assumed

not to be indi�erent between alternatives in a choice set, it is obvious that di�erences between

them exist. The pattern observed in general is the further the prior mean from zero, the larger

the di�erences in look and performance of the design. Thus, preferences that consumers have for

ingredients of goods and services should clearly be accounted for in the model when designing

optimal experiments, and it should not be assumed that utility neutral designs do not di�er from

non-linear ones and, thus, capture patterns in an equally good way.

5.3 Investigating Parameter Misspeci�cation

It is of importance to obtain reasonable prior parameter values required for the optimization, what

is not always easy to do. The claim made by Huber and Zwerina (1996) that it is better to be

wrong about priors than forget them altogether might seem rather extreme. Strong misspeci�ca-

tions are, of course, not what they mean, and authors have in mind monotonous misspeci�cations.

In this section, the loss in e�ciency, when assuming di�erent values for parameters and "misspec-

ifying" them in two di�erent ways is investigated. Designs considered are locally optimal ones.

Monotonous misspeci�cations that we analyze are misspeci�cation in scale and misspeci�cation

in skewness, which are obtained by multiplying parameter values by certain constants. Both of
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them are introduced below.

The same four experimental problems as analyzed in Section 5.2 are used; and again they

are optimized for 100 random starts. They all are given in successive rows in Tables 7 and 8. A

choice design that is characterized by, say, two ingredients, three choices in a choice set and 24

alternatives is denoted by 2/3/24 in the tables. Then, misspeci�cation in parameters is analyzed.

First, true parameter values are assumed and locally the best (i.e., assuming no uncertainty)

design for every experimental problem using them is computed. For the experiment with two

ingredients and an interaction term, the true parameter vector is the vector τ = (−0.8, 1.2, 0.7),

and for the experimental designs with three ingredients and all interaction terms, it is taken

to be τ = (0.7,−1.2, 1.1, 0.2, 0.8, 0.45, 1). The loss in e�ciency from misspeci�cations that are

described later in this section is judged with respect to the D-value of the best design with the

true parameter vector τ . The best design for the misspeci�ed parameter values is constructed

and its performance evaluated under the true parameters. In such a way obtained D-values are

provided in the tables for every misspeci�cation type for every design analyzed.

For the misspeci�cation in scale, three cases are assumed: the utility neutral design, and

designs, where true parameter values are multiplied by 0.75 and 1.25, respectively. The results for

all these instances are shown in the last three columns in Table 7. The two last columns in Table

8 give the utility neutral design and misspeci�cation in skewness, where the true parameter values

are halved, if they are less than zero, or doubled, if they are greater than zero. All the cells in the

tables for the designs obtained by misspecifying the parameters give D-values for designs obtained

by assuming a certain misspeci�cation type and evaluating them under the true parameter values.

The second columns in both tables give the D-value for the best design with the true parameter

vector. Notice that the �rst three columns in both tables are the same.

True parameter vector Utility neutral design τmis = τ × 0.75 τmis = τ × 1.25

2/3/24 1.9918 1.9936 1.9933 1.9918
3/2/24 12.8645 13.2633 12.9070 12.9027
3/3/24 13.8435 14.4173 14.2186 13.9398
3/4/64 6.8986 7.3834 6.9728 6.9003

Table 7: D-e�ciency for di�erent types of monotonous misspeci�cations in scale of parameter
values, when τ = (−0.8, 1.2, 0.7) or τ = (0.7,−1.2, 1.1, 0.2, 0.8, 0.45, 1)

From Table 7 it can be seen that for every experimental case the worst D-values are obtained

for the utility neutral design. Misspeci�ed parameters in scale (that is, when true parameters

are multiplied by 0.75 or 1.25) result in more e�cient designs. Table 8 shows that the same

conclusion holds for misspeci�cation in skewness � the utility neutral design performs worst.

Increased e�ciency by not assuming zeros for prior parameter values obtained by Huber and
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True parameter vector Utility neutral design τmis
i = τi/2, if τi < 0

τmis
i = τi × 2, if τi > 0

2/3/24 1.9918 1.9936 1.9935
3/2/24 12.8645 13.2633 12.8984
3/3/24 13.8435 14.4173 14.0925
3/4/64 6.8986 7.3834 6.9356

Table 8: D-e�ciency for monotonous misspeci�cation in skewness of parameter values, when
τ = (−0.8, 1.2, 0.7) or τ = (0.7,−1.2, 1.1, 0.2, 0.8, 0.45, 1)

Zwerina (1996) is larger, however, the instances taken in this example are meant to show that the

same pattern holds for the algorithm developed in this master thesis.

To get more pronounced results, higher values in absolute terms for a parameter vector τ

are assumed. Namely, for the two-ingredient design, we take τ = (12, 1,−3), and for the three-

ingredient designs, it is τ = (8.12,−3.75, 1.15, 6.24,−5.11,−2.18, 7.87). Again, no uncertainty is

assumed. The results for misspeci�cations in scale and skewness are provided in Tables 9 and 10,

respectively, where, again, the �rst three columns in them coincide. The results are indeed more

astounding, however, pattern stays the same. That is, the utility neutral designs always perform

worst, and monotonous misspeci�cations prove to be better than the situations when zeros are

assumed for the parameter values. An extreme case is the one where the true parameter vector

is a vector of zeros. Then the utility neutral design is the best (Huber and Zwerina, 1996).

True parameter vector Utility neutral design τmis = τ × 0.75 τmis = τ × 1.25

2/3/24 12.1475 320.0444 12.4139 13.4981
3/2/24 30.9677 81.6304 31.1692 32.8406
3/3/24 33.1608 164.3541 39.3207 35.4446
3/4/64 15.4729 78.2656 15.4729 18.1173

Table 9: D-e�ciency for di�erent types of monotonous misspeci�cations in scale of parameter
values, when τ = (12, 1,−3) or τ = (8.12,−3.75, 1.15, 6.24,−5.11,−2.18, 7.87)

True parameter vector Utility neutral design τmis
i = τi/2, if τi < 0

τmis
i = τi × 2, if τi > 0

2/3/24 12.1475 320.0444 18.9419
3/2/24 30.9677 81.6304 44.7952
3/3/24 33.1608 164.3541 47.6454
3/4/64 15.4729 78.2656 21.5014

Table 10: D-e�ciency for monotonous misspeci�cation in skewness of parameter values, when
τ = (12, 1,−3) or τ = (8.12,−3.75, 1.15, 6.24,−5.11,−2.18, 7.87)

In order to strengthen our conclusions, the same strategy is implemented for ten draws from
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the multivariate normal distribution with prior mean τ0 = (2,−1.05, 0.75, 4, 2.14,−0.88,−3), and

prior variance-covariance matrix, Σ′0, which is an identity matrix. We proceed in the same manner

as before. To obtain optimal experimental designs, 50 random starts are used. First, every draw

is assumed to be a true parameter vector for the design problem consisting of 3 ingredients, 20

alternatives and 2 choices in a choice set, when two-ingredient and three-ingredient interactions

are also included in the model. Then, the locally optimal designs for the true parameter vectors

(i.e., for every draw out of the ten ones from the multivariate normal distribution) are computed.

Further, the utility neutral design and designs when true parameter vectors are misspeci�ed in

the three ways discussed above for the model are obtained. It is then compared how much

better the designs with monotonously misspeci�ed parameter values perform than the utility

neutral design. The minimum, mean, and maximum decrease in the D-value with respect to

the utility neutral design (i.e., when τ0 is assumed to be 0) are given in Table 11 for every

type of misspeci�cation. It is clear that the conclusion remains the same, it is always better to

assume values for the parameters in the model than assuming the vector of zeros, even if they are

monotonous misspeci�ed.

τmis = τ0 × 0.75 τmis = τ0 × 1.25 τmis
i = τ0i/2, if τ0i < 0,

τmis
i = τ0i × 2, if τ0i > 0

min 3.59% 4.23% 1.87%
mean 8.12% 8.59% 6.08%
max 14.99% 15.5% 11.41%

Table 11: Decrease in D-value for the three types of monotonous misspeci�cations with respect
to the utility neutral design for the ten true parameter values assumed

Table 12 gives the minimum, mean, and maximum increases in the D-value for the worst

misspeci�cation (column 1) and for the utility neutral design (column 2) with respect to the

locally optimal designs for the ten true parameter vectors. By the worst misspeci�cation we mean

the one which has the highest D-value compared to the other types of misspeci�cations. From the

values it can be seen that even for the worst misspeci�cation the minimum, mean and maximum

increases in D-value with respect to the true locally optimal designs are not very high, especially

compared to such increases when the utility neutral design is assumed. Nine times out of ten the

worst misspeci�cation appeared to be the one in skewness.

Conclusions drawn in this section are reassuring, as parameters can only be roughly estimated

before the choice experiment. Sándor and Wedel (2001) argue that pilot testing used in practice to

receive prior parameter values has its limitations. First, some design should be already available

for this, and second, uncertainty about parameter values obtained from the pilot are not accounted

for. Hence, it is not known how good the constructed designs are if the true parameter values
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increase for the increase for the
worst misspeci�cation utility neutral

min 1.82% 4.73%
mean 3.99% 10.06%
max 6.14% 17.56%

Table 12: Increase in D-value for the worst misspeci�cation and for the utility neutral design with
respect to the locally optimal designs for the ten true parameter values assumed

di�er from the ones used. It also might help to overcome the issue of over-con�dence of managers

who set prior values for the parameters in the model. We see that linear misspeci�cations do

not distort the outcome but rather may help to improve the design. Thus, if it is possible to get

decent priors for modeling, it is preferable not to leave them out.

5.4 The Semi-Bayesian Approach

In this section, we show that semi-Bayesian designs perform better than locally optimal ones for

most of the time. As an example we choose the utility neutral design as a locally optimal design,

i.e., a design which is constructed assuming zero parameter values for the model. We then proceed

as follows. First, we optimize two designs using 30 random starts: a utility neutral design and a

semi-Bayesian one. The model contains 3 ingredients, 20 alternatives and 2 choices in a choice

set. All interaction terms are included in the model. The semi-Bayesian design is optimized for

128 Halton draws from a multivariate normal distribution with mean 0 and variance-covariance

matrix which is a diagonal matrix with ones on the diagonal. Then, we take 1,000,000 draws for

the parameter vector in the model from a multivariate normal distribution with zero mean and a

variance-covariance matrix which is an identity matrix.

The measure of e�ciency that we use is
DSemi-Bayesian

DNeutral
, where DSemi-Bayesian represents the D-

value for the semi-Bayesian design, and DNeutral represents the D-value for the utility neutral

design when designs are evaluated for a certain draw. Values of it smaller than 1 indicate situations

where the semi-Bayesian design is better and vice versa. The idea is to show a distribution of
DSemi-Bayesian

DNeutral
for 1,000,000 draws. Most of the time, the semi-Bayesian design performs better

(957,757 times out of the 1,000,000, or 95.78% of the time). Figure 12 gives the distribution of

the e�ciency measure used (i.e., the ratio
DSemi-Bayesian

DNeutral
). We clearly see that the mass of it is

concentrated on the left hand side of the graph (most of the values are below 1), meaning that

the semi-Bayesian design outperforms the utility neutral one for most of the draws. The same

result has been obtained for other than the utility neutral designs, which shows that it is wiser to

account for the uncertainty.
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Figure 12: Distribution of
DSemi-Bayesian

DNeutral

5.5 A Detailed Comparison

In this section, we show that semi-Bayesian designs di�er from benchmark designs. Figure 4

from Section 4 and Figure 13 can serve as a proof that both approaches give di�erent optimal

designs. In Figure 4, the utility neutral design for 3 ingredients, 12 alternatives and 4 choices

in a choice set, when two-ingredient and three-ingredient interaction terms are also included, is

obtained and plotted by JMP. Figure 13 gives the optimal design for the same problem obtained

by employing Bayesian approach for 128 draws from the multivariate normal distribution with

τ 0 = (0, 0, 0, 0, 0, 0, 0) and Σ′0 being an identity matrix for 1,000 random starts. Draws are

obtained using Halton sequences. Two graphs clearly show that two approaches di�er and give

di�erent optimal experimental designs. The points of two designs can be seen in Tables 13 and

14 in the Appendix.

The following examples support this �nding. Figures 14 and 15 give the utility neutral design

and the semi-Bayesian design, respectively, for the model consisting of 3 ingredients, 12 alterna-

tives and 2 choices in a choice set. All interaction terms are also included in the model. The

semi-Bayesian design is obtained for 128 draws from the multivariate normal distribution with

zero mean and variance-covariance matrix being an identity matrix. Halton sequences are used in

order to obtain the aforementioned draws. Both designs are optimized for 1,000 random starts.

The utility neutral design is obtained by JMP. Again, two approaches give di�erent experimental

designs for the same model. The optimal observations for both designs are given in Appendix, in

Table 32 for the utility neutral design, and in Table 33 for the semi-Bayesian experimental design.

The last example shows two experimental designs given by the two di�erent approaches for

the model consisting of 3 ingredients, 12 alternatives and 3 choices in a choice set. All interaction
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(a) All choice sets (b) First choice set

(c) Second choice set (d) Third choice set

Figure 13: Optimal design for 3 ingredients, 12 alternatives and 4 choices in a choice set,
when division into choice sets is ignored and also when alternatives are divided into three
choice sets, for Bayesian approach for 128 draws from the multivariate normal distribution with
τ 0 = (0, 0, 0, 0, 0, 0, 0) and Σ′0 being an identity matrix

terms are included in the model. Figure 16 gives the locally optimal design assuming the utility

neutral design, and Figure 17 gives the optimal semi-Bayesian experimental design, when 128

draws are sampled from the multivariate normal distribution with zero mean and when variance-

covariance matrix is an identity matrix. The draws are obtained using Halton sequences. Both

the utility neutral design and the semi-Bayesian design are optimized for 1,000 random starts.

The utility neutral design is obtained using JMP. The conclusion remains the same, the two

approaches, namely, when the utility neutral design is assumed for optimization and when semi-

Bayesian approach is used, give di�erent experimental designs. The optimal observations are

given in the Appendix, in Tables 34 and 35 for the utility neutral and the semi-Bayesian designs,

respectively.

In the previous section, we showed that semi-Bayesian designs perform better than locally

optimal (and the utility neutral) designs for most of the time. In this section, we conclude that
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semi-Bayesian designs di�er from locally optimal (and the utility neutral) ones. Hence, it is worth

using the computationally intensive semi-Bayesian designs instead of the computationally cheap

benchmark designs, as results di�er for both approaches and they are more robust when the

semi-Bayesian approach is employed.

(a) All choice sets

(b) First choice set (c) Second choice set (d) Third choice set

(e) Fourth choice set (f) Fifth choice set (g) Sixth choice set

Figure 14: Optimal design for 3 ingredients, 12 alternatives and 2 choices in a choice set, when
division into choice sets is ignored and also when alternatives are divided into six choice sets,
when the utility neutral design is assumed
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(a) All choice sets

(b) First choice set (c) Second choice set (d) Third choice set

(e) Fourth choice set (f) Fifth choice set (g) Sixth choice set

Figure 15: Optimal design for 3 ingredients, 12 alternatives and 2 choices in a choice set,
when division into choice sets is ignored and also when alternatives are divided into six choice
sets, for Bayesian approach for 128 draws from the multivariate normal distribution with
τ 0 = (0, 0, 0, 0, 0, 0, 0) and Σ′0 being an identity matrix
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(a) All choice sets

(b) First choice set (c) Second choice set

(d) Third choice set (e) Fourth choice set

Figure 16: Optimal design for 3 ingredients, 12 alternatives and 3 choices in a choice set, when
division into choice sets is ignored and also when alternatives are divided into four choice sets,
when the utility neutral design is assumed
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(a) All choice sets

(b) First choice set (c) Second choice set

(d) Third choice set (e) Fourth choice set

Figure 17: Optimal design for 3 ingredients, 12 alternatives and 3 choices in a choice set,
when division into choice sets is ignored and also when alternatives are divided into four
choice sets, for Bayesian approach for 128 draws from the multivariate normal distribution with
τ 0 = (0, 0, 0, 0, 0, 0, 0) and Σ′0 being an identity matrix
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6 Conclusion

In this master thesis we studied a problem of how to construct an e�cient experimental design

for the multinomial logit model when choices are based on a mixture of ingredients. An algorithm

for doing this is developed and analyzed for some di�erent settings. The resulting design is D-

optimal. The complication in constructing such designs is that in order to design an experiment

that results in e�ciently estimated choice model's parameters, those parameters have to be known

beforehand, as the information matrix that appears in the D-criterion expression used to optimize

a design depends on the parameter values that are not known for a researcher at the beginning

of the analysis. The way in which we overcome this circular issue is a semi-Bayesian approach.

However, if there is an opportunity to obtain a single decent parameter values vector, it could

also be used, as it is demonstrated that monotonous misspeci�cations in true parameters do not

distort the outcome, rather they can even help to design more robust designs.

One way to obtain such parameter values is through interviewing managers, since it is widely

believed that they possess relevant knowledge on the behaviour of their customers. If the uncer-

tainty in those parameter values can also be addressed, this might produce even better experimen-

tal designs. As Sándor and Wedel (2001) outline, such increased e�ciency of the semi-Bayesian

design can be decomposed into two components, namely, the e�ciency gain due to the use of

manager beliefs on the choice probabilities of products and services characterized by a mixture

of ingredients, and an improvement due to accommodation of managers' uncertainty about the

values elicited about those probabilities in the population. They also state that neglecting this

uncertainty is logically inconsistent, because if the values for the parameters in the model were

precisely known, no design needs to be generated.

We also show that such designs where prior parameter values are not assumed to be zero di�er

from the utility neutral ones. Furthermore, semi-Bayesian designs di�er from and perform better

than locally optimal ones (and the utility neutral designs) for most of the time. As a result, it is

important to obtain reasonable prior parameter values, and the utility neutral designs should be

better used as a starting point to get them or as a benchmark design.

However, it should be stressed that it cannot be proven that the designs that can be generated

using the algorithm presented are strictly optimal. They should not be expected to be so for

a couple of reasons. First, design optimality is investigated with respect to the D-optimality

criterion, which is not the only one that can be chosen. It is chosen as the criterion in this master

thesis, since it is the most commonly used one in practice. However, the method can be very

easily extended to employ di�erent criteria. Second, the search is heuristic and, thus, it may

happen that the optimum the algorithm arrives at is not a global optimum. A heuristic procedure

is employed because an exhaustive search over the entire design space is not feasible in this case,
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as proportions of ingredients can obtain extremely many values on the interval (0, 1).

What is also interesting to note is that di�erent designs that are equivalent in D-e�ciency can

be found during the optimization. Despite the fact that they behave equivalently with respect to

D-criterion, they might be di�erent in terms of other criteria. Any of those criteria could then be

used as a tie breaker. It is also possible to choose one experimental design from several ones by

taking into account the cost of implementing them (Goos and Donev, 2006).

The value that this master thesis adds to the existing literature is the application of mixture

models in the choice modeling, that has never been done before. Moreover, the algorithm de-

veloped is capable to account for settings di�erent from the utility neutral models, which have

mainly been used up to now.
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Appendices

x1 x2 x3 x1 x2 x3

0.50 0.00 0.50 0.00 0.43 0.57
0.00 0.00 1.00 0.37 0.25 0.37
1.00 0.00 0.00 0.56 0.44 0.00
0.29 0.41 0.29 0.00 1.00 0.00

0.00 0.60 0.40
0.00 0.00 1.00
1.00 0.00 0.00
0.40 0.60 0.00

Table 13: Optimal points for the locally optimal utility neutral design with 3 ingredients, 12
alternatives and 4 choices in a choice set for 1,000 random starts. Choice sets are separated by
dashed lines

x1 x2 x3 x1 x2 x3

0.63 0.00 0.37 0.00 0.60 0.40
0.48 0.52 0.00 0.47 0.52 0.00
0.37 0.35 0.28 0.37 0.31 0.32
0.00 0.00 1.00 1.00 0.00 0.00

0.00 1.00 0.00
0.00 0.48 0.52
0.31 0.00 0.69
1.00 0.00 0.00

Table 14: Optimal points for the semi-Bayesian design with 3 ingredients, 12 alternatives and 4
choices in a choice set for 1,000 random starts, when 128 draws are taken from the multivariate
normal distribution with τ 0 = (0, 0, 0, 0, 0, 0, 0) and Σ′0 being an identity matrix. Choice sets are
separated by dashed lines

x1 x2 x3 x1 x2 x3

0.00 0.00 1.00 0.00 1.00 0.00
0.00 1.00 0.00 0.00 0.00 1.00
1.00 0.00 0.00 1.00 0.00 0.00
0.00 1.00 0.00 0.00 1.00 0.00
0.00 0.00 1.00 1.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00 1.00
1.00 0.00 0.00 0.00 1.00 0.00
0.00 1.00 0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 1.00

Table 15: Optimal points for the utility neutral design with 3 ingredients, 18 alternatives, and
9 choices in a choice set for 10,000 random starts, when only main e�ects are considered. Two
choice sets are given in two corresponding columns
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x1 x2 x3 x1 x2 x3

0.00 1.00 0.00 0.00 1.00 0.00
1.00 0.00 0.00 0.00 0.00 1.00
0.00 0.00 1.00 1.00 0.00 0.00
0.46 0.54 0.00 0.50 0.50 0.00
0.52 0.00 0.48 0.00 1.00 0.00
1.00 0.00 0.00 0.00 0.48 0.52
0.00 0.51 0.49 0.00 0.00 1.00
0.49 0.00 0.51 0.52 0.00 0.48
0.00 0.50 0.50 0.48 0.52 0.00

Table 16: Optimal points for the utility neutral design with 3 ingredients, 18 alternatives, and 9
choices in a choice set for 10,000 random starts, when main e�ects and two-ingredient interactions
are considered. Two choice sets are given in two corresponding columns

x1 x2 x3 x1 x2 x3

0.00 0.00 1.00 1.00 0.00 0.00
0.00 1.00 0.00 0.49 0.51 0.00
1.00 0.00 0.00 0.00 0.00 1.00
0.49 0.51 0.00 0.36 0.33 0.32
0.36 0.32 0.32 0.00 1.00 0.00
0.00 1.00 0.00 0.50 0.50 0.00
0.51 0.00 0.49 0.50 0.00 0.50
0.31 0.34 0.35 0.34 0.32 0.34
0.00 0.50 0.50 0.00 0.51 0.49

Table 17: Optimal points for the utility neutral design with 3 ingredients, 18 alternatives, and 9
choices in a choice set for 10,000 random starts, when main e�ects and two- and three-ingredient
interactions are considered. Two choice sets are given in two corresponding columns

x1 x2 x3 x1 x2 x3

1.00 0.00 0.00 0.62 0.00 0.38
0.42 0.58 0.00 0.00 0.00 1.00

0.00 1.00 0.00 0.31 0.27 0.42
0.00 0.38 0.62 0.45 0.55 0.00

0.55 0.00 0.45 0.00 0.00 1.00
0.34 0.45 0.20 0.00 0.64 0.36

1.00 0.00 0.00 0.40 0.34 0.26
0.49 0.00 0.51 0.00 0.45 0.55

0.65 0.35 0.00 0.00 1.00 0.00
0.00 1.00 0.00 0.32 0.31 0.38

Table 18: Optimal points for the design with 3 ingredients, 20 alternatives, and 2 choices in a
choice set for 100,000 random starts, when τ = (1.4, 0, 0, 0, 0, 0, 0). Choice sets are separated by
dashed lines
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x1 x2 x3 x1 x2 x3

1.00 0.00 0.00 0.29 0.37 0.34
0.36 0.64 0.00 0.00 1.00 0.00

0.00 1.00 0.00 0.00 0.00 1.00
0.64 0.36 0.00 0.00 0.60 0.40

0.00 0.00 1.00 0.45 0.00 0.55
0.62 0.00 0.38 1.00 0.00 0.00

0.00 0.47 0.53 0.27 0.35 0.38
0.51 0.27 0.22 0.60 0.40 0.00

0.00 0.45 0.55 0.52 0.00 0.48
0.00 1.00 0.00 0.29 0.45 0.25

Table 19: Optimal points for the design with 3 ingredients, 20 alternatives, and 2 choices in a
choice set for 100,000 random starts, when τ = (1.4, 1.4, 0, 0, 0, 0, 0). Choice sets are separated
by dashed lines

x1 x2 x3 x1 x2 x3

0.00 0.00 1.00 0.41 0.59 0.00
0.58 0.00 0.42 0.30 0.30 0.40

1.00 0.00 0.00 0.44 0.56 0.00
0.36 0.00 0.64 1.00 0.00 0.00

0.00 1.00 0.00 0.00 0.53 0.47
0.66 0.34 0.00 0.44 0.30 0.26

0.00 0.55 0.45 0.52 0.00 0.48
0.00 0.00 1.00 0.29 0.44 0.27

0.00 0.41 0.59 1.00 0.00 0.00
0.00 1.00 0.00 0.25 0.38 0.37

Table 20: Optimal points for the design with 3 ingredients, 20 alternatives, and 2 choices in a
choice set for 100,000 random starts, when τ = (1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4). Choice sets are
separated by dashed lines

x1 x2 x3 x1 x2 x3

0.21 0.46 0.32 0.00 0.00 1.00
0.00 0.00 1.00 0.00 0.67 0.33

0.00 1.00 0.00 0.36 0.33 0.31
0.00 0.35 0.65 0.00 0.66 0.34

1.00 0.00 0.00 0.47 0.00 0.53
0.67 0.33 0.00 0.43 0.57 0.00

0.43 0.57 0.00 0.49 0.00 0.51
0.28 0.28 0.44 0.29 0.41 0.30

1.00 0.00 0.00 0.00 1.00 0.00
0.65 0.00 0.35 0.23 0.31 0.46

Table 21: Optimal points for the design with 3 ingredients, 20 alternatives, and 2 choices in a
choice set for 100,000 random starts, when τ = (5, 0, 0, 0, 0, 0, 0). Choice sets are separated by
dashed lines
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x1 x2 x3 x1 x2 x3

1.00 0.00 0.00 0.00 0.51 0.49
0.34 0.66 0.00 0.45 0.21 0.34

0.00 0.00 1.00 0.00 0.00 1.00
0.00 0.35 0.65 0.35 0.00 0.65

0.00 1.00 0.00 0.00 1.00 0.00
0.65 0.35 0.00 0.74 0.00 0.26

1.00 0.00 0.00 0.49 0.00 0.51
0.34 0.39 0.27 0.00 0.46 0.54

0.46 0.54 0.00 0.46 0.00 0.54
0.35 0.35 0.30 0.29 0.37 0.34

Table 22: Optimal points for the design with 3 ingredients, 20 alternatives, and 2 choices in a
choice set for 100,000 random starts, when τ = (5, 5, 0, 0, 0, 0, 0). Choice sets are separated by
dashed lines

x1 x2 x3 x1 x2 x3

0.00 0.00 1.00 0.47 0.00 0.53
0.24 0.00 0.76 0.00 0.51 0.49

0.00 1.00 0.00 0.59 0.00 0.41
0.61 0.39 0.00 0.29 0.37 0.34

0.06 0.94 0.00 0.33 0.31 0.36
0.36 0.27 0.36 1.00 0.00 0.00

1.00 0.00 0.00 0.00 1.00 0.00
0.00 0.61 0.39 0.00 0.54 0.46

1.00 0.00 0.00 0.00 0.57 0.43
0.25 0.75 0.00 0.17 0.06 0.77

Table 23: Optimal points for the design with 3 ingredients, 20 alternatives, and 2 choices in a
choice set for 100,000 random starts, when τ = (5, 5, 5, 5, 5, 5, 5). Choice sets are separated by
dashed lines

x1 x2 x3 x1 x2 x3

0.38 0.62 0.00 0.18 0.40 0.42
0.48 0.11 0.41 0.00 1.00 0.00

0.00 0.00 1.00 0.30 0.70 0.00
0.00 0.56 0.44 0.24 0.36 0.41

0.00 1.00 0.00 0.31 0.47 0.23
0.00 0.29 0.71 0.37 0.02 0.61

0.98 0.02 0.00 0.00 0.00 1.00
0.77 0.00 0.23 0.00 0.70 0.30

0.00 0.47 0.53 0.25 0.46 0.29
0.19 0.50 0.32 0.34 0.00 0.66

Table 24: Optimal points for the design with 3 ingredients, 20 alternatives, and 2 choices in a
choice set for 100,000 random starts, when τ = (10, 0, 0, 0, 0, 0, 0). Choice sets are separated by
dashed lines
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x1 x2 x3 x1 x2 x3

0.00 0.00 1.00 0.00 0.50 0.50
0.20 0.00 0.80 0.42 0.00 0.58

1.00 0.00 0.00 0.00 1.00 0.00
0.33 0.67 0.00 0.55 0.31 0.13

0.65 0.00 0.35 0.00 0.67 0.33
0.29 0.40 0.31 0.43 0.32 0.25

0.66 0.34 0.00 0.45 0.31 0.23
0.00 1.00 0.00 1.00 0.00 0.00

0.00 0.51 0.48 0.37 0.39 0.24
0.40 0.19 0.41 0.44 0.54 0.02

Table 25: Optimal points for the design with 3 ingredients, 20 alternatives, and 2 choices in a
choice set for 100,000 random starts, when τ = (10, 10, 0, 0, 0, 0, 0). Choice sets are separated by
dashed lines

x1 x2 x3 x1 x2 x3

0.00 0.35 0.65 0.37 0.37 0.26
0.52 0.00 0.48 0.41 0.57 0.02

0.00 1.00 0.00 0.30 0.36 0.34
0.74 0.00 0.26 1.00 0.00 0.00

1.00 0.00 0.00 0.51 0.49 0.00
0.00 0.76 0.24 0.37 0.39 0.24

0.00 0.68 0.32 0.65 0.00 0.35
0.21 0.23 0.56 0.29 0.34 0.37

0.00 1.00 0.00 0.00 0.52 0.48
0.32 0.35 0.33 0.45 0.00 0.55

Table 26: Optimal points for the design with 3 ingredients, 20 alternatives, and 2 choices in a
choice set for 100,000 random starts, when τ = (10, 10, 10, 10, 10, 10, 10). Choice sets are separated
by dashed lines

x1 x2 x3 x1 x2 x3

0.00 0.00 1.00 0.09 0.48 0.43
0.00 0.64 0.36 0.04 0.00 0.96

0.31 0.69 0.00 0.74 0.09 0.16
0.30 0.22 0.48 0.81 0.12 0.06

0.71 0.19 0.10 0.03 0.97 0.00
0.79 0.01 0.20 0.09 0.42 0.50

0.00 0.32 0.68 0.43 0.31 0.26
0.00 1.00 0.00 0.42 0.00 0.58

0.10 0.41 0.49 0.46 0.54 0.00
0.14 0.00 0.86 0.45 0.14 0.41

Table 27: Optimal points for the design with 3 ingredients, 20 alternatives, and 2 choices in a
choice set for 100,000 random starts, when τ = (30, 0, 0, 0, 0, 0, 0). Choice sets are separated by
dashed lines
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x1 x2 x3 x1 x2 x3

0.99 0.00 0.01 0.19 0.69 0.12
0.00 0.99 0.01 0.46 0.35 0.19

0.00 0.20 0.80 0.50 0.50 0.00
0.03 0.09 0.89 0.00 1.00 0.00

0.00 0.64 0.36 1.00 0.00 0.00
0.28 0.36 0.36 0.39 0.57 0.04

0.00 0.42 0.58 0.44 0.54 0.02
0.26 0.17 0.57 0.93 0.00 0.07

0.01 0.51 0.49 0.61 0.00 0.39
0.50 0.00 0.50 0.19 0.42 0.39

Table 28: Optimal points for the design with 3 ingredients, 20 alternatives, and 2 choices in a
choice set for 100,000 random starts, when τ = (30, 30, 0, 0, 0, 0, 0). Choice sets are separated by
dashed lines

x1 x2 x3 x1 x2 x3

0.84 0.16 0.00 0.64 0.00 0.36
0.17 0.70 0.13 0.17 0.38 0.45

0.43 0.31 0.26 0.00 0.58 0.42
0.08 0.91 0.01 0.29 0.16 0.56

0.00 0.59 0.41 0.00 1.00 0.00
0.42 0.10 0.47 0.13 0.53 0.35

0.24 0.76 0.00 0.42 0.18 0.40
0.51 0.30 0.19 1.00 0.00 0.00

0.28 0.37 0.35 1.00 0.00 0.00
1.00 0.00 0.00 0.00 1.00 0.00

Table 29: Optimal points for the design with 3 ingredients, 20 alternatives, and 2 choices in a
choice set for 100,000 random starts, when τ = (30, 30, 30, 30, 30, 30, 30). Choice sets are separated
by dashed lines

x1 x2 x3 x1 x2 x3

0.00 0.27 0.73 0.00 1.00 0.00
0.00 1.00 0.00 0.60 0.40 0.00

1.00 0.00 0.00 0.00 0.48 0.52
0.22 0.78 0.00 0.45 0.22 0.34

0.56 0.00 0.44 1.00 0.00 0.00
0.00 0.00 1.00 0.34 0.00 0.66

0.00 0.00 1.00 0.45 0.54 0.01
0.00 0.63 0.37 0.29 0.26 0.44

0.42 0.00 0.58 1.00 0.00 0.00
0.26 0.47 0.27 0.31 0.33 0.35

Table 30: Optimal design for 3 ingredients, 20 alternatives and 2 choices in a choice set, when
τ = (0, 0, 0, 0, 0, 0, 0). Choice sets are separated by dashed lines
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x1 x2 x3 x1 x2 x3

1.00 0.00 0.00 0.00 1.00 0.00
0.00 0.60 0.40 0.00 0.34 0.66

0.00 0.00 1.00 0.00 0.61 0.39
0.71 0.00 0.29 0.39 0.28 0.33

0.51 0.49 0.00 0.38 0.25 0.37
0.33 0.31 0.36 0.00 1.00 0.00

0.19 0.50 0.31 0.00 0.00 1.00
0.35 0.00 0.65 0.00 0.68 0.32

1.00 0.00 0.00 0.52 0.48 0.00
0.35 0.00 0.65 0.32 0.31 0.37

Table 31: Optimal design for 3 ingredients, 20 alternatives and 2 choices in a choice set, τ =
(0, 0, 0, 10, 0, 0, 0). Choice sets are separated by dashed lines

x1 x2 x3 x1 x2 x3

0.40 0.00 0.60 0.60 0.00 0.40
1.00 0.00 0.00 0.00 0.00 1.00

0.00 1.00 0.00 0.00 0.60 0.40
0.00 0.40 0.60 0.41 0.32 0.27

1.00 0.00 0.00 0.58 0.42 0.00
0.48 0.52 0.00 0.27 0.36 0.36

Table 32: Optimal points for the locally optimal utility neutral design with 3 ingredients, 12
alternatives and 2 choices in a choice set for 1,000 random starts. Choice sets are separated by
dashed lines

x1 x2 x3 x1 x2 x3

1.00 0.00 0.00 0.36 0.00 0.64
0.38 0.62 0.00 0.22 0.47 0.31

0.00 0.00 1.00 0.67 0.33 0.00
0.70 0.00 0.30 0.35 0.20 0.45

0.00 0.46 0.54 0.53 0.27 0.20
0.00 1.00 0.00 0.00 0.72 0.28

Table 33: Optimal points for the semi-Bayesian design with 3 ingredients, 12 alternatives and 2
choices in a choice set for 1,000 random starts, when 128 draws are taken from the multivariate
normal distribution with τ 0 = (0, 0, 0, 0, 0, 0, 0) and Σ′0 being an identity matrix. Choice sets are
separated by dashed lines
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x1 x2 x3 x1 x2 x3

0.60 0.40 0.00 0.00 0.00 1.00
0.00 0.41 0.59 0.60 0.00 0.40
0.00 1.00 0.00 0.31 0.35 0.35

0.40 0.00 0.60 0.35 0.30 0.35
0.40 0.60 0.00 0.00 0.60 0.40
1.00 0.00 0.00 0.00 0.00 1.00

Table 34: Optimal points for the locally optimal utility neutral design with 3 ingredients, 12
alternatives and 3 choices in a choice set for 1,000 random starts. Choice sets are separated by
dashed lines

x1 x2 x3 x1 x2 x3

1.00 0.00 0.00 0.32 0.68 0.00
0.00 0.00 1.00 1.00 0.00 0.00
0.49 0.00 0.51 0.35 0.29 0.36

0.01 0.35 0.64 0.00 0.60 0.40
0.54 0.46 0.00 0.36 0.37 0.27
0.00 1.00 0.00 0.39 0.00 0.61

Table 35: Optimal points for the semi-Bayesian design with 3 ingredients, 12 alternatives and 3
choices in a choice set for 1,000 random starts, when 128 draws are taken from the multivariate
normal distribution with τ 0 = (0, 0, 0, 0, 0, 0, 0) and Σ′0 being an identity matrix. Choice sets are
separated by dashed lines


