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Abstract 

     This paper tests the existence of peer-induced fairness in ultimatum games. We build on the work of 

Ho and Su (2009) who developed a model of an ultimatum game with two followers, approached 

sequentially by the leader, and found that the second follower has fairness concerns towards both the 

leader and the first follower. We extend their model by allowing the first follower’s utility also to 

depend on the expected offer to the second follower, which dependence we call “forward-looking 

fairness”. We test for the existence of forward-looking fairness by comparing the offers to, and 

acceptance frequencies of, the first follower in the two-follower game (the treatment group) with those 

of the only follower in the classical one-follower game (the control group). The experimental data 

collected from 75 high school students do not immediately support the existence of forward-looking 

fairness; however, some positive evidence emerges after allowing for the differences in the demand for 

punishment between the control and treatment groups. Unlike in Ho and Su (2009), the existence of 

peer-induced fairness is not supported by our data. Overall, our results suggest the importance of 

contextual factors in shaping the experimental outcomes of ultimatum games.  

 

Keywords: Behavioural economics, ultimatum games, forward looking fairness, peer induced fairness, 

game theory, spitefulness, risk aversion. 
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1. Introduction 

     The concept of “Homo Economicus”, who is unboundedly rational, who has unbounded willpower 

and who only cares about him- or herself, fails to adequately describe the outcomes of individual 

actions, and even more so of human interactions (Thaler 1991). Herbert A. Simon (1955; 1979) had 

proposed that economic agents should be viewed as bounded-rational and having other-regarding 

preferences, for example, altruism, spitefulness or fairness concerns, which is the topic of this work.      

One way of showing that people do have fairness concerns is by comparing the predicted and actual 

outcomes of the ultimatum game designed by Guth, Schmittberger, and Schwarze (1982). This game 

involves two players: the leader and the follower. The leader gets to divide a certain amount between 

himself and the follower. He offers to the follower a share in this amount, and the follower can either 

accept or reject this offer. When the follower accepts the offer, both players get a payoff of the 

proposed division. In case he rejects the offer, both players get a payoff of zero.  

     Game theoretic models predict the subgame perfect equilibrium offer to be an offer by the leader of 

the smallest amount possible, which will be accepted by the follower because it is more than zero 

(which he would get if he rejects the offer). Yet, as the study of Guth et al. (1982) shows, this is not 

what happens in practice. In their experiment, they show that followers sometimes reject certain offers 

above zero and that some leaders offer higher than the minimum possible amount to prevent rejection. 

More specific, Roth (1995), as well as many other trials,  found that offers of less than 30 per cent of 

the amount are very likely to be rejected. Guth et al. (1982) explain this with a theory of fairness 

concerns, whose basic message is that the follower’s utility is affected not only by the offer he 

receives but also by the distribution of the initial amount between the leader and himself. Over the 

years, the effects of various contextual factors on the ultimatum game outcomes have been studied, 

such as changes in the magnitude of the amount to be divided, cultural differences and age differences 

(Cameron, 1999; Hoffman, 2003). However, no contextual factor has proved powerful enough to 

eliminate fairness concerns. Therefore, Guth et al’s (1982) notion of “distributional fairness” has 

become a cornerstone in modern game theory.  

     In addition to the distribution of payoffs between the leader and the follower, fairness concerns 

may also be affected by the relative positions of the leader and follower(s) in some kind of hierarchy. 

For instance, an employee’s fairness concerns may be stronger towards a fellow employee than to the 

boss. Ho and Su’s (2009) study was the first to model what they call “peer-induced” fairness together 

with distributional fairness. To do so, they allowed for a second follower in the ultimatum game. The 

second follower observes a signal about the offer made to the first follower, which signal affects his 

behaviour even stronger than the difference in payoffs to the leader and to him. Moreover, the leader 

appears to be aware of the existence of peer-induced fairness, and makes an offer to the second 

follower, which is on average higher than the offer to the first follower.    
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     This study builds upon Ho and Su (2009). We expand their work by looking at the possibility that 

fairness concerns between the followers may exist both ways rather than only from the second 

follower to the first. We introduce a new concept of “forward-looking fairness”, which is closely 

related to Ho and Su’s (2009) peer-induced fairness but describes the behaviour of the first follower 

influenced by the offer that he expects will be made to the second follower. The study of Van Boven 

and Ashworth (2007) has motivated our interest, because it finds that emotions are in fact stronger 

when anticipating something than when looking back at the same event. This result, when taken to 

economics, suggests the necessity of allowing for the existence of forward-looking fairness concerns 

as well as backward-looking fairness concerns as Ho and Su (2009) did. To do so, we extend their 

model by allowing the first follower to have fairness concerns towards the leader and the second 

follower. We predict that, i) compared to the follower in the one-follower ultimatum game, the first 

follower in the two-follower game will be offered more, and ii) given the magnitude of the offer, the 

first follower’s rejection rate in the two-follower game will be higher than the rejection rate of the 

follower in the one-follower game.  

     As Thaler (1988) said in his paper about the ultimatum game: “One conclusion that emerges clearly 

from this research is that notions of fairness can play a significant role in determining the outcome of 

negotiations.” The knowledge that people are willing to reject offers, which they consider unfair 

allocations, has implications for economic bargaining theory but also well beyond that. Every time a 

monopolist or a monopsonist sets a price or a wage, it reflects the conditions of an ultimatum. Many of 

these situations involve more than just two people. Therefore, it is very important to know whether 

human beings are capable of conceiving and responding to forward-looking peer induced fairness. If 

we do find evidence for forward-looking fairness, this might change the optimal mechanism of 

negotiation compared to the classical one. Then it is better for the followers to negotiate as a group 

and, on the contrary, for the leaders to negotiate separately without the followers knowing about one 

another.  

     An example of a real world situation which can be described as an ultimatum game is for instance 

to be found on the work floor. A wage negotiation, in which the employer is the leader and the 

employees are the followers, is in fact a game to divide an amount of surplus. Employing any 

particular person will create surplus, which is distributed between the employer and the employee. 

Having multiple possible employees creates the situation of a real world ultimatum game with 

multiple followers.       

     We test our theoretical predictions with an experiment, using the setup of the two-stage ultimatum 

game as described above.  The experiment took place at a Dutch high school involving 75 students. 

The results of the experiment, however, are not in line with the theoretical predictions. To explain 

these differences, two possible explanations will be discussed. These explanations, the demand for 

punishment and risk theory seem to fit the gaps between theory and practice quite well. After allowing 
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for differences in the demand for punishment between the one-follower game and the two-follower 

game, positive evidence emerges on the existence of forward-looking fairness. However, for 

conclusive findings on behave of risky behaviour influencing the outcomes of the two-follower 

ultimatum game when allowing for forward-looking fairness, more research needs to be done. 

     Because the experiment of Ho and Su (2009) is a part of the experimental setting for this study, 

their theoretical predictions will be tested as well. Our replications of Ho and Su (2009), however, do 

not find evidence to support their findings on the existence of peer-induced fairness. 

 

     The rest of this paper is organized as follows. Chapter 1 formulates the theoretical model. Chapter 

2 presents the equilibrium analysis and the theoretical predictions. Chapter 4 and 5 describes the 

experimental design and procedure, and show descriptive statistics of the data and participants. 

Chapter 6, 7 and 8 cover the results, the possible explanations and implications and chapter 9 

concludes. Chapter 10 gives a brief discussion of the hints of good fortune and the extra hard parts of 

this research. 
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2. Theoretical Model 

     This section will cover the theoretical model of this research. Prior to this thesis, exploring the 

theoretical model, a preliminary research paper has been written (Roelse 2012). To get the forward-

looking peer induced fairness model of the ultimatum game understandable, it will be build up step by 

step. Since this model is an extended version of the ultimatum game, this section will start with the 

theoretical model of the classical ultimatum game
1
. Then it will slowly be expanded to the full model 

used for this research. First, the second follower, including peer-induced fairness, will be added. This 

reflects the model of Ho and Su (2009), up on which the forward-looking model will be build. At last, 

the model will be extended with forward-looking fairness to get the complete model used for this 

study.  

 

2.1 The basic model 

     The basic model used for this research is the classical ultimatum game. This game describes a 

situation with one leader and one follower. The leader has to divide a certain amount, π, between 

himself and the follower. The leader makes a proposition to the follower on how to divide the amount. 

He offers a part of the amount to the follower, s1, which implies he offers to keep π-s1 himself. The 

follower chooses either to accept this offer, a1=1, or to reject this offer, a1=0. If the follower decides to 

accept the offer, he will get a payoff of the amount offered, s1, and the leader will get a payoff π-s1. If 

he decides to reject the offer, both the follower and the leader will get a payoff of zero. 

     First, the payoff function of follower 1 will be defined, UF1. This payoff function consists of two 

components. The first component reflects the material payoff from the game. The second component 

brings out the disutility of having a lower payoff than the leader. This component thus reflects the 

distributional fairness concerns between the follower and the leader (Wu et al. 2012). 

Payoff function of follower 1: 

UF1 (s1,a1) =  
                                                                         
                                                                                                        

     (1) 

where δ is the measure for the degree of averseness of follower 1 from being distributional behind 

from the leader.  

     The leader’s payoff function is defined in similar way. One component reflects the material payoff 

and one component reflects the disutility from being behind with respect to the follower. 

                                                           
1
 For the model with two followers is based on Ho and Su (2009), the basic model, thus the classical ultimatum game, will be 

worked out in their followence and terminology as well. 
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UL,I (s1,a1) =  
                                                               
                                                                                                     

     (2) 

     The timing of the game is as follows: 

1. The leader offers a certain division of the amount to the follower. 

2. The follower accepts or rejects this proposition. 

3. Payoffs are realized. 

     Arising from this model is the following. δ is a measure of the degree of averseness of the follower. 

Originally has been thought that δ did not exist. Without assuming the presence of δ, the model has the 

following two implications. First, the follower’s payoff function only exists of a material component, 

therefore receiving any amount of the total amount to be divided gives the follower a higher utility 

then when receiving nothing. The follower should thus accept all positive offers. Leaders will 

anticipate to this knowledge and are best off making an offer approaching zero, since this leaves the 

leader himself with the largest amount possible. Several data studies, however, have found otherwise 

(Nowak et al. 2000; Gale et al. 2005).  

     Rejection of the offer by the follower signals that his payoff function has non-monetary 

components. If his payoff function would only exist of monetary components, he would have accepted 

every offer above zero, since that would have given him more utility in that case. Rejecting the offer 

thus signals that the follower rather wishes to sacrifice the low amount he got to protest to the unfair 

distribution of the amount. This is called distributional fairness; fairness concerns between the leader 

and the follower. The measure of someone experiencing this is called the measure of the degree of 

averseness of being distributional behind. This is expressed with δ. Therefore, assuming δ to be non-

zero, the follower only accepts an offer which is part of a fair distribution is his eyes and the leader has 

to anticipate to this because wants his offer to be accepted. This leads to the actual offers being far 

higher than the minimum possible amount.  

 

2..2 A Second Follower 

     To be able to research what happens if the first follower knows another follower is in line, first the 

basic model will be extended by adding a second follower to the model, as in Ho and Su (2009). The 

game with two followers starts the same as with the first three steps of the basic model described 

above. After the payoffs for the first subgame are realized, the second follower gets a signal about the 

offer made to the first follower. This noisy signal, z = s1 + ε, where ε is a random noise term with 

mean zero and an arbitrary distribution function F(·) and density function f(·). Accompanied by the 

knowledge of this signal the second follower creates inferences about the offer made to the first 

follower, which can influence his decision of accepting or rejecting his own offer. The leader gets to 
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know the signal as well before the second subgame starts. In this subgame the leader gets a new pie to 

divide, again of the amount π. The timing of this second game is the same as for the first game. The 

leader makes a proposition to the second follower on how to divide the amount. He offers a part of the 

amount to the follower, s2, which implies he offers to keep π-s2 himself. The follower chooses either to 

accept the offer, a2=1, or to reject this offer, a2=0. If the follower decides to accept the offer, he will 

get a payoff of the amount offered, s2, and the leader will get a payoff π-s2. If he decides to reject the 

offer, both the second follower and the leader will get a payoff of zero.  

     The payoff function of the second follower consists of the same components as the first follower’s 

payoff function, plus an extra term. This extra term reflects the disutility of the second follower from 

being behind with respect to the first follower. This term thus arises because follower two will 

compare himself to a similar person, his peer, the first follower. With the noisy signal, z = s1 + ε, he 

can make an inference of the probability that the first follower has accepted the offer   (z)=P(a1=1|z) 

and a conditional expectation of what the first follower got offered   1(z)=E(s1|z,a1=1). Using this    and 

  1 for the inferences about the first subgame, we can define the second follower’s payoff function as: 

UF2 (s2,a2|z) = 

  
                                                                                 
                                                                                                                                           

     (3) 

ρ is the measure of the degree of aversion for being behind in comparison to a peer i.e. the measure of 

strength of peer-induced fairness. δ is again the measure of the degree of aversion from being 

distributional behind from the leader. 

     The payoff function of the first follower stays the same as in the classical ultimatum game: 

UF1 (s1,a1) =  
                                                                         
                                                                                                        

     (1) 

where δ is the measure for the degree of averseness of follower 1 from being distributional behind 

from the leader. 

     To complete this two-follower model, the payoff function of the leader is defined. In every 

subgame the leader can receive a material payoff. In the second subgame the leader’s payoff function 

is defined as follows: 

UL,II (s2,a2|z)  =    
                                                               
                                                                                                   

    (4) 

where UL,II(s2,a2|z) defines the payoff function of the leader in the second game, based on the second 

offer, s2, and whether the offer is accepted, a2, conditional on the signal z. The leader’s payoff is 

dependent on this z in so far the second follower’s choices rest upon it. 
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     The first subgame does not have a noisy signal, therefore the payoff function for this subgame is 

not defined conditionally on z. The payoff function of the leader for the first game consists of a 

material payoff and a component for the disutility from being behind to the follower, the distributional 

fairness:  

UL,I (s1,a1) =  
                                                                       
                                                                                                           

    (5) 

where δ is again the degree of averseness of distributional fairness concerns.  

The timing of the model with two followers is: 

1. The leader offers a certain division of the pie to follower 1. 

2. Follower 1 accepts or rejects this proposition. 

3. Payoffs are realized. 

4. Follower 2 gets a noisy signal on the offer made to follower 1. 

5. The leader also gets to know this signal. 

6. The leader offers a certain division of the pie to follower 2. 

7. Follower 2 accepts or rejects this proposition. 

8. Payoffs are realized. 

 

2.3 Forward looking fairness 

     Building on the above model, this study tries to find out whether people also experience forward-

looking fairness. To recall, where forward-looking fairness is the tendency to compare yourself to 

someone in a similar situation when looking forward, to asses if you have been treated fairly. Thus 

after adding a second follower to the classical ultimatum game, now the model will get an extra 

dimension to capture the possibility that the first follower is anticipating on what he knows is going to 

happen. As found by Ho and Su (2009), peer induced fairness results in the offer made to the second 

follower being higher than the offer made to the first follower with non-zero probability. In our 

forward-looking fairness model is assumed the first follower is rational and thus knows that with non-

zero probability the offer made to the second follower will be higher than the offer he will get himself. 

This means a possibility exists when the difference between his own offer and the offer he thinks is 

going to be made to the second follower is too big, he will reject his own offer out of fairness 

concerns. When the pie does not get to be divided, the total payoff is zero instead of π. As any other 

rejection, rejection due to forward-looking fairness would thus be welfare destroying. It is therefore 

important to look for the existence of forward-looking fairness and understanding this process.  

     The forward-looking fairness will be captured in ρ1. The payoff function of the first follower with 

forward looking fairness will therefore be: 
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UF1,FF (s1,a1) = 

  
                                            

                            
                                                                                                                                     

    (6) 

 

where FF stands for forward-looking fairness and s1 is the offer made to follower 1. The second 

component captures the distributional fairness where δ is a measure for the degree of averseness of 

being behind from the leader. The third component brings disutility to the first follower from being 

behind to the second follower and thus captures the forward-looking fairness. ρ1 is the degree of 

forward looking fairness, E(s2*) is the expected equilibrium offer made to the second follower and p1 

is the first followers inference of the probability that the second follower will accept this offer. 

     The payoff function of the second follower will stay the same as in the model with no forward-

looking fairness. This is because a third person does not exist in this model; therefore, it is not possible 

for the second player to perceive forward-looking fairness concerns. His possible backward-looking 

fairness concerns will still be captured in his payoff function. To recall: 

UF2,FF (s2,a2|z) = 

  
                                                                      
                                                                                                                                 

    (7) 

     The payoff functions of the leader in this forward-looking fairness model are the same as in the 

other models. This is due to the fact that the leader has no different payoffs or strategies than before.   

UL,I,FF (s1,a1) =  
                                                                       
                                                                                                            

    (8) 

UL,II,FF (s2,a2|z)  =    
                                                                
                                                                                                     

    (9) 
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3. Equilibrium Analysis 

     This section presents the equilibrium analysis and the theoretical predictions of the forward-looking 

peer induced fairness model of the ultimatum game just described. The model will be worked out with 

use of backward induction. This means the second subgame, the one with the leader and the second 

follower is the first one to be solved. Because the payoff function for the second follower is the same 

in the model with and without forward looking fairness, the derivation will be the same for these two 

models.  

3.1 The second subgame 

     For easiness, we recall the payoff function of the second follower and the one of the leader: 

     UF2 (s2,a2|z) = 

  
                                                                                 
                                                                                                                                            

    (3) 

     UL,II (s2,a2|z)  =  

  
                                                                                                      
                                                                                                                                            

    (4) 

     The second follower can either accept or reject the offer made to him. Rejection will leave him with 

zero utility, therefore he shall be willing to accept the offer if the offer is at least 0 i.e. UF2(s2,1|z) ≥ 0. 

     The offer the leader makes to a follower is the part of the pie he offers to give away. Therefore, the 

utility of the leader is decreasing as the offer to the follower becomes higher, for then the leader will 

get a smaller part of the pie. Accordingly, the leader always wants to offer the lowest amount possible. 

As the second follower has the constraint of accepting described above, the leader will choose to offer 

the lowest offer possible, but still satisfying UF2(s2,1|z) ≥ 0. 

     The following result shows the solution to this problem, which is the optimal offer, made to the 

second follower s2*. 

Result 1: The optimal offer from the leader to the second follower, s2*, as a function of the follower’s 

inferences 1(z) and 1(z), is: 

   
                         

  

    
 
             

            
 
         

         
  

      

    
   

Proof: See appendix 1, proof of result 1. 

     The optimal offer is thus, the minimum of two terms: (i) max{(πδ)/(1+2δ), (πδ + ρ  (z)   (z)/(1 + 

22δ + ρ  (z)), (ρ  (z)   (z))/(1 + ρ  (z))}; and (ii) π(1 + δ)/(1 + 2δ). The first term yields the leader’s 

preferred option while still satisfying the constraint of the follower. This thus yields the smallest offer 
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he can possible make while making sure the follower will still accept. This term is found by taking the 

maximum of these three components (note the first component is independent of ρ and the third 

component is independent of δ). As a result, the first and the third component become relevant when 

distributional fairness respectively backward-looking peer induced fairness is ascendant. Naturally, the 

second component becomes relevant if both kinds of fairnesses are of similar importance. 

3.2 The first subgame 

     The equilibrium analysis of the first game is different for the model with and the model without 

forward-looking peer induced fairness, because the payoff functions of the first followers are different. 

We will therefore start with the equilibrium analysis of the model without forward-looking fairness. 

     In the first game, of the model without forward looking fairness, the leader makes an offer to the 

first follower. To recall, the payoff function of the first follower and the leader in the first subgame 

are: 

UF1 (s1,a1) =  
                                                                       
                                                                                                      

     (1) 

UL,I (s1,a1) =  
                                                               
                                                                                                     

     (2) 

 

     As can be seen from the payoff function, the more the leader offers to the first follower, the lower 

is his own material payoff. Consequently, the leader wants to make an offer as low as possible. Again, 

as for the second follower, the first follower has the choice to reject or accept the offer. If he rejects, he 

will get a utility of zero. He will only accept the offer if the utility he will get will be at least zero, 

which implies UF1 (s1,1) ≥ 0. This can be shown to be s1 ≥ (πδ)/(1 + 2δ), see Appendix 1; Rate of 

rejection of follower 1, which is the constraint capturing the distributional fairness concerns. To be 

accepted the offer thus has to be at least holding for this constraint, therefore the first follower’s 

acceptance threshold is A = (πδ)/(1 + 2δ). With this, the optimal offer to the first follower can be 

derived. 

Result 2: The optimal offer from the leader to the first follower, s1*, is: 

   
   

  

    
 

Proof: See Appendix 1; proof of result 2. 

     To be able to compare this situation, the theoretical outcome for the first subgame of the game with 

forward-looking peer-induced fairness will be computed as well. To recall, the payoff function of the 

first follower with forward looking peer-induced fairness is: 
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UF1,FF (s1,a1) = 

  
                                            

                            
                                                                                                                                    

    (6) 

 

     Also in this game, follower 1 can either accept or reject the offer. As can be seen from the payoff 

function, the expected second offer and the follower’s inferences on the probability that the second 

follower will accept this offer are taken in consideration with this decision. If the first follower rejects, 

it will leave both him and the leader with zero utility. He will thus only accept the offer if it leaves him 

with at least zero utility. This does not mean if the first follower thinks the second player gets a higher 

offer, he will decline his own. It is possible when the difference is small enough, even if the offer to 

the second follower is higher, it still leaves him with a higher utility than zero. This can happen for 

values of ρ1 below a certain level i.e. the degree of forward looking fairness is not too high. Therefore 

if UF1,FF (s1,1) ≥ 0 he will accept the offer.  

     The following result shows the solution to this problem which is the optimal offer made to the first 

follower s1,FF*, where FF stands for forward looking fairness. 

Result 3: The optimal offer from the leader to the first follower, s1,FF*, in the first subgame with 

forward looking fairness is: 

     
                         

  

    
 
             

  

           
 
         

  

        
  

      

    
   

Proof: See Appendix 1; proof of result 3. 

     As both the optimal offer of the game with and without forward-looking fairness are derived, the 

situations can be compared to each other. Discussed in the models above, the model with one follower 

and the model with two followers differ from each other in ways and number of fairnesses. The model 

with one follower, the classical ultimatum game, takes on distributional fairness, fairness between the 

leader and the follower. The two-follower forward-looking fairness model has another restriction. 

Both distributional fairness and forward-looking fairness, fairness concerns between the first and the 

second follower, restrict the offer. Both fairnesses have to be satisfied in the equilibrium offer, while 

in the model with one follower distributional fairness is the only restriction. This gives the following 

theoretical prediction: 

Theoretical prediction 1: The offer made to the first follower in the model with forward-looking 

fairness is always weakly higher than the offer in the classical ultimatum game. 

Proof: This follows from result 2 and 3. 
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3.3 Rate of rejection 

     As discussed earlier on, if the offer from the leader is rejected, this is welfare destroying. It is 

therefore important to know how the rate of rejection is influenced when allowing for forward-looking 

fairness.  

     In this section we will start by looking at the rate of rejection of the first follower in a two-follower 

ultimatum game without forward-looking fairness. Then the first game of the ultimatum game with 

forward-looking fairness will be examined. At last, the two situations will be compared. To recall, the 

first follower’s payoff function:  

UF1 (s1,a1) =  
                                                                       
                                                                                                     

     (1) 

     The first follower will only accept the offer if UF1(s1,1)≥0, which is equivalent to the acceptance 

threshold A1, therefore, 

Result 4:  A1 = 
  

    
 

The higher the distributional fairness δ, the higher the acceptance threshold. Derivations of the 

probability of accepting are to be found in Appendix 1: Rate of rejection of follower 1. 

     The same derivation is possible for the first game in the model with forward-looking fairness. To 

recall, the first follower’s payoff function: 

UF1,FF (s1,a1) =  

 
                                            

                            
                                                                                                                                    

    (6) 

     The two fairnesses are captured in the payoff function of the second follower, so he will only 

accept the offer if UF1,FF(s1,1|z1)≥0 : 

Result 5:  AF1,FF = 
             

  

           
 

The proof of this result can be found in Appendix 1: Rate of rejection of follower 1 with Forward 

looking fairness. Comparing A1 and A1,FF we can see that A1,FF is bigger than A1 for a large enough 

E(  
 ).  

Theoretical prediction 2: Given the magnitude of the offer, the rate of rejection of the first offer is 

higher when allowing for forward-looking fairness compared to the classical ultimatum game.  

Proof: follows from result 4 and 5.  
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     The theoretical predictions of the forward-looking peer induced fairness model of the ultimatum 

game will be tested experimentally. Because parts of this model and therefore the experiment are the 

same as in the research of Ho and Su (2009), the opportunity to test the theoretical predictions of their 

model again will be used as well. The next chapter will explain the experimental setting of this 

research.  
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4. Experimental Design 

     75 students from the Dutch high school Calvijn Groene Hart in Barendrecht participated in the 

experiment. The experiment took place in three sessions in which were around 25 students each. In 

every session, the students were divided into two groups, a treatment group, which consisted of 

approximately 15 people, and a control group, which consisted approximately of 10 people. In the 

control group the students played the standard ultimatum game, the one with one leader and one 

follower. In the treatment group, the students played the ultimatum game with one leader and two 

followers. For every session, the school granted a one-hour time span, so every group played as much 

rounds as the time limit would allow. The control group ended up playing around 5 rounds per session, 

the treatment group around 4 rounds per session
2
. For every round, the students were randomly 

classified in pairs, for the control group, and in triplets, for the treatment group. Following, the 

students per pair or triplet were randomly classified in a certain role. The students never knew the 

identities of the people who they were playing with and were not allowed to talk to each other or make 

sounds for duration of the experiment. The students were paid in the possibility of winning a piece of 

pie in optional flavour. The participants with the top 25% highest cumulative scores in the control 

group and in the treatment group won the price. It is important to have separate rewardings for both 

groups because in the treatment group is it more easy to collect a large amount of points than in the 

control group. Therefore, to get equal chances to win something, in both groups participants with the 

top 25% cumulative points got rewarded. Before the experiment began, the students had to read the 

instructions, with at the end the option to ask questions. Only when everybody understood what was 

asked of him, the experiment started. A copy of the instructions for both groups is given in appendix 2. 

To be able to cope with the two groups at the same time there were two moderators, one to guide the 

control group and one to guide the treatment group. The whole experiment was computerized to make 

it more time efficient and facilitate information passing. 

     All communication ran through a specially designed chat box. This chat box allowed the moderator 

to have a private channel with each student. The students only had the possibility to talk to the 

moderator, which controlled for communication between the students through the chat box. To make it 

more time efficient and facilitate the information passing a standard template was created. This 

template contains pre-made sentences for the conversation per role. With these sentences the players 

were again explained what to do at the moment they had to do this and they were asked to execute it. 

See appendix 3 for the template used for the communication through the chat box. 

     The decision task was simplified as much as possible. For what was thought to be the hardest part, 

the signal in the treatment group, the instructions provided a few examples to really understand how it 

                                                           
2
 Taking into account the age of these kids, more rounds would not be acceptable due to their concentration span, I noticed.  
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works. The random and anonymous classification of the groups and roles helped to avoid any 

communication between the students. Because every new round had random role classifications we 

controlled for collusion, reciprocity, strategic playing and reputation building behaviour.  This means 

that each round can be framed as a one-shot game with new partners. 

 

4.1 Control group  

     In each round, subjects were randomly grouped in pairs. In each pair the students were randomly 

assigned the role of RED; the leader, or BLUE; the follower. The pairs played a one shot ultimatum 

game in which they have to divide 100 points. 

     RED was asked to communicate the amount of points he had decided to offer to BLUE via the chat 

box to the moderator. The moderator communicated this offer to BLUE. Then BLUE had to move by 

either accepting this offer, which would give him a payoff of OFFER1 and RED a payoff of 100-

OFFER1, or to reject the offer which would lead both players to have a payoff of zero in this round. 

This accepting or rejecting was asked to BLUE to communicate this to the moderator. Then the 

moderator communicates the payoffs to both players and the round is finished. For the new round the 

moderator classified the students randomly and all starts at the beginning.   

     Each player’s total points in each round were recorded. At the end of the session, point of all round 

were summed up and the top 25% people with the most points won a piece of pie in optional flavour. 

 

4.2 Treatment group
3
 

     In each round, students were randomly grouped in triplets. In each triplet, the three students were 

randomly assigned the roles of RED: the leader, BLUE1: the first follower, and BLUE2: the second 

follower. The three players played two independent ultimatum games each with an amount of 100 

points to be divided in sequence by the leader.  

     RED and BLUE1 played stage 1 first. RED moved first and chose the first offer, OFFER1, an 

integer between 0 and 100, the amount which he chose to offer to the first follower, BLUE1. This 

results in offering to keep the other part of the total amount, 100 points, himself. The moderator 

communicated this information on OFFER1 to BLUE1. BLUE1 then decided whether to accept or 

reject the offer. If BLUE1 chose to accept, RED and BLUE1 received the allocated amount 

                                                           
3
 The experimental design of the treatment group is the same as for the experiment of Ho and Su, therefore the explanation is 

the same: Ho and su, Peer induced fairness in games, The American Economic Review, 2009, page 11,12 
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accordingly. If BLUE1 rejected, both students earned zero points. All communication ran via the chat 

box and the moderator. 

     To construct the signal, SIGNAL1, a random number was drawn from a discrete uniform 

distribution of the set {-20,-10,0,10,20} by the moderator and added it to the first offer. This 

SIGNAL1 was communicated by the moderator via the chat box to BLUE2 and RED. Consequently, 

given a signal SIGNAL1, the students could infer what the first follower got offered by RED.  

     Then, RED and BLUE2 played stage 2. RED moved first and made an offer, OFFER2, an offer 

between 0 and 100 points i.e. the amount which he chose to offer to the second follower, BLUE2, 

which results in offering to keep the other part of the amount himself. This offer was communicated 

via the moderator to BLUE2. BLUE2 could either accept or reject this offer. If BLUE2 chose to 

accept, both players received payoffs as offered to allocate. Otherwise, both received zero payoff. The 

outcomes were revealed by the moderator only at the end of the round. Each player BLUE received 

only the outcomes of her own stage.  

     Each player’s total points in each round were recorded. At the end of the session, point of all round 

were summed up and the top 25% people with the most points won a piece of pie in optionally flavour. 
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5. Descriptive Statistics 

5.1 Participants 

     In the experiment participated 75 High school students in total. The students were aged between the 

ages of 14 and 18 years old and were all heading to graduate VWO level high school. The sum of the 

three sessions of the control group contained 13 boys and 20 girls and so 33 participants in total. The 

group has an age average of 15.3 years old. The treatment group exists of a total of 42 students of 

which 19 boys and 23 girls. Similar to the control group, the participants in the treatment group have 

an age average of 15.3 years old. 

The following table gives a summary of the descriptive statistics of the participants in the experiment.  

Table 1: descriptive statistics of the participants 

  Boys Girls Total   Average age 

Control group 13 20 33 
 

15,3 

Treatment group 19 23 42 
 

15,3 

Total 32 43 75 
   

 

5.2 Data 

     Table 2, on the next page, shows the data descriptive statistics. The three sessions of the experiment 

produced 117 observations for the control group and 64 for both games of the treatment group. Six 

participants made an offer of either 100 points, the entire amount of points, or 0 points, an offer to give 

nothing of the amount away
4
. These data observations were removed as outliers which gives a 

remaining observation set of 113 for the control group and 62 observations for both games each of the 

treatment group.  

 

 

 

 

 

                                                           
4 The study of Ho and Su (2009) only considers offers of zero points as an outlier, I argued that if 0 is perceived as an outlier, 

an offer of 100 points should be perceived as an outlier as well. 
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Table 2: descriptive statistics of the dataset 

 
          Control group                             Treatment group 

 
               Game I                Game I             Game II 

Offer range Offers(%) Rejected(%) Offers(%) Rejected(%) Offers(%) Rejected(%) 

00-20 9 (8.0) 9 (100.0) 6 (9.8) 3 (50.0) 12 (19.4) 8 (66.7) 

20-25 1 (0.9) 1 (100.0) 3 (4.8) 3 (100.0) 6 (9.8) 2 (33.3) 

25-30 4 (3.5) 3 (75.0) 12 (19.4) 8 (66.7) 9 (14.5) 4 (44.4) 

30-35 11 (9.7) 7 (63.6) 8 (12.9) 5 (62.5) 6 (9.8) 1 (16.7) 

35-40 15 (13.3) 3 (20.0) 11 (17.7) 3 (27.3) 19 (30.6) 5 (26.3) 

40-45 23 (20.4) 6 (26.1) 10 (16.1) 2 (20.0) 4 (6.5) 0 (0.0) 

45-50 45 (39.8) 6 (13.3) 8 (12.9) 0 (0.0) 5 (8.1) 0 (0.0) 

50-55 2 (1.8) 0 (0.0) 3 (4.8) 0 (0.0) 0 (0.0) 0 (0.0) 

55-100 3 (2.7) 0 (0.0) 1 (1.6) 0 (0.0) 1 (1.6) 0 (0.0) 

Total 113 100.0) 35 (31.0) 62(100.0) 24 (38.7) 62(100.0) 20 (32.3) 

       Mean offer                42.55                36.68                33.02 

Mean accepted 
offer                46.95                40.81                36.52 

 

     The data is in line with the predictions of Guth, Schmittberger, and Schwarze (1982) in their study; 

most offers are well above zero and the higher the offer the higher probability that it will be accepted. 

As they also concluded, again this data confirms that the theoretical predicted subgame perfect 

equilibrium of a very low offer is strongly rejected in practice. One participant in this experiment, 

playing RED in the treatment group, offered the subgame perfect equilibrium offer of 1 point to player 

BLUE2, who did not accept this.  

     Only a few offers are above 50 per cent of the pie. In both groups combined, less than 10 per cent 

of the offers are within this range. The modal offer is the 45-50 range in the control group. The modal 

offer for the treatment group is the 25-30 range for game I and the 35-40 range for game II. Figure 1 

gives a graphic report of the distribution of the offers. 
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Figure 1: distribution of the offers.  

     As the offers decrease a clear pattern of a higher rate of rejection is visible. For example, for the 

offer range 45 – 50 per cent of the pie the rejection rate was only 10 per cent while for the offer range 

25 – 30 the rate of rejection ranges from 44.4 per cent to 75 per cent. This result suggest, as found by 

earlier studies, that subjects are not purely self-interested. In general, terms the results of this study are 

comparable to those of prior studies.  

 

 

 

 

 

 

 

 

 

 

Offer range 

Frequencies 



    Forward Looking Fairness In Games 

25 

 

6. Replicating Ho and Su’s (2009) Findings 

       Due to the overlapping parts of the experiment with the study of Ho and Su (2009), the possibility 

will be used to retest some of their predictions. First, we will look at their main prediction - the second 

follower has peer-induced fairness concerns - by testing if the second follower rejects more often when 

he is behind than otherwise. Following their work, this will be done by running a logistic random 

effects regression. Due to the need to save valuable time and effort during this experiment the 

participants playing the role of the second follower were not asked to guess the offer made to the first 

follower. Therefore, the variable guess does not exist and is replaced by the variable signal. 

P(  
       

       
       

                 
     

         
       

                 
     

        (10) 

where i stands for subject and t stands for round. If the second follower has peer induced preferences, 

we would expect  2 to be negative. The result shows   2 = -0,094 with a p-value of 0,404. The sign on 

the signal,  2, is negative, which is consistent with Ho and Su, but the evidence is not strong enough 

(p-value is >0,05). A possible explanation for this can perhaps be the relatively few observations 

compared to Ho and Su’s 600+. Another important consideration to bear in mind is that in this formula 

the variable signal minus offer2 is not identical to Ho and Su’s, who used guess minus offer2. The 

difference is that follower two, being intelligent, will not believe in suspiciously high or low signals, 

and therefore the link between the signal and follower two’s decision will not be as strong. 

     Secondly, Ho and Su test whether the first follower perceives forward-looking fairness. This will 

be done by looking at the treatment group and regress the first follower’s decision against the first 

offer and the difference between the first offer and the anticipated second offer. To be able to run this 

regression Ho and Su accept to assume the first follower to be able to predict the second offer 

perfectly. Though we think this is a far to strong assumption and therefore not the correct way to test 

for forward looking fairness, for this replication we will accept this assumption as well. Again a 

random effects logistic regression will be run, giving,  

P(  
       

       
       

         
        

     

         
       

         
       

     
        (11) 

     If the first follower does experience forward-looking fairness,  2, is expected to be negative. The 

result shows   2 = -0,107 with a p-value of 0,114. The sign on the difference between the first offer and 

the second offer is negative, but insignificant (p-value>0,05). This result thus suggests there is not 

enough evidence to infer forward-looking fairness by the first follower, even if one is prepared to 

make the strong assumption that the first follower is able to predict the second offer perfectly.  
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     Thirdly, a regression is executed to see if the offer made by the leader is influenced by the signal 

on the first offer. Figure 1 shows the observed frequencies of the difference between the second offer 

and the signal, i.e., offer2 – signal. In the figure, we see that the difference is centred around zero.  

 

Figure 2: Observed frequencies of the difference between the second offer and the signal 

     A way to see whether the offer is influenced by the signal is to regress offer2 against signal. The 

regression is the following: 

   
      

             
             (12) 

where α
i
0 are random effects. If the prediction is correct, α1 is expected to be positive. The regression 

results show α1 = 0.15 with a P-value of 0.049. The signal has thus a significant effect on a 5% level 

on the second offer. This leads to conclude that participants update their beliefs and fit their behaviour 

to the knowledge they get offered. 

     The final prediction of Ho and Su is that the leader tends to be more generous to the second 

follower than to the first follower. Thus due to responding to peer induced fairness, the leader’s offer 

to the second follower, s2, is predicted to be higher than the leader’s offer to the first follower, s1. The 

experimental data of our study shows a mean offer of 36,68 point to the first follower in the treatment 

group and a mean offer of 33,02 to the second follower in the treatment group. The prediction is tested 

using a Wilcoxon signed rank test.  The results indicate that the second offer is not higher than the first 

offer, but instead the second offer is statistical significantly lower than the first offer (Ha: mean(diff) > 

0, p-value = 0.0140).  
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     The result of this section, where the analyses of the predictions of Ho and Su are attempted to 

replicate lead to conclude that in our data we do not find enough evidence to conclude the existence of 

peer induced fairness. 
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7. Results 

     This section will present the results of testing the hypotheses of this study. The main hypothesis of 

this paper is that the first follower has forward-looking peer induced fairness concerns. Looking at the 

first follower’s payoff function with forward looking fairness (equation 6), it shows that, assuming 

ceterus paribus, the first follower will receive a lower utility if her expected believe is that she is 

behind to the second follower. This implies, when not making best respond decisions, the first 

follower is less likely to accept the offer made to her if she expects the difference between her offer 

and the offer made to the second follower to be too high. 

     The theoretical model of the forward-looking peer induced fairness ultimatum game brought up 

two theoretical predictions to test the main hypotheses. This section will show the results of the data 

analysis testing these predictions.  

 

7.1 Theoretical prediction 1 

     The first theoretical prediction of this study states that the offer made to the first follower in the 

two followers game is always weakly higher than the offer in the classical ultimatum game. To test 

this, first a t-test is executed to see if the two offers are significantly different and if so in which 

direction. H0 : µ1 = µ2 and Ha : µ1 ≠ µ2 

Table 3: Independent Samples Test 

  Levene's Test for 

Equality of Variances t-test for Equality of Means 

    95% CI 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference Lower Upper 

offer E. v. assumed ,567 ,453 3,136 173 ,002 5,880 1,875 2,179 9,581 

E. v. not assumed   3,208 134,178 ,002 5,880 1,833 2,254 9,506 

 

     Because the Levene’s test for equality of variances is insignificant (sig. of 0,453), the t-test for 

equal variances assumed is the correct one to use. With a significance of 0,002, the zero hypotheses 

that the two means are equal can be rejected with 95% confidence. The mean first offer in the control 

group is therefore significantly higher than the mean of the first offer in the treatment group. 

Assuming our theoretical model is correct, when the first follower does experience forward-looking 

peer induced fairness, the first offer in the treatment group should be higher than the offer in the 
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control group. The results of the t-test for equality of means thus suggest that the first follower does 

not perceive forward-looking fairness. The same analysis is done looking at the mean of accepted 

offers. 

Table 4: Independent Samples Test 

  Levene's Test for 

Equality of Variances t-test for Equality of Means 

    95% CI 

  

F Sig. t df 

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference Lower Upper 

Offer E. v. assumed 4,558 ,035 3,277 114 ,001 6,133 1,872 2,425 9,841 

E. v. not assumed   2,997 59,092 ,004 6,133 2,046 2,039 10,227 

 

Because the Levene’s test for equality of variances is significant (sig. of 0,035), the t-test for equal 

variances not assumed is the correct one to use. With a significance of 0,004, the zero hypotheses that 

the two means are equal can be rejected with 95% confidence. The mean accepted first offer in the 

control group is therefore significantly higher than the mean of the accepted first offer in the treatment 

group. This result is consistent with the results on the general mean first offers tested above and thus 

again this analysis does not show enough evidence to conclude forward looking fairness exists. In fact, 

these two findings are not simply inconsistent with the theoretical prediction, they are directly 

opposite to it and statistical significant. Possible explanations for this remarkable finding will be 

discussed in the next chapter. First, we will see whether the second theoretical prediction is in line 

with our data.  

7.2 Theoretical prediction 2 

     Theoretical prediction 2 states that given the offer, the rate of rejection of the first offer is higher in 

the two-follower game compared to the classical ultimatum game. As can be seen in the descriptive 

statistics, table 2, the rate of rejection is 31,0 per cent in the control group against 38,7 per cent in 

game I of the treatment group.  

     At first, it looks as if the prediction is true and the rejection rate in the treatment group is higher 

than the rejection rate in the control group. However, since the prediction is stated given the offer, it is 

not possible to check this prediction by simply looking at the percentages. To test this prediction 

formally a regression is run. The probability of accepting will be regression on offer1, which is the 

offer made to the first follower in the treatment group, and on a dummy, which is 1 if the participant is 

in the two followers game. We have: 
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P(  
       

       
            

            

          
            

            
        (13) 

where i stands for subject and t stands for the number of the round. If our theoretical prediction is true, 

the coefficient on dummy should be positive. The results show the coefficient on dummy is -0,435 

with a p-value of 0.307. The sign of the coefficient of ‘dummy’ negative. This result thus suggest that 

our theoretical prediction is false. The theoretical prediction states that first followers in the model 

with forward-looking fairness accept their offer less frequently than the first follower in the classical 

ultimatum game. But in fact the results say the opposite might be true, because the coefficient on the 

dummy variable, which is 1 if you are in the control group, is negative and thus suggest that if you are 

in the control group you are less likely to accept the offer instead of more likely. However, this result 

is not of statistical significance, therefore this does not give enough evidence to draw a conclusion. 

These results are robust among several regressions and controlling for demographic variables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    Forward Looking Fairness In Games 

31 

 

8. Alternative Explanations 

     Because the experimental outcomes of this study are different than predicted in the theoretical 

part, this section will look for possible explanations of these differences. Game theoretical situations 

and human behaviour are very complicated field of expertise. The next two paragraphs try to fill in a 

missing piece of the puzzle. The two possible explanations of behaviour in this experiment are the 

followers’ demand for punishing the leader and the leader’s increasingly risky behaviour, as he gets 

richer. 

 

8.1 The demand for punishment  

     The demand for punishment comes from an emotion called spitefulness. Spitefulness is a human 

emotion that gives rise to the feeling of need to see others suffer. This need to punish can come from 

all sorts of behaviour done to you by another person, which makes you feel spiteful and therefore 

willing to punish this other person. Classical economist assume that people are entirely selfish and 

thus do not care about the payoffs of others. However, very soon this assumption was thought to be 

not entirely true because they found out that people are not selfish but have other-regarding 

preferences. Ledyard found out that spitefulness plays a very important role in this (Ledyard 1995). In 

the notion of spitefulness, Jensen (2010) said “…harm, and the threat of it, can be powerful 

inducements for cooperation.  ...I will suggest that spiteful competition allows humans to compete on 

scales not seen in other animals...” In 1956 H. L. Mencken quoted “Men are the only animals who 

devote themselves assiduously to making one another unhappy.”  

     However, with the correct definition of the emotion spitefulness states also that the person that 

feels the need to punish will get a higher utility doing so. In our study we are not assuming that the 

person who is punishing someone will get a higher utility from it himself; above all he just wants to 

punish i.e. decrease the utility of the leader. Therefore, this alternative explanation is named the 

demand to punish.  

     When a follower in this experiment feels that the offer made to him is too low, it is possible he 

wants to punish the leader by rejecting the offer, which will leave them both with a payoff of zero. 

This means that the punishment comes at a cost for the player, it is not free, he sacrifices his offered 

points to be able to punish the leader to leave him with zero points as well. In the classic version of the 

ultimatum game, the player can cause the leader to have no point at all in a round by rejecting his 

offer. Because the game only exists of one round and thus one offer and therefore only one chance to 

get a payoff for both the leader and the player, the power of punishment is very big.  
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     In the two-follower game a player has also the option to punish the leader if he feels that the offer 

made to him is too low. When the follower rejects the offer he will punish the leader for the low offer 

by leaving him with zero payoff in that round, at the cost of having zero payoff himself. The costs of 

punishment for the followers in a two-follower game are therefore the same as for the followers in the 

classic ultimatum game. The difference between the two games looking at punishment lies in the 

power of punishment. In the two-follower game, the leader plays two subgames. In each subgame the 

leader has a chance to receive a payoff. A player can thus punish the leader in his own subgame but 

then the leader always has another subgame to gain some payoff. The power of punishment is 

therefore smaller, approximately half, in the game with two followers than in the classical ultimatum 

game while the cost of punishment is the same for every follower, in every subgame and in both 

games.  

     The above will possibly result in differences in the rejection rates between both ultimatum games. 

Because the cost of punishment are the same for everyone in every game but the power of punishment 

is lower for the two-follower ultimatum game, the demand for the need to punish will be lower in the 

this game. This will possibly result in lower rates of rejection in the two-follower game.  

     As we have seen in the section results, theoretical prediction two is proven to be false. Instead, 

given the data the opposite has been found: Given the magnitude of the offer, the rejection rate is 

lower in the two-follower model with forward-looking fairness than in the classic ultimatum game. 

This is thus in conformity with the theory on spitefulness presented above. However, this result is 

insignificant looking only at both first followers and thus only at first offers. To see if evidence exists 

to believe that our alternative explanation, the demand for punishment is less in the two-follower game 

due to spitefulness, is true, the regression has to be run on the total sample. In other words, this 

regression tests the prediction that the rejection rate is lower in the two-follower game. Using the total 

sample the following regression will be run: 

P(        
       

                                    

          
                                    

     (14) 

where i stands for subject and t stands for the number of the round, offer is the total set of offers, 

treatment is a dummy variable which takes on the value of 1 if the participant is in the treatment group 

and takes on a value of 0 if the participant is in the control group. The variable diff is the difference 

between the signal observed by follower 2 and his own offer, switched on if positive, which allows 

controlling for peer-induced fairness. When it is true that, given the magnitude of the offer, the 

demand for punishment is less in a two-follower game we would expect the coefficient on α2 to be 

positive. The result shows that this is true. The coefficient of α2 takes on the value of 0,709 with a p-

value of 0.053. Working with the total sample this result is thus of greater magnitude and of 

significant influence, implying that the followers in the treatment group are more likely to accept the 
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offer of a given magnitude and given their perceptions of peer-induced fairness. These results are 

robust among several optional regressions and controlling for demographic variables.  

     The propensity of the followers to accept their offer is influenced by two factors: fairness and the 

demand for punishment. Fairness comes in three forms: distributive fairness, which all players have, 

forward looking fairness, which the first followers possible have, and backward looking fairness, 

which the second followers possibly have. Given the magnitude of the offer, fairness reduces the 

probability to accept the offer. Therefore, since fairness concerns are greater in the two-follower game, 

the probability of accepting the offer in this group should be lower than in the classical ultimatum 

game holding all else constant. Then there is the demand for punishment. As explained above, a 

rejection in the classical ultimatum game strips the leader of all his points that round while a rejection 

in the two-follower game the leader gets stripped of approximately half of his points that round. Thus 

because the costs of punishment are the same for all followers in all groups, whereas the effect of the 

punishment is lower in the two-follower game, the demand for punishment and therefore the rejection 

rate will be lower in the two-follower game than in the classical ultimatum game. The implication of 

this can be seen in the regression, the coefficient on the ‘treatment’ dummy in the regressions above is 

the sum of two conflicting factors and is therefore biased downwards.   

     A way to solve this problem is to allow for the variables that measure the strength of fairness 

concerns different followers have. A measure for peer related fairness is the diff variable, already 

included in the variable above, which is the difference between the observed signal by follower 2 and 

his offer, switched on if the difference is positive. A way to measure the possible existing forward-

looking fairness is the new created variable diff21, which is the offer made to follower 2 minus the 

offer made to follower 1, switched on when this difference is positive. This is not a perfect measure of 

forward looking fairness, because the offer made to follower 2 is influenced by the signal. 

P(        
       

                  
        

             

         
                  

        
             

     (15) 

where offer is the total set of offers, F1 is the variable for follower 1, F2 is the variable for follower 2, 

which allow for group fixed effects separate for control, follower 1 and follower 2. Diff is again the is 

the difference between the signal observed by follower 2 and his own offer, switched on if positive, 

which allows to control for peer induced fairness. The results show α2 to be 0.356 with a p-value of 

0.0382 and α3 to be 1.271 with a p-value of 0.010. But this regression does not control for forward-

looking fairness by follower 1, therefore the variable diff21, , which is the offer made to follower 2  

minus the offer made to follower 1, switched on when this difference is positive, is added to the 

regression:  

P(        
       

                  
        

                        

          
                  

        
                        

   (16) 
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     Looking at the results it shows that once the variable diff21 is added, the coefficient on the 

follower 1 dummy has increased in his magnitude, from 0.356 to 0.642 (with a p-value of 0.169). We 

have now isolated a negative influence on the propensity to accept the offer by follower 1. Given our 

theory this is the effect of forward-looking fairness concerns. However, both coefficients are 

insignificant, so it cannot be said for sure whether the forward-looking fairness really is present but 

this is a weak indication in this direction. These results are robust among several optional regressions 

and controlling for demographic variables. 

     Controlling for these extra factors, still, the results show a difference between the coefficients on 

follower 1 and follower 2, which should not be there, the theory of this alternative explanation implies 

that the demand for punishment by follower 1 and follower 2 should be the same. Testing these 

differences with a t-test however, shows that this difference is not significant and therefore the 

coefficients can be restricted to be the same as the theory on the demand for punishment suggests. 

Imposing this restriction, no separate variables controlling for follower 1 and follower 2 but just one 

‘treatment’ dummy, along with extra controls and controlled for age and sex:  

P(        
       

                                                 

          
                                                 

     (17) 

     The result show now that the coefficient on treatment is 1.092 is statistical significant with a p-

value of 0.032. This leads to conclude that  in our data differences in the demand for punishment exists 

because the data show that in comparison to the participants in the classic ultimatum game the 

participants in the two-follower game are, given the offer, likely to have a lower rate of rejection.  

     Furthermore, the coefficient on forward looking fairness, diff21, is -0.145 and, near statistical, 

significant with a p-value of 0.052.Which therefore we can conclude that serious evidence points out 

the existence of forward-looking fairness. 

     The table below summarizes the previous discussed regressions and their results.  
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Table 5: Summary regressions of paragraph ‘The demand for Punishment’ 

 

     While the explanation of demand for punishment can plausible fix the puzzle of the counter 

theoretical result that the rejection rate in the two-follower game is lower than in the classical 

ultimatum game, cannot explain the differences in the height of offers. The offers in the two-follower 

game are found to be lower than in the classical ultimatum game, which is also going against the basic 

theory of this study. A possible alternative explanation for this difference will be discussed in the next 

paragraph.  

8.2 Increasingly risky behaviour 

     The theory of this study predicts that due to forward-looking fairness, the first offer in the model 

with forward-looking fairness will be higher than the offer in the classical ultimatum game. The 

experimental results of this study have found otherwise, the offer in the two-follower game is found to 

be lower than the offer in the classical ultimatum game. A possible explanation for this difference 

between theory and practice might be increasingly risky behaviour of the leader as his wealth 

increases. The next paragraphs will enlighten this theory.  

     Risk aversion states that people behave along the preference of avoiding risk. It implies people are 

willing to have a lower expected payoff to decrease the amount of risk on the expected payoff.  

Bowles (2003) provides a clear explanation of the behaviour of people in the face of risk introducing a 

framework using the concavity of the payoff function. As presented the basic idea of this framework is 

to represent expected income as a positive thing and the variance of income as a negative thing, which 

are expressed in components of the individual’s payoff function. This framework and several figures 

lead to conclude that less wealthy and hence risk averse individuals will choose to be involved in 

projects with lower expected incomes, as so they have less exposure to risk. Levy (1994) studied the 

risk averseness of subjects with varying levels of wealth. He found that his subjects were willing to 

risk more as they became wealthier.  

Number 
Probability of 

accepting on 
Specification 

Variable 

of 

interest 

Variable 

of 

interest2 

Coefficient 
Coefficient 

2 
P-value 

P-value 

2 

(14) 
Offer  Treatment 

Diff 

Controlled for peer induced 

fairness by diff Treatment - 0,709 - 0,053 - 

(15) 
Offer F1 F2 Diff Controlled for group fixed 

effects by F1 and F2 F1 F2 0,356 1,271 0,038 0,01 

(16) 
Offer F1 F2 Diff 

Diff21 

Controlled for forward looking 

fairness with diff21 F1 - 0,642 - 0,169 - 

(17) 
Offer Treatment 

Diff Diff21 

F1 and F2 restricted to be the 

same by treatment Treatment Diff21 1,092 -0,145 0,032 0,052 
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     These theoretical frameworks and empirical studies lead to believe in a possibility that the leaders 

in the experiment of this study to forward-looking fairness will take more risk while becoming 

wealthier, due to accumulative points in previous rounds. More risky behaviour implies making a 

lower offer i.e. more risk due to a higher possibility of rejection, which will be explained further in the 

section below. This risky behaviour explanation would thus possible explain our results of observing a 

lower offer in the treatment group.  

     The leader in the classical ultimatum game plays one game per round; with the only follower. The 

leader in the two-follower game plays two games per round; with both the followers. The possible 

initial expected wealth of the leader in the two-follower game is therefore bigger than the possible 

initial expected wealth in the classical ultimatum game. According risk theory and CRRA, the initial 

expected wealth a person has the more risk they are willing to take. Taking more risk in this situation, 

the leader will bid a lower offer to the follower. This is taking on more risk for the leader than a higher 

offer because it can lead the follower to reject the offer, leaving him with nothing. Having a higher 

possible initial expected wealth in the two followers game, leads thus to more risky behaviour and 

therefore lower offers. As the result section already showed, see tables 3 and 4, this prediction is true; 

in our data, the offer in the two-follower game is lower than the offer in the classical ultimatum game. 

Below will be tried to find evidence whether or not increasingly risky behaviour fits as alternative 

explanation for our results. To see if evidence exists, we will use the data of our experiment to perform 

analyses.  

     As explained above, more wealth increases risky behaviour. We will therefore test the prediction 

that the higher cumulative wealth the leader has, the lower his next offer is. First, we will regress the 

offer made at time t on the cumulative wealth of the leader at time t-1. This gives: 

Offer =                                   (18) 

     If the alternative explanation is correct, cumulative wealth at t-1 should have a negative influence 

on the offer at moment t. We find α2 to be -0.008 and insignificant. While the sign of the coefficient 

thus shows a little support for our prediction, this regression on our data thus provides no significant 

evidence that there is a reason to believe that cumulative wealth has an influence on the offer. 

     To further look for possible evidence this regression is extended by also adding the accept decision 

by the follower at t-1 as independent variable. 

Offer =                                            (19) 

Both α2 and α3 are negative coefficients, -0.0075 and -0.1013, but both are insignificant. The sign on 

the coefficient tells thus there is some evidence to believe that the alternative explanation might be 

true. The random effects logistic regression of offer on cumulative wealth at t minus 1 and accept at t 
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minus 1, which thus controls for leader specific effects, gives the same result. However, the logistic 

regression with leader fixed effects does show a significant result. In this regression, the lagged 

acceptance decision gives a coefficient of -4.427 with a p-value of 0.024. This result is robust for 

several optional regressions. Thus, the acceptance decision in the previous round has a significant 

negative effect on the leader’s next offer. If the last offer got accepted, the leader earned points and 

thus has a higher cumulative wealth and will therefore take more risk in making the next offer, which 

is lower.  

     Another way to see if evidence exists to believe the risky behaviour explanation is true is to look 

at the reaction of the leader to a rejected offer. If the offer made by the leader to the first follower is 

rejected, his expected wealth immediately decreases by half. Therefore, after rejection the leader 

should be willing to take less risk if this theory is true and thus should the second offer be higher than 

his first offer. We have: 

Diff =                      (20) 

where diff is the difference between the second offer and the first offer in the two followers game, 

switched on if the difference if positive. The result shows that α2 = -3.65 with a p-value of 0.02. So 

accept1 is of significant influence on the difference between offer2 and offer1, which becomes higher 

if accept1 is zero. This result is robust among several optional regressions.  

     The results of this section in search of possible evidence for the alternative explanation of 

increasingly risky behaviour do provides us with a little, however, not enough evidence to conclude 

the existence of risky behaviour. The theory opposing result, that the offer is lower in the two-follower 

game than in the classical ultimatum game, thus does need more research to draw conclusive remarks 

which makes this a possible path for further research.  
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9. Conclusion 

       This paper is aspires to make an addition to the existing knowledge in the field of economics by 

studying fairness. As Thaler (1988) already said in his study to fairness: “One conclusion that emerges 

clearly from this research is that notions of fairness can play a significant role in determining the 

outcome of negotiations.” In this thesis we have used the classical ultimatum game by Guth, 

Schmittberger and Schwarze (1982) to construct a basic theoretical model. This game is a rather good 

example that people are not totally selfish as traditional economists claim.  

       This work builds upon the work of Ho and Su (2009) and explores the possible existence of 

forward looking peer-induced fairness. In 2007, Van Boven and Ashworth have found evidence for 

difference in strength of emotions when either looking backward or anticipating something. The last 

one seems much stronger. This study builds a theoretical model of the ultimatum game with a leader 

and two followers, incorporating forward-looking fairness. The theoretical model predicts that the 

offer to the first follower is weakly higher in the model with forward-looking fairness than in the 

classical ultimatum game. Next to that, the model predicts that, given the offer, the rate of rejection of 

the first offer is higher in the model with forward-looking fairness.  

       The theoretical predictions are tested experimentally. The experiment took place at a Dutch high 

school and involved 75 students. The results of the experiment, however, are not in line with the 

theoretical predictions. Opposite to the prediction, the offer in the two-follower game with forward-

looking fairness is lower than in the classical ultimatum game. Furthermore, the rejection rate, 

predicted to be higher in the two-follower game with forward-looking fairness, is lower in the two-

follower game than in the classical ultimatum game. 

       These differences between our theory and the experiment are tried to be reconciled by alternative 

explanations. For the lower offer in the two-follower game this is tried to explain by notions of risk 

aversion of the leader. The leader has an expected payoff and makes decisions based on the height of 

this expected payoff. Since the expected payoff is higher in the two-follower game, the leader in that 

game has the possibility of taking more risk compared to the leader in the classical ultimatum game 

and therefore offers a lower offer.  

       The lower rate of rejection in the two-follower game is tried to be explained by notions of the 

demand for punishment. Since all players have the same cost for punishing the leader by not accepting 

the offer if they find it too low, but the power of punishment is much smaller in a two-follower game. 

The demand for punishment, and therefore the rate of rejection is thus smaller in the two-follower 

game.  These possible explanations are tested by running regressions on the data to see if evidence 

exists to verify if these explanations can be true.  
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       Weak evidence is found on behalf of the alternative explanation ‘risk aversion’ to try and explain 

the lower offer in the two followers game with forward-looking fairness. For conclusive findings, this 

might be a truthful direction for further research.  

       Strong evidence is found to accept that the demand for punishment is a way to explain the lower 

rate of rejection in the two-follower game. Also with these regressions we were able to isolate the 

effect of forward-looking peer induces fairness which was found to be significant. This gives thus also 

strong evidence to believe that forward-looking fairness, next to the demand for punishment, exists.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



    Forward Looking Fairness In Games 

40 

 

10. Discussion 

10.1 The Experiment 

     The experiment was one of the main elements of this study. Since I got a high school who wanted 

to cooperate with me really fast and the end of the school year was nearly there, not enough time was 

left to design a computer game to execute the experiment. This created a serious problem at first 

because the experiment involved a lot of students per session who were tied to strict game playing and 

communication rules. The solution was found in performing the preparations of the experiment by 

hand, like for instance the random division in groups and roles. For the experiment itself, a chat box 

was designed which only allowed communication from the moderator to the students personally and 

from the students only to the moderator. With this chat box and thus a bit more work manually the 

problem was thus solved. 

       The experiment had one other downside. When the students made very low or high offers, the 

signal sometimes became a problem. The second player, BLUE2, gets a noisy signal on the offer made 

by the first follower, BLUE1. This signal was: s1 + ε, where ε is a random drawn number from the 

distribution [-20,-10,0,10,20]. If a player BLUE1 made a very high or low offer, for instance 10 or 90, 

the signal sometimes had a negative value of a value above 100. This creates a problem because then 

sometimes you can know the almost exact offer made. This situation was solved by changing the 

signal less than zero or above 100 to zero or 100.     

       Lastly, on the part of the experiment, due to the payoff structure it was possible to perform this 

experiment with 75 participants for the total amount of only 35 euro’s. This was thus a piece of good 

fortune. 

 

10.2 The results 

     To replicate some of the results of Ho and Su (2009) it was the most convenient to use the 

computer program Stata. This was a program that took quite some time getting acquainted with, but in 

the end the effort paid off. 

     The last remarkable point was that the results did not match the theoretical predictions. This took 

time to review, explain and test whether alternative explanations could be found. However, it is 

believed that these alternative explanations form a major result of research undertaken as part of this 

thesis.  
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12. Appendix 

12.1 Appendix 1 

Prior to this thesis, exploring the theoretical model, a preliminary research paper has been written, 

which is used for the theoretical model of this research (Roelse, 2012).  

Proof of result 1 

The leader has two possible choices. Either, he can offer zero to the follower, which will induce the 

follower to reject, which will leave the leader with zero utility as well. Or, he can choose to offer the 

optimal offer, among all the offers that are acceptable to the second follower. In mathematical terms 

the leader thus faces this problem: 

 Maxs2 Ul II (s2, 1|z) 

 s.t.  UF2 (s2, 1 |z) ≥ 0 

Because the leader’s payoff function UL,II (s2, 1|z) is increasing as s2  is decreasing, this problem is 

similar to the following: 

 Mins2 s2 

 S.t. UF2 (s2, 1|z) ≥ 0 

If we introduce the variables w1 = max{π – 2s2,0} and w2 = max{  2 –s2, 0}, the problem can be 

rewritten to: 

 Mins2,w1,w2 s2 

 s.t.  s2 – δw1 - ρ  w2 ≥ 0  

        w1 ≥ 0 

        w2 ≥ 0 

      w1,w2 ≥ 0 

 

s2 – δ(π -2s2) - ρ  (  1 – s2) ≥ 0 

s2 - δπ + δ2s2 - ρ    1 + ρ    2 ≥ 0 

s2(1 + 2δ + - ρ  ) ≥ δπ + ρ    1 

s2 ≥ δπ + ρ    1 / (1+2δ + ρ  ) 

 

s2 – δ(π – 2s2) ≥ 0 

s2 – δπ + δ2ss ≥ 0 



    Forward Looking Fairness In Games 

44 

 

s2 + δ2s2 ≥ δπ 

s2 ≥ δπ / (1 +2δ) 

 

s2 - ρ  (  1 – s2) ≥ 0 

s2 - ρ    1 + ρ  s2 ≥ 0 

s2 + ρ  s2 ≥ ρ    1  

s2 ≥ ρ    1 / (1 + ρ  ) 

Thus, among all offers that are acceptable to the second follower, the offer that maximizes the leaders 

utility UL,II (s2, 1|z) is:    
      

  

    
 
          

         
 
      

      
       

The offer that leaves the leader with zero utility, s2
1
 is another constraint. 

   
      

  

    
  

      

    
 

Therefore, the leaders equilibrium offer in the second game must be min{ s2
0,
 s2

1
} as given in result 1. 

Proof of result 2: First follower
 

Again, as for the offer to the second follower, the leader has two choices. He can either offer zero(and 

the first follower will reject) or he can offer the optimal offer among all the offers that are acceptable 

to the second follower. Thus, the leader solves the following problem: 

 Maxs2 UL,I (s1, 1) 

 s.t.  UF1 (s1, 1) ≥ 0 

Since the follower had an acceptance constraint we will first see what that is. To accept the offer, the 

utility of the follower must be at least zero (as explained in Appendix 4; rate of rejection) 

 s1 – δ(π-s1) – s1 ≥ 0 

 s1 – δ(π-2s1) ≥ 0 

 s1 – δπ + δ2s1 ≥ 0 

 s1 + δ2s1 ≥ δπ 

 s1  ≥ δπ / 1 + 2δ 

Since UL,I (s1, 1) is decresing in s1  the leader wants to make an offer as low as possible but one that 

will still be accepted by the follower. Therefore, the optimal offer of the leader to the first follower is: 
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Proof of result 3: First follower with forward looking fairness. 

As for the begore coming two offer derivations, the same story applies here. The leader can either 

offer zero of the optimal offer among all acceptable offer to the follower. Mathematically written the 

leader is facing the following problem: 

 Maxs1,FF  Ul I (s1, 1|z1) 

 s.t.   UF1,FF      (s2, 1 |z) ≥ 0 

Because the leader’s payoff function is increasing as s1,FF is decreasing is decreasing, this problem is 

similar to the following: 

 Min1,FF  s2 

 s.t.  UF1,FF (s1, 1|z1) ≥ 0 

As we introduce the variables w1 = max{π – 2s1,0} and w2 = max{E(s2
*
) – s1,0}, the problem can be 

rewritten to: 

 Mins1,w1,w2 s1 

 s.t.  s1 – δw1 – ρ1  w2 ≥ 0  

        w1 ≥ 0 

        w2 ≥ 0 

      w1,w2 ≥ 0 

This can be rewritten in terms of only s1 which yields: 

Mins1,w1,w2 s1 

 s.t.  s1 – δ(π -2s1) - ρ1  1 (  s2
*
) – s1 ) ≥ 0 

s1 - δπ + δ2s1 - ρ1  1E(s2
*
)+ ρ1  1 s1 ≥ 0 

s1(1 + 2δ + ρ1  1) ≥ δπ + ρ1  1E(s2
*
) 

s1 ≥ δπ + ρ1  1E(s2
*
)/ (1+2δ + ρ1  1) 

 

s1 – δ(π – 2s1) ≥ 0 

s1 – δπ + δ2s1 ≥ 0 

s1 + δ2s1 ≥ δπ 

s1 ≥ δπ / (1 +2δ) 

 

s1 - ρ1  1 (E(s2
*
)– s1) ≥ 0 

s1 - ρ1  1E(s2
*
) + ρ1  1s1 ≥ 0 
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s1 + ρ1  1 ≥ ρ1  1E(s2
*
)  

s1 ≥ ρ1  1E(s2
*
) / (1 + ρ1  1) 

 

Thus, among all offers that are acceptable to the second follower, the offer that maximizes the leaders 

utility UL,I (s1, 1|z1) is:    
       

  

    
 
             

  

           
 
         

  

        
      

The offer that leaves the leader with zero utility, s2
1
 is another constraint. 

  
      

  

    
  

      

    
 

Therefore, the leader’s equilibrium offer in the second first game with forward looking peer induced 

fairness must be min{ s2
0,
 s2

1
} as given in result 2. 

Rate of rejection of follower 1 

The follower can either accept or reject the offer from the leader. If he rejects, his utility will be zero. 

To accept, the utility of the follower, UF1(s1,1|z), must become at least zero by the offer: 

 UF1(s1,1|z) ≥ 0 

 s1 – δmax(π – s1) – s1 ≥ 0 

To write this easier the following variable is introduced, w1 = max{π – 2s1,0}, 

s1 – δw1 ≥ 0 

 s1 – δ(π-2s1) ≥ 0 

 s1 – δπ + δ2s1 ≥ 0 

 s1 + δ2s1 ≥ δπ 

 s1  ≥ δπ / 1 + 2δ = A1, 

where A1 is acceptance threshold of follower 1. 

Rate of rejection follower 1 with forward looking fairness 

Follower one can either accept or reject this offer from the leader. If he rejects, his utility will be zero. 

To accept the offer, the utility of the follower, , UF1,FF(s1,1|z), must become at least zero by the offer: 

 UF1,FF(s1,1|z) ≥ 0 

 s1,FF – δmax(0,π – 2s1,FF) - ρ1  1 (  s2
*
) – s1,FF ≥ 0 

To write this easier the following variables are introduced: 

w1 = max{π – 2s1,0} 

w2 = max{E(s2
*
) – s1,FF ; 0} 
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Which yields: 

s1 – δw1 - ρ1  1 w2 ≥ 0 

s1 – δ(π -2s1) - ρ1  1 (  s2
*
) – s1 ) ≥ 0 

s1 - δπ + δ2s1 - ρ1  1E(s2
*
)+ ρ1  1 s1 ≥ 0 

s1(1 + 2δ + ρ1  1) ≥ δπ + ρ1  1E(s2
*
) 

s1,FF ≥ δπ + ρ1  1E(s2
*
)/ (1+2δ + ρ1  1) = A1,FF , 

where A1,FF  is acceptance threshold of follower 1 with forward looking peer induced fairness. 
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12.2 Appendix 2 

Instructies 

Groep 1 

Leeftijd: 

Geslacht: 

 

Beste deelnemer, 

Dit is een experiment over het economische keuze proces. De instructies zijn simpel en als je ze goed 

volgt en goede keuzes maakt, maak je kans op een stuk taart naar keuze, die je later vandaag zult 

ontvangen. Of je wat wint hangt deels af van je eigen keuzes, deels van de keuzes van anderen en 

deels van kans. Dit experiment bestaat uit 2 groepen. In beide groepen zitten 15 mensen. Elke groep 

speelt 10 rondes van dit experiment. 

Jullie mogen bij dit experiment niet praten, geen andere geluiden maken en niet bij de buren kijken. 

Ook mogen jullie in het chat scherm niks veranderen en echt alleen maar met Sophie of Roos chatten. 

Je chat scherm is ingesteld zoals het moet zijn, daar hoef je zelf dus niks aan te doen. Wij kunnen 

precies zien wat jullie doen op je scherm. Overtreding van een van deze regels zal ertoe leiden dat je 

uit het experiment gezet wordt. Ik heb zoveel mogelijk data nodig dus ik zou het heel erg fijn vinden 

als iedereen zich hieraan houdt.  

Alle communicatie verloopt via het chatscherm op de computer. Je krijgt ook via daar te lezen welke 

rol je toegewezen krijgt in iedere ronde.  

Speluitleg 

Dit spel bestaat uit een rode speler ROOD en een blauwe speler BLAUW. In elke ronde worden 

willekeurig tweetallen gevormd door de begeleider. Jullie krijgen niet te horen met wie je in een 2-tal 

zit. Daarna wordt er door de begeleider willekeurig toegewezen welke van de twee spelers ROOD is 

en welke speler BLAUW. Jullie horen alleen welke rol je zelf hebt. Dit alles krijg je van Roos te horen 

via de chat die op je computer open staat. De taak van elke speler wordt hieronder uitgelegd. 

In elke ronde verloopt het beslissingsproces in 2 fases, namelijk fase I en fase II. De toewijzing van de 

rollen wordt willekeurig gedaan, zodat iedereen in het 2-tal evenveel kans heeft om ROOD of 

BLAUW te worden. Omdat dit alles willekeurig gebeurd heeft iedereen evenveel kans op de prijs. De 

speler ROOD en de blauwe speler BLAUW spelen het spel als volgt. 
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Fase I: ROOD en BLAUW hebben samen 100 punten te verdelen. ROOD maakt een bod BOD1, 

lopend van 0 tot 100 punten, wat hij aan BLAUW zou willen geven. Dit bod geeft hij via de chat door 

aan Roos. Dit chatscherm is al voor je geopend.  

Dit bod wordt dan door de begeleider doorgestuurd naar bijbehorende speler BLAUW.  

Fase II: Nadat BLAUW het aanbod in zijn chatscherm gelezen heeft moet hij kiezen of hij dit bod 

accepteert of weigert. Als BLAUW dit bod accepteert, zal ROOD: 100 – BOD1 punten krijgen en 

speler BLAUW zal BOD1 punten krijgen. Als speler BLAUW het bod weigert zullen beide spelers 

ROOD en BLAUW geen punten ontvangen in die ronde.  

Aan het einde van fase II, worden spelers ROOD en BLAUW geïnformeerd over hun respectievelijke 

keuze uitkomsten en verdiende punten. Het bovenstaande keuze spel wordt 10 rondes herhaald. Nadat 

je je verdiende punten hebt te horen gekregen in de ronde, moet je even wachten tot je opnieuw wordt 

ingedeeld en begint alles weer opnieuw. In elke ronde worden er nieuwe 2-tallen gevormd door de 

begeleider. Er is dus geen ruimte voor strategisch handelen. 

Alle handelingen die jullie moeten doen worden op het moment dat je ze moet uitvoeren, via de chat 

nog een keer aan je verteld. Je mag per handeling die je moet doen maar 1 keer iets doorsturen wat je 

gevraagd wordt, als je eenmaal je keuze hebt doorgestuurd kun je het niet meer veranderen, denk er 

dus goed over na voordat je iets stuurt.   

Beloning 

Je mogelijke kans op een prijs wordt als volgt bepaald. De klas is in tweeën gesplitst voor het 

experiment, in elke helft wordt de volgende prijs uitgereikt: De spelers met het 25% hoogste aantal 

punten, opgeteld van al je rondes, zullen een stuk taart naar keuze ontvangen. Omdat iedereen elke 

keer willekeurig wordt ingedeeld in beide rollen heeft iedereen evenveel kans op de prijs.  

 

Instructies 

Groep 2 

 

Leeftijd: 

Geslacht: 
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Beste deelnemer, 

Dit is een experiment over het economische keuze proces. De instructies zijn simpel en als je ze goed 

volgt en goede keuzes maakt, kun je een stuk taart naar keuze winnen, dat je later vandaag zult 

ontvangen. Of je wat wint hangt deels af van je eigen keuzes, deels van de keuzes van anderen en 

deels van kans. Dit experiment bestaat uit 2 groepen. In beide groepen zitten 15 mensen. Elke groep 

speelt 10 rondes van dit experiment. 

Jullie mogen bij dit experiment niet praten, geen andere geluiden maken en niet bij de buren kijken. 

Ook mogen jullie in het chat scherm niks veranderen en echt alleen maar met Sophie of Roos chatten. 

Je chat scherm is ingesteld zoals het moet zijn, daar hoef je zelf dus niks aan te doen. Wij kunnen 

precies zien wat jullie doen op je scherm. Overtreding van een van deze regels zal ertoe leiden dat je 

uit het experiment gezet wordt. Ik heb zoveel mogelijk data nodig dus ik zou het heel erg fijn vinden 

als iedereen zich hieraan houdt.  

Alle communicatie verloopt via het chatscherm op de computer. Je krijgt ook via daar te lezen welke 

rol je toegewezen krijgt in iedere ronde.  

Speluitleg 

Dit spel bestaat uit een rode speler ROOD en twee BLAUWE spelers. In elke ronde worden 

willekeurig drietallen gevormd door de begeleider. Jullie krijgen niet te horen met wie je in een 3-tal 

zit. Daarna wordt er door de begeleider willekeurig toegewezen wie van de drie spelers ROOD is, wie 

speler BLAUW1 en wie speler BLAUW2 . Jullie horen alleen welke rol je zelf hebt. Dit alles krijg je 

van Sophie te horen via de chat die op je computer open staat. De taak van elke speler wordt hieronder 

uitgelegd. 

In elke ronde verloopt het beslissingsproces in 3 fases, namelijk fase I, fase II en fase III. De 

toewijzing van de rollen gebeurt willekeurig, zodat iedereen in het 3-tal evenveel kans heeft om 

ROOD, BLAUW1 of BLAUW2 te worden. Omdat dit alles willekeurig gebeurd heeft iedereen 

evenveel kans op de prijs. Elke speler ROOD en de 2 blauwe spelers (BLAUW1 en BLAUW2) spelen 

het spel als volgt. 

Fase I: ROOD en BLAUW1 hebben samen 100 punten te verdelen (BLAUW2 doet niks in fase I ). 

ROOD maakt een bod BOD1, lopend van 0 tot 100 punten, wat hij aan BLAUW1 zou willen geven. 

Dit bod geeft hij via de chat door aan Sophie. Dit chatscherm is al voor je geopend.  

Dit bod wordt dan door de begeleider via de chat doorgestuurd naar bijbehorende speler BLAUW1.  

Fase II: Nadat BLAUW1 in het chatscherm het aanbod gelezen heeft moet hij kiezen of hij dit bod 

accepteert of weigert. Dit geeft hij via de chat door aan Sophie. Als BLAUW1 dit bod accepteert, zal 
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speler ROOD: 100 – BOD1 punten krijgen en speler BLAUW1 zal BOD1 punten krijgen. Als speler 

BLAUW1 het bod weigert zullen beide spelers ROOD en BLAUW1 geen punten ontvangen in die 

ronde. Let op, de uitkomst van fase I (dus of BLAUW1 het bod heeft geaccepteerd of geweigerd en 

het behaalde punten aantal) zal bekend worden gemaakt aan ROOD en BLAUW1 aan het einde van 

fase III. 

Na fase II wordt er door de begeleider willekeurig een nummer getrokken uit een set van 5 nummers: -

20, -10, 0, 10, 20. Dit betekend dat elk nummer evenveel kans heeft om getrokken te worden. Het 

nummer wat getrokken wordt noemen we X. We creëren daarmee een signaal dat we SIGNAAL1 

noemen. SIGNAAL1 ontstaat  als volgt: SIGNAAL1 = BOD1 + X. Dit signaal zal jullie een indicatie 

geven van BOD1. Dit SIGNAAL1 zullen jullie in fase III te horen krijgen om het spel mee verder te 

spelen.   

Laten we naar 2 voorbeelden kijken om te zien hoe het maken van zo’n signaal werkt. Bijvoorbeeld, 

als SIGNAAL1 = 30, dan zijn er 5 mogelijke scenario’s: 

 

SIGNAAL1          BOD1            

X                 

  30                        50                 -20                  

  30                        40                 -10                  

  30                        30                   0                    

  30                        20                  10                   

  30                        10                  20                   

 

Merk op, als SIGNAAL1=30, dan kan BOD1 lopen van 10 tot 50 punten, afhankelijk van de waarde 

van het random getrokken nummer X.  

Voorbeeld 2, als SIGNAAL1=70 hebben we de volgende 5 scenario’s: 

SIGNAAL1          BOD1            

X                 

  70                        90                 -20                  

  70                        80                 -10                  

  70                        70                   0                    

  70                        60                  10                   
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  70                        50                  20                   

 

Dus BOD1 kan variëren van 50 tot 90 punten als SIGNAAL1 = 70.  

Let op, de twee bovenstaande voorbeelden zijn alleen maar bedoeld als voorbeelden ter 

verduidelijking, op geen enkele manier geven ze een indicatie van optimale keuze mogelijkheden. 

Fase III: ROOD en BLAUW2 hebben samen 100 punten te verdelen (BLAUW1 doet niks). Voordat 

ROOD het bod maakt, worden beide spelers ROOD en BLAUW2 geïnformeerd over de waarde van 

SIGNAAL1. Merk op dat SIGNAAL1 is gemaakt door de willekeurig getrokken X, hierboven 

beschreven, toe te voegen aan BOD1 gemaakt van ROOD aan BLAUW1 in fase I. BLAUW2 krijgt 

door dit signaal dus een indicatie van het bod dat door ROOD aan BLAUW1 is gemaakt. ROOD krijgt 

dit signaal ook te horen omdat hij hiermee leert welke indicatie BLAUW2 heeft gekregen. Vervolgens 

maakt ROOD een bod BOD2, lopend van 0 tot 100 punten, wat hij aan BLAUW2 wil geven. Dit bod 

geeft hij via de chat door aan Sophie.  

Dit bod wordt dan door de begeleider via de chat doorgestuurd naar bijbehorende speler BLAUW2.  

Fase IV: Nadat BLAUW2 zijn aanbod op de chat gelezen heeft moet hij kiezen of hij dit bod 

accepteert of weigert. Dit geeft hij via de chat door aan Sophie. Als BLAUW2 dit bod accepteert, zal 

speler ROOD: 100 – BOD2 punten krijgen en speler BLAUW2 zal BOD2 punten krijgen. Als speler 

BLAUW2 het bod weigert zullen beide spelers ROOD en BLAUW2 geen punten ontvangen in die 

ronde.  

Aan het einde van fase IV, worden spelers ROOD, BLAUW1 en BLAUW2 geïnformeerd over hun 

respectievelijke keuze uitkomsten en verdiende punten. Het bovenstaande keuze spel wordt 10 rondes 

herhaald. Nadat je je verdiende punten hebt te horen gekregen in de ronde, moet je even wachten tot je 

opnieuw wordt ingedeeld en begint alles weer opnieuw. In elke ronde worden er nieuwe 3 tallen 

gevormd door de begeleider. Er is dus geen ruimte voor strategisch handelen. 

Alle handelingen die jullie moeten doen worden op het moment dat je ze moet uitvoeren, via de chat 

nog een keer aan je verteld. Je mag per handeling die je moet doen maar 1 keer iets doorsturen wat je 

gevraagd wordt, als je eenmaal je keuze hebt doorgestuurd kun je het niet meer veranderen, denk er 

dus goed over na voordat je iets stuurt.   

Beloning 

Je mogelijke kans op een prijs wordt als volgt bepaald. De klas is in tweeën gesplitst voor het 

experiment, in elke helft wordt de volgende prijs uitgereikt: De spelers met het 25% hoogste aantal 
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punten, opgeteld van al je rondes, zullen een stuk taart naar keuze ontvangen. Omdat iedereen elke 

keer willekeurig wordt ingedeeld in drie rollen heeft iedereen evenveel kans op de prijs.  
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12.3 Appendix 3 

Templates Contol group 

ROOD: 

Beste deelnemer, in deze ronde ben je speler ROOD, stuur alstublieft een bod naar Roos met de 

hoeveelheid punten van de 100 die je aan BLAUW aanbiedt. 

BLAUW: 

Beste deelnemer, in deze ronde ben je speler BLAUW, je kunt nu wachten tot je het aanbod ontvangt. 

ROOD: 

Bedankt. Wacht tot je ontvangt of het bod is geaccepteerd of geweigerd. 

BLAUW: 

BLAUW, u hebt [ ] punten aangeboden gekregen van ROOD. Geef door aan Roos of je dit bod 

accepteert of weigert. 

BLAUW: 

Bedankt, je hebt in deze ronde [ ] punten verdiend. Wacht tot je opnieuw wordt ingedeeld in een van 

de rollen en de volgende ronde dus begint.  

ROOD: 

BLAUW heeft uw bod geweigerd, u hebt deze ronde dus [0] punten verdiend. Wacht tot je opnieuw 

wordt ingedeeld in een van de rollen en de volgende ronde dus begint. 

BLAUW heeft uw bod geaccepteerd, u heeft deze ronde dus [ ] punten verdiend. Wacht tot je opnieuw 

wordt ingedeeld in een van de rollen en de volgende ronde dus begint. 

 

Template treatment group 

ROOD: 

Beste deelnemer, in deze ronde ben je speler ROOD, stuur alstublieft een bod naar Sophie met de 

hoeveelheid punten van de 100 die je aan BLAUW1 aanbiedt. 

BLAUW1: 

Beste deelnemer, in deze ronde ben je speler BLAUW1, je kunt nu wachten tot je het aanbod ontvangt. 
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BLAUW2: 

Beste deelnemer, in deze ronde ben je speler BLAUW2, je kunt nu wachten tot je het SIGNAAL1 en 

verdere instructie ontvangt. Houd je scherm in de gaten. 

ROOD: 

Bedankt, wacht totdat je het SIGNAAL1 ontvangt en een nieuw bod moet plaatsen. 

BLAUW1: 

BLAUW1, u hebt [ ] punten aangeboden gekregen van ROOD. Geef door aan Sophie of je dit bod 

accepteert of weigert. 

BLAUW1: 

Bedankt, wacht nu tot het deel tussen ROOD en BLAUW2 gespeeld is en u hoort hoeveel punten u 

heeft ontvangen.  

BLAUW2: 

SIGNAAL1 heeft de volgende waarde: [ ]. Je kunt nu wachten tot je jou aanbod ontvangt.  

ROOD: 

SIGNAAL1 heeft de volgende waarde: [ ]. Stuur alstublieft een bod naar Sophie met de hoeveelheid 

punten van de 100 die je aan BLAUW2 aanbiedt. 

ROOD: 

Bedankt, wacht totdat je ontvangt of je boden zijn geaccepteerd of geweigerd. 

BLAUW2: 

BLAUW2, u hebt [ ] punten aangeboden gekregen van ROOD. Geef door aan Sophie of je dit bod 

accepteert of weigert. 

BLAUW1: 

Je hebt in deze ronde [ ] punten verdiend. Wacht tot je opnieuw wordt ingedeeld in een van de rollen 

en de volgende ronde dus begint.  

BLAUW2: 

Bedankt, je hebt in deze ronde [ ] punten verdiend. Wacht tot je opnieuw wordt ingedeeld in een van 

de rollen en de volgende ronde dus begint.  
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ROOD: 

BLAUW1 heeft uw bod geaccepteerd, BLAUW2 heeft uw bod geweigerd, u heeft deze ronde dus het 

volgende aantal punten verdiend: [ ] + [0] = [ ]. Wacht tot je opnieuw wordt ingedeeld in een van de 

rollen en de volgende ronde dus begint.  

BLAUW1 heeft uw bod geweigerd, BLAUW2 heeft uw bod geaccepteerd, u heeft deze ronde dus het 

volgende aantal punten verdiend: [0 ] + [] = [ ]. Wacht tot je opnieuw wordt ingedeeld in een van de 

rollen en de volgende ronde dus begint.  

Beide spelers BLAUW1 en BLAUW2 hebben uw bod geweigerd, u heeft deze ronde dus het volgende 

aantal punten verdiend: [0] + [0] = [0]. Wacht tot je opnieuw wordt ingedeeld in een van de rollen en 

de volgende ronde dus begint.  

Beide spelers BLAUW1 en BLAUW2 hebben uw bod geaccepteerd, u heeft deze ronde dus het 

volgende aantal punten verdiend: [] + [] = []. Wacht tot je opnieuw wordt ingedeeld in een van de 

rollen en de volgende ronde dus begint.  
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12.4 Appendix 4 

Retesting ho and su 

Output for regression (10) P(a2
it = 1) = 

                                  

                                    
    

 

Where d1=signal – offer2, replaced d1=0 if d1<0 

 

Where d1=signal – offer2, replaced d1=0 if d1<0 

 

 

Where d2= offer1-offer2, replaced d2=0 if d2<0 
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Where d2= offer1-offer2, replaced d2=0 if d2<0 

 

Output for regression (11) P(a1
it = 1) = 

                                

                                  
 

 

Where diff= offer2-offer1, replaced diff=0 if diff<0 

 

Where diff= offer2-offer1, replaced diff=0 if diff<0 
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Output for regression (12) S2
it
 = α

i
0 + α1Signal1

it
 

 

 

 

 

Controlled for acceptance of the first offer 
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Output t-test and Wilcoxon test 

 

 

 

Theoretical prediction 2 

Output for regression (13) P(a1
it = 1) = α

i
0 + α1Offer one1

it
 + α2Dummy, 
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12.5 Appendix 5 

Need for punishment 

Output for regression (14) P(a1
it
 = 1) = α

i
0 + α1Offer1

it
 + α2Treatment + α3Diff 

 

Where diff= signal observed by follower 2 and his own offer. Replaced diff=0 if diff<0 
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Output for regression (15) P(a1
it = 1) = α

i
0 + α1Offer1

it
 + α2F1 + α3F2 + α4Diff  

 

Where f1=follower12==1&control==0   f2=follower12==2&control==0. Now control for backward 

looking fairness with diff ,which =difference between the signal observed by follower2 and his own 

offer. 

 

 

 

Output for regression (16) P(a1
it = 1) = α

i
0 + α1Offer1

it
 + α2F1 + α3F2 + α4Diff + α5Diff21 

 

Where diff 12 = difference between offers to follower2 and follower1 
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t-test of de twee groepen, f1 and f2, significant van elkaar verschillen 

 

Output for regression (17) P(a1
it = 1) = α

i
0 + α1Offer1

it
 + α2Treatment + α3Diff + α5Diff21 
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Increasingly risky behavior 

Output for regression (18) Offer = α1 + α2Cumulative wealtht-1 

 

Output for regression (19) Offer = α1 + α2Cumulative wealtht-1 + α3Acceptt-1 
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Now with offer = log offer 
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Output for regression (20) Diff = α1 + α2Accept1 

 

where diff is the difference between the second offer and the first offer in the two followers game, 

switched on if the difference if positive. 
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