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Abstract

This thesis looks into various extensions of the Dynamic Nelson-Siegel (DNS) model that
allow for time-varying volatility. A common shock component with time-varying vari-
ance in the measurement equation of the state space framework greatly improves model
fit. The inclusion of a second common component gives insight in how general interest
rate and stock market volatility are both priced in the yield curve. The total volatility in
the two component model is regressed on the VIX and a measure of general interest rate
market volatility to show this for different maturities. Furthermore, various GARCH-
type processes are considered to account for the time-varying volatility in the yields and
in the factors of the DNS model. I study asymmetric volatility extensions and allow for
influences of exogenous macroeconomic and financial factors in the GARCH equation.
The alternative specifications to capture the dynamics of the common volatility turn out
to improve model fit in volatile periods, but do not outperform the standard GARCH in
stable times. Allowing for time-varying volatility results in predictions that significantly
outperform the naive random walk forecast for short maturity yields at medium and long
horizons. Parsimoniousness is key when forecasting is concerned and a model with the
common shock component in the state equation produces the most accurate predictions.
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1 Introduction

Modelling and forecasting the term structure of interest rates is of great importance in
many areas of finance such as derivatives pricing, asset allocation and debt restructur-
ing. Not surprisingly, a vast amount of literature is devoted to research in this part of
academia in order to find optimal methods and models to fit past and predict future
interest rates. In this thesis I present several extensions of the dynamic Nelson-Siegel
model while allowing for time-varying volatility in interest rates. I use a state space
framework and Kalman filter estimation for all models.

The literature on term structure models is generally divided in two different classes,
namely between the theoretically based models and models of a statistical nature. The
first class was introduced with the work of Vasicek (1977) and consists of models derived
from economic theory, usually under the assumption of absence of arbitrage. Other in-
fluential contributions in this class are Cox, Ingersoll, and Ross (1985), Hull and White
(1990) and Duffie and Kan (1996). However, the appealing characteristics of no-arbitrage
and a sound economic foundation often come at the cost of poor fit and this class of
models is therefore empirically found to be unable to beat a naive random walk forecast
on interest rates, see Duffee (2002). Furthermore, estimation of these models is repeat-
edly found to be challenging, requiring additional restrictions that are often not well
motivated statistically or theoretically, see for example Duffee (2011).

The second class of models, on the other hand, is based merely on statistical grounds
and is known for its relatively good empirical fit. One of the most popular subclasses of
models within the statistical class is based on the Nelson and Siegel (1987) model. The
Nelson-Siegel model thanks its popularity for a large part to its relative simplicity, ease
of estimation and to the fact that there is some underlying economic interpretation in
the three factors it is based on, which represent level, slope and curvature of the yield
curve, see De Pooter (2007). However, the downside of the statistical class of models is
that they often lack theoretical support and do not assume absence of arbitrage. Several
papers try to overcome this disadvantage and close the gap at least partially by investi-
gating the interaction of the models with the macroeconomy and imposing no-arbitrage
restrictions, see for example Ang and Piazzesi (2003) and Rudebusch and Wu (2008).
However, Coroneo, Nyholm, and Vidova-Koleva (2011) find despite of the fact that the
Nelson-Siegel yield curve model does not ensure absence of arbitrage theoretically, it is
compatible with no-arbitrage constraints in the US interest rate market.

As an evolution of the Nelson-Siegel branch of term structure models, Diebold and
Li (2006) introduce the Dynamic Nelson-Siegel (DNS) model by estimating the classical
one with time-varying factors and model them using (V)AR specifications. Moreover,
Diebold, Rudebusch, and Aruoba (2006) put the DNS model in a state space format and
include macroeconomic indicators to fit and forecast the yield curve. Both papers show
their forecasts outperform standard time series models and have therefore brought the
focus of academics back to the Nelson-Siegel class. In order to overcome the disadvan-
tage of no absence of arbitrage, Christensen, Diebold, and Rudebusch (2011) derive the
Nelson-Siegel model under absence of the riskless arbitrage assumption and introduce
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the Arbitrage Free Nelson-Siegel (AFNS) model, thereby partly bridging the divide be-
tween the theoretical and statistical classes of term structure models. De Pooter (2007)
discusses various other extensions to the Nelson-Siegel model as well as two different
estimation approaches. He finds that a model with an extra slope factor added to the
standard Nelson-Siegel model outperforms forecasts of competitor models across hori-
zons and maturities, especially when estimated via a one-step state space approach.

Koopman, Mallee, and van der Wel (2010) point out that volatility in interest rates is
assumed constant over time in most empirical papers on term structure modelling. There
are only a few exceptions in the literature where models with time-varying volatility are
considered, see for example Engle, Ng, and Rothschild (1990) and Bianchi, Mumtaz, and
Surico (2009). Both discuss a term structure model that allows for heteroskedasticity in
yields. Koopman, Mallee, and van der Wel (2010) introduce the concept of time-varying
volatility to the DNS model. They use a standard GARCH specification to describe
the volatility process of a common shock in the yields or the latent factors of the DNS
model while adopting a state space approach. Adding a common component allows the
model to capture latent exogenous shocks that affect the entire yield curve and are not
captured by the three factor structure of the level, slope and curvature factors. This
expansion increases the flexibility of the term structure model and enables it to better
fit more complex shapes of the yield curve, as Koopman, Mallee, and van der Wel (2010)
show by plotting some fitted curves. They find that allowing for time-varying volatil-
ity significantly increases the likelihood value relative to the traditional DNS model.
Therefore their extended specification is a valuable addition to the literature on term
structure models.

Prior research on interest rate volatility is supportive of the comments by Koopman,
Mallee, and van der Wel (2010) on constant variances. Brenner, Harjes, and Kroner
(1996) and Koedijk, Nissen, Schotman, and Wolff (1997) both study models for short
term interest rate volatility, thereby implicitly arguing that it is not constant over time.
Furthermore, Litterman, Scheinkman, and Weiss (1991) and Christiansen and Lund
(2005) discuss the effect of interest rate volatility on the shape of the yield curve. The
first paper examines theoretical models that highlight the link between the two. It shows
how these models can be used to rationalise the shape of a zero-coupon yield curve, es-
timated from coupon bearing US Treasury bonds. The second paper uses a VAR model
for the level, slope and curvature factors that describe the yield curve, combined with a
GARCH-in-mean for the error term. Inclusion of the short rate volatility in the mean
specification enables analysis of the effect of interest rate volatility on the factors shap-
ing the term structure. Both studies stress the importance of the role of time-varying
volatility in interest rates and therefore encourage further research to continue on the
path where Koopman, Mallee, and van der Wel (2010) took the first steps.

This thesis expands the work done by Koopman, Mallee, and van der Wel (2010)
by looking at more elaborate specifications to account for time-varying volatility in the
DNS model. I do this in two main directions. First of all, I investigate whether there are
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different dynamics that influence volatility in the short and long ends of the yield curve.
Therefore, I consider a dataset that includes maturities up to 30 years. Different factors
influence rates at the short and long ends of the yield curve and this can also be the case
for volatilities in both parts. I introduce a second common volatility component to ac-
count for possible diverse dynamics in short and long end volatility. Koopman, Mallee,
and van der Wel (2010) use a dataset that only considers maturities up to 10 years,
thereby leaving out the true long end of the yield curve. Based on this dataset they con-
clude that volatility patterns seem to differ in magnitude, but show similar dynamics for
varying maturities. Hence they introduce a single common volatility component for all
maturities to which different yields have varying sensitivities. Furthermore, Koopman,
Mallee, and van der Wel (2010) look at two methods to implement the time-varying
volatility in the DNS model, namely by modelling the disturbance term of the yields or
the noise term in the factors via a GARCH specification. They find the first to improve
the fit of the model much more than the latter. However, this finding might be different
when a longer set of maturities is considered due to a more pronounced variation in
importance of the three different factors in the DNS model for varying yields.

Secondly, Koopman, Mallee, and van der Wel (2010) implement their idea using a
standard GARCH specification (see Bollerslev (1986)). Yet, in the literature on volatil-
ity in financial markets a wider variety of GARCH specifications is often considered to
better model empirics. Therefore I look into the performance of asymmetric volatility
models by replacing the standard GARCH process by GJR-GARCH (see Glosten, Ja-
gannathan, and Runkle (1993)) and Exponential GARCH (see Nelson (1991)), following
the approach by Koopman, Mallee, and van der Wel (2010). Furthermore I discuss the
inclusion of exogenous macroeconomic and financial variables in the volatility equation
using a GARCH-X model similar to the one presented by Brenner, Harjes, and Kroner
(1996). These more sophisticated volatility processes to extend the standard DNS model
can give more insight in the volatility dynamics of the common component that Koop-
man, Mallee, and van der Wel (2010) find to strongly improve model fit. For example,
I discuss the possibly differing effects of positive and negative shocks to the yield curve,
releases of new information on macroeconomic indicators and the influence of tensions
in the stock market on common volatility in the term structure of interest rates.

The importance of further research on extensions to the standard Nelson-Siegel
model lies in the popularity of its class of term structure models amongst practition-
ers at central banks and in financial markets, see for example Svensson (1995) and
De Pooter (2007). Time-varying volatility provides insight in confidence intervals sur-
rounding estimates and increased flexibility of volatility modelling can improve fore-
casting performance. Moreover, the existence of a common volatility component can
be of great importance to for example interest rate option traders who manage risk in
an entire book of interest rate volatility positions. Knowledge of a common component
that determines volatilities in different parts of the yield curve allows traders to mitigate
overall risk in the trading book by taking offsetting positions in different yields along
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the curve. Managing common interest rate volatility risk for the entire term structure
can therefore be done more effectively compared to the case where individual rates or
parts of the yield curve are looked at separately.

The empirical results in this thesis show that volatility in the short and long end of
the yield curve is not governed by completely different dynamics. Yet, adding a second
common component to the time-varying DNS model of Koopman, Mallee, and van der
Wel (2010) leads to an important finding. Besides being affected by shocks to the entire
term structure, yields also seem to share a common sensitivity to shocks in the stock
market. In the model with two separate common shock components, different volatility
dynamics are explored of which one appears to roughly represent tensions in interest
rates in general and the other in the stock market. This finding implies that stock
market volatility is, at least partially, priced in the term structure of interest rates.

Allowing for asymmetric response of the variance of the common component to
shocks turns out to increase in-sample fit of the time-varying volatility DNS model.
Volatility reacts more heavily to negative than to positive shocks in the GJR-GARCH
and E-GARCH specifications. Also the extension of the standard GARCH process with
macroeconomic and financial variables is useful. The exogenous factors improve the fit
of the models and show that common volatility in the yield curve can be better explained
using links to the macroeconomy and stock market volatility.

The encouraging findings for the alternative volatility specifications, however, do not
seem to be robust to changing the sample to a more calm period with gradually declining
interest rates. During times as such, the extensions of the standard GARCH process do
not seem to cause notable improvements compared to the model of Koopman, Mallee,
and van der Wel (2010). Yet, the addition of a second common shock component is still
of large value.

Random walk forecasts turn out to be difficult to beat in the short term, as also
noted by Duffee (2002). For the medium and long term the DNS models with time-
varying volatility components seem to be able to significantly outperform the naive
forecasting method at the short end of the yield curve. However, in the long end of
the curve the random walk forecasts are relatively accurate and stay very hard to beat.
Parsimoniousness turns out to be important in making predictions on future interest
rates. The DNS model with a common shock component in the factors, which has the
smallest number of parameters among the time-varying volatility models, performs best
when forecasting is concerned.

The remainder of this thesis is structured as follows. First, chapter 2 discusses the
models and methodology used in the research. Subsequently, chapter 3 describes the
data used in the empirical study. Third, chapter 4 presents the in-sample results. The
forecasting performance of the different models presented in this thesis is assessed in
chapter 5 and chapter 6 examines the robustness of the results. Chapter 7 summarises
and concludes the study. Last, chapter 8 finalises the thesis by giving some suggestions
for further research.
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2 Models and Methodology

In this chapter of the thesis I first discuss the Dynamic Nelson-Siegel (DNS) model as
in Diebold and Li (2006), its representation in state space form and the estimation pro-
cedure in section 2.1. Thereafter, in section 2.2, I explain how time-varying volatility is
incorporated using one or two common components and I describe the different GARCH
specifications to capture volatility dynamics. Furthermore in the same section I discusses
the class of DNS models with time-varying volatility (DNS-TVV) in state space form
and the estimation method that uses the Kalman filter and maximum likelihood.

2.1 The Dynamic Nelson-Siegel Model

Following on Nelson and Siegel (1987), Diebold and Li (2006) introduce the DNS model
to fit the term structure of interest rates. A set of N yields yt(τi) for i = 1, ..., N at
time t = 1, ..., T , where τi is the time to maturity, is fitted in the DNS model given by

yt(τi) = β1,t + β2,t

(
1− e−λτi
λτi

)
+ β3,t

(
1− e−λτi
λτi

− e−λτi
)

+ εi,t

εi,t ∼ N
(
0, σ2IN

)
, (1)

where the coefficients βj,t for j = 1, 2, 3 are representing the factors level, slope and
curvature, respectively. The constant parameter λ is the decay parameter of the factor
loading of the slope of the yield curve and determines the optimum of the curvature
factor loading.

Examination of the limits of the DNS model shows where the interpretations of the
factors come from. When time to maturity goes to infinity, we find the infinitely long
end of the curve which is given by

lim
τ→∞

yt(τi) = β1,t. (2)

Given the fact that the first factor loading is equal to 1, the first factor gets the inter-
pretation of the level factor. Letting time to maturity go towards zero, the infinitely
short end of the curve is obtained as

lim
τ↓0

yt(τi) = β1,t + β2,t, (3)

meaning that the short rate is influenced by the first and second factor. Defining the
slope of the yield curve as the long end minus the short end, it can be seen from the
equations above that it is given by −β2,t. The third factor loading in (1) approaches
zero in both cases, when time to maturity goes to zero or infinity and is positive for
intermediate values of τ . Therefore, β3,t affects the middle part of the yield curve and
hence is interpreted as the curvature factor in the DNS model.

In this thesis I use the DNS model as the standard and regard it as a benchmark
against which the performance of the time-varying volatility models introduced here, is
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measured. The theoretical foundation of the DNS serves as the basis for the extended
models and the empirical results for the benchmark model are presented for comparative
purposes.

2.1.1 The DNS in State Space Framework

Diebold and Li (2006) find that the time series of estimated coefficients in the DNS model
show high autocorrelation, which implies they can easily be modelled and forecast using
a simple framework. This finding allows the DNS model itself to be used to predict
future interest rates in a two-step procedure. In this approach Diebold and Li (2006)
first estimate the time series of β1,t, β2,t and β3,t in the cross-section of yields using least
squares. Subsequently, in the second step they adopt a (V)AR(1) specification to model
the persistence in the time series of these three coefficients, given by

βt+1 = (I3 −Φ)µ+ Φβt + νt νt ∼ N (0,Σν) , (4)

where βt = (β1,t, β2,t, β3,t)′, Φ is a 3 × 3 matrix of coefficients, µ a 3 × 1 vector of
constants, νt is a 3× 1 vector of random disturbances with constant covariance matrix
Σν . For the AR(1) specification Φ is a diagonal matrix whereas it is a full matrix in
case of a VAR(1). After the second step the yields can be forecast by plugging in the
predictions from (4) into (1).

As Diebold and Li (2006) note, the most important stylized facts of the yield curve
can be captured in the two-step framework. For example, the short end of the curve is
more volatile than the long end as it depends on two factors instead of one, as can be
seen from (2) and (3)1.

Diebold, Rudebusch, and Aruoba (2006) take a different approach and put the DNS
model into a state space form, treating the factors as latent variables. They use the
Kalman filter to obtain estimates of the factors. In the state space approach of Diebold,
Rudebusch, and Aruoba (2006) the measurement equation is given by

yt = Λ(λ)βt + εt εt ∼ N (0,Σε) , (5)

where the i-th element of yt contains the yield yt(τi) for i = 1, ..., N and the i-th row
of Λ(λ) is given by Λ(λ)i =

[
1,
(

1−e−λτi
λτi

)
,
(

1−e−λτi
λτi

− e−λτi
)]

, where τi is the time to
maturity of yield i. The N × 1 vector εt contains random disturbances with a constant
diagonal covariance matrix Σε. The state equation in Diebold, Rudebusch, and Aruoba
(2006) is equal to (4). In this thesis I use a state space approach and Kalman filter
estimation for all models.

1See the paper by Diebold and Li (2006) for a more elaborate discussion on how other stylized facts
are captured in the DNS model with a (V)AR(1) specification for the coefficients.
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2.1.2 State Space Estimation of DNS

Estimation via the Kalman filter is done in a single step that incorporates all uncer-
tainty in the entire framework, coming from estimating the measurement and the state
equation. In contrast, in the two-step approach of Diebold and Li (2006), the estimation
uncertainty from the (V)AR(1) model is not taken into account when estimating the
measurement equation. The book by Kim and Nelson (1999), which I closely follow,
explains state space model estimation.

The Kalman filter consists of two steps to find a minimum mean squared error
estimate of the latent factors βt, namely the prediction and the update step. At a given
time t I form an optimal prediction of yt based on all information available up to time
t−1, denoted by yt|t−1. This prediction can be made using (5) and βt|t−1, which can be
calculated using (4) and yt−1|t−1. After obtaining the prediction on yt, the prediction
error (ηt|t−1) and its variance (Ft|t−1) can be calculated to obtain information on βt
that is not yet contained in yt|t−1. In the update step the estimate of βt at time t using
information up to time t − 1 (βt|t−1) is updated by incorporating the new information
from the prediction error to obtain βt|t. The estimate βt|t contains information up to
time t. The prediction step is summarised by the following four equations,

βt|t−1 = (I3 −Φ)µ+ Φβt−1|t−1, (6)

Pt|t−1 = ΦPt−1|t−1Φ
′ + Σν , (7)

ηt|t−1 = yt − yt|t−1 = yt −Λ(λ)βt|t−1, (8)

Ft|t−1 = Λ(λ)Pt|t−1Λ(λ)′ + Σε (9)

and the update step is described by the two equations given as follows,

βt|t = βt|t−1 + Pt|t−1Λ(λ)′F−1
t|t−1ηt|t−1, (10)

Pt|t = Pt|t−1 − Pt|t−1Λ(λ)′F−1
t|t−1Λ(λ)Pt|t−1. (11)

Here Pt is the variance of βt in the prediction and update step. The equations enable
the Kalman filter to recursively estimate all latent variables for t = 1, ..., T 2.

In order to start the recursion, the initial value for βt is set equal to the uncondi-
tional mean, β1|0 = E[βt] = µ, and the initial covariance matrix of the state vector,
P1|0, is set equal to Σβ, which is chosen such that Σβ −ΦΣβΦ′ = Σν

3. This initiation

2Derivation of the equations (6)-(9) is straightforward, see the book by Kim and Nelson (1999) for
the derivations of (10) and (11).

3See Appendix A for an explanation on how to solve for Σβ.
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enables the Kalman filter to provide a minimum mean squared error estimate of βt at
every time t = 1, ..., T given information up to time t− 1.

I obtain the latent variables using the Kalman filter, conditional on the hyperpa-
rameters of the state space framework. However, some of these hyperparameters are
unknown and have to be estimated using maximum likelihood. Let all unknown pa-
rameters of the measurement and state equation now be put into θ = (µ,Φ, λ,Σε,Σν).
Given that {εt,νt}Tt=1 are assumed to be Gaussian distributed, the distribution of yt
conditional on the information up to time t− 1 (denoted by Ψt−1) is also Gaussian. It
is then found that

yt|Ψt−1 ∼ N
(
yt|t−1,Ft|t−1

)
, (12)

and hence the log likelihood is given by

`(θ) = −NT
2

ln 2π − 1
2

T∑
t=1

ln |Ft|t−1| −
1
2

T∑
t=1

η′t|t−1F
−1
t|t−1ηt|t−1. (13)

Numerically optimizing the log likelihood function, `(θ), yields maximum likelihood es-
timates of the hyperparameters. The process to find the latent factors and consistent
estimates of the hyperparameters is a recursive one. The procedure is started by ini-
tiating the recursion using certain starting values for the hyperparameters (θ(0)) that
enable the Kalman filter to obtain estimates of the latent factors, conditional on the ini-
tial choice for the parameters (β(0)

t ). Subsequently, given β(0)
t , the likelihood function

(13) is maximised in the optimisation step to obtain new estimates of the hyperparam-
eters, θ(1), that yield a higher likelihood. These estimates are used in the Kalman filter
again to obtain newly estimated latent factors, β(1)

t and the corresponding likelihood
value. The likelihood value is then maximised again by choosing θ optimally. These
recursive steps in the algorithm continue until the estimates of the hyperparameters
converge and I find the optimum of the likelihood function.

2.2 Dynamic Nelson-Siegel Model with Time-Varying Volatility

In this section I discuss the concept of time-varying volatility in the DNS model as
introduced by Koopman, Mallee, and van der Wel (2010), who follow the common
GARCH specification of Harvey, Ruiz, and Sentana (1992). First, in subsection 2.2.1, I
describe the basic model in the DNS-TVV class relying on the methodology described
by Koopman, Mallee, and van der Wel (2010), the inclusion of a second common shock
component, alternative specifications of the GARCH process and the possibility to in-
clude the common component in the state equation. Second, I discuss the state space
representation of the DNS-TVV class in subsection 2.2.2. Last, subsection 2.2.3 dis-
cusses the estimation procedure of the DNS-TVV models in a state space framework
using the Kalman filter.
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2.2.1 Time-Varying Volatility

To allow for time-varying volatility in the DNS model, Koopman, Mallee, and van der
Wel (2010) follow Harvey, Ruiz, and Sentana (1992). They consider a state space frame-
work like the one in subsection 2.1.2, but set εt as follows

εt = Γεε∗t + ε+
t ε+

t ∼ N
(
0,Σ+

ε

)
, (14)

where Γε and ε+
t are N × 1 vectors of loadings and noise components, respectively, and

ε∗t is a scalar representing the common disturbance term. In this model ε+
t and ε∗t are

independent. The loading factor, Γε, determines how sensitive the different yields are to
the common shock. Koopman, Mallee, and van der Wel (2010) argue that magnitudes
of volatility differ across yields and find shorter maturity yields in general to be more
heavily loaded on the common shock component than longer maturity yields. The
distribution of the common volatility component, ε∗t , given the information up to time
t− 1 is

ε∗t |Ψt−1 ∼ N (0, ht) , (15)

where ht follows a GARCH specification as introduced by Bollerslev (1986), which is
given by

ht = γ0 + γ1ε
∗2
t−1 + γ2ht−1 t = 2, ...T. (16)

The GARCH specification is subject to restrictions γ0, γ1, γ2 > 0 and γ1 + γ2 < 1 on
its parameters in order to guarantee that ht is positive. The variance of the common
component at t = 1 is set equal to h1 = γ0

1−γ1−γ2 which is the unconditional variance. It
can now easily be seen that the covariance matrix of εt is time-varying through ht and
given by

Σε(ht) = htΓεΓ′ε + Σ+
ε , (17)

where t = 1, ..., T .
In the setting discussed above, a restriction is required to overcome identification is-

sues and there are several possibilities. Koopman, Mallee, and van der Wel (2010) note
that a normalization ΓεΓ′ε = 1 is an option, but choose to fix γ0 at a very small value
close to zero. I choose to fix the first element of Γε at 1 as this also prevents problems
and in addition to that it provides an intuitive method to distinguish two common com-
ponents in case the specification in (14) is extended with a second common disturbance
term (discussed later in this subsection). The actual choice for the restriction to prevent
identification problems is irrelevant to the results of the analysis as the outcomes of all
methods are equal up to a scaling factor.

Two Common Volatility Components
As explained in section 2.1, the long end of the yield curve in the DNS model is governed
only by the level factor, whereas the short end is also affected by the slope factor. The
curvature factor, in turn, mainly influences the middle part of the yield curve. Hence
different factors influence interest rates in different parts of the curve. This can also be
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the case for volatilities in both ends of the curve as variances of the different factors
may vary over time. To possibly account for this multiplicity of influences, I introduce
a second common time-varying volatility component into the measurement equation (5)
by adding an extra term to (14). In this setting, εt is decomposed as

εt = Γ1,εε
∗
1,t + Γ2,εε

∗
2,t + ε+

t ,

ε+
t ∼ N

(
0,Σ+

ε

)
, ε∗i,t ∼ N (0, hi,t) with i = 1, 2, (18)

where Γi,ε for i = 1, 2 and ε+
t are N × 1 loading and noise component vectors as before

and ε∗i,t for i = 1, 2 are independent common disturbance scalars. All disturbance terms,
ε∗1,t, ε

∗
2,t and ε+

t are mutually independent. The variances of the common components are
both modelled by a separate GARCH process as in (16), subject to the same parameter
restrictions as mentioned. The variance matrix of εt is given by

Σε(h1,t, h2,t) = h1,tΓ1,εΓ′1,ε + h2,tΓ2,εΓ′2,ε + Σ+
ε , (19)

where Σε(h1,t, h2,t) varies over time, depending on the variances from the two GARCH
specifications, h1,t and h2,t.

As in the case of a single common volatility component, restrictions on some param-
eters are needed to prevent identification issues. I put the same restrictions on Γ1,ε as in
the specification in which there is only one common component, namely I set the first el-
ement of the N×1 vector equal to 1. For Γ2,ε, on the other hand, I fix the last element at
1. This way an interpretation of the two time-varying volatility components is provided
intuitively as Γ1,ε is forced to at least apply to common shocks in the shortest maturity
yield and Γ2,ε to common shocks in the long end of the curve (the 30Y yield). Similar
to the case in which we have only a single common shock component, the outcomes of
the model are insensitive to the restriction used to overcome identification issues. Other
possibilities can be implemented, but will lead to identical results, up to a scaling factor.

Alternative Volatility Dynamics
Financial markets respond in different ways to positive and negative shocks and it is
common knowledge that volatility tends to increase quickly when negative news reaches
traders and investors whereas positive news usually has a much less pronounced effect.
Along that line of reasoning some asymmetric volatility models were introduced in prior
studies of which two important and well known examples are the threshold model GJR-
GARCH (further referred to as T-GARCH) from Glosten, Jagannathan, and Runkle
(1993) and Exponential GARCH (E-GARCH) introduced by Nelson (1991). These are
two extensions of the popular GARCH model, as given in (16). As an alternative to
the standard GARCH specification to account for time-varying volatility in the DNS
model, I introduce the T-GARCH and E-GARCH specifications to model the common
volatility dynamics. The T-GARCH specification to model ht in (15) is given by

ht = γ0 + γ1ε
∗2
t−1 + ψI[ε∗t < 0]ε∗2t−1 + γ2ht−1, (20)
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where I[a] takes the value 1 if a occurs and 0 otherwise. The parameters are restricted
in a similar manner as for the standard GARCH process, meaning that γ0, γ1, γ2, ψ >

0 and γ1 +γ2 + 1
2ψ < 1. The volatility at t = 1 is set equal to the unconditional variance

which is γ0
1−γ1−γ2− 1

2
ψ

. The alternative E-GARCH specification is

ln(ht) = γ0 + γ1
ε∗t−1√
ht−1

+ ψ

(∣∣∣∣∣ ε∗t−1√
ht−1

∣∣∣∣∣− E

[∣∣∣∣∣ ε∗t−1√
ht−1

∣∣∣∣∣
])

+ γ2ln(ht−1), (21)

where E
[∣∣∣ ε∗t√

ht

∣∣∣] is the expectation of the absolute value of a standard normally dis-

tributed random variable, which is equal to
√

2
π . No restrictions on the parameters are

required in the E-GARCH specification and the unconditional expectation of the log
variance, E[ln(ht)], is found to be equal to γ0

1−γ2 . The alternative specifications for vari-
ance dynamics enable the common volatility component in the DNS model to account
for asymmetric response to positive and negative shocks.

Time-Varying Volatility in the Factors
As an alternative to incorporating a common volatility component in the measurement
equation, Koopman, Mallee, and van der Wel (2010) and Harvey, Ruiz, and Sentana
(1992) propose a method to include it in the state equation. In that way, the common
volatility component does not directly influence the yields, but applies to the estimated
latent factors of the DNS model and indirectly affects the estimated yields. The term
νt in (4) is then decomposed as

νt = Γνν∗t + ν+
t ν+

t ∼ N
(
0,Σ+

ν

)
, (22)

where Γν and ν+
t are 3 × 1 vectors of loadings and noise terms, respectively, and ν∗t

is a scalar representing the common disturbance component where ν∗t |Ψt−1 ∼ N (0, gt)
and gt is given as ht in (16). The common disturbance and the noise term vector el-
ements are all mutually independent. In order to prevent identification issues for this
DNS-TVV model specification I set γ0 equal to 0.0001 and estimate the elements of Γν
freely. Koopman, Mallee, and van der Wel (2010) regard the specification of a common
volatility component in the state equation as a restriction compared to including it in
the measurement equation.

Volatility and Macroeconomic and Financial Factors
In prior research GARCH models have been extended to also include other sources
of information, coming from exogenous explanatory factors. An example is given by
Brenner, Harjes, and Kroner (1996), who describe a GARCH process for short-term
interest rate volatility that also depends on the level of this short rate, they name the
result GARCH-X. Combining the idea of time-varying volatility in the DNS model with
the result of Diebold, Rudebusch, and Aruoba (2006) who find support for extending
the DNS by several exogenous variables, I introduce a GARCH-X model to describe the

11



variance dynamics of the common volatility component in the DNS-TVV model. This
extension of the GARCH model in (16) is given by

ht = γ0 + γ1ε
∗2
t−1 + γ2ht−1 + φ′zt−1 t = 2, ...T, (23)

where γ0, γ1 and γ2 are the standard GARCH parameters as before, φ is a K × 1 vector
of parameters and zt a K × 1 vector of K exogenous variables. The exogenous vari-
ables are included in the model with a lag of one period such that the resulting model
is conditional and better applicable to forecast. The unconditional expectation of the
variance in (23) is equal to γ0+φE[zt]

1−γ1−γ2 , where E[zt] is the K×1 vector with unconditional
expectations of the exogenous variables.

In this study I regard two different GARCH-X models to describe the volatility pro-
cess of the common component, namely one that includes the macroeconomic variables
used to extend the DNS in Diebold, Rudebusch, and Aruoba (2006) and one in which the
Chicago Board Options Exchange Market Volatility Index (VIX), a measure of the S&P
500 option implied volatility, is used. The first extension enables to link tension and
volatility in interest rate markets to the economy using the macroeconomic variables ca-
pacity utilization (CU), the federal funds rate (FFR) and annual price inflation (INFL).
Diebold, Rudebusch, and Aruoba (2006) say these variables are often regarded as the
minimum set of fundamental variables to describe the basic macroeconomic condition.
Therefore they are a good start to introduce the GARCH-X concept to the DNS-TVV
class of models. In order to prevent negative estimates for the volatility, the macro
variables are included in the GARCH-X process as the squared values of their first dif-
ferences, I call this first specification the GARCHX-DRA. This way the finding of Lee
(2002), that changes in the federal funds rate target affect volatility in interest rates, can
be investigated in the DNS framework as well. The second GARCH-X model, including
the VIX, allows for linking stock market volatility to interest rate volatility. The VIX
is often referred to as Wall Street’s fear gauge and could therefore have a significant
impact on the variance in the common shock component in the DNS-TVV model. From
here on this second exogenous variable GARCH specification is called GARCHX-VIX.

2.2.2 The DNS-TVV in State Space Framework

Introducing time-varying volatility, as discussed in section 2.2.1, to the DNS model
discussed in section 2.1 requires some adjustments to the structure of the model. The
time-varying variance, ht, in (16), (20), (21) and (23) depends on past values of the
unobserved common disturbance term ε∗t which therefore has to be treated as a latent
variable. Hence ε∗t should be included in the state vector, together with the DNS factors.
In contrast to Koopman, Mallee, and van der Wel (2010), who also allow for time-varying
volatility through a GARCH specification and use a non-linear state space representation
of the DNS model, I take the loading parameter (λ) to be constant over time, leading

12



to a linear state-space model. In this model the measurement equation is given by

yt = Zt(αt) + ε+
t , ε+

t ∼ N
(
0,Σ+

ε

)
, t = 1, ..., T, (24)

where Zt(αt) is a N × 1 vector function defined as

Zt(αt) =
[
Λ(λ) Γε

]
αt = Λ(λ)βt + Γεε∗t , ε∗t ∼ N (0, ht) , (25)

and αt = (β′t, ε
∗
t )
′ = (β1,t, β2,t, β3,t, ε

∗
t )
′ is the state vector. In this state vector, coef-

ficients βi,t for (i = 1, 2, 3) are the factors of the DNS model. Furthermore, Λ(λ) is
an N × 3 matrix containing the three constant factor loadings in the rows, as before.
The factors of the DNS model are again modelled as a VAR(1) process, hence the state
equation is given by

αt+1 =

[
(I3 −Φ)µ

0

]
+

[
Φ 03

0′3 0

]
αt +

[
νt+1

ε∗t+1

]
,[

νt+1

ε∗t+1

]
∼ N

(
0,

[
Σν 0
0 ht+1

])
,

t = 1, ..., T, (26)

where Φ is a 3×3 coefficient matrix, µ and 03 are 3×1 vectors of coefficients and zeros,
respectively, and ht+1 is modelled as in (16), (20), (21) or (23). I refer to the mod-
els using the state equation in (26) as DNS-GARCH, DNS-TGARCH, DNS-EGARCH,
DNS-GARCHX-DRA and DNS-GARCHX-VIX.

When two common volatility components are included, the vector of latent variables
is augmented with another extra element compared to (24), so the measurement equation
becomes

yt =
[
Λ(λ) Γ1,ε Γ2,ε

]
αt + ε+

t , ε+
t ∼ N

(
0,Σ+

ε

)
, (27)

where αt = (β′t, ε
∗
1,t, ε

∗
2,t)
′ and the other parameters are as explained before. The state

equation in this case is given by

αt+1 =

(I3 −Φ)µ
0
0

+

Φ 03 03

0′3 0 0
0′3 0 0

αt +

 νt+1

ε∗1,t+1

ε∗2,t+1

 ,
 νt+1

ε∗1,t+1

ε∗2,t+1

 ∼ N

0,

Σν 0 0
0 h1,t+1 0
0 0 h2,t+1


 ,

t = 1, ..., T, (28)

where h1,t+1 and h2,t+1 are modelled by separate GARCH processes, as in (16). I name
this model DNS-2GARCH.
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In case the time-varying volatility component is incorporated in the state equation,
as in (22), the state space model structure is again slightly different from the two above.
The vector of latent variables is now augmented by the common disturbance term for
the factors of the standard DNS model. The measurement equation does not include a
common disturbance term and is given by

yt =
[
Λ(λ) 0N

]
αt + εt εt ∼ N (0,Σε) , (29)

where αt = (β′t, ν
∗
t )′ and 0N is a N × 1 vector of zeros. An extra coefficient matrix

in the state equation is the main difference for this model compared to the previously
presented two. The dynamics of the latent variables are modelled as

αt+1 =

[
(I3 −Φ)µ

0

]
+

[
Φ 03

0′3 0

]
αt +

[
I3 Γν
0′3 1

][
ν+
t+1

ν∗t+1

]
,[

ν+
t+1

ν∗t+1

]
∼ N

(
0,

[
Σ+
ν 0

0 ht+1

])
,

t = 1, ..., T, (30)

where all parameters are as defined before and ht+1 is again modelled by a GARCH
process as in (16). This model is further referred to as DNS-FactorGARCH.

2.2.3 State Space Estimation of DNS-TVV

In this subsection the estimation procedure, based on the Kalman filter, for the DNS-
TVV class of models (see section 2.2.2) is explained. In subsection 2.1.2, the steps in
the Kalman filter are discussed for estimating the standard DNS model in state space
form. The basics in the approach to estimate the DNS-TVV model are similar, but
some adjustments need to be made. First of all, in the standard DNS model, the state
vector containing the latent variables is equal to βt whereas this vector is augmented in
the DNS-TVV model and denoted by αt. For convenience I rewrite the measurement
equations (24), (27) and (29) and the state equations (26), (28) and (30) and introduce
some new notation to obtain the general DNS-TVV state space form

yt = Hαt + ωt,

αt+1 = C +Kαt +Gυt+1,

ωt ∼ N (0,R) , υt+1|Ψt ∼ N (0,Qt+1) , (31)

where the expressions of αt,H,K,C,G,υt+1, and Qt+1 are given in appendix B in the
case of one or two common volatility components in the yields and for inclusion of it in
the state equation. The equations of the prediction step in the Kalman filter are then
given by the following

αt|t−1 = C +Kαt−1|t−1, (32)
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Pt|t−1 = KPt−1|t−1K
′ +GQtG

′, (33)

ηt|t−1 = yt −Hαt|t−1, (34)

Ft|t−1 = HPt|t−1H
′ +R (35)

and the update step is summarised by

αt|t = αt|t−1 + Pt|t−1H
′F−1
t|t−1ηt|t−1, (36)

Pt|t = Pt|t−1 − Pt|t−1H
′F−1
t|t−1HPt|t−1. (37)

Matrix Q contains ht+1 or h1,t+1 and h2,t+1 which are modelled by GARCH processes
and rely on latent shocks at time t which are unobservable. The book by Kim and
Nelson (1999) suggests taking expectations of the latent variables in (16) which gives

ht = γ0 + γ1E[ε∗2t−1|Ψt−1] + γ2ht−1 t = 2, ...T. (38)

where E[ε∗2t−1|Ψt−1] can straightforwardly be calculated as it is trivial that

ε∗t−1 = E[ε∗t−1|Ψt−1] + (ε∗t−1 − E[ε∗t−1|Ψt−1]) (39)

and it can therefore easily be shown that

E[ε∗2t−1|Ψt−1] = E[ε∗t−1|Ψt−1]2 + E[(ε∗t−1 − E[ε∗t−1|Ψt−1])2] (40)

where E[ε∗t−1|Ψt−1] is the last element of αt−1|t−1 and E[(ε∗t−1 − E[ε∗t−1|Ψt−1])2] is the
last diagonal element of Pt−1|t−1

4.
Starting values for αt and Pt in the Kalman filter recursion are taken to be the

unconditional mean and covariance matrix, as before. In the time-varying volatility
case this initiation means that α0|1 = E[αt] = C and

P0|1 =

[
Σβ 03

0′3 h1

]
.

Now the Kalman filter is able to provide a minimum mean squared error estimate of αt
for t = 1, ..., T given information up to time t− 1 and given the hyperparameters.

As discussed in subsection 2.1.2, the Kalman filter provides estimates for the la-
tent variables and the unknown hyperparameters have to be estimated using maximum

4When two common components are considered, we need the last two elements of αt−1|t−1 and of the
diagonal of Pt−1|t−1. In case the common volatility component is included in the state equation, the last
elements of αt−1|t−1 and of the diagonal of Pt−1|t−1 contain E[ν∗t−1|Ψt−1] and E[(ν∗t−1 − E[ν∗t |Ψt−1])2],
respectively.
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likelihood. Compared to the DNS model, the DNS-TVV model has some additional
unknown hyperparameters and therefore we have θ = (µ,Φ, λ,Σ+

ε ,Σν ,Γε, γ0, γ1, γ2)5.
Because {ε+

t ,νt}Tt=1 follow a Gaussian distribution, the distribution of yt conditional on
information up to time t − 1 is again Gaussian in the DNS-TVV class of models and
hence (12) again holds, hence the likelihood is also given by (13). However, Ft|t−1 and
ηt|t−1 are now given by equations (34) and (35), respectively, and they depend on (32),
(33), (36) and (37) which are clearly different from the prediction and update equations
in subsection 2.1.2.

3 Data

This chapter describes the data used in the empirical study. Section 3.1 first discusses
the interest rate data and gives summary statistics for the different yields in the sample.
Secondly, section 3.2 describes the macroeconomic and financial dataset that is used for
the GARCH-X models.

3.1 Interest Rate Data

For the empirical analysis in this thesis I use monthly data consisting of constant ma-
turity yields of US government zero-coupon bonds obtained from the United States
Department of Treasury, similar to Bekker and Bouwman (2009), who use daily data6.
The dataset in this thesis consists of end-of-month yields for the period from October
1993 until December 2011 and includes maturities of 3 and 6 months and 1, 2, 3, 5,
7, 10, 20 and 30 years. In contrast to Bekker and Bouwman I leave out the 1 month
maturity due to its high sensitivity to the federal funds rate and its poor availability (it
is only available from July 2001 onwards).

Except for the 30 year yield, all series are available over the entire sample period.
The 30 year yield series starts years before the beginning of the sample, but auctioning
of this Treasury bond was ceased in February 2002 and reintroduced in February 2006.
During this period of discontinuity of the series, the US Treasury Department published
extrapolation factors to derive 30 year yield estimates, which I use to find a substitute
for the non-existing data. The extrapolation factors are calculated by determining the
slope of the long end of the yield curve and extrapolating it to the 30Y maturity7. For
the period after the reintroduction of the 30 year bonds I again use the regular series of
constant maturity yields.

Figure I presents a plot of the cross section of yields over the sample period. The
5In case two common volatility components are included we find θ =

(µ,Φ, λ,Σ+
ε ,Σν ,Γ1,ε,Γ2,ε,γ1,γ2) where γi = (γi,0; γi,1; γi,2) for i = 1, 2 and when the common

volatility component is included in the state equation we find θ = (µ,Φ, λ,Σε,Σ
+
ν ,Γν , γ0, γ1, γ2). If the

GARCH specification in (16) is replaced by a T-GARCH (20) or E-GARCH (21) an additional unknown
parameter is added and we have θ = (µ,Φ, λ,Σ+

ε ,Σν ,Γε, γ0, γ1, γ2, ψ) and for the DNS-GARCHX (23)
model the parameter vector is given by θ = (µ,Φ, λ,Σ+

ε ,Σν ,Γε, γ0, γ1, γ2,φ).
6See http://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/default.aspx.
7See http://www.treasury.gov/resource-center/data-chart-center/interest-

rates/Pages/TextView.aspx?data=longtermrate for more information on the extrapolation method.
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Figure I: Cross Section of Yields
The figure shows the cross section of the 3M, 6M, 1Y, 2Y, 3Y, 5Y, 7Y, 10Y, 20Y and 30Y yields from October 1993
until December 2011. During the period between February 2002 and February 2006, the 30Y yield is obtained
using an extrapolation factor provided by the United States Department of Treasury.

long term trend is downwards, with short term interest rates currently near zero. How-
ever, interest rates have varied significantly over time. The yield curve is concave and
upward sloping most of the time, but that it can also take a downward sloping or humped
shape, as the figure clearly shows.

Table I presents the summary statistics for the ten yields in the dataset as well as
for a slope and curvature proxy. Here the slope of the yield curve over time is defined
as yt(360) − yt(3), where yt(τ) is the yield for maturity τ measured in months, and
the curvature of the yield curve is given by [yt(60) − yt(3)] − [yt(360) − yt(60)]. The
longest maturity on the curve, the 30-year yield, is assumed to proxy for the level of
the yield curve (see section 2.1). Some of the stylized facts of the yield curve become
clearly present from the table. The average yield curve, represented by the means of the
different yields, is concave and upward sloping. The lower average yield in the 30-year
maturity compared to the 20-year is explained by Litterman, Scheinkman, and Weiss
(1991) who argue that volatility has a larger impact on the long end of the curve. They
reason that due to the convexity of the function relating interest rates to discount fac-
tors, the longer yields are tilted downwards. The stylized fact of shorter maturity yields
being more volatile than those in the long end of the curve is also present in table I, as
shown by the decreasing standard deviations for longer maturities. An exception is the
3-month yield which has lower volatility than the 6-month yield, a remark also made
by Koopman, Mallee, and van der Wel (2010) for their dataset. Furthermore, the high
autocorrelations for all maturities at different horizons illustrate the persistence of the
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Table I: Yield Summary Statistics
Summary statistics for end-of-month constant maturity yield data for US government bonds from October 1993
until December 2011. ρ(τ) represents the τ month autocorrelation.

Maturity Mean St. Dev. Min. Max. ρ(1) ρ(3) ρ(12) ρ(24)
3M 3.181 2.100 0.010 6.380 0.994 0.972 0.753 0.372
6M 3.330 2.131 0.050 6.510 0.994 0.971 0.756 0.384
1Y 3.470 2.118 0.100 7.200 0.993 0.968 0.776 0.446
2Y 3.754 2.066 0.200 7.690 0.991 0.961 0.795 0.537
3Y 3.957 1.953 0.300 7.800 0.989 0.955 0.800 0.592
5Y 4.334 1.700 0.710 7.830 0.985 0.945 0.798 0.665
7Y 4.631 1.524 1.240 7.840 0.982 0.939 0.793 0.708
10Y 4.849 1.336 1.830 7.910 0.978 0.930 0.778 0.736
20Y 5.398 1.178 2.570 8.100 0.977 0.933 0.802 0.817
30Y (Level) 5.344 1.091 2.690 7.990 0.975 0.924 0.777 0.803
Slope 2.161 1.521 -0.640 4.570 0.979 0.933 0.554 0.012
Curvature -0.612 1.077 -3.120 2.030 0.938 0.822 0.486 0.391

yield dynamics. It is strongest in the long end of the curve, as can be seen from the
autocorrelations still being high even after two years. The slope and curvature proxies
also show high persistence. Curvature still has an autocorrelation similar to that of the
shorter maturity yields after a two year period. The autocorrelation of the slope proxy,
however, goes quickly towards zero for longer horizons.

3.2 Macroeconomic and Financial Data

The data for the macroeconomic and financial explanatory variables in the GARCH-
X DNS-TVV models in this study is obtained from Datastream. The variables that
are used are the capacity utilisation (CU), the federal funds rate (FFR), annual price
inflation (INFL) and the Chicago Board Options Exchange Market Volatility Index
(VIX)8. All four variables concern the US economy or US financial markets as Treasury
yields are studied here. I choose to use the macroeconomic factors CU, FFR and INFL
following Diebold, Rudebusch, and Aruoba (2006). They argue that these three make
up the minimum set of variables to describe the basic macroeconomy. Table II shows the
summary statistics of the exogenous factors and the correlation matrix of the variables
as they are used in the GARCH-X models and figure II presents plots of the series over
time. Capacity utilisation and annual inflation rate follow roughly similar patterns.
They both fall sharply during crisis periods, for example after the dot-com bubble burst
in 2000 or following the credit crunch in 2008, and return to more stable levels in times
of economic expansion. This behaviour leads to a positive correlation, as can be seen
from table II(b), but it is only small in absolute terms. Hence both factors certainly also
seem to signal different macroeconomic developments. As we see from table II(a) and
figure II(c), the sample period also includes a period of deflation with a low of -3.5%.

8The FFR is taken as its monthly average and the annual price inflation is calculated as the 12-month
change in the price deflator for personal consumption.
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Table II: Summary Statistics Macroeconomic and Financial Factors
The table shows the summary statistics of the macroeconomic and financial factors, capacity utilisation (CU),
the federal funds rate (FFR), annual price inflation (INFL) and the volatility index (VIX) in panel (a). Panel (b)
presents the correlation matrix for the squared first differences of the macroeconomic variables (CU, FFR and
INFL), the squared monthly VIX, the squared differences in the 3M, 2Y and 30Y yields and those of the empirical
slope (30Y-3M) and curvature proxies ([5Y-3M]-[30Y-5Y]). The exogenous variables and changes in yields and
curve characteristics are all squared to ensure they only take positive values and represent variances (in case of
the VIX).

(a) Summary Statistics

CU FFR INFL VIX
Mean 77.20 3.38 0.050 21.21
St. Dev. 4.88 2.16 0.022 8.24
Minimum 63.58 0.07 -0.035 10.42
Maximum 84.74 6.54 0.091 59.89

(b) Correlation Matrix

CU FFR INFL VIX 3M 2Y 30Y Slope Curvature
CU 1 0.026 0.137 0.388 0.124 0.058 0.358 0.231 -0.024
FFR 1 0.323 0.330 0.237 0.291 0.072 0.212 0.140
INFL 1 0.319 0.171 0.211 0.260 0.223 0.013
VIX 1 0.137 0.164 0.417 0.249 0.080
3M 1 0.562 -0.038 0.793 -0.042
2Y 1 0.265 0.477 0.569
30Y 1 0.367 0.188
Slope 1 0.095

This period followed the latest financial crisis. In figure II(b) we see the federal funds
rate decreasing sharply during economic downturns. Rate cuts usually coincide with
increasing stock market volatility, as can be seen from the VIX in figure II(d). The VIX
reached an all time high level in October 2008 as a consequence of the panic in stock
markets following the credit crunch and the default of Lehman Brothers. The FFR is
at record low levels at the end of the sample, close to zero percent. Hence the sample
period used in this thesis includes stable, but also turbulent and extreme periods in the
economy and financial markets. Table II(b) shows the correlations between the four
exogenous variables. They are all positive and relatively low, indicating they can all
signal different information in the volatility processes of the DNS-GARCHX models.

Panel (b) in table II also shows correlations for the macroeconomic variables and
the VIX with three different yields (3M, 2Y and 30Y) and the empirical slope and
curvature proxies. As we are interested in the relation between macroeconomic and
financial variables and the volatility in yields, the squared first differences are taken
for the three maturities, the slope and the curvature before calculating the correlations.
Remember this transformation is also made for the macroeconomic factors. The squared
changes in capacity utilisation relate mostly to the long end of the curve whereas for
the federal funds rate this is more the case with the short end. Correlation between
variation in annual inflation and in yields increases with maturity. The variance in
different parts of the curve therefore seem to be affected by different macroeconomic
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Figure II: Macroeconomic and Financial Factors
The figure presents time series plots for the macroeconomic and ainancial factors used as exogenous variables in
the GARCH-X volatility specifications in the DNS-GARCHX-DRA and DNS-GARCHX-VIX models. The US
capacity utilisation (CU), the federal funds rate (FFR), the US annual price inflation (INFL) and the Chicago
Board Options Exchange Market Volatility Index (VIX) are plotted in panels(a), (b), (c) and (d), respectively.

(a) Capacity Utilisation (b) Federal Funds Rate

(c) Annual Price Inflation (d) VIX

variables. The 30Y yield and the squared monthly VIX show the highest correlation
(0.417) between the interest rates and exogenous factors, indicating that surges in stock
market volatility tend to coincide with increases in volatility in the 30Y maturity. For
the slope proxy I find all correlations corresponding to the macro variables and the VIX
of similar magnitude, slightly above 20% and they are mostly near zero for the curvature
of the yield curve.

4 In-Sample Results

This chapter describes the empirical in-sample results on the various Nelson-Siegel mod-
els. First, section 4.1 discusses the standard DNS model. Section 4.2 then gives the
results for the DNS-GARCH model. Subsequently, the addition of a second common
component is examined in section 4.3. Section 4.4 describes the findings on the alterna-
tive volatility specifications, T-GARCH and E-GARCH, for the common component in
the yields and 4.5 reviews the results on the DNS-FactorGARCH model. Lastly, in 4.6
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Table III: VAR Estimates for the DNS Model
In the table the parameter estimates of the VAR model for the latent factors are shown. The results correspond
to the standard DNS model estimated in state space form. Panel (a) reports the estimated coefficients in Φ and
the constants in µ. In panel (b) the covariance matrix Σν is given. Asymptotic standard errors are obtained
using the information matrix.

(a) Constant and Coefficients - DNS Model

β1,t−1 β2,t−1 β3,t−1 µ (Constant)
β1,t (Level) 0.936*** 0.002 0.015 4.621***

0.02822 0.01396 0.01332 1.10319

β2,t (Slope) -0.034 0.922*** 0.072*** -3.908
0.03754 0.01859 0.01766 2.69615

β3,t (Curvature) 0.123 0.058 0.894*** -3.899
0.08275 0.04087 0.03857 3.40847

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

(b) Covariance Matrix of VAR - DNS Model

β1,t β2,t β3,t

β1,t (Level) 0.069*** -0.071*** 0.023
0.00795 0.00918 0.01649

β2,t (Slope) 0.124*** -0.050**
0.01310 0.02065

β3,t (Curvature) 0.595***
0.06556

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

I consider the empirical findings for the addition of exogenous variables to the GARCH
equation.

4.1 Dynamic Nelson-Siegel Model (DNS)

The estimation results for the vector autoregression (VAR) of the latent factors in the
standard DNS model from section 2.1, are presented in table III. The high persistence
in the yields and empirical factor proxies, shown in table I, is also present in the DNS
factors in panel III(a) as can be seen from the diagonal elements of the coefficient matrix
all being close to one. Moreover, the lagged value of the third factor, which proxies for
the curvature, has a significant influence on the slope factor. This significant relation
encourages the use of a VAR model to describe the dynamics of the latent factors in the
DNS instead of the more parsimonious AR(1) model. The parameter λ in the standard
DNS model is estimated at 0.0495 with a standard error of 0.00059, indicating that the
estimate is highly significant.

In figure III the filtered latent factors of the standard DNS model, obtained from
the Kalman filter, are plotted together with their empirical proxies for level, slope and
curvature of the yield curve. The time series of β2,t is multiplied by -1 to obtain a proxy
for slope. This multiplication is done because, as I explained in section 2.1, the slope
in the DNS model is given by −β2,t. The series of β3,t is multiplied by a factor 0.45
in order to better match the scale of the empirical curvature factor. You can see why
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Figure III: Empirical and DNS Factors
The figure shows the empirical level, slope and curvature factors together with the filtered latent factors from the
DNS model. The empirical level is proxied by the 30Y yield, slope is defined as 30Y-3M yield and curvature as
2*3Y-3M-30Y. The negative of the second factor is taken and the third latent factor is scaled by 0.45.

the factors in the DNS are said to represent the three main characteristics of the term
structure of interest rates.

The log likelihood, AIC and BIC for the standard DNS model are given in table
IV and table VI shows the averages and standard deviations of the filtered errors for all
maturities. The filtered errors are defined as the difference between the observed yield
and the filtered estimate obtained from the Kalman filter. Both ends of the curve seem
hardest to fit for the DNS model as becomes clear from the large mean filtered errors
and standard deviations in the 3M, 20Y and 30Y maturities. In contrast, the 3Y yield
is fit with high accuracy and the 6M interest rate is even fit perfectly. Overall the model
seems to provide best filtered estimates for the intermediate maturities and tends to
have problems with the very short and long end of the curve.

4.2 Time-Varying Volatility (DNS-GARCH)

In this thesis I use the DNS-GARCH model introduced by Koopman, Mallee, and van der
Wel (2010) as the baseline model of the DNS-TVV class and regard it as a benchmark
to compare the relative performance of the more extensive models. The inclusion of a
common component in the DNS-GARCH model provides extra flexibility compared to
the standard DNS. In this standard model the yield curve dynamics are thought to be
captured by a level, slope and curvature factor and the residual is assumed to be white
noise. The DNS-GARCH adds a common shock component to the measurement equa-
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Table IV: Log Likelihood, AIC and BIC for the Models
The Log Likelihood, Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are
reported in the table together with the number of parameters (#θ) of the different models. The test statistics of
Likelihood Ratio (LR) tests to compare the different model extensions to the standard DNS and the DNS-GARCH
are reported in the last two columns, respectively.

`(θ) #θ AIC BIC LR-Statistics
DNS 1477.75 29 -2897.50 -2732.44
DNS-GARCH 1741.26 41 -3400.52 -3167.16 527.0
DNS-2GARCH 1938.74 53 -3771.49 -3469.83 922.0 395.0
DNS-TGARCH 1759.36 42 -3434.72 -3195.67 563.2 36.2
DNS-EGARCH 1758.75 42 -3433.50 -3194.45 562.0 35.0
DNS-FactorGARCH 1506.62 34 -2945.24 -2751.72 57.7
DNS-GARCHX-DRA 1752.79 44 -3417.58 -3167.15 550.1 23.1
DNS-GARCHX-VIX 1766.54 42 -3449.09 -3210.04 577.6 50.6

tion of the state space framework to account for latent shocks that are not captured by
the three factor structure and could for example be caused by exogenous factors. Yet,
the shocks do not necessarily affect all yields with similar magnitudes as the loadings
Γε in (14) determine the sensitivities of different maturities to them. Furthermore, the
shocks are assumed to arrive in clusters and their variance exhibits GARCH-type char-
acteristics. The measurement error therefore is not assumed to be a pure white noise
process, but can consist of a common shock component and a white noise term, see
(14). In times when the GARCH volatility of the common shock component is low and
relatively constant, the measurement error is close to a white noise process. However,
in periods when volatility surges, latent shocks affect the yield curve and the measure-
ment error cannot be characterised as such. This specification could indicate that the
three factor structure does not suffice in fitting the shape of the yield curve during these
periods in time.

The VAR of the three latent factors in the DNS-GARCH model show similar dynam-
ics and persistence as in the standard DNS, as can be seen from panel (a) in table XIV in
the appendix. Panel (b) in the same table shows the corresponding covariance matrix.
A remarkable difference to the DNS model is that the lagged value of the level factor has
a significant positive effect on the curvature of the yield curve in the model presented
here. The parameter λ in the DNS-GARCH model is estimated at 0.0546 (standard
error of 0.00074), which is about 10% larger than in the standard DNS model, hence the
introduction of a common component changes the optimal factor loadings via λ. Table
V shows the estimated coefficients of the GARCH specification in (16) for the volatility
of the common shock component in the yields. The high and significant estimate of the
γ1 parameter indicates that much weight is put on recent shocks. The lag coefficient
(γ2) in the GARCH equation is low and not significantly different from zero. Therefore
the volatility of the common component is highly sensitive to the latest innovations, it
increases quickly with large shocks and reverts back soon thereafter.

The time series plots of the filtered latent factors in the DNS-GARCH model again
closely resemble their empirical counterparts that proxy for level, slope and curvature,
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Table V: GARCH Parameters of the DNS-GARCH Model
The table presents the estimates of γ0, γ1 and γ2 in the volatility process (16) of the common shock component
in the DNS-GARCH model. The parameters are estimated using maximum likelihood and asymptotic standard
errors, obtained using the information matrix, are reported.

γ0 γ1 γ2

0.003* 0.835*** 0.110
0.00169 0.17189 0.11602

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

as can be seen from figure XV in the appendix. In panel (a) of figure IV ht is plotted
over time. Some historical events are clearly illustrated in the graph. Firstly, the spike
in December 1994 coincides exactly with the Mexican Peso crisis. The Russian default
and the problems of Long-Term Capital Management (LTCM) as a consequence of that
caused tensions in worldwide financial markets starting in August 1998 which is also
visible in the plot. During the global financial crisis of 2008 the time series shows an in-
crease in volatility too. Yet, the two largest and latest spikes, corresponding to the start
of the problems concerning the Eurozone in early 2010 and the US downgrade from its
AAA credit status in August 2011 are most pronounced. Apparently the panic following
these last two events caused extreme surges in volatility of the common component in
the DNS-GARCH model. Yet, this should not be surprising as these events actually
concerned sovereign debt and therefore directly translate into Treasury yields.
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Table VI: Filtered Errors
The table shows the mean filtered errors and their standard deviations (measured in basis points) for the standard
and extended DNS models. The filtered errors are the difference between the observed yield and the filtered
estimate obtained from the Kalman filter at every point in time. Panel (a) presents the results for the standard
DNS, the DNS-GARCH and DNS-2GARCH models, panel (b) gives them for the DNS-TGARCH, DNS-EGARCH
and DNS-FactorGARCH and panel (c) shows the errors for the DNS-GARCHX-DRA and DNS-GARCHX-VIX
models. The median and averages of the means and standard deviations as well as the number of maturities
for which the mean or standard deviation of the filtered errors is lower than for the DNS model (# Lower) are
reported.

(a) Filtered errors DNS, DNS-GARCH and DNS-2GARCH

DNS DNS-GARCH DNS-2GARCH
Maturity Mean St. Dev. Mean St. Dev. Mean St. Dev.
3M -3.219 8.781 -3.156 5.868 -1.158 1.325
6M 0.000 0.000 0.000 0.000 0.410 2.014
1Y 0.218 5.270 -0.453 4.224 -0.286 1.546
2Y 0.262 2.699 0.000 0.000 -0.193 1.177
3Y -0.235 0.372 -1.047 1.722 -0.306 0.539
5Y -0.492 4.678 0.000 0.000 -0.224 2.170
7Y 1.548 3.506 0.992 5.396 -0.100 2.923
10Y -0.863 4.292 -1.026 5.166 -0.001 0.005
20Y 20.292 13.388 8.629 10.693 0.001 0.003
30Y 2.886 12.588 -0.935 4.332 -1.731 10.635
Median 0.109 4.485 -0.227 4.278 -0.208 1.435
Mean 2.040 5.557 0.300 3.740 -0.359 2.234
# Lower 6 6 7 8

(b) Filtered errors DNS-TGARCH, DNS-EGARCH and DNS-FactorGARCH

DNS-TGARCH DNS-EGARCH DNS-FactorGARCH
Maturity Mean St. Dev. Mean St. Dev. Mean St. Dev.
3M -3.153 6.074 -2.715 6.490 -4.275 7.999
6M 0.000 0.001 0.053 0.130 0.000 0.000
1Y -0.391 4.263 -0.475 4.157 0.258 5.008
2Y 0.000 0.000 -0.001 0.017 0.263 2.667
3Y -1.023 1.742 -0.948 1.645 0.000 0.001
5Y 0.000 0.000 0.004 0.030 -0.273 4.792
7Y 0.977 5.301 0.948 5.300 1.541 3.220
10Y -1.008 5.235 -1.074 5.206 -1.004 4.974
20Y 8.684 10.322 8.823 10.375 19.973 13.496
30Y -1.026 4.521 -1.067 4.489 2.573 12.763
Median -0.195 4.392 -0.238 4.323 0.129 4.883
Mean 0.306 3.746 0.355 3.784 1.906 5.492
# Lower 6 6 6 6 5 5
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(c) Filtered errors DNS-GARCHX-DRA and DNS-GARCHX-VIX
DNS-GARCHX-DRA DNS-GARCHX-VIX

Maturity Mean St. Dev. Mean St. Dev.

3M -3.137 5.700 -3.182 5.784
6M 0.000 0.000 0.000 0.000
1Y -0.474 4.199 -0.508 4.231
2Y 0.000 0.000 0.000 0.000
3Y -1.022 1.681 -1.039 1.705
5Y 0.000 0.000 0.000 0.000
7Y 0.935 5.381 0.968 5.317
10Y -1.064 5.119 -1.005 5.130
20Y 8.486 10.654 8.616 10.563
30Y -0.957 4.543 -0.905 4.456
Median -0.237 4.371 -0.254 4.344
Mean 0.277 3.728 0.294 3.719
# Lower 7 7 6 6

Panel (b) of figure IV plots the loadings in the vector Γε against maturity. For the 3M
maturity the loading is fixed at the value of 1 in order to overcome identification issues
(see section 2.2.1). The overall pattern of loadings against maturity is roughly similar to
that of Koopman, Mallee, and van der Wel (2010) who find a remarkably lower sensitiv-
ity of the 1Y and 9Y maturities. The 9Y is the before last maturity in their sample and
I therefore compare it to the 20Y yield, for which the loading is estimated at nearly zero
here. Hence it seems that regardless of the choice of maturities included in the sample,
the DNS-GARCH fits the loadings to the common component in such a manner that
the shortest, medium-term and longest maturities are most sensitive to common shocks
and the maturities in between much less.

Table IV confirms the finding of Koopman, Mallee, and van der Wel (2010). Al-
lowing for time-varying volatility leads to a large increase in the log likelihood value.
The likelihood ratio (LR) statistic to compare the DNS-GARCH model to the standard
DNS is equal to 527.0, indicating a large improvement in fit. After correction for the
addition of extra parameters the AIC and BIC also conclude that allowing for time-
varying volatility is a useful extension to the standard DNS model. Judgement on the
significance of the LR-statistics should be conducted with caution. They do not follow
the regular Chi-squared distribution with degrees of freedom equal to the difference in
number of parameters between the two models that are compared. Due to the presence
of nuisance parameters the actual distribution of the statistics is unknown, see Hansen
(1996) for a further discussion on this problem.

The filtered errors of the DNS-GARCH model are presented in panel (a) of table VI.
The average of the mean filtered error and the standard deviation is much lower than
in the standard DNS model, which is mostly due to the better fit of the shortest and
longest maturities. Especially the fit of the 20Y yield improves when the DNS model
is extended with a common volatility component governed by a GARCH specification.
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Figure IV: DNS-GARCH Common Volatility and Loadings
The figure shows plots of the volatility (ht) of the common shock component (ε∗t ) over time for the DNS-GARCH
model in panel (a). Panel (b) plots the loadings for the different yields against maturity (in months). The
loadings are the elements of the vector Γε and are defined as the sensitivities of the various yields to the common
shock.

(a) Common Volatility (ht)

(b) Common Component Loadings (Γε)

Furthermore, not only the 6M yield, but also the 5Y yield is fit perfectly (up to 3 dec-
imals) by the filtered yield curves from this model. In total the filtered estimates are
better using the DNS-GARCH than with the standard DNS model for 6 out of 10 ma-
turities and the standard deviations of the filtered errors are lower in an equal number
of cases.

In figure V the filtered 3M, 1Y, 7Y and 20Y yields are plotted over time together
with the 95% confidence bounds of the estimates and the observed series. The confidence
intervals give much additional insight in the accuracy of estimates and can therefore be
of great importance in practice. Increased uncertainty in financial markets leads to less
accurate estimations of the interest rates which should therefore be interpreted and used
more prudently. The width of the confidence intervals depends on the variance of and
sensitivity to the common component (ε∗t ) and on the individual variance of every yield
(diagonal elements of Σ+

ε in (14)). Due to the low sensitivity to the common compo-
nent, for which the variance is time-varying, the confidence ranges for the 1Y and 20Y
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Figure V: Observed and Estimated Yields
The figure shows observed and estimated yields from the DNS-GARCH model for the 3M, 1Y, 7Y and 20Y
maturities. The estimated yields are obtained using the filtered latent factors from the state space model. Time-
varying confidence bounds depend on the sensitivity of the yield to the common volatility (ht) and the variance
of the residual in the measurement equation (diagonal elements of Σ+

ε ).

maturities in the figure are nearly constant. On the other hand, for the 3M and 7Y rates
the width of the confidence intervals changes severely over time. For example at the end
of the sample period the two sequential surges in volatility as a result of Eurozone and
US credit rating problems lead to wider confidence bounds on the filtered estimates.

4.3 Two Common Volatility Components (DNS-2GARCH)

In order to obtain insight in the possible existence of additional common shocks in the
yield curve, the DNS-2GARCH model contains a second common component in the
measurement equation, see (18). Table VII presents the results from the two separate
GARCH processes for the volatilities of the common components in this model. The
dynamics of the second GARCH equation are similar to that of the DNS-GARCH model
as the process is also highly reactive to new shocks due to the estimate of γ1 being close
to 1. Only little weight is put on lagged levels of volatility, as the small, but significant
estimate of γ2 shows. Therefore, the effect of shocks in the second common component
die out quickly. The GARCH process of the first common component shows different
dynamics. Much more weight is put on the lagged level of volatility and the sensitivity
to the most recent shock is lower. These differing dynamics are nicely illustrated in
panel (a) of figure VI, where the volatilities of both common components of the model
are plotted over time. Due to the larger weight on lagged levels, the volatility stays high
for a more prolonged period after a spike in the first component compared to the second.
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Table VII: GARCH Parameters for the DNS-2GARCH Model
The figure shows the estimates for γi,0, γi,1 and γi,2 (for i = 1, 2) of the volatility processes in the DNS-2GARCH
model. The DNS model is extended with two common shock components for which the variance is governed
by separate standard GARCH processes as in (16). Robust standard errors are obtained using the sandwich
estimator.

γi,0 γi,1 γi,2

i = 1 0.0003*** 0.6483*** 0.3365***
0.00004 0.01813 0.00901

i = 2 0.0002*** 0.9195*** 0.0648***
0.000003 0.01334 0.00508

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

Furthermore, both time series seem to indicate different events in financial history with
differing intensities. For example the first component captures the increased level of
volatility that was present in the markets during the end of the nineties and at the
start of the new century whereas the second component really captures the increased
uncertainty as a result of the global financial crisis, the Eurozone problems and the US
downgrade.

In panel (b) of figure VI the loadings of the ten yields are plotted against maturity.
Remember that for the first component the loading of the 3M yield was fixed at 1 and for
the second component this was done for the loading of the 30Y yield. It does not seem to
be the case that one component captures mostly the common volatility in the short end
of the curve and the other in the long end. In contrast, the patterns of the loadings plots
show rough similarities. The most noteworthy difference is that the sensitivity to the
second component for the 6M yield is near zero, but around 1 for the first. Apparently
the 6M yield is mostly sensitive to the more persistent common volatility component.
The loading of the 20Y yield is shown to be lower than the 10Y and 30Y for both
common components and therefore stands out in the overall pattern of sensitivities.
This remarkable observation was also noted in the DNS-GARCH model earlier. It could
possibly be caused by the fact that no 20Y maturity bonds are issued by the US Treasury
Department. Hence the yield is estimated from prices at which securities are trading
in the secondary market which is a less transparent over-the-counter (OTC) market.
Therefore it is subject to a much larger error than the yields for which the US Treasury
auctions bonds and bills.

Similar to the DNS and DNS-GARCH model the factors characterising the yield
curve show high levels of persistence in the VAR framework of the state space model in
which the standard DNS is extended with two common components in the measurement
equation. Table XV in appendix C shows the results. The lagged level factor has a
significant negative effect on the slope whereas the lagged curvature has a significant
positive effect on this factor. The parameter λ in the DNS-2GARCH model is estimated
at 0.0563 with a standard error of 0.00002. Overall there are no large differences in the
VAR model for the latent factors between the DNS-GARCH and DNS-2GARCH model.
Figure XV in the appendix plots the time series of the latent factors. Compared to
the DNS and DNS-GARCH models the first factor, representing the level of the yield

29



Figure VI: DNS-2GARCH Factors and Volatility
The figure shows plots of the volatilities (hi,t for i = 1, 2) of the common shock components (ε∗i,t) over time for the

DNS-2GARCH model in panel (a). Panel (b) plots the loadings, corresponding to the two common components,
for the different yields against maturity (in months). The loadings are the elements of the vectors Γ1,ε and Γ2,ε

and are defined as the sensitivities of the various yields to the common shock.

(a) Common Volatilities (h1,t and h2,t)

(b) Common Component Loadings (Γ1,ε and Γ2,ε)

curve, deviates more from its empirical proxy. This deviation is especially large in the
middle part of the sample where we also see increased levels of steepness in the curve,
as indicated by the higher β2,t estimate.

Figure VII shows a comparison of the volatilities of the two common components in
the DNS-2GARCH model with the monthly VIX and the common component volatility
from the DNS-GARCH model. Surprisingly the volatility of the first common component
in the DNS-2GARCH model, for which the element corresponding to the 3M yield was
fixed at 1, shows roughly a similar pattern as the VIX. The variance of the second
component, for which the 30Y loading was fixed, resembles globally the dynamics of the
volatility of the common component in the DNS-GARCH model. There is not a one-to-
one match between the series as can for example be seen by the peak in the VIX during
the credit crunch in 2008. During that period h1,t shows increased volatility, but the
real spike is present in the second component. Similar to that, the period of increased
volatility between 1996 and 2000 in the DNS-GARCH model, visible in the series ht,
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Figure VII: Comparison of Volatilities
The figure shows plots of the transformation of VIX to monthly volatility in decimal notation ( V IX

100
√

12
) in panel

(a), the standard deviation of the common component in the DNS-GARCH model in (c) and the standard
deviations of the two common components in the DNS-2GARCH model, (b) and (d). The VIX shows dynamics
which are roughly similar to the variance of the first component in DNS-2GARCH and the time series of the
standard deviation of the second common component in DNS-2GARCH shows correspondence to the standard
deviation of the common component in the DNS-GARCH model.

(a) VIX (Monthly) (b)
√
h1,t

(c)
√
ht (d)

√
h2,t

is not present in h2,t. However, the first component in the DNS-2GARCH model picks
up this increase, especially during the last two years of the previous century. Yet, the
overall fluctuations of h1,t and h2,t seem to coincide with those of the VIX and ht.
Therefore it is interesting to see whether the standard deviation of εt in (18), expressed

as
√

Γ2
1,ε(i)h1,t + Γ2

2,ε(i)h2,t + Σ+
ε (i, i), where i = 1, ..., 10 indicates the element of the

vector or matrix, can be explained by the VIX and the square root of ht from the DNS-
GARCH model. Table VIII shows the results of regressions to analyse this relation for
all maturities. Almost all coefficient estimates are significantly different from zero at
the 99% level. Figure VIII shows plots of the estimated coefficients βV IX and scaled
loadings in vector Γ1,ε against maturity in the left graph and of βGARCH and scaled Γ2,ε

in the right. As the first element of vector Γ1,ε is fixed at 1 in the maximum likelihood
estimation to overcome identification issues, the loadings are now scaled by the βV IX
estimate of the 3M yield, 1.350, to allow for comparison. For the same reason Γ2,ε

is scaled by the 30Y βGARCH estimate, 0.221, as the loading for the longest maturity
is fixed at 1 for the second common component. As the graphs show, the coefficients
and loadings are remarkably close, up to the scaling factor. The similarities indicate
that h1,t accounts in a way for stock market volatility and h2,t for volatility in interest
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Table VIII: Volatility Component Regressions
The table shows regression results for the standard deviation of εt in the DNS-2GARCH model, defined as
the square root of (19), for every maturity. All regressions include a constant and have the square root of the
variance of the common component in the DNS-GARCH model (ht), given in (16), and the VIX (transformed
to monthly volatility and scaled to decimal notation) as explanatory variables. Hence the regression model

is
√

Γ2
1,ε(i)h1,t + Γ2

2,ε(i)h2,t + Σ+
ε (i, i) = c + βGARCH

√
ht + βV IX

V IXt

100
√

12
where i = 1, ..., 10 indicates the

elements of the vectors and matrices corresponding to the 10 different maturities, c is a constant and βGARCH
and βV IX are the regression coefficients. The R2 values for the 10 regression models are shown in the last column
and standard errors are presented below the coefficient estimates.

Constant βGARCH βV IX R2

3M 0.081*** 0.413*** 1.350*** 0.395
0.0039 0.0245 0.0601

6M 0.082*** 0.088*** 0.740*** 0.114
0.0037 0.0229 0.0562

1Y 0.103*** 0.030 0.826*** 0.066
0.0051 0.0319 0.0783

2Y 0.090*** 0.210*** 1.163*** 0.175
0.0049 0.0306 0.0749

3Y 0.112*** 0.435*** 1.853*** 0.258
0.0067 0.0413 0.1013

5Y 0.161*** 0.540*** 2.477*** 0.230
0.0094 0.0581 0.1424

7Y 0.168*** 0.536*** 2.521*** 0.221
0.0097 0.0601 0.1473

10Y 0.230*** 0.386*** 2.754*** 0.123
0.0135 0.0841 0.2061

20Y 0.142*** 0.126** 1.455*** 0.084
0.0083 0.0514 0.1261

30Y 0.251*** 0.221*** 2.340*** 0.093
0.0127 0.0791 0.1939

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

rate markets in general, assuming that this is represented by the common volatility
component in the DNS-GARCH model. The loadings of the first component and the
estimated coefficients βV IX are generally lower for shorter maturities than for the rest.
Hence the volatility of the short end of the curve is less sensitive to tensions in the
stock market than the long end. On the other hand, from the loadings of the second
component and the estimated coefficients of βGARCH we see that especially the medium-
term yields are sensitive to general interest rate volatility. Furthermore, the R2 statistics
show that especially for the shortest maturity (3M) and for the medium-term maturities
(3Y, 5Y and 7Y) a relatively large part of the variance of εt can be explained by the
monthly VIX and the volatility of the common component in the DNS-GARCH model.
These observations imply that the DNS-2GARCH model not only captures information
from shocks to interest rate markets, but also from shocks to stock markets and hence
this information is priced in the term structure9.

9I also looked at one-on-one regressions in which h1,t was regressed on a constant and VIX and h2,t

on a constant and ht, but the results were less satisfactory, in terms of explanatory power, than what
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Figure VIII: Volatility Component Loadings and Regression Coefficients
The figure shows the estimated coefficients βGARCH from table VIII and scaled loading parameters Γ1,ε plotted
against maturity in the left graph and the coefficients βV IX and loadings Γ2ε in the right. The loadings in vector
Γ1,ε are scaled by 1.350, which is the βV IX estimate for the 3M maturity and Γ2,ε is scaled by the estimate of
βGARCH for the 30Y yield, 0.221.

The log likelihood increases largely when I add a second common component to the
DNS-GARCH model, as shown in table IV. An additional 12 parameters are estimated to
achieve an increase of 197.48 likelihood points over the benchmark in the DNS-TVV class
of models, leading to a LR-statistic of 395.0. This increase indicates that an additional
common shock component is a valuable extension of the DNS-GARCH model. Similar
conclusions can be drawn from the AIC and BIC criterions which are both substantially
lower for the DNS-2GARCH than for the DNS-GARCH.

The DNS-2GARCH model also performs better than the DNS-GARCH model in
terms of fitting the yields, as is shown in table VI. For 7 out of 10 maturities the average
filtered error is lower than for the standard DNS model and 8 out of 10 times the
standard deviation of the filtered errors is lower. Remarkable is the very good fit of the
20Y yield using the DNS-2GARCH model which totally contrasts the results for the two
models discussed earlier. On average the filtered error is only 0.001 basis points with
a standard deviation of 0.003 for this maturity. The overall standard deviation of the
filtered errors is also substantially lower compared to the DNS and the DNS-GARCH
models.

4.4 Alternative Volatility Dynamics (DNS-TGARCH and

DNS-EGARCH)

Financial market volatility in many prior studies is characterised by asymmetric volatil-
ity rather than symmetric. For example stock market volatility tends to surge when
indices are falling and revert back to normal levels only gradually when prices increase.
This phenomenon is also present in interest rate markets, as studied by Dungey, McKen-
zie, and Tambakis (2009), who find US Treasuries to increase (and hence yields fall) in
volatile times. Yet, the standard GARCH model is not able to allow for different re-

is presented here. A possible explanation for this finding is that there is no one-to-one match between
the series, but only the patterns of both h1,t and h2,t are roughly coinciding with those of the VIX and
ht, as discussed.
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Table IX: GARCH Parameters for the DNS-TGARCH and DNS-EGARCH
Models
The table presents the estimates of γ0, γ1, γ2 and ψ for the asymmetric volatility processes (see (20) and (21))
of the common components in the DNS-TGARCH (panel (a)) and DNS-EGARCH (panel (b)) models. Robust
standard errors are obtained using the sandwich estimator.

(a) T-GARCH Parameters

γ0 γ1 γ2 ψ

0.003*** 0.702*** 0.122*** 0.136***
0.00008 0.05039 0.00218 0.02446

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

(b) E-GARCH Parameters

γ0 γ1 γ2 ψ

-1.463*** -0.140*** 0.735*** 1.041***
0.22743 0.00692 0.04300 0.04639

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

sponses of volatility to negative and positive shocks and therefore implies a perfectly
symmetric structure on the volatility process.

In order to allow for asymmetric dynamics I estimate two alternative specifications
of the volatility process for the common component in the DNS-TVV model. The re-
sults of the VAR of the DNS-TGARCH and DNS-EGARCH are shown in tables XVI
and XVII in the appendix, respectively. Both are very similar to each other in terms of
magnitude and significance of coefficients, but there are some differences compared to
the DNS, DNS-GARCH and DNS-2GARCH models. Using robust standard errors, all
coefficients in the E-GARCH VAR and almost all in the T-GARCH VAR are found to
be significantly different from zero. This finding implies a much richer structure among
the three latent factors characterising the yield curve than in the case of the three mod-
els discussed earlier. The parameter λ in the DNS-TGARCH model is estimated at
0.0544 (standard error of 0.00003) and 0.0541 (standard error of 0.000003) in the DNS-
EGARCH model. The difference between the two estimates is not large, but given the
small standard errors it is significant. The same holds when compared to the estimates
of λ in the DNS, DNS-GARCH and DNS-2GARCH models which were 0.0495 (0.00059),
0.0546 (0.00074) and 0.0563 (0.00002), respectively10. The time series of filtered factors
of the DNS-TGARCH and DNS-EGARCH models are very close to the ones from the
DNS-GARCH model (see figure XV in the appendix) and are therefore not presented
here.

Table IX(a) presents the estimates of the parameters for the T-GARCH specifica-
tion given by equation (20). The results support the hypothesis of asymmetric volatility
dynamics in the common shock component as all parameters, including φ are significant.
The weight on the lagged variance (γ2) in the T-GARCH model is similar to that in
the DNS-GARCH. Also in this specification recent shocks play the most important role,
only now the sign of a shock has an effect on the magnitude of the change in volatility.

10Standard errors of the λ estimates in parentheses.
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Figure IX: DNS-TGARCH Common Volatility and Loadings
The figure shows a plot of the volatility (ht) of the common shock component (ε∗t ) over time for the DNS-
TGARCH model in panel (a). Panel (b) plots the loadings for the different yields against maturity (in months).
The loadings are the elements of the vector Γε and are defined as the sensitivities of the various yields to the
common shock.

(a) Common Volatility (ht)

(b) Common Component Loadings (Γε)

All parameters for the E-GARCH specification, given by (21), in the corresponding
DNS-TVV model turn out to be significant, as shown in panel (b) of table IX. Hence also
the DNS-EGARCH model allows for asymmetry in the volatility process of the common
component, again supporting the finding of Dungey, McKenzie, and Tambakis (2009).
As the standard GARCH model is not nested in the E-GARCH specification, the results
from the table cannot directly be compared as in the case of T-GARCH. Yet, figures
IX(a) and X(a) show the time series of ht in the DNS-TGARCH and DNS-EGARCH
models, respectively. Not surprisingly the overall pattern is not very different from that
of the common volatility in the DNS-GARCH model, but there are some deviations be-
tween the three. For example the spike in 2001 in the asymmetric models is not as large
as in the symmetric model and in the beginning of 1996 the sudden jump in volatility is
more pronounced in the DNS-EGARCH than in the other two. Figures IX(b) and X(b)
show the common factor loadings for both asymmetric volatility models. Also these
are similar to the loadings of the DNS-GARCH model, see IV(b), except for the fact
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Figure X: DNS-EGARCH Common Volatility and Loadings
The figure shows a plot of the volatility (ht) of the common shock component (ε∗t ) over time for the DNS-
EGARCH model in panel (a). Panel (b) plots the loadings for the different yields against maturity (in months).
The loadings are the elements of the vector Γε and are defined as the sensitivities of the various yields to the
common shock.

(a) Common Volatility (ht)

(b) Common Component Loadings (Γε)

that the 20Y maturity now shows a small sensitivity whereas it is nearly zero in the
benchmark DNS-TVV model. Despite the loading for this yield still being low, it turns
out to be exposed to the common shock component as well when I allow for asymmetric
volatility, as opposed to symmetric.

In order to obtain a better insight in the effect of to new shocks in the two asym-
metric volatility models compared to the symmetric GARCH, figure XI visualises the
response by showing the news impact curves as described in Engle and Ng (1993) for the
estimated volatility processes in the three models. The standard GARCH specification
is symmetric and only allows positive and negative shocks to have an equal impact on
the level of volatility. In contrast, in the T-GARCH and E-GARCH specifications it
is also possible for the volatility to respond different to positive and negative shocks,
leading to asymmetric news impact curves. The responses to negative shocks in the
DNS-GARCH and DNS-TGARCH are nearly equal, because γ1 in the DNS-GARCH
model is about equal to γ1 + ψ in DNS-TGARCH. Hence γ1 in the DNS-TGARCH is
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Figure XI: News Impact Curves
The figure shows the news impact curves of the volatility processes in the DNS-GARCH, DNS-TGARCH and
DNS-EGARCH models. Here εt denotes a random normal shock of a certain magnitude. The curves show how
changes in volatility in the different models are related to shocks. In the GARCH model, the shape of the curve
depends only on γ1, leading to a symmetric curve, and for T-GARCH and E-GARCH it depends on γ1 and ψ,
allowing for the asymmetry.

lower than in the DNS-GARCH and the model responds less heavily to positive shocks,
as can be seen from the figure. The same holds for the DNS-EGARCH model, which also
reacts stronger to negative than to positive shocks and in fact the asymmetry is even
more pronounced than in the DNS-TGARCH model. Note that the GARCH process
is nested in the T-GARCH, but not in the E-GARCH specification. It is therefore not
possible to obtain exactly equal news impact curves for the GARCH and E-GARCH
models as would be possible for GARCH and T-GARCH.

Table IV shows a higher log likelihood compared to the DNS-GARCH model when
I allow for asymmetry in the volatility model of the common component. The difference
in likelihood is 18.10 points for DNS-TGARCH and 17.49 for DNS-EGARCH with just
one additional parameter and hence the AIC and BIC also indicate preference for the
extended models, as can be seen from the lower values. The average filtered errors in
table VI show that the fit of the DNS-TGARCH and DNS-EGARCH models is not much
different from the fit of the DNS-GARCH. Based on the mean of the average filtered
error and of the standard errors among all maturities, the symmetric model even shows
a better performance. Further it is noteworthy that in contrast to the DNS-GARCH
and DNS-TGARCH, the DNS-EGARCH does not fit any of the yields perfectly.

In general it can be concluded that allowing for asymmetry in the volatility specifi-
cation of the common component improves the DNS-TVV model in terms of fit. Yet,
when the likelihood values and fit for both asymmetric models are concerned, there is
no clear preference for one or the other as they are very close. However, due to the sim-
pler structure and because of the fact that it nests the standard DNS, the T-GARCH
specification seems to be the more appealing extension.
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Table X: GARCH Parameters for the DNS-FactorGARCH Model
The table presents the estimates of γ0, γ1 and γ2 in the volatility process of the common shock component in
the DNS-FactorGARCH model. In this model the common component is included in the state equation of the
state space framework. The parameters are estimated using maximum likelihood and robust standard errors are
obtained using the sandwich estimator.

γ0 γ1 γ2

0.0001 0.337 0.655***
Fixed 0.24443 0.20519

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

4.5 Time-Varying Volatility in the Factors (DNS-FactorGARCH)

In addition to the DNS-GARCH model, Koopman, Mallee, and van der Wel (2010)
present an alternative model in which the common shock component is included in the
state equation, see (30). In this framework the common component, for which the vari-
ance is governed by a GARCH process, does not affect the yields directly, but only
indirectly via the latent factors. Koopman, Mallee, and van der Wel (2010) find the
model to have a higher log likelihood than the standard DNS model, but the increase is
only small compared to the case in which the common term is included in the measure-
ment equation of the state space model.

Table IV presents similar results as in Koopman, Mallee, and van der Wel (2010)
for the DNS-FactorGARCH model in this empirical study. I find an increase in the like-
lihood value compared to the standard DNS, but it is about 10 times smaller than the
increase obtained when the common component is included in the measurement equa-
tion. The use of a dataset that includes the true long end of the yield curve therefore
does not change the relative performance of this model in the DNS-TVV class as was
earlier held possible. The estimates of the VAR are shown in table XVIII and the latent
factors are plotted in figure XV in the appendix. Again the persistence in the factors is
very high and as in the DNS-2GARCH model, the only significant off-diagonal elements
are those for the lagged level and curvature on the slope. The slope of the yield curve is
negatively affected by the level and positively by the curvature in the previous period.
The parameter λ in the DNS-FactorGARCH model is estimated at 0.0499 (standard
error of 0.00017) which is close to the estimate of the standard DNS model and slightly
lower than that of the other time-varying volatility models. Hence the factor loadings
in this model are closer to that of the standard DNS than to the other extended models.

Table X gives the parameter estimates of the GARCH process for the volatility of
the common component in the factors. In contrast to the other DNS-TVV models, the
coefficient of the lagged volatility (γ2) is relatively high compared to the weight that is
put on new shocks (γ1). Therefore the GARCH specification in the DNS-FactorGARCH
model is much less responsive to new shocks and past jumps in volatility die out more
gradually. To prevent identification issues γ0 is fixed at 0.0001, hence the three loadings
in Γν are estimated freely. Figure XII plots the volatility of the common component
in the DNS-FactorGARCH model over time. Surprisingly, the overall pattern is com-
pletely different from what is found for the other DNS-TVV models. High levels are
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Figure XII: DNS-FactorGARCH Factors and Volatility
The figure shows the volatility (ht) of the common shock component (ε∗t ) over time for the DNS-FactorGARCH
model. In this model the common shock component is included in the state equation.

observed after the burst of the internet bubble in 2001 and during the credit crunch in
2008. Furthermore, the peaks in volatility coinciding with the US downgrade and the
emerging problems in the Eurozone that are present in all other DNS-TVV models, are
not visible in the volatility plot presented here. Hence the volatility dynamics of the
common shock component in the factors are completely different from that in the yields,
as the process is much more persistent and clearly affected by different shocks.

The vector of estimated loadings for the common volatility component of the three
factors is equal to Γν = (−0.296, 5.926, 0.324)′. A common shock therefore affects the
latent factors, characterising the yield curve, in different directions. For example a pos-
itive shock leads to a lower yield in the long end of the curve (level decreases), an even
stronger decrease in the short interest rate (slope increases) and a relative increase in
the medium term yields (increase in curvature). The result is in line with the findings
of Christiansen and Lund (2005) who find slope and curvature of the yield curve to be
positively dependent on the short rate volatility in their combined model with a VAR
for the factors and a GARCH-in-mean for the error term.

Table VI shows the average filtered errors and their standard deviations for the
DNS-FactorGARCH model. These are close to the errors in the standard DNS model.
The DNS-FactorGARCH model also has difficulties fitting the yields in both ends of the
curve, as indicated by the large standard deviations. The mean average filtered error
and the mean standard deviation across the ten maturities are slightly lower than in the
standard DNS model, but overall the filtered estimates do not seem to improve much
from including a common volatility component in the factors.

4.6 Volatility and Macroeconomic and Financial Variables

(DNS-GARCHX-DRA and DNS-GARCHX-VIX)

Section 3.2 discusses the correlation between the squared changes in capacity utilisation,
the federal funds rate, annual inflation, the VIX and yields for some maturities. Dif-
ferent maturities relate to different macroeconomic or financial variables with varying
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magnitudes. Despite none of the correlations being really high, exogenous factors can
possibly partly capture additional dynamics in common volatility in the yield curve.
Therefore a GARCH-X specification, as in (23), is introduced to present another new
branch of models in the DNS-TVV class which I named DNS-GARCHX. As shown
by table IV, the inclusion of macroeconomic and financial factors using the explained
methodology, improves model fit. For both the DNS-GARCHX-DRA and the DNS-
GARCHX-VIX model, the log likelihood is reasonably higher compared to that of the
DNS-GARCH model. The second GARCH-X specification, including the VIX, even has
the highest likelihood of all models that include only one common component. Adding
only the VIX as an explanatory complement to the GARCH model increases the log
likelihood by 25.28. The three macroeconomic variables also turn out to be a valu-
able addition. However, they perform less well according to the statistical information
criteria, especially because this GARCHX-DRA extension uses three extra parameters
compared to DNS-GARCH whereas this is only one in the DNS-GARCHX-VIX. How-
ever, in terms of filtered errors the model including macroeconomic factors does best of
all single common component DNS-TVV models, as presented in table VI. It outper-
forms the standard DNS in terms of average filtered error and standard deviation for
7 out of 10 maturities. This result contrasts that of the DNS-GARCHX-VIX model,
which outperforms in 6 out of 10 for both, similar to the other DNS-TVV models with a
single common component. However, the result should be interpreted with caution. The
average filtered error for the 6M maturity is very close, but not equal to zero (rounded
to 0.000 in the table) for all models, except for the DNS-2GARCH and DNS-EGARCH.
Yet, the DNS-GARCHX-DRA is the only model for which it is actually smaller (in abso-
lute terms) than the average filtered error in the standard DNS model, but the difference
is very minor11. Hence even though there is in fact a statistical outperformance by the
DNS-GARCHX-DRA model concerning the filtered errors for the 6M yields, it is not
economically relevant.

Now I first turn further attention to the DNS-GARCHX-DRA model in specific.
Diebold, Rudebusch, and Aruoba (2006) find real economic activity relative to potential,
annual inflation and the monetary policy instrument to have an influence on future
movements in the yield curve. They add the three variables as additional factors to the
Nelson-Siegel model in order to link the term structure to the macroeconomy. The three
exogenous factors are proxied by capacity utilisation (CU), annual price inflation (INFL)
and the monthly average federal funds rate (FFR). They are often seen as the minimum
set of variables to explain the basic macroeconomic condition. I use the squared changes
of the variables proposed by Diebold, Rudebusch, and Aruoba (2006) to gain additional
explanatory power on the volatility dynamics of the common shock component in the
measurement equation of the state space framework. The estimation results of the
latent factor VAR model are presented in table XIX in the appendix. No remarkable
differences with the other models are present in the VAR, except for the magnitude of

11The same holds for the standard deviation of the filtered error.
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Table XI: GARCH Parameters for the DNS-GARCHX-DRA and DNS-
GARCHX-VIX Models
The table presents the parameter estimates of the volatility processes of the common components in the DNS-
GARCHX-DRA (panel (a)) and DNS-GARCHX-VIX (panel (b)) models. In the DNS-GARCHX-DRA model,
the common volatility component is modelled via a GARCH-X (23) in which the squared changes of the macroeco-
nomic variables used in Diebold, Rudebusch, and Aruoba (2006) are added to the volatility process as exogenous
variables. These variables are capacity utilisation (CU), the federal funds rate (FFR) and annual price infla-
tion (INFL). Panel (a) shows the estimates for γ0, γ1, γ2, φCU , φFFR and φINFL. In the DNS-GARCHX-VIX

model, the squared monthly VIX
(

V IX
100
√

12

)2
is used as exogenous variable to extend the volatility specification.

Panel (b) shows the estimates for γ0, γ1, γ2 and φV IX . Robust standard errors are obtained using the sandwich
estimator.

(a) GARCHX-DRA Parameters

γ0 γ1 γ2 φCU φFFR φINFL

0.002*** 0.877*** 0.054*** 0.002*** 0.017*** 0.0001
0.000004 0.00211 0.00099 0.0000001 0.00001 0.00084

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

(b) GARCHX-VIX Parameters

γ0 γ1 γ2 φV IX

0.001*** 0.814*** 0.085*** 0.560***
0.00006 0.01024 0.00490 0.01208

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

the constants. They are slightly higher, in absolute terms, than the constants in the
other DNS models and in contrast to those, they are all significantly different from zero
here because of the relatively small size of the standard errors. Plotting the time series of
the latent factors along with those of the DNS-GARCH (see figure XV in the appendix)
model showed that they are very close. Therefore time series of the factors of the
DNS-GARCHX-DRA model are not presented. The estimate of λ is 0.0547 (standard
error of 0.0000001), close to the estimate in the DNS-GARCH model. Panel (a) in
table XI presents the estimated coefficients of the GARCH-X process. All standard
GARCH parameters turn out to be significant in the GARCH-X-DRA model as well as
the coefficients of CU and FFR. The parameters γ0, γ1 and γ2 take similar values as in
the DNS-GARCH model and the complementing coefficients for the exogenous variables
are relatively small. Therefore the plot of the volatility time series (ht) in panel (a) of
figure XIII has only minor differences compared to that of the DNS-GARCH model in
figure IV(a). Figure XIII(a) also shows the influence of the exogenous factors (φ′zt−1)
in the GARCH process given by (23). These mostly cause the differences in common
volatility between the benchmark DNS-TVV model and the model discussed here. The
influence of the macroeconomic variables is most pronounced at the height of the global
financial crisis in 2008 where we find two large spikes. Hence the increase in volatility
in the yield curve at that time can for a significant part be accredited to changes in
the macroeconomy. The loadings of the common component are nearly identical in the
DNS-GARCH and DNS-GARCHX-DRA model and hence highest for the medium term
maturities, see figure XIII(b).

The finding of significant influence of two out of three variables that are regarded
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as the minimal set of fundamental variables to describe the macroeconomy, does not
automatically imply that there is a direct link between yield curve volatility and the
macroeconomic condition. The exogenous variables are included in the GARCH process
as squared first differences and therefore do indicate that changes in observed economic
indicators affect volatility of interest rates. However, it is the shock to financial markets
in general as a consequence of new information flows that causes a change in volatility
rather than a direct effect of a change in the macro variables. Changes in the FFR and
CU can come as a surprise to the market, reveal new information and possibly change
views on the economic future to which investors respond, leading to increased volatility
in the term structure. A positive change in CU can indicate improving prospects on
real activity, boosting stocks. Investors then possibly shift funds from bonds to stocks,
affecting interest rate volatility. In that way the change in CU indirectly affects interest
rate volatility rather than it being the actual and direct cause of an increase in common
volatility in yields. The result that FFR significantly affects ht supports the findings
of Lee (2002) who finds that interest rate volatility is sensitive to changes in the FFR.
Although in this thesis no distinction is made between unanticipated and anticipated
changes and rate hikes and decreases, which turns out to be important in Lee (2002),
there is evidence that the Federal Reserve policy actions do affect common volatility in
the term structure. The estimated coefficient for annual price inflation (φINFL) is not
significant. Monthly changes in annual inflation do not significantly affect the monthly
common volatility in the yield curve. This result is related to that of Mishkin (1992)
who finds no presence of the Fisher effect in the short run. He argues that during certain
periods, inflation and interest rates trend together in the long run and Fisher’s theory
strongly holds, but his analysis does not support presence of a relation between the
two in the short run. Moreover, the periods of a breakdown in the trending behaviour
of inflation and interest rates and the consequent weak support of the Fisher effect
are those where there is increased volatility. In other words, even the long run Fisher
effect only finds strong evidence in times of low volatility. Given that the relevance of
the common shock component is largest in periods of increased volatility, I relate the
insignificant effect of inflation and common volatility to this result.

The second DNS-GARCHX model incorporates the VIX as exogenous variable in
the GARCH equation for the common volatility. We have seen from the DNS-2GARCH
model that stock market volatility is also priced in the yield curve and is partially
captured through a second common volatility component in the DNS model. However,
from the noteworthy increase in likelihood for the DNS-GARCHX-VIX model, we see
that additional explanatory power can also be obtained by incorporating a measure
of stock market volatility in the single common component model via a GARCH-X
specification. Yet, the difference is that in the latter case the common component still
resembles general interest rate volatility, as in the DNS-GARCH model, and the VIX
only slightly affects the dynamics of it. In contrast, in the DNS-2GARCH model, the
stock market volatility is governed by a completely separate and own GARCH process,
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Figure XIII: DNS-GARCHX-DRA Common Volatility and Loadings
The figure shows plots of the volatility (ht) of the common shock component (ε∗t ) and the influence of exogenous
factors (φ′zt−1) on the GARCH process over time for the DNS-GARCHX-DRA model in panel (a). Panel (b)
plots the loadings for the different yields against maturity (in months). The loadings are the elements of the
vector Γε and are defined as the sensitivities of the various yields to the common shock.

(a) Common Volatility (ht) and Exogenous Influence (φ′zt−1)

(b) Common Component Loadings (Γε)

leaving much more freedom and resulting in much more improvement in model fit.
Table XX in the appendix gives the results of the VAR for the DNS-GARCHX-VIX

model. The time series of the latent factors turn out to be very close to those from the
DNS-GARCH model (see figure XV in the appendix) and are therefore not separately
shown here. The parameter λ is estimated at 0.0547 (standard error of 0.00053), equal
to the estimate in the DNS-GARCHX-DRA model. Panel (b) in table XI presents the
estimated GARCH-X coefficients which are all significant. As in the other models the
responsiveness of ht to new shocks is high and the weight on the lagged level of volatility
low. The standard GARCH specification is complemented by the squared monthly VIX
(in decimal terms) for which the coefficient φV IX takes the value 0.56012. In panel (a)

12The squared monthly VIX in decimal terms is given by
(

V IX

100
√

12

)2

. The VIX roughly translates

to the annualized expected 30-day movement in the S&P 500 in percentage terms, hence it concerns
a standard deviation. As ht represents the monthly variance of the common shock component in the
yields in decimal terms, a transformation is required.
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Figure XIV: DNS-GARCHX-VIX Common Volatility and Loadings
The figure shows plots of the volatility (ht) of the common shock component (ε∗t ) and the influence of exogenous
factors (φ′zt−1) on the GARCH process over time for the DNS-GARCHX-VIX model in panel (a). Panel (b)
plots the loadings for the different yields against maturity (in months). The loadings are the elements of the
vector Γε and are defined as the sensitivities of the various yields to the common shock.

(a) Common Volatility (ht) and Exogenous Influence (φ′zt−1)

(b) Common Component Loadings (Γε)

of figure XIV the volatility dynamics of the common component (ht) again resemble
the general interest rate volatility from the common component in the DNS-GARCH
model with only minor deviations. The influence of the VIX on the GARCH process
(φ′zt−1) is plotted in the same graph and, as with the macroeconomic variables, is
largest at the height of the financial crisis in 200813. Furthermore, increased tensions
in the stock market following the US downgrade in the summer of 2011 also seem to
significantly affect the common yield curve volatility. However, altogether the inclusion
of a stock market volatility index in the GARCH equation does not dramatically change
the volatility of the common shock component in the yields and make it show similar
dynamics as h1,t in panel (a) in figure VI. That is because the shock is filtered out of the
data using the Kalman filter. The volatility dynamics of this shock do not completely

13The plot of the influence of the VIX on the GARCH process here is exactly equal to the plot of
the VIX itself in figure 3(d) up to a scaling factor as it is the only exogenous variable included in the
volatility process of the DNS-GARCHX-VIX model.
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change the filtered estimates. Hence including the VIX in the GARCH-X model does
not force a stock market volatility component, as in the DNS-2GARCH, to be filtered
out first. The filter extracts the largest common factor from the data as the common
shock component, for which the variance turns out to mostly capture general interest
rate market volatility. The loadings in panel (b) of figure XIV, are also nearly equal
to those in the benchmark DNS-TVV model, which is not surprising given that the
volatility of the common shock component in the DNS-GARCHX-VIX model is very
close to that of the DNS-GARCH model.

5 Out-of-Sample Forecasting

This chapter assesses the forecasting ability of all models presented in this thesis for
short (1-month), medium (6-months) and long (12-months) horizons. Koopman, Mallee,
and van der Wel (2010) only report in-sample fit statistics for their DNS-GARCH model
and no out-of-sample forecasting results. However, besides fitting current and describing
past yield curve dynamics, term structure models are also used for what Diebold and
Li (2006) call a key practical problem, namely to predict future interest rates. Hence
it is useful to also evaluate the forecasting performance of the various models presented
here.

In the forecasting procedure I first estimate the parameters of the different models
over a subsample period for the state space framework as in (31). From the Kalman filter
I obtain the filtered latent factors for the full sample period and subsequently predict the
h-month ahead forecast at every point in the out-of-sample period by iterating forward
the state equation h periods. Therefore the h-month ahead forecast of the state vector
is given by

α̂t+h|t =

(
Id +

h−1∑
i=1

Ki

)
C +Khαt|t, (41)

with h being the forecast horizon, d is equal to the dimension of K and the other
parameters are as defined before. For the 1-month ahead forecast (41) is equal to
the first equation in the prediction step in the Kalman filter (see (32)) and therefore
automatically follows from the recursions, but for the 6- and 12-month the iterations are
needed to obtain the estimates. After the state vector is forecast, the h-month ahead
yield forecasts follow from

ŷt+h|t = Hα̂t+h|t, (42)

where ŷt+h|t is the N × 1 vector of h-month ahead yield forecasts for all N maturities,
made at time t, and the other parameters are as defined before. As the common shock
component is zero in expectation, it does not play a direct role in the forward iterations
to forecast the yield curve and hence the predictions only depend on the three Nelson-
Siegel factors representing level, slope and curvature. These roles are ensured by the
fact that only the first three elements of C and the upper 3 × 3 block of K contain
non-zero values. However, the time-varying volatility is accounted for in the filtering
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steps in the Kalman filter and therefore affects the estimates of the factors. Hence, the
common shock does have an indirect influence on the predictions through αt|t.

I use a simple random walk (RW) forecast as the benchmark for comparison of
the predictive accuracy of the models in this evaluation. Duffee (2002) states that
most term structure models already encounter difficulties beating this naive prediction
method which makes it a useful and simple benchmark model. The RW model is given
by

yt(τi) = yt−1(τi) + εi,t, εi,t ∼ N
(
0, σ2

i

)
, (43)

where yt(τi) is the yield at time t for maturity τi, with i = 1, ..., N being the different
maturities in the sample. The RW h-month ahead forecast for the yield is equal to the
last observation and hence given by

ŷt+h(τi) = yt(τi), (44)

which simply implies that interest rates do not change over the forecast horizon.
For the forecast evaluation, the estimation period runs from October 1993 until

November 2003, leaving an out-of-sample evaluation period from December 2003 until
December 2011. The parameters of the various models are estimated over the subsample
period once and held constant for the entire out-of-sample evaluation period. The reason
for not choosing a dynamic forecasting method with a moving or expanding window is
because the parameter estimation is demanding and especially for the more advanced
models it can be hard to find the optimum of the likelihood function. When using a
dynamic forecasting method, the possibility of ending up in a local maximum if a recur-
sive procedure is followed probably leads to less optimal forecasts compared to using a
static forecasting method as I do in this study.

Table XII shows the root mean squared errors (RMSE) of the RW model, and the
ratios of those of the standard DNS and the DNS-TVV models relative to the RW for
out-of-sample forecasts at 1-,6- and 12-month horizons. Outperformance of the RW
model is indicated by the shaded cells. In order to assess the significance of the relative
forecast accuracy of the DNS models compared to the benchmark, table XXI in appendix
C gives the Diebold and Mariano (1995) (DM) statistics of the predictions of all models
for every maturity at the three different horizons. The loss differentials are calculated
assuming that the squared forecast error is the relevant loss function. The test statistics
are asymptotically standard normally distributed14. In the table a positive DM-statistic
indicates an outperformance of the RW by a particular DNS model. The loss function
of the DM-statistics is chosen such that it allows them to indicate significance of out-
or underperformance of a certain model based on the RMSE. Due to the fact that the
root of the mean is a monotonically increasing function, the indicators in tables XII and
XXI point in the same direction and hence the tables are complementary.

For the 1-month ahead forecasts the RMSEs of the RW model are of similar mag-
14The h-step ahead forecasts are assumed to be h− 1 dependent when calculating the DM-statistics.

Diebold and Mariano (1995) and Giacomini and White (2006) note that this assumption may not hold in
reality, but argue it works well in practical applications and therefore assume it a reasonable benchmark.
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nitude for all maturities, indicating an equal forecasting performance across the yield
curve. The standard DNS model produces predictions that are close to the benchmark in
terms of accuracy and outperforms, although not significantly, in 4 out of 10 maturities.
Considering RMSEs, the only model that is able to do better is the DNS-FactorGARCH
model, which beats the benchmark for 5 maturities. All DNS-TVV models, except for
the DNS-2GARCH, outperform the RW forecast for the 6M and 1Y maturities. The
in-sample fit of these models was also good for these points on the yield curve, as was
indicated in table VI. Remarkable is, however, that none of the models is able to signif-
icantly outperform the benchmark at even a single maturity.

Predictions at the medium horizon show a better performance than for the short
1-month horizon. All DNS-TVV models outperform the benchmark at the three short-
est maturities and the outperformances for the 3M are significant at the 5% or 10%
level. Also for the 1Y yield the relative forecast accuracy is significantly better for all
DNS-TVV models, except for DNS-TGARCH. The best performing models in terms of
RMSE are the standard DNS, DNS-EGARCH and DNS-FactorGARCH as they beat
the benchmark for 4 maturities. Yet, if we also consider the significance of the relative
accuracy, the DNS-2GARCH and DNS-FactorGARCH show the most promising results.
The first shows significantly positive DM-statistics in table XXI for the 3M, 6M and 1Y
maturities at 95% and 99% levels. However, the performance of the longer maturity
predictions is poor, with highly significant underperformance relative to the RW model
for the six longest maturities. The DNS-FactorGARCH does not achieve as good results
in the short end of the curve, although it significantly beats the benchmark, but does
only significantly underperform in the long end for the 7Y, 10Y, 20Y and 30Y yields.
Moreover, this underperformance is not as large as for the DNS-2GARCH and the other
DNS-TVV models. Remarkable is that despite it does not significantly beat the forecast
accuracy of the benchmark at any maturity, the standard DNS model only significantly
underperforms for the 30Y yield. Overall the DNS-TVV models seem to do best at the
short end of the curve, which is where the RW model shows the largest RMSEs, and
worst at the long end, where the benchmark shows a better performance.

The most promising results come from the long horizon forecasts. All models, ex-
cept for the DNS-GARCHX-DRA, outperform the benchmark for the 3M, 6M, 1Y and
2Y maturities, based on RMSE. Furthermore, the relative accuracy of all DNS-TVV
models for the shortest three maturities is significantly higher than that of the RW fore-
cast at the 99% level. The outperformances based on RMSE are roughly in the range
of 20-25%. The RMSEs of the RW model predictions are again highest in the most
volatile yields which are those at the short end of the curve. At a long horizon a naive
forecasting method does not turn out to produce good results for short maturities. The
standard DNS model does somewhat better and shows significantly higher accuracy for
the most volatile yields at the 12-month horizon. The results in the tables show that
incorporating a second common volatility component, allowing for asymmetric volatility
or adding exogenous variables to the GARCH equation is not notably changing the fore-
casting performance of the DNS-GARCH model. The highest forecast accuracy is again

47



achieved by the most parsimonious DNS-TVV model, namely the DNS-FactorGARCH.
Its forecasts outperform the RW in terms of RMSE for the five shortest maturities.
According to the DM-statistics the accuracy is significantly higher for the 3M, 6M, 1Y
and 2Y yields and significantly lower for the longest four maturities, thereby balancing
the out- and underperformances.

Similar to Moench (2008), who uses a term structure model with a broad macroe-
conomic information set, I find that it is very difficult to beat the RW forecasts at the
1-month horizon. The RMSEs for all maturities are relatively small, indicating that the
naive prediction method provides reasonable forecasts. At the medium and long horizon
the performance of the DNS-TVV models is better for the shorter maturities. These
are the ones for which the accuracy of the RW model predictions is low, hence leaving
more room for improvement. The reason for the low accuracy of the naive benchmark
for these yields is probably the higher volatility, as is shown in table I. Allowing for
time-varying volatility in the DNS model turns out to improve the forecast accuracy in
this part of the curve as the models apparently are better able to capture purely the
dynamics of yields in the short end. The common volatility component therefore seems
to be a valuable addition to the DNS model when short maturity yield forecasting is
concerned at longer horizons. However, care should be taken for the longer maturities
as the relative accuracy compared to the RW model at the long end of the curve is poor.
This poor performance is probably caused by the fact that the longer maturity yields
stayed fairly stable over the entire out-of-sample period, as can be seen from figure I,
which makes it very hard to beat RW predictions.

Overall it can be concluded that, as is often the case with forecasting models, par-
simoniousness is best. The standard DNS model does not suffer from large under-
performances in parts of the yield curve at the three horizons and it outperforms the
benchmark for some short maturities. Yet, the DNS-FactorGARCH wins the horse race,
with especially good results at the long horizon. Hence the most parsimonious DNS-
TVV model turns out to be the best forecasting model.
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6 Robustness of the Results

In this chapter I discuss the robustness of the results presented in this thesis in twofold.
First, by considering the model fit on a subsample in section 6.1. Second, in section
6.2, by commenting on the sensitivity of the model outcomes to choices of the initial
parameter values.

6.1 Results Based on a Subsample

In order to assess the robustness of the results of the different DNS-TVV models in
terms of model fit, I consider a smaller subsample of the full sample to evaluate the
different common volatility extensions. This subsample runs from October 1993 until
November 2003 and hence is equal to the estimation window used for forecasting, see
chapter 5. Table XIII presents the log likelihood, AIC, BIC and LR-statistics of the
DNS-TVV models compared to the standard DNS and where possible also relative to
the DNS-GARCH. All DNS-TVV models again have much higher likelihood values, and
lower AIC and BIC, than the standard DNS model and hence the earlier conclusion of
time-varying volatility being a valuable extension, is robust to changing the sample. This
observation is in line with Koopman, Mallee, and van der Wel (2010) who also estimate
their DNS-GARCH model on a smaller subsample and find it to have significantly better
fit than the standard DNS model. However, comparison of the asymmetric volatility and
GARCH-X models to the DNS-GARCH model is discouraging. The likelihood values are
only minimally higher and the increases do not outweigh the punishment from parameter
addition in the AIC and BIC statistics15. A reason for this disappointing result could
be the chosen time frame. During almost this entire period the volatility in the term
structure was relatively low, the yield curve was concave and upward sloping and the
general level of interest rates was gradually declining, as can be seen from figure I. In
such a period, the addition of a common component still is a valuable extension of the
standard DNS. However, the exact choice for the specification of the volatility process
to govern the variance of the component is not resulting in striking differences.

In contrast, the DNS-2GARCH model does also have a significantly higher likelihood
value than the DNS-GARCH for the subsample, indicated by the large LR-statistic.
According to the AIC and BIC the addition of the twelve extra parameters to model the
volatility dynamics of and sensitivity to the second common component is more than
compensated for by the increase in model fit. So the finding that the second component
has additional explanatory power as a complement to the first common component turns
out to be robust to changing the evaluation window. As the second common component
is found to roughly represent shocks to the stock market, it is not surprising that it is a
valuable addition to the DNS-GARCH model also in the smaller time frame since panels
(a) and (b) in figure VII show that stock market volatility has seen increased levels for
a large part of the subsample. Furthermore, h1,t even has its peak during the subperiod

15The DNS-EGARCH model even has a lower log likelihood value than the DNS-GARCH over the
subsample which is possible because the GARCH model is not nested in the E-GARCH specification,
as is explained in section 4.4.
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Table XIII: Log Likelihood, AIC and BIC for the Models
The Log Likelihood, Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are
reported in the table together with the number of parameters (#θ) of the different models estimated over the
sample from October 1993 until November 2003. The test statistics of Likelihood Ratio (LR) tests to compare
the different model extensions to the standard DNS and the DNS-GARCH are reported in the last two columns,
respectively.

`(θ) #θ AIC BIC LR-Statistics
DNS 874.27 29 -1690.53 -1542.44
DNS-GARCH 1057.83 41 -2033.67 -1824.29 367.1
DNS-2GARCH 1206.31 53 -2306.61 -2035.96 664.1 296.95
DNS-TGARCH 1057.88 42 -2031.75 -1817.27 367.2 0.08
DNS-EGARCH 1054.37 42 -2024.73 -1810.25 360.2
DNS-FactorGARCH 883.08 34 -1698.16 -1524.54 17.6
DNS-GARCHX-DRA 1058.20 44 -2028.41 -1803.72 367.9 0.74
DNS-GARCHX-VIX 1058.50 42 -2033.00 -1818.53 368.5 1.34

and we can therefore not speak of a relatively calm period in the stock market from
October 1993 until November 2003.

6.2 Parameter Robustness to Initial Values

Estimating the parameters of the various DNS models in the state space framework is
done by finding parameter values that optimise the likelihood function. Due to the large
number of parameters in the models presented in this thesis, the optimisation problems
are highly dimensional and the likelihood functions can have multiple local maxima. In
order to start the optimisation procedure, I choose certain initial values for the model
parameters that I expect are most likely to lead to the global optimum. However, the
sensitivity of the optimisation outcome to the initial values can be large if certain dy-
namics are not strongly present in the data and hence the algorithm can encounter
difficulties finding the global maximum of the likelihood function. This problem is also
recognised by Gauthier and Simonato (2012). They try to solve the issue by linearising
Nelson-Siegel and Svensson models and including prior information on the parameter
values. Their procedure decreases the dimension of the optimisation, produces more sta-
ble estimates and converges quicker than standard approaches. Using US coupon bond
prices from 1987 to 1996 they find that their methodology improves the probability of
finding the optimal parameter estimates.

In the estimation procedure I did not experience large difficulties in finding the
optimum for the standard DNS, the DNS-GARCH, the DNS-2GARCH and the DNS-
FactorGARCH model. The dynamics of the latent factors and the common volatility
components seem to be strongly present in the data and the dynamics of the standard
GARCH process are not hard to explore by the algorithm. Repeating the optimisation
procedure with different initial values should lead to the same optimum every time in
order to be sure that the global maximum of the likelihood function is found. Exper-
imenting with different starting values for the parameters and using estimates of local
optima as new initial parameter choices leads to quick convergence to the global opti-
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mum for the four models.
For the asymmetric volatility and GARCH-X models the optima are much harder to

find. The problem with these is that the alternative volatility dynamics of the common
component are not as strongly present in the data and because of the high dimensionality
of the problem, the algorithm easily ends up in local maxima. The outcome of the opti-
misation procedure therefore is very sensitive to the initial parameter values chosen for
the DNS-TGARCH, DNS-EGARCH, DNS-GARCHX-DRA and DNS-GARCHX-VIX.
A lot of repetition of the optimisation procedure at different starting values is required
to ensure finding the global optimum. This issue is concerning for practitioners. De-
spite the fact that the models in this study are used to fit and forecast only monthly
yield curves, it is undesirable if calibration requires much effort. I use MATLAB to
estimate all models, but other software packages might be more efficient in finding the
optima of the high dimensional optimisation problems of these four DNS-TVV models.
The linearisation methodology of Gauthier and Simonato (2012) for Nelson-Siegel and
Svensson models can also provide a (partial) solution to the issue. They only introduce
the concept for the basic models, but it seems to be a good starting point to apply the
techniques on more advanced models as the DNS of Diebold and Li (2006), in a state
space framework and on the models presented in this thesis. This is a topic of further
research which enables to make the models workable in practice.

7 Conclusion

In this thesis I extend the work of Koopman, Mallee, and van der Wel (2010) who intro-
duce the concept of time-varying volatility in the Dynamic Nelson-Siegel model using a
common volatility component, modelled via a standard GARCH process. I use a new
dataset of US Treasury yields, including maturities up to 30 years, in order to consider
possible different dynamics in common volatility in the short and long end of the yield
curve. This approach leads to my first contribution. By introducing a second common
volatility component to the measurement equation of the state space framework I find
that shocks to interest rate and stock markets are both priced in the term structure.
Long maturities tend to be more sensitive to the common component that seems to
resemble volatility in stocks than short maturities and common shocks to interest rate
markets in general most strongly affect medium term yields. The extension greatly im-
proves model fit and the result is robust to different sample choice.

My second contribution focuses on alternative specifications for the volatility process
of the common shock component. I consider asymmetric models and possible influence of
macroeconomic and financial factors. Volatility in financial markets is often found to be
asymmetrically affected by positive and negative shocks. Using Threshold-GARCH and
Exponential-GARCH models I find that this asymmetry is also present in the common
shock component of the DNS model with time-varying volatility (DNS-TVV). Follow-
ing Diebold, Rudebusch, and Aruoba (2006) who extend the standard DNS model by
including macroeconomic variables, I use the same exogenous factors in a GARCH-X
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specification in the DNS-TVV class of models. Changes in real economic activity and
in the federal funds rate turn out to significantly affect the volatility of the common
component. Furthermore, in a different model, I find that a measure of stock market
volatility also has a significant impact on the common volatility process when modelled
via GARCH-X. All proposed extensions of the standard GARCH improve the fit of the
baseline DNS-TVV model. However, when a smaller and less volatile subperiod of the
dataset is analysed, the results for alternative specifications of the GARCH equation
turn out not to be robust. In periods of calmness and absence of large movements in the
yield curve, the standard GARCH process in the DNS-TVV class is not outperformed
by the alternative volatility models in terms of fit.

The DNS-TVV models are able to significantly outperform a naive random walk fore-
cast for short maturities at medium and long term horizons. Allowing for time-varying
volatility in the DNS enables the model to better capture dynamics in the most volatile
yields and produce relatively accurate 6- and 12-month ahead forecasts. However, the
naive model forecasts again turn out to be very difficult to beat at the short horizon, also
see Duffee (2002). For longer maturity yields the predictions of the DNS-TVV models
are poor compared to those of the random walk. Parsimoniousness turns out to be key,
the time-varying volatility model with the smallest number of parameters produces the
best results. Incorporating the common volatility component in the state equation of
the state space framework seems to be the most interesting alternative when forecasting
is concerned.

8 Suggestions for Further Research

The extensions on the work of Koopman, Mallee, and van der Wel (2010) presented in
this thesis offer several directions for further research. I discuss three suggestions I find
particularly interesting. First, the DNS-2GARCH model is introduced here using stan-
dard GARCH processes for the two volatility components. However, as the dynamics
of both turn out to be quite different and given the interpretations of the volatilities to
represent stock market and general interest rate market volatility, it can be worthwhile
to specify the GARCH models differently. For example, the variance of the component
relating to stock market volatility is possibly better described by the GARCHX-VIX
process. On the other hand, the interest rate market volatility dynamics might be cap-
tured more efficiently by an asymmetric model or a GARCH-X including macroeconomic
factors. Second, in previous literature yield volatility often depends on the level of inter-
est rates, as in the famous model by Cox, Ingersoll, and Ross (1985). Brenner, Harjes,
and Kroner (1996) discuss a framework that allows interest rate volatility to depend on
yield levels and on information shocks. As the level factor affects all maturities equally
in the DNS model, it could also affect volatility in different yields similarly. Therefore
the general level of interest rates can possibly yield additional explanatory power on
the common volatility component. The DNS-GARCHX model introduced in this the-
sis easily allows to implement this idea in the DNS-TVV class of models. Third, the
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concept of time-varying volatility in the DNS class can be introduced to some popular
extensions. De Pooter (2007) notes that a lot of practitioners use the Svensson (1995)
model to construct zero-coupon yield curves. It is interesting to see whether allowing for
time-varying volatility also improves fit for this more flexible extension of the standard
DNS model as it might by itself be better able to accommodate to exogenous shocks.
More recently, Christensen, Diebold, and Rudebusch (2011) proposed the arbitrage-free
Nelson-Siegel (AFNS) model. The absence of arbitrage is key in for example using term
structure models to price derivatives which makes the AFNS a very valuable contribu-
tion to practice. Time-varying volatility in the AFNS possibly improves the accuracy of
this interesting model.
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Appendix

A Finding the Unconditional Covariance Matrix of the

State Vector

In order to solve Σβ −ΦΣβΦ′ = Σν for Σβ I make use of the properties of the vector-
ization operator, following Christensen and van der Wel (2010). First the vectorization
operator is applied to both sides, giving

vec(Σβ)− vec(ΦΣβΦ′) = vec(Σν),

this can be rewritten as

Id2vec(Σβ)− (Φ⊗Φ)vec(Σβ) = [Id2 − (Φ⊗Φ)] vec(Σβ) = vec(Σν),

where d is the dimension of β, which is equal to 3 in the case of the Nelson-Siegel model.
The above can now easily be solved to arrive at the solution

vec(Σβ) = [Id2 − (Φ⊗Φ)]−1 vec(Σν).

B Coefficients in the General State Space Form

One common volatility component in the yields

H =
[
Λ(λ) Γε

]
αt =

[
βt
ε∗t

]

C =

[
(I3 −Φ)µ

0

]
K =

[
Φ 03

0′3 0

]

G = I4 υt+1 =

[
νt+1

ε∗t+1

]

R = Σ+
ε Qt+1 =

[
Σν 0

0 ht+1

]
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Two common volatility components in the yields

H =
[
Λ(λ) Γ1,ε Γ1,ε

]
αt =

βtε∗1,t
ε∗2,t


C =

(I3 −Φ)µ

0

0

 K =

Φ 03 03

0′3 0 0

0′3 0 0


G = I5 υt+1 =

 νt+1

ε∗1,t+1

ε∗2,t+1


R = Σ+

ε Qt+1 =

Σν 0 0

0 h1,t+1 0

0 0 h2,t+1



One common volatility component in the factors

H =
[
Λ(λ) 0N

]
αt =

[
βt
ν∗t

]

C =

[
(I3 −Φ)µ

0

]
K =

[
Φ 03

0′3 0

]

G =

[
I3 Γν

0′3 1

]
υt+1 =

[
ν+
t+1

ν∗t+1

]

R = Σε Qt+1 =

[
Σ+
ν 0

0 ht+1

]
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C Additional Tables and Figures

Table XIV: VAR Estimates for the DNS-GARCH Model
In the table the parameter estimates of the VAR model and the covariance matrix of the latent factors for the
DNS-GARCH model are shown. The results correspond to the Vector Autoregression of the DNS factors in the
model with a common volatility component modelled via GARCH. Panel (a) reports the estimated coefficients
in Φ and the constants in µ. In panel (b) the covariance matrix Σν is given. Asymptotic standard errors are
obtained using the information matrix.

(a) Constant and Coefficients - DNS-GARCH Model

β1,t−1 β2,t−1 β3,t−1 µ (Constant)
β1,t (Level) 0.972*** 0.001 0.004 4.692***

0.02470 0.01238 0.01200 1.68538

β2,t (Slope) -0.050 0.918*** 0.080*** -4.132
0.03542 0.01797 0.01733 3.25970

β3,t (Curvature) 0.178** 0.066 0.877*** -4.245
0.08088 0.04076 0.03917 4.57929

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

(b) Covariance Matrix of VAR - DNS-GARCH Model

β1,t β2,t β3,t

β1,t (Level) 0.055*** -0.059*** 0.051***
0.00612 0.00751 0.01426

β2,t (Slope) 0.116*** -0.088***
0.0117 0.01967

β3,t (Curvature) 0.611***
0.06284

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.
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Table XV: VAR Estimates for the DNS-2GARCH Model
In the table the parameter estimates of the VAR model for the latent factors and the corresponding covariance
matrix are reported for the the DNS-2GARCH model. The results correspond to the Vector Autoregression of
the DNS factors in the model with two common volatility components modelled via separate GARCH processes.
Panel (a) reports the estimated coefficients in Φ and the constants in µ. In panel (b) the covariance matrix Σν
is given. Robust standard errors are obtained using the sandwich estimator.

(a) Constant and Coefficients - DNS-2GARCH Model

β1,t−1 β2,t−1 β3,t−1 µ (Constant)
β1,t (Level) 0.995*** 0.003 -0.002 1.911

0.00344 0.01310 0.02347 10.2761

β2,t (Slope) -0.078*** 0.918*** 0.087*** 1.591
0.00945 0.01480 0.02795 3.49429

β3,t (Curvature) 0.047 0.052 0.914*** -1.915
0.05033 .06170 .01197 13.6418

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

(b) Covariance Matrix of VAR - DNS-2GARCH Model

β1,t β2,t β3,t

β1,t (Level) 0.060*** -0.066*** 0.024***
0.00097 0.00124 0.00119

β2,t (Slope) 0.116*** -0.035***
.00156 0.00189

β3,t (Curvature) 0.533***
0.01012

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.
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Table XVI: VAR Estimates for the DNS-TGARCH Model
In the table the parameter estimates of the VAR model for the latent factors and the corresponding covariance
matrix of the T-GARCH model are shown. The results correspond to the Vector Autoregression of the DNS
factors in the model with a common volatility component modelled via T-GARCH. Panel (a) reports the estimated
coefficients in Φ and the constants in µ. In panel (b) the covariance matrix Σν is given. Robust standard errors
are obtained using the sandwich estimator.

(a) Constant and Coefficients - DNS-TGARCH Model

β1,t−1 β2,t−1 β3,t−1 µ (Constant)
β1,t (Level) 0.996*** 0.003 -0.005*** 2.158

0.00021 0.00289 0.00132 1.53767

β2,t (Slope) -0.082*** 0.919*** 0.089*** 2.128
0.00099 0.00362 0.00194 1.80510

β3,t (Curvature) 0.078*** 0.083*** 0.892*** -1.065***
0.00115 0.00369 0.00129 0.11451

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

(b) Covariance Matrix of VAR - DNS-TGARCH Model

β1,t β2,t β3,t

β1,t (Level) 0.054*** -0.059*** 0.046***
0.00010 0.00010 0.00010

β2,t (Slope) 0.117*** -0.083***
0.00010 0.00008

β3,t (Curvature) 0.618***
0.00038

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.
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Table XVII: VAR Estimates for the DNS-EGARCH Model
In the table the parameter estimates of the VAR model for the latent factors and the corresponding covariance
matrix the E-GARCH model are given. The results correspond to the Vector Autoregression of the DNS factors
in the model with a common volatility component modelled via E-GARCH. Panel (a) reports the estimated
coefficients in Φ and the constants in µ. In panel (b) the covariance matrix Σν is given. Robust standard errors
are obtained using the sandwich estimator.

(a) Constant and Coefficients - DNS-EGARCH Model

β1,t−1 β2,t−1 β3,t−1 µ (Constant)
β1,t (Level) 0.992*** -0.001*** -0.002** 1.700

0.00399 0.00000 0.00081 2.14623

β2,t (Slope) -0.069*** 0.926*** 0.083*** 2.004
0.00323 0.00168 0.00141 2.14512

β3,t (Curvature) 0.061*** 0.072*** 0.902*** -1.286***
0.00000 0.00130 0.00130 0.07398

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

(b) Covariance Matrix of VAR - DNS-EGARCH Model

β1,t β2,t β3,t

β1,t (Level) 0.055*** -0.061*** 0.047***
0.00124 0.00177 0.00018

β2,t (Slope) 0.119*** -0.084***
0.00188 0.00048

β3,t (Curvature) 0.607***
0.00190

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.
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Table XVIII: VAR Estimates for the DNS-FactorGARCH Model
In the table the parameter estimates of the VAR model for the latent factors, the covariance matrix and the
parameters of the FactorGARCH model for time-varying volatility are shown. The results correspond to the
Vector Autoregression of the DNS factors in the model with a common volatility component in the state equation
of the state space framework, modelled via a GARCH process. Panel (a) reports the estimated coefficients in Φ
and the constants in µ. In panel (b) the covariance matrix Σν is given. Robust standard errors are obtained
using the sandwich estimator.

(a) Constant and Coefficients - DNS-FactorGARCH Model

β1,t−1 β2,t−1 β3,t−1 µ (Constant)
β1,t (Level) 0.994*** 0.001 0.006 1.247

0.03185 0.01976 0.03042 7.37507

β2,t (Slope) -0.052** 0.941*** 0.045*** 2.403
0.02176 0.02290 0.00894 9.41943

β3,t (Curvature) 0.040 0.041 0.945*** -1.460
0.19052 0.15524 0.19459 3.33920

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

(b) Covariance Matrix of VAR - DNS-FactorGARCH Model

β1,t β2,t β3,t

β1,t (Level) 0.080*** -0.086*** 0.024***
0.00156 0.00720 0.00449

β2,t (Slope) 0.094*** -0.078***
0.01749 0.00189

β3,t (Curvature) 0.589***
0.04918

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.
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Table XIX: VAR Estimates for the DNS-GARCHX-DRA Model
In the table the parameter estimates of the VAR model for the latent factors and the corresponding covariance
matrix of the GARCHX-DRA are presented. The results correspond to the Vector Autoregression of the DNS
factors in the model with a common volatility component modelled via a GARCH-X in which the squared first
differences of the macroeconomic variables used in Diebold, Rudebusch, and Aruoba (2006) are used as exogenous
variables. These variables are capacity utilisation (CU), the federal funds rate (FFR) and annual price inflation
(INFL). Panel (a) reports the estimated coefficients in Φ and the constants in µ. In panel (b) the covariance
matrix Σν is given. Robust standard errors are obtained using the sandwich estimator.

(a) Constant and Coefficients - DNS-GARCHX-DRA Model

β1,t−1 β2,t−1 β3,t−1 µ (Constant)
β1,t (Level) 0.999*** 0.006*** -0.006*** 3.176***

0.00033 0.00062 0.00078 0.32862

β2,t (Slope) -0.080*** 0.912*** 0.091*** -6.037***
0.00118 0.00101 0.00128 0.47762

β3,t (Curvature) 0.190*** 0.069*** 0.872*** -7.537***
.00050 0.00066 0.00100 0.76322

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

(b) Covariance Matrix of VAR - DNS-GARCHX-DRA Model

β1,t β2,t β3,t

β1,t (Level) 0.056*** -0.060*** 0.052***
0.00001 0.00002 .00004

β2,t (Slope) 0.117*** -0.088***
0.00002 0.00004

β3,t (Curvature) 0.607***
0.00005

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.
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Table XX: VAR Estimates for the DNS-GARCHX-VIX Model
In the table the parameter estimates of the VAR model for the latent factors and the corresponding covariance
matrix of the DNS-GARCHX-VIX model are shown. The results correspond to the Vector Autoregression of the
DNS factors in the model with a common volatility component modelled via a GARCH-X in which the squared

monthly VIX
(

V IX
100
√

12

)2
is used as exogenous variable. Panel (a) reports the estimated coefficients in Φ and the

constants in µ. In panel (b) the covariance matrix Σν is given. Robust standard errors are obtained using the
sandwich estimator.

(a) Constant and Coefficients - DNS-GARCHX-VIX Model

β1,t−1 β2,t−1 β3,t−1 µ (Constant)
β1,t (Level) 0.997*** 0.0002 -0.001 1.424

0.00524 0.00318 0.00215 8.18681

β2,t (Slope) -0.081*** 0.919*** 0.087*** 1.612
0.00617 0.00535 0.00661 3.07192

β3,t (Curvature) 0.070*** 0.068** 0.903*** -2.053
0.01009 0.02654 0.00392 4.67776

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.

(b) Covariance Matrix of VAR - DNS-GARCHX-VIX Model

β1,t β2,t β3,t

β1,t (Level) 0.056*** -0.060*** 0.050***
0.00010 0.00005 0.00023

β2,t (Slope) 0.117*** -0.086***
0.00004 .00034

β3,t (Curvature) 0.615***
0.00302

Standard errors are shown below the estimates and significance at 90%/95%/99% is indicated by */**/***.
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Figure XV: Empirical and Filtered Factors
The figure shows the empirical factors level (a), slope (b) and curvature (c) together with the filtered latent
factors of the DNS, DNS-GARCH, DNS-2GARCH and DNS-FactorGARCH models. The filtered estimates of
the DNS-TGARCH, DNS-EGARCH, DNS-GARCHX-DRA and DNS-GARCHX-VIX models are very close to
those of the DNS-GARCH and are therefore omitted in all three plots. In section 2.1 it is shown that the slope
of the yield curve is given by −β2,t in the DNS model. Therefore the β2,t estimates are plotted as their mirror
images. The β3,t series are scaled by 0.45 in order to better match the empirical factors and make comparison
easier.

(a) Level

(b) Slope

(c) Curvature
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