
A New Multiclass Support Vector

Machine
An Approach Using Iterative Majorization and Huber Hinge Errors

Gertjan van den Burg

Supervisor:

prof. dr. P.J.F. Groenen

Co-reader:

dr. D. Fok

Econometric Institute
Erasmus School of Economics
Erasmus University Rotterdam

July 26, 2012

Thesis submitted for the degree of Master of Science in Econometrics and Management Science.

ABSTRACT

A new multiclass Support Vector Machine (SVM) is presented, which can be used to find
the optimal decision boundaries in a multiclass classification problem. In the multiclass
classification problem the goal is to construct a decision function based on a set of objects
belonging to K different classes, such that the decision function best predicts the class label
of a new object.

The binary Support Vector Machine has been proven very successful for the classification
of objects belonging to two distinct classes. The present work extends the binary Support
Vector Machine to accommodate problems where objects belong to more than two classes. A
single optimization problem is constructed, in which all classes are considered simultaneously.

The suggested method is tested on a number of datasets, and compared with a number
of other classification methods. Performance comparison is done using a bootstrap scheme
which generates a confidence interval for the difference in performance between two classifiers.
The different classifiers are tested on four benchmark datasets and it is shown that the
proposed multiclass classification method performs at least as good as existing techniques.
On one dataset the proposed method performs significantly better than all other methods.

A comparison in computation time is also given, which shows that the proposed method
is slower than existing methods on datasets with a large number of objects or a large number
of classes. It is nonetheless believed that the proposed method provides a promising new
way of looking at multiclass classification problems.

CONTENTS

Page

Nomenclature vii

1 Introduction 1

1.1 Outline . 2

2 Binary Support Vector Machines 3

3 Literature Overview 7

3.1 Naive Approaches . 7

3.1.1 All vs. All classification . 7

3.1.2 One vs. All classification . 8

3.2 Single machine Approaches . 8

3.3 Error-correcting Coding Approaches . 9

3.4 Single Machine vs. OVA . 11

4 The MSVM-Maj Loss Function 13

4.1 Notation & Simplex Theory . 13

4.2 Errors & Error Functions . 14

4.2.1 Errors . 14

4.2.2 Error Functions . 15

4.3 Loss Function . 16

4.4 Convexity of MSVM Loss Function . 17

5 Majorization 19

5.1 Iterative Majorization . 19

5.2 Majorization of LMSVM . 21

5.2.1 Majorization of Case 1 errors . 21

5.2.2 Majorization of the p-th root function 22

5.2.3 Majorization of Huber functions . 23

5.2.4 Majorization of the quadratic term . 24

5.2.5 Minimization conditions . 25

6 Results 27

6.1 Implementation . 27

6.2 Performance Evaluation . 29

vi Contents

6.3 Experimental Setup . 30
6.4 Experimental Results . 32

7 Discussion & Conclusion 35

7.1 Parameter Selection . 35
7.2 Nonlinearity . 36

7.2.1 Splines . 36
7.2.2 Kernels . 36

7.3 Recommendations for Further Research . 36
7.4 Conclusion . 37

Bibliography 39

A Theorems & Proofs 41

A.1 Theorems from Rockafellar (1997) . 41
A.2 Convexity Proofs . 42
A.3 Maximum Eigenvalue Inequality . 43

B Huber hinge Majorization 45

B.1 Huber majorization for q < −κ . 45
B.2 Huber majorization for q ∈ (−κ, 1] . 47
B.3 Huber majorization for q > 1 . 48
B.4 Huber majorization for p = 2 . 48

NOMENCLATURE

αi Parameter for the quadratic term in the majorization for object i

χ Dummy variable in the Huber hinge majorization

ǫ Stopping criterion in the IM algorithm

κ Tuning parameter in the Huber hinge error

λ Regularization parameter in the loss function

ωi Coefficient of the majorization of the p-th root of the Lp norm

φ Dummy variable in the Huber hinge majorization

ψ Dummy variable in the Huber hinge majorization

ρi Individual object weights

εi Case indicator for object i used in the majorization function

a
(1)
ijk Quadratic term parameter of the majorization of h(q

(jk)
i)

a
(p)
ijk Quadratic term parameter of the majorization of hp(q

(jk)
i)

b
(1)
ijk Linear term parameter of the majorization of h(q

(jk)
i)

b
(p)
ijk Linear term parameter of the majorization of hp(q

(jk)
i)

c Intercept in the binary SVM formulation

c
(1)
ijk Constant term of the quadratic majorization of h(q

(jk)
i)

c
(p)
ijk Constant term of the quadratic majorization of hp(q

(jk)
i)

d Degree of spline transformations

f+ General error function for +1 objects in the binary SVM

f− General error function for −1 objects in the binary SVM

m Total number of explanatory variables

viii Nomenclature

n Total number of objects

nk Number of objects of class k

p Parameter of the Lp norm used to weigh errors

qi Errors in the binary SVM formulation

q
(jk)
i Error of object i onto class j, with yi = k

s Number of interior knots in the spline transformation

ukl Element of matrix U

yi Class label for object i

G+ Objects in the binary SVM with yi = +1

G− Objects in the binary SVM with yi = −1

Gk Group of objects for which yi = k

K Total number of classes

Γ(1) Constant terms after majorization of the p-th root of the Lp norm

Γ(2) Constant term after majorization of the Huber hinge errors

Γ(3) Constant terms after majorization of the quadratic term

β′
i Parameters for the linear term in the quadratic majorization for object i

δkj Vector along the side of the simplex between vertex k and vertex j

s
(k)
j Vector of spline weights for variable xj and class boundary k

t Translation vector of size (K − 1)× 1

t∗ Optimal value of t for which the loss function is minimized

u′
k Row of matrix U, coordinates of simplex vertex

w Weights in the binary SVM formulation

x′
i Row of matrix X, attribute vector for object i

xj Vector of objects for variable j

y Vector of n category labels

z′
i Object vector x′

i augmented with 1

A Diagonal matrix of quadratic majorization parameters αi

B Matrix of quadratic majorization parameter vectors βi

D Collection of spline basis matrices

Nomenclature ix

Dj Spline basis matrix for variable j

H Matrix of Huber errors h(q
(jk)
i) in the MSVM-Maj algorithm

Im m×m identity matrix

J Identity matrix where the first element is 0

K Kernel matrix used to include nonlinearity in the attributes

Q Matrix of q
(jk)
i in the MSVM-Maj algorithm

R Auxiliary matrix used in the MSVM-Maj algorithm

S Collection of spline weights matrices

Sj Matrix of spline weights for variable xj

U Matrix of simplex coordinates of size K × (K − 1)

V Combined matrix of parameters

W Matrix of weights of size m× (K − 1)

W∗ Optimal value of W for which the loss function is minimized

X Input matrix of n objects with m variables

Z Matrix with rows z′
i

CHAPTER

ONE

INTRODUCTION

Many problems in statistics and economics can be interpreted as classification problems. In
a classification problem the variable of interest is a categorical variable with a finite number
of outcomes. Generally, the analysis of such a classification problem focuses on creating
a classification function which best describes a given dataset. Alternatively, one may be
interested in developing a classification rule which accurately predicts the class label of an
unclassified sample, based on a dataset of objects where the class labels are known. In this
thesis we will focus on the latter problem.

One example of an multiclass classification problem in finance is the credit rating given
to companies. For instance, one may be interested in assigning a credit rating label to a
company based on financial data of the company. If the ratings and financial data of a
number of companies are available, this data can be used to construct a classification rule
to find the optimal class label for a new company. Classification problems also exist in the
field of marketing research. For instance, customers of a particular store could be classified
into different buyer groups based on their purchasing preferences.

Traditional methods which can be used to create such a classification function include,
among others, logistic regression and discriminant analysis. A more recent technique which
has proven very successful when the outcome is a binary variable, is the Support Vector
Machine (Cortes and Vapnik, 1995). The Support Vector Machine (SVM) aims to maximize
the minimal separation between the objects in the dataset, based on the explanatory variables
(also known as attributes in the SVM literature). This technique has been proven very
powerful and generalizes well to datasets with a large number of objects and a large number
of attributes.

Because of the success of the binary SVM, there has been a large interest in extending
the SVM technique to problems where the dependent variable can belong to K different
classes, with K > 2. However such an extension is not straightforward. Extensions proposed
in the literature are often difficult to implement, or require a large number of binary SVM
problems to be solved. Moreover, optimization methods for the SVM often depend on a dual
formulation of the SVM problem. This dual formulation can appear obscure for practitioners,
because of the mathematics involved.

To avoid the dual formulation, Groenen et al. (2008) proposed an iterative method to
solve the binary SVM optimization problem. This formulation is based on minimizing a loss
function constructed of misclassification errors, and uses an iterative majorization algorithm
which allows for arbitrarily close approximations of the SVM solution.

In this thesis a new multiclass classification method will be introduced, as an extension

2 Chapter 1. Introduction

of the work done by Groenen et al. (2008). The proposed method provides a new approach
to the multiclass classification problem, by using a new method for calculating the errors in
the construction of the loss function. Furthermore, the different weighting functions applied
to the errors create a very flexible method, which is believed to be an advantage.

Similar to the approach by Groenen et al. (2008), an iterative algorithm is used to find
the optimal decision boundary, without switching to a dual formulation. We believe that the
iterative method is easier to understand than the dual space approach. Moreover, because
of its simplicity the implementation of the algorithm on a computer is very straightforward.

A very important property of the SVM is that it allows for nonlinearity in the predictor
variables. However in this thesis we will focus on the linear method and its properties.
Extensions to include nonlinearity will be briefly mentioned in the Discussion.

1.1 Outline

This thesis is structured as follows. First, a short review of the binary support vector machine
approach proposed by Groenen et al. (2008) is given in Chapter 2. In Chapter 3 the existing
techniques for solving the multiclass SVM problem are examined, and a short motivation
for the development of a new method is offered. The details of the proposed approach are
given in Chapter 4. An optimization method using the Iterative Majorization approach of
De Leeuw (1977) is provided in Chapter 5.

The algorithm will then be tested on a number of benchmark datasets, and the perfor-
mance will be compared to known methods. Results of these tests are given in Chapter
6. Finally, Chapter 7 discusses the obtained results and concludes. Recommendations for
further research and a nomenclature are also included.

CHAPTER

TWO

BINARY SUPPORT VECTOR MACHINES

This chapter contains a review of the theory of binary Support Vector Machines. The mate-
rial presented here is based on Groenen et al. (2008). Note that the treatment below will be
confined to linear SVMs, since in the treatment of the multiclass method we also focus on
the linear method. Nonlinearity in the binary SVM approach presented here can be found
in Groenen et al. (2007).

The SVM classifier is trained on a part of the original dataset known as the training
dataset. The obtained classification function is then evaluated based on how well it can
classify objects in the test dataset. The test dataset can be a part of the original dataset
that is not in the training dataset or it can consist of previously unknown data.

In the binary SVM, an optimal separating hyperplane1 is constructed between datapoints
of two classes. For each of the n objects in the training dataset a class label yi is available,
as well as a vector of m explanatory variables x′

i. The class labels are coded such that yi
equals −1 if object i belongs to class −1, and yi = 1 if it belongs to class 1. The predicted
value qi of object i is defined as

qi = c+ x′
iw,

where w is a m×1 vector of weights and c is an intercept. The so-called margins of the SVM
solution are the hyperplanes defined by qi = 1 and qi = −1. The SVM aims to maximize
the distance between the margins of the two classes. In Figure 2.1 a graphical illustration is
shown of a perfectly separable classification problem in two dimensions. The solid line shows
the optimal decision boundary and the dashed lines show the margins of the SVM solution.
The SVM aims to maximize the distance between the margin lines, thereby creating an as
large as possible “gap” between the objects of two classes. This property ensures that there
is a maximal distinction between objects of two classes.

One of the nice properties of the SVM classifier is that in the perfectly separable case only
the objects that lie on the margins contribute to the SVM solution. These objects are called
the support vectors. In Figure 2.1 these objects are highlighted. If the data is not perfectly
separable, objects that lie on the wrong side of the decision boundary also contribute to the
solution. Before the classification problem is fully solved it is not known which objects lie
on the margins or give errors.

1“The optimal hyperplane is the hyperplane that separates the training data with the maximal margin:
it determines the direction [...] where the distance between the projections of the training vectors of two
different classes is maximal”. Quoted from Cortes and Vapnik (1995).

4 Chapter 2. Binary Support Vector Machines

The Support Vector Machine is based on minimizing a loss function formulated by adding
the total classification error of all objects and a penalty term to control for the size of w. An
object contributes an error when it is projected on the wrong side of the margin corresponding
to its class. This means that for an object of class 1, a nonzero error is found when qi < 1 and
for an object of class −1 a nonzero error occurs when qi > −1. When the SVM is considered
with absolute hinge errors, the error for a wrongly projected object from class 1 equals 1− qi
and the error for a wrongly projected object from class −1 equals 1 + qi.

To avoid overfitting of the data, a penalty term for the size of the weight vector w is
added to the loss function. To formalize the loss function let G+ denote objects from class
+1, and G− denote objects from class −1, such that G± = {i : yi = ±1}. Then the SVM
loss function with the absolute hinge error can be expressed as

LSVM(w, c) =
1

n

∑

i∈G+

max(1− qi, 0) +
1

n

∑

i∈G−

max(1 + qi, 0) + λ ||w||2, (2.1)

where || · || denotes the Euclidean norm, and λ a regularization parameter in the penalty
term. In the SVM literature this loss function is commonly minimized by switching to a dual
formulation (Cortes and Vapnik, 1995) and using a quadratic program solver2. Groenen et al.
(2008) showed that the above loss function can be minimized in the primal formulation using
the Iterative Majorization (IM) algorithm. A review of the IM algorithm is introduced in
Chapter 5, where it is applied to the Multicategory SVM loss function.

The loss function above can also be formulated in a more general setting by allowing
different specifications for the error functions. If these error functions are denoted by f+ and
f− for the objects from class +1 and −1 respectively, the loss function becomes

LSVM(w, c) =
1

n

∑

i∈G+

f+(qi) +
1

n

∑

i∈G−

f−(qi) + λ ||w||2. (2.2)

In Section 4.2 the choice of different error functions will be discussed more thoroughly.

2Other optimization methods can also be used. One of the most commonly used approaches is the Se-
quential Minimal Optimization method of Platt (1999).

5

✻

✲

x2

x1

c+
x ′

· w
=

0
c+

x ′
· w

=
1

c+
x ′

· w
=

−1

Figure 2.1 – Graphical illustration of the SVM solution of a perfectly separable classification
problem with 2 predictor variables. The solid line shows the maximum separating
hyperplane. The dotted lines are the margins of the SVM solution. The objects
that lie on these margin lines are the support vectors. Objects represented by
white circles belong to class +1, and objects represented by black circles belong
to class −1. Note that the support vectors have also been highlighted.

CHAPTER

THREE

LITERATURE OVERVIEW

The existing SVM techniques for solving the multiclass classification problem will be reviewed
here. The text below is largely based on the excellent review of existing techniques by Rifkin
and Klautau (2004). Contrasting the argument presented in that paper, this chapter will
close with arguments in favour of the single machine approach proposed in the next chapter.

As noted by Rifkin and Klatau, four distinct SVM approaches to the multiclass classifi-
cation problem can be identified. First, an optimization problem can be constructed which is
based on a single loss function, this approach is known as the single machine approach. Sec-
ond, the error-correcting coding approaches solve multiple binary classification problems and
combine the solutions of these problems in a specific way to achieve optimal classification.
Finally, two approaches exist that use binary classifiers to solve the multiclass classifica-
tion problem. These methods will be referred to as naive approaches and are known as the
all-vs-all (AVA) approach and the one-vs-all (OVA) approach.

Below the existing methods for each approach will be briefly reviewed. The mathematics
necessary to solve the optimization problems will be omitted from this review. As noted
this review is largely based on the review by Rifkin and Klautau (2004), and an extensive
analysis of all different methods and a comparison of the performance of each method can
be found therein.

3.1 Naive Approaches

Two main approaches exist to use binary SVM classifiers to solve the multiclass problem.
These methods will be discussed here.

3.1.1 All vs. All classification

The AVA classification scheme consists of training a binary classifier between each pair of
classes. This means that a total of K(K − 1)/2 binary SVM classifiers need to be trained.
Each of these classifiers yields a classification function f : Rm → R, which is in general of
the form (Cortes and Vapnik, 1995)

f(x) =
n∑

i=1

αiK(x,xi) + β, (3.1)

8 Chapter 3. Literature Overview

where αi and β are constants, and K(xi,xj) is a kernel function1. In the binary problem,
the sign of f(x) determines the predicted class label of an unclassified object x. Formally
this can be expressed as

ŷSVM = sign(f(x)).

Note that the sign function is defined such that sign(z) = +1 if z > 0 and sign(z) = −1 if
z < 0. Moreover, sign(0) can be considered unclassifiable. Now in the AVA approach we let
the binary classification function between class i and class j be given by fij , with fji = −fij .
Here we assume that in the binary SVM classification the objects of class i represent positive
samples and objects of class j represent negative samples. If this is done for all K(K − 1)/2
combinations, the predicted class label in the AVA approach is given by

ŷAVA = arg max
i




K∑

j=1

fij(x)


 .

3.1.2 One vs. All classification

In the OVA method, a decision boundary is constructed between each class and the collection
of all other classes. Thus K binary classifiers are constructed where a single class i is coded
as +1, and all other classes j 6= i are coded as −1. If the classification function obtained
through this binary classification is denoted as fi, the predicted class of an unclassified object
x can be found as

ŷOVA = arg max
i

fi(x).

Rifkin and Klautau (2004) argue that this OVA classification scheme is preferred over other
multiclass classification methods, since it is superior in both training time and performance,
provided the binary classifiers are well trained.

3.2 Single machine Approaches

As was mentioned in the introduction of this chapter, a single machine approach tries to
solve the multiclass classification problem using a single loss function. Several single machine
approaches have been proposed, most notably by Vapnik (1998), Weston and Watkins (1998),
Bredensteiner and Bennett (1999), Lee et al. (2004) and Crammer and Singer (2002a). As
noted by Rifkin and Klatau the methods proposed by Vapnik (1998) and Weston and Watkins
(1998) are very similar. In the notation used in this text all these methods aim to find K
classification functions fj , given by

fj(x) =
n∑

i=1

αijK(x,xi) + βj ,

where K(xi,xj) is again a kernel function evaluation, and αij and βj are constants to be
determined. More generally, this classification function can be denoted as fj(x) = hj(x)+βj
to separate the dependence on x and the constant term.

1In short, a kernel function is a mapping from two input vectors to a real number, which satisfies a number
of mathematical constraints. It should be noted that the kernel function and the number of categories are both
denoted by the letter K. To avoid confusion, the kernel function will always be written with its arguments.

3.3. Error-correcting Coding Approaches 9

Of the single machine approaches treated by Rifkin and Klatau, we will only focus on
the approach by Lee et al. (2004), since this approach is similar to the one presented in the
next chapter. Note that the other single machine approaches are similar. Lee et al. (2004)
suggest that the following loss function needs to be minimized

LLEE =
1

n

n∑

i=1

K∑

j=1,
j 6=yi

max
(
fj(xi) + 1

K−1 , 0
)

+ λ
K∑

j=1

||hj ||
2
H (3.2)

subject to:
K∑

j=1

fj(x) = 0.

In this expression, n is the number of objects in the training dataset, and λ is a regularization
parameter. Furthermore, since the functions fj are in general defined as functions over a
Reproducing Kernel Hilbert Space2 (RKHS), the square norm in the regularization term is
the norm of the function in the RKHS, denoted by || · ||2H. Note that the norm is only taken
over the hj , the part of the classification function dependent on x.

Note that in contrast to the binary SVM, the error function is no longer formulated as
max(z+ 1, 0) but is instead scaled by 1/(K − 1). As Lee et al. report, this is done to ensure
that the minimum of (3.2) yields the optimal decision boundary asymptotically as n → ∞.
However, as Rifkin and Klautau (2004) note, the fact that the optimal decision boundary is
approached asymptotically, is no indication that this will also be approached with a finite
number of datapoints.

Also of interest is the fact that a constraint is added to ensure that the classification
functions add up to zero. Moreover, it should be noted that in the summation of the error
functions over j, the error where j = yi is ignored. This has been done to ensure that a
correctly classified sample does not contribute an error to the loss function.

The classification rule for an object x from the test dataset, based on the functions fj
when the loss function is minimized, is given by

ŷLEE = arg max
j

fj(x).

As Lee et al. show, their multiclass SVM approach reduces to the standard binary SVM
formulation when K = 2, with the constraint f−1 = −f+1.

3.3 Error-correcting Coding Approaches

Error-correcting coding approaches have been put forth by Dietterich and Bakiri (1995),
Allwein et al. (2001), and Crammer and Singer (2001, 2002b). As noted by Rifkin and
Klautau (2004), the method proposed by Allwein et al. (2001) is an extension of the work
done by Dietterich and Bakiri (1995). The method of Allwein et al. will be treated here.

In the Error-correcting Coding (ECC) approach of Allwein et al., a coding matrix M ∈
{−1, 0, 1}K×ℓ is constructed. Here, K is again the number of classes, and ℓ is to be chosen.

2For a short review of Reproducing Kernel Hilbert Spaces, see Daumé (2004). It should be noted that
an understanding of RKHS is not necessary to understand the current review of the approach by Lee et al.
(2004). The regularization term is added to control for the “size” of the parameters in the functions hj . If
the linear kernel function is chosen such that hj(x) = x′wj , then ||hj ||2H = ||wj ||2. That is, the norm of the
regularization parameter reduces to the Euclidean norm.

10 Chapter 3. Literature Overview

For each column s of the matrix M, a binary classifier is used to construct a decision function3

fs : X → R. Allwein et al. do not explicitly specify the classification functions fs, since the
ECC approach can be used with any binary classifier. Here we will restrict our review to the
case where the binary classifier is the SVM. The functions fs will then be of the form (3.1).

The value of an element of M in a particular row of column s determines the class label
in the binary classification problem for that column. For instance, if K = 3 and column s of
matrix M equals [−1, 1,−1]′, objects in the training dataset for which yi ∈ {1, 3} constitute
the −1 class in the constructed binary classification problem, and objects for which yi = 2
create the +1 class. If an element of M is zero, this class will not be used in the construction
of the classifier fs. It should also be noted that every column of M should contain at least
one +1 and one −1 element.

Allwein et al. propose two methods to combine the obtained binary classifiers to predict
an unclassified object from the test dataset. First, let m′

r denote row r of M, and let f(x)
be the vector of predictions of x for each column of M, such that

f(x) = (f1(x), . . . , fℓ(x)).

Then the class of an unclassified object x is found by searching for the row m′
r for which the

distance to f(x) is minimized. Two distance methods are proposed, the first is the Hamming
distance dH(m′

r, f(x)), defined as

dH(m′
r, f(x)) =

ℓ∑

s=1

(
1− sign(mrsfs(x)

2

)
.

In this expression, mrs is the element in row r and column s of the matrix M. Furthermore,
the convention is used that sign(z) = 0 if z = 0. Formally the predicted class label is then

ŷ = arg min
r

dH(m′
r, f(x)).

As Allwein et al. note this method has the disadvantage that because the sign function is
used, the magnitude of the prediction fs(x) is not taken into account. This magnitude may
however be important as it often is a measure of the confidence of a prediction. Therefore,
they also propose a loss-based distance measure based on the loss function used in the binary
classifier. If the binary classifier used is the SVM, the loss function LSVM is defined as4

LSVM (z) = max(1− z, 0).

The loss-based distance measure can then be expressed as

dL(m′
r, f(x)) =

ℓ∑

s=1

LSVM (mrsfs(x)),

and the predicted class label follows from

ŷ = arg min
r

dL(m′
r, f(x)).

3Allwein et al. use a general space X for the input vectors x. In our case, the input variables are limited
to X = R

m.
4Note that this loss function differs from the binary SVM loss function presented in the previous chapter.

Here only the weighting function of the errors is considered, the regularization term is ignored. If we let
z = yiqi the loss function is similar to the one presented in Chapter 2, with absolute hinge errors.

3.4. Single Machine vs. OVA 11

Finally, there are a number of ways in which the code matrix M can be constructed. The
different coding matrices are described by the minimum distance ρ, measured between pairs
of distinct rows. Formally, ρ can be defined as

ρ = min

{
ℓ−m′

r1
mr2

2
: r1 6= r2

}
.

Allwein et al. consider five different coding approaches. First, OVA and AVA methods
can be implemented using the coding matrix. Second, a complete code can be constructed
in which all non-trivial column configurations are used. Finally two types of random codes
are considered, known as the dense and the sparse codes. In the dense code, the number of
columns is chosen as ⌈10 log2(K)⌉, and each element is chosen as either −1 or +1 with equal
probability. The code matrix used is chosen as the matrix with the highest value of ρ out of
10,000 random matrices. The sparse code has ⌈15 log2(K)⌉ columns and each entry is 0 with
probability 1

2 , and −1 or +1 with probability 1
4 each. Here the chosen code matrix is again

the one with the highest ρ. A constraint on these matrices is that no identical columns or
rows consisting of all zeros are allowed.

It is clear that the complete code matrix can become very large when the number of
categories K becomes large. If this is the case, the ECC approach may become infeasible.
According to Rifkin and Klatau the ECC approach did perform slightly better on some
datasets than the OVA approach, but these results were not fully reproducible using well-
trained binary classifiers in an OVA scheme. Quoting Rifkin and Klatau: “. . . it appears that
choosing the kernel parameters to maximize the strength of the individual binary classifiers,
and then using a one-vs-all multiclass scheme, performs as well as the other coding schemes,
and, in the case of the satimage data5, noticeably better than any of the coding schemes when
the underlying classifiers are weak.” In other words, the ECC approach may perform better
if the parameters of the underlying binary classifiers are not properly tuned. Otherwise the
OVA approach is expected to perform better.

As a final note on ECC, Crammer and Singer develop a method with a continuous code
matrix M, which also needs to be optimized in the method. Rifkin and Klautau (2004) note
that their method did not outperform a simple OVA scheme.

3.4 Single Machine vs. OVA

Above the alternative SVM methods for multiclass classification have been presented. The
OVA approach has a number of properties that make it an attractive method for tackling
the multiclass classification problem. The method is simple to understand, has a good
performance (as shown by Rifkin et al.), and since only K decision boundaries need to be
constructed it is also relatively fast. Therefore, from a practical viewpoint any alternative
that is proposed should provide an advantage in either of these domains.

In the next chapter, a new single machine approach will be introduced. The main mo-
tivation for this method is to enable a more intuitive understanding of multiclass SVM
classification. Furthermore, the method proposed may be superior in regions where there
is overlap between objects from different classes, because of the way in which misclassifica-
tion errors are counted. Moreover, using a binary classification scheme such as OVA may
seem unfulfilling from a practitioners view. It may be presumed that a method which is

5The satimage dataset is one of the benchmark datasets used often in the Machine Learning literature. It
is freely available from the UCI repository (Frank and Asuncion, 2010).

12 Chapter 3. Literature Overview

explicitly designed to handle the multiclass problem may be a more suitable solution, than
a combination of binary classifiers.

In contrast to the single machine approach proposed by Lee et al. (2004), the method
proposed will not use the sum-to-zero constraint, but instead will use projection onto a
lower dimensional space. Furthermore, the SVM margins will not be scaled by the number
of categories. Instead, this scaling is partially replaced by the aforementioned projection.
Finally, the proposed method will move away from the absolute error max(1 − z, 0), and
replace this with a more flexible weighting function. Naturally, we also ensure that for
K = 2 the proposed method reduces to the binary SVM. We now turn to the details of the
proposed multiclass SVM approach.

CHAPTER

FOUR

THE MSVM-MAJ LOSS FUNCTION

In this chapter the Multicategory Support Vector Machine (MSVM) loss function will be
presented. First the notation used in the formulation of this loss function will be introduced.
Second, a short recap is given of the mathematics of simplexes, which will be used to count
the misclassification errors. Then, a review is given of the common error functions used in
SVM applications. Finally, the MSVM loss function will be introduced and its properties
will be examined.

4.1 Notation & Simplex Theory

Let X denote the n×m matrix of n objects with m explanatory variables (attributes). For
each object a class label yi, is reported in the vector y where yi ∈ {1, . . . ,K}, corresponding
to K distinct classes. Based on these class labels, we introduce the groups Gk = {i : yi = k},
where each Gk holds the indices of all objects belonging to category k.

Recall that a regular N -simplex is an object in N dimensional space where each of the
N + 1 vertices are connected with equal distance and the faces connecting the vertices are
flat. For example the 2-simplex is an equilateral triangle and the 3-simplex is a tetrahedron.
Here a special regular N -simplex is considered which is centered at the origin but where the
distance between each pair of vertices is 11.

Let U denote the K × (K − 1) coordinate matrix of a regular (K − 1)-simplex where the
distance between each pair of vertices is 1. Each row of U denotes the coordinate vector of
a single vertex, and is denoted by u′

k. The general expression for an element ukl in the k-th
row and l-th column of U is given by

ukl =





−
1√

2(l2 + l)
if k ≤ l

l√
2(l2 + l)

if k = l + 1

0 if k > l + 1.

(4.1)

Further on, the eigenvalues of the symmetric (K−1)×(K−1) matrix (uk−uj)(uk−uj)
′

will be needed. Since the distance between the vertices of the (K−1)-simplex equals 1 by de-

1Note that this differs from the unit regular N -simplex (also known as the standard N -simplex) in that in
the unit regular simplex the distance from each vertex to the origin is fixed at 1. In the regular N -simplex
considered here this distance is equal to 1/(N + 1)

14 Chapter 4. The MSVM-Maj Loss Function

1 2

3

A

q
(21)
A

q
(23)
A

u2 − u1

u2 − u3

x′
AW + t′

Figure 4.1 – Graphical illustration of the errors q
(jyA)
i for the object A with yA = 2 and K = 3.

The figure shows the situation in the transformed space, which is guaranteed to be

two-dimensional when K = 3. The error q
(21)
A is calculated by projecting x′

AW+t′

on u2−u1, and the error q
(23)
A is found by projecting x′

AW + t′ on u2−u3. Refer
to the main text for further explanation of this figure.

sign, it is clear that ||uk−uj || = 1. Thus this matrix is defined as its own eigendecomposition
with a single non-zero eigenvalue equal to 1.

4.2 Errors & Error Functions

Here definitions of the errors and the error functions used in the formulation of the loss
function are given.

4.2.1 Errors

For each object in the training dataset an m vector of explanatory variables, x′
i, and a class

label, yi, is reported. The K − 1 errors with respect to all other classes j 6= yi are computed
by multiplying x′

i by a weighting matrix W of size m × (K − 1). This weighting matrix is
independent of the class of object i. The transformed object vector x′

iW is then shifted by
a (K − 1)-vector t′, and projected on the edge of a K-simplex corresponding to the class j.

Thus for each class j a scalar variable, q
(jyi)
i , is computed, defined as

q
(jyi)
i = (x′

iW + t′)(uyi
− uj). (4.2)

Since the simplex is constructed such that the distance between each pair of vertices is 1,
projecting the error vector on this simplex gives the distance to the decision boundary.

To illustrate this, we consider Figure 4.1, where the errors of a single object are calculated,
and where K = 3. The figure shows an object A for which yA = 2 in the transformed space
x′W + t′. Note that this space is (K − 1)-dimensional. The 2-simplex is shown in the

4.2. Errors & Error Functions 15

figure, where the distance between the vertices is still chosen as 1. The chosen class labels
are arbitrary. The decision boundaries in this space are the solid lines perpendicular to the
edges of the simplex. The decision boundary between class 1 and class 3 has been omitted
for legibility. The region of the class 2 objects is simply the region enclosed by the linear
class boundaries between vertices 2 and 1 and vertices 2 and 3, and this region has been
shaded in the figure.

Since object A does not lie in the shaded region, the errors with respect to the other
classes are negative2. Following (4.2), these errors are calculated by projecting x′

AW + t′

onto the simplex edges. Because the length of the edges is 1, this scalar projection is exactly
the magnitude of the distance to the class boundaries. Thus, (x′

AW + t′)(u2−u1) gives the
distance to the boundary between class 1 and class 2, and (x′

AW + t′)(u2 − u3) gives the
distance to the boundary between class 3 and class 2.

As shown in the figure, the errors defined in (4.2) measure the distance of the transformed
object vector to the class boundaries specified by j and yi. The margins of the SVM solution

can also be defined here, by simply constructing the lines given by q
(jyi)
i = ±1. These margins

have been omitted from Figure 4.1 for legibility. Note further that q
(jk)
i = −q

(kj)
i .

4.2.2 Error Functions

As seen in Chapter 2, different error functions can be chosen to weigh the errors. The most
common error function in the SVM literature is the absolute hinge error, defined as3

f(q) = max(1− q, 0),

shown in Figure 4.2a. An advantage of this error function is that all the errors are counted
by their distance away from the corresponding SVM margin. The disadvantage of this error
function is that it is discontinuous at q = 1. When minimizing the MSVM loss function, this
discontinuity can cause a problem for the minimization method. Another often used error
function is the quadratic hinge error, sketched in Figure 4.2b, which is simply the square of
the absolute hinge error

f(q) = max(1− q, 0)2.

Although this error function is smooth at q = 1, errors far away from the SVM boundary
are counted very heavy, which may create a large dependency on misclassified objects that
lie far from the corresponding class boundary (“outliers”). Finally, the Huber hinge error is
defined as

h(q) =





1− q −
κ+ 1

2
if q ≤ −κ

1

2(κ+ 1)
(1− q)2 if q ∈ (−κ, 1]

0 if q > 1

(4.3)

where κ > −1 (Groenen et al., 2008). This error function is linear on the interval q ≤ −κ
which creates a robustness against “outliers”, and quadratic on the interval (−κ, 1], such

2If the errors are positive with respect to all other classes the object lies in the region corresponding to its
class label.

3Note that the indices around q are omitted for conciseness.

16 Chapter 4. The MSVM-Maj Loss Function

q

f(q)

−5 0 5

5

(a) f(q) = max(1 − q, 0)

q

f(q)

−5 0 5

25

(b) f(x) = max(1 − q, 0)2

Figure 4.2 – Sketch of the absolute hinge and the quadratic hinge error functions.

q

h(q)

−5 0 5

5

Figure 4.3 – Examples of the possible shapes of the Huber hinge error, for varying values of κ.
The values of κ shown are κ = 0.5 (solid), κ = 1.5 (dash-dot), κ = 3.5 (dash).
The vertical lines show the transition from the linear part of the function to the
quadratic part.

that there is no discontinuity at q = 1. Examples of some possible shapes of this function
are given in Figure 4.3.

It is important to notice that in the limit κ→ −1 the Huber hinge error approaches the
absolute hinge error. Furthermore, by choosing a large value for κ, the Huber hinge error
can mimic the quadratic hinge, albeit with a smaller overall gradient. Thus the Huber hinge
error allows for a broader range of error weighting behaviour than the absolute or quadratic
hinge errors. Because of these properties, the Huber hinge error is chosen in the formulation
of the MSVM loss function, which we now turn to.

4.3 Loss Function

The parameters W and t need to be found in order to predict the class label of new samples.
This is done by minimizing the total error of all objects in the training dataset. For each

object, the errors q
(jyi)
i are calculated with respect to all classes j 6= yi. The errors are then

weighted using the Huber hinge function, formulated in the previous section. For each object,
these weighted errors are summed using the Lp norm, with p ∈ [1, 2]. This gives control on
how the errors of the different categories are combined for each object. These summed
category errors are then multiplied by nonnegative individual weights ρi, and summed over

4.4. Convexity of MSVM Loss Function 17

all objects. This gives the loss function

LMSVM(W, t) =
1

n

K∑

k=1

∑

i∈Gk

ρi


∑

j 6=k

hp
(
q

(jk)
i

)



1/p

+ λ tr W′W (4.4)

where a penalty term λ tr W′W, with λ > 0, is added to correct for overfitting. In this
formulation it should be understood that the summation over j 6= k sums over the elements
j ∈ {1, . . . ,K}\{k}. Notice that for K = 2, the above loss function reduces to the binary
SVM loss function (with Huber hinge errors) specified in (2.2).

The individual weights ρi can for instance be used to specify greater importance of specific
variable groups, or to correct for unequal group sizes. In the latter case, the weights ρi can
be chosen as

ρi =
n

Knk
if i ∈ Gk, (4.5)

where nk is the number of objects in Gk. To predict the class label for an object in the test
dataset the following procedure can be used

1. Minimize LMSVM(W, t) with respect to W and t and let

(W∗, t∗) = arg min
(W,t)

LMSVM(W, t).

2. Calculate the distance of the predicted error vector for the unclassified object x to each
of the vertices of the simplex. Then the predicted class for the object is that class for
which this distance is minimized. Formally, this can be written as

ŷ = arg min
k

||(x′W∗ + t∗′)− u′
k||.

The reason this last step gives the class prediction comes from the fact that the class bound-
aries in the transformed space (i.e., the space x′W+t′) are fixed. The class boundaries in this
space therefore always define the same region around a simplex vertex. Hence calculating
the distance to the closest vertex is indicative of the region an object lies in, and therefore
the predicted class.

An important property for many optimization techniques is that the loss function is
convex. In the next section it will be shown that the MSVM loss function defined in (4.4)
has this property.

4.4 Convexity of MSVM Loss Function

Before we turn to the proof of the convexity of the proposed loss function, we first introduce
some variables to shorten the notation:

z′
i = [1 x′

i], (4.6)

V = [t W′]′, (4.7)

δkj = uk − uj , (4.8)

such that q
(jk)
i = z′

iVδkj . With this notation, LMSVM(W, t) = LMSVM(V) and the convexity
proof reduces to showing that LMSVM(V) is convex in V. Furthermore, we introduce a
diagonal matrix J with j11 = 0 and jii = 1 if i > 1. With this matrix the penalty term
tr W′W can be written as tr V′JV.

Formally, the following theorem must be proven.

18 Chapter 4. The MSVM-Maj Loss Function

Theorem 1. The MSVM loss function specified in (4.4) is convex in V.

Proof. Since all functions that constitute LMSVM(V) are bounded from below, the definition

of convexity specified in Rockafellar (1997) Theorem 4.1 can be used here4. Since q
(jk)
i is a

linear function in V, it is convex and concave in V.5 Thus it suffices to show that LMSVM(V)

is convex in q
(jk)
i to show that it is convex in V.

The Huber hinge error is a piecewise defined curve of which every separate piece is
trivially convex. Since the Huber function is also continuous throughout R, it follows that
it is convex everywhere on R. Following Rockafellar Theorem 5.1, a composite function is
convex if and only if both functions are convex and the outer function is non-decreasing.
The Lp norm is convex by Minkowski’s Inequality (see Section A.2) and it is non-decreasing
by definition. Thus we conclude that the composition of the Lp norm and the Huber hinge
error given by


∑

j 6=k

hp
(
q

(jk)
i

)



1/p

is indeed convex. Moreover, note that both the Huber hinge function and the Lp norm
are proper convex functions6. The composition of these functions is also a proper convex
function. Then, following from Rockafellar Theorem 5.2 multiplication with the non-negative
weights ρi conserves (proper) convexity. By the same theorem it follows that after summation
over all objects i and multiplication with 1/n, the composition remains convex.

It now remains to be shown that the additive penalty term tr V′JV is a proper convex
function in V. The proof of this property is given in Section A.2. Multiplying this function
with a non-negative constant λ preserves convexity. Hence it is shown that LMSVM(V) is
indeed convex in V.

We now turn to the optimization algorithm used to minimize LMSVM(V). This algorithm
uses the fact that Theorem 1 holds.

4Theorems from Rockafellar (1997) are repeated in Section A.1
5Since R

(m+1)×(K−1) is an affine set, any linear function from R
(m+1)×(K−1) to R is convex (Rockafellar,

1997). Notice that all theorems that hold for R
n also hold for R

(m+1)×(K−1) since vectorization is always
possible. For a review of convex function theory on more general vector spaces refer to Zălinescu (2002).

6As noted in the appendix, a convex function f is considered a proper convex function if f(x) < +∞ for
at least one x and f(x) > −∞ for all x in the domain.

CHAPTER

FIVE

MAJORIZATION

It is now required to find an optimization scheme to minimize the loss function presented in
the previous chapter. Similar to the binary SVM case treated in Groenen et al. (2008), this
is done using the Iterative Majorization algorithm of De Leeuw (1977). This chapter starts
with a review of this algorithm and a formal treatment of the underlying mathematics.

5.1 Iterative Majorization

Iterative Majorization (IM) is a relatively straightforward method for minimizing a (con-
vex) function. The method is based on introducing a so-called majorization function which
touches the original function at a supporting point and is generally always above the original
function. By choosing a simple form for this majorization function, the minimum of this
function can easily be found. The value of the original function at this minimum is at most
equal to the value at the supporting point, but will generally be smaller. If the minimum
of one majorization function is used as the supporting point for a next majorization a se-
quence of function values is created which converges to the minimum of the original function,
provided this is convex. This procedure is illustrated in Figure 5.1 for the case where the
majorization function is quadratic.

A formal treatment follows, adapted from Groenen et al. (1995). Note that in this
treatment Y denotes a matrix variable. Let φ(Y) be a real-valued function of Y ∈ Y which
needs to be minimized over the domain Y. In the IM algorithm a majorization function
ψ(Y,Y) with Y,Y ∈ Y is introduced, for which

φ(Y) ≤ ψ(Y,Y) and φ(Y) = ψ(Y,Y), (5.1)

for all Y,Y ∈ Y. That is, the original function is always smaller or equal than the
majorization function and the majorization function touches the original function at the
supporting point Y. Let Ŷ denote the minimum of ψ(Y,Y) for fixed Y, that is Ŷ =
arg minY∈Y ψ(Y,Y). Then the following inequalities hold

φ(Ŷ) ≤ ψ(Ŷ,Y) ≤ ψ(Y,Y) = φ(Y).

The equality φ(Ŷ) = ψ(Ŷ,Y) only occurs when Ŷ is a stationary point of the original
function φ(Y). When the function φ(Y) is convex, this stationary point corresponds to the
global minimum of the function1. The IM algorithm can thus be formulated as follows

1Note that this global minimum is unique if the function is strictly convex.

20 Chapter 5. Majorization

φ(Y0)

φ(Y1)

φ(Y2)

φ(Y∗)

Y
∗

Y0Y1Y2

φ(Y)

ψ(Y,Y0)

ψ(Y,Y1)

φ(Y)

✻

Y ✲

φ(Y)

Figure 5.1 – One-dimensional graphical illustration of the Iterative Majorization algorithm,
with a quadratic majorization function. Successive configurations Yi are found
by calculating the minimum of each majorization function ψ. The value of φ(Yi)
decreases in every iteration. Adapted from De Leeuw (1988).

1. Let Y = Y0, and calculate φ(Y). Here Y0 is a starting value.

2. While φ(Y)− φ(Ŷ) < ǫ

a. Find Ŷ = arg minY∈Y ψ(Y,Y).

b. Let Y = Ŷ.

c. Calculate φ(Ŷ).

3. Return Ŷ.

In this algorithm, ǫ is a small positive constant. This majorization algorithm yields a non-
increasing sequence of function values φ(Y). Hence the above procedure constitutes a guar-
anteed descent algorithm. Notice that the sequence of function values may never converge
if the function is not bounded from below. If a simple functional form is chosen for the ma-
jorization function, Step 2a in the algorithm above can be done quickly. A common choice
is to use a quadratic majorization function, since the minimum of a quadratic function can
be derived analytically and calculated fast.

5.2. Majorization of LMSVM 21

5.2 Majorization of LMSVM

We now turn to the derivation of a quadratic majorization function for the MSVM loss
function introduced in (4.4). The derivation presented below will use a number of different
inequalities to arrive at a majorization function for LMSVM(W, t). The parameter values
obtained in an iteration of the program will be used as a supporting point for the next
iteration. The parameters from the previous iteration of the IM algorithm will always be
denoted with a bar. Thus, W equals the value of W from the previous iteration. With this
notation, the quadratic majorization function for LMSVM(W, t) should be of the form

LMSVM(W, t) ≤ tr W′X′A
W

XW− 2 tr W′X′B
W

+ t′A
t
t− 2t′b

t
+ C

W,t (5.2)

where A
W

and B
W

are coefficient matrices depending on W, and A
t

and b
t

are respectively
a coefficient matrix and coefficient vector depending on t. Furthermore, C

W,t is a constant

depending on W and t. Naturally the expected majorization function depends on the object
matrix X.

5.2.1 Majorization of Case 1 errors

In the derivation we recognize two possible scenarios for each object. If the errors from a

previous iteration h(q
(jk)
i) with j 6= yi, are nonzero for at most one j 6= yi, a straightforward

majorization of the Lp norm is used. Following equation (2.10.3) from Hardy et al. (1934),
the Lp norm follows the inequality

(
n∑

i=1

xpi

)1/p

≤
n∑

i=1

xi,

where equality occurs whenever at most one xi is nonzero or p = 1. If we apply this to the

Lp norm of the errors h(q
(jk)
i), we find


∑

j 6=k

hp
(
q

(jk)
i

)



1/p

≤
∑

j 6=k

h
(
q

(jk)
i

)
. (5.3)

To use this inequality as a majorization inequality in the IM algorithm it is required that
the inequality reduces to an equality at the supporting point. Thus it is required that


∑

j 6=k

hp
(
q

(jk)
i

)



1/p

=
∑

j 6=k

h
(
q

(jk)
i

)
. (5.4)

This equality only holds when there is at most one h(q
(jk)
i) larger than zero, with j 6= yi.

Objects for which this requirement is satisfied are called Case 1 objects. A case indicator εi
is defined such that εi = 1 if an object i is a Case 1 object. Mathematically this is expressed
as

εi =





1 if h
(
q

(jk)
i

)
> 0 for j = ℓ 6= yi and h

(
q

(jk)
i

)
= 0 for j 6= ℓ 6= yi,

1 if h
(
q

(jk)
i

)
= 0 for j 6= yi,

0 otherwise.

(5.5)

22 Chapter 5. Majorization

Objects for which εi = 0 are called Case 2 objects. For these objects more than one h(q
(jk)
i)

is larger than zero, with j 6= yi. If the majorization inequality (5.3) is used for the Case 1
objects, the following inequality holds for the MSVM loss function

LMSVM(W, t) ≤
1

n

K∑

k=1

∑

i∈Gk

ρi


εi

∑

j 6=k

h
(
q

(jk)
i

)
+ (1− εi)


∑

j 6=k

hp
(
q

(jk)
i

)



1/p



+ λ tr W′W. (5.6)

The majorization of the Lp norm cannot be used for the Case 2 objects, since (5.4) does not
hold for these objects. However, in the next section an inequality will be derived which can
be used for the Case 2 objects.

5.2.2 Majorization of the p-th root function

We now introduce a linear majorization of the root function f(x) = x1/p with a supporting
point at x = y. The majorization function is denoted by g(x, y) = cx+ d. To ensure g(x, y)
touches at x = y the following conditions must hold

1. f ′(y) = c

2. f(y) = cy + d

From this it follows that2

x1/p ≤
1

p
y1/p−1x+

(
1−

1

p

)
y1/p.

If we apply this majorization to the Lp norm of the Case 2 objects, we have the inequality


∑

j 6=k

hp
(
q

(jk)
i

)



1/p

≤
1

p


∑

j 6=k

hp
(
q

(jk)
i

)



1/p−1
∑

j 6=k

hp
(
q

(jk)
i

)



+

(
1−

1

p

)
∑

j 6=k

hp
(
q

(jk)
i

)



1/p

.

To shorten the notation we introduce

ωi =
1

p


∑

j 6=k

hp
(
q

(jk)
i

)



1/p−1

, (5.7)

the majorization of LMSVM can then be written as

LMSVM(W, t) ≤
1

n

K∑

k=1

∑

i∈Gk

ρi


εi

∑

j 6=k

h
(
q

(jk)
i

)
+ (1− εi)ωi

∑

j 6=k

hp
(
q

(jk)
i

)



+ Γ(1) + λ tr W′W, (5.8)

2This inequality was also noted by Groenen and Heiser (1996) and follows directly from Theorem 37 of
Hardy et al. (1934).

5.2. Majorization of LMSVM 23

where the constant terms for all objects in Case 2 have been collected in

Γ(1) =
1

n

(
1−

1

p

) K∑

k=1

∑

i∈Gk

ρi(1− εi)


∑

j 6=k

hp
(
q

(jk)
i

)



1/p

. (5.9)

To continue the majorization of LMSVM(W, t), the quadratic majorization of the Huber
functions h(q) and hp(q) is needed.

5.2.3 Majorization of Huber functions

To keep the focus on the main derivation of the MSVM loss function the derivation of the

majorization function for hp(q
(jk)
i) has been moved to Appendix B. From this derivation it

is found that the parameters of the quadratic majorization function depend explicitly on the
value of p. Naturally, these parameters also depend on i, j, and k. Therefore, the quadratic
majorization inequality for the Case 2 objects can be expressed as

hp
(
q

(jk)
i

)
≤ a

(p)
ijk

(
q

(jk)
i

)2
− 2b

(p)
ijkq

(jk)
i + c

(p)
ijk, (5.10)

similarly for the Case 1 objects we have

h
(
q

(jk)
i

)
≤ a

(1)
ijk

(
q

(jk)
i

)2
− 2b

(1)
ijkq

(jk)
i + c

(1)
ijk. (5.11)

Notice that for the Case 1 objects we simply substitute p = 1 in the majorization of hp(q).
Plugging these inequalities into (5.8) gives after some rearranging

LMSVM(W, t) ≤
1

n

K∑

k=1

∑

i∈Gk

ρiεi
∑

j 6=k

[
a

(1)
ijk

(
q

(jk)
i

)2
− 2b

(1)
ijkq

(jk)
i

]

+
1

n

K∑

k=1

∑

i∈Gk

ρi(1− εi)ωi
∑

j 6=k

[
a

(p)
ijk

(
q

(jk)
i

)2
− 2b

(p)
ijkq

(jk)
i

]
(5.12)

+ Γ(2) + λ tr W′W,

where Γ(2) contains all the constant terms

Γ(2) = Γ(1) +
1

n

K∑

k=1

∑

i∈Gk

ρi


εi

∑

j 6=k

c
(1)
ijk + (1− εi)ωi

∑

j 6=k

c
(p)
ijk


 . (5.13)

To get a form of LMSVM(W, t) where the dependence on the parameters is more pronounced,
we switch to the notation introduced in Section 4.4. For reference, the notation is repeated
here

z′
i = [1 x′

i],

V = [t W′]′,

δkj = uk − uj .

Then it follows that

q
(jk)
i = z′

iVδkj ,
(
q

(jk)
i

)2
= z′

iVδkjδ
′
kjV

′zi.

24 Chapter 5. Majorization

Again let J equal the (m + 1) × (m + 1) identity matrix with j11 = 0. The majorization
inequality (5.12) can then be written as

LMSVM(V) ≤
1

n

K∑

k=1

∑

i∈Gk

ρiεi
∑

j 6=k

[
a

(1)
ijkz

′
iVδkjδ

′
kjV

′zi − 2b
(1)
ijkz

′
iVδkj

]

+
1

n

K∑

k=1

∑

i∈Gk

ρi(1− εi)ωi
∑

j 6=k

[
a

(p)
ijkz

′
iVδkjδ

′
kjV

′zi − 2b
(p)
ijkz

′
iVδkj

]
(5.14)

+ Γ(2) + λ tr V′JV.

This expression is not yet the desired quadratic form, because of the dependence on δkjδ
′
kj

(a (K − 1)× (K − 1) dimensional matrix). A final majorization step is necessary to remove
this dependence.

5.2.4 Majorization of the quadratic term

For the majorization of the quadratic term, the maximum eigenvalue inequality is used, first
noted by Bijleveld and De Leeuw (1991). For a description and a proof of this inequality
refer to Section A.3. Using this inequality we find that

z′
iVδkjδ

′
kjV

′zi ≤ z′
iVV′zi − 2z′

iV(I− δkjδ
′
kj)V

′
zi + z′

iV(I− δkjδ
′
kj)V

′
zi, (5.15)

where we have used that the upper bound on the eigenvalues of δkjδ
′
kj equals 1, as derived in

Section 4.1. Plugging this inequality into the majorization inequality above and rearranging
yields

LMSVM(V) ≤
1

n

K∑

k=1

∑

i∈Gk

ρi


εi

∑

j 6=k

a
(1)
ijk + (1− εi)ωi

∑

j 6=k

a
(p)
ijk


 z′

iV(V− 2V)′zi

−
2

n

K∑

k=1

∑

i∈Gk

ρiz
′
iV


εi

∑

j 6=k

(
b

(1)
ijk − a

(1)
ijkq

(jk)
i

)
δkj

+ (1− εi)ωi
∑

j 6=k

(
b

(p)
ijk − a

(p)
ijkq

(jk)
i

)
δkj


 (5.16)

+ Γ(3) + λ tr V′JV,

where it has been used that z′
iVδkj = q

(jk)
i , and

Γ(3) = Γ(2)

+
1

n

K∑

k=1

∑

i∈Gk

ρiz
′
iV


εi

∑

j 6=k

a
(1)
ijk(I− δkjδ

′
kj) + (1− εi)ωi

∑

j 6=k

a
(p)
ijk(I− δkjδ

′
kj)


V

′
zi.

We now simplify the notation further by introducing

αi =
1

n
ρi


εi

∑

j 6=k

a
(1)
ijk + (1− εi)ωi

∑

j 6=k

a
(p)
ijk


 , (5.17)

βi =
1

n
ρi


εi

∑

j 6=k

(
b

(1)
ijk − a

(1)
ijkq

(jk)
i

)
δkj + (1− εi)ωi

∑

j 6=k

(
b

(p)
ijk − a

(p)
ijkq

(jk)
i

)
δkj


 . (5.18)

5.2. Majorization of LMSVM 25

The loss function inequality (5.16) can then be written as

LMSVM(V) ≤
K∑

k=1

∑

i∈Gk

αiz
′
iV(V− 2V)′zi −

K∑

k=1

∑

i∈Gk

z′
iVβi + Γ(3) + λ tr V′JV. (5.19)

It is now possible to write this expression as a function of matrix operations. Let A be an
n× n diagonal matrix with elements αi and let B be an n× (K − 1) matrix where the i-th
row of B equals β′

i. The summations can be written as trace operations of the matrices
using the following identities

K∑

k=1

∑

i∈Gk

αiz
′
iVV

′
zi = tr V

′
Z′AZV (5.20)

K∑

k=1

∑

i∈Gk

z′
iVβi = tr B′ZV, (5.21)

with Z the n× (m+ 1) matrix with rows z′
i. Then

LMSVM(V) ≤ tr(V− 2V)′Z′AZV− 2 tr B′ZV + Γ(3) + λ tr V′JV,

= tr V′(Z′AZ + λJ)V− 2 tr(V
′
Z′A + B′)ZV + Γ(3). (5.22)

This final expression is the desired quadratic majorization inequality, corresponding to the
form specified in (5.2). Minimizing the right-hand side of this inequality and solving for V

gives an update of the IM algorithm. We now turn to an explicit derivation of the first-order
condition and show that this indeed yields a minimum.

5.2.5 Minimization conditions

By differentiating the right-hand side of (5.22) and setting the derivative to zero, a system
of linear equations in V is found. The derivatives of trace functions are, following Magnus
and Neudecker (1988),

∂ tr X′FX

∂X
=
(
F + F′

)
X,

∂ tr FX

∂X
= F′,

where F and X are arbitrary matrices. Applying this to the majorization inequality (5.22)
and setting the derivative to zero yields

2(Z′AZ + λJ)V− 2(Z′AZV + Z′B) = 0,

where it has been used that A and J are symmetric matrices. Then the update of V can be
found efficiently by solving the following linear system using Gaussian elimination

(Z′AZ + λJ)V = Z′AZV + Z′B. (5.23)

It can be shown that the second order condition for a minimum is also satisfied, by applying
the second derivative test. To do this, the second derivative of the loss function must be
shown to be positive definite. Then it must hold that

Z′AZ + λJ

26 Chapter 5. Majorization

is a positive definite matrix. Since the sum of all αi can never be zero and it is required that
λ > 0, this is indeed the case. To make this argument more clear, note that this matrix can
also be written as

Z′AZ + λJ =




n∑

i=1

αi

n∑

i=1

αix
′
i

n∑

i=1

αixi λIm +
n∑

i=1

αixix
′
i



,

where Im is the m×m identity matrix. Now it is clear that this matrix is positive definite
as long as

∑
i αi > 0 and λ > 0. The latter condition holds since this is required in the

formulation of LMSVM(W, t). The requirement that the αi have a positive sum is satisfied

since for all values of p ∈ [1, 2] we have a
(p)
ijk > 03. Hence, the second order condition holds

and solving (5.23) always yields a minimum of the majorization function.

3This can be proven from the general expression for a as derived in Appendix B. This proof is omitted
from this text, however it is based on reducing the inequality a > 0 to κ > −1, which holds by design. For
p = 1 this can easily be shown.

CHAPTER

SIX

RESULTS

The details of the implementation of the algorithm will be presented here, along with a
number of speed-up techniques that can be used in the algorithm. To emphasize the use of
the majorization algorithm, the proposed multiclass classification algorithm will be referred
to as MSVM-Maj. The methods used to analyse the performance of MSVM-Maj are given,
as well as a method to compare the performance of MSVM-Maj with other classifiers. This
comparison technique is then used to compare the performance of MSVM-Maj with a num-
ber of other classification techniques on four benchmark datasets. The computation time
necessary for each of the classification methods is also compared.

6.1 Implementation

The implementation of the IM algorithm in MSVM-Maj is relatively straightforward. A rep-
resentation in pseudocode is given in Algorithm 1. Note that elements of a matrix are given
as Qi,j , where i denotes the row and j the column of matrix Q. The actual implementation
has been written in Matlab code. By making extensive use of matrices and the built-in
Hadamard product1 in Matlab, it was possible to achieve significant speed-ups over the
naive implementation given in Algorithm 1.

As can be seen in the formulation of the algorithm, each iteration consists of recalculating

the errors q
(jk)
i and calculating the Huber weighted errors h

(
q

(jk)
i

)
. Then the case indicator

εi is determined, and the parameters of the Huber majorization (A and B) are recalculated.
Finally, the new value of V is found by solving (5.23) using Gaussian elimination.

As mentioned, significant speed-ups can be achieved when the Hadamard product is
used. To expand on this, some of these techniques will be given here. First of all, the Case
indicator εi can be calculated for all i simultaneously and stored in a vector e using the
Matlab command

e = sum((H.*R)>0,2)<=1;

Here H is the n×K matrix of Huber hinge errors, and .* denotes the Hadamard product in
Matlab. Furthermore, R is an n×K matrix with elements rij = 1 if j 6= yi, and riyi

= 0.
Thus taking the Hadamard product of a matrix with R sets the elements in the columns
j = yi equal to zero. Consequently summing over the columns of the result gives an efficient

1The Hadamard product of two matrices A and B of equal dimensions is defined such that if the Hadamard
product is denoted by ◦, and C = A ◦ B then cij = aij · bij .

28 Chapter 6. Results

Algorithm 1: The MSVM-Maj algorithm.

input : X,y,ρ, p, κ, λ
output: W, t

K ← max(y)1

n← first dimension of X2

ǫ← 3 · 10−10
3

it← 04

Z← [1 X]5

L← 06

V← V07

Generate J,U8

Calculate L← LMSVM(V) by (4.4)9

while it = 0 or (L− L)/L > ǫ do10

Qi,j ← z′
iV(uyi

− uj)11

Hi,j ← h(Qi,j) by (4.3)12

Calculate εi for all i using Hi,j and (5.5)13

forall i ∈ [1, n] do14

if εi = 1 then15

Ai,i ←
1
n
ρi

∑
j 6=yi

a
(1)
ijyi

16

Bi ←
1
n
ρi

∑
j 6=yi

(
b

(1)
ijyi
− a

(1)
ijyi

Qi,j

)
(uyi

− uj)
′

17

else18

Ai,i ←
1
n
ρi ωi

∑
j 6=yi

a
(p)
ijyi

19

Bi ←
1
n
ρi ωi

∑
j 6=yi

(
b

(p)
ijyi
− a

(p)
ijyi

Qi,j

)
(uyi

− uj)
′

20

end21

end22

Solve (5.23) for V23

L← L24

Calculate L← LMSVM(V) by (4.4)25

V← V26

it← it+ 127

end28

Extract W and t from V29

method to perform the
∑
j 6=k summation used often in the coefficients of the majorization

function.

Another method used to speed up computation is to use logical matrices to distinguish

between the regions of the Huber hinge error function. With the errors q
(jk)
i of Case 1 objects

stored in a matrix Q1, the following matrices are very useful

G1 = (Q1 <= -kappa);

G2 = (Q1 <= 1)&(∼G1);

G3 = (∼G1)&(∼G2);

Then calculation of, for example, the quadratic coefficients a
(1)
ijk is done by simply executing2

A1 = 1./(4*Phi1) .* (G1 - G3) + 1/(2*(kappa+1)) * G2;

2Note that it is also required here that Phi1 = 1 - Q1 - (kappa+1)/2.

6.2. Performance Evaluation 29

φ(Y0)

φ(Ỹ1)

φ(Y1)

φ(Y∗)

Y
∗

Y0Ỹ1Y1

φ(Y)

ψ(Y,Y0)

φ(Y)

✻

Y ✲

φ(Y)

Figure 6.1 – Graphical illustration of step doubling in the IM algorithm. Without step dou-
bling, Ỹ1 would be the next configuration of the parameters. However, with step
doubling Y1 is used. It can be seen that in this way a much larger majorization
step can be achieved.

Finally, the IM algorithm allows for a speed-up technique which can reduce the number
of necessary iterations by half, known as step doubling (De Leeuw and Heiser, 1980). Instead
of taking the value of V at the minimum of the quadratic majorization function for the next
iteration, it is possible to mirror the supporting point on the opposite side of the quadratic
majorization function. This process is illustrated in Figure 6.1. As can be seen in the figure,
the use of step doubling creates a larger majorization step and therefore a faster convergence
of the algorithm. To use step doubling in Algorithm 1 the following line must be inserted
before line 25 of the program

V← 2V−V. (6.1)

In the actual Matlab implementation step doubling was applied after 50 iterations. Note
that if step doubling is used the convergence of the algorithm is still guaranteed, because the
loss function is convex. An explicit proof of this property is omitted from this text.

6.2 Performance Evaluation

To compare the performance of the MSVM algorithm with other classification methods, a
number of different evaluation methods are used. First, N -fold cross validation is used. In
N -fold cross validation the total sample is split into N disjoint subsamples. One of these

30 Chapter 6. Results

subsamples is retained as the holdout or test dataset and the remaining N − 1 subsamples
are combined to form the training dataset. The classification rule is then constructed using
the training dataset and tested on the holdout sample. Comparison between the known class
labels of the holdout sample and the predicted class labels yields a percentage of the correctly
classified samples. This procedure is repeated for all N folds. In the testing procedure used
here, N = 10 is chosen.

Using N -fold cross validation gives a classification rate for a classifier, which can be used
to compare different classification methods. However as noted by Rifkin and Klautau (2004),
a comparison of classification rates does not give any information about whether or not two
classifiers differ significantly. Therefore, Rifkin et al. propose to use the following bootstrap
procedure to compare two classification methods (coded here as “A” and “B”)

1. For each object x in the original dataset, use the following coding scheme

– CC : Both A and B classify x correctly,
– II : Both A and B classify x incorrectly,
– CI : A classifies x correctly, B does not,
– IC : B classifies x correctly, A does not.

2. Calculate the empirical probabilities for each of these events as

P (E) = n(E)/n,

where E ∈ {CC, II, CI, IC}, n(E) is the number of times this event occurs in the
original dataset, and n is the total number of objects in the dataset.

3. Generate a large number (following Rifkin et al., we use 10,000) of bootstrap samples of
size n where each object in the sample belongs to one of the four events with probability
equal to the empirical probability of that event, P (E). Note that this differs from a
regular bootstrap of the predicted class labels because we are interested in the difference
of the performance of the two classifiers.

4. For each bootstrap sample, compute the difference between the percentage of CI events
and the percentage of IC events in the sample. This gives a distribution of the difference
in performance of classifier A and classifier B.

5. Create a confidence interval by reporting the 5% and 95% percentiles of this distribu-
tion.

Using this bootstrapping scheme, it follows that there is a significant difference between the
classifiers if 0 is not in the confidence interval.

In our experiments, cross validation is first used to find the optimal parameter configu-
ration of each classification method. These parameter configurations are then used in the
bootstrap procedure to evaluate whether or not two classifiers differ significantly.

6.3 Experimental Setup

The example datasets used in our experiments are taken from the UCI repository (Frank
and Asuncion, 2010). The UCI repository is a public repository of datasets commonly used
by researchers in Machine Learning. Because of this, cross validation rates obtained through

6.3. Experimental Setup 31

Table 6.1 – Properties of the datasets used in the experiments. For each dataset the number
of objects (n), the number of explanatory variables (m), and the number of classes
(K) are reported.

Dataset n m K

iris 150 4 3
wine 178 14 3
glass 214 9 6
vehicle 846 18 4

SVM classification of a number of datasets are available in the literature (e.g. Hsu and Lin
(2002)). Descriptive statistics of each of the four datasets considered is given in Table 6.1.

As can be seen from the table, the iris, wine, and glass datasets have approximately the
same number of objects but differ in the number of attributes or the number of classes. The
vehicle dataset has a comparatively large number of objects and is included to analyse the
effects of this on the performance of the MSVM-Maj algorithm. Although it is not explicitly
reported here, the number of objects per class is approximately equal for the iris, wine, and
vehicle datasets. For the glass dataset the largest class contains 76 objects and the smallest
class contains 9 objects. This difference may be influential for some classification methods.

The following classifiers are used to compare the performance of MSVM-Maj with,

– One vs. All classification using SVM-Maj (Groenen et al., 2008)
– One vs. All classification using LibSVM (Chang and Lin, 2011)
– Linear Discriminant Analysis (LDA)
– Multinomial logit model (MLOG)

Note that no other single machine or error-correction coding MSVM approaches are
compared with MSVM-Maj. As mentioned in Chapter 3, Rifkin and Klautau (2004) argue
that the OVA scheme performs just as well as any single machine or error-correction coding
approach. Therefore the comparison with OVA classification approach is considered to be
the most important. The LDA and multinomial logit classification methods are included to
compare the SVM methods with classic multiclass classification approaches.

For the classifiers where parameters need to be set, a grid search approach is used. For
MSVM-Maj this grid search consists of using all combinations of the following parameter
sets

– p ∈ {1.0, 1.1, . . . , 2.0}
– κ ∈ {−0.9, 0.0, 0.5, 1.0, 10}
– λ ∈ {2−15, 2−12, 2−9, . . . , 212, 215}

These configurations were tested for the case where ρi = 1,∀i and the case where ρi is defined
as in (4.5), to correct for group sizes. Hence MSVM-Maj was tested with a total of 1210
configurations3.

For the SVM-Maj OVA approach a grid search was also used to find the optimal parameter
configuration. Three different hinge errors are possible in SVM-Maj (absolute, quadratic and
Huber), which are all considered. Similar grids for κ and λ as in MSVM-Maj were used.
In both MSVM-Maj and the SVM-Maj OVA approach the stopping criterion of the IM
algorithm was set at ǫ = 3 · 10−10. In the SVM-Maj OVA approach an upper bound was set
on the number of iterations to limit training time. This bound was set at 2 million iterations.
It should be noted that this limit was generally not reached, and using a larger value for ǫ

3For the vehicle dataset the λ = 2−15 case was excluded, due to the large computation time necessary.

32 Chapter 6. Results

Table 6.2 – Maximum cross validation rates for each method and each dataset.

Dataset MSVM-Maj SVM-Maj LibSVM LDA MLOG
OVA OVA

iris 98.67% 97.33% 97.33% 98.00% 98.00%
wine 97.22% 97.75% 97.75% 100.00% 98.89%
glass 63.64% 67.88% 64.96% 65.36% 66.82%
vehicle 82.03% 80.02% 79.79% 79.20% 80.85%

can avoid the necessity of this upper bound.

The LibSVM OVA approach was also tested, using the linear kernel. Again a grid search
was used to find the optimal parameter values of λ. For the LDA an implementation pub-
lished on the MathWorks File Exchange was used4. A built-in Matlab function was used
for the multinomial logit model. Finally, it must be noted that no rescaling of the variables
in the datasets was performed prior to using the classification methods.

6.4 Experimental Results

Table 6.2 shows the maximum cross validation rates found in the experiments for each classi-
fication method. Overall maximum rates are underlined. It can be seen that no classification
method performs consistently better than all others. Moreover, for a number of methods the
obtained cross validation rates depend strongly on the initial conditions such as the selected
training and test subsamples. Hence, the cross validation rates in Table 6.2 were not found
consistently for all methods. However, the maximum obtained rates are still reported in the
table.

The dependence on initial conditions is one of the main reasons the cross validation rates
are not a reliable indicator of the performance of a method. Hence, it is more insightful
to look at the results of the bootstrap procedure introduced in Section 6.2. Since we are
mainly interested in how well the performance of MSVM-Maj compares with that of the
other classifiers, the bootstrap procedure is only used to compare MSVM-Maj with the
other methods, and not to compare the other methods with each other. The parameter
configurations that yielded the highest cross validation rates (on average) are used in the
bootstrap procedure5.

For each dataset the bootstrap procedure was applied as follows. Ten training and test
subsamples were constructed randomly, and all classifiers were trained on the same training
sample. Then the bootstrap samples were generated between MSVM-Maj and each classifier.
For each bootstrap sample the 5-th and 95-th percentiles were calculated, to get the confi-
dence interval of the difference in performance between MSVM-Maj and the other classifier.
In this way ten confidence intervals were generated, one for each training/test division. This
entire procedure was repeated five times, to avoid variations in the confidence intervals as
much as possible. The averages of the obtained confidence intervals are reported in Table
6.3. Note that the parameter configurations that yielded the maximum cross validation rates
were used in the bootstrap procedure. For MSVM-Maj these parameter configurations are
given in Table 6.4.

4Published by Will Dwinnell. MathWorks File ID 29673.
5Note that no parameters need to be set in both LDA and MLOG. For the other methods the optimal

parameters found through the grid search were used.

6.4. Experimental Results 33

Table 6.3 – Confidence intervals obtained from the bootstrap procedure for each dataset.
MSVM-Maj is compared to each of the given classification method, such that if
the confidence interval is positive MSVM-Maj performs better.

Datasets SVM-Maj LibSVM LDA MLOG
OVA OVA

iris [−0.0009, 0.0264] [0.0005, 0.0300] [−0.0026, 0.0157] [−0.0020, 0.0148]
wine [−0.0019, 0.0012] [0.0027, 0.0360] [−0.0106, 0.0028] [−0.0072, 0.0040]
glass [−0.0034, 0.0579] [0.0195, 0.0921] [0.0265, 0.1062] [−0.0227, 0.0324]
vehicle [0.0089, 0.0358] [0.0083, 0.0339] [0.0253, 0.0569] [0.0057, 0.0248]

Table 6.4 – Parameter configurations for the maximum cross validation rates for MSVM-Maj,
reported for each dataset. These parameter configurations were used to measure
the average training time of the MSVM-Maj algorithm. The format (p, κ, λ) is used.

Dataset Optimal parameter configuration

iris (1.0, −0.9, 2−9)2, (1.0, 1.0, 2−9)1, (1.1, 0.5, 2−9)1,

(1.1, 1.0, 2−9)1, (1.2, 0.0, 2−9)2, (1.4, 0.5, 2−9)2,

(1.4, 10.0, 2−12)2, (1.5, 10.0, 2−12)2, (1.7, 0.5, 2−9)2,

(1.7, 10.0, 2−9)2, (1.8, 0.0, 2−9)1, (1.8, 0.5, 2−9)1,

(1.8, 1.0, 2−9)1, (1.8, 10.0, 2−12)2, (1.9, 0.0, 2−9)2

wine (1.4, 0.5, 2−6)2, (1.8, 0.0, 2−12)2, (1.9, 10.0, 2−15)1

glass (1.1, −0.9, 2−12)1, (1.3, −0.9, 2−15)1, (1.5, −0.9, 2−9)1,

(1.5, 0.5, 2−12)1, (1.6, 0.0, 2−9)1, (1.6, 0.5, 2−15)1,

(1.6, 1.0, 2−15)1, (1.7, 0.0, 2−12)1, (1.7, 0.5, 2−12)1,

(1.8, −0.9, 2−15)1, (1.8, 0.0, 2−12)1, (1.9, 0.0, 2−12)1

vehicle (1.3, 0.0, 2−9)2, (1.3, −0.9, 2−9)2

1Unit weighting, ρi = 1.
2Group size correction weighting, ρi defined as in (4.5).

The confidence intervals show the 5-th and 95-th percentile of the difference in perfor-
mance between two classifiers. Hence if 0 lies outside the interval, we may conclude that
there is a significant difference in performance between the two classifiers, at the 5% confi-
dence level, otherwise no such conclusion can be made. With this in mind, it follows from
Table 6.3 that MSVM-Maj is significantly better than the LibSVM OVA approach on all
datasets. Since this is a rather strong statement, we stress here that the LibSVM classifier
has been properly trained to find the optimal parameter value, and this configuration has
indeed been used in the bootstrap comparisons.

Table 6.3 also shows that MSVM-Maj performs significantly better than any other tech-
nique on the vehicle dataset, and performs better than LDA on the glass dataset. Moreover,
the results in Table 6.3 show that no classifier performs significantly better than MSVM-
Maj. This is an important result, since this signifies that the proposed method is indeed
competitive with existing methods.

For a proper comparison, a number of remarks also need to be made about the training
time of each classifier. First of all, the training time of MSVM-Maj depends heavily on the
chosen parameters. Most importantly, a small value of λ will give a slower convergence of

34 Chapter 6. Results

Table 6.5 – Average training times for all classification methods at the optimal parameter config-
urations determined through cross validation. Training time is reported in seconds.

Datasets MSVM-Maj SVM-Maj LibSVM LDA MLOG
OVA OVA

iris 3.627 5.202 0.015 0.011 0.163
wine 9.176 379.852 10.944 0.012 0.259
glass 131.412 52.471 0.051 0.029 0.822
vehicle 811.866 12.807 12.651 0.058 6.415

the algorithm. This is expected since λ is a regularization parameter which controls for the
size of W. A small λ allows for more fine-tuning of W, which makes the algorithm slower.
The training time of MSVM-Maj also depends on the value of p. For a small value of p the
algorithm is generally faster. This can be explained since a small value of p allows for a
larger majorization step in the majorization of the Huber hinge errors (see also Appendix
B).

To quantify the difference in the speed of each algorithm, the training time needed for each
algorithm has been recorded for all classifiers. The results are presented in Table 6.5. For
the MSVM-Maj and SVM-Maj OVA methods the training time was averaged over a number
of parameter configurations that yielded optimal results. As mentioned, these parameter
configurations are reported for MSVM-Maj in Table 6.4. The training time measurements
were done using Matlab R2012a (64-bit) on an Intel Pentium Dual CPU (1.86 GHz).

As can be seen from Table 6.5, the LDA method is the fastest method on all datasets.
Of the SVM methods, the LibSVM OVA approach is generally fastest, although for the wine
dataset MSVM-Maj is slightly faster. MSVM-Maj is faster than the SVM-Maj OVA method
on the iris and wine datasets, although it must be noted that the SVM-Maj method may
have suffered from the fact that the stopping criterion ǫ was chosen very small. If ǫ is chosen
larger, the SVM-Maj method will in general achieve convergence faster. A full comparison of
the speed of the SVM-Maj algorithm is provided by Groenen et al. (2008). The MSVM-Maj
algorithm will also achieve faster convergence if ǫ is decreased.

CHAPTER

SEVEN

DISCUSSION & CONCLUSION

Here some of the results obtained will be discussed. First, some comments will be made on
the parameter selection procedure, keeping in mind the practitioner who wants to use the
proposed method in their research. Second, a brief overview is given of the ways in which
nonlinearity can be included in MSVM-Maj. Some ideas which may be interesting for further
research will also be presented. Finally, a conclusion of this thesis is given in the last section
of this chapter.

7.1 Parameter Selection

In Chapter 6, a large grid search was used to find the optimal parameter configurations for
each of the datasets. In practice, this approach may not be feasible due to the computation
time necessary to try all configurations. The computations done on the datasets showed
that the parameter configurations that yielded the optimal cross validation rates did exhibit
strong variations in the parameters. The parameter configurations that yield the optimal
cross validation rates are shown in Table 6.4. As can be seen, none of the parameters are the
same for all optimal rates, and therefore none are irrelevant. Thus it is not possible to fix
one of the parameters in advance and still generate the best possible classification function.

We can however, create a number of guidelines for reducing the size of the grid search
necessary to find the optimal parameters. First of all, it is clear that the optimal parameters
are most often found when λ is small. Although a larger value of the regularization parameter
generally yields a faster convergence of the algorithm, this reduces the quality of the classifier
significantly. This trade-off must be considered by a practitioner interested in using MSVM-
Maj for classification. Furthermore, it is advised to start with a coarser grid with respect to
the p values. In the grid search presented in the previous chapter a step size of 0.1 was used,
but in general steps of 0.2 or 0.3 between p = 1.0 and p = 2.0 may be sufficient.

Finally, it may be possible to choose a larger stopping criterion ǫ first, and then decrease
this once the optimal parameters are roughly estimated. If this is done it should be kept in
mind that the MSVM-Maj solution becomes more sensitive to the starting position if ǫ is
chosen large. This may be accounted for by choosing a larger number of folds in the cross
validation procedure, or by simply repeating the experiments a sufficient number of times.

36 Chapter 7. Discussion & Conclusion

7.2 Nonlinearity

Two main methods exist to include nonlinearity in an SVM application. The first transforms
the variables to piecewise polynomial functions using spline transformations. The second
method is more commonly used in SVMs and is based on kernel functions.

7.2.1 Splines

Similar to the approach proposed in Groenen et al. (2007), spline transformations can be
used to introduce nonlinearity in the predictor variables. A brief review of this approach is
given here.

Following the approach of Groenen et al., the I-Spline transformations of Ramsay (1988)
are considered. Splines are piecewise polynomial functions, defined by the degree of the
pieces d, and the number of interior knots, s. For each variable vector xj , a spline basis Dj

is constructed of size n× (d+ s), together with a weights matrix Sj of size (d+ s)× (K − 1).

Here Sj = [s
(1)
j

′
, . . . , s

(K−1)
j

′
], where the weighting vectors s

(k)
j are the weighting vectors for

each of the K − 1 decision boundaries, for variable j. Then the spline transformation of a

variable xj for class boundary k is given by Djs
(k)
j , where the weights vectors s

(k)
j are initially

unknown. Hence the spline transformation of the attributes is achieved by replacing X by
the matrix D = [D1 D2 . . . Dm], and W by S = [S′

1 S′
2 . . . S′

m]′.

Note that if the spline weights are all positive, the spline transformation is a monotone
transformation. This can aid in the interpretation of the solution.

7.2.2 Kernels

Another more commonly used way to introduce nonlinearity in the SVM method is through
the use of kernels, as seen in Chapter 3. Kernels in SVMs are generally implemented using
the so-called kernel trick. Here each inner product between a pair of object vectors x′

i, is
replaced by a kernel function evaluation K(xi,xj) (Cortes and Vapnik, 1995). The inner
products between all pairs of objects are then collected in an n × n kernel matrix K. The
kernel function can be chosen freely, as long as the kernel matrix is positive definite.

In MSVM-Maj, no inner products between pairs of object vectors occur, so the kernel trick
cannot be used. However it is still possible to include nonlinearity using kernel functions,
similar to the approach proposed by Yip (2012) for binary SVMs. This approach consists of
replacing X with the Cholesky decomposition of K. The QR-decomposition of this Cholesky
decomposition can then be used to predict the class labels of objects from the training sample.

7.3 Recommendations for Further Research

As was noted earlier, the large grid search necessary to find the optimal parameter configu-
ration for the MSVM-Maj algorithm is inefficient, and in general not practical. Therefore, it
would certainly be desirable to either decrease the training time of the algorithm significantly
(in which case the time needed for the grid search is reduced), or to create a method with
which the optimal parameter configuration can be found. The training time of the algorithm
can for instance be reduced by rescaling the attributes in the dataset before the algorithm
is run.

Methods for automated detection of the optimal parameter configuration for the MSVM-
Maj algorithm may be difficult to formulate. Although this has not been formally proven,

7.4. Conclusion 37

there is no additional convexity in the parameters p, κ, or λ. Hence any approach to automate
the parameter search must be robust against possible local maxima.

Applications using the binary SVM have repeatedly shown that one of the main reasons
for its success comes from the ability to include nonlinearity in the attributes in an efficient
way. Therefore it is considered essential to ensure that nonlinearity can easily be incorporated
in MSVM-Maj, to make the method competitive with existing techniques.

Finally, it may be interesting to see whether a GPU1 implementation of MSVM-Maj
can be made. The grid search for the optimal parameters constantly uses the same original
dataset, which makes parallelization of the grid search relatively simple. Moreover, the GPU
platform is explicitly designed to allow for parallel computing, and is especially good in
performing matrix operations (Owens et al., 2008). Since the MSVM-Maj algorithm uses
matrix operations at every iteration, it may be possible to achieve a significant reduction in
computation time by using the GPU.

7.4 Conclusion

A new multiclass support vector machine has been introduced which is based on minimizing
the total misclassification error of each object. By using a number of different weightings of
the errors, it is possible to get a very flexible method which can be tuned to find the optimal
classification boundary between classes of a given dataset.

In Chapter 3 it was noted that any new multiclass SVM method must be an improvement
over existing methods in either interpretability, simplicity, performance or training time. We
believe that with regards to the interpretability and simplicity the proposed method is easier
to understand than existing multiclass methods. The introduced weighting mechanism is
built up in such a way that the effect of each weighting can be easily interpreted.

It was demonstrated that the MSVM-Maj algorithm performs at least as good as existing
methods, and performs significantly better than some methods at the 5% confidence level.
A comparison of the training time of the MSVM-Maj algorithm showed that it is in general
slower than existing methods for datasets with a large number of objects or a large number
of classes. Ideas for decreasing this training time have been suggested.

We have focussed here only on the linear multiclass SVM classification. Possible strategies
to include nonlinearity in the predictor variables have been suggested, and it is believed
that if this feature is included, MSVM-Maj can become a proper alternative to existing
multiclass classification methods. In general, we believe that the proposed multiclass Support
Vector Machine approach provides a promising new way of analysing multiclass classification
problems.

1Graphics Processing Unit.

BIBLIOGRAPHY

Allwein, E., Schapire, R., and Singer, Y. (2001). Reducing multiclass to binary: A unifying
approach for margin classifiers. The Journal of Machine Learning Research, 1:113–141.

Bijleveld, C. and De Leeuw, J. (1991). Fitting longitudinal reduced-rank regression models
by alternating least squares. Psychometrika, 56(3):433–447.

Bredensteiner, E. and Bennett, K. (1999). Multicategory classification by support vector
machines. Computational Optimization and Applications, 12(1):53–79.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–
297.

Crammer, K. and Singer, Y. (2001). Improved output coding for classification using contin-
uous relaxation. Advances in Neural Information Processing Systems, pages 437–443.

Crammer, K. and Singer, Y. (2002a). On the algorithmic implementation of multiclass
kernel-based vector machines. The Journal of Machine Learning Research, 2:265–292.

Crammer, K. and Singer, Y. (2002b). On the learnability and design of output codes for
multiclass problems. Machine Learning, 47(2):201–233.

Daumé, H. (2004). From zero to reproducing kernel hilbert spaces in twelve pages or less.

De Leeuw, J. (1977). Applications of convex analysis to multidimensional scaling. Recent
Developments in Statistics, pages 133–146.

De Leeuw, J. (1988). Convergence of the majorization method for multidimensional scaling.
Journal of classification, 5(2):163–180.

De Leeuw, J. and Heiser, W. (1980). Multidimensional scaling with restrictions on the
configuration. Multivariate analysis, 5:501–522.

Dietterich, T. and Bakiri, G. (1995). Solving multiclass learning problems via error-correcting
output codes. Arxiv preprint cs/9501101.

Frank, A. and Asuncion, A. (2010). UCI machine learning repository.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

40 Bibliography

Groenen, P. and Heiser, W. (1996). The tunneling method for global optimization in multi-
dimensional scaling. Psychometrika, 61(3):529–550.

Groenen, P., Mathar, R., and Heiser, W. (1995). The majorization approach to multidimen-
sional scaling for minkowski distances. Journal of Classification, 12(1):3–19.

Groenen, P., Nalbantov, G., and Bioch, J. (2007). Nonlinear support vector machines through
iterative majorization and i-splines. Advances in data analysis, pages 149–161.

Groenen, P., Nalbantov, G., and Bioch, J. (2008). Svm-maj: A majorization approach to
linear support vector machines with different hinge errors. Advances in Data Analysis and
Classification, 2:17–43.

Hardy, G., Littlewood, J., and Polya, G. (1934). Inequalities. Cambridge University Press.

Horn, R. and Johnson, C. (1990). Matrix analysis. Cambridge Univ Pr.

Hsu, C. and Lin, C. (2002). A comparison of methods for multiclass support vector machines.
Neural Networks, IEEE Transactions on, 13(2):415–425.

Lee, Y., Lin, Y., and Wahba, G. (2004). Multicategory support vector machines. Journal of
the American Statistical Association, 99(465):67–81.

Magnus, J. and Neudecker, H. (1988). Matrix differential calculus with applications in statis-
tics and econometrics. Wiley.

Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., and Phillips, J. (2008). Gpu
computing. Proceedings of the IEEE, 96(5):879–899.

Platt, J. (1999). Fast training of support vector machines using sequential minimal opti-
mization. In Advances in kernel methods, pages 185–208. MIT Press.

Ramsay, J. (1988). Monotone regression splines in action. Statistical Science, pages 425–441.

Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classification. The Journal of
Machine Learning Research, 5:101–141.

Rockafellar, R. (1997). Convex analysis, volume 28. Princeton Univ Pr.

Vapnik, V. (1998). Statistical learning theory. 1998.

Weston, J. and Watkins, C. (1998). Multi-class support vector machines. Technical report,
Citeseer.

Yip, H. S. (2012). Predicting the political spectrum with support vector machine.

Zălinescu, C. (2002). Convex analysis in general vector spaces. World Scientific Pub Co Inc.

APPENDIX

A

THEOREMS & PROOFS

Some additional theorems and proofs that are used in the main text are omitted there for
conciseness. They are given below.

A.1 Theorems from Rockafellar (1997)

In the proof of the convexity of LMSVM(V) a number of theorems from Rockafellar (1997)
are used. These theorems are given here, however the proofs are omitted. Theorem numbers
in this section correspond to those in Rockafellar (1997).

Theorem 4.1. Let f be a function from R
n to (−∞,+∞]. Then f is convex on R

n if and
only if

f((1− γ)x + γy) ≤ (1− γ)f(x) + γf(y), 0 < γ < 1,

for every x and y in R
n.

Note that a function is called strictly convex if the inequality sign in the above expression
can be changed to a < sign. We further remark from Rockafellar (1997) page 24, that a
convex function f is called proper if f(x) < +∞ for at least one x and f(x) > −∞ for every
x.

Theorem 5.1. Let f be a convex function from R
n to (−∞,+∞], and let φ be a convex

function from R to (−∞,+∞] which is non-decreasing. Then h(x) = φ(f(x)) is convex on
R
n (where one sets φ(+∞) = +∞).

One important example of this theorem is h(x) = f(x)p which is convex for p > 1 if f is
convex and non-negative.

Theorem 5.2. If f1 and f2 are proper convex functions on R
n , then f1 + f2 is convex.

As a consequence of this theorem any linear combination λ1f1 + · · ·+λmfm of proper convex
functions with non-negative weights is convex.

42 Chapter A. Theorems & Proofs

A.2 Convexity Proofs

The following theorems are used in the proof of Theorem 1.

Theorem 2. The Lp norm is a convex function.

Proof. Let x,y ∈ R
n with elements xi and yi for i = 1, . . . , n, respectively, and let γ ∈ (0, 1).

Then

||γx + (1− γ)y||p ≤ ||γx||p + ||(1− γ)y||p

=

(
n∑

i=1

|γxi|
p

)1/p

+

(
n∑

i=1

|(1− γ)yi|
p

)1/p

=

(
γp

n∑

i=1

|xi|
p

)1/p

+

(
(1− γ)p

n∑

i=1

|yi|
p

)1/p

= γ||x||p + (1− γ)||y||p.

Here, the inequality follows from Minkowski’s Inequality and the third line follows because
γ is non-negative.

Theorem 3. Let A ∈ R
(m+1)×(K−1) and γ ∈ (0, 1). Also, let P ∈ R

(m+1)×(m+1) be a
symmetric positive semi-definite matrix. The function f : R

(m+1)×(K−1) → R defined as

f(A) = tr A′PA

is a convex function.

Proof. First let B ∈ R
(m+1)×(K−1). Then by Rockafellar Theorem 4.1 it needs to be shown

that

f(γA + (1− γ)B) ≤ γf(A) + (1− γ)f(B).

The proof starts by rewriting the left hand side of this inequality as follows

f(γA + (1− γ)B) = tr (γA + (1− γ)B)′P(γA + (1− γ)B)

= tr
(
γ2A′PA + γ(1− γ)B′PA + γ(1− γ)A′PB

+ (1− γ)2B′PB
)

= γ2 tr A′PA + γ(1− γ) tr B′PA + γ(1− γ) tr A′PB

+ (1− γ)2 tr B′PB.

Using the fact that tr B′PA = tr A′PB and rewriting gives

f(γA + (1− γ)B) = γ2 tr (A−B)′P(A−B) + (1− 2γ) tr B′PB + 2γ tr A′PB.

Since γ2 < γ, ∀γ ∈ (0, 1), and since P is a positive semi-definite matrix it follows that

f(γA + (1− γ)B) ≤ γ tr (A−B)′P(A−B) + (1− 2γ) tr B′PB + 2γ tr A′PB

= γ tr A′PA + γ tr B′PB + tr B′PB− 2γ tr B′PB

= γf(A) + (1− γ)f(B).

Notice that if P is a positive definite matrix, the function in Theorem 3 is strictly convex.

A.3. Maximum Eigenvalue Inequality 43

A.3 Maximum Eigenvalue Inequality

Theorem 4. Let A ∈ R
n×n be a symmetric matrix and let λi be the eigenvalues of A with

corresponding eigenvectors vi, for i = 1, . . . , n . Let ℓ ≥ λi, ∀i and let I be the n×n identity
matrix, then

x ′(A− ℓI)x ≤ 0,

for all x ∈ R
n.

Proof. The characteristic polynomial for A is given by

det(A− xI) = (x− λ1)(x− λ2) · · · (x− λn) = 0

Now let y = x− ℓ then

det(A−(y+ℓ)I) = det((A−ℓI)−yI) = (y−(λ1−ℓ))(y−(λ2−ℓ)) · · · (y−(λn−ℓ)) = 0

Hence the eigenvalues of A−ℓI are λi−ℓ ≤ 0,∀i. Then this matrix is negative semidefinite1,
and x′(A− ℓI)x ≤ 0.

An example of this theorem which is used in the main text follows.

Example: Let A be a symmetric n×n square matrix with eigenvalues λi and let ℓ ≥ λi,∀i.
Then let x = f− g be a n× 1 vector. Applying the above theorem yields

(f− g)′ (A− ℓI) (f− g) ≤ 0.

Which can be rewritten to

f ′Af ≤ ℓf ′f + f ′ (A− ℓI) g + g ′ (A− ℓI) f− g ′ (A− ℓI) g,

≤ ℓf ′f + 2f ′ (A− ℓI) g− g ′ (A− ℓI) g,

where in the last line it has been used that A is symmetric.

If in the above example we substitute f = V′zi, A = δkjδ
′
kj and g = V

′
zi with ℓ = 1, the

inequality in (5.15) is found.

1See e.g. Horn and Johnson (1990), Corollary 7.2.1

APPENDIX

B

HUBER HINGE MAJORIZATION

To keep the main derivation of the majorization function concise, the majorization of hp(q)
will be presented here. For reference, the definition of hp(q) is repeated first

hp(q) =





(
1− q −

κ+ 1

2

)p
if q ≤ −κ

1

(2(κ+ 1))p
(1− q)2p if q ∈ (−κ, 1]

0 if q > 1.

Let the majorization function be given by g(q, q) = aq2−2bq+c. The majorization conditions
for the IM algorithm can then be stated as

1. hp(q) = g(q, q),

2. [hp(q)]′ = g′(q, q),

3. hp(q) ≤ g(q, q).

Since the Huber function is a piecewise defined function, the derivation can be separated into
three parts. Notice that the value of q determines in which segment the majorization function
touches, this value therefore determines the coefficients of the quadratic majorization.

B.1 Huber majorization for q < −κ

If q < −κ the following conditions must hold

(
1− q −

κ+ 1

2

)p
= aq2 − 2bq + c

−p

(
1− q −

κ+ 1

2

)p−1

= 2aq − 2b

To shorten the notation we define a dummy variable

φ = 1− q −
κ+ 1

2
. (B.1)

46 Chapter B. Huber hinge Majorization

q

h(q), g(q, q)

−5−10−15−20 0 5 10

5

10

15

20

Figure B.1 – Example of the majorization function derived in Section B.1. The Huber function
is plotted in blue with p = 1 and κ = 5. The majorization function is constructed
with the supporting point at q = −8, and is plotted in red.

Solving the above equations for b and c gives

b = aq + 1
2pφ

p−1,

c = aq2 + pqφp−1 + φp.

It is desirable that the majorization function provides an as large as possible majorization
step. This would imply that the majorization function g(q, q) has the minimum value 0.
This condition provides us with the equation needed to find a. Let qmin denote the value of
q where g(q, q) has its minimum, then g′(qmin, q) = 0 implies qmin = b/a and g(qmin, q) = 0
yields

c =
b2

a
.

Solving this for a gives

a = 1
4p

2φp−2.

Figure B.1 shows an example of a majorization which touches at q = q and has its minimum
at q > 1. This majorization is only possible whenever qmin ≥ 1, due to the value of hp(q)
and the third majorization condition. Solving qmin ≥ 1 for q reveals that the above value for
a holds if and only if

q ≤
p+ κ− 1

p− 2
.

Thus whenever q ∈ ((p+κ− 1)/(p− 2),−κ] a different value for a is needed. The expression
for a derived for q ∈ (−κ, 1] in the next section, can then be used. Notice that the above
expression for a is valid only when p 6= 2. A separate derivation for p = 2 is necessary and
will follow.

B.2. Huber majorization for q ∈ (−κ, 1] 47

q

h(q), g(q, q)

−5−10−15−20 0 5 10

10

20

30

40

Figure B.2 – Example of the majorization function derived in Section B.2. The Huber function
is plotted in blue with p = 1.5 and κ = 9. The majorization function is constructed
with the supporting point at q = −7, and is plotted in red.

B.2 Huber majorization for q ∈ (−κ, 1]

For q ∈ (−κ, 1] the majorization conditions stated above imply

(2(κ+ 1))−p(1− q)2p = aq2 − 2bq + c,

−2p(2(κ+ 1))−p(1− q)2p−1 = 2aq − 2b.

Again, we introduce a dummy variable

ψ =
1− q√

2(κ+ 1))
, (B.2)

and we solve the system of equations for b and c to arrive at

b = aq + p
ψ2p

1− q
,

c = aq2 + ψ2p
(

1 +
2pq

1− q

)
.

A value of a can be found by realizing that the second derivative of hp(q) is bounded on the
interval q ∈ (−κ, 1]. The maximum value on this interval is

[hp(−κ)]′′ = 1
2p(2p− 1)

(
κ+ 1

2

)p−2

.

By equating this to g′′(q, q) = 2a we find a value for a which ensures that hp(q) ≤ g(q, q) on
the interval q ∈ (−κ, 1].

a = 1
4p(2p− 1)

(
κ+ 1

2

)p−2

(B.3)

Notice that we use an upper bound for a, which means that for some values of p and κ a
more efficient majorization function exists. However a general expression for which g(q, q)
does not intersect the Huber function, has not been found. Figure B.2 shows a graphical
illustration of this majorization.

48 Chapter B. Huber hinge Majorization

B.3 Huber majorization for q > 1

When q > 1 the majorization derived above for q ≤ −κ is useful. Since we’ve shown that for
all values of q ≤ (p+ κ− 1)/(p− 2) a majorization can be found for which g(qmin, q) = 0, it
is also possible that whenever q > 1 a majorization function can be constructed that touches
hp(q) at a second supporting point, χ < −κ. Then as a function of χ the coefficients a, b
and c are

a = 1
4p

2
(

1− χ−
κ+ 1

2

)p−2

b = aχ+ 1
2p

(
1− χ−

κ+ 1

2

)p−1

c = aχ2 +

(
1− χ−

κ+ 1

2

)p
+ pχ

(
1− χ−

κ+ 1

2

)p−1

Since g′(q, q) = 0 we know that b = aq, which allows us to find the relation between χ and q

χ =
pq + κ− 1

p− 2

Notice that χ is a dummy variable similar to φ and ψ. Plugging the above into the expressions
for a, b and c gives

a = 1
4p

2
(

pφ

p− 2

)p−2

b = aχ+ 1
2p

(
pφ

p− 2

)p−1

c = aχ2 + pχ

(
pφ

p− 2

)p−1

+

(
pφ

p− 2

)p

Notice that these expressions also do not hold when p = 2. A second derivation is needed
for this special case.

B.4 Huber majorization for p = 2

Some of the above expressions for the coefficients break down when p = 2. However the
upper bound of a derived for q ∈ (−κ, 1], is still valid. Plugging p = 2 into (B.3) gives
a = 3/2, which can be used throughout the entire range of q. With this value of a the
expressions derived for b and c for q < −κ remain equal to

b = 3
2q + 1

2pφ
p−1,

c = 3
2q

2 + pqφp−1 + φp.

For q ∈ (−κ, 1] the parameters derived above are also still valid, hence

b = 3
2q +

pψ2p

1− q
,

c = 3
2q

2 + ψ2p
(

1 +
2pq

1− q

)
.

B.4. Huber majorization for p = 2 49

For q > 1 we simply use the majorization conditions and a = 3/2 to arrive at

b = 3
2q,

c = 3
2q

2.

To summarize, the values for a, b and c are

a =





1
4p

2φp−2 if q ≤
p+ κ− 1

p− 2
and p 6= 2

1
4p(2p− 1)

(
κ+ 1

2

)p−2

if q ∈

(
p+ κ− 1

p− 2
, 1

]
and p 6= 2

1
4p

2
(

pφ

p− 2

)p−2

if q > 1 and p 6= 2

3
2 if p = 2

b =





aq + 1
2pφ

p−1 if q ≤ −κ

aq +
pψ2p

1− q
if q ∈ (−κ, 1]

aχ+ 1
2p

(
pφ

p− 2

)p−1

if q > 1 and p 6= 2

3
2q if q > 1 and p = 2

c =





aq2 + φp + pqφp−1 if q ≤ −κ

aq2 + ψ2p
(

1 +
2pq

1− q

)
if q ∈ (−κ, 1]

aχ2 + pχ

(
pφ

p− 2

)p−1

+

(
pφ

p− 2

)p
if q > 1 and p 6= 2

3
2q

2 if q > 1 and p = 2

where the dummy variables are defined as

φ = 1− q −
κ+ 1

2
,

ψ =
1− q√
2(κ+ 1)

,

χ =
pq + κ− 1

p− 2
.

	Nomenclature
	Introduction
	Outline

	Binary Support Vector Machines
	Literature Overview
	Naive Approaches
	All vs. All classification
	One vs. All classification

	Single machine Approaches
	Error-correcting Coding Approaches
	Single Machine vs. OVA

	The MSVM-Maj Loss Function
	Notation & Simplex Theory
	Errors & Error Functions
	Errors
	Error Functions

	Loss Function
	Convexity of MSVM Loss Function

	Majorization
	Iterative Majorization
	Majorization of LMSVM
	Majorization of Case 1 errors
	Majorization of the p-th root function
	Majorization of Huber functions
	Majorization of the quadratic term
	Minimization conditions

	Results
	Implementation
	Performance Evaluation
	Experimental Setup
	Experimental Results

	Discussion & Conclusion
	Parameter Selection
	Nonlinearity
	Splines
	Kernels

	Recommendations for Further Research
	Conclusion

	Bibliography
	Theorems & Proofs
	Theorems from rockafellar1997convex
	Convexity Proofs
	Maximum Eigenvalue Inequality

	Huber hinge Majorization
	Huber majorization for q< -
	Huber majorization for q(-, 1]
	Huber majorization for q> 1
	Huber majorization for p=2

