

MUS UNIVERSITEIT ROTTERDAM

Master Thesis in Marketing Author: Marie A. Malkomes Supervisor: Prof. G. Liberali

ABSTRACT:

This study aims to find the nature of the impact of user-generated content that stock returns might experience. More precisely, what the impact of user-generated content collected for Apple personal computers entails for its stock returns. Using vector autoregressive analysis methods, our investigations generated interesting results such as stock returns fluctuating with user-generated content. The results showed that comments posted on MacRumors and ratings posted on Amazon.com have indeed an impact on stock returns. As well, we discovered that positive comments tend to have the lowest impact on stock returns in comparison to negative and neutral comments posted. Additionally, abnormal returns capture more effects coming from user-generated content sources than expected returns. Furthermore, the product type Google searches for MacBook Air and iMac have in fact an impact on abnormal returns. Last but not least, we investigated what impact can be observed around new product introductions. We found out that comments posted on MacRumors have an impact on stock returns, and again, we notice that positive comments demonstrate the lowest impact on stock returns in contrast to neutral and negative comments.

ESE – Erasmus University of Rotterdam

Acknowledgment

Writing my master thesis has been one of the most challenging experiences of my academic career. The aim to achieve a master thesis that would enrich to the academic literature that persists currently in the area of political economics seemed first as an insuperable task. However, by modifying my way of conducting research concerning the empirical analysis and disputing my ways of thinking I overcame certain difficulties. Besides, I am very grateful for the help and feedback I received from Gert Jan Prevo, Martin Malkomes, Andreea Tanasescu, and Sarah Zipfel. Most importantly, the work with Prof. Liberali has been motivating and of helpful assistance. He managed to give me a better understanding of my topic and insights into the analysis of performance under different selection procedures.

Table of Content

1	IN	FRODUCTION	3
1	1.1	BACKGROUND	3
1	1.2	RESEARCH QUESTION	5
1	1.3	RELEVANCE	7
2	Lľ	FERATURE FOUNDATIONS	
2	2.1	UGC SENTIMENT AND SALES	10
2	2.2	RATING	12
2	2.3	NEWS EVENTS	13
2	2.4	SEARCH ACTIVITIES	14
2	2.5	NEW PRODUCT INTRODUCTION	15
2	2.6	LITERATURE REVIEWS: SUMMARY TABLE	17
3	M	DDEL	20
4	MI	ETHOD: MEASUREMENT AND DATA	23
2	4.1	DATA	23
4	4.2	DATA TRANSFORMATION	27
2	4.3	DESCRIPTIVE STATISTICS	
5	EN	IPIRICAL FRAMEWORK	
4	5.1	ANALYSIS METHODOLOGY	
4	5.2	THEORETICAL BACKGROUND FOR VAR TIME SERIES MODEL	40
6	AN	ALYSIS	42
(5.1	CORRELATION MATRIX	
(5.2	TEST FOR STATIONARY – UNIT ROOT TEST	
(5.3	AUTOCORRELATION AND PARTIAL AUTOCORRELATION FUNCTIONS	
(5.4	ESTIMATION OF MODEL 1	
(5.5	ESTIMATION OF SHORT-TERM MODELS	
(6.6	IMPULSE RESPONSE FUNCTIONS	64
7	DI	SCUSSION OF RESULTS	74
8	CC	DNCLUDING REMARKS	79
9	RE	FERENCES	82
10	AP	PENDIX	85

1 Introduction

The introduction of this thesis is divided into three main parts: background, research question, and relevance. The first part will describe the reasons why we chose to study our research question. The following part will then formulate the main question for this study. There, the different variables that will be useful to answer the research question will be introduced by explaining where they come from and how they are calculated. The last part will discuss in which way the variables we chose to answer the research question will be relevant to our study.

1.1 Background

Generally, it is fascinating how high-tech products, where marketing efforts are less intensive than in other product categories, produce such developments of early adopters. Especially in the case of Apple, which was voted the most innovative and most admired brand in 2007 according to Business Week (Einhorn & Arndt, 2010). Even though, Apple started out as a product mostly appreciated by consumers interested in media and designs, it evolved into a trendy and stylish product that is fulfilling the needs of masses. Apple¹ is competing in three main industries: personal computers, music devices and Internet sales of tunes and movies, and the cell phone industry. In the personal computers industry, the most important players next to Apple are IBM, Dell, and HP. Even though the competition in the industry is intense, Apple has considerably more loyal customers. Still, competitors try to lure customers by offering products with similar designs and features like Apple for lower prices. (Sterescu, 2011). Apple customers could be defined as " fiercely loyal, and less likely to switch brands the more applications and services they use on the device … The study also considered the impact of three core areas when it comes to user experience, simplicity of use, integration of features and access to content, with simplicity being the key barrier to switching devices" (Sterescu, 2011).

In the case for Apple, the question arises: what exactly makes customers change their mind and influence them to switch brands? Seth Godin (Godin, n.d.) states that tribes (groups of people sharing the same beliefs) can influence people around them. For a tribe, in order gain new members, it is necessary to have a strong leader that can persuade potential members to join the tribe. In other words, the members of the tribe will use word-of-mouth to advertise the brand that they are passionate about, and by doing so, convince other users to switch brands to share the same passion (Godin, n.d.). Presently, users spread their opinions using various types of platforms on the web, also called user-generated content. In fact, user-generated content is defined as

¹ For more information about Apple's competitive position in the personal computer market, company history, and SWOT analysis: see Appendix h). Personal Computer Market on p. 72 and Appendix i). Apple: A Short History on p. 73.

² "Chatter data were collected, by a leading provider of social media monitoring tools using their proprietary crawler technology

content from, for example, social networks (Twitter, Facebook,...), blogs, online reviews, question-answers forums, pictures, videos, and wikis (Hill & Ready-Campbell, n.d.).

In line with Seth Godin, Surowiecki (2004) formulated the theory "wisdom of the crowds" that states that under the right conditions, groups of people are more intelligent than the smartest person inside the group. The economist Herbert Simon calls this phenomenon "boundedly rational". Due to the fact that most of us lack the ability or the desire to outweigh costs and benefits of a certain decision, people will often turn to a decision that is good enough, and most of the time, driven by emotional judgments. All this can lead to collective intelligence, also called wisdom of the crowds by Surowiecki (2004). This is the reason why so many things seem unpredictable; however, sometimes work out very well. Take, for example, the Google search engine; it is designed in such a way that by taking information about users' search behavior to program search functions, it makes it easier for an individual to find the exact information. Many people often think that the goal of finding the right answer is to find that one right person that can give that answer. However, how it turns out a large crowd of people, taking into account that probably many are not very well informed, can perform something amazing, for example predicting the winner of a horse race. Still, it is most likely that the skeptics among us would say that the smart people in the crowd lead to the success and not the crowd itself. (Surowiecki, 2004)

Furthermore, Surowiecki (2004) mentions Charles Mackay train of thoughts declaring that crowds follow extremes, crowds seems to make people either dumb or crazy, or both. In addition, the author quotes Le Bon that followed the belief, in 1895, that "a crowd was more than just the sum of its members. Instead, it is a kind of independent organism. It has an identity and a will of its own, and it often acts in ways that no one within the crowd intended. When the crowd did act, Le Bon argued, it invariably acted foolishly" (Surowiecki, 2004). However, what Surowiecki (2004) retrieves from those beliefs is that crowds, in fact, even when sometimes very different from one another, equal in the aptitude to collectively make decisions and solve problems. As a practical example, take the TV game *Who wants to be a Millionaire?* which gives the contestants two jokers, one ask an "expert" and two "ask the audience". Surowiecki (2004) states that the "experts", under pressure, answered right 65 percent of the times, yet, when contestant used the joker "to ask the audience", it turns out that 91 percent of the time the right answer was selected.

Many sociologist and psychologist between 1920 and the mid-1950s performed experiments trying to demonstrate that group knowledge is proven to be more valuable than individuals and the bigger the group the better the results. The experiments conducted were fairly simple, people were asked to guess weights, temperatures, number of items, etc. The outcomes showed that most of the times the group had better results than the individuals, in fact, guessing by above 90 percent accuracy the right answer. In addition to that, often during those experiments, people did not talk to each other neither worked together to solve the problem.

1.2 Research Question

Taken into consideration the before mentioned theories about wisdom of the crowds and tribes, our focus will be turned toward how the Apple "crowd"/"tribe" would influence Apple's profitability. Furthermore, how would the opinion of users affect their company's performance? This will be the core focus of this study, where the research question is formulated: Does user-generated content have an impact on company's performance indicator.

Research question: What is the impact that user-generated content has on the stock performance?

Our empirical study concentrates on the personal computer industry, more precisely, on Apple's personal computer line. The aim of this research will be to investigate whether user-generated content for Apple has an impact on its stock performance.

For this study, there are three user-generated content types that will be used to conduct the empirical analysis: Rating, blog comments, and search activity (SVI). Hereunder is presented a short introduction of our different datasets that will be used to answer our research question.

Ratings used for this research are published on Amazon.com under product reviews. The ratings are given on a scale from 1 to 5, where 5 are the best result possible. On Amazon.com, per product type, it is possible to leave a rating and a written review in the purpose of giving ones' opinion about the product at hand.

Blog Comments are certainly of interest, especially to add blog posts from Macrumors.com, since, it has been rated second out of the 25 most valuable blogs on the Internet (Stelter, 2008). Besides, Macrumors.com is describes "As one of the original Web sites about Apple, MacRumors was well positioned to become a destination for users and a clearinghouse for gossip. MacRumors knows more about Apple than Apple management does" (Stelter, 2008). Due to its textual nature, this variable will not be possible to be considered in its raw form. It will be required to perform data transformation to convert the qualitative variable (text), into a quantitative variable (valence). The valence is a measurement that categorizes the text data as positive, negative or neutral. This is called sentiment of the textual information that will be explained in more detail in section 4.2 Data Transformation (p. 27).

Search Activities are retrieved from the Google Trends platform that enables one to receive the interest for a certain topic, for example the search term "Apple", over time. More precisely, « the numbers on the graph reflect how many searches have been done for a particular term, relative to the total number of searches done on Google over time. They don't represent absolute search volume numbers, because the data is normalized and presented on a scale from 0-100. Each point on the graph is divided by the highest point, or 100. When we don't have enough data, 0 is shown » (Google, Google Trends, n.d.). In addition to that, Google

Trends gives the opportunity to divide the search term by web, product, image, and news search, but also, categorized by industry type. In addition to the search trend for the term "Apple", search trend for the different personal computer product type will be incorporated into our research as well. This means, search trend for the search terms "MacBook", "MacBook Pro", "MacBook Air", "iMac", "Mac Mini, "iBook", and "Macintosh" will be included.

To visualize how Google Trend works, here is a practical example, where the search term is « Erasmus University », where we see that through the search engine Google only since 2008, there is an interest for Erasmus University that is decreasing since then.

Figure 1 - Search Trend for "Erasmus University" (Google, Google Trends, n.d.)

Quarterly Sales of personal computers are also added into our research. These were retrieved from the investor website from apple.com, where all financial statement and sales numbers are easily downloaded since the moment they were made public.

Stock Returns are used as our company performance indicator. The stock returns data can be retrieved from Yahoo Finance by using the stock ticker AAPL to find all Apple Stock information. In addition to that, as we are using stock returns, we need to calculate expected stock returns, as well as, abnormal stock returns, using the CAPM formula and the alpha formula, see 4.2 Data Transformation on p.27.

1.3 Relevance

Ratings, also known as a form of reviews, are in fact providing "an excellent opportunity to measure the valence of comments without analyzing the comments themselves" (Chevalier & Mayzlin, 2006). In fact, research in marketing proved that using quality composite might drive up the impact on market shares, return on investment, and price (Tellis & Johnson, 2007). As a major reason to use ratings in our model, also viewed as a quality indicator, is that "investors view the quality signal as providing useful information about the future-term prospects of the firm: Changes in perceived quality are associated with changes in stock returns" (Shuba, Pauwels, Silva-Risso, & Hanssens, 2009).

First of all, a blog can be described as "a frequent, chronological publication of personal thoughts and Web links" (marketingterms.com). Blogs had their beginnings in 1997 when Jorn Barger « coined the term "weblog" to describe the list of links on his Robot Wisdom website that "logged" his Internet wanderings » (Wortham, 2012). Even though, blogging started out as being rather used for virtual diary, it has evolved to a news generator for companies easing the communication with its customers. In addition to that, leaders in their field of expertise use blogs to post their latest visions and ideas, for instance, Seth Godin spreads his latest theories and thoughts about the marketing world on his blog (Godin, n.d.). This means blogging make it possible for the public to enter in a dialog with leaders, politicians, companies and so on, which before was unthinkable and nearly impossible, without penetrating into the private sphere of these leaders (Godin, n.d.). Furthermore, Cha and Pérez (2011) investigated the "trend in the use of blogs as a social medium to share and exchange information and sought to contribute to the understanding of the new generation of journalistic conventions" (Cha & Pérez, 2011). They discovered that when news content like celebrity news were published, these news travelled at a fast diffusion among bloggers. However, this peak of content diffusion generally drops quickly, which defines the short span of interest among blog users. On the other hand, subjects about society and politics demonstrate an interest throughout blogs for a time period of about two months. In addition to that, they found that most postings were written during weekdays. Also, Cha and Pérez (2011) came across the fact that about 60% of posts contain a link to another website, most of the time a selflink that refers to their own website or blog, or very commonly a YouTube link. All in all, blogs are important channels for information sharing and distribution. These platforms "encourage the interaction of the Internet users with media and content providers by forming interest groups in the World Wide Web" (Cha & Pérez, 2011). In addition to that, Onishi and Manchanda (2008) create a model analyzing the relationship between market outcomes, conventional and new media using data from movie releases in Japan, where their key findings show that new media and traditional media have higher impact on market outcomes when used together than when taken individually. In fact, their results suggest that blogs can be good indicators of market outcomes, but also, blogging can be a way to see if advertising is effective in reaching customers (Onishi & Manchanda, 2008).

To further support the decision to incorporate MacRumors comments, Figure 2 – Search Activities of Apple versus MacRumors illustrates the search activities of Apple and MacRumors respectively, where it is clear to observe that when there is any major peak for "Apple" searches, the term "Mac Rumors" was searched as well.

Figure 2 - Search Activities of Apple versus MacRumors (Google-Correlate, n.d.)

Concerning **search activities**, according to Da, Engelberg, and Gao (In Search of Fundamentals, 2011), it is characterized by its real-time basis and being a good predictive tool for revenue surprises of an individual firm. As well, according to Mondria and Wu (2011), it is reasonable to expect that SVI will in fact have an impact on stock returns, more importantly, asymmetric SVI values will have a higher impact on expected returns than symmetric SVI values. Actually, Da et al. (In Search of Fundamentals, 2011) discovered that SVI is a significant indicator for abnormal revenues, as well, as that it can be used as a predictive tool for returns around earning announcements. All in all, SVI can be taken as a powerful instrument to uncover future cash flows that are not yet incorporated into stock prices until sales data have been published (Da, Engelberg, & Gao, In Search of Fundamentals, 2011). Vlastakis and Markellos (2012) state that "by considering such data we acknowledge the fact that the internet has radically changed the production, distribution and consumption of information by making it easily accessible at a very low cost. Notwithstanding, because of the enormous size and depth of the internet, obtaining the appropriate information can be a difficult task. This is the main reason which explains why people rely on search engines to locate information on the web" (Vlastakis & Markellos, 2012).

Regarding **Stock Returns**, the efficient market hypothesis (EMH) assumes that "the price of a security reflects all of the information available and that everyone has some degree of access to the information" (Schumaker & Chen, 2009). Furthermore, Tellis and Johnson (2007) state that the use of stock returns has a minimum of three benefits: "First, data on stock prices are abundant and precise. Second, an accepted

paradigm of research provides a clear method – the event study – for assessing stock market returns to information about quality. Third, a focus on stock prices is responsive to the ultimate goal of the firm – maximizing shareholder value" (Tellis & Johnson, 2007). In addition to that, Bollen, Mao, and Zeng (2011) write that " some recent research also suggests that news may be unpredictable but that very early indicators can be extracted from online social media (blogs, Twitter feeds, etc.) to predict changes in various economic and commercial indicators" (Bollen, Mao, & Zeng, 2011). Lastly, to support further our choice for stock returns being fluctuated by user-generated-content, "behavioral finance has provided further proof that financial decisions are significantly driven by emotion and mood" (Bollen, Mao, & Zeng, 2011). Therefore, it is reasonable to assume that user-generated content about Apple can drive its stock returns.

2 Literature Foundations

This section is divided into four main parts: UGC sentiment, Ratings, News Events, and Search Activities. In each part, relevant literature will be discussed to help formulate strong hypotheses that will help solve the research question of this study.

2.1 UGC Sentiment and Sales

Most papers investigating user-generated content perform sentiment analysis to categorize the data into certain sentiment dimensions. For instance, Bollen et al. (2011) categorizes tweets according to a 6-mood dimensions (calm, alert, sure, vital, kind, happy). By doing so, they aspire to find a relationship between the moods of tweets and the stock market. McAlister, Sonnier, and Shively (2011) aims to find a connection between weekly stock returns and shocks effected on weekly chatter² categorized by positive, neutral, or negative dimensions. Even though, these two papers use different ways of categorizing sentiment of textual data, both find similar conclusions. Bollen et al. (2011) find results showing that tweets are correlated and also prognostic of stock values. In other words, fluctuation of the public mood according to 6 mood dimensions correspond to shifts in the stock values that occur 3-4 days later, more precisely the calm dimension has been proven to be a good predictive variable for stock values.

Similarly, McAlister et al. (2011) uncover that neutral chatter establishes an effect on stock returns. Nonetheless, interestingly, their results illustrate that there is "strong evidence that unanticipated shocks to online chatter are positively associated with the firm's stock return" (McAlister, Sonnier, & Shively, 2011). Besides, further analysis has investigated whether unforeseen shocks to weekly sales revenue data have an implication on abnormal stock returns, leading to the result that shocks to sales have no implication on the fit of the stock return regression, meaning that financial markets do not need any sales information. Furthermore, McAlister et al. (2011) are interested whether news about upcoming product launches have any impact on the stock returns. Consequently, this variable has no effect whatsoever in the improvement in the fit of the models. Lastly, the authors decide to have a closer look on the positive and negative chatter due to their high correlation to one another, which leads to the conclusion that removing negative and positive chatter seems to perk up the fit statistics.

² "Chatter data were collected, by a leading provider of social media monitoring tools using their proprietary crawler technology that canvasses the Internet for mentions of the firm and/or the firm's products and/or services. The data consist of the count of online posts appeared (sites), and the count of unique authors that generate the posts (authors)... For each of the three categories (posts, sites, and authors), the data are classified by a proprietary logarithm as positive, negative, and neutral." (McAlister, Sonnier, & Shively, 2011)

First of all, we see that McAlister et al. (2011) tested whether sales have an impact on stock returns, where the findings show that in fact there is no significant impact. To see if we will find a similar conclusion, we will include the hypothesis asking the question whether sales have an impact on stock returns in our case:

H1_a: Sales have an effect on Stock Returns

For our analysis, blog comments will be categorized as in McAlister et al. (2011): positive, neutral, and negative. As McAlister et al. (2011) and Bollen et al. (2011), to support our research question, we will ask the question:

H2_a: Sentiments (positive, neutral, and/or negative) of blog comments have an impact on stock returns

On the other side, Luo (2009) concentrates its efforts to only analyze the effect of negative word-of-mouth (NWOM) on stock performances using a time-series models. The first results show that NWOM has significant direct short-term and long-term effects on company's cash streams and stock prices. In other words, "the higher (lower) historical NWOM of a firm, the more (fewer) shortfalls in the firm's future stock volatilities" (Luo, 2009). Secondly, "NWOM does not travel linearly in the stock market, but rather creates both wear-in and wear-out effects³. Regarding wear-in effects, on average it takes three or four months for the impact of NWOM on cash flows and stock prices to reach its peak. With respect to the wear-out effects, on average the financial impact of NWOM remains persistent and significant for six to seven months after the peak, *ceteris paribus*" (Luo, 2009). Additionally, Luo (2009) discovered that there are considerable effects from the stock market to NWOM over time. This implies the more (fewer) shortfalls a company has in historical cash flows, stock returns and volatility, the higher (lower) the firm's future NWOM. Lastly, this research establishes that market competition plays an important function in the dynamic effects of NWOM, and as a result keeping the competition level at a minimum can decrease the long-term damaging effects of NWOM. (Luo, 2009)

³ What the author means with "wear-in" and "wear-out" effects is that it takes a certain time period before the stock price impact of NWOM attains either the peak point or low point (Luo, 2009).

As did Luo (2009), it would be interesting to test whether word-of-mouth, in our case blog comments, would have short-term effects in stock performance. Unlike Luo (2009), we will not restrict the study to negative word-of-mouth, but rather ask the question whether the blog comments have a direct impact on stock returns, but also, is the impact the same or different throughout the different sentiment dimensions.

 $H3_a$: On a short-term, blog comments have a direct effect on stock returns, where the effect according to sentiment dimension differs.

2.2 Rating

As mentioned earlier, one UGC variables that will be used to answer our main question is ratings given on Amazon.com. Chevalier and Mayzlin (2006) studied book reviews (comment plus rating) from Amazon.com and BarnesandNobles.com testing the impact of consumer reviews on relative sales. The results of the regression analysis denote that customer reviews have an impact on consumer buying behavior on the two retail sites. In addition, the authors state that differences in customer contents have a different impact on sales across retailers. What the research cannot prove is whether the retailers profit from providing such content, since on average the reviews were rather positive. However, Chevalier and Mayzlin (2006) assume that the number of books sold on Amazon.com is higher with reviews than without. The concern with this paper is that even though ratings are investigated, our research differs from Chevalier and Mayzlin (2006) in the way that we use rating posted on Amazon.com and look how these affect Apple's stock profitability. This brings us to asking the question whether ratings given on Amazon.com would have a direct impact on quarterly sales of Apple.

H4_a: Ratings have an impact on Apple's unit sold of personal computers

Furthermore, Tellis and Johnson (2007) aspire to determine the relationship between published ratings of new products (reviewed quality) and abnormal returns in the associated stock. To demonstrate this relationship, Tellis and Johnson (2007) chooses to research the question from several different perspectives. First, reviewed quality is constructed using two composites consequently affecting abnormal returns: the taste customers have about products and the imperfect information given by the company about the product. Additionally, Tellis and Johnson (2007) would like to prove that when information given by experts about the product is favorable abnormal returns would raise, and vice versa. Further results show that the more positive the reviews, the higher the company's abnormal returns are. Surprisingly, Tellis and Johnson (2007) discovered that on the day the positive reviews were published returns rose, but also continued to rise for the 5 consecutive days after the event. As expected, the unfavorable reviews have a higher effect on returns than favorable, and finally, the results of the analysis also supported the reputational asymmetry hypothesis to be true.

Both, Chevalier and Mayzlin (2006) and Tellis and Johnson (2007), discovered that positive ratings have a positive impact on company's performance indicator. As well, Tellis and Johnson (2007) uncovered that negative ratings have a higher impact than positive ratings. As Tellis and Johnson (2007) have stock returns as we do, we will mostly focus on the latter to formulate our hypothesis about the impact of ratings on stock returns.

H5_a: Ratings affect stock returns

In addition, Tellis and Johnson (2007) discovered that rating have a direct effect on stock returns, where the effect was still visible the 5 following days. It would be very interesting to test this effect with our datasets, both on stock returns and sales. Therefore:

 $H6a_a$: It is possible to observe that an impulse in ratings would have a wear-in or wear-out effect on stock returns the consecutive weeks of the impact

 $H6b_a$: It is possible to observe that an impulse in rating would have a wear-in or wear-out effect on sales the consecutive weeks of the impact

2.3 News Events

Schumaker and Chen (2009) are researching the effectiveness of textual financial news articles as predictors for discrete stock prices. In addition to that, Shumaker and Chen (2009) are interested to discover which combinations of textual analysis techniques are most valuable for the stock price prediction. The results demonstrate that the model, using extracted article terms and stock prices at the moment the article was published, shows the best outcomes in terms of "closeness of results", "accuracy", and simulated trading engine results. However, the results of the regression analysis by Da, Engelberg, and Gao (In Search of Attention, 2011) shows that the occurrence of news is more important in driving SVI than the nature of news itself, suggesting that a stock that includes multitude of news coverage is less probable to receive "unexpected" attention than a stock that does not.

In our case to see the effect of news events on expected returns, the news search index from Google trends will be quite useful. In fact, it gives an index per week for news searches done for Apple. In accordance to the previous article, the question that will be of interest for our study is:

H7_a: News searches have an impact on stock returns

 $H8_a$: An Impulse in News Search has a wear-in or wear-out effect on stock returns the consecutive weeks of the impulse

2.4 Search Activities

Concerning search activity, Da et al. (2011) published two very interesting papers about this topic, as well as, Mondria and Wu (2011) did.

First of all, using a Vector Autoregression (VAR) framework, Da et al., (2011) try to find out what drives SVI, especially, whether it influences investor attention. Therefore, considering variables of investor attention that is for example stock returns, trading volumes, news stories, sentiment and many more, their correlation with SVI proves to be quite low. The reason for that is quite simple. Terms like Apple for example, are not always searched for investment purposes. Still, the authors would like to prove whether SVI captures individual investors' attention, and indeed, it does, especially, the retail traders attention. Lastly and most importantly, the results demonstrate that a boost in SVI would forecast an increase in stock prices in the following two weeks and an ultimate price setback within the year.

In their second paper, Da et al. (In Search of Fundamentals, 2011) attempt to prove that search volume for firm's products from Google trends forecast revenue surprises, earnings surprises, and earnings announcement returns. The results show that a boost (drop) in Search Volume Index (SVI) of a firm's most popular product is significantly forecasting positive (negative) revenue surprises. Nonetheless, when a firm realizes unexpected earnings, the predictive power of SVI is weaker. This fact brings us to our first hypothesis handling search activities. As did Da et al. (In Search of Fundamentals, 2011), we would like to know whether the search activities for Apple's different personal computer products would have an impact on stock returns.

H9_a: Apple personal computer product searches influences stock returns

Furthermore, the SVI demonstrate relevant forecast ability for returns around earnings announcement (Da, Engelberg, & Gao, In Search of Fundamentals, 2011). The most important factor to be considered is that SVI for firm's products is an important indicator about a company's future cash flows that the market does not entirely include into price before the earning announcement (Da, Engelberg, & Gao, In Search of Fundamentals, 2011).

In the same logic, Mondria and Wu (2011) consider whether asymmetric attention of a certain stock ticker, for example AAPL for Apple, estimated through aggregate search volume from Google Insight leads to higher returns of the associated stock. The authors differentiate attention according to local and national SVI where descriptive statistics show a higher mean for local searches. This implies that investors give more attention to local stocks than nonlocal stocks. The results of their investigations illustrates that stocks with more asymmetric attention, in general, but also, between local and nonlocal investors, earn higher future returns. More precisely, the results insinuate that it is "not local attention by itself that matters to earn higher future returns, but the difference between local attention and nonlocal attention" (Mondria & Wu, 2011). Moreover, outcomes show that local information friction exists, meaning that, for instance, "when investors

receive private news about local stocks, according to attention allocation theories, they choose to process more public information about local stock before making a buying decision" (Mondria & Wu, 2011). Unlike Mondria & Wu (2011), we will not investigate whether if asymmetric attention via web search for the term "Apple" is bigger than competitors' attention if it would generate higher stock returns, but still, we are interested whether web searches for "Apple" would increase or decrease the stock returns.

H10_a: Web search for Apple is reflected in stock returns

As well, considering Luo's (2009) empirical framework, we are curious whether a boost in web search for Apple would have a wear-in or wear-out effect in the consecutive period following the impulse.

H11_a: An impulse in web search generate a wear-in or wear-out effect for stock returns

2.5 New Product Introduction

Coming to the last topic of interest to answer our main research question. Apple is an expert to make new product introduction very exciting for its users. In fact, Shuba, Pauwels, Silva-Risso, and Hanssens (2009) invest in finding out the causality between customer value creation and customer value communication of new product introductions with stock returns. Competitive marketing variables (advertising, promotional incentives, liking and quality...) and category variables (size, growth rate, concentration and market share of the firm in the category) are used to see which one is contributing to the company's stock returns. However, the relevant parts in this research are the hypotheses that brand liking and brand perceived quality of new-product introductions increase stock returns. In fact, customer liking is at the border of being significantly increasing the stock returns, whereas, brand's perceived quality has a considerable impact on stock returns. (Shuba, Pauwels, Silva-Risso, & Hanssens, 2009)

In this analogy, we ask ourselves the question whether in our case new product introductions have in fact an impact on stock returns. As a matter of fact, for our research we will focus on the impact of opinions about Apple, blog comments and ratings, is reflected in its stock returns:

H12_a: Around new product release dates, blog comments have an impact on stock returns

H13_a: Around new product release dates, ratings have an impact on stock returns

Similarly, the article by Pauwels, Silva-Risso, Srinivasan, and Hanssens (2004) seek to discover how new product launches and promotional incentives affect firm revenues, firm income, and firm value. The dataset used to analyze this phenomena was retrieved from the automobile industry. The variables used are firm market value to book value, income, revenue, new product introduction, and sales promotions. The results show that product launches have a short-term and long-term effect on all firm's a performance indicators. Further findings demonstrate that incentive programs have a positive impact in the short-term on all performance indicator, but is not carried out in the long-term. Furthermore, the authors discovered that

product launches even if at the time of launch have only a small impact, in the following two quarters show an eight times superior impact on firm performance, meaning that its elasticity is increasing over time. (Pauwels, Silva-Risso, Srinivasan, & Hanssens, 2004)

As already said, Tellis and Johnson (2007) aspire to determine the relationship between published ratings of new products (reviewed quality) and abnormal returns in the associated stock. Using Wall Street Journal product reviews of quality inserted into a multiple regression, they found that the effect of product quality on returns is strong and positive, especially, for the dimensions of quality that are utility of features, ease-of-use, and compatibility. Further findings show that the more positive the reviews, the higher the company's abnormal returns are. Surprisingly, Tellis and Johnson (2007) discovered that on the day the positive reviews were published returns rose, but also continued to rise the 5 consecutive days after the event. As expected, the unfavorable reviews have a higher effect on returns than favorable, and finally, the results of the analysis also supported the reputational asymmetry hypothesis to be true.

Taking into consideration the papers by Pauwels et al. (2004) and Tellis and Johnson (2007), they might give suggestions for our research to test whether user opinions about Apple demonstrate a wear-in or wear-out effect for stock returns.

 $H14_a$: Around release dates, an impulse in blog comments creates a wear-in or wear-out effect for stock returns $H15_a$: Around release dates, an impulse in ratings creates a wear-in or wear-out effect for stock returns

2.6 Literature Reviews: Summary Table

Variables	Relationship Tested	Finding	Industry/ Sample Size	Author
DV: Expected Return Stock Return IV: post, site, and author counts (divided into negative, neutral and positive categories), quarterly earnings, and shock to chatter	What is the relationship between weekly stock returns and shocks to weekly chatter?	Unanticipated shocks to online chatter are positively associated with stock return and further results shows that only neutral chatter has an effect on stock return	 - 52 weeks of chatter data from 2007 - 51 weeks of stock return data from 2007 	(McAlister, Sonnier, & Shively, 2011)
DV: Daily Dow Jones Industrial Average Values time series IV: regressed 6-dimensions mood time series, lagged Daily Dow Jones Industrial Average Values time series	How does the mood of tweets influence the stock markets?	Changes in the public mood can be followed from the content of significant Twitter feeds using the resources of rather simple text processing techniques and these changes match shifts in the DJIA values that occur 3-4 days later	9,853,498 tweets from 2,7M users between Feb. 28 to Dec. 19, 2008 - Daily Dow Jones Industrial Average Values (DJIA) between Feb. 28 to Dec. 19, 2008	(Bollen, Mao, & Zeng, 2011)
DV: Stock quotes IV: Regressed estimate of the stock price 20 minutes following release of article, article terms (bag of words, noun phrases, name entities); stock price at the time the article is published.	Which combination of textual analysis techniques is the best stock price predictor?	Extracted article terms and stock price at the moment the article was published are the best indicator for stock price	 -Time period: Oct. 26 to Nov.28, 2005 9,211 financial news articles 10,259,042 stock quotes Bag of words used 4,296 terms from 2,839 articles Noun phrases used 5,283 terms from 2,849 articles Name entities used 2,856 terms from 2,620 articles 	(Schumaker & Chen, 2009)
DV & IV: NWOM, cash flow, stock return, stock volatility	What are the interactions among negative WOM, cash flows, stock returns, and stock volatilities	 NWOM has a significant effect on ST and LT cash flows and stock price NWOM creates wear-in and wear-out effects There is significant effect from stock market to NWOM over time Market competition plays a significant role in the dynamic effects of NWOM 	All data is monthly and from January 1999 until December 2005	(Luo, 2009)

The Impact of UGC on Firm's Performance for Personal Computer Product

DV & IV: Product Quality, Events (Date and Company that is reviewed), Returns, and Firm Size	They attempt to relate new product introduction that are rated by Wall Street Journal to firm value	 Effect of product rating on return is strong and positive The more positive the reviews, the more the abnormal returns are After positive reviews the stock continues to rise for 5 consecutive days Unfavorable reviews have a higher effect on return than favorable Reputational asymmetry: negative (positive) reviews would impact more large (small) firms 	 Product reviews collected from Wall Street Journal between 1991 and 2001 Stock Return data from 1991 until 2001 from Wharton Centre for Research in Security Prices 	(Tellis & Johnson, 2007)
DV & IV: Product rating, product reviews, Sales data	Examination of the effect of consumer reviews on relative sales of book on Amazon.com and BarnesandNobles.com	 The majority of reviews turned out to be positive, even more on Amazon.com than BarnesandNobles.com, Also an increase in a review lead to an increase in relative sales at that site, And the effect of a 1-star reviews is bigger than the impact of 5-star reviews. 	 Random sample of books published between 1998-2002 where ratings and reviews were gathered from BN.com and Amazon.com Titles from Publisher's Weekly bestseller lists from 1991 until 2002 	(Chevalier & Mayzlin, 2006)
DV & IV: Blog posts, TV GRPs, WOM Volume and valence, Sales volume, # audience, # customers,	Research whether there is a difference in impact on sales for new medias (blog) and traditional medias (TV ads)	 New and traditional media act synergic ally and are best predictors together than alone Cumulative blogs are predictive of market outcomes Pre-launch advertising drives blogging Blogging is a good indicator for advertising effectiveness 	 Data about 12 major movies released from January 2007 to August 2007 Data is Gross Rating Points of TV advertising, blog sentiment ratio of text posted 	(Onishi & Manchanda, 2008)
DV & IV: Stock Return, Trade Volume, Number of Messages, and Weighted Opinion	Examination of relationship between Internet message board activity and abnormal stock returns and trading volume.	 No causal link flowing from message volume or opinion to stock returns The efficiency of the market theory holds, the causality appears to run from the market to the financial forums 	- All datasets have mid- April 1999 to mid- February 2000 as a time frame	(Tumarkin & Whitelaw, 2001)

The Impact of UGC on Firm's Performance for Personal Computer Product

DV & IV: SVI, Revenue, EPS. Earnings announcements, size of a firms, and book-to-market valueResearch whether the use of search volume for firm's products predict revenue surprises, carnings announcement returns- An increase (decrease) in SVI of a firm's most popular product strongly predicts positive (negative) revenue surprises Data of advertised product on TV during (2004-2008 from 9,764 different firms) products - 12,259 brands per products - 12,259 brands per products - 12,259 brands per products - 865 firms that are public - 75 firms and their associated search terms on Google trends(Da, Engelberg, & Gao, In Search of Fundamentals, 2011)DV & IV: firm's market value to book value, income, revenue, and long-term impact of introduction- New product introduction have a short- and long-term effect on income, revenue, and firm's market value to book value with increasing elasticity after the launch. - Show that sales promotions, especially incentive program only have a short-term effect- Sales transaction data containing every new-car sales of a sample of 1100 California dealerships from October 1996 to 2004)(Pauwels, Silva- Risso, Srinivasan, & Hanssens, 2004)Table 1 - Summary Table of Literature Review- Sale stransaction tate market value to sook value with increasing elasticity after the launch. - Show that sales promotions, especially incentive program only have a short-term effect- Sales fram saction data containing every new-car sales of a sample of 1100 California dealerships from October 1996 to December 2001 - Weekly closing stock prices from 1999 to 200(Pauwels, Silva- Risso, Srinivasan, & Hanssens, 2004) </th <th>IV: Stock return DV: SVI</th> <th>Based on aggregate search volume in Google, the authors aim to argue that asymmetric attention to stocks would affect stock return</th> <th> Firms with an increase in asymmetric attention earn higher returns Returns are even higher among illiquid stocks and stock headquartered in remote locations </th> <th> Monthly SVI for every stock (sample of 644 stocks) headquartered in US from the S&P 500 portfolio between January 2004 and December 2009 Stock Prices from S&P 500 firms included from 2004 -2009 </th> <th>(Mondria & Wu, 2011)</th>	IV: Stock return DV: SVI	Based on aggregate search volume in Google, the authors aim to argue that asymmetric attention to stocks would affect stock return	 Firms with an increase in asymmetric attention earn higher returns Returns are even higher among illiquid stocks and stock headquartered in remote locations 	 Monthly SVI for every stock (sample of 644 stocks) headquartered in US from the S&P 500 portfolio between January 2004 and December 2009 Stock Prices from S&P 500 firms included from 2004 -2009 	(Mondria & Wu, 2011)
a firms, and book-to-market value a firms, and book-to-market value b surprises, earnings surprises, and earnings announcement returns DV & IV: firm's market value to book value, income, revenue, introduction Table 1 – Summary Table of Litrature Review Handback and book-to-market value b roducts predict predict predicts positive surprises, and earnings announcement returns announcement returns announcements b SVI has a strong predictability for returns around earnings announcements b SVI has a store product introduction have a short- and long-term effect on introduction financial metrics. Table 1 – Summary Table of Litrature Review	DV & IV: SVI, Revenue, EPS. Earnings announcements, size of	Research whether the use of search volume for firm's	- An increase (decrease) in SVI of a firm's most popular product	- Data of advertised product on TV during	(Da, Engelberg, & Gao, In Search of
Surprises, earnings(negative) revenue surprises.different firms2011)surprises, and earnings-SVI has a strong predictability-12,259 brands per-announcement returnsfor returns around earningsproducts-announcement returnsannouncements-865 firms that are-public-75 firms and theirassociated search termson Google trends-on Google trendsbook value, income, revenue, introductionInvestigation of the short- and long-term impact of financial metricsfinancial metricsbook value, income, revenue, introductionfinancial metricsframetting actions on introductionfinancial metricsframetting actions on financial metricsTable 1 - Summary Table of Literature Review	a firms, and book-to-market value	products predict revenue	strongly predicts positive	2004-2008 from 9,764	Fundamentals,
Surprises, and earnings announcement returns- SVI has a strong predictability for returns around earnings announcements- 12,259 brands per productsannouncement returnsfor returns around earnings announcements- 865 firms that are public- 75 firms and their associated search terms on Google trends- 75 firms and their associated search terms on Google trendsDV & IV: firm's market value to book value, income, revenue, introductionInvestigation of the short- and long-term impact of financial metrics New product introduction have a short- and long-term effect on income, revenue, and firm's market value to book value with increasing elasticity after the launch Sales transaction data containing every new-car sales of a sample of 1100(Pauwels, Silva- Risso, Srinivasan, & Hanssens, 2004)Table 1 – Summary Table of Literature ReviewTable 1 – Summary Table of Literature Review- surprises at strong predictability form Corber 1999 to 2001- 12,259 brands per products		surprises, earnings	(negative) revenue surprises.	different firms	2011)
DV & IV: firm's market value to book value, income, revenue, introductionInvestigation of the short- and long-term impact of financial metrics New product introduction have a short- and long-term effect on income, revenue, and firm's market value to book value with increasing elasticity after the book value, income, revenue, introduction- Sales transaction data containing every new-car sales of a sample of 1100 (Pauwels, Silva- Risso, Srinivasan, é specially incentive program only have a short-term effect- Sales transaction data containing every new-car sales of a sample of 1100 (Pauwels, Silva- Risso, Srinivasan, é specially incentive program only have a short-term effect- Sales transaction data containing every new-car sales of a sample of 1100 (Pauwels, Silva- (Pauwels, Silva- Risso, Srinivasan, é specially incentive program only have a short-term effect- Sales transaction data containing every new-car sales of a sample of 1100 (Pauwels, Silva- (Pauwels, Silva- <br< td=""><td></td><td>surprises, and earnings</td><td>- SVI has a strong predictability</td><td>- 12,259 brands per</td><td></td></br<>		surprises, and earnings	- SVI has a strong predictability	- 12,259 brands per	
DV & IV: firm's market value to book value, income, revenue, and long-term impact of introduction- New product introduction have a short- and long-term effect on income, revenue, and firm's- Sales transaction data containing every new-car sales of a sample of 1100- Sales transaction data containing every new-car sales of a sample of 1100DV & IV: firm's market value to book value, income, revenue, and long-term impact of financial metrics New product introduction have a short- and long-term effect on income, revenue, and firm's market value to book value with increasing clasticity after the launch. - Show that sales promotions, especially incentive program only have a short-term effect- Sales transaction data containing every new-car sales of a sample of 1100 California dealerships from October 1996 to U Pauvels, Silva- Risso, Srinivasan, é rom October 1996 to U Pauvels, 2004)Table 1 – Summary Table of Literature Review- Sales transaction data containing every new-car increasing clasticity after the launch. especially incentive program only have a short-term effect- Weekly closing stock prices from 1999 to 2001		announcement returns	for returns around earnings	products	
DV & IV: firm's market value to book value, income, revenue, introduction- New product introduction have a short- and long-term impact of market value to book value with income, revenue, and firm's market value to book value with increasing elasticity after the launch. - Show that sales promotions, especially incentive program only have a short-term effect- Sales transaction data containing every new-car sales of a sample of 1100 (Pauwels, Silva- Risso, Srinivasan, & Hanssens, 2004)Table 1 – Summary Table of Literature ReviewTable 1 – Summary Table of Literature Review- New product introduction a short- and long-term effect on increasing elasticity after the launch. only have a short-term effect- Sales transaction data containing every new-car isales of a sample of 1100 (Pauwels, Silva- Risso, Srinivasan, a Hanssens, 2004)			announcements	- 865 firms that are	
DV & IV: firm's market value to book value, income, revenue, introduction- New product introduction have a short- and long-term impact of marketing actions on financial metrics New product introduction have a short- and long-term effect on income, revenue, and firm's market value to book value with increasing elasticity after the launch. - Show that sales promotions, respecially incentive program only have a short-term effect- Sales transaction data containing every new-car sales of a sample of 1100 California dealerships from October 1996 to 2001(Pauwels, Silva- Risso, Srinivasan, & Hanssens, 2004)Table 1 – Summary Table of Literature ReviewTable 1 – Summary Table of Literature Review- Sales transaction data containing every new-car sales of a sample of 1100 Literature Review- Sales transaction data containing every new-car sales of a sample of 1100 California dealerships Pocember 2001 Pocember 2001 Pocember 2001- Sales transaction data containing every new-car sales of a sample of 1100 California dealerships Pocember 2001 Pocember 2001 Pocember 2001- Sales transaction data containing every new-car sales of a sample of 1100 Pocember 2001 Pocember 2001 					
DV & IV: firm's market value to book value, income, revenue, introduction- New product introduction have a short- and long-term effect on income, revenue, and firm's market value to book value with increasing elasticity after the launch. - Show that sales promotions, new product introduction- Sales transaction data containing every new-car sales of a sample of 1100 California dealerships from October 1996 to December 2001 - Weekly closing stock prices from 1999 to 2001(Pauwels, Silva- Risso, Srinivasan, & Hanssens, 2004)Table 1 – Summary Table of Literature ReviewTable 1 – Summary Table of Literature Review- New product introduction have a short-term effect- Sales transaction data containing every new-car sales of a sample of 1100 California dealerships prices from 1999 to 2001(Pauwels, Silva- Risso, Srinivasan, & Hanssens, 2004)				- /S firms and their	
DV & IV: firm's market value to book value, income, revenue, introduction- New product introduction have a short- and long-term effect on income, revenue, and firm's market value to book value with increasing elasticity after the launch. - Show that sales promotions, especially incentive program only have a short-term effect- Sales transaction data containing every new-car sales of a sample of 1100 California dealerships from October 1996 to December 2001 - Weekly closing stock prices from 1999 to 2001(Pauwels, Silva- Risso, Srinivasan, & Hanssens, 2004)Table 1 – Summary Table of Literature Review- Summary Table of Literature Review- Summary Table of Literature Review- Summary Table of Literature Review				associated search terms	
DV & IV: firm's market value to book value, income, revenue, introduction- New product introduction have a short- and long-term effect on income, revenue, and firm's market value to book value with increasing elasticity after the launch Sales transaction data containing every new-car sales of a sample of 1100 California dealerships from October 1996 to 2004)(Pauwels, Silva- Risso, Srinivasan, from October 1996 to 2004)Table 1 – Summary Table of transmerTable 1 – Summary Table of transmer- New product introduction have a short- and long-term effect market value to book value with increasing elasticity after the launch. - Show that sales promotions, especially incentive program only have a short-term effect- Sales transaction data containing every new-car sales of a sample of 1100 California dealerships Pocember 2001 Pocember 2001(Pauwels, Silva- Risso, Srinivasan, 0 alter short- transmer				on Google tiends	
Table 1 – Summary Table of Literature Review	DV & IV: firm's market value to book value, income, revenue, sales promotions, new product introduction	Investigation of the short- and long-term impact of marketing actions on financial metrics.	 New product introduction have a short- and long-term effect on income, revenue, and firm's market value to book value with increasing elasticity after the launch. Show that sales promotions, especially incentive program only have a short-term effect 	 Sales transaction data containing every new-car sales of a sample of 1100 California dealerships from October 1996 to December 2001 Weekly closing stock prices from 1999 to 2001 	(Pauwels, Silva- Risso, Srinivasan, & Hanssens, 2004)
	Table 1 – Summary Table of I	Literature Review			

3 Model

The conceptual model shows how different types of UGC impact expected and abnormal stock returns. This study aims to answer the question if product ratings, search activities of different Apple related terms, MacRumors posts, and company's sales figures have an impact on stock returns. More precisely, we need to define the effect of ratings on sales, which would subsequently affect stock returns. But also, whether sales are interacting with product rating to influence the impact on stock returns. Furthermore, we need to find out the nature of the connection between product ratings and search activities from Google insights and Google trends. As well, what the impact is of search activities on expected stock returns. Lastly, if the sentiment ratio of consumers and experts of Apple products from MacRumors is reflected in the expected and abnormal returns and whether it shows similar fluctuations than search activities.

CONCEPTUAL MODEL

Figure 3 - Conceptual Model

To support the decision of these variables, Tellis and Johnson (2007) state that there are three benefits of using stock prices rather than sales data. First, getting data on stock prices is fairly easy and precise. Following the EMH theories, we know that past stock prices, public and private information are reflected in the current stock price. This means that in our case the sentiment people have about Apple products should be reflected in their stock price. Lastly, companies focus on stock prices since their fundamental goal is to make the most out of shareholder value. Moreover, Tellis and Johnson (2007) discuss that quality reviews (e.g. in form of ratings) are a significant marketing and strategic variable. However, firms have the tendency to underestimate this variable probably for the reason that it is hard to estimate. Also, "the major problem in carrying out such an analysis is to find a consistent and systematic source of information on the quality of new products that would be accessible to investors", (Tellis & Johnson, 2007) like the Wall Street Journal data used by Tellis and Johnson (2007). Based on this assumption, my opinion is that product ratings retrieved

from Amazon and reviews from Mac Rumors are sources of information that would be easily accessible to investors, which entails that carrying out the analysis would be possible. Additionally, the article by Onishi & Manchanda (2008) state that in fact blog activity is a good predictor of market outcomes, like sales in their case. Also, they found that blog activity can be triggered by advertising efforts leading to the results that blog activity can be triggered by advertising efforts leading to the results that blog activity can be a useful indicator for advertising effectiveness. Chevalier and Mayzlin (2006) proved with their research that reviews on Amazon.com tend to have an impact on sales numbers, which leaves us with the reason to believe that our variables product ratings from Amazon.com and blog posts from MacRumors.com can have an impact on sales, and subsequently, on stock returns.

In addition to that, Shuba et al. (2009) discovered that when perceived quality of the new product introduction is high, companies tend to have systematically elevated stock returns. This would support the decision to include product ratings into the analytical model, assuming that product ratings can be understood as the perceived quality of a product. Furthermore, in earlier articles, Pauwels et al. (2004) discovered that new product introductions have a higher impact, with increasing elasticity, after the launch on company performance indicator than sales promotions. This would lead to the belief that for every product Apple releases, there must be a direct impact noticeable in their stock returns, similarly, and product ratings and reviews around a product launches would also affect stock returns accordingly.

In addition to that, my expectations that product ratings alone would have only a low pressure on stock prices are quite high. Therefore, to improve predictability, the decision was made to include search volume index from Google of Apple related search terms, and this might maybe support the ratings, but also, on its own affect stock returns. In other words, this would imply that when ratings of a certain Apple product at period t are generally high, SVI would be high as well around that period, and consequently, we would expect that it would be possible to observe an impact on expected stock returns around that period t. In fact, Da et al. (In Search for Attention, 2011) state that correlation between other proxies of investors attention is low, however, when rate of news is increasing, it is driving the SVI, but also, abnormal increase in SVI is reflected about two weeks later in stock returns. Additionally, Da et al. (In Search of Fundamentals, 2011) believe that SVI has several advantages over traditional customer-based indicators. First, SVI is updated daily in comparison to other indicators. Also, for companies like Apple that have specific release dates, SVI can be a useful tool to gather information to estimate demand around these launch dates. In addition to that, SVI is generated by a third party that has no stakes in manipulating the numbers, leading to the fact that the data are less probable to be biased. Last but not least, the search index has the possibility to provide the firms with value-relevant information about their company on a rather real-time basis. On the other hand, Mondria & Wu (2011) found that when a company receive more asymmetric attention estimated through SVI measures, their stock seem to generate higher returns.

Continuing in this analogy, the mathematical model is constructed following a *vector autoregressive* model. We have a six-variable autoregressive model that tries to discover what the interactive dynamics between the variables of stock returns (expected and abnormal returns), product ratings from Amazon, search activities of Apple terms, MacRumors sentiment ratio comments, sales numbers, where t denotes the period analyzed and n the lag length. In addition to that, C is the constant term. The second term is the direct impact, we would like to verify. The third term depicts the interaction between Sales and Rating that might have an impact on expected returns and abnormal returns.

$$\binom{ExpectedReturn_{t}}{AbnormalReturn_{t}} = \beta_{0} + \sum_{t=1}^{n} \binom{ExpectedReturn_{t-n}}{AbnormalReturn_{t-n}} + \sum_{t=0}^{n} \binom{Sales_{t-n}}{Rating_{t-n}} + \sum_{t=1}^{n} \varepsilon_{t-n} + \varepsilon_{t} + \sum_{t=1}^{n} \varepsilon_{t-n} + \varepsilon_{t-n$$

Equation 1 – Estimation Model

The Impact of UGC on Firm's Performance for Personal Computer Product

4 Method: Measurement and Data

4.1 Data

	Variables	Data type	Time Ho	Transformations	
		51	Start	End	
Staals	Apple Stock (AAPL)	Daily Stock Price	04 January 2000	01 August 2012	Stock return
Return/A	.bno S&P 500	Daily Stock Price	January 2000	August 2012	Stock return
rmal Ret	urn Nasdaq	Daily Stock Price	January 2000	August 2012	Stock return
	US Treasury interest rate	Monthly rate	January 2000 August 2012		Stock return
Amazon Data		Rating (scale from 1-5)	03 November 2003	17 July 2012	Dummy variable
]	Mac Rumors	Textual form	29 February 2000	September 2012	Sentiment ratio
	Web Search	(*) Scaled based on the average search traffic of the term "Apple" for the selected time frame		August 2012	-
Search	Product Search	(*)	January 2008	August 2012	-
Tienus	News Search	(*)	January 2008	August 2012	-
	Product Types	oduct Types (*)		August 2012	-
S	ales Numbers	Quarterly Data in Revenues (\$) or unit sold	Q1 2006 Q3 2012		-
Tab	le 2 – Summary Table	e of Datasets			

As Table 2 – Summary Table of Datasets exhibits, the research will include five main datasets: Data for calculating the stock returns of Apple Inc., product ratings retrieved from Amazon, blog posts from macrumors.com, "Apple" term plus various other terms search trends downloaded from Google Trends, and quarterly sales data for personal computers from Apple. For each dataset, the number of cases, time horizon, and in the next chapter, descriptive statistics (mean, standard deviation, and distribution) will be presented as an introduction for the empirical part of this study.

Stock Returns that necessitate stock price information from Apple, S&P 500, and Nasdaq are obtained through Yahoo! Finance, and will be used to estimate the data for the dependent variable, Apple's performance. This dataset is divided up into date, open, high, low, close, volume, and adjusted close value and only the adjusted close value is of interest for this study. The time horizon for which we retrieved data is from January 2000 until today, August 2012. There are 1908 daily cases, which correspond to the days the stock exchange was opened. In Figure 4 – Apple (AAPL) Stock Chart and Trading Volume , the stock price movement over the time period of 2005 and 2012 can be observed. Furthermore, to estimate the expected returns of Apple using the CAPM formula, we need data of the S&P 500 plus NASDAQ market portfolio stock and the Treasury Bill interest rate from 2000 until 2012.

The Impact of UGC on Firm's Performance for Personal Computer Product

Figure 4 - Apple (AAPL) Stock Chart and Trading Volume (Nasdaq, n.d.)

Product Ratings have been gathered from Amazon.com. The data that is retrieved are product reviews and rating expressed from users of Apple products, where in the end most probably only the rating will be used. The data was collected using the Excel tool <get data from web>. This tool enable one to download directly into Excel website content. Depending on the structure and coding of the website, the tool gives the option to download only specific parts of the website. The downloaded data amounts to 4227 different product reviews and

Product Type	Percentage from Dataset
MacBook Pro	42%
iMac	20%
MacBook	19%
MacBook Air	12%
iBook	4%
Mac Mini	2%

Table 3 - Amazon Data Distribution

ratings given for diverse Apple products. Table 3 - Amazon Data Distribution shows the distribution of data entries according to the different product type for Apple personal computers. For example, as the chart demonstrates, 43 percent of our data are product reviews and rating for MacBook Pro products. More precisely, the Amazon dataset is constructed the following way. All 4227 entries are divided up into:

- Helpfulness of the product reviews, which means how many users found the comment helpful, i.e. 7 out of 16 users found the review helpful
- Rating of the product on a 5 star rating scale
- Date of the review
- Username
- Title of the review
- Review

The dataset retrieved from **MacRumors** is divided into two main parts. The first contains articles posted by different authors on the MacRumors Blog, where we have the date, author's name, title of the article and the article itself. Then, the second part is the reaction users had about the published articles written down as comments. For that, we have date of the post, username and the post in textual form. To be ready for analysis, the textual data still needs to be cleaned and transformed from qualitative data into quantitative data. In the section 4.2 Data Transformation, the method of recoding and classifying the textual data into negative, neutral, and positive quantitative data will be described as meticulously as possible. The dataset is from January 2008 until September 2012.

Figure 5 - Web Search Interest for Apple (Google, Google Insight for Search (beta))

Search Trends, as shown in the Figure 5 – Web Search Interest for Apple, are retrieved from Google Trends and shows how many searches, normalized data represented on a scale from 0-100, have been done for a certain term, relative to the total number of searches done on Google over time (Google, Google Trends, n.d.), using "Apple" term in the search function of Google. On this graph, it is clearly visible at which time periods Apple attracted the most interest from the general public. These peaks that show high interest in Apple can be followed back to important Apple events. For instance, the first peak can be explained by the introduction of the iPhone 3S in the US and other countries all over the world. As well, the second peak can be explained by the event of the new iPad being released. For the last peak there is a good reason to believe that it is due to the fact that the new iPhone 4S is being launched and Apple received preorders of over one million in the first 24 hours of the product introduction.

For this research different Google Trend data will be used. First of all, web, news, and product search trends for the search term Apple. Then, the search trends for the different personal computer types will be added to our analysis, which will be search trends for MacBook, MacBook Pro, MacBook Air, iMac, MacMini, and iBook. For those search trends, the index value is calculated a bit differently, here, the search trend is index to searches done at a certain date. For instance, for searches for MacBook, Macintosh, iBook,

iMac, and MacMini, the first search recorded was in 2004, where the value is 1, and all subsequent searches are index in comparison to the first search trend. On the other hand, MacBook Pro search trends are indexed in accordance to search volume of 2006 and MacBook Air 2008.

Sales numbers (Apple, 2000-2012), the last dataset, is the sales data retrieved from the company website of Apple. Apple Inc. publishes unaudited quarterly sales data on their investor.apple.com website. In these reports, Apple Inc. states sales according to operating segment divided up geographically, but also, by product types, for instance, Mac Desktops, Mac Portables, and Subtotal Mac (non-related to their computer products), including iPod, iPhone, iPad, sales from iTunes, Software, and more. The data given is either in units sold or in revenue in dollars. As stated in the Table 2 – Summary Table of Datasets, the dataset starts in the first quarter from 2006 until the third quarter 2012. Whether, unit sold or/and revenue in dollars will be used for the sales variables is still unclear and will be decided during the analysis process.

Release Dates information will be necessary for our short-term analysis. In other words, we need those dates to answer our hypotheses that cover the question whether or not there is an impact around release dates. Hereunder, Figure 6 – Release Date of different Personal Computer Types of Apple on the next page depicted in a plot is the different release date of the different personal computer types of Apple.

Figure 6 – Release Date of different Personal Computer Types of Apple

4.2 Data Transformation

4.2.1 Sentiment Analysis

The MacRumors dataset, as already mentioned, includes comments that are in textual form. The raw text retrieved from the website is unusable for statistical analysis and needs to be cleaned and transformed.

To clean the data means to remove special characters and stopwords. Google Refine is a helpful tool to clean the data. It already has predefined transformation options, from removing any consecutive blank space to changing it into lower cases. In addition to that, Google Refine gives the opportunity to perform personalized changes to the data via using GREL (Google Refine Expression Language⁴) expressions. This option was interesting for the removal of stopwords. It is important to remove stopwords before the text undergoes the sentiment analysis process to avoid complications. Stopwords are "usually these words are filtered out from search queries because they return vast amount of unnecessary information" (Brahaj, 20). To delete those stopwords from our textual data from MacRumors, we will use the GREL expression "replace" that is written value.replace(/(*here list of stopwords to remove*)/, " ")⁵, where the first part defines which word to transform and the second with what it should be transformed with. Furthermore, after removing all stopwords, the decision was made to remove all text comments that contain less than 20 characters, since, this would imply that the comment is only 2-3 words long.

As sentiment analysis is not an easy task to perform and necessitates extensive knowledge of R, the program that is used to run the sentiment analysis, Gert Jan Prevo (a master student of Gui Liberali, my thesis supervisor) ran the sentiment analysis over the textual data included in this research. As a matter of fact, "sentiment is an R package with tools for sentiment analysis including bayesian classifiers for positivity/negativity and emotion classification" (Jurka, 2012). R classifies "a dataset containing a list of positive and negative subjective words parsed from Janyce Wiebe's⁶ subjectivity lexicon" (Jurka, 2012). The outcome of the classification generates a sentiment ratio for each textual data. This means, a comments is negative when the sentiment ratio is between 0 and 0.99, neutral between 1 and 1.99, and positive when above the value 2.

⁴ For more information, see http://code.google.com/p/google-refine/wiki/GRELFunctions

⁶ Riloff and Wiebe (2003). Learning extraction patterns for subjective expressions. EMNLP-2003. http://www.cs.pitt.edu/mpqa/#subj_lexicon

4.2.2 Stock Return Valuation

Simply put, the valuation at market level of the stock price for any public company is crucial for its survival. To signal profitability, a healthy stock price movement is needed to attract new investors. For that, it is important to understand stock valuation, here using the CAPM formula to calculate one company's stock returns, but also, its abnormal returns.

Stock returns can be estimated using the Capital Asset Pricing Model. In theory, the total stock returns of any company is divided up into idiosyncratic risk, expected returns and abnormal returns. The FFC (Fama-French-Carhart Factor) Factor Specification model estimate the stock returns of a company by recognizing three systematic factors: market risk factor (the excess return on broad market portfolio), size risk factor (the difference between large- and small scale portfolio return), and value risk factor (the difference between high and low book-to-market stock returns) (Berk & DeMarzo, 2007). Fama and French suggest a model that estimates expected returns of a company including the expected returns of size, value and market risk factor. The size risk factor, also called small-minus-big portfolio (SMB), is "a trading strategy that each year buys portfolio S (small stocks) and finances this position by short-selling portfolio B (big stocks) has produced positive risk-adjusted returns historically" (Berk & DeMarzo, 2007). The value risk factor, High-Minus-Low portfolio (HML), is a "trading strategy that each year takes a long position in portfolio H, which it finances with a short position in portfolio L" (Berk & DeMarzo, 2007). Prior one-year momentum (PR1YR) portfolio is "a self-financing portfolio that goes long on the top 30% of stocks with the highest prior year returns, and short on the 30% with the low prior year returns, each year" (Berk & DeMarzo, 2007). Taking all this into account, the stock return is calculated using this equation:

$$R_{it} - R_{rf,t} = \alpha_i + \beta_t^{Mkt} (R_{mt} - R_{rf,t}) + \beta_t^{SMB} R_{SMB} + \beta_t^{HML} R_{HML} + \beta_t^{PR1YR} R_{PR1YR} + \varepsilon_{it}$$
Equation 2 – Fama-French-Carbart Four-Factor Model of Stock Returns

Where in period t, R_{it} is the stock returns of firm i, R_{rf} is the risk-free rate of returns, R_{mkt} is the average market rate of returns, β (SMB, HML, PR1YR) computes the sensitivity of the respective SMB, HML, and PR1YR stock portfolio and R (SMB, HML, PR1YR) calculates the respective returns of SMB, HML, and PR1YR. However, as Berk & DeMarzo (2007) imply, one important disadvantage of the FFC factor model is that the expected returns of each portfolio are extremely difficult to estimate, leading to the fact that most companies use in practice the CAPM (73,5%). The Capital Asset Pricing Model is an equilibrium model that investigates the relationship between risk and return that characterizes a security's returns based on its sensitivity with the market portfolio. There are three assumptions to be made so that CAPM is valid: markets need to be competitive, investors select efficient portfolios, and they have same expectations. This means that

two key deductions can be derived: the market portfolio is the efficient portfolio and the risk premium for any security is proportional to its sensitivity⁷ with the market. As a consequence, CAPM is estimated using risk-free return, market return and the beta of the company in a linear regression, constructed as followed:

$$E[R_i] = r_f + \beta_i (E[R_{Mkt}] - r_f) + \varepsilon_f$$

Equation 3 – Excess Return according to the CAPM Theory

Hereunder, in Table 4 – Steps to calculate Expected Return of Apple Stock, is clarified step by step how expected returns for the Apple stock is computed in Excel. Step 1, 2, and 3 demonstrate how return is calculated in Excel, whereas, step 4, 5, and 6 show how the real yield to maturity return is calculated to quantify the beta, and consequently, calculate the expected returns in step 8.

Steps		Excel formula	Variables needed		
1		$R_{Apple} = \left(\frac{Price_t}{Price_{t-1}}\right) - 1$	• Adjusted close Price of the Stock of Apple		
2	Return	$R_{S\&P} = \left(\frac{Price_t}{Price_{t-1}}\right) - 1$	• Adjusted close Price of S&P 500		
3		$R_{Nasdaq} = \left(\frac{Price_t}{Price_{t-1}}\right) - 1$	Adjusted close Price of Nasdaq		
4		Real YTM (Apple) = $R_{Apple} - rf$	 Returns of Apple Stock Risk –free interest rate 		
5	Real yield-to- maturity (YTM)	$Real YTM (S\&P 500) = R_{S\&P} - rf$	 Returns of S&P 500 Portfolio Risk –free interest rate 		
6		$Real YTM (Nasdaq) = R_{Nasdaq} - rf$	 Returns of Nasdaq Portfolio Risk –free interest rate 		
7	beta	$\beta = \frac{Covariance(R(YTM)_{Apple}; R(YTM)_{S\&P})}{Variance(R(YTM)_{S\&P})}$	Real YTM of AppleReal YTM of S&P		
8	Expected Return	$E\{R\} = rf + R(YTM)_{Nasdaq} * \beta_{Apple}$	 Risk-free interest rate Returns of Nasdaq Portfolio Beta for Apple 		

Table 4 - Steps to calculate Expected Return of Apple Stock

⁷ Sensitivity of a security, which is also called beta (β), is defined by Berk and DeMarzo (2007) as being the expected percent change in the excess return of a security for a 1% change in the excess return of the market (or other benchmark) portfolio.

$$\beta_i^p = \frac{SD(R_i) * Corr(R_i, R_p)}{SD(R_p)}$$

Consequently, abnormal returns are said to be returns "for any individual stock that differs from those of the market", sometimes also called excess returns (Tellis & Johnson, 2007). To calculate abnormal returns of a stock, we need to know what the stock's alpha is, which is basically the "difference between a stock's expected return and its required return according to the security market line" (Berk & DeMarzo, 2007). The security market line (SML) is the line that goes through the risk-free investment in the market. Taking all this into consideration, the alpha is calculated as followed:

$$\alpha_s = E[R_s] - r_s = E[R_s] - (r_f + \beta_s(E[R_{Mkt}] - r_f))$$

Equation 4 – Equation of Stock's alpha

In addition to that, we have the capital market line (CML) which shows the portfolio that merges the risk-free investment and the efficient portfolio depicting the most lucrative expected returns that can be reached for each level of volatility, see also Figure 7 – Capital Market Line and Security Market Line.

As can be seen in Figure 7, the alpha shows whether a stock is lying above or under the SML, also meaning that the market portfolio the stock is part of is not efficient. When a stock has higher expected return than the market portfolio, which means getting higher return that a trader would normally get, the stock is underpriced. On the other side, when a stock lies under the SML, it is underpriced in the sense that the return on the stock is lower than when traded if the market portfolio would be efficient. (Berk & DeMarzo, 2007)

Figure 7 - Capital Market Line and Security Market Line

The previous part is very theoretical explanation of abnormal returns of a security. However, in practice, there is a very simple way to calculate the abnormal returns of any stock returns. Basically, for each period, we just need to subtract the actual returns the stock generated with the expected returns, we calculate beforehand. For example:

Abnormal Returns (Apple) = Actual real YTM Return_{Apple} - Expected Return_{Apple}

4.3 Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation	Skev	vness	ness Kurtosis		
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error	
Abnormal Returns	241	-,10	,05	-,0005	,01627	-,877	,157	5,733	,312	
Expected Returns	245	-,04	,02	-,0001	,00739	-1,122	,156	4,825	,310	
Sales	245	2164	5198	3263,87	797,792	,520	,156	-,381	,310	
Ratings	245	3,00	5,00	4,3620	,47413	-1,346	,156	1,794	,310	
News Searches	244	3	100	17,90	11,694	3,079	,156	17,170	,310	
Product Searches	244	42	100	73,20	11,880	-,206	,156	-,103	,310	
Web Searches	245	22	100	32,87	7,924	3,195	,156	21,542	,310	
Valid N (listwise)	240									

Descriptive Statistics

Figure 8 - Descriptive Statistics Expected Return, Abnormal Returns, Product Ratings and Search Activity

In Figure 8 - Descriptive Statistics Expected Return, Abnormal Returns, Product Ratings and Search Activity, we can already draw preliminary conclusions about our variables according to their minimum, maximum, and mean. The mean for expected and abnormal returns evolves around 0. Also, the maximum return one can expect from buying Apple stock(s) in one period is about 24% and the minimum losses -15%. According to its frequency distribution, see Figure 9, expected returns of Apple Stock show a normal distribution. Additionally, it has a positive kurtosis value that implies most of its values to be in the tails leading to a quite pointy distribution (Field, 2009). Concerning the sales data, its mean lies at 2602 unit sold per quarter and the skewness value of 0.520 indicates that most values are not lying under the tails making the distribution flatter, see Figure 9. Now, the product ratings from Amazon.com are considerably high with a mean of 4.36 for a maximum possible rating of 5, highly skewed toward the higher rating scores. The news and web search index show a mean that is around 17.90, meaning that on average 17.90% of news and web searches for Apple happened at a certain time. On the other hand, the product search index demonstrates a relatively high mean of 32,87% of searches according to all searches done at the same time. The distribution seems to be normal, but the kurtosis value denotes that the distribution is rather flat.

Figure 9 – Distribution of Expected Returns (upper image) and Abnormal Returns (lower image)

The Impact of UGC on Firm's Performance for Personal Computer Product

	N	Range	Minimum	Maximum	Mean	Std. Deviation	Variance	Skev	vness	Kur	tosis
	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Statistic	Std. Error	Statistic	Std. Error
Search Trend Apple	454	4,50	,85	5,35	1,5254	,45414	,206	2,567	,115	15,710	,229
Search Trend for Macintosh	454	,95	,06	1,01	,2885	,23599	,056	1,125	,115	,239	,229
Search Trend for iBook	454	1,11	,17	1,28	,4730	,29311	,086	,802	,115	-,801	,229
Search Trend for iMac	454	2,50	,68	3,18	1,0493	,22167	,049	2,767	,115	20,815	,229
Search Trend for Mac Mini	405	1,86	,02	1,88	,2296	,12996	,017	7,337	,121	76,088	,242
Search Trend for MacBook	454	12,90	,60	13,50	4,5020	2,39476	5,735	-,291	,115	-,541	,229
Search Trend MacBook Pro	349	1,94	,66	2,60	1,2104	,29725	,088	,740	,131	1,386	,260
Search Trend MacBook Air	244	2,06	,08	2,14	,2939	,25072	,063	3,103	,156	15,790	,310
Valid N (listwise)	244										

Descriptive Statistics

Figure 10 – Descriptive Statistics for Search Trends

Moving to the product type search trend variables, we can observe that the low mean value of 0,47 for the search trend of iBook indicates a decreasing search trends in comparison to searches from 2004 explained by the fact that iBook is not produced anymore since 2006. Its distribution is rather flat not having high frequencies around its mean. The iMac and MacBook Pro demonstrate a mean search trends around 1 implying that the search activities are quite steady around the index value from 2004. Their distributions show that most values are situated around their means, except MacBook demonstrates a rather flatter distribution than iMac. Furthermore, Mac Mini and MacBook Air exhibit low search trend, which are around 0,25 and both with steep distributions. Finally, the highest mean has MacBook search trend, which is four times bigger than its index value from 2004.

Figure 11 - Distribution for Rating, Web, News, and Product Search, as well as, Search Trend for Apple and Macintosh

Figure 12 – Distribution of Search Trend for Apple Product Types

In addition to that, when observing the different variables plotted over time, some assumptions can already be drawn, but also, some expectations can be confirmed. First of all, for units of personal computers sold, the graph shows a positive trend, see Figure 13 - Unit of Personal Computers sold over time. hen observing the Figure 14 – News, Product, and Web Search Index over time, we see that news search index is generally lower, however, with considerably higher peaks than web and product search index. On the contrary, product search index for Apple is higher over time having fluctuations

Figure 13 - Unit of Personal Computers sold over time

that are less aggressive than for news search index. As well, it is clear to see that the search trend for Apple is the same as for the web search index just given in a different scale, which implies that we will drop one of those variables in the empirical part of our study. in comparison to its search activity in beginning of 2004.

Interestingly, in the time series plots for the search trend of different product types of Apple, we see that iMac and MacBook Pro, since their birth, have rather flat search trend. Still, iMac must have had an immense influence on people's interest in its beginning, which can be seen by its search activities that tripled mid-2004

Concerning Mac Mini and iBook, there is a downward trend simply due to the fact that iBook is not produced anymore, and that Mac Mini in comparison to other Apple products is less attractive or sold less. MacBook Air on the other hand shows interesting movements. Its launch apparently was a huge hit as shown by the high interest, however, reveals a very fast drop to a lower interest level that was only improved two years later, probably due to a new version of the MacBook Air that was introduced.

Figure 15 - Search Trends for the different product type search terms over time

Lastly, just for better visualization, search activities for MacBook are represented in a separate graph, Figure 16, as it has in comparison to the other Apple products considerably higher search activities. Here, we see that since its birth in 2006, MacBook demonstrates an upward trend. Nevertheless, in 2008, we see an extreme positive shock outlying from earlier and later movement, and that can be explained by the fact that Apple introduced a newer version of the MacBook with better processors, graphic card, and RAM, where the difference between MacBook and MacBook Pro was diminished, thus, most probably more customers switched from MacBook Pro to the cheaper laptop MacBook.

Figure 16 – Search Trend for MacBook over time
The descriptive statistic of our different sentiment ratios reveal that negative comments show a mean that is 0.49, neutral around 1.42, and positive 16.37. The distributions for neutral and negative comments are fairly normal. Moreover, positive comments have a distribution that is flatter than the other ones, due to less values around the mean.

Neut. Sentiment Pos. Sentiment Neg. Sentiment Ratio Ratio Ratio Valic 245 245 245 Ν Missing 0 0 0 Mean ,4937 1,4245 16,3785 Median ,4916 1,4243 16,8022 Std. Deviation .03041 .02761 2.66673 -3,476 Skewness 2,080 1,200 Std. Error of Skewness .156 .156 .156 Kurtosis 14,448 15,349 15,676 Std. Error of Kurtosis ,310 ,310 ,310 1.30 2.33 Minimum .40 Maximum ,72 1,62 22,71

Table 5 – Descriptive Statistics of Sentiment Ratios

Figure 17 - Frequency Distribution Sentiment Ratio (Negative, Neutral, Positive)

Concerning the time series plots for the different sentiment ratios, negative comments depict fairly steady movements accompanied with some strong peaks and downs at certain points in time. The high peak between 2010 and 2011 shows that the nature of comments are moving toward becoming neutral comments. The same reaction can be viewed in the neutral sentiment ratio plot. In addition to that, Figure 20 -Positive Sentiment Ratio over time denotes that around mid-2009, there seemed to be some sort of unclear in opinions, as the simultaneous peak and drop exhibits. Nevertheless, neutral sentiment comments show a the tendency to drop in direction to negative sentiment comments. As we observed between 2010 and 2011, a peak for negative and neutral comments, positive comments show unusual movement that extremely plunges toward neutral and negative comments.

IV 2010 2011 2008 2009 2012 Figure 20 - Positive Sentiment Ratio over time

Ш

I\ Ш . III.

ш IV ш

IV Ш

0.000

5 Empirical Framework

5.1 Analysis Methodology

After careful considerations of the literature reviews, the decision was made to use a autoregressive model since articles from Luo (2009), Pauwels et al. (2004), and Da et al. (In Search of Fundamentals, 2011) also used vector autoregression models while testing similar questions than ours.

The empirical study by Luo (2009) starts by deriving the residuals of negative word-of-mouth (NWOM), which can be understood as the portion unexplained by the mean expectations. Then, they concentrate their attention to parts of the NWOM that moved away from mean expectations. To answer their hypotheses, they modeled NWOM in the way that it correlates with variables of firm characteristics, industry factors, and macroeconomic factors, leading to explaining NWOM more precisely. Similarly, Pauwels et al. (2004) decided that a VAR model would be a flexible treatment for short- and long-term effects, overcoming spurious regression problems, and also capturing the impact of unexpected events, as well as, deviations from expected means. Likewise, both Pauwels et al. (2004) and Luo (2009) performed a unit root test for stationarity before estimating their model. As well, Luo (2009) and Pauwels et al. (2004) used an Impulse Response Functions to uncover short-term and long-term effects within the model. Moreover, Pauwels et al. (2004) bring into play forecast-error variance decomposition (FEVD) that "determines the extent to which the performance effects are due to changes in each of the VAR variables" (Pauwels, Silva-Risso, Srinivasan, & Hanssens, 2004).

Da et al. (In Search of Attention, 2011), however, use contemporaneous correlations among the independent variable and the dependent variables, first, computed with a minimum of one year data, and then, with average of each variable. The next step performed is to examine the outcomes of the VAR model, including a time trend (Da, Engelberg, & Gao, In Search of Attention, 2011). Furthermore, they employ a block bootstrap that account for both times series and cross-sectional correlation in the error terms, where the null hypothesis is that all VAR coefficients are zero (Da, Engelberg, & Gao, In Search of Attention, 2011).

According to literature reviews, we already have some notions of how the methodology for analysis will be presented. To give further methodology propositions, Diebold (2007) proposes in order to better capture the dynamics of the dependent variable, in general, that it is always preferable to include lagged independent variable(s) but also lags of the dependent variables. Diebold (2007) advises to use regression with ARMA disturbance, which is the combination of an autoregressive model with a moving average model, which can be highly complementary. But first of all, let us consider vector autoregression that allows to analyze cross-variable dynamics, meaning that "each variable is related not only to its own past but also to the past of all other variables in the system" (Diebold, 2007). In addition to that, the disturbances of each variable may be correlated with past disturbance of its own variable but also with other variable's past in the equation. This

can be understood in the sense that when there is a shock occurring in one variable, the other will most probably be shocked as well (Diebold, 2007). Incorporated in the context of VAR is the predictive causality notion, which is based on two simple principles: one, cause should happen before effect; two, a causal series should include information helpful for forecasting that is not available in the other series, "including the past history of the variable being forecasted" (Diebold, 2007). Non-causality can be tested using the hypothesis that "no lags of variable i aid in one-step-ahead prediction of variable j" (Diebold, 2007).

As already mentioned before, the impulse-response functions can be quite useful when effects are estimated for the short-term and for the long-term. This is simply done by converting the error terms into standard deviation terms of their respective error terms, here denoted as $\varepsilon_{t'}$, which are then included in a model to create the impulse-response function. (Diebold, 2007)

Hereunder is an example of how an impulse-response function would look like.

$$Y_{t} = b_{0}\varepsilon_{t}' + b_{1}\varepsilon_{t-1}' + b_{2}\varepsilon_{t-2}' + \dots$$

$$\varepsilon_{t}' \sim WN(0,1)$$

Equation 5 - Impulse-Response Function (Diebold, 2007)

When looking at Equation 5 – Impulse-Response Function, b_0 can be evaluated as the immediate effect of the shock at period t or the "contemporaneous effect of a unit shock to ε_t ' or, equivalently, a one-standarddeviation shock to ε_t '" (Diebold, 2007), and in this logic, b_1 in the shock that happens one period later (Diebold, 2007).

Moreover, Diebold (2007) proposes a methodology taking into account all aspects to properly estimate an autoregressive model. The methodology is constructed in the way that first the cross-correlations between and within the variables is performed, also called correlograms, and later on, will also determine the lag length of each variable that should be included in the final model to be estimated. Then, Diebold (2007) suggests to run the VAR equation and check for significant outcomes. But also, for analysis purposes, the residual plots and also the residual correlograms are important. Furthermore, Diebold (2007) utters that it can be beneficial to perform a formal causality test, testing for the no causality hypothesis, and thus, see in which way the causality of the different variable move. Afterwards, the impulse-response function and variance decompositions can be estimated. For the impulse response function, Eviews generates graphs showing the response of variable 1 to variable 2. Lastly, the variance decomposition shows the fractions of error variance from variable 1 that is due to variable 2. (Diebold, 2007)

Taking into account what methods previous studies employed and what Diebold (2007) recommends, we gain a relatively clear view of what needs to be done to convey a valuable empirical analysis of our model. When analyzing our model, the methodology will be quite helpful to create clarity of what needs to undertake to estimate the model and how to interpret the value we will generate.

In addition to that, according to section 5.2Theoretical Background for VAR Time Series Model, it is important to test our models for all assumptions of autoregressive distributed lag models, that is stationarity of the different datasets included in the model, constant variance of residuals, and absence of serial autocorrelations. If one of these assumptions does not hold, there will be the need to consider what the cause for that is, and subsequently, find a solutions to overcome these problems so that the model can be correctly estimated. If the hypothesis of volatile variances of residuals holds, the solution will be to estimate our model as an autoregressive conditional heteroskedasticity or GARCH model, which takes into account the volatility of residuals' variance and does not bias the outcomes of the model's estimation. For that model, the before stated assumptions need to be tested again. If all assumptions hold, there is nothing in our way to estimate our model and evaluate the outcomes.

Last but not least, to make the written evaluation of our models easier, when any impact for one variable is discussed, the underlying assumption is assumed that when one variable change is discussed all other variables stay constant. Furthermore, any estimation outcome that is marked with (°) means "rejected at 90% confidence", with (*) "rejected at 95% confidence", and with (**) "rejected with 99% confidence level".

5.2 Theoretical Background for VAR Time Series Model

Autoregressive modeling is essentially used for the purpose of estimating time series models. The aim of univariate models is to uncover dynamics within timely lags of the one variable tested. However, in multivariate cases, the dynamics between several variables and their respective lag variables on a timely manner is investigated. Generally, the dependent variable is defined as endogenous and depends on its own past, while the independent variables are stated as exogenous. When it is unclear which variables affects which other variable(s), the safe approach is to set each variable as the independent variable. This means, we would have a number of equation systems that equals the number of variables in the time series model. Additionally, a VARMA model would add moving averages of the residuals of the model tested, in the hope to better take into account the white noise effects.

There are several points to consider when using autoregressive models: stationary or non-stationary variables, white noise, cointegration, and heteroskedasticity. First, the variables need to be tested for stationary variables. For that a unit root test is used, for instance, the Augmented Dickey Fuller test, which tests for the presence of unit root. "The VAR model is said to be stable (or the corresponding vector Y_t series is stationary) if all solutions to the models coefficients lie outside the unit circle" (Diebold, 2007). If the situation comes around that a variable seems to be non-stationary, the next step would be to check for a unit root in the first difference of that variable. If we have no unit root in its first difference, then the first difference variable is added to the model.

To determine the order of autoregression, the Box-Pierce Q-test sets under the null hypothesis that variable y_t is white noise. In the instance that this hypothesis is rejected, we know that there is autocorrelation (Diebold, 2007). The autocorrelation function can be quite useful to see how one variable correlated with its own past. But also, checking the autocorrelation function can help detect some sort of seasonality, trend, or aberrant observations, for example. Likewise, the partial autocorrelation function (PACF) has been recognized as a valuable tool to determine the order of our autoregression of one variable. In other words, by analyzing the partial autocorrelation function outcomes, we can see at what order of its own past our variables correlates, suggesting how many lags of each variable needs to be included in the model. (Diebold, 2007)

Once the order of autoregression is defined, the "least squares principle yields an estimator that minimizes the squared differences between the observed y_t and the predicted \hat{y}_t from the estimated model. These differences are called the residuals. If estimates $\hat{k}_1, \hat{k}_2, ..., \hat{k}_k$ have been computed then *predicted values* \hat{y}_t are computed as, $\hat{y}_t = \hat{k}_1 + \hat{k}_2 X_{t2} + \cdots + \hat{k}_k X_{tk}, t = 1, ..., n$, and the *residuals* e_t are computed as, $e_t = y_t - \hat{y}_t, t = 1, ..., n$." (Vogelvang, 2005). Even though the order of lags have been tested, in order for OLS to be accurate, we need to have a model where the estimated residuals come as close as possible to the actual residuals. For that, we have a couple of indicators that are useful for approximating the fit of our model. First of all, the well-known (adjusted) R-squared can be used, where the closer the value approaches to one,

the better the goodness of fit of our model. The R-squared subtract from one the percentage of the squared residuals that are explained by the squared difference between y_t and the mean \overline{y} . In addition to that, the Akaike Info Criterion (AIC) is valuable, which estimates "out-of-sample forecast error variance but it penalizes degrees of freedom more harshly" (Diebold, 2007). Nevertheless, the AIC is used in practice by comparing its value across different model's variations and the model with the lowest AIC value has the best fit out of all model's variations. The same idea and same interpretation as the AIC has in practice, however a little harsher on the degree of freedom is the Schwarz Criterion (SIC). (Diebold, 2007)

Following that, there is still the issue of cointegration in our model, which "corresponds to situations in which variables tend to cling to one another, in the sense that the cointegrating combination is stationary, even though each variable is nonstationary" (Diebold, 2007). To uncover cointegrated variable in our system of equation, the Granger Causality test has been proven to be quite useful. As well, It can be useful to define if a variable is exogenous to key parameters in the model. To do so, the Granger Causality allows to test the dynamics between the variables in the model. In other words, this test will show whether one variable impacts the other, meaning that it is exogenous. In addition to that, it is important to test for heteroskedasticity, also sometimes called, time-varying volatility, which means testing for our residuals' stability. Heteroskedasticity basically means that the variance of the error terms of a models are not constant. That is the reason why when heteroskedasticity is present OLS does not hold anymore, since one of the assumption for OLS is that variance of error terms need to be constant. One way to test heteroskedasticity is the Breusch-Godfrey-Pagan test. Here, the null hypothesis states that we have no heteroskedasticity present in our model. The mathematical way to see that test is to take the situation where we regress the models residuals as the dependent variables against our independent variables of our model. This can easily be tested via testing for normality of residuals or more accurately using the just mentioned Breusch-Godfrey Test. If it is the case that heteroskedasticity is present, OLS is not suitable anymore, we would need to use ARCH or GARCH model that takes the volatility of the residuals into account and ensure accurate interpretation of coefficients. (Vogelvang, 2005)

Ultimately, the models used to carry out our analysis are not traditional vector autoregressive models, where all variables are independent variables and regressed on one another. In our case, we use an autoregressive distributed lag model, also called ADL. On the contrary to a VAR model, where all variables are set as dependent and independent variables with same lag length, an ADL model sets only some variables as the dependent variables regressing them on their own past and plus adding further explanatory exogenous variables. Furthermore, it is important to investigate the different lag length that is influencing our dependent variables so that our final model achieves the best fit possible.

6 Analysis

Taking into account our empirical methodology and the theoretical background, in practice, the analysis will be divided into several sections. But first of all, we will make use of two main models, one, a so called long-term model analyzing the impacts of different variables over a four year time span. More precisely, the sample will start in January 2008 ending in August 2012 and aggregated on a weekly basis, incorporating the variables expected and abnormal returns, ratings, sentiment ratio of MacRumors comments, the different search trends for Apple personal computers, news, web and product search trends for apple. Secondly, 6 short-term models over a time span of 4 months around the MacBook Pro release date aggregated on a daily basis will be analyzed as well. In addition to that, we will make use of impulse response functions to uncover the short-term and long-term effects.

As already mentioned, the organization of the empirical analysis is constructed in different sections explained in the following. First of all, the first section analyzes the correlation between the different variables for our long-term model, but also, for the different short-term models. Following to that, in order to meet the assumptions of ordinary least-square estimation method, we have to test the different models for stationary, heteroskedasticity, and normality of the error terms assumptions. As well, to be able to properly estimate the order of lags for our variables in the system of equations that need to be added to our model, the autocorrelation and partial autocorrelation functions will be analyzed. Once all the pre-estimation tests have been carried out, we will estimate the long-term and the short-term models. Lastly, we will run several impulse-response functions to uncover how one impulse in one variable might affect another variable in the system of equations.

6.1 Correlation Matrix

This part is important in the sense to uncover dependencies between two variables. From the outcomes of the correlation test, it is already possible to form expectations about the outcomes of our model. Basically, to evaluate the correlation between two variables, we used the statistic software SPSS⁸, where different correlation test can be picked. In this research, we employ the Pearson's bivariate two-tailed correlation test. The next sections are build up in the way that first our general long-term model is tested for cross-correlations, then, the different short-term models will be tested in the same fashion.

6.1.1 Long-term Model (Model 1)

Impact on Expected Returns

The correlation matrix that can be viewed in Appendix 5 on p.91 confirms that all significant correlations with expected returns are negative and are with search trend for iBook (-0.174**), Macintosh (-0.152*) and neutral comments (-0.124°). Still, we see positive correlation with the interaction variable between ratings and sales (0.125°) .

Impact on Abnormal Returns

Abnormal returns seems to capture no effect at all from other variables in the system. This is not a reason to expect that the results of estimation will not show any significant impact, but we can conclude that there is no direct impact resulting from the independent variables in the system.

Impact on MacRumors Sentiment Ratio

The complete Correlation Matrix demonstrates that negative comments are only correlating with positive comments (-0.206^{**}). On the other hand, neutral comments seem to have an negative influence on various variables, for instance, expected returns (-0.124°), as already mentioned, but also, sales (-0.145^{*}), and search trend for MacBook (-0.120°) and MacBook Pro (-0.176^{**}). In addition to that, neutral comments exhibit positive correlation with search trend for iBook (0.112°) and interaction between sales and rating (0.192^{**}). Against our expectations, positive comments seem to be negatively impacted by certain variables in our model: search trend for MacBook (-0.120°), product search (-0.247^{**}), negative comments (-0.206), and web search (-128^{*}). The only positive correlation positive comments show is with search trend for Macintosh (0.110°).

⁸ Correlation test in SPSS: go to <analyze> then to <correlate>, <bivariate> and choose between Pearson, Spearman, and Kendall's Tau-b test the most appropriate test, and also, choose between <one-tailed> and <two-tailed> test.

Impact on Rating

Concerning Rating, we see that it strongly positively correlates with the interaction variables between ratings and sales (0.386^{**}) plus product searches (0.125°) , though only at 90% significance level. In addition to that, we observe strong negative correlation with search trends for MacBook (-0.191^{**}) and MacBook Air (-0.208^{**}).

Impact on Quarterly Sales

Again, in the complete model, we observe negative correlation between sales and the search trend for iBook (-0.468**) and Macintosh (-0.814**), which strengthen the belief that those variables would produce biased outcomes for the other variables, more important for our analysis. In addition to that, sales demonstrates negative correlation with product search (-0.193**) and neutral comments (-0.145*). On the other side, sales reveals positive correlation with variables like interaction between sales and ratings (0.917**), news search (0.498**), web search (0.547**), and all product type search trend (iMac (0.470**), MacBook (0.157*), MacBook Air (0.173*) MacBook Pro (0.678**).

Impact on web search for Apple

Besides the correlations mentioned in the earlier sections, web search for Apple establishes positive correlations with search trend for iMac (0.0447**), MacBook (0.661**), MacBook Air (0.264**), MacBook Pro (0.606**), news search for Apple (0.778**), and also with quarterly sales (0.758**). Significant negative correlation happen to occur with search trend for iBook (-0.558**), Macintosh (-0.640**), and Mac Mini (-0.145*).

Impact on News Search for Apple

News searches negatively correlate with first iBook search trend (-0.131*) and secondly with Macintosh search trend (-0.417*). The other correlations noticed are positive with sales (0.498**), web search (0.778**), interaction between sales and ratings (0.435**) and search trend for iMac (0.363**), MacBook (0.181**), MacBook Air (0.138*), MacBook Pro (0.476**).

Impact on Product Search for Apple

On the other side, product searches unveil positive correlation with rating (0.125°) and search trend for MacMini (0.260^{**}) . The remainder correlation are with positive comments (-0.238^{**}), sales (-0.193^{**}), interaction between sales and ratings (-0.129^{*}) and search trend for iBook (-0.175^{**}), MacBook (-0.199^{**}), and MacBook Air (-0.521^{**}).

Conclusion of Correlation Matrix for Model 1

One main worry produced by the outcomes of the correlation analysis might be that abnormal returns do not have any significant correlation with the variables in the system. However, we are still confident that the correlation between the different independent variable will produce significant impact on abnormal returns. Though, contributing to our positive expectations for the model's estimation is the fact that all search

trends of Apple product types have a positive impact on sales, as does news and web search for Apple. What's more, neutral comments appear to have a negative impact on nearly all other variables, which leaves us with the confidence that this impact will be reflected in our models' estimations. Surprisingly, positive comments happen to negatively correlated with most of our variables in our model. More importantly, positive comments have strong correlation with negative comments. The same effect was observed in the paper by McAlister et al. (2011), which also lead to the conclusion none of the sentiment ratio chatter were significant, however, once negative and neutral chatter omitted, they found that neutral was strongly significant in effecting stock returns. obliging to remove those two variables from their model. Finally, as we observe negative correlation with product searches for iBook and MacMini (not produced anymore) and the search term Macintosh (old designation for Apple products, not used anymore), the decision was made to estimate two models, one with all variables (complete model) and one without search trends for iBook, Mac Mini, and Macintosh (reduced model).

6.1.2 Correlation of short-term Models

Correlation Release Date 1 Model (March 2008)

In summary, in the following, these are the main effects deducted from the correlation matrix (see Appendix 6 p.92) for our first short-term model around the release date of MacBook Pro in March 2008. First of all, what impacts MacBook Pro search trend? The answer to that is all other product type searches exhibit positive significant correlation, as does sales (0.683**) and web searches (0.774**), and unfortunately, no correlation between ratings and sentiment ratios of comments can be detected. Furthermore, search trends for MacBook (-0.154°) and MacBook Air (-0.175°) influence negatively expected returns, however, not in a very strong significant way. Instead, besides news searches (-0.155*), sales show positive correlation with all product type search trends, interaction between sales and ratings (0.236**), and product searches (0.413**). Concerning web and product searches, there are only positive significant correlated with other variables present. Finally, the sentiment ratios of MacRumors comments appear to be only correlated with themselves (negative with positive comments (-0.168*) and neutral with negative (0.196*), just, positive comments are positively correlated with rating (0.182*).

Correlation Release Date 2 Model

Let's start again by looking at correlations with MacBook Pro (see Appendix 7 p.93). All correlations that are significant are positive with sales (0.339**), news (0.427**) and web searches (0.511**), and search trends for MacBook (0.838**), iMac (0.701**), and most importantly with abnormal returns (0.183*). Interaction between sales and rating is positively correlated with ratings (0.966**) and sales (0.368**) and present in all other models. Product searches demonstrate a negative impact on search trend for iMac (-0.217*), news (-0.266**) and web searches (-0.281**), however not on negative comments (0.027*). Lastly, again, neutral and negative (-0.178°) comments act negatively when correlated to one another.

Correlation Release Date 3 Model

In this case (see Appendix 8 p. 94), search trend for MacBook Pro has a negative impact on sales (-0.578^{**}). This phenomenon is also reflected with news searches and sales (-0.320^{**}), as well for web searches and sales (-0.443^{*}). This might alert us that it could be due to a drop in sales around that time that affects the product type searches and web searches for Apple. In addition to that, the interaction variable is positively correlating with search trend for iMac (0.240^{**}), product search (0.193^{*}), ratings (0.955^{*}), and sales (0.250^{*}). This time neutral comments are correlated with positive comments (0.420^{**}) and positively correlated with news searches (0.161°). Additionally, the observation is made that ratings positively correlated with search trends MacBook (0.227^{*9} and MacBook Pro (0.156°).

Correlation Release Date 4 Model

Here, abnormal returns show negative correlation with sales (-0.151°), as does positive comments (-0.184^{*}). In addition to that, expected returns demonstrate negative correlation with rating (-0.162°) and search

trend for MacBook Pro (-0.159°), unexpectedly, positive correlation with negative comments from MacRumors (0.150°). Now, search trend for MacBook Pro shows positive correlation with search trend for MacBook (0.480**), sales (0.278**), positive comments (0.260**), and news (0.537**) and web search (0.387**), but negative correlation with search trend for MacBook Air (-0.160°) and product search (-0.281**).

Correlation Release Date 5 Model

In this case, search trend for MacBook Pro has a positive impact on all other product type searches. Nevertheless, product search (-0.296**) and neutral sentiment ratios (-0.184*) negatively affects search trend for MacBook Pro, whether there is a relationship with those two is shown by their positive correlation (0.229**). Also, abnormal return is correlating negatively with neutral comments (-0.164*). Besides, product searches display only significant positive correlations with the variables in the system, only not with sales (-0.295*), as does web search (-0.165*). Last but not least, neutral comments are negatively correlated with search trend for MacBook pro (-0.184*), but positively negative comments (0.309**). However, positive comments seem to be positively correlated with search trend in MacBook Pro (0.134*) and neutral (-0.164*) and negative comments (-0.395**) have a negative impact on positive comments.

Correlation Release Date 6 Model

In the last MacBook Pro product release model, we see that MacBook Pro search trend correlates again strongly in a positive manner with other product type searches, plus, news searches (0.783**), product searches (0.604**), and web searches (0.915**), on the downside, neutral comments (-0.216*) show negative correlations. In addition to that, positive and neutral comments correlate negatively with all product type searches, as well as, web searches and product searches. This explains why we observe that neutral comments and positive comments (0.313**) are positively correlated with one another. Surprisingly, we see that negative comments (0.175°) correlate with abnormal returns in a positive way.

Conclusion of the short-term Models Cross-Correlation Test

To conclude, we will go over the different release date models and formulate our expectations supported by the correlation outcomes. First of all, release date 1 model, we might anticipate that expected returns will capture more effects than abnormal returns as it correlation with search trend for MacBook and MacBook Air. Regarding release date 2 and 3model, we may presume that abnormal returns will this time display most impacts as expected returns do not correlate with anything and abnormal returns do. Furthermore, for release date 4 on the other side, we could believe that abnormal returns might capture negative effect resulting from impact of sales and positive comments, whereas expected returns negative effects resulting from sales, search trend for MacBook, and ratings. Interestingly, release date 5 might expect to have positive impact on abnormal returns coming from neutral comments. Finally, for release date 6 taking into account the outcomes from the correlation test, we may assume that abnormal returns could capture effects from negative comments.

Test for Stationary - Unit Root Test 6.2

For any time series model, it is extremely important to test if a model shows covariance stationary, which means that "at a minimum we'd like its means and its covariance structure (i.e. the covariance between current and past values) to be stable over time" (Diebold, 2007). To test this effect, we use unit root tests, in this case the Augmented Dickey-Fuller (ADF) test and the Phillip Peron Unit Root test. The null hypothesis of these tests assume that for x_t the coefficient of one of the x_{t-n} is equal to 1. If the null hypothesis is rejected, this implies that the model is stationary. The test used, as already said, is the ADF test and we will test a unit root with a constant term but no deterministic trend. According to Vogelvang (2005), for economic variable the situation (constant term no deterministic trend), will be the most appropriate because a constant term will be necessary and an additional trend is generally superfluous" (Vogelvang, 2005). In the following, we will test for unit root for all variables present in model 1, the long-term model, but also, our short-term models.

In practice, we applied the unit root test in Eviews, which is a very good statistical software to test timeseries data. There, it is possible to choose between different kind of unit root tests, however, the most used as already said is the ADF test. Nonetheless, when the number of observations is not enough the ADF test cannot be ran, so then, we will apply the Phillip Peron unit root test.

Long-term Model (Model 1) 6.2.1

Table 6 provides a summary of the unit root outcomes of the Augmented Dickey-Fuller Unit Root test (the complete Unit Root outcomes can be seen in appendix 11 on p. 98). The results show that only sales and its interactions variable have a unit root in their level, however, no unit root in the first difference in sales. The column "implied use" defines what degree of our variable will be included in the model, which depends at what degree we reject the unit root hypothesis. For our long-term model, the outcomes of the ADF unit root test suggest that only for the variables sales and the interaction between sales and ratings, the first difference should be taken to avoid a unit root.

Variables	Unit Root (Level)	Unit Root (1 st diff.)	Implied Use
Expected Returns	No	-	Level
Abnormal Returns	No	-	Level
Sales	Yes	No	1 st difference
Rating	No	-	Level
Interaction Rating Sales	Yes	No	1 st difference
Positive Sentiment Ratio	No	-	Level
Neutral Sentiment Ratio	No	-	Level
Negative Sentiment Ratio	No	-	Level
Web Search Trend	No	-	Level
Product Search Trend	No	-	Level
News Search Trend	No	-	Level
Search Trend MacBook Pro	No	-	Level
Search Trend MacBook	No	-	Level
Search Trend MacBook Air	No	-	Level
Search Trend iMac	No	-	Level
Search Trend iBook	No	-	Level
Search Trend Mac Mini	No	-	Level
Table 6 – Unit Root Test			

6.2.2 Short-term Models

The decision was made to set up short-term models that capture the effect of our variables around launch dates for MacBook personal computer line from 2008 until 2012. The sample for each short-term model is constructed in the way that we take data from 2 months before and 2 months after the launch date. Hereunder, in Table 7, are listed the outcomes of our unit root test for the different short-term model⁹. There is also listed at what degree (level, first difference, or second difference) the hypothesis that there is a unit root is rejected. In this case, the concern was that the ADF Unit Root test was not applicable due to an insufficient number of observations. Therefore, the Philip Heron Unit Root was taken instead. Furthermore, search trends for Macintosh, Mac Mini, and iBook are removed from these short-term models. Everything but the sales variable seems duable for estimating the different statistical models. In fact, just for release date 5 model (October 2011), the variable sales has a unit root for all degrees, therefore, the sales variable will be dropped to avoid any estimation problems.

Release Date Model	1	2	3	4	5
Release Date	March 2009	June 2009	April 2010	Feb 2011	Oct 2011
Variables					
Expected Returns	Level	Level	Level	Level	Level
Abnormal Returns	Level	Level	Level	Level	Level
Sales	1 st difference	1 st difference	1 st difference	1st difference	Unit Root
Rating	Level	Level	Level	Level	Level
Negative Sentiment Ratio	Level	Level	Level	Level	Level
Neutral	Level	Level	Level	Level	Level
Positive Sentiment Ratio	Level	Level	Level	Level	Level
Search Trend for Apple	1 st difference	1 st difference	1 st difference	1 st difference	Level
Search Trend Macintosh	1 st difference				
News Search	1 st difference	Level	Level	Level	1 st difference
Product Search	1 st difference	1 st difference	Level	1 st difference	1 st difference
Search Trend MacBook Pro	1 st difference	Level	1 st difference	Level	1 st difference
Search Trend MacBook	1 st difference				
Search Trend MacBook Air	1 st difference	Level	1 st difference	1 st difference	1 st difference
Search Trend iMac	1 st difference	1 st difference	Level	1 st difference	Level
Search Trend Mac Mini	1st difference	1 st difference	1 st difference	1 st difference	Level

Table 7 - Summary Table Unit Root Test for the short-term models

⁹ The complete Unit Root Outcomes and PACF for all different short-term models are listed from Appendix 14 to 25 from p.109 to 135.

6.3 Autocorrelation and Partial Autocorrelation Functions

In Eviews, the Box-Jenkins approach is used to estimate the autocorrelation and partial autocorrelation function of the different variables in our model. In practice, in Eviews to run ACF and PACF, the steps are : <quick>, <series statistics>, then <correlogram>. The autocorrelation function (ACF) of a time series y_t is termed "as $\rho_k = \frac{\gamma_k}{\gamma_0}$ where γ_k is the kth order autocovariance of y_t " (Diebold, 2007). This function is rather useful to investigate the character of our time series model, meaning whether one variable is positively or negatively correlated, whether is has an increasing or decreasing autocorrelation through time, or even some kind of seasonality aspects that affects todays value in t-0. Instead, "given a time series Z_t, the partial autocorrelation of lag k, denoted $\alpha(k)$, is the autocorrelation between Z_t and Z_{t+k} with the linear dependence of Z_{t+1} through to Z_{t+k-1} removed; equivalently, it is the autocorrelation between Z_t and Z_{t+k} that is not accounted for by lags 1 to k - 1, inclusive" (Box, Jenkins, & Reinsel, 2008). Simply put, when looking at the Eviews output, we see dotted lines that are two times their standard error (2*S.E.), and per period when partial autocorrelation crosses that line and is significant according the Q-stat, the lag order will be considered as having an effect on our variable investigated. In other words, every period having significant partial autocorrelation that is bigger than two times its standard error will be added as a lag variable in our final model. When we have variables that show a unit root in their level variable, we directly estimate the ACF and PACF for their first difference.

6.3.1 Model 1

To determine the order of our model, as already explained in section 5.2Theoretical Background for VAR Time Series Model, the unit root and the PACF outcomes will help to determine lag lengths for each variable. To be sure, the lag length picked is in fact improving the fit of our model, the AIC and R-squared are observed. In our case, the first step was to estimate a model with level and first differences of our variables. Even though, the Unit Root test suggested that only for sales the first difference needs to be taken, by looking at the PACF, it seemed like for expected and abnormal returns, for their level show the characteristics of a unit root: no variation in their autocorrelation and the first lag demonstrates very strong autocorrelation in comparison to the other lags. However, in their first difference, this phenomenon disappears. For sales and interaction between sales and ratings, we observe the same phenomenon just for its first difference, which lead to the decision to use the second difference.

Hereunder, in Table 8, are the lag length proposition coming from the unit root test and what can be deduced from the partial autocorrelation functions. First, a model with the unit root test lag proposition is estimated. The R-squared, AIC, and SIC is listed below. Then, one by one for each variable the lag length is alternated according to what we found out observing the PACFs. While performing this, the lag length that will be added in our model is picked according to the lowest AIC. This analysis can be viewed in the table hereunder. When the AIC dropped while changing the lag length it is signaled with a arrow going up, and vice

versa. In the column "final model", the lag lengths that generated the lowest AIC values are listed. Under that, we see the R-squared has improved and the AIC has considerably dropped in comparison to the preliminary model.

	Pre	eliminary Model			Test Lag	with AIC		Final Madal
Variables		Unit Root	PACF	Lags	AIC	Lag	AIC	Final Model
Expected Returns	1 st diff.	4	5,7	5	1	7	1	4
Abnormal Returns	1 st diff.	4	5, 7	5	1	7	1	4
Rating	Level	2	3,7	3	1	9	$\mathbf{+}$	9
Sales	1 st diff.	14	t-14	t-14	1			14
Int. Sales and Rating	1 st diff.	1	4,6	4	1	6	\mathbf{V}	6
Pos. Sentiment Ratio	Level	0	12	12	1			12
Neut. Sentiment Ratio	Level	0	1,12	1	<u>^</u>	12	•	12
Neg. Sentiment Ratio	Level	1	8	8	↓			8
Web Search	Level	1	6,10	6	1	10	•	10
Product Search	Level	0	3,5	3	1	5	•	5
News Search	Level	0	6,7	6		7	•	7
Search Trend Macintosh	Level	3	4	4	1			3
Search Trend MacBook Pro	Level	3	6	6	•			6
Search Trend MacBook	Level	0	3	3	<u> </u>			0
Search Trend MacBook Air	Level	0	2,4	2		4	<u> </u>	4
Search Trend iMac	Level	1	2,5	2	<u> </u>	5	<u> </u>	5
Search Trend iBook	Level	2	3,9	3	<u> </u>	9	<u> </u>	9
Search Trend Mac Mini	Level	0	1,5	1	1	5	•	5
R2		0.583						0.732
AIC		-7.474						-6.234
SIC		-5.272						-4.457

Table 8 – Lag Estimation

6.3.2 Short-term Models

The same methodology for lag estimation as performed in the previous section will be carried out for each short-term model that is under investigation. Hereunder is a summary table, Table 9 – Outcomes ACF and PACF analysis, listing the lag estimation for each short-term model that had the lowest AIC value possible. The PACF figures for each variable of each short-term model can be viewed in Appendix 14 to 25 from p.109 to 135.

	Release Date	March 2009	June 2009	Apr 2010	Feb 2011	Oct 2011	June 2012
Variables	Use	Lags	Lags	Lags	Lags	Lags	Lags
Expected Returns	1 st diff.	4	4	4	5	8	7
Abnormal Returns	1 st diff.	4	4	4	5	8	7
Rating	1 st diff.	4	4	4	5	12	6
Sales	2 nd diff.	6	2	5	2	-	5
Int. Rating & Sales	1 st diff						
Negative Sentiment Ratio	Level	6					
Neutral Sentiment Ratio	Level	6					
Positive Sentiment Ratio	Level	6					
Web Search	2 nd diff.	4	4	5	5	9	9
News Search	2^{nd} diff.	4	8	5	7	9	9
Product Search	2 nd diff.	4	7	6	6	3	
Search Trend MacBook Pro	2^{nd} diff.	4	8	8	8	6	9
Search Trend MacBook	2 nd diff.	4	5	5	5	6	8
Search Trend MacBook Air	2^{nd} diff.	4	2	5	6	6	6
Search Trend iMac	2 nd diff.	4	2	5	6	6	9
R- squared							

Table 9 - Outcomes ACF and PACF analysis

6.4 Estimation of Model 1¹⁰

As a reminder, any estimation outcome for our coefficients:

- when marked with $^{\circ}$ it means rejected at 90% confidence,
- when marked with * at 95% confidence,
- and when marked with ****** it is rejected with 99% confidence level.

6.4.1 Model 1 with Expected and Abnormal Returns as dependent Variable

Expected Return Models		AR(4)	AR	4) Reduced	AF	RMA(4,4)	ARMA(4,4) Reduced	
Variables	Lag	Coefficient	Lag	Coefficient	Lag	Coefficient	Lag	Coefficient
С	-	-0.8659*	-	-0.6637*	-	-0.8679**	-	-0.6632**
	t-1	-0.8529**	t-1	-0.8519**	t-1	-0.8143**	t-1	-0.7898**
A Even acted Baturna	t-2	-0.7229**	t-2	-0.7095**	t-2	-0.7822**	t-2	-0.6520*
∆ Expected Keturns	t-3	-0.5319**	t-3	-0.4699**	t-3	-0.5175*	t-3	-0.3930°
	t-4	-0.3572**	t-4	-0.3094**	t-4	-0.2977*	t-4	-0.2016°
Neutral Sentiment Ratio Comments	t-12	0.0718°			t-12	0.0690°		
							t-0	0.05 87°
Narativa Santimant Patio Commants					t-1	0.0823*		
Augurie Schument Ratio Comments					t-4	0.0634°		
	t-8	0.0635°	t-8	0.0649*	t-8	0.0660°	t-8	0.0650*
Web Comph			t-1	0.0005°				
web Seurch			t-3	-0.0007*				
News Search							t-3	0.0004*
Search Trend Macintosh	t-4	0.2780*			t-4	0.2602°		
R2	0	.731746	(0.692154	0	.805686	0.	.762677
Adj. R2		.210142	().305709	0	.394197	0.	.440973
AIC	-(5.239509	-0	5.308415-	-6	5.524407	6	.531035
Jarque – Bera Normality Test	Prob	0.000	Prob.	0.000	Prob.	0.000	Prob.	0.000
Heteroskedasticity Test: Breusch-Pagan-Godfrey	Prob	0.5702	Prob.	0.9083	Prob.	0.6408	Prob.	0.9596
Breusch-Godfrey Serial Correlation LM Test	Prob	0.0023	Prob.	0.0000	Prob.	0.00	Prob.	0.0000

Table 10 - OLS Estimation Outcomes Model 1: Expected Returns

To estimate the model that was determined in the previous sections, the ordinary least squares method is employed. Here above, in Table 10 – OLS Estimation Outcomes Model 1: Expected Returns, the significant outcomes are listed. As already mentioned in the correlation section, there were some doubts whether search trends for iBook, Macintosh, and Mac Mini are actually contributing statistically to our model and research. Therefore, four variations of our base model will be estimated: first, the base model (AR(4)), secondly, the

¹⁰ To clear up the working steps to follow in order to estimate a model with OLS in Eviews, one need to go to <quick> then <estimate equation> pick the method of estimation, here, <LS - least squares (NLS and ARMA)> define the sample that is studied and press <ok>

reduced base model (AR(4) reduced), then, the base model with moving averages (ARMA(4,4)), and lastly, the reduced model with moving averages (ARMA(4,4) reduced).

To determine the best model, from which we will draw our conclusions to answer the before stated hypotheses, the R-squared, adjusted R-squared, and AIC are considered. Taking this into considerations, the model for expected returns with the highest adjusted R-squared is ARMA(4,4) Reduced and an AIC value slightly higher than the ARMA(4,4). Still, due to the high adjusted R-squared, the ARMA(4,4) Reduced model will be used. The same applies for our long-term model with abnormal returns as the dependent variables. To facilitate the comparison with expected returns outcomes, the ARMA(4,4) Reduced will be taken. In fact, the ARMA(4,4) Reduced with abnormal returns as dependent variable has the lowest AIC value of all and a slightly lower adjusted R-squared than the ARMA(4,4).

Abnormal Returns Models		AR(4)	AR(4) Reduced	AF	ARMA(4,4)		(4,4) reduced
Variables	Lag	Coefficient	Lag	Coefficient	Lag	Coefficient	Lag	Coefficient
∆ Abnormal Returns	t-1	-0.8186**	t-1	-0.8186**	t-1	-0.8382**	t-1	-0.8354**
	t-2	-0.6220**	t-2	-0.7011**	t-2	-0.7116**	t-2	-0.6750**
	t-3	-0.4403**	t-3	-0.5207**	t-3	-0.4849**	t-3	-0.4834**
	t-4	-0.2410*	t-4	-0.3415**			t-4	-0.2300*
Rating			t-3	-0.0262°			t-3	-0.0261°
-			t-4	0.0236°				0.0234°
Δ Sales			t-3	-3.72E-05**	t-3	-3.57E-05*	t-3	-3.61E-05**
Δ Interaction between Rating and Sales	t-3	7.14E-°	t-3	7.33E-06*	t-3	7.33E-06°	t-3	6.81E-06*
Positive Sentiment Ratio Comments							t-0	-0.0012°
			t-8	-0.0018*			t-8	-0.0017°
Neutral Sentiment Ratio Comments	t-3	-0.1811*			t-3	-0.1811*	t-3	-0.1127°
	t-7	-0.1404°	t-7	-0.1498*			t-7	-0.1443*
Negative Sentiment Ratio Comments	t-4	-0.1079°						
Web Search	t-3	0.0016*	t-3	0.0013*	t-3	0.0015°	t-3	0.0012*
	t-4	-0.0017*	t-4	-0.0023**	t-4	-0.0018*	t-4	-0.0023**
	t-7	0.0018**	t-7	0.0015**	t-7	0.0018*	t-7	0.0014*
Product Search			t-2	0.0010*			t-2	0.0009*
			t-4	0.0007°			t-4	0.0007°
			t-5	-0.0006°			t-5	-0.0006°
News Search	t-7	-0.0009**	t-7	-0.0007**	t-7	-0.0009**	t-7	-0.0007*
MacBook Air Search Trend	t-2	0.0845*	t-2	0.0831*	t-2	0.0844*	t-2	0.0880*
							t-3	-0.0651°
iMac Search Trend	t-0	0.0508*	t-0	0.0325°	t-0	0.0595*	t-0	0.0344°
iBook Search Trend	t-1	-0.1958*			t-1	-0.1852*		
	t-2	0.1572°			t-2	0.1657°		
					t-6	-0.1643*		
Macintosh Search Trend	t-4	-0.4384°			t-4	-0.4532°		
MA(4)					-	-0.4831*		
R2	0	.861051	().796229	0	.892067	0	.833526
Adj. R2	0	.587068	(0.537681	0	.660090	0	.605325
AIC	-5	5.252209	-:	5.076866	-5	.467064	-5	5.241286
Jarque – Bera Normality Test	Prob.	0.000	Prob.	0.0231	Prob.	0.0104	Prob.	0.0399
Heteroskedasticity Test: Breusch-Pagan-Godfrey	Prob.	0.9735	Prob.	0.7101	Prob.	0.9602	Prob.	0.7647
Breusch-Godjrey Serial Correlation LM Test	Prob.	0.3302	Prob.	0.1207	Prod.	0.0000	Prob.	0.0124

Table 11 – OLS Significant Outcomes: Abnormal Returns

Before starting to evaluate the OLS estimated of our *ARMA(4,4) Reduced* model, it is still necessary to test for serial correlation, which states under the null hypothesis that the error disturbances of one variable are not correlated with the error disturbance of another variable. In fact, all models do not reject the no heteroskedasticity null hypothesis, however, reject the no serial correlation null hypothesis. When serial autocorrelation is the case, it will not make the OLS estimates obsolete, but rather influence the t-statistics in the way to be overestimated. As well, when serial autocorrelation is present the R-squares might be overevaluated as well. It has been observed that for datasets with high frequencies, as we have with weekly data, there is a higher tendency to detect serial autocorrelation, or another reason might be, when there are extreme outliers present in the datasets. If we have extreme outliers present and the reason for them is known, there is the possibility to remove these outliers that might cause serial autocorrelation from the dataset using dummy variables removing these problematic outliers in Eviews. However, when the cause for the outliers cannot be explained, it is preferable to leave them in the datasets and find another way to handle this situation, which in fact is our situation. (Vogelvang, 2005)

One way to overcome serial autocorrelation and the presence of heteroskedasticity is to estimate our model using an ARCH and GARCH estimation method. Therefore, same as we did to estimate the lag order for our variables in section 6.3 Autocorrelation and Partial Autocorrelation Functions, the order of GARCH and

ARCH need to be defined using AIC criterion. For that, the AIC values are compared for the different orders of ARCH and GARCH. This means, the order of ARCH and GARCH that

will be used to estimate our model, is the one that generated the lowest AIC value in comparison to the AIC value of other

ARCH/GARCH orders, here, the lowest value is given for the GARCH order 1 and ARCH order 2. In addition to that, Vogelvang (2005) proposes to take rather low order of GARCH as it has the tendency to perform better, which we did in our model that has a GARCH order of 1.

Now, the ARMA(4,4) Reduced model picked earlier will be tested again for expected and abnormal returns using the estimation method "ARCH – autoregressive conditional heteroskedasticity" available in Eviews, where the order just estimated will be included. However, at that level, we reject the Jarque-Bera test where the null hypothesis states that the residuals of our model have constant variance. As the normality assumption does not hold, there might be serial correlation present in our model. Therefore, we move to the next lowest AIC value at GARCH(2) and ARCH(4) and find out that now the residual normality assumption holds. The significant outcomes from this estimation method are presented in Table 13 – Significant Outcomes GARCH(2) ARCH(4) Model hereunder.

ARCH	GARCH	1	2	3
1		-6.949	-6.933	-6.936
2		-6.812	-6.910	-6.894
3		-6.880	-6.885	-6.879
4		-6.899	-6.835	-6.858

Table 12 - GARCH and ARCH order estimation using AIC

Before being able to evaluate the estimation, the important point to consider is to check whether no heteroskedasticity is present. First of all, no heteroskedasticity is present as the heteroskedasticity test in Table 13 is not rejected. Plus, as we do not reject the Jarque-Bera Normality null hypothesis that the residuals are constant, we now have constant variance within our residuals, hence, no residual autocorrelation.

GARCH(2) ARCH(4) Model	E	xpected Returns	Abnormal Returns		
Variables	Lag	Coefficient	Lag	Coefficient	
С	-	-0.6629*			
A Francisco d D starras	t-1	-0.7881*			
<i>△ Expected Returns</i>	t-2	-0.6440*			
			t-1	-0.7775**	
			t-2	-0.6517**	
Δ Abnormal Returns			t-3	-0.4282**	
			t-4	-0.2765**	
			t-3	-0.0263°	
Rating			t-4	0.0237*	
			t-3	-4.05E-05**	
Δ Sales			t-6	1.10E-05°	
Δ Interaction between Rating and Sales			t-3	7.22E-06°	
			t-0	-0.0013°	
Positive Sentiment Ratio Comments			t-8	-0.0017°	
	t-10	0.0423°	t-7	-0.1468*	
Neutral Sentiment Ratio Comments	t-12	0.0486*			
	t-0	0.0466°			
Negative Sentiment Ratio Comments	t-1	0.0534°			
	t-8	0.0559°			
	t-1	0.0006°	t-3	0.0013°	
Web Search			t-4	-0.0022**	
	t-7	0.0006°	t-7	0.0013°	
			t-2	0.0010*	
Product Search			t-4	0.0007°	
			t-5	-0.0008*	
News Search			t-7	-0.0006°	
MacBook Air Search Trend			t-2	0.0780*	
iMac Search Trend			t-0	0.0398°	
R2		0.677006		0.783508	
Adj. R2		0.239170		0.486743	
AIC		-6.916117	-5.241400		
Jarque – Bera Normality Test	Prob.	0.1036		0.9034	
Heteroskedasticity Test: ARCH (lag=1)	Prob.	0.6036		0.2675	
Heteroskedasticity Test: Breusch-Pagan-Godfrey	Prob.	0.9939		0.7858	

Table 13 – Significant Outcomes GARCH(2) ARCH(4) Model

The first main observation that can be concluded from Table 13 is that abnormal returns seem to react to more variables in the system than expected return does. Concerning expected returns for Apple, it is significantly at 95% confidence level influenced by its past expected returns value (up to 2 weeks). In addition to that, expected return appears to react positively upon neutral comments that have been posted on MacRumors 10 and 12 week prior. Equivalently, expected returns alter when negative comments have been posted within the same week, but also, 1 and 8 weeks earlier. The impact can be understood in the way that the closer (further away) the nature of the comments are getting to neutral the bigger (smaller) the impact. Lastly, web searches conducted 1 and 7 weeks before for the term "Apple" are positively influencing the expected stock returns.

Same as for expected returns, we observe that abnormal returns are very significantly negatively manipulated by up to 4 weeks of its past abnormal returns. In addition to that, ratings act in the way that when less than 2 weeks old affect abnormal returns negatively, however, older than 4 week the effect turns positive. As well, the bigger (smaller) the ratings the bigger (lower) the impact on abnormal returns. On the other hand, changes in sales unit affects abnormal returns, however, the effect is so small that it can be understood as no effect at all. Similarly, the interaction between ratings and sales is significant, however only at 90% significance, and again the coefficient value is so small that the effect is quasi null. Interestingly, we discover that abnormal returns react to positive comments posted within the same week and 8 week earlier, however again, the value of the coefficients is very low. Nonetheless, neutral comments that had a positive impact on expected returns, prove to have a negative impact on abnormal returns. Abnormal returns react to neutral comments that were posted 7 week earlier, meaning that abnormal returns show faster reaction time to neutral comments posted on MacRumors.

Furthermore, abnormal returns fluctuate according to change in web searches for the term "Apple". In fact, web searches that occurred the previous 3-4 weeks have a positive effect, yet more than 4 weeks beforehand a negative effect , and more than 7 week, the effect is positive again. Unlike expected returns, abnormal returns react to product and news searches trend for the term "Apple". Any news searches increase has a negative impact on abnormal returns. To clarify, the nature of the news is not tested here, only the searches of news occurrence in Google. This means, any Apple news searches carried out by user(s) in Google decrease abnormal returns of the Apple stock. Concerning product searches for "Apple", we deduct from the significant outcomes of our model's estimation that any boost happening within the last 4 weeks has a positive impact on Apple's abnormal returns, however, at t-5 weeks the impact transforms into a negative impact.

Last but not least, the personal computer product type searches that are significantly stimulating the abnormal returns are search trend for MacBook Air and iMac, both stimulate the abnormal returns in a positive manner.

All in all, we are able to state that both expected and abnormal returns react to comments posted on MacRumors. As well, we deduce that abnormal returns grasp more effects coming from UGC movements than expected returns do. Meaning that unlike expected returns, abnormal returns react to changes striking ratings, change in sales, interaction between sales and ratings, product searches, search trends for MacBook Air and iMac, plus, more stronger responses of abnormal returns are observed for web searches.

6.4.2 Estimation of Model 1 with Sales as dependent Variable

Furthermore, to answer our main research question, we were interested to test whether rating has an impact on sales. To do that, we use the same model as before and just set sales as our dependent variable. Still, before being able to estimate the model, we need to define the order of GARCH and ARCH. Therefore, we compare the AIC for the different ARCH and GARCH orders and pick the model that generates the lowest AIC value. As the heteroskedasticity test for

Heteroskedasticity Test: ARCH						
F-statistic	1.476228	Prob. F(4,208)	0.2106			
Obs*R-squared	5.879931	Prob. Chi-Square(4)	0.2083			

Table 14 - Heteroskedasticity Test for ARCH order 4

ARCH	GARCH	0	1	2	3	4
	4	12.643	12.674	12.670	12.640	12.704
	5	12.664	12.703	12.710	12.714	12.707
	6	12.674	12.719	12.709	12.697	12.726

Table 15 - GARCH ARCH Order Estimation Sales Model

ARCH can only be rejected at the order 4, we already know that for the estimation we will need at least ARCH(4) order or higher, see Table 14. Additionally, Table 15 implies that this model has the best fit with a GARCH(3) and ARCH(4) order.

One concern still remains with this model: Any GARCH-ARCH order does not hold the normality of error term. This means, the normality test of Jarque-Bera is rejected in favor of no constant variance of the error terms. Still, we go forward in evaluating this model. As stated before, Vogelvang (2005) states that estimations where serial autocorrelations might be present are not obsolete, just overestimated. This entails, the evaluation of this model will be conveyed carefully, taking into consideration that the outcomes might be overestimated. Consequently, the conclusions that will be taken to answer our hypothesis and our research question will just include the tendency of the impact and not the actual weight.

GARCH(3) ARCH(4) Model		Sales
Variables	Lag	Coefficient
	t-0	-530.8239**
Dating	t-1	188.5125*
Kaung	t-2	168.2432°
	t-7	-53.4736°
	t-1	-0.2053°
Change in Sales	t-13	-0.2053**
	t-14	-0.5065**
	t-0	0.1742**
Change in interaction between Sales and Rating	t-1	0.1037**
	t-2	0.0524°
Desitive Continuent Patio	t-2	-15.7071**
Fostuve Senument Kutto	t-11	9.3914°
Neutral Sentiment Ratio	t-2	540.5725°
	t-0	-729.5991°
Negative Sentiment Ratio	t-6	-571.4673*
	t-8	-519.9775°
R^2		0.928612
$Adj. R^2$		0.833691
AIC		12.002
Jarque – Bera Normality Test	Prob.	0.0000
Heteroskedasticity Test: ARCH (lag=1)	Prob.	0.6657
Heteroskedasticity Test: Breusch-Pagan-Godfrey	Prob.	0.7936

Table 16 - Estimation Results GARCH(3) ARCH(4) with Sales as Dependent Variable

Table 16 exhibits the significant outcomes from a GARCH(3) ARCH(4) model, where sales is set as the dependent variable. The first conclusion that can be drawn is that ratings have a strong impact on change in sales. In fact, when average ratings that occur within the same week decrease by one, the model suggest that change in unit sold the same week might decrease. Nonetheless, ratings that were posted between 1 and 2 weeks prior turn out to have a positive impact on change in sales. Then again, ratings from 7 weeks before have a negative impact on sales' change, however, considerably minor than in t-0 weeks. Same as in the previous models, we see that past unit sold have only small a impact on today's unit sold of personal computers, which leave us with the belief that sales might not be endogenous. Same pertains to the interaction between rating and sales, values recorded up to two weeks prior have a positive impact on change in sales, however, the impact is very minor.

Surprisingly, comments posted on MacRumors also have a strong impact on change in sales. In fact, positive comments posted 2 weeks earlier have a negative impact, however, when posted more than 11 weeks earlier the impact becomes positive. In addition to that, similarly to the previous models, neutral comments seem to have the biggest impact, and essentially, the impact is negative. Instead, negative comments demonstrate a negative effect on sales, where the more recent the post the more negative the impact. From the results, negative comments are significantly influencing sales within the same week and 6 to 8 weeks prior.

To conclude, it is possible to deduce that ratings have in fact a strong effect on change in sales. Interestingly, we observe that again past values for changes in sales do not have any strong impact on today's change in sales, which was also concluded in the previous model concerning the impact on abnormal returns. In addition to that, we see that comments posted on MacRumors on top of fluctuating stock returns turn out to have also an impact on change in sales.

6.5 Estimation of Short-term Models

In this part, we estimate six short-term models, on the contrary to our long-term model, they are aggregated on a daily basis. For each model, the sample comprise data for two months before the release date and two months after. We use an autoregressive model of order 4 inserting expected and abnormal returns respectively as the dependent variables. By doing so, the aim is to find what affects the stock performance around those release date that are a magnet for so many reactions coming from Apple's users and opponents. In addition to that, as already mentioned, the release date that we are investigating are the launches of MacBook Pro: March 2009, June 2009, April 2010, February 2011, October 2011, and June 2012. Furthermore, as the previous model had issues with serial correlations and normality of residuals, the decision was made to directly estimate each model using ARCH autoregressive heteroskedasticity estimation method. This means, for each model, it is necessary to define the best GARCH ARCH order, again using AIC as an evaluation method. As well, no moving averages will be added to these models, we will just test the autoregressive effects taking into account the volatility of error term (ARCH estimation method). As well, before starting the evaluation of our estimation results, remember that for these six models discussed in the following, the data is aggregated on a daily basis.

Model March 2009	A	R(4) GARCH(1) A	RCH(2)	A	AR(4) GARCH(1) A	ARCH(2)	
Independent Variable		∆ Expected Returns			∆ Abnormal Returns		
	lag	Coefficient	p-value	lag	Coefficient	p-value	
Δ Expected Returns	t-1	-0.903856	0.0000				
	t-2	-0.614425	0.0115				
Δ Abnormal Returns				t-1	-0.676561	0.0035	
Δ Rating				t-0	0.008645	0.0422	
Neutral Sentiment Ratio Comments	t-1	-0.116277	0.0767				
Negative Sentiment Ratio Comments				t-1	-0.090552	0.0149	
Positive Sentiment Ratio Comments				t-5	-0.002702	0.0622	
2 nd diff. for MacBook Pro				t-3	-0.424894	0.0389	
2 nd diff. for MacBook				t-4	0.063769	0.0041	
2 nd diff. for MacBook Air	t-1	-1.758667	0.0940	t-3	-1.996600	0.0444	
R^2		0.847316			0.803328		
$Adj. R^2$		0.481799			0.332507		
AIC		-4.305321			-5.179		
Jarque-Bera Normality Test		Prob.	0.0836		Prob.	0.409198	
Heteroskedasticity ARCH (Lag=1)		Prob.	0.9043		Prob.	0.5048	

Table 17 - Significant Outcomes for Release Date 1 Model - March 2009

For expected returns, besides being endogenous, the model around the release date of MacBook Pro from March 2009 shows that expected returns capture the effects of neutral comments posted 1 day earlier, but also, the search activities for MacBook Air between t-3 and t-1 days impact expected returns in a negative way. On the other side, abnormal returns apprehend change in ratings between t-1 and t-0 days, yet the impact is only very small. In addition to that, negative comments (t-1 day), change in search trend for MacBook Pro and MacBook Air between t-5 and t-3 days tend to decrease abnormal returns. Finally, the change in search trend for MacBook between t-4 and t-6 days has only mild positive effect on abnormal returns.

Model June 2009		AR(4) GARCH(2	2) ARCH(1)	AR(4) GARCH(2) ARCH(1)				
Independent Variable		Δ Expected I	Returns		∆ Abnormal Returns			
	lag	Coefficie	nt p-value	lag	Coefficient	p-value		
Δ Expected Returns	t-1	-0.483862	2 0.0012					
	t-2	-0.68234	3 0.0000					
	t-3	-0.625468	8 0.0029					
	t-4	-0.55417.	3 0.0020	t-4	-0.525698	0.0321		
Δ Abnormal Returns				t-1	-0.939576	0.0000		
				t-2	-0.689350	0.0101		
				t-3	-0.573030	0.0139		
Δ Sales	t-0	7.33E-05	0.0011					
Negative Sentiment Ratio Comments	t-2	-0.12461	6 0.0086					
Neutral Sentiment Ratio Comments	t-0	0.077740	0.0484					
	t-1	-0.070793	3 0.0355					
Positive Sentiment Ratio Comments	t-2	-0.001503	5 0.0518					
2 nd diff. for News Search	t-1	0.002015	0.0941					
2 nd diff. for Product Search	t-6	0.001915	0.0274					
2 nd diff. for MacBook Air	t-0	-0.78955	6 0.0026					
R^2		0.79193	33		0.749668			
$Adj. R^2$		0.23461	12		0.079138			
AIC		-6.5814	33		-6.607067			
Jarque-Bera Normality Test]	Prob.	0.641892	I	Prob.	0.465784		
Heteroskedasticity ARCH (Lag=1)		Prob.	0.3947	I	Prob.	0.1266		

Table 18 - Significant Outcomes for Release Date 2 Model – June 2009

The model June 2009 demonstrates that abnormal returns only grasp effects from its own past and expected returns past value (t-4 days). On the contrary, expected returns display very significant influence coming from change in sales, even though, the weight of the impact is quasi null. Plus, all sentiment ratio comments have an effect on expected returns. In fact, negative comments posted 2 days before have the highest impact of all three and negative at 99% significance level. Likewise, positive comments that are 2 days old have a mild negative impact on expected returns and neutral comments appear to be influencing expected returns at a faster pace than positive and negative comments. Actually, neutral comments posted within the same day affect expected returns positively, however, when one day old the impact turns negative. Furthermore, news searches (change between t-3 and t-1 days) and product searches (change between t-6 and t-8 days) have a low positive force on expected returns. Conclusively, as observed in the previous model, search trends for the term MacBook Air (difference between t-2 and t-0 days) prove to be have strong negative and significant impact on expected returns on Apple Stock.

Model April 2010	AR(4), ARCH(5), GARCH(3)				AR(4), ARCH(9), GARCH(6)			
Independent Variable		Δ Expected Retu	irns	∆ Abnormal Returns				
	lag	Coefficient	p-value	lag	Coefficient	p-value		
Δ Expected Return	t-1	-0.707120	0.0000					
	t-2	-0.395125	0.0418					
	t-3	-0.526291	0.0011					
Δ Abnormal Return				t-1	-0.959157	0.0006		
				t-2	-1.031690	0.0013		
	t-4	-0.168246	0.0079	t-3	-0.661695	0.0617		
Δ Rating				t-2	0.011463	0.0467		
Positive Sentiment Ratio Comments	t-0	0.000696	0.0986					
Neutral Sentiment Ratio Comments	t-3	0.057693	0.0608					
Negative Sentiment Ratio	t-1	-0.154736	0.0000					
	t-4	0.080003	0.0068					
2 nd diff for Web Search	t-0	0.006930	0.0928					
	t-1	0.009289	0.0990					
R^2		0.800948			0.793590			
$Adj. R^2$		0.490798			0.471974			
AIC		-6.186073			-4.142050			
Jarque-Bera Residual Normality Test		Prob.	0.054829		Prob.	0.058222		
Heteroskedasticity Test: ARCH	Prob	. Chi-Square(5)	0.0016	Pr	ob. Chi-Square(1)	0.4740		

Table 19 - Significant Outcomes for Release Date 3 Model - April 2010

In the model for the release date of April 2010, we observe that expected returns are indeed reacting to comments posted on MacRumors. Similarly to previous outcomes, positive comments seem to have only a minor impact, whereas neutral comments posted 3 days earlier have a positive impact this time. On the contrary, negative comments posted one day before have a strong and significant negative impact on expected returns. Nonetheless, when the negative comments are more than 4 days old, the impact turn out to be then positive and at 99% significant. In addition to that, we discover that web searches have a direct positive impact on expected returns. Concerning abnormal returns, it appears to be only influenced by its own past, and also by change in ratings between t-4 and t-2 days positively fluctuate abnormal returns.

Model February 2011	AR(4), ARCH(3), GARCH(4) AR(4), ARCH(3), GARCH(4)					ARCH(4)	
Independent Variable	Δ Expected Returns			∆ Abnormal Returns			
	lag	Coefficient	p-value	lag	Coefficient	p-value	
Δ Expected Returns	t-1	-0.572535	0.0000	t-1	1.070539	0.0059	
	t-2	-0.791788	0.0001				
∆ Abnormal Returns				t-1	-0.705472	0.0001	
				t-2	-0.470115	0.0335	
2 nd diff. in Sales	t-1	0.000174	0.0495				
Δ Rating	t-1	-0.004062	0.0309				
	t-2	-0.003352	0.0738				
Neutral Sentiment Ratio Comments				t-3	0.061247	0.0836	
Negative Sentiment Ratio Comments				t-2	0.149237	0.0371	
2 nd diff. in Product Search	t-3	-0.001082	0.0706				
2 nd diff. for MacBook				t-2	-0.171385	0.0364	
2 nd diff. for MacBook Air				t-2	1.758208	0.0005	
2 nd diff. for MacBook Pro				t-2	0.677362	0.0508	
R^2		0.750585			0.818447		
$Adj. R^2$		0.290127			0.483274		
AIC		-6.926770			-4.523141		
Jarque-Bera Residual Normality Test		Prob.	0.884885	Р	rob.	0.467685	
Heteroskedasticity Test: ARCH		Prob.	0.3548	Р	rob.	0.7831	

Table 20 - Significant Outcomes for Release Date 4 Model – February 2011

The fourth release date for MacBook Pro that we are investigating generates results for expected returns, where change in ratings seem to have a negative impact for t-1 and t-2 days. In addition to that, product search changes between t-3 and t-5 days result in a negative push on expected returns. On the other side, abnormal returns incorporate positive fluctuations from neutral comments posted 3 days before and negative comments

that at least 2 days old. Surprisingly, in this case the negative comments seem to have a positive impact on abnormal returns, which is twice as big as for neutral comments. In addition to that, unlike expected returns, abnormal returns react to changes occurring for search term in MacBook between t-4 and t-2 days negatively, though, for search trend in MacBook Air and MacBook Pro positively.

Model October 2011	AR(4), ARCH(1), GARCH(4)			AR(4), ARCH(1), GARCH(4)			
Independent Variable	∆ Expected Returns				∆ Abnormal Returns		
	lag	Coefficient	p-value	lag	Coefficient	p-value	
Δ Expected Returns	t-1	-0.790633	0.0002				
	t-4	-0.366301	0.0466				
	t-5	-0.525400	0.0093				
	t-6	-0.442938	0.0610				
∆ Abnormal Returns				t-1	-0.708697	0.0000	
				t-2	-0.631113	0.0012	
				t-3	-0.564486	0.0073	
				t-4	-0.493062	0.0906	
				t-5	-0.609655	0.0218	
				t-6	-0.469630	0.0507	
Neutral Sentiment Ratio Comments				t-0	0.505273	0.0236	
				t-3	0.349376	0.0985	
Δ Rating	t-1	0.009043	0.0871				
2 nd diff. in Web Search							
2 nd diff. in News Search	t-2	-0.003850	0.0318				
	t-3	-0.003297	0.0274				
2 nd diff. in iMac	t-4	-0.235579	0.0337				
R^2		0.814845			0.765163		
Adj. R^2	0.354217			0.180934			
AIC		-5.066533			-2.990421		
Jarque-Bera Residual Normality Test		Prob.	0.310601	Р	rob.	0.392689	
Heteroskedasticity Test: ARCH		Prob.	0.5044	Р	rob.	0.0895	

Table 21 – Significant Outcomes Release Date 5 – October 2011

In this case, we observe that expected returns are slightly positively influenced by change in ratings occurring between t-2 and t-1 days. As well, news searches push expected returns down, however, the weight of the impact is very small. In addition to that, when iMac is searched on Google between t-6 and t-4 days the impact is negative, in fact, for this model, the absolute value of the impact is the biggest among UGC impacts. Regarding abnormal returns, statistically, it is only positively disturbed by neutral comments posted on MacRumors, still, the effect is direct meaning within the same day and from comments posted 3 days earlier.

	AR(4), ARCH(4), GARCH(3)			AR(4), ARCH(4), GARCH(3)		
Independent Variable		∆ Expected Return	IS	∆ Abnormal Returns		
	lag	Coefficient	p-value	lag	Coefficient	p-value
∆ Abnormal Return				t-3	-0.342875	0.0352
Δ Rating				t-0	0.031107	0.0553
				t-1	0.024681	0.0321
				t-10	0.013780	0.0793
Negative Sentiment Ratio Comments				t-0	-0.470585	0.0009
				t-1	0.289288	0.0348
				t-2	-0.329389	0.0374
2 nd diff. in Web Search				t-2	0.084215	0.0101
				t-8	-0.086246	0.0753
2 nd diff. in Product Search				t-2	-0.037135	0.0804
				t-7	0.049274	0.0229
2 nd diff. in News Search	t-6	0.007241	0.0742			
2 nd diff. MacBook Pro				t-1	-1.579160	0.0232
				t-2	-1.254803	0.0817
	ļ			t-7	1.739172	0.0304
- nd				t-8	1.645408	0.0373
2 nd diff. MacBook				t-1	0.505786	0.0737
				t-2	0.463350	0.0958
and the are the second se				t-7	-0.442690	0.0362
2 nd diff. MacBook Air				t-2	-3.661030	0.0086
2 nd diff in iMag				t-5	-1.543885	0.0740
2 diff. In fiviac		0.9630001		l-1	2.19/45/	0.0182
$\frac{R}{4 di R^2}$	<u> </u>					
AIC	C					
Jaraue-Bera Residual Normality Test		Prob	0 746825	Р	roh	0.00000
Heteroskedasticity Test: ARCH		Prob.	0.9359	P	rob.	0.7103
				1		

Table 22 - Significant Outcomes Release Date 6 - June 2012

Last but not least, the most recent release date for MacBook Pro that is investigated considers around June 2012. Here, we observe interesting movements. First of all, expected returns incorporate only mild positive effects coming from news searches for the term "Apple" that arose 6 days prior. On the contrary, abnormal returns absorb a multitude of effects.

First of all, abnormal returns increase with any change in rating occurring within the same day and one day earlier, but also, t-10 days. Furthermore, abnormal returns only decrease for negative comments posted on MacRumors posted the same day and 2 days prior, however, when one day old the impact is positive. Additionally, change in web searches between t-4 and t-2 days affect abnormal returns in a positive way, yet, when web search are more than one week old the effect shifts to being negative. On the other hand, product searches generate the exact opposite reaction, first negative (change between t-4 and t-2) then positive (change between t-9 and t-7).

As well, product type searches have an impact on abnormal returns. In fact, MacBook Pro search trend have a negative effect when changes occurring between t-1 to -4 days, however, when the changes are more than one week old the effect on abnormal returns is positive. The reverse is observe for search trend of MacBook, where the impact between t-1 and t-4 days is positive then turns negative when more than one week old. The search trend of MacBook Air has a strong significant negative impact when changes occur between t-4 and t-2, as well, as between t-7 and t-5. On the contrary, search trend for iMac seem to have a positive impact when change strike between t-3 and t-1.

6.6 Impulse Response Functions

The following part is constructed in the way that first we will research how one standard deviation innovation in expected and abnormal returns would affect the different independent variables in the system of equation of our model 1. In addition to that, as we are trying to answer the question whether sales have first an impact on stock returns, but also, whether rating has an impact on sales, we will run impulse-response functions for those pair of variables. Furthermore, we will look into what happens to expected and abnormal returns when an impulse is happening for blog comments taking into consideration the different sentiment ratios. Additionally, one standard deviation innovation for ratings and web searches will be tested to see how it affect our independent variables.

The second main part will run impulse-response functions for the different short-term models tested in the previous section. There, we will focus on researching what an impulse in blog comments and ratings might do to expected and abnormal returns. More importantly, we will compare these effects throughout the different short-term models in the hope to uncover recurring effects.

6.6.1 Impulses in Model 1

6.6.1.1 Response in Expected Returns

First of all, let us see what happens to stock returns, sales, and ratings the consecutive 10 periods after expected returns endures one standard deviation innovation. Expected returns react to one impulse on itself with a drop reaching its low-point after 2 weeks. Surprisingly, abnormal returns appear to only merely reacts to an impulse in expected returns. Whereas rating answers positively, yet, with very low response. On the other side, we see that sales during the first 3 weeks following the impulse is continuously decreasing, nevertheless, reaching a peak at t+6 weeks.

Figure 21 – Impulse on Change in Expected Returns Response of change in Expected Returns (DER), Change in Abnormal Returns (DABR), Rating (R), and Change in Sales (DS)

Figure 22 – Impulse-Response Function for Expected Return on Positive Comments (SR_POS), negative Comments (SR_NEG), Neutral Comments (SR_NEUT), Web Search Trend (WS), Product Search Trend (PS), and News Search Trend (NS)

6.6.1.2 Impulse in Abnormal Returns

Here, we do the same as we researched in the previous section, just this time by giving one impulse to change in abnormal returns, see Figure 23. One impulse in abnormal returns generate a slow reaction time for expected returns, it only reacts after 8 weeks with a drop followed with a direct peak. Abnormal returns react to one impulse on itself clearly with a deep plunge in the first 2 weeks to stabilize again the third week following the impulse. Same as for expected returns,

Concerning how sentiment ratio of blog comments from MacRumors react to one impulse in expected returns, we observe that positive comments fluctuate only faintly, nevertheless, slowly decreasing from 4 to 9 weeks after the impulse. On the other side, negative comments plunge the first 2 weeks after the impulse then display only little reaction, as for neutral comments the reaction is very minimal. Concerning web searches, it takes 3 weeks to reach a peak, just to decline again the following weeks, although, product search takes 3-4 weeks to reach the high-point and news 2-3 weeks. In addition to that, news and web searches appear to be influenced on the short-term (2-3 weeks after) positively, however, on the long-term (4-10 after) negatively.

ratings react slightly positive. On the other hand, change in sales reacts with two consecutive peaks, one 3 weeks and the other one 7 weeks after the impulse.

On the contrary to expected returns, one impulse in abnormal returns generate a positive response for positive comments posted on MacRumors, same goes for negative comments. However, neutral comments demonstrate а response characterized by two repeated low-points at 3 and 7 weeks after the impulse. As we observed in the previous section for one impulse in expected returns, one impulse abnormal returns generate similar in reaction from web and news searches for Apple. This time, both exhibit two sequential drops at t+3 and t+7 weeks after the impulse. Interestingly, the reaction of news and web searches match with the movements of neutral comments. Lastly, we observe that product searches alter only minimally, sinking until t+6 weeks to increase again until t+10 weeks .

Comments (SR_POS), negative Comments (SR_NEG), Neutral Comments (SR_NEUT), Web Search Trend (WS), Product Search Trend (PS), and News Search Trend (NS)

6.6.1.3 Impulse in Sales

Figure 25 – Impulse in change in Sales Response of change in expected and abnormal returns

Here, we will look into what reaction one standard deviation innovation in change in sales generates for expected and abnormal returns. In Figure 25, we observe that one impulse in sales causes a direct decrease in expected returns followed by a peak 3 weeks after the impulse. As well, it is clear to conclude from Figure 25 that abnormal returns react in a different manner. In fact, the first 4 weeks after the impulse, there is nearly no reaction at all, however, between 5 to 8 weeks later, abnormal returns experience two succeeding peaks.

6.6.1.4 Impulse in blog comments

In this case, it is clear to note that when one impulse is given to positive comments, expected returns respond positively with two peak: 3rd weeks and 7th week following the impulse. While abnormal returns react first negatively then same as expected returns around t+3 weeks positive, then again, at t+9 weeks with a low-point. Instead, one impulse in negative comments influence expected returns in the way to decrease only 4 weeks later, however, increase again at t+5 and t+9 weeks. Abnormal returns in its place show no reaction until 9 weeks following the impulse to then drop at t+10 weeks. Finally, we detect that neutral comments show erratic movement, ups and downs, still, expected returns respond faster and more extreme than abnormal returns on one impulse in neutral comments.

Figure 26 – One Impulse in Sentiment Ratio (Positive, Neutral, and Negative) and response of change in Expected and Abnormal Returns

6.6.1.5 Impulse in Rating

in Expected Return (DER),

Abnormal Return (DABR) and Sales (DS)

change

Here, we are testing what happens to change in expected and abnormal returns when ratings are increased by one standard deviation. Firstly, expected returns only show a short-term response within the first 4 weeks after the impulse, meaning that expected

returns take 3 weeks to reach a positive high-point. On the contrary, abnormal returns react to one impulse in ratings during the 8 next weeks. Abnormal returns react with two peaks, on at t+3 weeks and the other at t+7 weeks after the impulse. Furthermore, here marked with green arrow, the outcomes from the impulse response function between ratings and abnormal returns in fact coincide with the results we found in model on p.55. In addition to that, we would like to know how change in sales might react to one impulse in ratings. As a matter of fact, we see that the response is

Response of DS to Cholesky One S.D. R Innovation

positive with peak at t+3 and t+8 weeks. Again, we can state that the outcomes from this impulse-response function ratings and change in sales correspond to the results we found on p.55.

6.6.1.6 Impulse in Web search

To conclude, we still need to answer one more question so that we will be able to answer all hypothesis concerning our long-term model. For that, we would like to know how one impulse in web searches for the term "Apple" might affect expected and abnormal returns. Expected returns do not exhibit very strong reaction to one impulse in web searches. We observe three mild ups and down happening at t+2, t+6, and t+9 weeks after the impulse. Contrariwise, abnormal returns reacts much stronger to one impulse in web searches. In fact, we discern that on a short-term there is only small reaction (t+1 to t+4), however, 5 weeks following the impulse abnormal returns experience a robust positive boost taking place until t+8. Interestingly, these movement go along with the significant results we found in the estimating model 1 at p.55, marked with a green arrow.

Figure 28 – Impulse in Web Search and Response in change in Abnormal and Expected Returns

6.6.1.7 Impulse for short-term Models

In the following two sections, we will analyze how the stock returns for Apple, so the expected and the abnormal returns, react to one impulse, in the first section, to the different sentiment ratios of our blog comments, and in section two, to ratings.

6.6.1.8 Impulse in Sentiment Ratios

Release date 1

How one impulse in the three sentiment ratio (positive, neutral, and negative) comments affect change in expected and abnormal returns is displayed in Figure 29. Here, we notice that positive comments have only little impact on expected returns in comparison to abnormal returns that exhibits a direct positive movements followed by a negative impact t+4 days and positive again in t+4 days after the impulse. Neutral comments seem to affect expected returns only on a short-term basis with a peak around t+3 days after the impulse, whereas, abnormal returns show nearly no reaction. In addition to that, negative comments seem to have first a positive (t+4 days) then negative (t+5 days) effect on expected returns, however, the effect on abnormal returns are also first positive (t+6 days) then negative (t+7 days).

Release date 2

In this situation, release date 2 see Figure 29, we discover that positive comments have only a slightly positive short-term (t+2 days) effect on expected returns. As well, abnormal returns react only within the 4 consecutive days of the impulse, where during the first 3 days after the impulse the impact is negative, yet at t+4 days abnormal returns reaches a peak. Negative comments demonstrate a direct positive impact on expected returns followed with a negative impact at t+3 days after the impulse. On the other hand, abnormal returns reply during the 8 days after the impulse, first negatively at t+2 days, then with consecutive peak until t+8 days. Lastly, neutral comments appear to have no impact on expected returns and only small positive impact on abnormal returns until t+6 days following the impulse.

Figure 29 - Impulse in Blog Comments at Release Date 1 (left) and at Release Date 2 (right)

Release date 3

Around release date 3, see Figure 30, we see that positive comments have no impact on expected returns and negative affect at t+3 days after the impulse for abnormal returns. One impulse in neutral comments have first a negative effect on expected returns the first 3 days followed by two positive peak at t+4 days and t+6 days after the impulse. On the other hand, abnormal returns present a positive peak at t+3 days after the impulse followed by a drop at t+4 days. In addition to that, we observe that negative comments have a strong and negative impact on expected returns the first 2 days followed with a peak at t+3 days after the impulse. Instead, abnormal returns demonstrate a slight positive impact the first 2 days after the impulse, however, in the following weeks, negative comments have a negative impact on abnormal returns.

Release date 4

In Figure 30, we note that positive comments generate two consecutive peak for expected returns, yet, abnormal returns first drop to finally reach in t+3 days the positive peak. For both neutral and negative comments impulse, the response of expected and abnormal returns is only minimal, however, it is possible to notice that expected returns show more reaction than abnormal returns. As a matter of fact, an impulse in neutral comments create a positive boost at t+3 days for expected returns and an impulse in negative comments have a direct negative effect within the 2 first days.

Figure 30 - Impulse in Blog Comments at Release Date 3 (left) and at Release Date 4 (right)

Release date 5

Figure 31 shows that one innovation in standard deviation of positive comments generates a mild positive response of expected returns for the first 3 days and again one small peak at t+5 days. Similarly, abnormal returns react to positive comments the same way as expected returns, though, much less intensive nearly no impact at all. Again, we notice that one impulse in negative comments affect expected and abnormal returns in the same way, just, that abnormal returns reaction is smaller than expected returns. Interestingly, in the first two days the effect is negative, then at t+3 days strongly positive. As well, one shock in neutral comments seem to have no effect at all on expected returns, however, abnormal returns show a small decrease the first 2 days after the shock.

Release date 6

For the last release date, see Figure 31, we see that one standard deviation push for positive comments appears to have a negative impact on expected returns on t+3 days, yet, abnormal returns are positively affected t+2 days. One impulse in neutral comments seem to have the same effect on both expected and abnormal returns in decreasing them the first 3 days after the impulse and showing a small peak at t+4 days. Lastly, one standard deviation innovation in negative comments, expected returns reach the low-point at t+3 days followed with minor peak at t+4 days. Abnormal returns show a direct plunge after the impulse that last until t+3 days and followed also with a small peak at t+4 days after the impulse.

Figure 31 - Impulse in Blog Comments at Release Date 5 (left) and at Release Date 6 (right)

6.6.1.9 Impulse in Rating

Release Date 1

In Figure 32, one impulse in ratings generates a strong positive response from expected returns only 5 days after the impulse. In the case of abnormal returns, we observe that it also reaches a peak at t+5 days, however the impact is bigger than on expected returns. As well, a second peak is noticed at t+8 days following the impulse.

Release Date 2

In Figure 32, we deduct that one innovation in standard deviation for ratings generate first a negative response of expected returns the first two days followed by a strong positive peak at t+3 days. On the other hand, we observe for abnormal returns no strong reaction the first two days, however, also a positive boost at t+3 days as well as at t+6 days.

Release Date 3

In the case of release date 3, see Figure 33, we perceive that one impulse in ratings create a positive response the first 3 days following

Response to Cholesky One S.D. Innovations - 2 S.E. Response to Cholesky One S.D. Innovations - 2 S.E. Response of DER to R Response of DABR to R .010 .004 .000 000 - 004 4 8 Response of DABR to R Response of DER to R .015 .004 010 .002 .000 .000 .00 -.010 -.006

Figure 32 – Impulse of Rating Response of change in Expected and Abnormal Return for Release Date 1 (left) and Release Date 2 (right)

Figure 33 - Impulse of Rating Response of change in Expected and Abnormal Return for Release Date 3 (left) and Release Date 4 (right)

the shock, whereas, abnormal returns experience only a positive peak around t+4 days.

Release Date 4

Here, in Figure 33, we see that one shock to ratings affects expected returns solely at t+3 days with a positive boost. On the other hand, abnormal returns react positively the first 2 days then decrease at t+3 days to reach the second peak at t+5 days after the impulse.

Release Date 5

During release date 5, see Figure 34, we see that one standard deviation innovation to rating produce a drop at t+3 days followed by a strong boost at t+4 days after the impulse for expected returns. Concerning abnormal returns, it reacts in the same manner just in a much lower strength, nearly insignificant.

Release Date 6

Coming to release date 6, see Figure 34, we discover that expected returns react to one impulse in rating with a minor peak at t+3 days, whereas, abnormal returns demonstrate the exact opposite reaction, meaning a drop at t+3 days, but also, a small peak at t+4 days following the impulse.

7 Discussion of Results

In this part, we will discuss the results found in the different models according to the hypothesis formulated from our main research question.

H1: Sales has an effect on Stock Returns

Concerning sales, we were interested by the fact if sales units affect the stock performance. First of all, the results suggest that expected return is not affected by sales. Only abnormal returns appear to capture the effect of sales, however, the weight of the impact is only very little. On the basis that it affects abnormal returns, we can reject the

Pairwise Granger Causality Tests			
Sample: 12/26/2007 8/29/2012			
Lags: 16			
Null Hypothesis:	Obs	F-Statistic	Prob.
DER does not Granger Cause DS	214	0.96696	0.4948
DS does not Granger Cause DER		0.56506	0.9067
DABR does not Granger Cause DS	210	2.14033	0.0086
DS does not Granger Cause DABR		1.07191	0.3852
DABR does not Granger Cause DER	224	0.89517	0.5756
DER does not Granger Cause DABR		0.44138	0.9695

Figure 35 - Granger Causality Test for Sales, Expected and Abnormal Returns

hypothesis in favor of the fact that sales have an impact on stock returns, more precisely, on abnormal returns. Still, we might say that due to the low impact, it could be argued that the effect is null, thus, non-existent. In fact, our findings go along with the findings of McAlister et al. (2011) discovering that shocks to sales do not have any inferences on stock performance. As a matter of facts, when running a Granger Causality Test (see Figure 35 – Granger Causality Test for Sales, Expected and Abnormal Returns), the results support our findings by demonstrating that sales are not exogenous only for abnormal returns and not expected returns.

H2: Sentiments (positive, neutral, and/or negative) of blog comments have an impact on stock returns

Indeed, regarding hypothesis 2, we can reject the null hypothesis in favor of the alternative hypothesis as we observed an impact of comments posted on MacRumors on expected, as well as on abnormal returns. This can also be supported from the impulse-response analysis, where we concluded that an impulse in sentiment ratio comments generates a response in expected and abnormal returns, excepts an impulse in negative comments seem to have only little effect on abnormal returns. Even though not all sentiment ratio types affect both expected and abnormal returns, we detect from our model's estimation results that expected returns react to changes in neutral and negative comments, whereas abnormal returns react to positive and neutral comments. Still, it is necessary to say that the nature of the impact is surprising, which will be elaborated on in the next paragraphs.

First of all, we can state that positive comments have the smallest impact on stock returns compared to neutral and negative comments. As well, it can be argued as the coefficient equals -0.001 that the impact on abnormal returns is nearly not present. Furthermore, only expected stock returns are reacting to negative comments posted up to 8 weeks earlier. As a matter of fact, this is the outcome that is surprising: the effect is positive on average 0.045 between t-0 and t-8 weeks. Still, what can be concluded is, as negative sentiment ratio are between 0 (most negative) and 0.99 (least negative nearly neutral), it is possible to state that the more

(less) negative a comment is the lower (bigger) the impact on expected returns.

In addition to that, both expected and abnormal returns are influenced by neutral comments posted on MacRumors. Primarily, we deduct that abnormal returns (t-7 weeks) react faster than expected returns (t-10 weeks) to neutral comments plus abnormal returns are decreased whereas expected is decreased by neutral comments. Similarly, McAlister et al. (2011) detected in their research that only significant effect came from neutral chatter on stock returns.

H3: On a short-term, blog comments have a direct effect on stock returns, where the effect differs according to sentiment dimensions.

To answer hypothesis 3, the outcomes of the impulse response functions will be quite helpful. But first, let us define what short-term means in our situation. As we calculated the impulse-response function on a basis of 10 weeks, it is only reasonable to say that for this hypothesis this is what we is meant by short-term. Indeed, we can reject the null hypothesis to conclude that blog comments have an impact on expected and abnormal returns on a short-term basis. One shock in positive comments generate two peak for expected and abnormal returns. Negative comments affect expected returns more strongly than abnormal returns, where within the first 4 weeks, there is a decline in expected returns. Similarly, neutral comments affects negatively expected returns stronger during the first 4 weeks than abnormal returns, whereas between t+4 and t+10 weeks, we observe for both two consecutive peaks.

H4: Rating has an impact on Apple's unit sold of personal computers

In general, it is possible to state that for hypothesis 4, we find the same outcomes as Chevalier and Mayzlin (2004) did that ratings have an impact on sales. As a matter of fact, our estimation outcomes of the GARCH model on p.57 imply that ratings have, first, a strong and direct effect (within the same week) that is negative, secondly, ratings that are between 1 and 2 weeks old have a strong and positive impact on sales, and

lastly, older than 7 weeks the impact becomes negative again. Furthermore, the higher the rating, the bigger the impact. To even further support the alternative hypothesis that ratings are affecting sales, we conducted a Granger Causality test that

demonstrated that ratings from t-0 to t-3 weeks are causing change in sales at 90% significance level as Figure 36 exhibits.

Pairwise Granger Causality Tes	sts		
Sample: 12/26/2007 8/29/2012			
Lags: 3			
Null Hypothesis:	Obs	F-Statistic	Prob.
DS does not Granger Cause R	227	1.57383	0.1966
R does not Granger Cause DS		2.38174	0.0704
	-	0 70	T (

and Abnormal Returns

H5: Rating affect stock returns

Hypothesis 5 asks the question of the effect of ratings regarding the different personal computers from Apple on the website Amazon.com on stock returns. Similarly to the paper Tellis and Johnson (2007)

that uncovered an effect of ratings on stock returns, we were able to prove a significant effect coming from ratings on stock returns. In fact, only ratings posted 4 weeks earlier have a significant positive impact, at 95% significance level, on abnormal returns.

H6a: It is possible to observe that an impulse in rating would have a wear-out or wear-in effect on stock returns the consecutive weeks of the impact

To answer hypothesis 6a, it is necessary to look into the impulse response functions outcomes. Remember that wear-in effect implies that it takes a certain time for variable 2, here stock returns, after the impact of variable 1, in our case ratings, to attain the peak. First of all, from the result of the impulse response function, we can state that expected returns take 2-3 weeks to reach the peak. On the other side, abnormal returns take also 2-3 weeks to reach the first peak, and consequently, 4 more weeks to reach the second peak at t+7 weeks.

H6b: It is possible to observe that an impulse in rating would have a wear-out or wear-in effect on sales the consecutive weeks of the impact

Hypothesis 6 is indeed true, the impulse response function between ratings and sales supports the hypothesis that one impulse in ratings generates a wear-in effect. In fact, it takes sales 8 weeks to reach a positive peak. More precisely, we see that one impulse in ratings causes a peak in sales at t+3 weeks, and afterwards, it take sales 5 more weeks (t+8) to reach the second peak.

H7: News searches have an impact on stock returns

This hypothesis can be rejected on the ground that news searches for the term Apple influence stock performances. However, the impact is very small, yet, only rejected at 90% significance level. Still, our outcomes found the contrary of what Da et al. (In Search of Attention, 2011) discovered, our results suggest that the amount of news searches might have a negative impact on abnormal returns.

H8: Personal computer product type searches have an impact on stock returns

Da et al. (In Search of Fundamentals, 2011) discovered that search volumes for firm's products are a good predictor for revenue surprises, earnings surprises, and earnings announcement returns. As a matter of fact, our outcomes indicate that search trends for the term "MacBook Air" (t-2 weeks) and "iMac" (t-0 week) seem to have impact, in fact, a low still positive influence on abnormal returns. The fact that only abnormal returns react to some product type searches imply that we support to a certain extent the theory of Da et al. (In Search of Fundamentals, 2011), meaning that any increase in product searches for MacBook Air and iMac increases abnormal returns suggesting that actual returns exceed expected returns. However, concerning hypothesis 8, as from four product type searches only two turned out to be significant, we might conclude that this hypothesis is not rejected in favor of stating that search activities for Apple's products have no impact on stock returns.

H9: Web searches for Apple are reflected in stock returns

Hypothesis 9 is indeed true according to our results. Actually, our outcomes suggest that web searches affect both expected and abnormal returns. In fact, we find that expected returns react positively to boosts happening at t-1 and t-7 weeks. Instead, abnormal returns first react positively at t-3 weeks, then negative at t-4 weeks, and positively again around t-7 weeks. These outcomes are also shown and supported by the impulse-response function between web search and stock returns. This means that we are in accordance with Mondria and Wu (2011) by stating that asymmetric attention, here boost in web searches that are less than 3 week old and older than 7 weeks, increase the stock returns.

H10: An impulse in web searches generate a wear-in or wear-out effect for stock returns

The alternative hypothesis 10 saying that we observe a wear-in or wear-out effect in stock returns when web searches improve by one standard deviation can be rejected in favor. In fact, one impulse in web searches create a wear-in effect where first expected returns take 2-3 weeks to reach the first peak and then 7 week to reach the second peak. Concerning abnormal returns, one standard deviation innovation in web searches create a wear-in effect on abnormal returns, leading to the fact that abnormal returns take 7 weeks before reaching the major peak.

H11: Around new product release dates, blog comments have an impact on stock returns

From the outcomes of the GARCH model, it is undeniable that there is an impact of blog comments on stock returns around release date, leading to reject the null hypothesis in favor of the alternative hypothesis here above. We observe that for the first 3 release dates, meaning between March 2009 and March 2010, abnormal returns capture most impact resulting from variations in blog comments. For the following three release dates, so between February 2011 and June 2012, it is expected returns that react to alterations in blog comments, yet, only coming from neutral and negative comments. In addition to that, we can witness that over the years the weight of the impact on stock returns is growing. This effect can be argued of being the result of UGC having more importance on companies' performance over the last few years. Remember, Facebook was created in 2004, Twitter in 2006, and YouTube in 2005, these are the major UGC platforms used by companies as a marketing tools, more crucially, employed by users to fuel their opinions and beliefs about certain topics and most importantly, about products, services, and brands.

H12: Around new product release dates, ratings have an impact on stock returns

Concluding from the six release models, we perceived that 4 out 6 models are influenced by ratings. For all significant outcomes, where ratings affect stock returns, we determine that the weight of the effect is rather small, sometime positive sometime negative. Due to that reason, it is fair to conclude that in this case we cannot reject the null hypothesis leading to the fact that for this research rating does not seem to have an effect around release dates, here for MacBook Pro.

H13: Around new product release dates, an impulse in blog comments creates a wear-in or wear-out effect for stock returns

Unfortunately, we cannot support hypothesis 13 that we observe that one impulse in blog comments result in some sort of wear-in or wear-out effect in stock returns. As the results from the impulse response function from section 6.6.1.7 on p.68 demonstrated that the outcomes in the different short-term models are very different from one another making it very difficult to find a general conclusion and even more difficult to reject the null hypothesis for hypothesis 13, here above.

H14: Around new product release dates, an impulse in ratings creates a wear-in or wear-out effect for stock returns

Unlike the blog comments, for one impulse in ratings, we clearly observe a pattern of how stock returns respond across the different release dates studied in this research. Essentially, we can reject the null hypothesis 14 in favor of being able to statistically support that ratings create a wear-in and wear-out effect for stock returns. This means, when ratings experience an innovation of one standard deviations, stock returns need about 3 to 5 days to reach a peak and 4-6 days to reach a minor drop. The only exception remains at release date 5, where expected returns first plunges in t+3 days, however, still reaching a major peak at t+4 days, same is observed for release date 6 for abnormal returns.

8 Concluding Remarks

The last chapter of our study is divided into three parts. Firstly, we will evaluate the main research question formulated in the beginning of this paper, using the insights gained from our statistical analysis. Following to that, we will discuss the limitations that we encountered while conducting this study. Finally, we will conclude this research in examining future researches that may be possible to convey on the basis of this research.

Research Question

In view of the conclusion that has been formulated in the previous section, discussion of results, we still need to answer our main research question, which is:

What is the impact that user-generated content has on the stock performance?

Taking all the results into consideration, the main outcomes are that positive comments posted on MacRumors have the lowest effect in comparison to negative and neutral comments. In addition to that, negative comments affect the stock returns at a faster pace than the neutral comments. While one major finding concludes that the weights of the effects on expected returns for neutral and negative comments are about the same, and most surprisingly, the effect is positive. Still, the bigger the value of negative or neutral comments becomes the lower is the effect on stock returns. Still, the largest impact from variables, present in our long-term model, is the negative effect of neutral comments on abnormal returns. Furthermore, abnormal returns seem to capture more effects than expected returns do. In fact, unlike expected returns (vary with neutral and negative comments, and web searches), abnormal returns alter with fluctuations in ratings, product searches, news searches, and search trends for MacBook Air and iMac. Notably, we discovered that sales are not exogenous of neither expected nor abnormal returns. More precisely, the impact on abnormal returns that were estimated showed that the effect is close to null.

Additionally, we were able to conclude that the searches of Apple news have a mild negative influence on the level of abnormal returns. On the contrary, any boost in product searches on a short-term basis, up to 4 weeks, increases abnormal returns for Apple. As well, we discovered that ratings are strongly affecting the units of personal computers sold, as do comments posted on MacRumors. Again, positive comments have the lowest impact on sales in comparison to neutral and negative comments

In addition to that, we can certainly state that around new product introductions, blog comments have an impact on stock returns. Similarly, as to long-term model, we observe that positive comments have the lowest impact. Yet, we were not able to find recurring similar impacts across all our short-term release date models for neither ratings nor blog comments posted, where we may have been able to conclude some main effects

occurring around new product introductions.

All in all, even though we were not able to support all our hypotheses, we were able to find statistical proof that indeed user-generated content about Apple influences its stock returns, more precisely, its expected and abnormal returns.

Limitations

First of all, one major limitation that we experienced during this study is clearly the fact that we lacked UGC data retrieved from further important platforms. In fact, it is my belief that adding tweets, mentioning Apple, would have improved our model. As many might know, gathering UGC data is quite time consuming, which was the initial reason why Twitter data were not included. Still, it is worth mentioning that ratings, reviews, and comments data retrieved from more sources might have generated better results to answer the research question more precisely. In other words, the dataset ratings only included ratings retrieved from Amazon.com, however, there are many other web platforms, which might have been interesting to add into our dataset, for instance pcworld.com, where Apple product are reviewed and rated.

Concerning our analysis, we covered many different ways to analyze the impacts on stock returns: our long-term model, short-term models, impulse response functions. The feeling that we might have been able to go into more details if only one analysis would have been carried out still stands. Nonetheless, one reason for that might be due to our research question being rather vague. Under different circumstances plus knowing all of what we know now, we might have conducted a more extensive research on a more distinct narrow topic, thus, we would have formulated a more precise research question.

As well, regarding the short-term model, the decision was made to only test the new product introduction for MacBook Pro as it would have tremendously increased the work load, and more importantly, the analysis part of our study. However, if we had conducted the analysis of all new product launch dates of all personal computers of Apple, we might have discovered more insight coming from those short-term models.

Future Researches

Taking into account our main conclusion as well as our limitations, there are many propositions for future researches that arise. First of all, it would be interesting to test our research question incorporating more usergenerated content datasets. As already mentioned in the previous section, retrieving more customer reviews and ratings would definitely improve our models' outcomes and maybe even created completely different results in comparison to what we found in our study. In addition to that, adding tweets to our model might have resulted in fascinating outcomes as well, or even just analyzing the effect of tweets mentioning Apple on stock returns.

In this line of thinking, while conducting this research, the idea that the impact of UGC on company's performance might have been carried out in a complete different manner persists. In fact, it would be captivating to research the impact of UGC on the likability of the firm's brand. In other words, rather than using secondary data, use of primary data collected in form of questionnaire or experiments. This means, one possibility might be to expose a group of people to UGC content posted on Facebook, Twitter, YouTube, and/or on other major web platforms and test the reaction of the test group and investigate whether the likability of the brand would change due to that.

Concluding taking into account all that has been said here above, concerning any research investigating the effects of user-generated content on performance indicators of a certain company would always create very interesting and important insights. As a matter of facts, research about any impact created by UGC is a topic of discussion of our present time as companies more and more rely on social media platforms to induce their marketing actions to their customers. In fact, companies should become more aware about the fact that user-generated content is becoming more and more important, but also, take into consideration that it does not just consist in posting some words, but, that indeed the right use of social media platforms can have tremendous effects on the performance level of a company. Last but not least, companies should not ignore UGC that might affect them, especially, as the importance and the use of user-generated content is growing every day.

9 References

Aaker, D. A., & Jacobson, R. (1994). The Financial Information Content of Perceived Quality. *Journal of Marketing Research*, 31 (May), 191-201.

Apple. (2000-2012). *Apple Press Info*. Retrieved 2012 йил 8-September from Apple: http://www.apple.com/pr/library/

Berk, J., & DeMarzo, P. (2007). Corporate Finance. Boston: Pearson Education.

Bollen, J., Mao, H., & Zeng, X. (2011, 2-February). Twitter mood predicts the stock market. *Journal of Computational Science*, 1-8.

Bowerman, & O'Connell. (2007). Business Statistics in Practice (fourth ed.). McGraw-Hill International Edition.

Box, G., Jenkins, G., & Reinsel, G. (2008). Time Series Analysis, Forecasting and Control (Vol. 4th). Wiley.

Brahaj, A. (20, April 4). *List of English Stop Words*. Consulté le October 5, 2012, sur Armand Brahaj – Blog: http://norm.al/2009/04/14/list-of-english-stop-words/

Burns, D., & Wutkowski, K. (2005, 25-November). *Schwab to miss forecast, fined by NYSE*. (Yahoo, Producer) Retrieved 2012, 2-August from Yahoo! Finance: http://biz.yahoo.com/rb/051115/financial schwab.html?.v=3.

Cha, M., & Pérez, J. A. (2011). The Spread of Media Content through Blogs.

Chevalier, J. A., & Mayzlin, D. (2006). The Effect of Word of Mouth on Sales: Online Book Reviews. *Journal of Marketing Research , XLIII* (August), 345–354.

Clow, E., & Baack, D. (2012). *Integrated Advertising, Promotion, and Marketing Communications* (fifth ed.). Pearson.

Da, Z., Engelberg, J., & Gao, P. (2011). In Search of Attention. *The Journal of Finance*, *LXVI* (5), 1461-1499.

Da, Z., Engelberg, J., & Gao, P. (2011). *In Search of Fundamentals*. University of Notre Dame and University of North Carolina, Finance . AFA 2012 Chicago Meetings Paper.

Diebold, F. X. (2007). *Elements of Forecasting* (Vol. 4th). Thomson South Western.

Einhorn, B., & Arndt, M. (2010, 15-April). *The 50 Most Innovative Companies*. Retrieved 2012, 3-February from Business Week: http://www.businessweek.com/magazine/content/10_17/b4175034779697.htm

Euromonitor. (2012). Apple Inc. in Retailing. Warc.com.

Field, A. (2009). Discovering Statistics using SPSS (Vol. third). Sage.

Godin, S. (n.d.). Retrieved 2012, 1-February from Seth Godin: sethgodin.typepad.com/ -

Google. (n.d.). *Google Insight for Search (beta)*. Retrieved 2012, 4-August from Google: http://www.google.com/insights/search/

Google. (n.d.). *Google Trends*. Retrieved 2012, 9-August from Google: http://www.google.com/insights/search/?hl=en-US#q=apple&cmpt=q

Google-Correlate. (n.d.). *Google Correlate*. Retrieved 2012, 8-08 from Google: http://www.google.com/trends/correlate/search?e=apple&e=macrumors&t=weekly&p=us&filter=apple#defau lt,20

Harvard. (2000, 20-August). *Guide to General Inquirer Category Listings*. Retrieved 2012, 8-August from Welcome to the General Inquirer Home Page.: http://www.wjh.harvard.edu/~inquirer/spreadsheet_guide.htm

Hill, S., & Ready-Campbell, N. (n.d.). *Expert Stock Picker: The Wisdom of (the Experts in the) Crowds*. University of Pennsylvania. Philadelphia: University of Pennsylvania.

Jurka, T. P. (2012, February 15). *Sentiment: Tools for Sentiment Analysis*. Consulté le August 25, 2012, sur cran.r-project.org: http://cran.r-project.org/web/packages/sentiment/index.html

Laffont, J.-J., & Maskin, E. S. (1990). The Efficient Market Hypothesis and Insider Trading on the Stock Market. *Journals of Political Economy*, 98 (1), 70-93.

Luo, X. (2009). Quantifying the Long-Term Impact of Negative Word of Mouth on Cash Flows and Stock Prices. *Marketing Science*, 28 (1), 148-165.

Malkiel, G. B. (2003). The Efficient Market Hypothesis and Its Critics. *Journal of Economic Perspectives*, 17 (1), 59-62.

marketingterms.com. (n.d.). *Blog*. Retrieved 2012, 27-February from Marketing Terms: http://www.marketingterms.com/dictionary/blog/

MarketLine. (2012, 18-May). *Apple Inc.* Retrieved 2012, 10-July from Datamonitor: http://360.datamonitor.com/Product?pid=5B0A0C20-9BB6-4284-A575-AC0F2261F45C&view=CompetitorAnalysis

McAlister, L., Sonnier, G., & Shively, T. (2011). The Relationship between Online Chatter and Firm Value. *Springer*, 23, 1-12.

Mondria, J., & Wu, T. (2011). *Asymmetric Attention and Stock Returns*. University of Toronto and UC Santa Cruz, Economics. AFA 2012 Chicago Meetings Paper.

Nasdaq. (n.d.). *AAPL Stock Interarctive Chart*. Retrieved 2012, 07-08 from Nasdaq: http://www.nasdaq.com/symbol/aapl/interactive-chart

Onishi, H., & Manchanda, P. (2008). *Marketing Activity, Blogging and Sales*. University of Michigan, Ross School of Business, Marketing . Marketing Science.

Pauwels, K., Silva-Risso, J., Srinivasan, S., & Hanssens, D. M. (2004). New Products, Sales Promotions, and Firms Value: The Case of the Automobile Industry. *Journal of Marketing*, 68 (October), 142-156.

pcmag.com. (n.d.). *Twitter*. Retrieved 2012, 26-February from PC Mag: http://www.pcmag.com/encyclopedia_term/0,1237,t=Twitter&i=57880,00.asp

Ray, R. (2006). Finance, the Wisdom of Crowds, and "Uncannily Accurate" Predictions. *Investment Managemetn and Financial Innovations*, 3 (1), 35-41.

Schumaker, R. K., & Chen, H. (2009). Textual Analysis of Stock Market Prediction Using Breaking Financial

News: The AZFinText System. ACM Transaction on Information Systems, 27 (2), 12.

Shuba, S., Pauwels, K., Silva-Risso, J., & Hanssens, D. M. (2009). Product Innovations, Advertising, and Stock Returns. *Journal of Marketing*, 73 (1), 24-43.

Shukla, R. (2011, 9-November). Calculating Historical Return Statistics From Adjusted Closing Prices. *Finance Essentials*, 1-5.

Solomon, R. M., Marshall, W. G., & Stuart, W. E. (2008). *Marketing: Real People, Real Choices* (5 ed.). Upper Saddle River, New Jersey: Pearson Prentice Hall.

Stelter, B. (2008, 21-July). *My Son, the Blogger: An M.D. Trades Medicine for Apple Rumors*. Retrieved 2012, 3-May from New York Times: http://www.nytimes.com/2008/07/21/technology/21blogger.html

Sterescu, D. (2011, 25-November). *Apple's consumers prove loyal, users less likely to switch the more apps they use*. Retrieved 2012, 4-February from Proactive Investors: http://www.proactiveinvestors.com/companies/news/21626/apples-consumers-prove-loyal-users-less-likely-to-switch-the-more-apps-they-use-21626.html

Surowiecki, J. (2004). The Wisdom of the Crowds. In J. Surowiecki, *The Wisdom of the Crowds* (pp. 1-22). Doubleday.

Tellis, G. J., & Johnson, J. (2007). The Value of Quality: Sotck Market Returns to Reviewed Quality of New Products. *Marketing Science*, 26 (6), 758-773.

Tetlock, P. C. (2007). Giving Content to Investor Sentiment: The Role of Media in the Stock Market. *The Journal of Finance*, *LXII* (3), 1139-1168.

Tumarkin, R., & Whitelaw, R. F. (2001). News or Noise? Internet Postings and Stock Prices. *Financial Analysts Journal*, 57 (3).

Twitter. (2011,14-March). *#numbers*. Retrieved 2012, 1-March from Twitter Blog: http://blog.twitter.com/2011/03/numbers.html

Vlastakis, N., & Markellos, R. N. (2012). Information Demand and Stock Market Volatility. *Journal of Banking & Finance*, *36*, 1808-1821.

Vogelvang, B. (2005). Econometrics: Theory and Applications with EViews. Pearson Education Limited.

Wortham, J. (2012, 27-February). *After 10 Years of Blogs, the Future's Brighter Than Ever*. Retrieved 2007, 17-December from Wired: http://www.wired.com/entertainment/theweb/news/2007/12/blog_anniversary

10 Appendix

1. Extract from In search for attention variables

1470	The Journal of Finance $^{ extsf{B}}$
	Table I Variable Definitions
Variable	Definition
Variables from Google Trends SVI	Aggregate search frequency from Google Trends based on stock ticker
ASVI	The log of SVI during the week minus the log of median SVI during the previous 8 weeks
Name_SVI APSVI	Aggregate search frequency based on company name The log of PSVI (aggregate search frequency based on the main product of the company) during the week minus the log of median PSVI during the previous 8 weeks
Variables from Dash-5 reports Percent Dash-5 Volume	Ratio between Dash-5 trading volume and total trading volume
Madoff	Dummy variable taking a value of one for all observations from the Madoff market center and taking a value of zero for all observations from the New York Stock Exchange (for NYSE-listed stocks) and Archipelago Holdings (for NASDAQ-listed stocks)
Other variables related to inve	stment attention/sentiment
Ret	Stock return
Abn Ret	Characteristic-adjusted return as in Daniel et al. (1997)
Abn Turnover	Standardized abnormal turnover as in Chordia, Huh, and Subrahmanyam (2007)
Market Cap	Market capitalization
# of Analysts	Number of analysts in I/B/E/S
Advertising Expense/Sales	Ratio between advertisement expense and sales in the previous fiscal year, where we set advertisement expenditure to zero if it is missing in COMPUSTAT
News	Number of news stories in the Dow Jones news archive
News Dummy	Dummy variable that takes the value of one if News variable is positive
Chunky News	Number of news stories with multiple story codes in the Dow Jones news archive
Chunky News Dummy	Dummy variable that takes the value of one if Chunky News variable is positive
Chunky News Last Year Frac_Neg_H4	Number of Chunky News stories in the last 52 weeks Media-based stock-level sentiment measure. Following Tetlock (2007), for each stock each week, we gather all the news articles about the stock recorded in the Dow Jones Newswire (DJNW) database and identify words with "negative sentiment." We count the total number of words over the entire collection of news articles about the stock (excluding so-called "stop words") within that week, as well as the number of negative sentiment words. Then we take the ratio of the number of negative sentiment words to the total number of words to get the fraction of negative words. Negative sentiment words are defined using the Harvard IV-4 dictionary.
	(continued)

	In Search of Attention	1471
	Table I—Continued	
Variable	Definition	
Frac_Neg_LM	Similar to Frac_Neg_H4 except that negative se are defined in Loughran and McDonald (2010	entiment words 0)
Variables related to IPO		
First-day return	First CRSP available closing price divided by the minus one	he offering price
Media	Log of the number of news articles recorded by the company name as the search criterion) be date (inclusive) and the IPO date (exclusive), the number of days between the filing date a	Factiva (using etween the filing normalized by nd the IPO date
Price Revision DSENT	Ratio of the offering price divided by the median Baker-Wurgler (2006) monthly investor sentim (orthogonal to macro variables) the month th obtained from Jeffrey Wurgler's website (http://pages.stern.nvu.edu/~iwurgler)	n of the filing price ent change e firm goes public,
Offering Size Age	Offering price multiplied by the number of shar Number of years between the firm's founding y year, obtained from Jay Ritter's website and hand-collected information from various sou	res offered ear and the IPO supplemented by rres
Asset Size	Firm's total assets prior to IPO	005
CM Underwriter Ranking	Carter-Manaster (1990) ranking of lead underv	vriter, obtained
VC Backing	Dummy variable taking a value of one if the IP venture capital firm, and zero otherwise	O is backed by a
Secondary Share Overhang	Secondary shares offered/(IPO shares offered + offered).	- secondary shares
Past Industry Return	Fama-French 48-industry portfolio return corre industry classification of the IPO at the time offering	esponding to the of the public

2. Apple: A Short History

Steven Wozniak and Steven P. Jobs founded Apple in 1977. The Apple I was launched in 1977, but only, the Apple II in 1980 was a success. The early 1980, management alteration took place due to competition from the PC market and internal difficulties leading to Jobs leaving the company. In 1983, the Apple III end up to be a failure and on top of that Apple experienced fierce competition with the entry of IBM in the PC market. The year 1984 is the birth year of the Macintosh, the first mouse driven PC. In 1994, to compete with the speed of Intel's PC processors, Apple launched the PowerPC chip based PowerMac. Furthermore, 1995 until 1996 was difficult time for Apple, they had \$1 billion order backlog and at the same time the Windows 95 came out, which lead to Apple incurring \$68 million of losses. By 1996, they introduced the new operating system (OS) that was the fruit of Apple acquisition of NeXT. Still in 1997, Apple showed huge losses of millions of dollars. The company decided to bring back Steve Jobs as interim CEO and he reorganized Apple to concentrate on the more profitable competencies. Soon after his return, Apple entered an agreement with Microsoft to make MS Office work on Mac PCs. In the following years, Apple acquired and entered in alliance with several companies and software to gain expertise in several disciplines: PowerSchool (information systems for schools), Spruce Technologies, worked together with Ericsson and Sum Microsystems (multimedia content sharing for smart phones and PDAs, and QuickTime video creation software), Prismo Graphics, Silicon Grail, certain assets of Zayante and Nothing Real, and the music software manufacturer Emagic. (MarketLine, 2012)

What's more, Apple introduced its iTunes music store in 2003. To support this application, Apple signed in the next year a number of licensing agreements with three of the largest European independent music labels (Beggars Group, Sanctuary Records Group, and V2) to add numerous independent tracks from leading artists to the iTunes music store in the UK, France, and Germany. During the same time period, the iPod was launched. To improve its processors, Apple signed an agreement to use Intel microprocessors in its Macintosh PCs. In 2006, they added further agreements to their account to improve the iPod use in car with Acura, Audi, Honda, and Volkswagen, furthermore, they established iTunes on mobile phones with Motorola and Cingular Wireless. Later on, with the collaboration of Chrysler, Apple integrated iPod options in the audio systems for their cars. Shortly afterwards, General Motors and Mazda teamed up with Apple to incorporate iPod across their brand and models. At the same time, Apple did the same with Air France, Continental, Delty, Emirates, KLM and United Airlines to insert iPod with in-flight entertainment systems. In addition to that, Apple sold its student information system division, PowerSchool, to Pearson.

In 2007, Apple Computer, Inc. changed its name into Apple Inc., which corresponded to its growing product portfolio and increasing focus on consumer electronics market. To have the right to launch the iPhone, Apple needed to resolve its "iPhone" trademark issues with Cisco System. In 2007, they created an agreement, where both companies accepted the ownership rights giving them the freedom to use the trademark in their products. Thanks to that, Apple was able to launch in the same year the iPhone and the iPod

nano. 2008 was a year were Apple launched various new products: Time Capsule for Leopard, Mac Pro, MacBook Air, the file system Xsan 2, MobileMe, and iPod touch. In 2009, Apple offered the new Apple office suite, iWork '09, and also major upgrades for iLife '09, iPhoto, iMovie, iDVD, iWeb, and GarageBand. In this same year, the iPhone 3GS was launched, and later this year, iTunes Store expanded in Mexico signing with its major labels. In the end of 2009, Apple modernizes the MacBook with LED-backlit display, Apple Multi-Touch track pad and built-in seven-hour battery, and also, launched the wireless Magic Mouse. Due to those new updates, Nokia filed a lawsuit against Apple where Apple responded with a countersuit saying that Nokia violated 13 Apple patents.

The year 2010 stands for the introduction of the iPad made available in the US, Australia, Canada, France, Germany, Italy, Japan, Spain, Switzerland and the UK, and sold 300,000 units on the first day of its introduction in the US. During the same time, Apple filed lawsuit to HTC this time for infringement of 20 Apple patents. In addition to that, Apple also made public that the new iPhone OS 4 and the new iPod Touch will be released. Furthermore, Apple created the Apple TV that gave customers the opportunity to view HD movies and TV shows on their devices. This year was also marked by the introduction of the first Apple Store in China as an online store. In 2010, Apple also released a new version of MacBook Air.

In 2011, the exclusivity of AT&T ended due to the Verizon Wireless that launched the iPhone on its network. Also, an App Store was made available with free and paid applications. In that year, the MacBook Pro series, the mobile operating system (iOS 4.3), iTunes, Safari underwent some updates. Furthermore, the second version of iPad was introduced in that year, as well as a new iMac and iWork and iCloud for iPhone and iPod Touch users. In July 2011, the firm made public the Apple Thunderbolt display, the world's first display with Thunderbolt I/O technology for Mac notebook. In the next months, Steve Jobs left Apple as CEO and beginning of October died having endured cancer for many years. End of the year 2011, the fourth generation of iPhone with the fifth version of iOS was released. Also, iTunes Store was introduced in Brazil and fifteen other countries in Latin America. In the beginning of 2012, the new iPhone was released in China and 21 other countries. To reinforce its presence in the education market, Apple introduced all-new iTunes U app, catering to educators and students access to teaching and taking entire courses on their iPad, iPhone and iPod touch. Furthermore in the same month, the company released iBooks 2 for iPad, including iBooks textbooks, a new type of textbook. The company initiated its third generation of iPad in March 2012. In April 2012, the newly iPad was made available South Korea and 11 other countries. (MarketLine, 2012)

3. SWOT of Apple Inc.

SWOT analysis points out the strengths, weaknesses, opportunities, and threats a company incur can be quite useful to understand how Apple functions as a company. The main strength of Apple is the ownership of a strategy focusing on horizontal and vertical integration generating impressive competitive advantages helping Apple to create a string of successful products (iPhone and iPad), which show industry leading growth rates. However, their weaknesses are that they are highly dependent upon the iPad and iPhone, and now that Steve Jobs is not around anymore, there are some doubt that Apple would be able to maintain its leadership for innovative products. On the downside, Apple lacks products that are in different price categories on order to address more consumers in the market. Concerning the threats, Apple should consider that as market move to emerging countries, competition on prices become more and more important, but also, Apple has to overcome intense competition. However, on the side of opportunities, Apple should consider shifting business from consumer markets towards enterprise market, besides they should also think about transferring more business to emerging nations that provide strong expansion opportunities. Lastly, as more and more consumers watch their favorite shows online via streaming, improving Apple TV to build it as the leading online TV shows and movie provider could be profitable for Apple Inc. Since we are not doing a report on the company Apple alone, I will not go into more details to describe the organization and management of Apple Inc. But still, in the Figure 37 -SWOT Analysis of Apple Inc., a SWOT analysis from Euromonitor is displayed pointing out the most important factors about Apple Inc. (MarketLine, 2012)

SWOT: Apple Inc

STRENGTHS

Apple products become the industry standard

 Despite not being the first to market, Apple's last two creations, the iPhone and iPad, are widely regarded as the industry standard for smartphones and tablets.

OPPORTUNITIES

Store-based prospects within Chinese market

 In 2011, company sales in China accounted for more than 10% of the total. Strong demand from this fast-growing market will mean that Apple stores are likely to flourish in China.

In-store experience and customer service

 Apple's high levels of customer service and innovative store designs give consumers an additional reason to buy direct from Apple as opposed to a multibrand retailer.

Mobile-led expansion into

Apple's consumers are

typically brand loyal.

This means that the

purchase of a smaller

device often leads to

expensive technology

such as computers.

larger spending on more

computer market

THREATS

WEAKNESSES

Android invasion of

smartphone space

Device manufacturers,

Samsung, HTC and

Motorola, grew their

market shares over

category limiting the

potential for Apple to

2011 in the smartphone

sell software and media.

Market share in tablets starting to falter

 Apple's dominance in this product category is starting to show signs of weakening as a result of improvement by Android devices. This could impact Apple's future retail sales.

Consumers switch to streaming media services

Services like Spotify and Qriocity stream 'unlimited' music to devices for a monthly fee. This is proving to be a popular alternative to downloads and has affected iTunes sales.

Failure to come up with the 'next big thing'

Apple's retail future is dependent on predicting and popularising musthave electronics. The company will have to launch a new device before smartphones and tablets run out of growth.

Figure 37 –SWOT Analysis of Apple Inc. (Euromonitor, 2012)

4. Some Facts about the UGC Medium Twitter

Concerning Twitter, it was launched in 2006 and can be classified as a social media platform that allows people to write instant messages up to 140 characters only visible for their followers. Besides writing your own messages, called tweets, users have the possibility to retweet messages from people they are following. In other words, "Twitter became a viral conduit when users initiated "retweeting," which forwards tweets they get to their followers. People retweet to pass on worthwhile information and the ease of retweeting can quickly build large audiences" (pcmag.com, n.d.). This has been proven to be a useful tool for creating viral buzzes reaching a high number of people. Moreover, it is possible to tag either people (using @) or events, topics, or people (using #). The latter has an important function. When a certain person is interested in a specific topic, he can browse through posts of other users that talked about this topic, by typing #topic in the search engine. The users will then find all the posts that have tagged the topic he is looking for. This can be seen as the main driver for creating viral messages.

When looking at the statistical facts about Twitter, it has been growing at a rapidly pace. In a matter of about 3 years, Twitter reached over one billion of tweets. Surprisingly, as of March 2011, it takes only one week for Twitter users to reach one billion tweets sent. Moreover, in 2011, the average number of new accounts opened amounts roughly 460,000 in one month. (Twitter, 2011)

5. Correlation Matrix Model 1

_	_														_																														1
sales	,010	1/8,	260.	,137	468	000	245	,470	245	.917	,000	245	-,814	245	,157	,014	245	,173	100,	,678	000'	245	-,001	990,	498	000	244	-,193	,003	-,002	776,	245	,551	245	,026	,688	245	CT1-	245	-,048	454	245	-	245	
sr pos	-,088	,174	073	,254	049	,442	245	-,062	245	-,046	,477	245	,110	245	-,120	,060	245	-,039	242,	-,078	,224	245	-,081	,209	160	,155	244	-,238	,000	-,008	,902	245	-,120	245	-,206	100,	245	706	245	1		245	-,048	245	
sr neut	,033	,611	124	,052	211.	620,	245	-,010	245	-,128	,045	245	,192	245	-,120	,061	245	-,091	243	-,176"	,006	245	,039	,543	- 011	868	244	,022	,134	-,007	,914	245	-,070	245	,040	,532	245	1	245	,024	,706	245	-,145	245	
sr nea	,044	,501	.002	,971 345	900'-	,931	245	,034	245	,016	,807	245	,027	245	,019	,769	245	-,004	745,	-,006	,929	245	-,022	,736	- 094	,145	244	,010	,872	-,043	,500	245	-,062	245	1		245	532	245	-,206	,001	245	,026 688	245	
WS	,035	,587	035	,587	110	,086	245	,503	,000	,461	000'	245	-,372	245	,366 ~	000'	245	,264	000,	,535	000	245	,156	,015		,000	244	,062	,555, 244	-,097	,129	245	1	245	-,062	,332	245	272	245	-,120	,060	245	1000	245	
<u> </u>	,046	,479	960'	,136	058	,362	245	-,073	245	,386	,000	245	-,088	245	-,191	,003	245	-,208	100,	-,010	,878	245	-,053	,407	520	,693	244	,125	244	-		245	760'-	245	-,043	,500	245	-,000	245	-,008	,902	245	-,002	245	
DS	-,045	,483	.067	,297	175	,006	244	,059	244	-,129	,043	244	-,039	244	-,199 **	,002	244	-,521	243	-,085	,186	244	,260	,000	045	,489	244	1	244	,125	,052	244	,062	244	,010	,872	244	734	244	-,238	000	244	-,195	244	
ns	,100	,121	024	,705	131	,040	244	,363	,000	,435	,000	244	-,417	244	,181	,005	244	,138	150,	.476	000'	244	860,	,128	F -	•	244	,045	,489 244	-,025	,693	244	,778	244	-,094	,145	244	-,411	244	-,091	,155	244	000	244	
mm	-,020	,758	.063	,322	.042	,512	245	,406	,000,245	-,020	,755	245	-,045	245	,194	,002	245	,057	C/2'	,043	,503	245	1	245	860	,128	244	,260	,000	-,053	,407	245	,156	245	-,022	,736	245	543	245	-,081	,209	245	100,-	245	
adm	,061	,350	.043	,505	.367	000	245	,440	245	,615	000'	245	,693 [°]	245	,353	000'	245	,173	243	1		245	,043	,503	476	000	244	-,085	,186	-,010	,878	245	,535	245	-,006	,929	245	000	245	-,078	,224	245	,6/8 000	245	
nba	,028	,667	035	,585	.332 -	000'	243	,186	,004 243	060,	,161	243	,124	243	,861	,000	243	1	243	.173	,007	243	,057	,375	138	,031	243	,521	,000	,208	,001	243	,264	243	-,004	.947	243	- 158	243	-,039	,542	243	,1/5	243	
qm	,029	,652	010	,876	.282	000	245	300	,000	,078	,222	245	,075	245	-1		245	861	000,	353	000'	245	,194	,002	181	,005	244	- [199]	,002 244	191,	,003	245	366	245	,019	,769	245	-140	245	-,120	,060	245	, L1 / L1	245	
nac	-,033	,614	-152	,017	.704	000	245	319	,000	766	,000	245	1	245	,075	,245	245	,124	545	693	000	245	-,045	,486	417	000	244	-,039 -	244	-,088 -	,172	245	372	245	,027	,678	245	261	245	,110	,085	245	814	245	
rs	,026	,688	.125 -	,051	431	000	245	403 -	,000	-		245	766	245	,078	,222	245	060'	101,	615 -,	,000	245	,020	,755	435 -	000	244	.129	,045 244	386	,000	245	461	245	,016	,807	245	045	245	,046	,477	245	- 000	245	
-	012	854	013	843	103	109	245	-	245	103	000	245		245	00	000	245	.86	243	40	000	245		245		. 000	244		244	073	254	245	. 000	245	034	598	245	- 628	245	062 -	331	245	000	245	
.=	004	954	74	006	1		245	103	245	31 ,4	000	245	04	245	82" ,3	000	245	32		67" ,4	000	245	042 ,4	512	131	040	244	75	244	058 -,	362	245	110 ,5	245	006	931	245	- 620	245	- 640	442	245	68 000	245	
	99	909				06	45	-,	45	25 -,4	121	45	52, 7	45	10 ,2	:26	45	35 ,3	0 14	143 -,3	05	45		45	- 400	05	44	067 -,1	44	- 96	36	45	35	45	-,-	12	45		45	-,- (12)	54	45	37 -,4	45	-tailed).
er	1-,0		99	06	041	54 ,0	41 2	12	41 41	26 ,1	88	41 2	33 -,1	41 41	29 -,0	52 ,8	41 2	28 -,0	70	61 ,0	50 .5	41 2	20 ,0	41 ,3	100	21 21	40 2	45 ,0	40 40	46,0	1, 25	41	35 -,0	41 2	44 ,0	01 :	41		41 2	88 -,0	74	41	21 10 12	41	.01 level (2
abr	r.	ſ	- 0	, u ,	- 0,-	6	2	٥, ٥ ٩	°, 0	0,	9	2	0,- n	o, 10	0, U	9'	2	0, 1	<u>ه</u>	- 0, u	m	2	u -'0	<u>, ,</u>	, L		2	u, -	4, 0	- O,	4.	2	0, 1	¹ O	0' u	Ω, i	0 0	2 9	5	n -,0	1, 1	2 0	د م «	0,01	nt at the 0
	Pearson Correlatio	Sig. (2 –tailed)	⁵ earson Correlatio	Sig. (2-tailed)	earson Correlatio	Sig. (2-tailed)	z	Pearson Correlatio	olg. (z-talleu) V	Pearson Correlatio	Sig. (2-tailed)	z	Pearson Correlatio	N	Pearson Correlatio	Sig. (2-tailed)	Z	Pearson Correlatio	olg. (z-talled) v	Pearson Correlatio	Sig. (2-tailed)	z	Pearson Correlatio	Sig. (2-tailed) v	Pearson Correlatio	Sig. (2-tailed)	z	Pearson Correlatio	oig. (z-tailed) V	Pearson Correlatio	Sig. (2-tailed)	Z	Pearson Correlatio	N	Pearson Correlatio	Sig. (2-tailed)	N Services Correlation	sia. (2 -tailed)	N	Pearson Correlatio	Sig. (2-tailed)	-	Pearson Correlatio Sign (2-tailed)	N	elation is significar
	abr F	<i>, 2</i>		U) 2			-	т (Е	., 2	rs	21	-	mac		dm F		-	nba I	., 2	nbp F		-	4 mu	<i>, 2</i>			-	4 Sd	., 2		51		- sv	,	sr_neg F	., .	- noit			sr_pos F	., ,	- '	sales I		**. Corre

Correlations

91

6. Correlation Matrix Release Date 1 Model

SW/S	-,114	,212	171	000,	121	,678 ^{°°}	121	,663	000,	121	.351	121	,673	,000	,392	,000	121	000	121	,334	000	171	000	121	,456	000	121	101,	121	-,025	,785 121	,425	,000	121	,057	121	,007	,943	121	,071 ,439	121	1	
r nos	.047	209,	171	,287	121	,112	121	,000	996	121	029	121	,085	121	,014	,883	121	385	121	,039	699,	171	-,021	121	-,011	,903	121	,053	121	,182	,046	,123	,177	121	-,168	121	-,023	,800	121	1	121	,071	,439
r neut	-,026	,775	171	-,012	121	-,068	,402	,006	,951	121	-,103	121	-,029	121	-,015	,867	121	,675	121	-,021	,820	171	,040	121	,037	,690	121	-,005	121	-,095	,298 121	-,054	,558	121	,196	121	1		121	-,023	121	,007	943
r neu s	-,035	,706	171	-,106	121	,103	121	,156	1088	121	-,161	121	,131	121,	,114	,212	121	,282	121	-,036	169,	171	PC1,	121	-,003	,974	121	,151	121	-,156	,088	,089	,330	121	-	121	,196	,031	121	-,166	121	,057	,531
s selec	-,135	,140	171	-,002	121	,753	121	,517	000	121	600.	121	,671	121	,714	,000	121	000	121	,535	000	171	,208	121	-,155	060'	121	,413	121	-,024	,797	1		121	089,	121	-,054	,558	121	,125	121	,425	000
_	.139	,129	171	,742	121	,038	121	-,015	178,	121	+0.000°.	121	-,014	121	-,036	,691	121	,964	121	,068	,457 1.01	121	-,045	121	-,099	,279	121	-,064	121	1	121	-,024	797,	121	-,156	,000	-,095	,298	121	,182	121	-,025	,785
bo No	-,120	191,	171	-,042	121	,147	,10/	382	000	121	.638	121	377	121	401"	,000	121	,210	121	-,145	,112	171	000	121	,101	,270	121	-	121	-,064	,483 121	413	,000	121	,151	121	-,005	,959	121	565	121	,101	,270
20	.083	,365	171	.648	121	,178	121	284	,002	121	.120	121	,038	121	,021	,820	121	888	121	455" -	000	171	000	121	1		121	101,	121	- 660'	,279 121	,155	060'	121	,003	121	.037 -	,690	121	110,	121	456"	000,
	- 029	,749	171	.784	121	,123 -	121	844 ''	000	121	- 031	121	179	121	319"	,000	121	002	121	,231 -,	110,	171	-	121	528"	000	121	550	121	.045 -	,625 121	208 -	,022	121	- 159	121	,040	,661	121	- 120,	121	139"	000
-	045 -	622	171	254 -	121	83	121	45 ,4	200	121	025	121	57"	121	06	000	121	000	121	-		121	111	121	55" ,	000	121	145	121	- 890	457 121	35	000	121	036	121	021	820	121	- 669	121	34	000
-	040	, 659	171	357 -,	121	21 ,6	121	05 , ,2	. 000	121	045	121	56 ,4	, 121	58" ,3		121		121	80	000	171	82 -,	121	013 -,4		121		121	, 104	964 , 121	83 ,5	, 000	121	- - 660	, 121		675	121	385	121	74 ,3	
hm	870	, 96	17	555	21	9,	, 21	11 ,7	000	17	00	21	01", ,8	21	1 ,5	-	.21	000	21	9, 06	000	17	7, 000	21	121 -,	\$20	.21		.21	136 ,	21	14 ,6	. 000	21	14	51	15 -,	992	21	883	21	92 ,7	000
dm	19 - (0	32	17		21	19,	21 21	54 ,5	00 5	21	80	21	1,7	21 ,	"1"	00	21 21	00	21	.23	00 5	17	- 00	21	38 ,0	83	21	14	21 21	14 -,(83 21 2	·1 7.	00	21		21 22	29 -,0	23	21	6 22	21	.33.	00
dm	88	8, 8	1 17	1,- 50 .0	21 1	4 ,84	21 10	18 ,76	0, 0, 10	17	1 0	21 1	60	21 1	50 ,70	0, 00	21 1	45 ,0	21 1	04 ,45	25 0,0	1 17	31 ,47	21 12	42 ,0	20 ,6	21	43 37	21 12	4 -,0	00 ,8 21 1	6" ,67	0, 00	21 1	23 ,1	21 1 1	03 -,0	62 ,7	21 1	0, 62	21 1	85 ,67	51 ,0
irs	4	5		8	1 1	1, ,23	0,11	1,1		1 8	96	1	, 1 , 1	0, II	1, ,1	,1,		00	1 1	5 ,2(20		+ 00	1	4" - , l.	1, 1			1	.5 ,96	0, 1	7 ,23	0,	1		4 II	-,1	2		90			S
. <u>e</u>	0 - 02	1 ,79	1 10	1 .53	1 12	1 ,58	1 12		0 -		0	1 12	.76	1 ,00	,51	0,0	1 12	00	1 12	,24	001	71 1	2 00.	1 12	8 ,28	0	1	7 ,38;	1 12	8 -,01	6 ,87 1 12	,51	0,0	1	. 13 . 13	۲ ,00 12 ا	8,00	2 .95	1 12	2 0	1 12	.99	0, 1
ë	-,04	99'	17	-,00	12		12	,581	00,	12	10.	12	,849	12 ,00	,603	,00	12	00	12	,683	0, 5	71	71, 18	12	-,17	,05	12	14	12	,03	,67	,753	00'	12	,10	C ¹ 21	-,06	,46	12	.22	12	,678	00, 5
PL	-,027	,765	171	-	121	-,085	121	-,057	,538	900	950,	121	-,154	121	-,175	,055	- 084	,357	121	-,105	,254	171	-,025	121	,042	,648	121	-,042	121	,030	,742	-,082	,369	121	-,108	121	-,012	,896	121	,090,	121	000'	566'
ahr	1		171	-,027	121	-,040	121	-,024	794,	121	339	121	,019	121	-,078	,396	- 040	,659	121	,045	,622	171	-,029	121	-,083	,365	121	-,120	121,	,139	,129	-,135	,140	121	-,035	121	-,026	,775	121	,047	121	-,114	212,
	Pearson Correlation	Sig. (2-tailed)	N Dorston Corrolation	rearson correlation Sig. (2-tailed)	7	Pearson Correlation	oig. (∠−tairea) V	Pearson Correlation	Sig. (2-tailed)	N Pearson Correlation	sig. (2-tailed)	N	Pearson Correlation	oig. (∠-tailea) V	Pearson Correlation	Sig. (2-tailed)	N Dearson Correlation	sig. (2-tailed)	7	Pearson Correlation	Sig. (2-tailed)	N Derven Coveletion	rearson Correlation Sig. (7-tailed)		Pearson Correlation	Sig. (2 –tailed)		Pearson Correlation	N	Pearson Correlation	Sig. (2-tailed) V	Pearson Correlation	Sig. (2-tailed)	Z	Pearson Correlation	oig. (∠−tairea) N	Pearson Correlation	Sig. (2 -tailed)	Z	Pearson Correlation Sig. (2-tailed)		Pearson Correlation	Sig. (2-tailed)
	abr			5	-	ą		Ē		irc	<u>^</u>	_	qm		mba		ndm	1	_	mc			E	1	us			bs	_	-		sales			sr_neg	1	sr_neut			sr_pos	-	ws	

Correlations

**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).

	WS	,003	,977	123	-,051	,574	125	,671	000	123	-,040	,033	.627	000'	123	,274	,002	123	,511	,000	123	,755**	,000	123	-,281	,002	031	.733	123	-,115	,205	123	-,193	,033	122	100,	119	-,007	,938	120	1		123
	sr_pos	,047	,610	120	-,012	668,	170	,072	,434	120	con'-	120	.078	,399	120	,093	,311	120	,052	,571	120	-,003	,976	120	-,027	1//,	- 060	,519	120	-,117	,205	120	,051	,580	170	040	,027 118	-		120	-,007	,938	120
	sr_neut	-,127	,168	119	-,041	,661	611	,127	,169	611	700,	119	.049	,595	119	,035	,703	119	,005	,957	119	,043	,642	119	-,046	,61/	071	,440	119	,051	,582	119	-,178	,053	611	-	119	,045	,627	118	,007	,940	119
	sr_neg	,077	,401	122	,027	,772 277	771	-,215	710'	122	000'-	,380	.034	,712	122	-,057	,532	122	,019	,838	122	-,048	,603	122	,200	,02/	- 0.81	377	122	-,004	,968	122	1		170	-, L/ 0	ecu, 119	,051	,580	120	-,193	,033	122
	sales	,093	,307	123	-,060	509	145	,242	200,	125	000	,000	.140	,122	123	-,272	,002	123	,339"	,000	123	-,064	,482	123	,106	173	125	.169	123	-		123	-,004	968	122	100,	20C, 119	-,117	,205	120	-,115	,205	123
	r	-,103	,255	123	,038	,675	1/5	,065	474,	125	006,	,000	-089	,328	123	,028	,757	123	-,126	,165	123	-,087	,337	123	-,077	,400	-	•	123	,125	,169	123	-,081	,377	122	1/0,	,440	-,060	,519	120	-,031	,733	123
	ps	,128	,159	123	-,088	,332	145	-,217	,016	125	ncn'-	123, 123	010	,915	123	,078	,388	123	,179	,047	123	-,266"	,003	123	-	173	077	,400	123	,106	,245	123	,200	,027	122	-,040	/10'	-,027	,771	120	-,281	,002	123
	ns	,070	,444	123	,041	,651	1/5	,569	000	123	100'-	,374	.678	,000	123	,343	,000	123	,427	000'	123	1		123	-,266	,003	- 0.87	.337	123	-,064	,482	123	-,048	,603	77T	040	,042 119	-,003	,976	120	,755‴	000'	123
tions	mbp	,183	,043	123	-,082	,367	125	,701	000	125	-,019	,835	.838	000	123	660'	,276	123	1		123	,427**	000,	123	,179	,047	126	.165	123	,339‴	,000	123	,019	,838	122	c n n,	119	,052	,571	120	,511	000'	123
Correla	mba	-,070	,443	123	-,016	,858	125	,377	000	125	C+0,-	,640	.196	,029	123	1		123	660'	,276	123	,343	,000	123	,078	123	0.28	,757	123	-,272**	,002	123	-,057	,532	122	CCU,	د0/, 119	,093	,311	120	,274	,002	123
	dm	,164	,070	123	-,055	,546	145	,734	000,	125	000-	, 6/3			123	,196	,029	123	,838	,000	123	,678	,000	123	-,010	516,	- 089	,328	123	,140	,122	123	,034	,712	122	,049 191	611 119	,078	,399	120	,627**	000'	123
	irs	-,066	,467	123	,021	,819	145	,128	,158	123	1	123	038	,673	123	-,043	,640	123	-,019	,835	123	-,081	,374	123	-,050	184,	.966	000'	123	,368"	,000	123	-,080	,380	771	700,	119	-,083	,366	120	-,043	,633	123
	im	,011	,904	123	-,097	,285	125	1		125	120	,123	.734	000'	123	,377**	000'	123	,701""	,000	123	,569	,000	123	-,217	,016	065	,474	123	,242	,007	123	-,215	,017	771	121,	401'	,072	,434	120	,671""	000'	123
	er	-,126	,166	123	1		145	-,097	,285	123	170'	,819 123	055	,546	123	-,016	,858	123	-,082	,367	123	,041	,651	123	-,088	,532	038	,675	123	-,060	,509	123	,027	,772	177	1+0,-	100,	-,012	,899	120	-,051	,574	123
	abr	1		123	-,126	,166	145	,011	,904 CCF	125	000'-	,467 123	.164	,070	123	-,070	,443	123	,183	,043	123	,070	,444	123	,128	173	- 103	,255	123	,093	,307	123	,077	,401	771	-,127	,119 119	,047	,610	120	,003	,977	123
		Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2 -tailed)	2	Pearson Correlation	Sig. (2-tailed)	N Borrow Correlation		olg. (Z -tailed) N	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed) N	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	N	Pearson Correlation	Sig. (2 -tailed)	N Borrow Correlation	Cia /2 to it d)	olg. (Z -talled) N	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	z									
		abr			er			E		iee	5		dm			mba			mbp			su			bs		-			sales			sr_neg		**************************************	sr_neu		sr_pos			WS		

7. Correlation Matrix Release Date 2 Model

		ahr	a	Ē	ire	ę	Correla	tions	2 L	20		calac	cr nar	cr naut	cr noc	2010
		dDf	u l		115	a	mDd.	dam	SI	۶d	_	Sales	sr_rieg	sr_rieut	sr_pus	ŚŴ
abr	Pearson Correlation	1	-,025	,024	,169	160,	-,064	,095	-,022	,061	,184	-,044	,100	,070	-,029	,024
	Sig. (2-tailed)		,/84	/6/,	,005 201	,320	,488	,301	,810	905,	,043	<50,	117,	,446		(6/,
	Z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
er	Pearson Correlation	-,025	1	,088	-,039	,020	,094	-,055	,051	,046	-,088	,135	-,114	,005	-,116	,026
	Sig. (2-tailed)	,784		,338	,670	,826	,305	,546	,578	,616	,339	,141	,215	,959	,204	,780
	N	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
im	Pearson Correlation	,024	,088	1	,240	,245	,012	-,258	,139	,845	,048	,638	,068	,076	,030	,175
	Sig. (2-tailed)	797,	,338		,008	,007	,897	,004	,128	000'	,605	,000	,456	,408	,741	,054
	z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
irs	Pearson Correlation	,169	-,039	,240	1	,118	,003	-,021	-,130	,193	,955	,250"	-,050	-,011	-,083	-,047
	Sig. (2-tailed)	,065	,670	,008		,196	,976	,816	,154	,034	000'	,006	,584	,903	,366	,607
	z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
qm	Pearson Correlation	,091	,020	,245	,118	-1	$,181^{*}$,724	,350	,538	,227	-,350	-,086	,035	,025	,582
	Sig. (2-tailed)	,320	,826	,007	,196		,047	000'	000'	000'	,012	000'	,346	,704	,785	000'
	z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
mba	Pearson Correlation	-,064	,094	,012	,003	,181	1	-,160	,282"	,176	,002	,002	-,096	,047	-,075	,449
	Sig. (2-tailed)	.488	.305	.897	.976	.047		.080	,002	.054	.986	.986	.297	.606	,411	000
	z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
nhm	Paarcon Correlation	005	- 055	- 25.8	- 0.01	774	- 160	-	147	- 041	156	- 578"	- 063	- 0.73	063	"CPC
dann	Cia (2 thilad)	100	545	007'-	170-	- 77,	001-	1	747	1 - 0 -	280	000	-,006	200-	200	242,
	טוט. (ב-ומוופט)	100'	040	, UU4	010	nnn,	100,		121	cco,	100,	000	0.01	557	0.14	, nu,
	z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
ns	Pearson Correlation	-,022	,051	,139	-,130	,350	,282	,142	1	,390	-,050	-,320	-,032	-,015	,161	,774
	Sig. (2-tailed)	,810	,578	,128	,154	000'	,002	,120		,000	,589	,000	,724	,866	,078	000'
	z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
bs	Pearson Correlation	,061	,046	,845	,193	,538	,176	-,041	,390	1	,107	,266‴	,025	,051	,046	,571**
	Sig. (2-tailed)	,506	,616	000'	,034	000'	,054	,655	,000		,241	,003	,789	,582	,619	,000
	z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
L	Pearson Correlation	,184	-,088	,048	,955	,227	,002	,156	-,050	,107	1	-,041	-,088	-,050	-,097	,076
	Sig. (2-tailed)	,043	,339	,605	,000	,012	,986	,087	,589	,241		,656	,336	,586	,292	,409
	z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
sales	Pearson Correlation	-,044	,135	,638	,250	-,350	,002	-,578"	-,320	,266"	-,041	1	,133	,109	,005	-,443
	Sig. (2-tailed)	,635	,141	000	,006	000	,986	000'	,000	,003	,656		,146	,235	,957	000
	z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
sr_neg	Pearson Correlation	,100	-,114	,068	-,050	-,086	-,096	-,063	-,032	,025	-,088	,133	1	-,133	-,047	-,137
	Sig. (2-tailed)	,277	,215	,456	,584	,346	,297	,496	,724	,789	,336	,146		,145	,608	,133
	z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
sr_neut	Pearson Correlation	,070	,005	,076	-,011	,035	,047	-,023	-,015	,051	-,050	,109	-,133	1	,420	-,066
	Sig. (2-tailed)	,446	,959	,408	,903	,704	,606	,799	,866	,582	,586	,235	,145		,000	,475
	z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
sr_pos	Pearson Correlation	-,029	-,116	,030	-,083	,025	-,075	,063	,161	,046	-,097	,005	-,047	,420"	-1	-,020
	Sig. (2-tailed)	,753	,204	,741	,366	,785	,411	,496	,078	,619	,292	,957	,608	,000		,827
	Z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
WS	Pearson Correlation	,024	,026	,175	-,047	,582	,449	,242	,774	,571"	,076	-,443	-,137	-,066	-,020	1
	Sig. (2-tailed)	,795	,780	,054	,607	,000	,000	,007	,000	,000	,409	,000	,133	,475	,827	
	z	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121
ů.	orrelation is significant at	the 0.05 lev	/el (2-tailed													
**. (orrelation is significant at	t the 0.01 k	evel (2-taileo	I).												

8. Correlation Matrix Release Date 3 Model

2 afras erasmus universiteit rotterdam

9. Correlation Matrix Release Date 4 Model

	14/6	cw 076	407	122	-,067	,462 122	,406	000'	122	,411**	000'	122	,220	,015	122	,479	122	.369	000	122	,387**	,000	122	,432	,000	122	,412	000'	122	,441	,000	-,031	,731	122	-,341	122	,028	,760	122	-,090	,324	258"	,004	122	1	
	cr noc	- 184	043	122	-,047	,609, 122	-,562	,000	122	-,424	,000	122	-,546	000'	122	-,429	122	702	000	122	,260	,004	122	-,478"	,000	122	,165	,069	122	-,/60	,000	,005	,954	122	,788	122	-,035	,704	122	-,046	,613	1		122	-,258	.004
	cr naut	060	511	122	,047	,011 122	-,071	,439	122	-,037	,686	122	-,119	,192	122	-,032	C27,	040	.663	122	-,003	,973	122	-,077	,398	122	,040	,665	122	200'-	, 224 122	-,148	,103	122	,041	122	,177	,051	122	1	221	-,046	,613	122	-,090	.324
Marconstant Mar err Mar mar <thmar< th=""> mar <thmar< th=""> <thma< td=""><td>cr nag</td><td>010</td><td>914</td><td>122</td><td>,150</td><td>122</td><td>-,014</td><td>,882</td><td>122</td><td>-,075</td><td>,413</td><td>122</td><td>,001</td><td>,995</td><td>122</td><td>-,018</td><td>C+0, CCL</td><td>.049</td><td>.590</td><td>122</td><td>-,042</td><td>,644</td><td>122</td><td>-,045</td><td>,621</td><td>122</td><td>-,104</td><td>,256</td><td>122</td><td>280,</td><td>,363,122</td><td>-,178</td><td>,049</td><td>122</td><td>-,106</td><td>122</td><td>1</td><td></td><td>122</td><td>,177</td><td>,051</td><td>035</td><td>,704</td><td>122</td><td>,028</td><td>.760</td></thma<></thmar<></thmar<>	cr nag	010	914	122	,150	122	-,014	,882	122	-,075	,413	122	,001	,995	122	-,018	C+0, CCL	.049	.590	122	-,042	,644	122	-,045	,621	122	-,104	,256	122	280,	,363,122	-,178	,049	122	-,106	122	1		122	,177	,051	035	,704	122	,028	.760
Nerron Correlation air rec mod	calac	- 151	260	122	-,083	,364	-,634	,000	122	-,447**	,000	122	-,606	000'	122	-,497	122	813	000	122	,278"	,002	122	-,535"	,000	122	,249	,006	122	-,955	,000	-,061	,503	122	-	122	-,106	,246	122	,041	,656	.788	000	122	-,341	000
Aftr aftr <th< td=""><td>,</td><td>010</td><td>914</td><td>122</td><td>-,162</td><td>2/0,</td><td>,023</td><td>,804</td><td>122</td><td>-,002</td><td>,982</td><td>122</td><td>-,009</td><td>,919</td><td>122</td><td>-,015</td><td>122</td><td>012</td><td>.893</td><td>122</td><td>-,027</td><td>,767</td><td>122</td><td>,060</td><td>,511</td><td>122</td><td>-,124</td><td>,173</td><td>122</td><td>200,</td><td>,496 122</td><td>-</td><td></td><td>122</td><td>-,061</td><td>205,</td><td>-,178</td><td>,049</td><td>122</td><td>-,148</td><td>,103</td><td>.005</td><td>.954</td><td>122</td><td>-,031</td><td>.731</td></th<>	,	010	914	122	-,162	2/0,	,023	,804	122	-,002	,982	122	-,009	,919	122	-,015	122	012	.893	122	-,027	,767	122	,060	,511	122	-,124	,173	122	200,	,496 122	-		122	-,061	205,	-,178	,049	122	-,148	,103	.005	.954	122	-,031	.731
Parson Correlation abr and	, uc	2125	170	122	,035	,/03	.809	000'	122	,632	,000	122	,652	000'	122	,563	122	.858	000	122	-,281**	,002	122	,711**	000'	122	-,223	,014	122	1	122	,062	,496	122	-,933	122	,083	,363	122	-,058	,525	766	000	122	,441"	000
Altronometricity abry er/ b m mtx mb	uc.	014	875	122	-,073	,424	-,082	,367	122	,128	,162	122	-,073	,426	122	,336	122	.002	979	122	,537	,000	122	,019	,836	122	1		122	-,225	,014	-,124	,173	122	,249	122	-,104	,256	122	,040	,665	.165	,069	122	,412	000
atr er b m ms mb mb <thmb< th=""> mb mb mb<td>mm</td><td>050</td><td>582</td><td>122</td><td>-,003</td><td>175,</td><td>,941</td><td>,000</td><td>122</td><td>,956</td><td>000'</td><td>122</td><td>,639</td><td>000</td><td>122</td><td>,728</td><td>122</td><td>.796</td><td>000</td><td>122</td><td>-,042</td><td>,646</td><td>122</td><td>1</td><td></td><td>122</td><td>,019</td><td>,836</td><td>122</td><td>,/11</td><td>,000</td><td>,060</td><td>,511</td><td>122</td><td>-,535</td><td>,000,</td><td>-,045</td><td>,621</td><td>122</td><td>-,077</td><td>,398</td><td>-,478</td><td>000</td><td>122</td><td>,432</td><td>000</td></thmb<>	mm	050	582	122	-,003	175,	,941	,000	122	,956	000'	122	,639	000	122	,728	122	.796	000	122	-,042	,646	122	1		122	,019	,836	122	,/11	,000	,060	,511	122	-,535	,000,	-,045	,621	122	-,077	,398	-,478	000	122	,432	000
And Br er b im mate mb mba Secon Correlation 1 -119 083 056 036 103 123 Secon Correlation 11 -119 303 506 036 103 123 Secon Correlation 1122 1122 1123 013 013 013 012 122	nhm	059	519	122	-,159	,080, 122	-,154	,091	122	,040	,659	122	-,250	,005	122	,480	122	160	0.79	122	1		122	-,042	,646	122	,537	000	122	-,281	,002	-,027	,767	122	,278	,002	-,042	,644	122	-,003	,973	.260	,004	122	,387**	000
Abr er lb m mat mb Pearson Correlation 1 -119 1 -119 087 066 036 103 Sig (2-callech) 122 122 122 122 122 122 122 Sig (2-callech) 1191 124 1242 122 <td< td=""><td>cym</td><td>123</td><td>178</td><td>122</td><td>,127</td><td>,102</td><td>,817</td><td>,000</td><td>122</td><td>,778**</td><td>000'</td><td>122</td><td>,693</td><td>000</td><td>122</td><td>,757</td><td>122</td><td>-</td><td></td><td>122</td><td>-,160</td><td>,079</td><td>122</td><td>,796</td><td>000'</td><td>122</td><td>,002</td><td>626,</td><td>122</td><td>828,</td><td>,000</td><td>-,012</td><td>,893</td><td>122</td><td>-,813</td><td>,000,</td><td>,049</td><td>,590</td><td>122</td><td>-,040</td><td>,663</td><td>702</td><td>000</td><td>122</td><td>,369</td><td>000</td></td<>	cym	123	178	122	,127	,102	,817	,000	122	,778**	000'	122	,693	000	122	,757	122	-		122	-,160	,079	122	,796	000'	122	,002	626,	122	828,	,000	-,012	,893	122	-,813	,000,	,049	,590	122	-,040	,663	702	000	122	,369	000
abr er bb mm mac Sig. (2-taile()) 122 122 122 122 122 Sig. (2-taile()) 122 122 122 122 122 Sig. (2-taile()) 131 191 ,884 ,872 ,997 Sig. (2-taile()) 132 122 122 122 122 122 Pearson Correlation ,087 ,015 ,968 ,994 ,681 ,583 Sig. (2-taile()) ,340 ,884 ,872 ,122 122 122 Pearson Correlation ,056 ,037 ,944 1 ,588 ,593<	Чш	103	260	122	-,015	,868 122	,686	,000	122	,774	000'	122	,461	000	122	-	122	.757	000	122	,480	,000	122	,728**	000'	122	,336	000	122	202,	,000	-,015	,866	122	-,497	,000,	-,018	,845	122	-,032	,725	-,429	000	122	,479	000
abr er ib im Sig. (2-tailed) 122 1121 122 122 N 122 122 122 122 122 Fearson Correlation -,119 1013 ,015 510 Sig. (2-tailed) ,122 122 122 122 Pearson Correlation ,087 ,060 ,015 934 573 Sig. (2-tailed) ,122 122 122 122 122 Sig. (2-tailed) ,122 122 122 122 122 Sig. (2-tailed) ,122 122 122 122 122 Sig. (2-tailed) ,123 ,122 122 122 122 N 122 122 122 122 122 Sig. (2-tailed) ,123 ,123 122 122 122 N 122 122 122 122 122 Sig. (2-tailed) ,123 ,123 122 122 1	Jem	036	696	122	,062	122	,681	,000	122	,588"	,000	122	1		122	,461	122	.693	000	122	-,250	,005	122	,639	,000	122	-,073	,426	122	260,	,000	-,009	,919	122	-,606	,000,	,001	,995	122	-,119	,192	546	000	122	,220	.015
abr er ib Sig. (2-tailed) 122 1122 1122 Sig. (2-tailed) 122 122 122 N 122 122 122 122 Sig. (2-tailed) 122 122 122 122 N 122 122 122 122 122 Sig. (2-tailed) 122 122 122 122 Sig. (2-tailed) 122 122 122 122 Sig. (2-tailed) 122 122 122 122 N 122 122 122 122 Sig. (2-tailed) 122 122 122 N 122 122 122 122 Sig. (2-tailed) 122 122 122		060	510	122	,015	,872	,934	,000	122	-1		122	,588	000'	122	,774	122	.778	000	122	,040	,659	122	,956	,000	122	,128	,162	122	,032	,000	-,002	,982	122	-,447	,000,	-,075	,413	122	-,037	,686	-,424	000	122	,411	000
abr abr er Fearson Correlation 1 -,119 Sig. (2-tailed) 1,22 1,22 N Sig. (2-tailed) 1,22 1,22 Sig. (2-tailed) 1,22 1,22 1,22 Sig. (2-tailed) 1,22 1,22 1,22 N 1,22 1,22 1,22 Sig. (2-tailed) 1,22 1,22 1,22 N 1,22 1,22 1,22 Sig. (2-tailed) 1,22 1,22 1,22 Sig. (2-tailed) 1,22 1,22 1,22 Sig. (2-tailed) 1,22 1,22 1,22 N 1,22 1,22 1,22 Sig. (2-tailed) 1,22 1,22 1,22 N 1,22 1,23 1,22 Sig. (2-tailed) 1,128 1,128 1,122 Sig. (2-tailed) 1,128 1,128 1,122 N N 1,229 1,22 N N 1,22	સં	087	340	122	,013	,884 122	1		122	,934	,000	122	,681	000	122	,686	122	.817	000	122	-,154	,091	122	,941	,000	122	-,082	,367	122	609	,000	,023	,804	122	-,634	122	-,014	,882	122	-,071	,439	562	000	122	,406	000
abr abr Fearson Correlation 1 Sig. (2-tailed) 122 N Sig. (2-tailed) 122 Sig. (2-tailed) 122 Sig. (2-tailed) 122 Sig. (2-tailed) 122 N 122 Sig. (2-tailed) 122 N 122 Sig. (2-tailed) 122 N 122 N <t< td=""><td>ar</td><td>- 119</td><td>191</td><td>122</td><td>1</td><td>122</td><td>,013</td><td>,884</td><td>122</td><td>,015</td><td>,872</td><td>122</td><td>,062</td><td>,497</td><td>122</td><td>-,015</td><td>122</td><td>.127</td><td>.165</td><td>122</td><td>-,159</td><td>,080</td><td>122</td><td>-,003</td><td>,971</td><td>122</td><td>-,073</td><td>,424</td><td>122</td><td>C20,</td><td>,/03</td><td>-,162</td><td>,075</td><td>122</td><td>-,083</td><td>122</td><td>,150</td><td>660'</td><td>122</td><td>,047</td><td>,611</td><td>047</td><td>609</td><td>122</td><td>-,067</td><td>.462</td></t<>	ar	- 119	191	122	1	122	,013	,884	122	,015	,872	122	,062	,497	122	-,015	122	.127	.165	122	-,159	,080	122	-,003	,971	122	-,073	,424	122	C20,	,/03	-,162	,075	122	-,083	122	,150	660'	122	,047	,611	047	609	122	-,067	.462
Pearson Correlation Sig. (2-tailed) N N N N Sig. (2-tailed) N	ahr	dDf 1	1	122	-,119	191,	,087	,340	122	,060	,510	122	,036	,696	122	,103	122	.123	.178	122	-,059	,519	122	,050	,582	122	,014	,875	122	(7T,	,1/0 122	-,010	,914	122	-,151	122	-,010	,914	122	-,060	,511	-,184	.043	122	-,076	.407
		Pearson Correlation	Sig. (7-tailed)	N	Pearson Correlation	sig. (z-tailed) N	Pearson Correlation	Sig. (2-tailed)	N	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	N	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)	N	Pearson Correlation	Sig. (2-tailed)	Z	rearson Correlation	Sig. (2-tailed) N	Pearson Correlation	Sig. (2-tailed)	z	s Pearson Correlation	N	eg Pearson Correlation	Sig. (2-tailed)	z	eut Pearson Correlation	Sig. (2 –tailed) N	os Pearson Correlation	Sig. (2-tailed)	z	Pearson Correlation	Sig. (2-tailed)

Correlations

**. COFREIATION IS SIG

		-	-				Ū	orrelation	1			,			1		
		dDf	dr	eL	E	5	GIU	mba.	dam	EIS C	212	_	salles	sr_neg	sr_neut	sr_pus	SW SW
abr	Pearson Correlation	1	-,100	,049	-,082	-,101	000,	,014 866	-,100	,039 628	,016	-,106	,019 817	-,034	,164	-,0/0	200,
	N	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154
dr	Pearson Correlation	-,100	1	-,024	,033	,715	,001	,024	-,038	,057	,058	,734**	-,035	-,140	-,033	,164	,062
	Sig. (2-tailed)	,217	ļ	,770	,686	000	988,	,770	,643	,486	,477	000	,666	,084	,682	,043	,443
;	z	155	155	155	155	105	155	155	155	155	155	110	103	241	103	155	105
er	Pearson Correlation	,049	-,024	1	,044 586	105	-,018	-,085	,066	2180,	,051	,110	-,021	-,117	-,031	-,038	,103
	N	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154
in	Pearson Correlation	-,082	,033	,044	1	,116	,774	,655"	,399"	,221	,313	,124	-,035	,077	,021	,047	,490 **
	Sig. (2-tailed)	,315	,686	,586		,153	,000	,000	,000	,006	,000	,126	,662	,342	,800	,561	,000
	Z	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154
irs	Pearson Correlation	-,101	,715**	,105	,116	1	,068	,037	,080	-,062	,036	,983	,184 [°]	-,080	,014	,051	-,007
	Sig. (2-tailed)	,214	000	,196	,153		,403	,653	,323	,448	,657	,000	,023	,321	,860	,531	,934
	z	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154
qm	Pearson Correlation	,000	,001	-,018	,774	,068	1	,847	,365	-,126	,014	,065	,021	,084	,031	,062	,060
	Sig. (2-tailed)	995	,988	,826	,000	,403		,000	,000	,119	,865	,424	,791	,299	,707	,446	,459
	z	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154
mba	Pearson Correlation	,014	,024	-,083	,655	,037	,847	-	,290	,056	,028	,031	,036	,095	,125	,134	,161
	Sig. (2-tailed)	,866	,770	,304	000	,653	000,		000,	,489	,729	,705	,660	,240	,122	760,	,047
	z	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154
dqm	Pearson Correlation	-,100	-,038	,066	,399	,080	,365	,290	1	-,044	-,296	,064	,101	-,058	-,184	,048	-,044
	Sig. (2-tailed)	,216	,643	,414	000'	,323	000'	000'		,588	000	,433	,210	,473	,022	,550	,591
	z	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154
su	Pearson Correlation	,039	,057	,081	,221	-,062	-,126	,056	-,044	1	,318	-,052	-,062	-,023	,082	,070	,894
	Sig. (2-tailed)	,628	,486	,318	,006	,448	,119	,489	,588		,000	,525	,443	,782	,311	,388	000
	Z	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154
bs	Pearson Correlation	,016	,058	,051	,313	,036	,014	,028	-,296	,318	1	,091	-,295	,160	,229	-,086	,597
	Sig. (2-tailed)	,843	,477	,532	000	,657	,865	,729	000'	000'		,262	000,	,047	,004	,290	,000
	z	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154
-	Pearson Correlation	-,106	,734	,110	,124	,983	,065	,031	,064	-,052	,091	1	-,001	-,072	,014	,039	,023
	Sig. (2-tailed)	191,	000	,173	,126	000	,424	,705	,433	,525	,262		988	,377	,865	,632	,778
	2	1040	105	104	104	104	104	104	101	104	104 	104	104	104	154	104	104
sales	Fearson Correlation	610,	-,055	120,-	-,055	,184	170,	,036	101,	790'-	-,295	-,001	1	100'-	,004	,000	-,105
	olg. (z -talleu) N	154	153	154	154	620, 154	157	154	154	154	154	154	154	40C,	202, 154	154	154
sr neg	Pearson Correlation	- 034	- 140	-117	077	- 080	0.84	1095	- 058	- 023	160	- 072	- 051		309	- 395 -	022
	Sig. (2-tailed)	.680	.084	.148	.342	.321	299	.240	.473	.782	.047	377	.534	I	000	000	.791
	z	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154
sr_neut	Pearson Correlation	,164	-,033	-,031	,021	,014	,031	,125	-,184	,082	,229	,014	,004	,309	1	-,164	,130
	Sig. (2-tailed)	,042	,682	,701	,800	,860	,707	,122	,022	,311	,004	,865	,959	000'		,042	,109
	Z	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154
sr_pos	Pearson Correlation	-,070	,164	-,038	,047	,051	,062	,134	,048	,070	-,086	,039	,066	-,395‴	-,164	1	,021
	Sig. (2-tailed)	,390	,043	,640	,561	,531	,446	760,	,550	,388	,290	,632	,416	,000	,042		,793
	z	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154
ws	Pearson Correlation	,005	,062	,103	,490	-,007	,060	,161	-,044	,894	,597	,023	-,165	,022	,130	,021	1
	Sig. (2-tailed)	,954	,443	,203	000'	,934	,459	,047	,591	000	000	,778	,041	,791	,109	,793	
	Z	154	153	154	154	154	154	154	154	154	154	154	154	154	154	154	154

10. Correlation Matrix Release Date 5 Model

							Ŭ -	orrelations									
		abr	dr	er	Ē	irs	q	mba	dqm	su	bs	-	sales	sr_neg	sr_neut	sr_pos	WS
abr	Pearson Correlation	1	,089	-,104	-,113	,141	-,101	-,122	-,114	-,063	-,133	,140	,083	,175	-,075	,026	-,140
	Sig. (2-tailed)		,330	,254	,215	,119	,266	,179	,209	,487	,142	,122	,363	,053	,411	,777	,122
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
dr	Pearson Correlation	,089	1	,071	,001	,640	-,005	-,004	-,007	-,005	000'	,643	600'	-,045	,110	,008	-,014
	Sig. (2-tailed)	,330		,438	,995	000	,958	,964	,943	,954	666'	000	,918	,622	,227	,926	,876
	z	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122	122
er	Pearson Correlation	-,104	1/0,	-	,065 222	,061	,005 120	,029	c/0,	,063	,069	,062	-,018	-,068	-,028	-,048	2 <u>2 0</u> ,
	Sig. (2-tailed)	,254	,438		,478	503,	,478	.//	,412	,486	,447	,498	,847	,454	,/60	68 5,	,545
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
Ē	Pearson Correlation	-,113	,001	,065	1	-,126	,889	,847	,903	,846	,565	-,123	-,188	-,122	-,174	-,136	,938
	Sig. (2-tailed)	,215	,995	,478		,166	,000	,000	,000	,000	,000	,175	,037	,181	,054	,134	,000
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
irs	Pearson Correlation	,141	,640	,061	-,126	1	-,021	,050	-,067	,008	-,106	1,000	,309"	,032	,104	,024	-,074
	Sig. (2-tailed)	,119	,000	,503	,166		,819	,583	,463	,930	,242	,000	,001	,721	,254	,789	,418
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
dm	Pearson Correlation	-,101	-,005	,065	,889	-,021	1	,962	,991	,808	,623	-,019	-,076	-,143	-,215	-,183	,915
	Sia. (2-tailed)	.266	.958	.478	000	.819		000	000	000	000	.833	.406	.113	.017	.043	000
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
- you	Darrean Correlation	- 122	007	020	847**	020	067	-	046	760	621	020	015	- 133	- 187	- 201	010
n na		1122	+ 00°-	010	110	000	200	1	000	000	170'	000		C 7 T -	701'-	107'-	016
	Sig. (Z -tailed)	6/T'	404	067,	000	500,	000		000	000,	000,	49C,	100,	111,	,044	970'	000,
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
dqm	Pearson Correlation	-,114	-,007	,075	,903	-,067	.991	,946	1	,793	,604	-,065	-,107	-,136	-,216	-,179	,915
	Sig. (2-tailed)	,209	,943	,412	000'	,463	,000	,000		,000	,000	,476	,240	,135	,016	,048	,000
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
ns	Pearson Correlation	-,063	-,005	,063	,846	,008	,808	,760	,793	1	,291	,006	,071	-,084	-,204	-,099	,879"
	Sig. (2-tailed)	,487	,954	,486	000'	,930	,000	,000	,000		,001	,949	,436	,358	,023	,276	,000
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
ps	Pearson Correlation	-,133	,000	,069	,565	-,106	,623	,621	,604	,291	-1	-,094	-,558"	-,133	-,023	-,177	,619
	Sig. (2-tailed)	.142	666'	.447	000	.242	000	000	000	.001		.302	000	.142	.798	.050	000
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
_	Pearson Correlation	.140	.643	.062	123	1.000	-,019	.050	-,065	.006	-,094	1	.287"	.030	.105	.024	071
	Sig. (2-tailed)	.122	000	.498	.175	000	.833	.584	.476	949	.302		.001	.742	.250	.788	.436
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
sales	Pearson Correlation	,083	600'	-,018	-,188	.309	-,076	,015	-,107	,071	-,558"	,287**	1	,112	-,025	,010	-,172
	Sig. (2-tailed)	,363	,918	,847	,037	,001	,406	,867	,240	,436	000'	,001		,216	,780	,917	,057
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
sr_neg	Pearson Correlation	,175	-,045	-,068	-,122	,032	-,143	-,123	-,136	-,084	-,133	,030	,112	1	-,049	,054	-,123
	Sig. (2-tailed)	,053	,622	,454	,181	,721	,113	,177	,135	,358	,142	,742	,216		,589	,556	,175
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
sr_neut	Pearson Correlation	-,075	,110	-,028	-,174	,104	-,215	-,182	-,216	-,204	-,023	,105	-,025	-,049	1	,313	-,177
	Sig. (2-tailed)	,411	,227	,760	,054	,254	,017	,044	,016	,023	,798	,250	,780	,589		,000	,051
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
sr_pos	Pearson Correlation	,026	,008	-,048	-,136	,024	-,183	-,201	-,179	-,099	-,177	,024	,010	,054	,313	1	-,163
	Sig. (2-tailed)	777,	,926	,595	,134	,789	,043	,026	,048	,276	,050	,788	,917	,556	,000		,072
	z	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
WS	Pearson Correlation	-,140	-,014	,055	,938	-,074	,915	,910	,915	,879	,619	-,071	-,172	-,123	-,177	-,163	1
	Sig. (2-tailed)	,122	,876	,545	000'	,418	000'	,000	,000	000'	,000	,436	,057	,175	,051	,072	
	N	123	122	123	123	123	123	123	123	123	123	123	123	123	123	123	123
**. Co	rrelation is significant a	t the 0.01 l	evel (2-taile	d).													
*. Cor	relation is significant at	the 0.05 lev	vel (2-tailed														

11. Correlation Matrix Release Date 6 Model

97

Prob.**

0.0000

0.0000

Drob **

12. Unit Root Test Model 1

12.1. Level

 Null Hypothesis: Unit root (individual unit root process)

 Sample: 12/26/2007 8/29/2012

 Exogenous variables: Individual effects

 Automatic selection of maximum lags

 Automatic lag length selection based on SIC: 0 to 14

 Total number of observations: 3834

 Cross-sections included: 16

 Method
 Statistic

 ADF - Fisher Chi-square
 701.533

 ADF - Choi Z-stat
 -21.0408

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results UNTITLED

Series	Prob.	Lag	Max Lag	Obs	
ER	0.0000	0	15	244	
ABR	0.0000	0	15	244	
S	0.3898	14	14	216	
R	0.0010	2	15	242	
IRS2	0.2660	14	14	216	
SR POS	0.0000	1	15	243	
SR NEUT	0.0000	0	15	244	
NS	0.0000	0	14	243	
PS	0.0011	0	14	243	
WS	0.0000	1	15	243	
MBP	0.0633	3	15	241	
MB	0.0000	0	15	244	
MBA	0.0000	0	14	242	
IM	0.0001	1	15	243	
MM	0.0000	0	15	244	
IB	0.0008	2	15	242	

Null Hypothesis: Unit root (individual unit root process) Sample: 12/26/2007 8/29/2012 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total number of observations: 3872 Cross-sections included: 16 Method Statistic

Withilliou	Statistic	1100.	
PP - Fisher Chi-square	858.840	0.0000	
PP - Choi Z-stat	-25.4058	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results UNTITLED

Series	Prob.	Bandwidth	Obs	
ER	0.0000	4.0	244	
ABR	0.0000	5.0	244	
S	0.0057	4.0	230	
R	0.0000	7.0	244	
IRS2	0.0043	5.0	230	
SR POS	0.0000	6.0	244	
SR NEUT	0.0000	3.0	244	
NS	0.0000	7.0	243	
PS	0.0028	6.0	243	
WS	0.0000	6.0	244	
MBP	0.0001	3.0	244	
MB	0.0000	6.0	244	
MBA	0.0000	3.0	242	
IM	0.0000	3.0	244	
MM	0.0000	1.0	244	
IB	0.0002	3.0	244	

12.2. First Difference

Null Hypothesis: Unit root (individual unit root process) Sample: 12/26/2007 8/29/2012 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 14 Total number of observations: 3796 Cross-sections included: 16

Method	Statistic	Prob.**	
ADF - Fisher Chi-square	1531.33	0.0000	
ADF - Choi Z-stat	-37.4702	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results D(UNTITLED)

Series	Prob.	Lag	Max Lag	Obs	
D(ER)	0.0000	4	15	239	
D(ABR)	0.0000	4	15	239	
D(S)	0.0000	14	14	215	
D(R)	0.0000	2	15	241	
D(IRS2)	0.0000	13	14	216	
D(SR POS)	0.0000	0	15	243	
D(SR NEUT)	0.0000	4	15	239	
D(NS)	0.0000	5	14	237	
D(PS)	0.0000	0	14	242	
D(WS)	0.0000	3	15	240	
D(MBP)	0.0000	2	15	241	
D(MB)	0.0000	2	15	241	
D(MBA)	0.0000	0	14	241	
D(IM)	0.0000	3	15	240	
D(MM)	0.0000	3	15	240	
D(IB)	0.0000	1	15	242	

Null Hypothesis: Unit root (individual unit root process) Sample: 12/26/2007 8/29/2012 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total number of observations: 3856 Cross-sections included: 16

Method	Statistic	Prob.**	
PP - Fisher Chi-square	757.571	0.0000	
PP - Choi Z-stat	-23.5895	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests

assume asymptotic normality.

Intermediate Phillips-Perron test results D(UNTITLED)

Series	Prob.	Bandwidth	Obs	
D(ER)	0.0001	140.0	243	
D(ABR)	0.0001	126.0	243	
D(S)	0.0000	2.0	229	
D(R)	0.0001	29.0	243	
D(IRS2)	0.0000	1.0	229	
D(SR_POS)	0.0000	10.0	243	
D(SR_NEUT)	0.0001	215.0	243	
D(NS)	0.0001	82.0	242	
D(PS)	0.0000	15.0	242	
D(WS)	0.0001	115.0	243	
D(MBP)	0.0001	55.0	243	
D(MB)	0.0000	17.0	243	
D(MBA)	0.0000	22.0	241	
D(IM)	0.0001	42.0	243	
D(MM)	0.0001	109.0	243	
D(IB)	0.0000	17.0	243	

12.3. Second Difference

Null Hypothesis: Unit root (individual unit root process) Sample: 12/26/2007 8/29/2012 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 5 to 14 Total number of observations: 3692 Cross-sections included: 16

Statistic	Prob.**	
1217.20	0.0000	
-32.9815	0.0000	
	Statistic 1217.20 -32.9815	Statistic Prob.** 1217.20 0.0000 -32.9815 0.0000

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results D(UNTITLED,2)

Series	Prob.	Lag	Max Lag	Obs	
D(ER,2)	0.0000	8	15	234	
D(ABR,2)	0.0000	8	15	234	
D(S,2)	0.0000	13	14	215	
D(R,2)	0.0000	7	15	235	
D(IRS2,2)	0.0000	14	14	214	
D(SR POS,2)	0.0000	8	15	234	
D(SR_NEUT,2)	0.0000	11	15	231	
D(NS,2)	0.0000	7	14	234	
D(PS,2)	0.0000	10	14	231	
D(WS,2)	0.0000	10	15	232	
D(MBP,2)	0.0000	9	15	233	
D(MB,2)	0.0000	8	15	234	
D(MBA,2)	0.0000	5	14	235	
D(IM,2)	0.0000	10	15	232	
D(MM,2)	0.0000	10	15	232	
D(IB,2)	0.0000	10	15	232	

Null Hypothesis: Unit root (individual unit root process)

Sample: 12/26/2007 8/29/2012

Exogenous variables: Individual effects

Newey-West automatic bandwidth selection and Bartlett kernel

Total number of observations: 3840

Cross-sections included: 16

Method	Statistic	Prob.**	
PP - Fisher Chi-square	294.731	0.0000	
PP - Choi Z-stat	-14.8761	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results D(UNTITLED,2)

Series	Prob.	Bandwidth	Obs	
D(ER,2)	0.0001	62.0	242	
D(ABR,2)	0.0001	62.0	242	
D(S,2)	0.0001	227.0	228	
D(R,2)	0.0001	64.0	242	
D(IRS2,2)	0.0001	56.0	228	
D(SR_POS,2)	0.0001	32.0	242	
D(SR NEUT,2)	0.0001	172.0	242	
D(NS,2)	0.0001	240.0	241	
D(PS,2)	0.0001	43.0	241	
D(WS,2)	0.0001	59.0	242	
D(MBP,2)	0.0001	94.0	242	
D(MB,2)	0.0001	11.0	242	
D(MBA,2)	0.0001	41.0	240	
D(IM,2)	0.0001	38.0	242	
D(MM,2)	0.0001	36.0	242	
D(IB,2)	0.0001	42.0	242	

13. Autocorrelation and Partial Autocorrelation of each variable

13.1. Expected Return (left) and Abnormal Return (right)

Date: 09/27/12 Time Sample: 1/01/2000 9 Included observation	e: 14:31 W01/2012 hs: 657					Date: 09/27/12 Tim Sample: 1/01/2000 9 Included observation	a: 14:42 V01/2012 Is: 657					
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
Autocorrelation	Panal Correlation	AC 1 -0.030 2 0.033 3 0.040 4 -0.020 5 0.089 6 0.087 7 -0.099 8 -0.017 9 -0.037 11 0.108 15 0.064 10 0.07 10 0.02 10 0.07 10 0.02 10 0.07 10 0.02 10 0.07 10 0.02 10 0.07 10 0.02	+AC -0.030 0.035 0.043 -0.019 0.085 0.091 -0.010 0.085 0.091 -0.035 0.039 -0.017 0.055 0.050 0.049 0.065 0.055	Q-3tat 0.5962 2.5335 2.60359 1.2818 2.8072 2.8072 2.8072 2.8072 2.8072 2.8072 2.8072 2.8072 2.8072 2.9028 2.9028 2.903	Prob 0.440 0.483 0.483 0.483 0.591 0.0154 0.046 0.0154 0.040 0.0154 0.040 0.015 0.010 0.012 0.002 0.003 0.004 0.005 0.007 0.010 0.004 0.004 0.007 0.004 0.007 0.004 0.007 0.007 0.004 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.004 0.007 0.004 0.007 0.004			1 2 3 4 5 6 7 8 9 10 11 12 2 3 4 5 6 7 8 9 10 11 12 13 4 15 16 17 18 9 20 21 22 2 3 2 2 5 2 6 7 2 8 9 30 31 32 2 33 4	AC -0.010 0.062 0.056 0.003 0.007 0.101 -0.076 0.004 0.125 -0.014 0.052 0.054 0.052 0.054 0.052 0.054 0.052 0.054 0.052 0.052 0.054 0.052 0.054 0.052 0.054 0.052 0.052 0.052 0.054 0.052 0.052 0.054 0.052 0.052 0.050 0.052 0.050 0.052 0.050 0.050 0.052 0.050 0.050 0.050 0.052 0.050 0.050 0.050 0.050 0.052 0.050 0.	-0.010 0.062 0.057 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.003 0.002 0.005 0.002 0.005 0.002 0.005 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.005 0.002 0.003 0.005 0.003 0.005 0.003 0.005 0.001 0.002 0.00500000000	0.0676 4.6479 2.5916 4.6555 5.25916 4.6555 5.25916 4.6555 5.2566 1.9 2001 2.2 871 1.2 2582 7.3 1.5 2.5 2.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	0.795 0.795 0.274 0.325 0.031 0.002 0.002 0.0000 0.000000
		35 -0.067 36 0.035	-0.087 -0.001	70.099 70.967	0.000	41 10		36 36	0.050	0.001	93.037	0.000

13.2.

Positive comments (left) and change positive comments (right)

Date: 10/21/12 Tim Sample: 12/26/2007 Included observation	e: 14:23 18/29/2012 ns: 245					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1		1	0.630	0.630	98.431	0.000
1		2	0.497	0.165	159.84	0.000
· •	1 00	3	0.393	0.048	198.52	0.000
I 🚃	1 10	4	0.274	-0.051	217.32	0.000
· 🗖	1 10	5	0.169	-0.061	224.56	0.000
i þi	1 10	6	0.097	-0.030	226.92	0.000
1 Di	1 0	7	0.078	0.046	228.48	0.000
i Di	1 0	8	0.080	0.059	230.13	0.000
i Di	1 00	9	0.086	0.039	232.03	0.000
1 🛛 1	1 10	10	0.077	-0.008	233.56	0.000
1 1	<u> </u> !	11	-0.000	-0.134	233.56	0.000
10	I 🗖	12	0.063	0.123	234.60	0.000
	1 10	13	0.035	+0.025	234.92	0.000
1.1	1 10	14	0.010	-0.014	234.95	0.000
1.1	1 00	15	0.013	0.009	234.99	0.000
1.1	1 10	16	0.005	-0.014	235.00	0.000
1.1	1 10	17	0.021	0.026	235.12	0.000
1 🗓 1	1 10	18	0.069	0.095	236.41	0.000
i Di	1 00	19	0.089	0.034	238.53	0.000
1 Di	1 10	20	0.076	-0.032	240.09	0.000
i Di	1 10	21	0.075	-0.012	241.61	0.000
ւլը։	1 10	22	0.072	+0.022	243.03	0.000
1.1	1 10	23	0.019	-0.033	243.13	0.000
1 Dir	1 10	24	0.049	0.084	243.80	0.000
10	1 0	25	-0.011	-0.091	243.83	0.000
101	1 10	26	-0.051	+0.057	244.55	0.000
10	1 10	27	-0.072	-0.048	245.99	0.000
10	1 10	28	-0.041	0.068	246.45	0.000
- UL	1 00	29	-0.035	0.037	246.80	0.000
	1 10	30	-0.048	+0.032	247.45	0.000
10	1 11	31	-0.091	-0.130	249.78	0.000
10	1 10	32	-0.094	-0.026	252.31	0.000
10	1 10	33	-0.061	0.078	253.36	0.000
10	1 10	34	-0.094	+0.053	255.89	0.000
E 1	1 0	35	+0.162	-0.083	263.48	0.000
C 1	1 (b)	36	-0.099	0.050	266.33	0.000

Date: 10/21/12 Time Sample: 12/26/2007 Included observation	e: 14:23 8/29/2012 is: 244					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
<u> </u>		1	-0.319	-0.319	25.068	0.000
		2	+0.038	-0.156	25.435	0.000
	99	3	0.023	-0.046	25.570	0.000
	1 21	4	-0.023	-0.041	25.708	0.000
1 11	I <u>"</u>	5	-0.041	-0.070	20.130	0.000
1 191	1 1	1 2	-0.076	-0.137	27.575	0.000
1 11		1 %	-0.027	-0.132	27.704	0.000
	1 51	l «	0.005	-0.101	27.170	0.001
	1 32	10	0.020	0.040	20.059	0.001
	1 25	111	0.092	0.072	20.617	0.001
	1 71	112	0.132	-0.103	43 556	0.000
1 16	1 31	12	.0.012	-0.044	43 504	0.000
	l ali	14	.0.032	0.057	43.854	0.000
1 11	l ili	15	0.000	-0.024	43.961	0.000
l ifi	l inti	16	-0.034	-0.065	44 264	0.000
l ili	i i i	17	-0.046	-0.133	44.828	0.000
l ili	i i i	18	0.038	-0.068	45.209	0.000
l din	1 1	19	0.045	0.003	45 761	0.001
l ú	1 10	20	-0.017	-0.019	45.842	0.001
l di	l di	21	0.003	-0.005	45.845	0.001
լի	1 11	22	0.071	0.007	47.210	0.001
	(d)	23	-0.116	-0.113	50.875	0.001
	1 10	24	0.124	0.060	55.040	0.000
10	(j)	25	+0.026	0.027	55.230	0.000
1 10	1 1	26	+0.037	0.004	55.606	0.001
() () ((()	27	-0.058	-0.094	56.524	0.001
լ դի	լ վի	28	0.036	-0.058	56.878	0.001
I)	1 11	29	0.021	0.006	56.998	0.001
j)-	עי ו	30	0.040	0.098	57.450	0.002
l di	1 99	31	-0.051	-0.009	58.188	0.002
1 10	[<u>[]</u>	32	+0.052	-0.109	58.944	0.003
		33	0.090	0.024	61.233	0.002
L 12	1 22	34	0.049	0.051	61.917	0.002
	1 1	35	-0.180	-0.086	71.194	0.000
III	1 141	136	0.021	-0.075	/1.326	0.000

13.3.

Neutral comments (left) and Change in neutral comments (right)

Date: 10/21/12 Tim Sample: 12/26/2007 Included observation	e: 14:22 8/29/2012 1s: 245					
Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob
¢.	() ()	1	-0.096	-0.096	2.2721	0.132
10	1 10	2	-0.008	-0.018	2.2893	0.318
i i i i i	1 1	3	0.037	0.035	2.6278	0.453
111	1.11	4	0.009	0.016	2.6475	0.618
111		5	0.021	0.024	2.7586	0.737
111	1 12	1 2	0.041	0.044	3.1747	0.787
	1 111	1 %	0.0014	0.009	3.1740	0.000
		1 8	0.014	0.014	2 2562	0.920
i i i i i i	1 16	110	0.023	0.022	3.4852	0.940
l ifi	l ifi	111	-0.022	-0.020	3 61 32	0.980
i li	l ili	12	0.026	0.019	3,7902	0.987
L Dir	1 10	13	0.027	0.028	3.9827	0.991
l Infi	անն	14	-0.065	-0.062	5.0972	0.984
i i ji	1 1	15	0.022	0.006	5.2263	0.990
(D)	1 10	16	0.045	0.043	5.7613	0.990
l i þi	1 1	17	0.067	0.081	6.9677	0.984
111	1 10	18	-0.000	0.012	6.9678	0.990
- up	1 11	19	+0.009	-0.010	6.9885	0.994
	1 1	20	-0.001	-0.005	6.9887	0.997
141		21	-0.057	-0.066	7.8565	0.996
1	1 12	22	0.080	0.061	9.5756	0.990
	1 11	23	0.005	0.015	9.5828	0.994
		24	0.015	0.025	9.0403	0.990
111	1 16	26	0.032	0.040	11 033	0.995
i i fi	1 16	27	0.043	0.038	11 194	0.997
l di	L di	28	-0.011	-0.018	11.228	0.998
i	l di	29	-0.019	-0.030	11.325	0.999
l di	1 10	30	-0.031	-0.044	11.600	0.999
ի դիս	լ դի	31	0.034	0.028	11.933	0.999
լինը	1 10	32	0.045	0.040	12.520	0.999
1 1	1 1	33	0.066	0.076	13.779	0.999
(p)	1 1	34	0.042	0.052	14.290	0.999
10		35	0.007	0.004	14.306	0.999
	1 11	36	0.005	0.013	14.312	1.000

13.4. Negative comments (left) and Change in negative comments (right)

13.5. Sales (left) and change in Sales (right)

Date: 09/27/12 Tim Sample: 1/01/2000 9 Included observation	e: 14:28 9/01/2012 1s: 400				
Autocorrelation	Partial Correlation	AC	PAC	Q·Stat	Prob
	Partial Correlation	AL 1 -0.006 2 -0.006 3 -0.006 4 -0.006 5 -0.006 6 -0.006 6 -0.006 8 -0.006 9 -0.005 11 -0.005 11 -0.005 12 -0.006 9 -0.005 12 -0.005 22 -0.005 22 -0.005 22 -0.005 22 -0.005 22 -0.005 23 -0.	PAC -0.006 -0.006 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.007 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.006 -0.001 -0.001 -0.012 -0.012 -	0.0164 0.0329 0.0495 0.0495 0.0663 0.0825 0.0063 0.0825 0.0405 0.0405 0.01022 0.1002 0.01022 0.1002 0.0100 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000	Prob 0.8984 0.997 0.984 0.997 0.984 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.022 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.037 0.025 0.034 0.012 0.012 0.012 0.012 0.025 0.034 0.010 0.010 0.010 0.025 0.034 0.010 0.010 0.010 0.025 0.034 0.010 0.010 0.025 0.034 0.010 0.010 0.025 0.034 0.010 0.010 0.010 0.025 0.034 0.010 0.010 0.010 0.010 0.025 0.037 0.0127 0.0127 0.012 0.034 0.010 0.012 0.025 0.034 0.010 0.012 0.012 0.012 0.025 0.034 0.010 0.012 0.025 0.034 0.010 0.025 0.034 0.010 0.025 0.024 0.024 0.025 0.024 0.025
		34 -0.005 35 -0.007 36 -0.007	-0.026 -0.028 -0.029	45.921 45.943 45.966	0.083 0.102 0.123

13.6.

Change in Interaction Variable between Sales and Rating

Date: 10/21/12 Tim	9:14:40				
ncluded observation	is: 230				
Autocorrelation	Partial Correlation	AC	PAC	∩-Stat	Proh
Hatooonolaalon	r andar oonronadon	110	1110	4 9 m	1100
· ·	= '	1 -0.38	8 -0.388	35.162	0.000
10		2 -0.08	8 -0.258	36.244	0.000
- P	יויי ו	3 0.10	4 -0.037	38.788	0.000
		4 -0.07	1 -0.066	39.976	0.000
	1 111	5 0.01	8 -0.022	40.050	0.000
		7 0.02	9 0.053	40.187	0.000
16	1 36	0 0.01	8 0.101	40.221	0.000
16	1 15	9.0.09	M 0.101	43.435	0.000
ili –	l ifi	10 -0.02	6 -0.010	44 609	0.000
ili	l ili	11 0.01	7 0 026	44 683	0.001
di la constante de la constante	մի	12 .0.03	7 .0.050	45.012	0.00
լիր	ի դի	13 0.07	8 0.057	46.509	0.001
	l di	14 -0.14	1 -0.113	51.412	0.001
- U -		15 -0.02	6 -0.156	51.584	0.00
10		16 0.04	7 0.120	52.145	0.00
101	ի դին	17 0.08	i0 0.048	53.059	0.00
10 1	10	18 -0.07	1 .0.015	54.337	0.00
10	1 10	19 0.03	7 0.014	54.676	0.00
 ([]	20 -0.12	5 -0.178	58.639	0.00
· P	1 10	21 0.13	3 0.012	63.157	0.00
	1 98	22 0.04	1 0.030	63.587	0.001
<u>.</u>	1 32	23 -0.08	0.022	64.743	0.001
121	1 31	24 0.08	1 0.040	05.711	0.001
11	1 31	25 0.01	1 0.020	67.067	0.00
	1 31	20 -0.07	1 -0.081	60.734	0.000
111	1 11	20 .0.03	0 0.048	60 001	0.000
ihi		20 0.02	5 0.017	69.982	0.001
if.	l ili	30 -0.00	1 -0.062	70 984	0.001
ili -	l îhi	31 0.11	0 0.177	74.213	0.00
a li	l di	32 -0.14	2 0.075	79.673	0.00
i) i	1 10	33 0.01	9 0.044	79.769	0.00
i bi	1 10	34 0.09	1 -0.032	82.038	0.001
¢۲.	լ դիս	35 -0.08	3 -0.032	83.939	0.00
- III	l ulu	36 -0.00	3 -0.051	83.941	0.001

13.7.

News Searches (left) and change in News Search (right)

ate: 09/27/12 Time: 14:52 ample: 1/01/2000 9/01/2012 cluded observations: 244					Date: 09/27/12 Tin Sample: 1/01/2000 Included observatio	ne: 14:53 9/01/2012 ins: 243					
Autocorrelation Partial Correl	on AC	PAC Q)∙Stat	Prob	Autocorrelation	Partial Correlation	_	AC	PAC	Q-Stat	-
	$ \begin{array}{c} 1 & 0.442 \\ 2 & 0.321 \\ 3 & 0.281 \\ 4 & 0.276 \\ 7 & 0.366 \\ 8 & 0.220 \\ 9 & 0.322 \\ 110 & 0.226 \\ 9 & 0.322 \\ 110 & 0.226 \\ 110 & 0.226 \\ 110 & 0.226 \\ 12 & 0.244 \\ 12 & 0.244 \\ 12 & 0.244 \\ 13 & 0.196 \\ 22 & 0.231 \\ 20 & 0.253 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 22 & 0.223 \\ 23 & 0.223 \\ 23 & 0.223 \\ 23 & 0.243 \\ 23 & 0.247 \\ 30 & 0.140 \\ 32 & 0.247 \\ 30 & 0.140 \\ 32 & 0.247 \\ 30 & 0.140 \\ 32 & 0.247 \\ 30 & 0.140 \\ 32 & 0.247 \\ 35 & 0.140 \\ 3$	0.442 4 0.156 7 0.118 9 0.114 9 0.114 9 0.114 9 0.114 9 0.114 1 0.126 1 0.126 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.018 1 0.016 2 0.016 3 0.016 3 0.017 4 0.018 4 0.019 4 0.019 4 0.019 4 0.019 5 0.019 5 0.019 4 0.019	8,270 3,762 3,763 3,63 12,52 30,39 52,36 55,36 15,21 10,38 147,55 15,21 139,86 16,42 16,42 16,42 16,42 16,42 16,42 16,43 16,45 1				1 2 3 4 5 6 7 8 9 10 11 12 13 4 15 16 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28 29 31 32 33 34 35 36 31 32 33 34 35 36 36 36 36 36 36 36 36 36 36 36 36 36	0.390 0.078 0.028 0.005 0.034 0.015 0.087 0.016 0.087 0.010 0.022 0.010 0.022 0.010 0.071 0.071 0.071 0.030 0.052 0.044 0.052 0.044 0.052 0.044 0.052 0.044 0.052 0.0146 0.052 0.0146 0.052 0.0146 0.052 0.0146 0.052 0.0146 0.052 0.0146 0.052 0.014 0.052 0.014 0.055 0.014 0.015 0.015 0.014 0.055 0.014 0.055 0.014 0.015 0.014 0.055 0.0146 0.055 0.0146 0.012 0.015 0.014 0.015 0.00	$\begin{array}{c} -0.390\\ -0.271\\ -0.219\\ -0.168\\ -0.219\\ -0.184\\ -0.152\\ -0.081\\ -0.092\\ -0.061\\ -0.092\\ -0.091\\ -0.091\\ -0.091\\ -0.091\\ -0.091\\ -0.091\\ -0.091\\ -0.091\\ -0.091\\ -0.091\\ -0.010\\ -0.000\\$	$\begin{array}{c} 37,361\\ 38,863\\ 39,058\\ 39,058\\ 39,058\\ 39,058\\ 39,058\\ 39,058\\ 39,058\\ 39,058\\ 39,058\\ 39,058\\ 39,058\\ 39,350\\ 39,350\\ 39,350\\ 43,348\\ 43,348\\ 43,348\\ 43,348\\ 43,348\\ 43,348\\ 43,348\\ 43,348\\ 43,348\\ 43,348\\ 43,348\\ 43,348\\ 43,348\\ 45,370\\ 47,550\\ 55,322\\ 50,582\\ 26,352\\ 50,582\\ 26,352\\$	

13.8. Product Searches (left) **and change in Product Search** (right)

Date: 09/27/12 Time: 14:57 Sample: 1/01/2000 9/01/2012 Included observations: 212										
Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob				
		$\begin{array}{c}1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\111\\12\\13\\14\\15\\16\\7\\22\\23\\24\\25\\27\\28\\29\\31\\32\\33\\34\\35\end{array}$	$\begin{array}{c} 0.872\\ 0.771\\ 0.694\\ 0.633\\ 0.595\\ 0.483\\ 0.455\\ 0.444\\ 0.452\\ 0.455\\ 0.444\\ 0.427\\ 0.256\\ 0.226\\ 0.256\\ 0.226\\ 0.256\\ 0.226\\ 0.0120\\ 0.026\\ 0.026\\ 0.0120\\ 0.005\\ 0.00$	$\begin{array}{c} 0.872\\ 0.043\\ 0.053\\ 0.043\\ 0.063\\ 0.063\\ 0.081\\ 0.073\\ 0.081\\ 0.073\\ 0.081\\ 0.073\\ 0.081\\ 0.073\\ 0.081\\ 0.038\\ 0.035\\ 0.035\\ 0.009\\ 0.030\\ 0.035\\ 0.054\\ 0.009\\ 0.030\\ 0.054\\ 0.009\\ 0.035\\ 0.054\\ 0.069\\ 0.036\\ 0.075\\ 0.068\\ 0.079\\ 0.069\\ 0.079\\ 0.069\\ 0.079\\ 0.069\\ 0.079\\ 0.069\\ 0.079\\ 0.069\\ 0.079\\ 0.060\\ 0.079\\ 0.060\\ 0.015\\ 0.0032\\ 0.040\\ 0.035\\ 0.0086\\ 0.008\\ 0.$	$\begin{array}{c} 163.56\\ 291.97\\ 396.43\\ 396.43\\ 483.03\\ 675.99\\ 675.99\\ 771.95\\ 675.99\\ 903.96\\ 845.34\\ 900.96\\ 974.67\\ 993.96\\ 4875.34\\ 993.96\\ 493.96\\ 996.48\\ 996.48\\ 996.48\\ 996.48\\ 998.48\\ 990.68\\ 990.06\\ 990.28\\ 990.06\\ 990.28\\ 990.06\\ 990.28\\ 990.06\\ 990.28\\ 990.06\\ 990.28\\ 990.06\\ 90.06\\$	0.000 0.0000 0.000 0.000 0.00000 0.00000 0.000000				

Date: 09/27/12 Time Sample: 1/01/2000 9 ncluded observation	e: 14:59 /01/2012 s: 211					
Autocorrelation	Partial Correlation	A	.C	PAC	Q-Stat	Prob
	U	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1114 100 078 035 099 073 041 136 073 134 035 013 035 013 035 013 005 013 005 013 005 013 005 010 050 013 005 001 005 001 005 001 005 001 005 001 005 001 005 001 005 001 005 001 005 001 005 001 005 001 005 000 005 000 000	$\begin{array}{c} -0.114\\ +0.115\\ -0.106\\ -0.073\\ -0.063\\ -0.063\\ -0.016\\ -0.020\\ -0.095\\ -0.016\\ -0.020\\ -0.095\\ -0.044\\ -0.066\\ -0.043\\ -0.069\\ -0.069\\ -0.049\\ -0.069\\ -0.019\\ -0.068\\ -0.050\\ -0.050\\ -0.050\\ -0.050\\ -0.050\\ -0.050\\ -0.050\\ -0.070\\ -0.073\\$	$\begin{array}{c} 2.7962\\ 4.9441\\ 6.5087\\ 7.7007\\ 8.3759\\ 10.553\\ 10.553\\ 12.11540\\ 12.11540\\ 22.180\\ 22.180\\ 22.180\\ 22.180\\ 24.011\\ 24.020\\ 24.011\\ 24.020\\ 24.010\\ 24.010\\ 24.010\\ 24.010\\ 25.00\\ 27.515\\ 27.516\\ 27.515\\ 27.516\\ 27.555\\ 22.155\\ 27.516\\ 27.556\\ 27.555\\ 22.155\\ 27.556\\ 25.03\\ 2$	0.094 0.084 0.164 0.164 0.172 0.159 0.163 0.207 0.257 0.123 0.076 0.102 0.123 0.0768 0.102 0.123 0.0768 0.102 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.123 0.124 0.120 0.123 0.124 0.126 0.124 0.126 0.124 0.126 0.296 0.29
,						

13.9.

Product Ratings (left) and change in Product Ratings (right)

Date: (Sampl Include	09/27/12 Tim le: 1/01/2000 9 ed observation	e: 15:05 V01/2012 is: 279						Date: 09/27/12 Time Sample: 1/01/2000 9 Included observation	e: 15:05 V01/2012 is: 251					
Auto	ocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
Auto	1 1 1 1	Partial Correlation Plantal C	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 4 25 26 27 8 30 31 22 29 30 31 22 24 25 26 30 31 22 24 25 26 30 31 22 24 25 26 30 31 22 24 25 26 30 31 22 24 30 31 22 24 30 31 22 30 31 22 30 31 22 30 31 22 30 31 20 30 31 20 30 31 20 30 30 30 30 30 30 30 30 30 30 30 30 30	AC 0.015 0.0057 0.0057 0.017 0.021 0.024 0.024 0.024 0.024 0.025 0.027 0.021 0.024 0.026 0.027 0.021 0.026 0.027 0.021 0.026 0.027 0.021 0.036 0.027 0.021 0.036 0.027 0.021 0.036 0.027 0.036 0.027 0.021 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.021 0.036 0.036 0.037 0.021 0.036 0.036 0.037 0.021 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.037 0.021 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.036 0.057 0.051 0.036 0.036 0.036 0.057 0.051 0.051 0.057 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.056 0.052 0.056 0.057 0.051 0.051 0.056 0.052 0.056 0.057 0.051 0.056 0.056 0.057 0.051 0.051 0.056 0.052 0.055 0.056 0.056 0.056 0.056 0.057 0.051 0.056 0.055 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.057 0.055 0.056 0.056 0.056 0.057 0.055 0.056 0.057 0.0	PAC 0.015 0.007 0.007 0.007 0.007 0.007 0.027 0.026 0.029 0.030 0.030 0.050 0.030 0.030 0.050 0.030 0.048 0.048 0.048 0.032 0.048 0.032 0.041 0.045 0.047 0.045 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.045 0.007 0.047 0.047 0.045 0.045 0.045 0.047 0.045 0.045 0.045 0.047 0.047 0.045 0.04	Q-Stat 0.0666 0.0757 0.0850 0.0757 5.3124 4.9237 5.3124 4.9237 5.3124 4.9237 5.3124 4.9237 5.3124 4.9237 5.3124 4.9237 5.3124 4.9237 5.3124 4.9237 5.3124 5.4388 5.6086 5.3555 5.60980 9.0342 9.1250 9.0342 9.1250 9.0342 9.1250 9.0342 9.1250 9.0342 9.1250 9.0342 9.1250 9.0342 9.1250 9.0342 9.1250 9.0342 9.1250 9.0342 9.1250 9.0342 9.1250 9.0342 9.1250 9.0342 9.1250 9.0342 9.1250 9.0342 9.0342 9.1250 9.0342 9.0344 9.0342 9.0342 9.034	Prob 0.796 0.963 0.963 0.902 0.904 0.425 0.504 0.607 0.607 0.607 0.607 0.819 0.859 0.859 0.859 0.851 0.912 0.936 0.912 0.936 0.912 0.936 0.920 0.920 0.921 0.922 0.936 0.920 0.921 0.925 0.945 0.9	Autocorrelation	Partial Correlation	1 2 3 4 5 6 7 8 9 10 111 12 13 4 15 16 17 8 9 20 21 223 24 25 26 27 28 29 30 31 32	AC -0.314 -0.066 0.034 0.005 -0.029 -0.072 -0.076 -0.029 -0.074 -0.014 -0.014 -0.041 0.041 0.041 0.036 0.041 0.041 0.036 0.003 0.041 0.036 0.041 0.036 0.041 0.036 0.041 0.036 0.041 0.036 0.041 0.041 0.036 0.041 0.041 0.041 0.036 0.041 0.045 0.	PAC -0.314 -0.185 -0.055 -0.014 -0.055 -0.014 -0.033 -0.033 -0.124 -0.033 -0.042 -0.033 -0.045 0.015 0.015 0.015 0.015 0.012 -0.022 -0.033 -0.040 -0.022 -0.033 -0.040 -0.022 -0.033 -0.022 -0.033 -0.040 -0.022 -0.033 -0.040 -0.022 -0.033 -0.040 -0.022 -0.033 -0.040 -0.040 -0.040 -0.040 -0.022 -0.033 -0.040	Q-State 25.098 26.026 26.076 26.514 26.514 26.512 26.514 26.728 27.025 27.035 27.035 27.025 27.055 27.025 27.05	Prob 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.003 0.036 0.0458 0.0410 0.058 0.0410 0.052 0.054 0.054 0.054
	n)n n(n n(n n(n)	1]1 1 1 0[1 1]0	33 34 35 36	0.027 -0.021 -0.063 0.085	0.015 0.005 -0.071 0.089	20.866 21.005 22.266 24.595	0.950 0.960 0.953 0.925			33 34 35 36	0.036 0.053 -0.191 0.122	-U.013 0.080 -0.164 0.017	41.426 42.254 53.030 57.403	0.149 0.156 0.026 0.013

13.10. Web search (left) and change in Web Search (right)

ate: 09/27/12 Time: 16:11 ample: 1/01/2000 9/01/2012 cluded observations: 452
Autocorrelation Partial Correlatio

Search Trend for iBook 13.11.

Date: 10/01/12 Time Sample: 1/01/2000 9 Included observation	8: 16:52 /29/2012 8: 452					
Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob
Autocorrelation (1 (1 (1 (1 (1 (1 (1 (1 (1 (Partial Correlation	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20	AC +0.228 +0.048 0.055 +0.102 0.024 +0.093 +0.006 +0.014 0.009 +0.071 0.040 0.021 +0.029 0.073 +0.029 0.073 +0.029 0.024 0.024 0.029 0.024 +0.009 +0.009 +0.029 0.021 +0.029 +0.009 +0.009 +0.029 +0.029 +0.002 +0.009 +0.002 +0.002 +0.004 +0.009 +0.002 +0.002 +0.002 +0.002 +0.004 +0.009 +0.002	PAC ·0.228 ·0.105 0.021 ·0.094 ·0.019 ·0.016 ·0.028 ·0	Q-Stat 23.688 24.720 26.126 30.913 31.170 35.181 35.184 35.289 35.330 35.289 36.403 38.403 38.403 38.403 38.403 38.403 38.403 38.403 38.403 38.405 45.502 45.502 45.725 45.725 50.081	Prob 0.000 0
		21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	0.096 -0.004 -0.073 -0.034 -0.038 -0.058 -0.128 0.052 0.002 0.001 0.015 0.093 -0.004 -0.093 -0.004 -0.004	0.097 0.026 -0.067 -0.048 -0.035 -0.016 0.070 -0.117 -0.015 0.024 -0.015 0.024 -0.012 0.104 0.027 -0.060	50.081 50.087 52.601 53.180 53.356 54.038 55.676 63.568 64.878 64.879 64.880 64.988 69.199 71.260	0.000 0.001 0.001 0.001 0.001 0.002 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000

13.12. Search Trend for iMac

Date: 10/01/12 Tim Sample: 1/01/2000 9 Included observation	e: 16:54)/29/2012 hs: 453					
Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob
, Eesti		1	0.706	0.706	227.05	0.000
	I	2	0.577	0.158	379.41	0.000
	' 	3	0.519	0.131	502.75	0.000
	l ibi	4	0.460	0.049	599.85	0.000
· —	l ili	5	0.416	0.045	679.45	0.000
· 💻	1 10	6	0.376	0.023	744.57	0.000
· 💻	1 10	7	0.346	0.028	799.79	0.000
· —	l ibi	8	0.340	0.064	853.38	0.000
		9	0.312	0.003	898.68	0.000
· 💻	1 10	10	0.275	-0.017	933.96	0.000
· 💻	1 49	11	0.238	-0.027	960.33	0.000
' P	1 1	12	0.209	-0.010	980.80	0.000
· 🖻	1 10	13	0.171	-0.037	994.43	0.000
i pi	1 11	14	0.147	-0.004	1004.6	0.000
· P	1 1	15	0.126	-0.009	1012.2	0.000
i p	1 11	16	0.114	0.006	1018.3	0.000
i p	1 10	17	0.115	0.026	1024.5	0.000
i p	1 10	18	0.111	0.016	1030.4	0.000
· 🖻	1 1	19	0.117	0.035	1036.9	0.000
- p	1 10	20	0.080	-0.061	1039.9	0.000
i pi	1 10	21	0.043	-0.049	1040.8	0.000
	1 11	22	0.033	-0.000	1041.3	0.000
- U	1 10	23	0.033	0.021	1041.8	0.000
	1 10	24	0.005	-0.045	1041.9	0.000
	1 11	25	-0.002	0.002	1041.9	0.000
ų.	1 10	26	-0.018	-0.030	1042.0	0.000
	1 4	27	+0.029	+0.018	1042.4	0.000
4	1 1	28	-0.022	0.022	1042.6	0.000
	1 10	29	·0.021	0.013	1042.9	0.000
1	l ibi	30	-0.005	0.046	1042.9	0.000
1	1 10	31	0.007	0.024	1042.9	0.000
- Qu	1 1	32	0.032	0.062	1043.4	0.000
i pi	1 1	33	0.048	0.029	1044.5	0.000
ı p	I	34	0.075	0.057	1047.3	0.000
i p	1 10	35	0.103	0.054	1052.6	0.000
in in	1 10	136	0.095	-0.025	1057.1	0.000

Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Pr
		1	-0.283	-0.283	36.537	0.0
• •••••••••••••••••••••••••••••••••••	i 🖬 🗆	2	+0.118	+0.216	42.900	0.0
111	(E)	3	0.001	-0.114	42.901	0.
(I)	<u>[</u>]	4	-0.025	-0.101	43.188	0.
	Q	5	-0.008	-0.074	43.217	0.
ų.	Q	6	+0.018	+0.075	43.359	0.
ų)	[]	7	·0.040	+0.103	44.098	0.
- un	1 10	8	0.038	-0.038	44.758	0.
	1 10	9	0.016	-0.018	44.874	0.
Ψ	1 49	10	0.000	-0.009	44.874	0.
99	1 12	111	-0.015	+0.026	44.984	0.
- 22	1 12	12	0.014	-0.003	45.073	U.
	1 12	13	-0.022	-0.031	45.306	U.
	1 11	14	-0.003	-0.025	45.309	U.
	1 22	15	-0.016	-0.039	45.425	U.
	1 21	10	·U.U21	-0.058	45.041	U.
	1 2	110	0.006	-0.046	45.658	U.
32	1 32	10	-0.015	-0.063	45.770	0.
18	1 33	120	0.072	0.033	48.233	U.
	1 2	20	0.002	0.021	40.234	U.
31	1 2	21	-0.047	-0.030	49.297	0.
36	1 31	22	-0.019	-0.050	49,400	0.
12	1 2	23	0.001	0.017	50.085	
31	1 31	29	0.030	0.032	51.374	0.
	1 11	20	0.014	0.000	E1 E00	0.
	1 33	20	-0.000	-0.013	51.009	0.
- 31	1 21	20	0.011	0.041	52.010	n.
	l ali	20	.0.026	.0.072	52 345	n.
- 11i	1 1	30	0.005	.0.047	52 357	n.
ili	l ili	31	-0.021	-0.083	52 580	ň
- ili	l ili	32	0.016	-0.050	52 700	ň
ili –	l ali	33	-0.017	-0.075	52 846	n.
- ili	l di	34	-0.001	-0.066	52 846	n.
ihi	1 ili	35	0.058	0.008	54.478	Ő.
- di	1 di	36	0.001	0.004	54 478	n

13.13. Search Trend for Macintosh

13.14. Search Trend for MacBook

E S It

ample: 1/01/2000 9/29/2012 cluded observations: 452									
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob			
		1	-0.353	·0.353	56.735	0.000			
		2	-0.040	-0.189	57.478	0.000			
22	1 12	3	0.021	-0.074	57.673	0.000			
	1 51	4	-0.069	-0.114	09.001 01 E00	0.000			
16	1.12	0	0.059	0.0140	60.00E	0.000			
15	1	2	0.121	0.149	20 502	0.000			
a:	1 2	6	0.072	0.054	72.642	0.000			
	1 31	l õ	0.007	0.030	72.042	0.000			
ili i		10	.0.036	.0.047	73 669	0.000			
in in	1 11	111	0.043	.0.013	74 531	0.000			
i fi	ihi	12	0.052	0.043	75 782	0.000			
ili	i h	13	-0.005	0.072	75 792	0.000			
ili.	i iii	14	0.124	-0.085	83 034	0.000			
- The	i i i i i i i i i i i i i i i i i i i	15	0.121	0.055	89.946	0.000			
e î	l di	16	+0.130	-0.103	97.923	0.000			
70	6	17	0.142	0.066	107.45	0.000			
uli i		18	-0.045	-0.019	108.42	0.000			
- du	i ib	19	0.027	0.066	108.75	0.000			
ul i	- di	20	-0.028	0.023	109.11	0.000			
(b)	() (b)	21	0.075	0.108	111.82	0.000			
()) ()	22	-0.051	0.013	113.08	0.000			
i (j)	() ()	23	0.048	0.043	114.16	0.000			
ut i	10	24	·0.025	·0.025	114.46	0.000			
10		25	-0.004	0.009	114.47	0.000			
ų i	1 10	26	0.012	+0.035	114.53	0.000			
ų.	1 U	27	0.006	0.021	114.55	0.000			
ų.	U !	28	0.059	0.109	116.26	0.000			
i pi	1	29	0.066	0.026	118.40	0.000			
ge -		30	0.034	0.030	118.97	0.000			
ų.	1 1	31	-0.066	0.019	121.08	0.000			
12	12	32	0.096	0.065	125.60	0.000			
11	1 12	33	-0.045	0.074	126.58	0.000			
끮	1 2	34	0.051	0.077	127.88	0.000			
빙		35	-0.110	-0.084	133.82	0.000			
ιμ	1 11	136	0.099	0.006	138.64	0.000			

13.15.

Search Trend MacBook Air

Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob
		1	0.805	0.805	159.27	0.000
	·	2	0.745	0.277	296.45	0.000
	1.1	3	0.663	0.021	405.61	0.000
	(I	4	0.560	-0.112	483.74	0.000
	1 (P	5	0.520	0.083	551.32	0.000
	1 1	6	0.474	0.060	607.68	0.000
	1 1	7	0.453	0.076	659.44	0.000
· 💻	1 1	8	0.427	0.004	705.60	0.000
	1.1.1	9	0.404	0.012	747.21	0.000
· • 🗖	1 10	10	0.371	+0.029	782.39	0.000
· 💻	E 1	11	0.295	0.147	804.73	0.000
· 💻	11	12	0.256	0.011	821.61	0.000
· 🗖 ·	i i pi	13	0.237	0.098	836.13	0.000
· 🗖 ·	1 1	14	0.225	0.075	849.30	0.000
· 🗖	1 1	15	0.217	0.015	861.60	0.000
· 🗖 ·	101	16	0.208	-0.026	872.93	0.000
· 🗖	1.1	17	0.202	0.009	883.65	0.000
· 🖻	1 10	18	0.193	0.028	893.56	0.000
· 🗖	1 1	19	0.185	0.020	902.64	0.000
· 🗖	111	20	0.182	0.039	911.44	0.000
· 🗖	1 11	21	0.177	0.029	919.83	0.000
· 🗖	1 11	22	0.171	·0.023	927.72	0.000
	1 10	23	0.167	+0.032	935.29	0.000
1	1.1	24	0.162	0.001	942.42	0.000
· 🗖	111	25	0.145	-0.009	948.16	0.000
· 🗐	1 1	26	0.140	0.024	953.53	0.000
· 🗐	1 1	27	0.135	0.014	958.55	0.000
1	1 1	28	0.133	0.013	963.48	0.000
1	1 1	29	0.134	0.003	968.51	0.000
1 🗐	1 1	30	0.134	0.001	973.54	0.000
1 🗖 1	1 10	31	0.126	+0.017	977.98	0.000
· 🖿	1 10	32	0.124	0.024	982.32	0.000
· 🖿	1 10	33	0.123	0.030	986.63	0.000
i 🗐	1 1	34	0.119	0.004	990.66	0.000
10	1 10	35	0.112	+0.021	994.26	0.000
10	1 10	136	0.118	0.019	998.26	0.000

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Ρ
d i	(d)	1	+0.092	-0.092	2.0946	0
	(()	2	+0.116	-0.126	5.4160	0
1	i pi	3	0.099	0.077	7.8214	0
10	1 10	4	-0.047	-0.046	8.3700	0
1	1 I 🗐	5	0.105	0.121	11.142	0
i fi	1 10	6	0.050	0.054	11.766	0
- P	P	7	0.105	0.158	14.551	0
	1 10	8	0.052	-0.040	15.229	0
<u></u>	l Q	9	+0.112	-0.093	18.384	0
	1	10	0.152	0.093	24.250	U
18	1 1	111	0.082	0.091	25.960	U 0
	1 12	112	0.020	0.054	20.005	
111	1 31	13	-0.004	-0.012	26.070	0
	1 111	12	0.000	0.023	20.070	
	1 11	16	0.000	0.002	26.084	0
i li i	1 11	17	0.000	-0.012	26.149	ň
	1 11	118	0.017	.0.004	26 223	ň
iti	1 11	119	-0.018	0.004	26 304	ň
ili	1 ili	20	-0.006	0.001	26.314	ň
1.1	1 10	21	0.005	-0.020	26.321	Ō
1.11	1 10	22	0.002	-0.014	26.323	0
	l de	23	0.009	0.009	26.342	0
	1 (b)	24	0.041	0.047	26.790	0
	1 10	25	+0.029	-0.028	27.026	0
	1 10	26	+0.015	-0.013	27.084	0
11	1 10	27	+0.006	-0.013	27.094	0
1 1	1 1	28	0.000	0.008	27.094	0
10	1 1	29	0.007	-0.005	27.109	0
- UL	1 1	30	0.035	0.039	27.443	0
- up	1 11	31	-0.012	-0.004	27.482	0
<u></u>	1 11	32	+0.020	0.006	27.598	- 9
111	1 11	33	0.005	0.002	27.606	- 9
	1 22	34	0.029	0.016	21.839	U
	1 31	35	-0.047	-0.060	28.472	U
	1 11	136	0.026	0.022	28.660	- 6

13.16.

. Search Trend for MacBook Pro

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.825	0.825	238.72	0.000
		2	0.753	0.227	438.19	0.000
	1 I 🗐	3	0.719	0.170	620.50	0.000
1		4	0.696	0.123	792.06	0.000
		5	0.685	0.118	958.82	0.000
	1 I I I I I I I I I I I I I I I I I I I	6	0.691	0.144	1128.8	0.000
	1 10	17	0.669	0.025	1288.7	0.000
	1 12	8	0.649	0.028	1439.4	0.000
	1 12	9	0.636	0.039	1584.9	0.000
	1 12	110	0.636	0.072	1/30./	0.000
	1 11	1.11	0.619	0.001	1869.4	0.000
	1 12	12	0.606	0.010	2002.7	0.000
	1 31	113	0.590	-0.005	2129.1	0.000
	1 12	14	0.579	0.019	2231.3	0.000
	1 36	10	0.000	0.009	2570.0	0.000
	1 16	17	0.505	0.023	2625.0	0.000
		116	0.501	0.033	2740.0	0.000
	in in	19	0.570	0.031	2876.4	0.000
	l ifi	20	0.582	0.018	3002.2	0.000
	l ili	21	0.573	0.001	3124.7	0.000
	i hi	22	0.580	0.055	3250.1	0.000
	l di	23	0.577	0.020	3374.7	0.000
	l du	24	0.574	0.023	3498.5	0.000
	1 1	25	0.569	-0.002	3620.7	0.000
	() (j)	26	0.568	0.022	3742.9	0.000
	1 10	27	0.554	-0.026	3859.4	0.000
	լի	28	0.562	0.055	3979.8	0.000
	1 10	29	0.554	-0.018	4097.0	0.000
	1 1)1	30	0.554	0.027	4214.7	0.000
	1 1)1	31	0.552	0.017	4331.8	0.000
	() ()	32	0.564	0.068	4454.6	0.000
	1 (1)	33	0.567	0.040	4578.9	0.000
	1 10	34	0.569	0.020	4704.4	0.000
	1 99	35	0.556	-0.020	4824.5	0.000
	1 10	36	0.531	-0.065	4934.4	0.000

Date: 10/01/12 Tim Sample: 1/01/2000 Included observatio	ie: 17:03 8/29/2012 ns: 347					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	-0.274	-0.274	26.282	0.000
		2	0.109	-0.199	30.433	0.000
9	1 9'	3	-0.031	-0.136	30.767	0.000
1 92	L	4	-0.033	-0.124	31.163	0.000
1 32	1 51	5	-0.059	-0.155	32.381	0.000
1 12	1 32	6	0.069	-0.039	34.095	0.000
1 11	1 32	1 %	0.003	-0.037	34.098	0.000
1 32	1 21	1 8	-0.015	-0.041	24 700	0.000
1 16	1 11	110	0.041	-0.001	35.670	0.000
1 36	1 16	111	.0.015	-0.022	25 755	0.000
1 36	l ili	112	.0.018	.0.040	35 873	0.000
l ili	l ili	13	0.006	-0.029	35 888	0.000
ili i	di di	14	-0.036	-0.070	36.353	0.001
l ili	l ili	15	0.013	-0.032	36.418	0.002
l di	l de	16	0.005	-0.038	36.426	0.003
1 1	1 10	17	0.004	-0.031	36.431	0.004
10	() ()	18	-0.041	-0.077	37.045	0.005
վի	1 10	19	0.044	-0.012	37.746	0.006
() ()	1 10	20	0.013	0.000	37.812	0.009
	1 10	21	-0.037	-0.046	38.322	0.012
1 10	1 11	22	0.026	-0.006	38.565	0.016
11	1 10	23	+0.003	-0.019	38.569	0.022
11	1 10	24	0.008	0.010	38.593	0.030
1 10	1 10	25	-0.009	-0.013	38.624	0.040
1 92	1 12	26	0.035	0.027	39.099	0.048
	1 49	27	+0.062	-0.050	40.576	0.045
	1 12	28	0.046	0.023	41.364	0.050
1 32	1 22	29	-0.028	-0.026	41.662	0.060
1 22	1 11	30	0.018	-0.002	41.780	0.075
1 92	1 51	31	-0.048	-0.056	42.654	0.075
	1 11	132	0.031	-0.021	43.017	0.092
	1 18	33	0.003	-0.007	43.019	0.114
	1 14	34	0.040	0.034	43.000	0.124
1 12	1 16	130	0.034	0.073	44.090	0.132
	1 1	1.20	-0.004	0.034	44.095	0.107
		_				

13.17. Search Trend Mac Mini

Date: 10/01/12 Time: 17:05 Sample: 1/01/2000 9/29/2012 Included observations: 403								
Autocorrelation	Partial Correlation	AC	PAC	Q∙Stat	Prob			
Autocorrelation	Partial Correlation	AC 1.0.27(2.0.04) 3.0.00(4.0.07, 5.0.03(6.0.00, 7.0.00(8.0.01(9.0.00, 11.0.00, 11.0.00, 11.0.00, 11.0.00, 11.0.00, 11.0.00, 12.0.01(13.0.01, 14.0.01(15.0.02, 10.0.01, 15.0.02, 20.00, 22.0.00, 22.0.00, 23.0.00, 24.0.00, 25.0.00, 23.0.00, 24.0.00, 25.0.00, 23.0.00, 25.0.00, 23.0.00, 24.0.00, 25.0.00, 23.0.00, 25	PAC 0 0.270 0 0.132 0 0.132 0 0.132 0 0.016 0 0.018 0 0.018 0 0.018 0 0.056 0 0.056 0 0.054 0 0.054 0 0.054 0 0.054 0 0.054 0 0.054 0 0.054 0 0.052 0.054 0.048 0 0.052 0.022 0.022 0.022 0.023 0.035 0.035 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0027 0.0025	Q-Stat 29.601 30.667 30.704 32.741 33.340 33.330 33.333 33.358 33.458 33.463 33.358 33.458 33.463 33.358 33.458 33.358 33.358 33.358 44.088 33.408 34.088 34.088 34.088 34.088 34.088 35.255 35.865 35.865 35.865 36.088	Prob 0.000 0.003 0.008 0.013 0.018 0.1379 0.1379 0.243 0.283 0			
11		34 0.008 35 -0.009	0.005 0.014	36.116 36.148	0.370 0.415			
	<u> </u>	36 -0.003	0.011	36.149	0.462			

14. Unit Root Test for Release Date 1 Variables14.1. Level of the Variables

Intermediate ADF test results UNTITLED

Series	Prob.	Lag	Max Lag	Obs	
ER	0.0000	0	12	120	
ABR	0.0000	0	12	120	
SALES	0.8707	0	12	120	
R	0.0000	0	12	120	
IRS	0.0000	0	12	120	
SR POS	0.0000	2	12	118	
SR NEUT	0.0000	0	12	120	
SR_NEG	0.0000	1	12	119	
NS	0.1222	0	12	120	
PS	0.5806	0	12	120	
WS	0.0211	0	12	120	
MBP	0.3616	0	12	120	
MB	0.6395	0	12	120	
MBA	0.3846	0	12	120	
IM	0.1544	0	12	120	

Intermediate Phillips-Perron test results UNTITLED

Series	Prob.	Bandwidth	Obs	
ER	0.0000	5.0	120	
ABR	0.0000	4.0	120	
SALES	0.8707	0.0	120	
R	0.0000	5.0	120	
IRS	0.0000	2.0	120	
SR POS	0.0000	28.0	120	
SR NEUT	0.0000	44.0	120	
SR NEG	0.0000	3.0	120	
NS	0.0837	4.0	120	
PS	0.5673	2.0	120	
WS	0.0172	5.0	120	
MBP	0.3640	2.0	120	
MB	0.6395	0.0	120	
MBA	0.3286	3.0	120	
IM	0.1333	3.0	120	

14.2. Unit Root test of first Difference of the Variables

Intermediate Phillips-Perron test results D(UNTITLED)

Series	Prob.	Bandwidth	Obs	
D(ER)	0.0001	40.0	119	
D(ABR)	0.0001	50.0	119	
D(SALES)	0.0000	1.0	119	
D(R)	0.0001	42.0	119	
D(IRS)	0.0001	45.0	119	
D(SR POS)	0.0001	26.0	119	
D(SR NEUT)	0.0001	30.0	119	
D(SR NEG)	0.0001	45.0	119	
D(NS)	0.0000	0.0	119	
D(PS)	0.0000	0.0	119	
D(WS)	0.0000	2.0	119	
D(MBP)	0.0000	2.0	119	
D(MB)	0.0000	2.0	119	
D(MBA)	0.0000	0.0	119	
D(IM)	0.0000	0.0	119	

Intermediate ADF test results D(UNTITLED)

Series	Prob.	Lag	Max Lag	Obs	
D(ER)	0.0000	6	12	113	
D(ABR)	0.0000	6	12	113	
D(SALES)	0.0000	0	12	119	
D(R)	0.0000	4	12	115	
D(IRS)	0.0000	4	12	115	
D(SR POS)	0.0000	4	12	115	
D(SR NEUT)	0.0000	8	12	111	
D(SR NEG)	0.0000	5	12	114	
D(NS)	0.0000	0	12	119	
D(PS)	0.0000	0	12	119	
D(WS)	0.0000	0	12	119	
D(MBP)	0.0000	0	12	119	
D(MB)	0.0000	0	12	119	
D(MBA)	0.0000	6	12	113	
D(IM)	0.0000	0	12	119	

14.3. Unit Root Test for Second Difference

Intermediate ADF test results D(UNTITLED,2)

Series	Prob.	Lag	Max Lag	Obs	
D(ER,2)	0.0000	9	12	109	
D(ABR,2)	0.0000	9	12	109	
D(SALES,2)	0.0000	2	12	116	
D(R,2)	0.0000	7	12	111	
D(IRS,2)	0.0000	7	12	111	
D(SR POS,2)	0.0000	9	12	109	
D(SR NEUT,2)	0.0000	11	12	107	
D(SR NEG,2)	0.0000	11	12	107	
D(NS,2)	0.0000	2	12	116	
D(PS,2)	0.0000	2	12	116	
D(WS,2)	0.0000	2	12	116	
D(MBP,2)	0.0000	2	12	116	
D(MB,2)	0.0000	5	12	113	
D(MBA,2)	0.0000	7	12	111	
D(IM,2)	0.0000	2	12	116	

15. Correlogram for Release Date 1 Variables (March 2009)

15.1. Change in Expected (left) and Abnormal Returns (right)

Positive (left), Neutral (middle), and Negative Comments (right) 15.2.

Date: 10/23/12 Time Sample: 1/01/2009 5 Included observation	e: 12:10 /01/2009 s: 120						Date: 10/23/12 Tim Sample: 1/01/2009 5 Included observation	e: 12:09 W01/2009 hs: 120						Date: 10/23/12 Tim Sample: 1/01/2009 5 Included observation	e: 12:08 5/01/2009 1s: 120				
Autocorrelation	Partial Correlation	AC	PAC	Q∙Stat	Prob	_	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q∙Stat	Prob
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.287 -0.128 -0.071 -0.063 -0.071 -0.063 -0.071 -0.071 -0.072 -0.030 -0.025 -0.032 -0.025 -0.032 -0.023 -0.028 -0.	$\begin{array}{c} 10.125\\ 10.200\\ 15.394\\ 18.714\\ 20.075\\ 20.935\\ 20.935\\ 20.935\\ 20.931\\ 20.185\\ 20.931\\ 20.937\\ 20.936\\ 40.103\\ 20.937\\ 40.103\\ 20.937\\ 40.103\\ 20.937\\ 40.103\\ 20.937\\ 40.103\\ 40.103\\ 20.937\\ 40.103\\$	0 001 0 006 0 006 0 0001 0 0003 0 003 0 005 0 007 0 002 0 007 0 002 0 007 0 002 0 007 0 002 0 007 0 0005 0 0005 0 0005 0 0001 0 0001 0 0001 0 0005 0 005 0 005				1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 33 34 35 35 36 39 30 31 30 31 31 32 32 32 33 33 34 35 35 35 35 35 35 35 35 35 35	0.357 0.015 0.006 0.198 0.198 0.144 0.164 0.163 0.181 0.100 0.163 0.077 0.149 0.024 0.050 0.024 0.050 0.026 0.041 0.076 0.026 0.041 0.077 0.028 0.041 0.078 0.079 0.031 0.076 0.026 0.041 0.028 0.041 0.028 0.041 0.048 0.049 0.048 0.049 0.048 0.049 0.048 0.049 0.0480 0.0480 0.0480 0.0480000000000	0.357 0.129 0.040 0.0242 0.060 0.242 0.020 0.201 0.021 0.021 0.062 0.032 0.032 0.032 0.047 0.026 0.047 0.047 0.008 0.047 0.008 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.042 0.041 0.042 0.041 0.042 0.041 0.042 0.041 0.042 0.044 0.042 0.044 0.042 0.044 0.044 0.042 0.04400000000	$\begin{array}{c} 15689\\ 15,716\\ 22,642\\ 22,642\\ 22,642\\ 22,642\\ 36,201\\ 36,201\\ 41,902\\ 44,914\\ 44,922\\ 45,347\\ 44,922\\ 44,922\\ 44,922\\ 44,922\\ 44,922\\ 44,922\\ 44,922\\ 50,263\\ 50,564\\ 49,321\\ 50,263\\ 50,564\\ 52,414\\$	0.000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 -0.313 3 -0.27 3 -0.27 3 -0.28 3 -0.05 3	$\begin{array}{c} 12.078\\ 23.492\\ 31.486\\ 35.731\\ 40.766\\ 49.987\\ 40.766\\ 49.933\\ 55.353\\ 89.677\\ 40.766\\ 49.933\\ 55.353\\ 89.224\\ 89.976\\ 10.766\\ 49.933\\ 99.327\\ 99.339\\ 97.256\\ 89.327\\ 99.339\\ 99.349\\ 97.100\\ 89.327\\ 100.285\\ 100$	0.001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000
111	1 101	36 -0.023	+0.059	47.088	0.102		1.1.1	1 1 1	36	0.004	0.007	54 473	0.025	<u>`</u>		·			

15.3. Rating (left) and Web Search (right)

Date: 10/19/12 Time Sample: 1/01/2009 5 Included observation	9: 15:32 V01/2009 Is: 120						Date: 10/23/12 Tim Sample: 1/01/2009 Included observatio	ie: 12:11 5/01/2009 ns: 119
Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob	Autocorrelation	Partial
		$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\22\\23\\24\\25\\26\\27\\28\\9\\30\\31\\32\\33\\34\\35\\\end{array}$	-0.529 -0.656 -0.056 -0.056 -0.063 -0.063 -0.083 -0.063 -0.063 -0.063 -0.049 -0.063 -0.049 -0.063 -0.051 -0.063 -0.051 -0.063 -0.051 -0.063 -0.051 -0.063 -0.025 -0.0025 -0.0025 -0.025	$\begin{array}{c} -0.529\\ -0.298\\ -0.258\\ -0.258\\ -0.252\\ 0.0128\\ -0.252\\ 0.0128\\ -0.252\\ 0.0128\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.012\\ -0.013\\ -0.015\\ -0.039\\ -0.039\\ -0.039\\ -0.015\\ -0.053\\ -0.05\\ -0.058\\ $	$\begin{array}{c} 34480\\ 34,987\\ 35,378\\ 35,378\\ 35,55\\ 35,952\\ 40,608\\ 51,952\\ 51,952\\ 51,952\\ 51,952\\ 51,952\\ 51,952\\ 51,952\\ 51,952\\ 51,952\\ 51,952\\ 57,552\\ 57,552\\ 57,552\\ 57,552\\ 57,572\\ 55,752\\ 57,752\\ $			
		1.46	- H I KA	- H H (%	SH KUR			

PAC Q-Stat

15.4. News (left) and Product Search (right)

15.5. MacBook (left) and MacBook Pro (right)

Autocorrelation Partial Correlation AC PAC Q-Stat Prob I I I 1 0.500 0.500 0.000 I I I I 2 0.000 0.333 0.506 0.000 I I I I 2 0.000 0.250 30.506 0.000 I	rrelation Partial Correlation AC PAC Q-Stat Prob
I I 1 0.500 0.500 0.000 I I I I 1 0.500 0.033 0.506 0.000 I I I I I 0.000 0.333 0.506 0.000 I I I I I 0.000 0.333 0.506 0.000 I	
I I 4 0.000 0.200 0.000 0.000 I 5 0.007 0.167 0.167 0.050 0.000 I I 7 0.057 0.167 0.167 0.050 0.000 I I 7 0.057 0.057 0.050 0.000 0.000 I I 8 0.057 0.000 0.000 0.000 0.000 I I 10 0.000 0.007 3.001 0.000 0.000 I I 10 0.000 0.078 3.001 0.000 0.000 I I 11 0.000 0.078 3.001 0.001 0.001 I I 11 0.000 0.078 3.001 0.001 0.001 I I 12 0.000 0.068 3.001 0.001 0.001 I I 15 0.060 0.073 38.61 0.001 0.001 I I 16 0.000 0.067 38.61 0.002 </td <td>I 1 0.500 3506 0.000 I 2 0.000 -0.33 3506 0.000 I 3 0.000 -0.23 0.556 0.000 I 4 0.000 -0.23 0.556 0.000 I 4 0.000 -0.23 0.556 0.000 I 6 0.000 -0.23 0.556 0.000 I F 0.000 -0.23 0.556 0.000 I F 0.066 -0.027 1.080 0.000 I F 0.066 -0.027 1.080 0.000 I I 10 0.000 0.107 3.315 0.000 I I 11 0.000 0.007 3.315 0.000 I I 12 0.020 0.077 3.315 0.000 I I 13 0.027 3.317 0.017 3.315 0.020 I</td>	I 1 0.500 3506 0.000 I 2 0.000 -0.33 3506 0.000 I 3 0.000 -0.23 0.556 0.000 I 4 0.000 -0.23 0.556 0.000 I 4 0.000 -0.23 0.556 0.000 I 6 0.000 -0.23 0.556 0.000 I F 0.000 -0.23 0.556 0.000 I F 0.066 -0.027 1.080 0.000 I F 0.066 -0.027 1.080 0.000 I I 10 0.000 0.107 3.315 0.000 I I 11 0.000 0.007 3.315 0.000 I I 12 0.020 0.077 3.315 0.000 I I 13 0.027 3.317 0.017 3.315 0.020 I

15.6. MacBook Air (left) and iMac (right)

Date: 10/18/12 Tim Sample: 1/01/2009 5 Included observation	e: 12:57 W01/2009 Is: 119						Date Sam Inclu	10/18/ ole: 1/0 ded obs	12 Time 1/2009 5/ servation:	: 13:02 /01/2009 s: 119					
Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob	AL	tocorre	lation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 2 3 3 4 5 6 7 8 9 100 111 12 13 14 15 5 16 17 18 19 20 21 22 3 24 25 26 27 28 29 29	-0.500 -0.500 0.000 0.000 0.000 0.000 0.222 0.000 0.222 0.000 0.222 0.000 0.222 0.000 0.222 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.278 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-0.500 -0.333 -0.250 -0.200 -0.200 -0.270 -0.281 -0.276 -0.271 -0.276 -0.275 -0.068 -0.271 -0.255 -0.068 -0.054 -0.054 -0.054 -0.055 -0	30,506 30,506 30,506 30,506 30,506 30,506 62,194 68,600 68,600 68,600 68,600 68,600 68,600 72,373 87,610 91,45691,456 91,456 91,45691,456 91,456 91,456 91,45691,456 91,456 91,456 91,456 91,456 91,456 91,456 91,456 91,456 91,456 91,456 91,456 91,456 91,456 91,45691,456 91,456 91,456 91,456 91,45691,456 91,456 91,456 91,45691,456 91,456 91,456 91,45691,456 91,456 91,456 91,45691,456 91,456 91,456 91,45691,456 91,456 91,456 91,45691,456 91,456 91,456 91,456 91,45691,456 91,456 91,456 91,456 91,45691,456 91,456 91,456 91,45691,456 91,4566 91,4566 91,4566 91,45669 91,456699999000000000000000000000000000	0.000 0.000					1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 27 28 26 27 27 28 26 27 28 20 27 28 26 27 28 20 27 28 20 27 28 20 27 28 20 27 28 20 20 20 20 20 20 20 20 20 20 20 20 20	-0.500 0.000 0.000 0.000 0.000 0.000 0.103 0.103 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.0000 0.00000 0.00000 0.00000 0.000000	-0.500 -0.333 -0.250 -0.200 -0.200 -0.167 -0.178 -0.178 -0.171 -0.131 -0.151 -0.116 -0.104 -0.193 -0.093 -0.093 -0.093 -0.093 -0.073 -0.073 -0.073 -0.078 -0.070 -0.070 -0.070 -0.070 -0.070 -0.070 -0.058 -0.058 -0.058 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.055 -0.057 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.077 -0.057 -0.077 -0.055 -0.077 -0.055 -0.077 -0.055 -0.075 -0.055 -0.075 -0.055 -0	30.506 30.506 30.506 30.506 31.861 37.327 38.706 38.706 38.706 38.706 38.706 38.706 38.706 38.706 38.706 38.706 38.706 38.201 43.201 43.201 43.201 43.201 43.201 43.202 43.219 43.219 43.219 43.219 43.219 43.219	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000
		30 31 32 33	0.000 0.000 0.000 0.000	-0.046 -0.044 -0.042 -0.040	206.37 206.37 206.37 206.37	0.000 0.000 0.000 0.000					30 31 32 33	0.000 0.000 0.000 0.000	-0.050 -0.048 -0.045 -0.043	43.219 43.219 43.219 43.219 43.219	0.056 0.071 0.089 0.110
		34 35 36	0.167 -0.333 0.167	0.013 -0.041 -0.040	211.07 230.12 234.94	0.000 0.000 0.000					34 35 36	0.001	-0.007 -0.043 -0.041	43.219 43.220 43.220	0.134

16. Unit Root Test Release Date 2 Model

16.1. Level

Null Hypothesis: Unit root (individual unit root process) Sample: 6/01/2009 10/01/2009 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 7 Total number of observations: 1804 Cross-sections included: 15

Method	Statistic	Prob.**
ADF - Fisher Chi-square	390.146	0.0000
ADF - Choi Z-stat	-13.1428	0.0000

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results UNTITLED

Series	Prob.	Lag	Max Lag	Obs	
ER	0.0000	0	12	122	
ABR	0.0000	0	12	122	
SALES	0.8393	0	12	122	
R	0.0000	1	12	121	
IRS	0.0000	0	12	122	
SR POS	0.0000	0	12	117	
SR NEUT	0.0000	0	12	115	
SR NEG	0.0083	4	12	116	
NS	0.0503	0	12	122	
PS	0.1865	0	12	122	
WS	0.1842	0	12	122	
MBP	0.5585	7	12	115	
MB	0.0919	0	12	122	
MBA	0.0776	0	12	122	
IM	0.5623	0	12	122	

Null Hypothesis: Unit root (individual unit root process) Sample: 6/01/2009 10/01/2009 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total number of observations: 1816 Cross-sections included: 15

Method	Statistic	Prob.**	
PP - Fisher Chi-square	453.706	0.0000	
PP - Choi Z-stat	-15.2903	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results UNTITLED

Series	Prob.	Bandwidth	Obs
ER	0.0000	10.0	122
ABR	0.0000	8.0	122
SALES	0.8414	1.0	122
R	0.0000	4.0	122
IRS	0.0000	3.0	122
SR_POS	0.0000	6.0	117
SR_NEUT	0.0000	8.0	115
SR NEG	0.0000	8.0	120
NS	0.0269	4.0	122
PS	0.1800	2.0	122
WS	0.1594	3.0	122
MBP	0.0080	1.0	122
MB	0.0830	2.0	122
MBA	0.0585	3.0	122
IM	0.5505	2.0	122

16.2. First Difference

Null Hypothesis: Unit root (individual unit root process) Sample: 6/01/2009 10/01/2009 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 4 Total number of observations: 1775 Cross-sections included: 15

Statistic	Prob.**	
967.134	0.0000	
-29.5079	0.0000	
	Statistic 967.134 -29.5079	Statistic Prob.** 967.134 0.0000 -29.5079 0.0000

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results D(UNTITLED)

Series	Prob.	Lag	Max Lag	Obs
D(ER)	0.0000	4	12	117
D(ABR)	0.0000	4	12	117
D(SALES)	0.0000	0	12	121
D(R)	0.0000	3	12	118
D(IRS)	0.0000	3	12	118
D(SR_POS)	0.0000	4	12	111
D(SR_NEUT)	0.0000	3	12	109
D(SR_NEG)	0.0000	2	12	117
D(NS)	0.0000	0	12	121
D(PS)	0.0000	0	12	121
D(WS)	0.0000	0	12	121
D(MBP)	0.0000	0	12	121
D(MB)	0.0000	0	12	121
D(MBA)	0.0000	0	12	121
D(IM)	0.0000	0	12	121

Null Hypothesis: Unit root (individual unit root process) Sample: 6/01/2009 10/01/2009 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total number of observations: 1798 Cross-sections included: 15

Method	Statistic	Prob.**	
PP - Fisher Chi-square	674.186	0.0000	
PP - Choi Z-stat	-23.0953	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results D(UNTITLED)

Series	Prob.	Bandwidth	Obs	
D(ER)	0.0001	30.0	121	
D(ABR)	0.0001	36.0	121	
D(SALES)	0.0000	1.0	121	
D(R)	0.0001	59.0	121	
D(IRS)	0.0001	102.0	121	
D(SR POS)	0.0001	23.0	115	
D(SR NEUT)	0.0001	37.0	112	
D(SR NEG)	0.0000	6.0	119	
D(NS)	0.0000	0.0	121	
D(PS)	0.0000	0.0	121	
D(WS)	0.0000	0.0	121	
D(MBP)	0.0000	0.0	121	
D(MB)	0.0000	0.0	121	
D(MBA)	0.0000	0.0	121	
D(IM)	0.0000	0.0	121	

16.3. Second Difference

Null Hypothesis: Unit root (individual unit root process) Sample: 6/01/2009 10/01/2009 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 1 to 10 Total number of observations: 1696 Cross-sections included: 15

Method	Statistic	Prob.**	
ADF - Fisher Chi-square	757.220	0.0000	
ADF - Choi Z-stat	-25.7179	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results D(UNTITLED,2)

Series	Prob.	Lag	Max Lag	Obs	
D(ER,2)	0.0000	10	12	110	
D(ABR,2)	0.0000	10	12	110	
D(SALES,2)	0.0000	1	12	119	
D(R,2)	0.0000	8	12	112	
D(IRS,2)	0.0000	8	12	112	
D(SR POS,2)	0.0000	7	12	107	
D(SR NEUT,2)	0.0000	10	12	101	
D(SR NEG,2)	0.0000	7	12	111	
D(NS,2)	0.0000	7	12	113	
D(PS,2)	0.0000	5	12	115	
D(WS,2)	0.0000	2	12	118	
D(MBP,2)	0.0000	3	12	117	
D(MB,2)	0.0000	5	12	115	
D(MBA,2)	0.0000	2	12	118	
D(IM,2)	0.0000	2	12	118	

Null Hypothesis: Unit root (individual unit root process) Sample: 6/01/2009 10/01/2009 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total number of observations: 1303 Cross-sections included: 11 (4 dropped)

Method	Statistic	Prob.**	
PP - Fisher Chi-square	270.169	0.0000	
PP - Choi Z-stat	-13.9054	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results D(UNTITLED,2)

Series	Prob.	Bandwidth	Obs
D(ER,2)	0.0001	26.0	120
D(ABR,2)	0.0001	33.0	120
D(SALES,2)	0.0000	8.0	120
D(R,2)	0.0001	21.0	120
D(IRS,2)	0.0001	26.0	120
D(SR_POS,2)	0.0001	22.0	114
D(SR_NEUT,2)	0.0001	36.0	111
D(SR_NEG,2)	0.0001	10.0	118
D(NS,2)		Dropped from T	est
D(PS,2)		Dropped from T	est
D(WS,2)		Dropped from T	est
D(MBP,2)	0.0001	119.0	120
D(MB,2)	0.0001	119.0	120
D(MBA,2)	0.0001	119.0	120
D(IM,2)		Dropped from T	est

17. Correlogram for Release Date 2 Variables

17.1. Expected (left) and Abnormal Returns (right)

Date: 11/11/12 Tim Sample: 6/01/2009 Included observatio	ie: 23:01 10/01/2009 ns: 120					Date: 11/11/12 Tin Sample: 6/01/2009 Included observatio	ne: 23:00 10/01/2009 ns: 119					Date: 11/11/12 Tir Sample: 6/01/2009 Included observatio	ne: 23:00 10/01/2009 ns: 122				
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q∙Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.203 \\ 0.203 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.002 \\ 0.000 \\$	$\begin{array}{c} 5.0452\\ 5.1068\\ 5.7062\\ 6.3041\\ 8.8417\\ 11.455\\ 12.361\\ 11.455\\ 12.361\\ 15.55\\ 12.361\\ 15.55\\ 15.605\\ 1$	$\begin{array}{c} 0.025\\ 0.078\\ 0.078\\ 0.164\\ 0.228\\ 0.278\\ 0.278\\ 0.264\\ 0.243\\ 0.264\\ 0.316\\ 0.371\\ 0.417\\ 0.439\\ 0.439\\ 0.439\\ 0.439\\ 0.439\\ 0.478\\ 0.485\\ 0.478\\ 0.485\\ 0.655\\ 0.707\\ 0.540\\ 0.655\\ 0.707\\ 0.768\\ 0.865\\ 0.707\\ 0.768\\ 0.841\\ 0.825\\ 0.841\\ 0.843\\ 0.833\\ 0.833\\ 0.833\\ 0.833\\ 0.833\\ 0.833\\ 0.833\\ 0.833\\ 0.833\\ 0.833\\ 0.833\\ 0.833\\ 0.817\\ 0.717\\ 0.717\\ 0.558\\ 0.813\\ 0.813\\ 0.813\\ 0.813\\ 0.833\\ 0.833\\ 0.833\\ 0.833\\ 0.833\\ 0.833\\ 0.817\\ 0.717\\ 0.717\\ 0.588\\ 0.813\\ 0.$			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.186\\ 0.067\\ 0.07\\ 0.008\\ 0.008\\ 0.023\\ 0.0149\\ 0.008\\ 0.025\\ 0.009\\ 0.009\\ 0.009\\ 0.009\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.003\\ 0.009\\ 0.$	$\begin{array}{c} 4.2115\\ 5.4242\\ 5.5973\\ 5.6042\\ 5.6772\\ 5.6772\\ 5.6772\\ 5.6772\\ 7.672\\ 10.370\\ $	0.040 0.066 0.133 0.231 0.262 0.266 0.266 0.321 0.022 0.266 0.321 0.022 0.226 0.321 0.320 0.130 0.172 0.277 0.349 0.477 0.349 0.477 0.349 0.510 0.512 0.517 0.512 0.567 0.512 0.567 0.512 0.567 0.512 0.567 0.512 0.567 0.512 0.557 0.512 0.557 0.512 0.557 0.512 0.557 0.512 0.5570 0.5570 0.5570 0.5570000000000			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.153 -0.034 0.0100 0.366 -0.155 -0.051 -0.021 -0.021 -0.020 -0.021 -0.020 -0.021 -0.020 -0.021 -0.020 -0.021 -0.020 -0.021 -0.020 -0.021 -0.020 -0.021 -0.020 -0.021 -0.020 -0.021 -0.020 -0.021 -0.020 -0.021 -0.020 -0.021 -0.0	2,9341 2,9450 4,0021 23,044 0,0021 23,022 23,240 23,220 28,923 28,923 28,923 28,923 28,923 29,923 29,923 29,923 29,923 29,923 20,925 20	$\begin{array}{c} 0.087\\ 0.2261\\ 0.261\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0.001\\ 0.000\\ 0$
· µ·	1 C B C	100 0.10	0.000	01.017	0.000	-						111	1 111	36 -0.036	0.011	38.966	0.338

17.2.

Rating (left) and Product Search (right)

Date: 10/19/12 Time: 15:29 Sample: 6/01/2009 10/01/2009 Included observations: 122										
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob				
	- -	1	-0.297	-0.297	10.997	0.001				
I	· ·	2	-0.264	-0.386	19.764	0.000				
		3	0.019	-0.262	19.809	0.000				
10		4	0.052	-0.203	20.152	0.000				
- i () i	101	5	0.057	-0.085	20.572	0.001				
i 🔲 i	 1	6	0.128	-0.212	22.712	0.001				
10	1 1	7	0.050	-0.111	23.043	0.002				
1 💷 1	111	8	0.100	-0.009	24.360	0.002				
1.0	1 1 1	9	-0.065	-0.040	24.930	0.003				
	- <u> </u>	10	+0.013	0.002	24.954	0.005				
101	10 1	11	-0.086	-0.132	25.972	0.007				
111	·	12	0.006	-0.180	25.978	0.011				
· P	111	13	0.150	-0.024	29.101	0.006				
141	ן יעי	14	-0.056	-0.057	29.533	0.009				
		15	0.023	0.052	29.609	0.013				
<u></u>	<u> </u>	16	+0.136	-0.143	32.258	0.009				
1 81	191	17	0.077	-0.054	33.108	0.011				
1.11	1 11	18	0.072	-0.021	33.868	0.013				
- ' <u>'</u> '	ישי	19	-0.019	0.072	33.920	0.019				
	<u>יי</u> ין	20	0.046	0.014	34.230	0.025				
10	יוףי	21	-0.048	-0.068	34.568	0.031				
1 💷 1	1 1	22	0.093	-0.008	35.875	0.031				
		23	+0.023	-0.038	35.958	0.042				
111		24	-0.032	0.029	36.112	0.054				
	I <u>I</u> '	25	0.020	0.017	36.172	0.068				
	·	26	+0.111	-0.210	38.097	0.059				
1 P.	111	27	0.154	-0.031	41.881	0.034				
	1 11	28	-0.013	-0.056	41.910	0.044				
		129	-0.019	0.091	41.968	U.U57				
10	יויין	130	-0.070	-0.079	42.764	0.061				
: L!	1 11	31	0.065	0.020	43.468	0.068				
!		32	0.121	0.097	45.915	0.053				
<u> </u>		33	+0.205	·U.046	53.085	0.015				
	1 141	34	+0.037	-U.060	53.323	U.U19				
· P	יןי ן	35	U.168	-0.003	58.255	0.008				
	1 11	136	0.026	0.026	58.370	0.011				

17.3. News (left) and Web Search (right)

17.4. MacBook (left) and MacBook Pro (right)

17.5. MacBook Air (left) and iMac (right)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.893	0.893	100.50	0.00
	101	2	0.786	-0.057	179.01	0.000
		3	0.679	-0.060	238.09	0.000
		4	0.572	-0.064	280.38	0.000
	1 111	5	0.465	-0.068	308.57	0.000
	1.111	2	0.356	-0.073	323.42	0.000
		14	0.201	0.079	333.78	0.000
16		ŝ	0.200	0.231	242.01	0.000
i Ei		10	0.102	.0.052	344.87	0.000
i Fi	l ili	11	0.072	-0.055	345.59	0.001
i li	i i i	12	0.028	-0.058	345.70	0.000
10	1 1 1	13	-0.017	-0.061	345.74	0.000
101		14	-0.062	-0.065	346.28	0.000
101	1 1	15	-0.084	0.150	347.29	0.000
- U	1.00	16	-0.107	-0.048	348.93	0.000
10	101	17	-0.130	0.051	351.37	0.000
<u> </u>	101	18	-0.152	0.054	354.76	0.00
9 !		19	-0.171	-0.035	359.09	0.000
		20	-0.190	-0.057	364.49	0.000
		21	-0.209	-0.061	371.07	0.000
		22	-0.180	0.323	370.00	0.000
		23	-0.101	-0.031	379.52	0.000
18 C		25	-0.122	-0.032	393 21	0.000
ill i	1 111	26	-0.064	-0.014	383.87	0.001
ili i	l ili	27	-0.036	0.034	384.07	0.001
ili	l ili	28	-0.007	0.035	384.08	0.001
i li	i hi	29	-0.004	0.121	384.08	0.000
1 1	l infi	30	-0.000	-0.027	384.08	0.000
1 1		31	0.003	-0.028	384.08	0.000
1	1 10	32	0.006	-0.026	384.09	0.000
		33	0.009	-0.006	384.10	0.000
- 1 I I		34	0.012	0.029	384.12	0.00
	1 11	35	0.015	+0.030	384.16	0.000
1111		136	-n n26	-D 156	384 28	0.001

Date: 10/18/12 Time Sample: 6/01/2009 1 Included observation	: 15:52 0/01/2009 s: 121					
Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob
		1 2 3 4 5 6 6 7 8 9 10 111 12 3 14 15 16 7 8 9 10 111 12 3 14 15 16 7 8 9 20 212 223 24 25 26 27 28 29 30 31 32 33	$\begin{array}{c} -0.500\\ -0.500\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.058\\ -0.116\\ 0.058\\ -0.116\\ 0.000$	$\begin{array}{c} 0.500\\ -0.333\\ -0.250\\ 0.200\\ 0.200\\ 0.153\\ -0.043\\ -0.153\\ 0.153\\ -0.043\\ -0.0153\\ -0.0124\\ -0.010\\ -0.095\\ -0.087\\ -0.0087\\ -0.0087\\ -0.0087\\ -0.0087\\ -0.0087\\ -0.0087\\ -0.0087\\ -0.0087\\ -0.0087\\ -0.0083\\ -0.076\\ -0.042\\ -0.0038\\ -0.046\\ -0.051\\ -0.048\\ -0.044\\ \end{array}$	31.006 31	0.000 0.0000 0.000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000
		35 36	-0.043 0.022	-0.034 -0.033	79.910 79.993	0.000

18. Unit Root Test Release Date 3 Model

18.1. Level

Null Hypothesis: Unit root (individual unit root process) Sample: 2/01/2010 6/01/2010 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 1 Total number of observations: 1797 Cross-sections included: 15

Method	Statistic	Prob.**
ADF - Fisher Chi-square	446.371	0.0000
ADF - Choi Z-stat	-14.9996	0.0000

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results UNTITLED

Series	Prob.	Lag	Max Lag	Obs	
ER	0.0000	0	12	120	
ABR	0.0000	0	12	120	
SALES	0.7457	0	12	120	
R	0.0000	0	12	120	
IRS	0.0000	0	12	120	
SR NEG	0.0000	0	11	118	
SR NEUT	0.0000	1	12	119	
SR_POS	0.0000	0	12	120	
NS	0.1069	0	12	120	
PS	0.0645	0	12	120	
WS	0.1356	0	12	120	
MBP	0.1403	0	12	120	
MB	0.1932	0	12	120	
MBA	0.1379	0	12	120	
IM	0.0732	0	12	120	

Null Hypothesis: Unit root (individual unit root process) Sample: 2/01/2010 6/01/2010 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total number of observations: 1798

Cross-sections included: 15

Method	Statistic	Prob.**	
PP - Fisher Chi-square	509.254	0.0000	
PP - Choi Z-stat	-16.3249	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results UNTITLED

Series	Prob.	Bandwidth	Obs	
ER	0.0000	5.0	120	
ABR	0.0000	6.0	120	
SALES	0.7457	0.0	120	
R	0.0000	9.0	120	
IRS	0.0000	5.0	120	
SR NEG	0.0000	5.0	118	
SR NEUT	0.0000	7.0	120	
SR POS	0.0000	5.0	120	
NS	0.0855	3.0	120	
PS	0.0642	3.0	120	
WS	0.1228	2.0	120	
MBP	0.1063	3.0	120	
MB	0.1673	3.0	120	
MBA	0.1050	3.0	120	
IM	0.0660	5.0	120	

18.2. First Difference

Null Hypothesis: Unit root (individual unit root process) Sample: 2/01/2010 6/01/2010 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 5 Total number of observations: 1761 Cross-sections included: 15

Method	Statistic	Prob.**
ADF - Fisher Chi-square	1018.80	0.0000
ADF - Choi Z-stat	-30.4123	0.0000

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results D(UNTITLED)

Series	Prob.	Lag	Max Lag	Obs	
D(ER)	0.0000	0	12	119	
D(ABR)	0.0000	4	12	115	
D(SALES)	0.0000	0	12	119	
D(R)	0.0000	5	12	114	
D(IRS)	0.0000	5	12	114	
D(SR NEG)	0.0000	2	11	112	
D(SR NEUT)	0.0000	1	12	118	
D(SR POS)	0.0000	2	12	117	
D(NS)	0.0000	0	12	119	
D(PS)	0.0000	0	12	119	
D(WS)	0.0000	0	12	119	
D(MBP)	0.0000	0	12	119	
D(MB)	0.0000	0	12	119	
D(MBA)	0.0000	0	12	119	
D(IM)	0.0000	0	12	119	

Null Hypothesis: Unit root (individual unit root process) Sample: 2/01/2010 6/01/2010 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total number of observations: 1782 Cross-sections included: 15

Method	Statistic	Prob.**	
PP - Fisher Chi-square	724.392	0.0000	
PP - Choi Z-stat	-24.0812	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results D(UNTITLED)

Series	Prob.	Bandwidth	Obs	
D(ER)	0.0001	57.0	119	
D(ABR)	0.0001	56.0	119	
D(SALES)	0.0000	1.0	119	
D(R)	0.0001	27.0	119	
D(IRS)	0.0001	26.0	119	
D(SR NEG)	0.0001	13.0	116	
D(SR NEUT)	0.0001	0.0	119	
D(SR POS)	0.0000	8.0	119	
D(NS)	0.0000	0.0	119	
D(PS)	0.0000	1.0	119	
D(WS)	0.0000	0.0	119	
D(MBP)	0.0000	0.0	119	
D(MB)	0.0000	0.0	119	
D(MBA)	0.0000	0.0	119	
D(IM)	0.0000	2.0	119	

Second Difference 18.3.

Null Hypothesis: Unit root (individual unit root process) Sample: 2/01/2010 6/01/2010 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 2 to 7 Total number of observations: 1699 Cross-sections included: 15

Method	Statistic	Prob.**	
ADF - Fisher Chi-square	935.155	0.0000	
ADF - Choi Z-stat	-28.9475	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results D(UNTITLED,2)

Series	Prob.	Lag	Max Lag	Obs	
D(ER,2)	0.0000	7	12	111	
D(ABR,2)	0.0000	7	12	111	
D(SALES,2)	0.0000	2	12	116	
D(R,2)	0.0000	5	12	113	
D(IRS,2)	0.0000	6	12	112	
D(SR NEG,2)	0.0000	7	11	100	
D(SR NEUT,2)	0.0000	3	12	115	
D(SR POS,2)	0.0000	6	12	112	
D(NS,2)	0.0000	2	12	116	
D(PS,2)	0.0000	5	12	113	
D(WS,2)	0.0000	2	12	116	
D(MBP,2)	0.0000	2	12	116	
D(MB,2)	0.0000	2	12	116	
D(MBA,2)	0.0000	2	12	116	
D(IM,2)	0.0000	2	12	116	

Null Hypothesis: Unit root (individual unit root process) Sample: 2/01/2010 6/01/2010 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total number of observations: 1412

Cross-sections included: 12 (3 dropped)

Prob.** Method Statistic PP - Fisher Chi-square 221.048 0.0000 PP - Choi Z-stat -12.8831 0.0000

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results D(UNTITLED,2)

Series	Prob.	Bandwidth	Obs	
D(ER,2)	0.0001	31.0	118	
D(ABR,2)	0.0001	35.0	118	
D(SALES,2)		Dropped from T	`est	
D(R,2)	0.0001	24.0	118	
D(IRS,2)	0.0001	24.0	118	
D(SR NEG,2)	0.0001	1.0	114	
D(SR NEUT,2)	0.0001	4.0	118	
D(SR POS,2)	0.0001	3.0	118	
D(NS,2)		Dropped from T	est	
D(PS,2)	0.0001	117.0	118	
D(WS,2)		Dropped from T	`est	
D(MBP,2)	0.0001	117.0	118	
D(MB,2)	0.0001	117.0	118	
D(MBA,2)	0.0001	117.0	118	
D(IM,2)	0.0001	117.0	118	

19. Correlogram for Release Date 3 Variables

19.1. Expected (left) and Abnormal Returns (right)

Date: 10/18/12 Time Sample: 2/01/2010 6 Included observation	e: 17:27 V01/2010 is: 120					Date: 10/18/12 Time Sample: 2/01/2010 6 Included observation	a: 17:26 V01/2010 is: 120				
Autocorrelation	Partial Correlation	AC	PAC	Q∙Stat	Prob	Autocorrelation	Partial Correlation	AC	PAC	Q∙Stat	Prob
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.551 -0.213 -0.213 -0.213 -0.213 -0.216 -0.176 -0.176 -0.176 -0.150 -0.120 -0.153 -0.100 -0.015 -0.0000 -0.00000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000	37.292 42.242 42.242 47.265 50.988 56.860 64.019 67.763 68.264 68.264 68.395 68.8950 68.995 68.995 68.995 68.913 68.913 68.913 72.814 77.3956 77.3956 77.3956 88.913 77.4958 84.075 84.075 74.958 84.075 84.456 84.344 84.346 84.347 76.813 84.344 84.346 84.344 84.346 84.346 84.344 84.346 84.3				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 3531539\\ 3953954\\ 44472\\ 45141\\ 45814\\ 4450\\ 6476\\ 6036\\ 6476\\ 6036\\ 7060\\ 701010\\ 701010\\ 701010\\ 701010\\ 701010\\ 701010\\ 701010\\ 701010\\ 701010\\ 701010\\ 701010\\ 701010\\ 701010\\ 701010\\ 701010\\ 701010\\ 70101010\\ 70101010\\ 70101010$ 7010101010101010101010101010	0.000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000
i di i	10	36 -0.089	-0.083	86.246	0.000						

Date: 11/11/12 Tim Sample: 2/01/2010 Included observatio	ie: 23:02 6/01/2010 ns: 121						Date: 11/11/12 Tim Sample: 2/01/2010 6 Included observation	e: 23:01 V01/2010 Is: 121						Date: 11/11/12 Tin Sample: 2/01/2010 Included observatio	ne: 23:01 6/01/2010 ns: 121					
Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob
		1 2 3 3 4 5 6 7 8 9 10 112 13 14 5 6 7 8 9 10 112 13 14 15 16 17 8 9 20 122 23 4 25 26 27 28 29 30 31 32 33 33 34 35 6 36 36 36 36 36 36 36 36 36 36 36 36 3	0.339 0.133 0.066 0.066 0.007 0.007 0.0095 0.022 0.102 0.028 0.123 0.120 0.122 0.120 0.122 0.120 0.012 0.008 0.0122 0.028 0.0122 0.006 0.038 0.012 0.009 0.0122 0.006 0.038 0.012 0.009 0.0122 0.000 0.012 0.009 0.005 0.0122 0.000 0.0122 0.000 0.0122 0.000 0.012 0.0010 0.001 0.001 0.001 0.001 0.0010 0.001 0.00100 0.00100 0.00100 0.00100000000	$\begin{array}{c} 0.339\\ 0.021\\ 0.016\\ 0.156\\ 0.156\\ 0.129\\ 0.087\\ 0.107\\ 0.1029\\ 0.080\\ 0.0107\\ 0.0107\\ 0.0107\\ 0.0107\\ 0.0107\\ 0.010\\ 0.029\\ 0.0080\\ 0.029\\ 0.0080\\ 0.029\\ 0.0080\\ 0.029\\ 0.0080\\ 0.029\\ 0.0080\\ 0.010\\ 0.029\\ 0.0080\\ 0.010\\ 0.009\\ 0.010\\ 0.009\\ 0.00$	$\begin{array}{c} 14.281\\ 16.506\\ 20.623\\ 20.629\\ 21.786\\ 21.849\\ 21.849\\ 21.849\\ 21.849\\ 30.133\\ 51.044\\ 22.84590\\ 30.133\\ 51.044\\ 45.26\\ 21.843\\ 51.044\\ 45.139\\ 51.044\\ 51.139\\ 51.044\\ 51.139\\ 51.044$	$\begin{array}{c} 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 $			$\begin{array}{c}1\\1\\2\\3\\4\\5\\6\\7\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\22\\23\\24\\25\\26\\27\\8\\29\\30\\31\\233\\34\\35\\6\\36\\36\\36\\36\\36\\36\\36\\36\\36\\36\\36\\36\\3$	-0.633 0.703 0.501 0.501 0.502 0.334 0.213 0.213 0.040 0.059 0.035 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.001 0.0000 0.0000 0.0000 0.00000000	0.633 0.504 0.026 0.026 0.0276 0.0276 0.0276 0.036 0.036 0.036 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.0257 0.008 0.0057 0.0057 0.0057 0.0057 0.005 0.0070 0.0040 0.0020 0.0040 0.0022 0.0020 0.0040 0.0020 0.0020 0.0040 0.0020 0.0020 0.0040 0.0020 0.0045 0.0045 0.0045	49,724 111,46 1143,15 176,08 199,87 199,35 199,74 199,35 199,74 200,69 201,16 200,69 201,32 201,33 201,34 201,32 202,01 202,01 202,01 202,01 202,02 2	0 000 0 0000 0 00000 0 0000			1 2 3 4 5 6 7 8 9 10 112 13 14 5 6 7 8 9 10 112 13 14 5 16 7 8 9 10 112 13 14 5 16 7 8 9 20 212 223 24 25 6 27 28 29 30 31 33 34 35 33 34 35 33 34 35 36 30 31 33 34 35 36 35 36 36 36 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37	$\begin{array}{c} 0.047\\ 0.054\\ 0.063\\ 0.063\\ 0.060\\ 0.0113\\ 0.039\\ 0.004\\ 0.0113\\ 0.039\\ 0.004\\ 0.0101\\ 0.002\\ 0.010\\ 0.0165\\ 0.0152\\ 0.0152\\ 0.048\\ 0.044\\ 0.054\\ 0.048\\ 0.048\\ 0.048\\ 0.0152\\ 0.048\\ 0.0152\\ 0.004\\ 0.0152\\ 0.$	$\begin{array}{c} 0.047\\ 0.052\\ 0.058\\ 0.058\\ 0.058\\ 0.026\\ 0.039\\ 0.0126\\ 0.039\\ 0.0137\\ 0.220\\ 0.037\\ 0.009\\ 0.020\\ 0.002\\ 0.002\\ 0.002\\ 0.0047\\ 0.000\\ 0.000\\ 0.000\\ 0.001\\ 0.000\\$	$\begin{array}{c} 0.2745\\ 0.6418\\ 1.1394\\ 1.6896\\ 3.3228\\ 3.3228\\ 3.5226\\ 4.8641\\ 2.0966\\ 6.3322\\ 1.7465\\ 2.0966\\ 6.3322\\ 2.917\\ 4.8641\\ 3.328\\ 8.8713\\ 3.0229\\ 3.0241\\ 3.3362\\ 3.3662\\ 3.3362\\ 3.3662\\ 3.3362\\ 3.$	0 6000 0.726 0.726 0.768 0.768 0.768 0.748 0.748 0.748 0.742 0.833 0.772 0.034 0.050 0.034 0.055 0.034 0.025 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.042 0.035 0.043 0.045 0.045 0.045 0.035 0.045 0.035 0.045 0.035 0.045 0.035 0.045 0.035 0.045 0.045 0.035 0.035 0.045 0.045 0.035 0.045 0.035 0.045 0.035 0.045 0.035 0.045 0.035 0.045 0.035 0.045 0.035 0.045 0.035 0.045 0.035 0.045 0.035 0.035 0.045 0.035 0.035 0.035 0.045 0.035 0.045 0.035 0.035 0.035 0.045 0.035 0.045 0.035 0.045 0.045 0.035 0.045 0.035 0.047 0.047

PAC Q-Stat Prob

19.3. Rating (left) and Product Search (right)

Date: 10/19/12 Time Sample: 2/01/2010 6 Included observation	e: 15:25 V01/2010 vs: 120					Date: 10/18/12 Tim Sample: 2/01/2010 Included observation	e: 17:23 5/01/2010 ns: 119
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Corre
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 32179\\ 32289\\ 33586\\ 45,774\\ 45,774\\ 45,774\\ 45,774\\ 45,774\\ 63,395\\ 53,965\\ 53,965\\ 53,965\\ 53,965\\ 53,965\\ 53,965\\ 60,334\\$	0,000 0,000000		
1 D i		35 0.08 36 -0.06	0.078 0.060 0.011	115.63	0.000	1	- :E

19.4. News (left) and Web Search (right)

19.5. MacBook (left) and MacBook Pro (right)

19.6. MacBook Air (left) and iMac (right)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 2 3 4 5 6 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 9 30 31 32 33 33 34	-0.500 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.000000	$\begin{array}{c} -0.500\\ -0.333\\ -0.250\\ -0.200\\ -0.167\\ -0.114\\ -0.102\\ -0.114\\ -0.102\\ -0.078\\ -0.078\\ -0.078\\ -0.078\\ -0.078\\ -0.078\\ -0.078\\ -0.078\\ -0.078\\ -0.078\\ -0.078\\ -0.078\\ -0.081\\ -0.085\\ -0.081\\ -0.081\\ -0.085\\ -0.081\\ -0.081\\ -0.081\\ -0.091\\$	$\begin{array}{c} 30,506\\ 30,506\\ 30,500\\ 30,500\\ 30,500\\ 30,500\\ 30,500\\ 30,500\\ 30,500\\ 30,500\\ 30,500\\ 30,500\\ 30,500\\ 30,500\\ 30,500\\ 30,500\\ 30,500\\ 40,750\\ 40,750\\ 53,803\\ 54,803\\$	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20. Unit Root Test Release Date 4 Model

20.1. Level

Null Hypothesis: Unit root (individual unit root process) Sample: 12/01/2010 4/01/2011 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 2 Total number of observations: 1774 Cross-sections included: 15

Method	Statistic	Prob.**
ADF - Fisher Chi-square	360.150	0.0000
ADF - Choi Z-stat	-12.0111	0.0000

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results UNTITLED

Series	Prob.	Lag	Max Lag	Obs	
ER	0.0000	0	12	121	
ABR	0.0000	0	12	121	
SALES	0.3880	0	12	121	
R	0.0000	0	12	121	
IRS	0.0000	0	12	121	
SR POS	0.1627	2	12	119	
SR NEUT	0.0000	0	11	100	
SR NEG	0.0000	2	12	103	
NS	0.1239	0	12	121	
PS	0.6327	0	12	121	
WS	0.2129	0	12	121	
MBP	0.1247	0	12	121	
MB	0.2917	0	12	121	
MBA	0.4769	0	12	121	
IM	0.6799	0	12	121	

Null Hypothesis: Unit root (individual unit root process) Sample: 12/01/2010 4/01/2011

Exogenous variables: Individual effects

Newey-West automatic bandwidth selection and Bartlett kernel

Total number of observations: 1783

Cross-sections included: 15

Method	Statistic	Prob.**	
PP - Fisher Chi-square	398.240	0.0000	
PP - Choi Z-stat	-13.3540	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results UNTITLED

Series	Prob.	Bandwidth	Obs	
ER	0.0000	13.0	121	
ABR	0.0000	18.0	121	
SALES	0.3880	0.0	121	
R	0.0000	3.0	121	
IRS	0.0000	4.0	121	
SR POS	0.0000	6.0	121	
SR NEUT	0.0000	2.0	100	
SR NEG	0.0000	4.0	110	
NS	0.0907	3.0	121	
PS	0.6327	0.0	121	
WS	0.1770	3.0	121	
MBP	0.0990	3.0	121	
MB	0.2553	3.0	121	
MBA	0.4787	2.0	121	
IM	0.6697	2.0	121	

20.2. First Difference

Null Hypothesis: Unit root (individual unit root process) Sample: 12/01/2010 4/01/2011 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 4 Total number of observations: 1727 Cross-sections included: 15

Statistic	Prob.**	
901.894	0.0000	
-28.3591	0.0000	
	Statistic 901.894 -28.3591	Statistic Prob.** 901.894 0.0000 -28.3591 0.0000

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results D(UNTITLED)

Series	Prob.	Lag	Max Lag	Obs	
D(ER)	0.0000	4	12	116	
D(ABR)	0.0000	4	12	116	
D(SALES)	0.0000	0	12	120	
D(R)	0.0000	4	12	116	
D(IRS)	0.0000	4	12	116	
D(SR POS)	0.0000	4	12	116	
D(SR NEUT)	0.0000	2	11	88	
D(SR NEG)	0.0000	3	12	99	
D(NS)	0.0000	0	12	120	
D(PS)	0.0000	0	12	120	
D(WS)	0.0000	0	12	120	
D(MBP)	0.0000	0	12	120	
D(MB)	0.0000	0	12	120	
D(MBA)	0.0000	0	12	120	
D(IM)	0.0000	0	12	120	

Null Hypothesis: Unit root (individual unit root process) Sample: 12/01/2010 4/01/2011 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total number of observations: 1761 Cross-sections included: 15

Method	Statistic	Prob.**	
PP - Fisher Chi-square	720.615	0.0000	
PP - Choi Z-stat	-24.0182	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results D(UNTITLED)

Series	Prob.	Bandwidth	Obs
D(ER)	0.0001	31.0	120
D(ABR)	0.0001	28.0	120
D(SALES)	0.0000	0.0	120
D(R)	0.0001	51.0	120
D(IRS)	0.0001	47.0	120
D(SR_POS)	0.0001	48.0	120
D(SR NEUT)	0.0001	13.0	96
D(SR_NEG)	0.0000	22.0	105
D(NS)	0.0000	0.0	120
D(PS)	0.0000	1.0	120
D(WS)	0.0000	0.0	120
D(MBP)	0.0000	0.0	120
D(MB)	0.0000	0.0	120
D(MBA)	0.0000	2.0	120
D(IM)	0.0000	0.0	120

20.3. Second Difference

Null Hypothesis: Unit root (individual unit root process) Sample: 12/01/2010 4/01/2011 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 2 to 9 Total number of observations: 1661 Cross-sections included: 15

Method	Statistic	Prob.**	
ADF - Fisher Chi-square	847.062	0.0000	
ADF - Choi Z-stat	-27.2153	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results D(UNTITLED,2)

Series	Prob.	Lag	Max Lag	Obs	
D(ER,2)	0.0000	8	12	111	
D(ABR,2)	0.0000	8	12	111	
D(SALES,2)	0.0000	2	12	117	
D(R,2)	0.0000	9	12	110	
D(IRS,2)	0.0000	9	12	110	
D(SR POS,2)	0.0000	4	12	115	
D(SR_NEUT,2)	0.0001	3	11	82	
D(SR_NEG,2)	0.0000	9	12	92	
D(NS,2)	0.0000	2	12	117	
D(PS,2)	0.0000	2	12	117	
D(WS,2)	0.0000	2	12	117	
D(MBP,2)	0.0000	2	12	117	
D(MB,2)	0.0000	2	12	117	
D(MBA,2)	0.0000	5	12	114	
D(IM,2)	0.0000	5	12	114	

Null Hypothesis: Unit root (individual unit root process) Sample: 12/01/2010 4/01/2011 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total number of observations: 1385 Cross-sections included: 12 (3 dropped)

Method	Statistic	Prob.**
PP - Fisher Chi-square	228.511	0.0000
PP - Choi Z-stat	-13.1298	0.0000

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results D(UNTITLED,2)

Series	Prob.	Bandwidth	Obs	
D(ER,2)	0.0001	27.0	119	
D(ABR,2)	0.0001	25.0	119	
D(SALES,2)	0.0001	22.0	119	
D(R,2)	0.0001	31.0	119	
D(IRS,2)	0.0001	30.0	119	
D(SR POS,2)	0.0001	40.0	119	
D(SR NEUT,2)	0.0001	11.0	92	
D(SR_NEG,2)	0.0000	3.0	103	
D(NS,2)		Dropped from T	est	
D(PS,2)		Dropped from T	est	
D(WS,2)		Dropped from T	est	
D(MBP,2)	0.0001	118.0	119	
D(MB,2)	0.0001	118.0	119	
D(MBA,2)	0.0001	118.0	119	
D(IM,2)	0.0001	118.0	119	

Null Hypothesis: Unit root (individual unit root process) Sample: 12/01/2010 4/01/2011 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 2 to 9 Total number of observations: 1661 Cross-sections included: 15

Method	Statistic	Prob.**
I'm, Pesaro and Shin W-stat	-37.0577	0.0000

** Probabilities are computed assuming asympotic normality

Intermediate ADF test results

						Max	
Series	t-Stat	Prob.	E(t)	E(Var)	Lag	Lag	Obs
D(ER,2)	-8.6404	0.0000	-1.456	0.818	8	12	111
D(ABR,2)	-9.2382	0.0000	-1.456	0.818	8	12	111
D(SALES,2)	-9.4959	0.0000	-1.514	0.754	2	12	117
D(R,2)	-8.1925	0.0000	-1.456	0.818	9	12	110
D(IRS,2)	-8.2173	0.0000	-1.456	0.818	9	12	110
D(SR POS,2)	-12.804	0.0000	-1.495	0.771	4	12	115
D(SR NEUT,2)	-11.699	0.0001	-1.502	0.774	3	11	82
D(SR NEG,2)	-8.9839	0.0000	-1.445	0.832	9	12	92
D(NS,2)	-10.630	0.0000	-1.514	0.754	2	12	117
D(PS,2)	-10.693	0.0000	-1.514	0.754	2	12	117
D(WS,2)	-10.630	0.0000	-1.514	0.754	2	12	117
D(MBP,2)	-10.677	0.0000	-1.514	0.754	2	12	117
D(MB,2)	-10.630	0.0000	-1.514	0.754	2	12	117
D(MBA,2)	-10.105	0.0000	-1.494	0.781	5	12	114
D(IM,2)	-8.6461	0.0000	-1.494	0.781	5	12	114
Average	-9.9522		-1.489	0.782			

Warning: for some series the expected mean and variance for the given lag and observation are not covered in IPS paper

21. Correlogram for Release Date 4 Variables

21.1. Expected (left) and Abnormal Returns (right)

Date: 11/11/12	Time: 23:03
Sample: 12/01	2010 4/01/201
In all the stands are a	

Date: 11/11/12 Time: 23:02 Date: 11/11/12 Time: 23:02 Sample: 12/01/2010 4/01/2011 Sample: 12/01/2010 4/01/2011

Included observatio	ns: 122					Included observation	18: 122						Included observation	ns: 122					
Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob
Autocorelation Autocorelation	Partial Correlation Partial Correlation	AC 1 0.606 2 0.564 3 0.564 4 0.500 5 0.511 6 0.588 7 0.438 9 0.511 13 0.37 11 0.339 11 0.339 11 0.339 11 0.339 11 0.343 11 0.343 12 0.411 15 0.336 16 0.336 16 0.336 17 0.289 18 0.307 20 0.244 21 0.200 22 0.19 23 0.16 1 0.10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PAC 3 0.608 3 0.608 4 0.244 5 0.085 0 0.244 5 0.085 0 0.244 5 0.085 5 0.063 3 0.0167 5 0.0164 6 0.013 5 0.016 4 0.020 5 0.164 4 0.013 5 0.017 7 0.030 3 0.017 7 0.030 5 0.017 5 0.019 4 0.020 5 0.012 5 0.019	Q-Stat 46.214 86.424 126.88 159.55 262.27 291.14 326.42 352.40 373.42 396.62 373.42 396.62 474.93 487.29 501.09 511.80 551.80 552.62 532.62 532.62 532.62 532.65 532.62 532.65 532.55 542.55 54	Prob 0.0000 0.0000	Included deservation Autocorrelation	Partial Correlation Partial Correlation I D I I I I D I I D I D I D I D	1 1 2 3 4 5 6 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29 20 20 21 22 23 24 25 26 26 27 28 29 20 20 21 22 23 24 25 26 26 27 28 29 20 21 22 23 24 25 26 26 27 27 20 20 21 22 23 24 25 26 26 27 27 20 20 21 22 22 24 25 26 26 27 27 20 20 21 22 23 24 25 26 26 27 28 29 20 21 22 20 22 23 24 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20	AC 0.067 0.014 0.082 0.082 0.006 0.006 0.006 0.005 0.027 0.014 0.014 0.027 0.046 0.023 0.005 0.033 0.002 0.014 0.023 0.006 0.014 0.024 0.033 0.002 0.014 0.023 0.006 0.014 0.024 0.033 0.002 0.014 0.024 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025 0.014 0.025	PAC 0.067 0.018 0.089 0.153 0.102 0.030 0.012 0.030 0.012 0.030 0.062 0.008 0.062 0.008 0.064 0.009 0.123 0.011 0.322 0.052 0.011 0.322 0.051 0.031 0.016 0.034 0.008 0.019 0.034 0.008 0.019 0.034 0.008 0.011 0.032 0.055 0.031 0.016 0.034 0.008 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.	Q-Stat 0 5619 0.5849 5.0323 5.8974 5.9047 5.8974 6.0498 5.9047 7.6930 7.6936 6.8683 7.4765 6.8133 7.4765 8.0242 10.556 8.0242 10.566 8.0242 11.6464 18.397 18.397 18.397 18.397 18.397 18.397 18.397 18.397 18.397 18.397 18.397 19.397 1	Prob 0.454 0.746 0.524 0.324 0.345 0.747 0.810 0.747 0.810 0.747 0.810 0.747 0.883 0.747 0.883 0.747 0.883 0.876 0.892 0.392 0.394 0.392 0.394 0.397 0.854 0.897 0.857 0.927 0.857 0.927 0.9	Mutual diservation Autocorrelation 4 utocorrelation 1 1 1 1 1 1 1 1	Partial Correlation Partial Correlation I I I I I I I I I I I I I I I I I I I	1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 7 8 9 10 11 12 3 14 15 16 7 8 9 20 21 22 23 24 25 26 27 8 22 22 22 22 22 22 22 22 22 22 22 22 2	AC 0.041 0.069 0.120 0.046 0.002 0.037 0.037 0.031 0.031 0.032 0.033 0.032 0.033 0.032 0.031 0.034 0.032 0.031 0.031 0.031 0.031 0.032 0.032 0.032 0.031 0.031 0.031 0.032 0.032 0.032 0.031 0.032 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.004 0.003 0.004 0.003 0.004 0.004 0.003 0.004 0.003 0.003 0.004 0.003 0.003 0.003 0.003 0.002 0.027	PAC 0.041 -0.071 -0.013 0.013 0.023 0.032 -0.012 -0.032 -0.012 -0.032 -0.012 -0.032 -0.012 -0.037 -0.023 -0.036 -0.046 -0.012 -0.039 -0.0147 -0.012 -0.023 -0.023 -0.023 -0.023 -0.023 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.024 -0.046 -0.0	Q-Stat 0.2100 0.8181 0.8628 2.7210 0.8628 2.7210 3.8042 3.8042 3.8042 3.8042 3.8042 3.8042 3.8042 5.325 6.5325 6.5325 6.5325 6.5325 6.5325 6.5325 6.5325 10.491 10.554 13.066 13.137 13.066 13.15812 13.807	Prob 0.647 0.654 0.664 0.664 0.684 0.664 0.682 0.822 0.875 0.924 0.9251 0.926 0.951 0.947 0.946 0.947 0.947 0.946 0.947 0.946 0.947 0.946 0.947 0.947 0.946 0.947 0.946 0.947 0.945 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 0.947 </td
		29 0.044 30 0.018 31 -0.019 32 -0.004 33 -0.033 34 -0.039 35 -0.026 36 -0.022	4 -0.014 3 -0.077 5 -0.005 4 -0.006 3 0.012 9 -0.030 5 0.073 2 0.101	546.21 546.27 546.30 546.31 546.50 546.75 546.87 546.95	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			29 30 31 32 33 34 35 36	-0.012 0.024 0.019 -0.040 -0.005 -0.005 -0.006 0.007 0.025	+0.060 +0.000 0.016 +0.085 +0.052 0.021 +0.054 +0.054	18,753 18,849 18,911 19,187 19,190 19,196 19,204 19,311	0.927 0.943 0.956 0.964 0.973 0.981 0.986 0.990			29 30 31 32 33 34 35 36	0.027 0.027 0.019 -0.023 0.082 0.058 0.052 0.055	0.046 0.001 0.072 -0.038 0.034 0.057 0.041 0.065	16.697 16.819 16.879 16.965 18.113 18.701 19.173 20.436	0.967 0.975 0.981 0.986 0.983 0.985 0.985 0.986 0.983

21.3.

Rating (left) and Product Search (right)

Date: 10/19/12 Time: 15:31 Sample: 12/01/2010 4/01/2011 Included observations: 121

Autocorrelation	Autocorrelation Partial Correlation		AC	PAC	Q∙Stat	Prob
		1	-0.498	-0.498	30.721	0.000
101		2	0.050	-0.263	31.028	0.000
10	_ _ .	3	-0.075	-0.250	31.741	0.000
	_ □ ·	4	0.024	+0.201	31.813	0.000
	·	5	-0.039	+0.223	32.011	0.000
1 🗩	1 1 1	6	0.135	+0.022	34.358	0.000
- E	101	7	+0.136	+0.113	36.762	0.000
1 1	L	8	-0.006	0.195	36.767	0.000
1 🕅 1	10	9	0.056	-0.116	37.188	0.000
101	1 1 1	10	0.062	0.026	37.709	0.000
10	1 1	11	-0.034	0.057	37.865	0.000
10	10	12	-0.056	-0.039	38.291	0.000
1 1	1 10	13	0.003	-0.035	38.292	0.000
1 1	1 10	14	-0.005	-0.047	38.296	0.000
	1 10	15	0.037	-0.043	38.483	0.001
111	101	16	+0.027	+0.087	38.589	0.001
1 1	101	17	+0.001	+0.079	38.589	0.002
111	101	18	-0.043	+0.136	38.857	0.003
111	□ I	19	0.012	0.217	38.879	0.005
1 🗐 1	101	20	0.116	-0.061	40.865	0.004
10	111	21	-0.051	-0.014	41.247	0.005
10	10	22	-0.082	-0.126	42.257	0.006
1 🗐 I	1 1 1	23	0.098	-0.009	43.730	0.006
i 🛛 i	Q	24	-0.130	-0.152	46.341	0.004
· 🗖	1 11	25	0.178	0.031	51.240	0.001
	10	26	-0.154	+0.138	54.962	0.001
· • 🗩	1 1 11	27	0.164	0.091	59.234	0.000
	1 1	28	-0.146	0.044	62.645	0.000
101	111	29	0.057	-0.040	63.172	0.000
111	1 10	30	0.022	0.031	63.252	0.000
111	יופי ן	31	0.023	0.070	63.341	0.001
i a i i i i i i i i i i i i i i i i i i	יוםי	32	-0.147	-0.080	66.963	0.000
יוםי	10	33	0.107	-0.098	68.909	0.000
	101	34	-0.042	+0.095	69.216	0.000
	101	35	0.039	+0.087	69.486	0.000
1 D 1	(i)i	36	0.073	0.034	70.415	0.001

21.4. News (left) and Web Search (right)

21.5. MacBook (left) and MacBook Pro (right)

21.6. MacBook Air (left) and iMac (right)

Date: 10/18/12 Time Sample: 12/01/2010 Included observation	e: 20:12 4/01/2011 s: 120					
Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob
		1 2 3 4 5 6 6 7 8 9 9 100 111 122 133 144 15 6 6 7 18 9 9 100 111 122 133 144 15 166 177 188 209 201 222 232 24 225 268 299 300 331 34 35 35 35 35 35 35 35 35 35 35 35 35 35	$\begin{array}{c} -0.500\\ 0.000\\ 0$	-0.500 -0.333 -0.250 -0.250 -0.250 -0.250 -0.250 -0.250 -0.299 -0.029 -0.092 -0.082 -0.082 -0.082 -0.082 -0.082 -0.082 -0.061 -0.062 -0.061 -0.062 -0.061 -0.062 -0.061 -0.075 -0.061 -0.075 -0.075 -0.075 -0.075 -0.075 -0.075 -0.075 -0.070 -0.075 -0.070 -0.075 -0.035 -0	30,756 30,756 30,756 30,756 30,756 31,228 30,756 31,228 37,246 37,347 37,246 37,347 37,447 37	0.000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.000000
10	10	36	0.036	-0.054	84.778	0.000

22. Unit Root Test Release Date 5 Model

22.1. Level

Null Hypothesis: Unit root (individual unit root process) Sample: 8/01/2011 1/01/2012 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total (balanced) observations: 2295 Cross-sections included: 15

Method	Statistic	Prob.**	
PP - Fisher Chi-square	639.545	0.0000	
PP - Choi Z-stat	-18.4937	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results UNTITLED

Series	Prob.	Bandwidth	Obs	
ER	0.0000	1.0	153	
ABR	0.0000	1.0	153	
SALES	0.7954	0.0	153	
R	0.0000	4.0	153	
IRS	0.0000	4.0	153	
SR POS	0.0000	6.0	153	
SR NEUT	0.0000	2.0	153	
SR NEG	0.0000	2.0	153	
NS	0.0185	4.0	153	
PS	0.2081	2.0	153	
WS	0.0390	4.0	153	
MBP	0.0498	4.0	153	
MB	0.1476	4.0	153	
MBA	0.0257	3.0	153	
IM	0.2041	4.0	153	

Null Hypothesis: Unit root (individual unit root process) Sample: 8/01/2011 1/01/2012 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 Total (balanced) observations: 2295 Cross-sections included: 15

Method	Statistic	Prob.**	
ADF - Fisher Chi-square	632.690	0.0000	
ADF - Choi Z-stat	-18.1153	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results UNTITLED

Series	Prob.	Lag	Max Lag	Obs	
ER	0.0000	0	13	153	
ABR	0.0000	0	13	153	
SALES	0.7954	0	13	153	
R	0.0000	0	13	153	
IRS	0.0000	0	13	153	
SR POS	0.0000	0	13	153	
SR NEUT	0.0000	0	13	153	
SR NEG	0.0000	0	13	153	
NS	0.0355	0	13	153	
PS	0.2274	0	13	153	
WS	0.0615	0	13	153	
MBP	0.0775	0	13	153	
MB	0.2004	0	13	153	
MBA	0.0357	0	13	153	
IM	0.2745	0	13	153	

22.2. First Difference

Null Hypothesis: Unit root (individual unit root process) Sample: 8/01/2011 1/01/2012 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 4 Total number of observations: 2262 Cross-sections included: 15

Method	Statistic	Prob.**	
ADF - Fisher Chi-square	1127.62	0.0000	
ADF - Choi Z-stat	-30.8080	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results D(UNTITLED)

Series	Prob.	Lag	Max Lag	Obs	
D(ER)	0.0000	1	13	151	
D(ABR)	0.0000	1	13	151	
D(SALES)	0.8867	0	13	152	
D(R)	0.0000	3	13	149	
D(IRS)	0.0000	3	13	149	
D(SR POS)	0.0000	3	13	149	
D(SR NEUT)	0.0000	4	13	148	
D(SR NEG)	0.0000	3	13	149	
D(NS)	0.0000	0	13	152	
D(PS)	0.0000	0	13	152	
D(WS)	0.0000	0	13	152	
D(MBP)	0.0000	0	13	152	
D(MB)	0.0000	0	13	152	
D(MBA)	0.0000	0	13	152	
D(IM)	0.0000	0	13	152	

Null Hypothesis: Unit root (individual unit root process) Sample: 8/01/2011 1/01/2012 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total (balanced) observations: 2280 Cross-sections included: 15

Method	Statistic	Prob.**	
PP - Fisher Chi-square	690.273	0.0000	
PP - Choi Z-stat	-21.9513	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results D(UNTITLED)

Series	Prob.	Bandwidth	Obs	
D(ER)	0.0001	38.0	152	
D(ABR)	0.0001	40.0	152	
D(SALES)	0.8867	0.0	152	
D(R)	0.0001	35.0	152	
D(IRS)	0.0001	31.0	152	
D(SR POS)	0.0001	49.0	152	
D(SR NEUT)	0.0001	38.0	152	
D(SR NEG)	0.0001	140.0	152	
D(NS)	0.0000	0.0	152	
D(PS)	0.0000	0.0	152	
D(WS)	0.0000	0.0	152	
D(MBP)	0.0000	0.0	152	
D(MB)	0.0000	0.0	152	
D(MBA)	0.0000	0.0	152	
D(IM)	0.0000	0.0	152	

22.3. Second Difference

Null Hypothesis: Unit root (individual unit root process) Sample: 8/01/2011 1/01/2012 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 12 Total number of observations: 2172 Cross-sections included: 15

Method	Statistic	Prob.**	
ADF - Fisher Chi-square	763.780	0.0000	
ADF - Choi Z-stat	-24.7927	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results D(UNTITLED,2)

Series	Prob.	Lag	Max Lag	Obs	
D(ER,2)	0.0000	8	13	143	
D(ABR,2)	0.0000	8	13	143	
D(SALES,2)	0.6630	0	13	151	
D(R,2)	0.0000	10	13	141	
D(IRS,2)	0.0000	12	13	139	
D(SR POS,2)	0.0000	8	13	143	
D(SR NEUT,2)	0.0000	7	13	144	
D(SR NEG,2)	0.0000	5	13	146	
D(NS,2)	0.0000	7	13	144	
D(PS,2)	0.0000	2	13	149	
D(WS,2)	0.0000	3	13	148	
D(MBP,2)	0.0000	7	13	144	
D(MB,2)	0.0000	6	13	145	
D(MBA,2)	0.0000	7	13	144	
D(IM,2)	0.0000	3	13	148	

Null Hypothesis: Unit root (individual unit root process) Sample: 8/01/2011 1/01/2012 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total (balanced) observations: 2265 Cross-sections included: 15

Method	Statistic	Prob.**	
PP - Fisher Chi-square	258.712	0.0000	
PP - Choi Z-stat	-13.3348	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results D(UNTITLED,2)

Series	Prob.	Bandwidth	Obs	
D(ER,2)	0.0001	102.0	151	
D(ABR,2)	0.0001	145.0	151	
D(SALES,2)	0.6630	0.0	151	
D(R,2)	0.0001	47.0	151	
D(IRS,2)	0.0001	43.0	151	
D(SR POS,2)	0.0001	36.0	151	
D(SR NEUT,2)	0.0001	28.0	151	
D(SR_NEG,2)	0.0001	32.0	151	
D(NS,2)	0.0001	150.0	151	
D(PS,2)	0.0001	30.0	151	
D(WS,2)	0.0001	150.0	151	
D(MBP,2)	0.0001	77.0	151	
D(MB,2)	0.0001	27.0	151	
D(MBA,2)	0.0001	41.0	151	
D(IM,2)	0.0001	37.0	151	

PAC

0.047 0.047 0.128 0.126 0.128 0.126 0.088 0.078 0.097 0.079 0.128 0.126 0.128 0.126 0.097 0.079 0.128 0.017 0.098 0.017 0.098 0.097 0.098 0.097 0.098 0.097 0.013 0.019 0.017 0.015 0.017 0.015 0.017 0.015 0.017 0.015 0.017 0.015 0.010 0.015

Q-Stat Prob

 $\begin{array}{c} 0.3401\\ 2.9173\\ 3.6342\\ 1.703\\ 1.5276\\ 1.6866\\ 1.7866\\ 1.7866\\ 1.7866\\ 1.7866\\ 1.7866\\ 2.4022\\ 2.3140\\ 2.5384\\$ $\begin{array}{c} 0.566 \\ 0.2333 \\ 0.247 \\ 0.228 \\ 0.0237 \\ 0.228 \\ 0.0333 \\ 0.057 \\ 0.0333 \\ 0.0333 \\ 0.0331 \\ 0.0333 \\ 0.0331 \\ 0.0331 \\ 0.0448 \\ 0.2464 \\ 0$

AC

23. Correlogram for Release Date 5 Variables

Expected (left) and Abnormal Returns (right) 23.1.

AC

 AC
 PAC
 Q-Stat
 Prob

 1
 0.037
 0.037
 0.218
 0.638

 2
 0.121
 0.125
 0.125
 0.125
 0.125

 2
 0.121
 0.125
 0.125
 0.125
 0.125

 5
 0.677
 0.618
 0.632
 0.537
 0.126
 0.127
 0.017
 0.017
 0.017
 0.017
 0.017
 0.017
 0.017
 0.017
 0.017
 0.017
 0.017
 0.017
 0.017
 0.017
 0.011
 0.018
 0.011
 0.014
 0.018
 0.011
 0.014
 0.018
 0.011
 0.014
 0.018
 0.011
 0.014
 0.018
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011
 0.011

PA

O-Sta Prot

Date: 11/11/12 Time: 23:04 Sample: 8/01/2011 1/01/2012 Included observations: 154

Partial Corre

Date: 11/11/12 Time: 25.04
Sample: 8/01/2011 1/01/2012
Included observations: 154

Date: 11/11/12 Time: 23:04 Sample: 8/01/2011 1/01/2012

Autocorrelation	Partial Correlation		AC	PAC	0.Stat	Proh
Autocorrelation	Partial Contenation		AC	FAC	Q-Stat	FIUD
· 🖿	I I I I I I I I I I I I I I I I I I I	1	0.251	0.251	9.9199	0.002
	1 10	2	0.028	-0.038	10.040	0.007
10	1 1	3	0.065	0.072	10.712	0.013
1 🛛 1	1 111	4	0.077	0.047	11.669	0.020
- D	1 💷	5	0.139	0.117	14.768	0.011
10	1 I I I I I I I I I I I I I I I I I I I	6	-0.030	-0.104	14.917	0.021
		7	-0.129	-0.106	17.619	0.014
		8	-0.188	-0.166	23.456	0.003
10	1 11	9	-0.058	0.019	24.012	0.004
111	1 11	10	0.039	0.053	24.269	0.007
- UL -	1 1	11	-0.034	-0.006	24.461	0.011
	1 10	12	-0.035	0.025	24.671	0.016
10	1 10	13	0.005	0.043	24.675	0.025
		14	0.022	0.016	24.756	0.037
	101	15	0.029	+0.025	24.905	0.051
i pi	1 10	16	0.083	0.062	26.106	0.053
	101	17	-0.012	-0.056	26.132	0.072
- U -	1 1 1	18	-0.015	0.008	26.170	0.096
	1 11	19	0.027	0.015	26.304	0.122
10	1 111	20	0.045	0.041	26.668	0.145
	1 1	21	0.016	+0.006	26.713	0.181
111	1 1 1	22	0.028	0.052	26.851	0.217
	1 1	23	0.021	0.005	26.932	0.259
	1 11	24	0.010	0.013	26.952	0.307
10	1 10	25	-0.006	-0.040	26.959	0.358
1 1	1 1	26	+0.000	+0.005	26.959	0.412
	1 11	27	0.008	0.016	26.971	0.465
1 1	1 11	28	0.001	0.012	26.972	0.520
10	1 1	29	0.058	0.070	27.608	0.539
	1 10	30	0.051	0.047	28.105	0.565
1 1	1 11	31	0.007	+0.001	28.114	0.615
10	1 10	32	-0.032	-0.066	28.319	0.653
1 1	1 1	33	-0.003	-0.000	28.321	0.699
	1 10	34	0.018	-0.010	28.385	0.739
10	1 III I	35	-0.086	-0.103	29.887	0.713
101	1 11	36	-0.066	-0.011	30,780	0.715

23.3.

Rating (left) and Product Search (right)

Date: 10/19/12 Time: 14:51 Sample: 8/01/2011 1/01/2012

Autocorrelation	Partial Correlation		AC	PAC	Q·Stat	Prob
		1 1	0.707	0.707	77.444	0.000
		1	-0.707	-0.707	//.411	0.000
		2	0.250	-0.499	87.140	0.000
111		3	-0.072	0.424	07.900	0.000
111		2	0.043	0.300	00.207	0.000
111		6	0.007	0.207	00.204	0.000
- 11		7	0.013	-0.107	88 310	0.000
i di i		l á	-0.064	-0.000	99.979	0.000
i lini		ă	0.149	.0.055	92 590	0.000
- Fi	l 💾 i	10	-0.211	-0.236	99 922	0.000
		111	0.219	-0.171	107.85	0.000
in T	i ini	12	-0.100	0.136	109.52	0.000
i 🖥	l di	13	-0.126	.0.172	112.21	0.000
	1	14	0.279	0.001	125.39	0.000
	1 1	15	-0.249	0.003	136.01	0.000
	1 10	16	0.134	-0.030	139.13	0.000
u Ei	11	17	-0.064	+0.016	139.83	0.000
ւիլ	1 1	18	0.052	0.002	140.31	0.000
10	1 1	19	-0.053	0.039	140.80	0.000
	101	20	0.032	-0.065	140.99	0.000
1 1		21	0.006	+0.007	141.00	0.000
10	1 1	22	-0.036	0.022	141.23	0.000
101	101	23	0.051	-0.065	141.70	0.000
i 🛛 i	10	24	-0.088	-0.081	143.11	0.000
		25	0.182	0.169	149.21	0.000
- ·	1 10	26	-0.265	0.071	162.25	0.000
· • 💻	1 10	27	0.210	-0.093	170.51	0.000
111	1 1	28	-0.033	0.080	1/0.72	0.000
141		29	-0.080	0.068	171.93	0.000
111	1 11	30	0.048	-0.009	1/2.38	0.000
112		31	-0.031	-0.166	172.57	0.000
	1 14	32	0.108	-0.049	1/4.83	0.000
	1.12	33	-0.111	0.111	177.24	0.000
111		34	0.013	0.007	177.28	0.000
18		30	-0.015	-0.097	101.32	0.000
	1 1	130	U.148	0.080	101.70	0.000

23.4. News (left) and Web Search (right)

23.5. MacBook (left) and MacBook Pro (right)

23.6. MacBook Air (left) and iMac (right)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	I 🔲 I	1	-0.462	-0.462	33.118	0.00
1 1		2	-0.000	-0.272	33.118	0.00
1 1	. □ ·	3	-0.000	-0.172	33.118	0.00
1 1	(1)	4	-0.000	-0.113	33.118	0.00
1 1	101	5	0.000	-0.075	33.118	0.00
- - -		6	0.145	0.159	36.472	0.00
	1 1	7	+0.170	-0.004	41.150	0.00
10	111	8	0.026	-0.040	41.262	0.00
111	1 1 1	9	-0.000	-0.054	41.262	0.00
111	יופי	10	-0.000	-0.057	41.262	0.00
	191	111	-0.000	-0.057	41.262	0.00
111	1 10	12	+0.000	+0.057	41.262	0.00
		13	0.038	0.066	41.512	0.00
	1 11	14	-0.043	0.019	41.826	0.00
	1 11	15	0.005	0.000	41.830	0.00
	1 111	12	-0.000	-0.013	41.830	0.00
111	1 111	110	-0.000	-0.023	41.030	0.00
	1 111	10	-0.000	0.032	41.830	0.00
141	1.1.1	120	0.000	-0.042 0.00E	41.030	0.00
	181	20	0.001	0.095	42.408	0.00
	1 111	22	0.061	0.033	45.137	0.00
111	1 111	22	.0.001	-0.027	45.027	0.00
ili	i i i i i i	24	-0.000	-0.019	45.827	0.00
ili	1 111	25	.0.000	-0.003	45.827	0.00
ili	l ili	26	0.000	-0.022	45 827	0.01
ili	l ili	27	-0.017	0.026	45 881	0.01
ili	i li i li i	28	0.025	0.008	46 001	0.01
10	1.11	29	-0.009	0.002	46.015	0.02
- th	1 1	30	-0.000	-0.001	46.015	0.03
1 1	1 1	31	-0.000	-0.003	46.015	0.04
1 1	1 1	32	-0.000	-0.007	46.015	0.05
1 1	1 1 1	33	-0.000	-0.015	46.015	0.06
10	1 1)1	34	0.014	0.035	46.054	0.08
10	1 10	35	-0.045	-0.040	46.465	0.09
	1 11	36	0.031	-0.016	46.657	0.11

Date: 10/19/12 Time: 14:49 Sample: 8/01/2011 1/01/2012 Included observations: 152								
Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob		
		$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\1\\2\\13\\14\\15\\16\\17\\8\\19\\20\\22\\23\\24\\25\\6\\27\\28\\29\\33\\3\\33\\33\\35\\36\end{array}$	-0.468 -0.000 -0.000 -0.000 -0.000 -0.000 -0.287 -0.287 -0.287 -0.000 -0.287 -0.000 -0.287 -0.0000 -0.0000 -0.0000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000	$\begin{array}{c} 0.488\\ -0.280\\ -0.182\\ -0.182\\ -0.182\\ -0.182\\ -0.182\\ -0.182\\ -0.182\\ -0.083\\ -0.083\\ -0.083\\ -0.094\\ -0.079\\ -0.056\\ -0.047\\ -0.056\\ -0.047\\ -0.021\\ -0.015\\ -0.018\\ -0.015\\ -0.0148\\ -0.013\\ -0.0148\\ -0.013\\ -0.018\\ -0.038\\ -0.038\\ -0.038\\ -0.038\\ -0.018\\ -0.038\\ -0.038\\ -0.018\\ -0.038\\ -0.038\\ -0.038\\ -0.018\\ -0.018\\ -0.038\\ -0.038\\ -0.038\\ -0.018\\ -0.018\\ -0.038\\ -0.038\\ -0.038\\ -0.018\\ -0.018\\ -0.038$	$\begin{array}{c} 33283\\ 33928\\ 33928\\ 33928\\ 33928\\ 33928\\ 33928\\ 33928\\ 33928\\ 33928\\ 33928\\ 33928\\ 33928\\ 33928\\ 54520\\ 54520\\ 54520\\ 54520\\ 54520\\ 54520\\ 54520\\ 54520\\ 54520\\ 54520\\ 57104$ 57104\\ 57104 57104\\ 57104			

24. Unit Root Test

24.1. Level

Null Hypothesis: Unit root (individual unit root process) Sample: 4/01/2012 8/01/2012 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 2 Total number of observations: 1706 Cross-sections included: 14

Statistic	Prob.**
405.242	0.0000
-13.6867	0.0000
	Statistic 405.242 -13.6867

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results UNTITLED

Series	Prob.	Lag	Max Lag	Obs	
ABR	0.0000	0	12	122	
ER	0.0000	0	12	122	
R	0.0000	0	12	122	
SALES	0.8694	0	12	122	
SR NEUT	0.0000	0	12	122	
SR NEG	0.0000	2	12	120	
SR POS	0.0000	0	12	122	
NS	0.0391	0	12	122	
PS	0.6834	0	12	122	
WS	0.0806	0	12	122	
MB	0.1275	0	12	122	
MBA	0.1355	0	12	122	
MBP	0.1518	0	12	122	
IM	0.1057	0	12	122	

Null Hypothesis: Unit root (individual unit root process) Sample: 4/01/2012 8/01/2012 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total (balanced) observations: 1708 Cross-sections included: 14

Method	Statistic	Prob.**	
PP - Fisher Chi-square	430.961	0.0000	
PP - Choi Z-stat	-14.4127	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results UNTITLED

Series	Prob.	Bandwidth	Obs	
ABR	0.0000	6.0	122	
ER	0.0000	5.0	122	
R	0.0000	5.0	122	
SALES	0.8694	0.0	122	
SR NEUT	0.0000	1.0	122	
SR NEG	0.0000	17.0	122	
SR POS	0.0000	4.0	122	
NS	0.0193	4.0	122	
PS	0.6747	2.0	122	
WS	0.0479	4.0	122	
MB	0.0968	3.0	122	
MBA	0.1028	3.0	122	
MBP	0.1185	3.0	122	
IM	0.0650	4.0	122	

24.2. First Difference

Null Hypothesis: Unit root (individual unit root process) Sample: 4/01/2012 8/01/2012 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 0 to 12 Total number of observations: 1665 Cross-sections included: 14

Method	Statistic	Prob.**	
ADF - Fisher Chi-square	914.557	0.0000	
ADF - Choi Z-stat	-28.6959	0.0000	
ADF - Fisher Chi-square ADF - Choi Z-stat	-28.6959	0.0000	

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results D(UNTITLED)

Series	Prob.	Lag	Max Lag	Obs	
D(ABR)	0.0000	4	12	117	
D(ER)	0.0000	12	12	109	
D(R)	0.0000	1	12	120	
D(SALES)	0.0000	0	12	121	
D(SR NEUT)	0.0000	3	12	118	
D(SR NEG)	0.0000	4	12	117	
D(SR POS)	0.0000	5	12	116	
D(NS)	0.0000	0	12	121	
D(PS)	0.0000	0	12	121	
D(WS)	0.0000	0	12	121	
D(MB)	0.0000	0	12	121	
D(MBA)	0.0000	0	12	121	
D(MBP)	0.0000	0	12	121	
D(IM)	0.0000	0	12	121	

Null Hypothesis: Unit root (individual unit root process) Sample: 4/01/2012 8/01/2012 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total (balanced) observations: 1694 Cross-sections included: 14

Method	Statistic	Prob.**
PP - Fisher Chi-square	673.094	0.0000
PP - Choi Z-stat	-23.1071	0.0000

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results D(UNTITLED)

Series	Prob.	Bandwidth	Obs	
D(ABR)	0.0001	55.0	121	
D(ER)	0.0001	39.0	121	
D(R)	0.0001	61.0	121	
D(SALES)	0.0000	1.0	121	
D(SR NEUT)	0.0001	60.0	121	
D(SR NEG)	0.0001	30.0	121	
D(SR POS)	0.0001	34.0	121	
D(NS)	0.0000	0.0	121	
D(PS)	0.0000	0.0	121	
D(WS)	0.0000	0.0	121	
D(MB)	0.0000	0.0	121	
D(MBA)	0.0000	0.0	121	
D(MBP)	0.0000	0.0	121	
D(IM)	0.0000	0.0	121	

24.3. Second Difference

Null Hypothesis: Unit root (individual unit root process) Sample: 4/01/2012 8/01/2012 Exogenous variables: Individual effects Automatic selection of maximum lags Automatic lag length selection based on SIC: 2 to 10 Total number of observations: 1620 Cross-sections included: 14

Method	Statistic	Prob.**
ADF - Fisher Chi-square	842.810	0.0000
ADF - Choi Z-stat	-27.4649	0.0000

** Probabilities for Fisher tests are computed using an asymptotic Chi -square distribution. All other tests assume asymptotic normality.

Intermediate ADF test results D(UNTITLED,2)

Series	Prob.	Lag	Max Lag	Obs	
D(ABR,2)	0.0000	8	12	112	
D(ER,2)	0.0000	8	12	112	
D(R,2)	0.0000	4	12	116	
D(SALES,2)	0.0000	2	12	118	
D(SR NEUT,2)	0.0000	7	12	113	
D(SR_NEG,2)	0.0000	6	12	114	
D(SR POS,2)	0.0000	10	12	110	
D(NS,2)	0.0000	2	12	118	
D(PS,2)	0.0000	3	12	117	
D(WS,2)	0.0000	2	12	118	
D(MB,2)	0.0000	2	12	118	
D(MBA,2)	0.0000	2	12	118	
D(MBP,2)	0.0000	2	12	118	
D(IM,2)	0.0000	2	12	118	

Null Hypothesis: Unit root (individual unit root process) Sample: 4/01/2012 8/01/2012 Exogenous variables: Individual effects Newey-West automatic bandwidth selection and Bartlett kernel Total (balanced) observations: 960 Cross-sections included: 8 (6 dropped)

Method	Statistic	Prob.**
PP - Fisher Chi-square	147.365	0.0000
PP - Choi Z-stat	-10.5190	0.0000

** Probabilities for Fisher tests are computed using an asymptotic Chi-square distribution. All other tests assume asymptotic normality.

Intermediate Phillips-Perron test results D(UNTITLED,2)

Series	Prob.	Bandwidth	Obs	
D(ABR,2)	0.0001	119.0	120	
D(ER,2)	0.0001	102.0	120	
D(R,2)	0.0001	52.0	120	
D(SALES,2)		Dropped from Tes	t	
D(SR NEUT,2)	0.0001	34.0	120	
D(SR NEG,2)	0.0001	24.0	120	
D(SR POS,2)	0.0001	15.0	120	
D(NS,2)		Dropped from Tes	t	
D(PS,2)		Dropped from Tes	t	
D(WS,2)		Dropped from Tes	t	
D(MB,2)		Dropped from Tes	t	
D(MBA,2)	0.0001	119.0	120	
D(MBP,2)	0.0001	119.0	120	
D(IM,2)		Dropped from Tes	t	

25. Correlogram for Release Date 6 Variables

Date: 10/19/12 Time: 14:55 Sample: 4/01/2012 8/01/2012 Included observations: 121 Date: 10/19/12 Time: 14:55 Sample: 4/01/2012 8/01/2012 Included observations: 121 artial Cor AC PAC Q-Stat Prob $\begin{array}{c} -500 & -500 \\ -0000 & -033 \\ -0000 & -0230 \\ -0000 & -0230 \\ -0000 & -0230 \\ -0000 & -0200 \\ -0000 & -0200 \\ -0000 & -0100 \\ -0000 & -0187 \\ -0000 & -0000 \\ -0000 & -0$ $\begin{array}{c} 11 066 & 0.003\\ 31 006 & 0.000\\ 31 006 & 0.000\\ 31 006 & 0.000\\ 31 006 & 0.000\\ 31 006 & 0.000\\ 31 006 & 0.000\\ 51 000 & 0.000\\ 51 000 & 0.000\\ 60 0.200 & 0.000\\ 60 0.200 & 0.000\\ 60 0.200 & 0.000\\ 60 0.200 & 0.000\\ 61 0.$ الالالمعي المفققق وققققة وقوقوه وقوقو 31.006 31.006 31.006 31.006 33.006 33.796 45.054 47.894 53.514 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 20 31 23 34 35 36 53.756 53.805 53.805 53.805 53.805 53.955 54.560 54.713 54.713 54.713 54.713 54.713 55.067 56.499 56.861 ſ ġ

Expected (left) and Abnormal Returns (right) 25.1.

Date: 11/11/12 Time: 23:05
Sample: 4/01/2012 8/01/2012

25.2.

Date: 11/11/12 Tim Sample: 4/01/2012 8 Included observation	e: 23:05 W01/2012 Is: 123						Date: 11/11/12 Tim Sample: 4/01/2012 8 Included observatior	e: 23:05 8/01/2012 1s: 123						Date: 11/11/12 Tim Sample: 4/01/2012 (Included observation	e: 23:05 3/01/2012 hs: 123					
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob	Autocorrelation	Partial Correlation	_	AC	PAC	Q-Stat	Prob
Autocorrelation	Partial Correlation	1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 26 27 28 29 30 31 32	AC 0.150 0.073 0.052 0.084 0.0184 0.019 0.072 0.084 0.027 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.034 0.020 0.034 0.020 0.034 0.020 0.034 0.020 0.034 0.020 0.034 0.020 0.034 0.020 0.034 0.020 0.034 0.020 0.034 0.020 0.034 0.020 0.034 0.020 0.034 0.020 0.034 0.020 0.040 0.020 0.040 0.020 0.040 0.025 0.040 0.025 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.045 0.040 0.04 0.04	PAC 0.150 0.052 0.034 0.034 0.034 0.034 0.034 0.153 0.024 0.153 0.022 0.018 0.072 0.010 0.039 0.040 0.039 0.040 0.039 0.040 0.087 0.094 0.085 0.010 0.094 0.095 0.040 0.045 0.035 0.010 0.040 0.052 0.040 0.045 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.036 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.	Q-Stat 2.8473 3.53303,87322 8.26652 22.229 23.248 42.23348 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.248 35.2488 35.248 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.2488 35.24888 35.24888 35.2488 35.2488 35.2488 35.2488 35.2488 35	Prob 0.092 0.171 0.275 0.002 0.001 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000	Autocorrelation	Partial Correlation	1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 16 7 8 9 9 10 11 12 13 14 15 16 17 18 19 200 21 22 23 24 25 26 27 28 29 20 20 21 22 23 24 25 26 27 28 20 20 20 20 20 20 20 20 20 20	AC 0.018 0.0102 0.0102 0.000 0.023 0.007 0.025 0.044 0.203 0.044 0.203 0.044 0.203 0.044 0.015 0.015 0.015 0.015 0.015 0.016 0.017 0.026 0.017 0.026 0.017 0.026 0.017 0.026 0.017 0.026 0.016 0.017 0.026 0.016 0.017 0.020 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.01 0.01	PAC 0.018 0.0102 0.007 0.041 0.007 0.041 0.035 0.030 0.066 0.07 0.041 0.033 0.104 0.033 0.104 0.031 0.040 0.031 0.041 0.052 0.072 0.078 0.041 0.052 0.079 0.041 0.052 0.079 0.054 0.072 0.079 0.055 0.07 0.040 0.079 0.055 0.07 0.04 0.07 0.055 0.07 0.04 0.07 0.055 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.05	Q-Stat 0.0429 1.3709 2.2128 2.2128 2.22807 2.4633 2.5491 1.5714 1.401 1.572 4.4921 1.401 1.5714 1.4921 1.4921 1.4921 1.8553 1.8578 1.8578 1.8581 1.8581 1.8581 1.8568 1.8578 2.2107 2.6613 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.7718 2.8643 2.8643 2.7718 2.8643 2.8643 2.7718 2.8643 2.8643 2.7718 2.8643 2.8643 2.8643 2.8643 2.7718 2.8643 2.8643 2.8643 2.7718 2.8643 2.8643 2.8643 2.8643 2.7718 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8643 2.8645 2.8643 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645 2.8645	Prob 0.836 0.529 0.897 0.897 0.897 0.323 0.762 0.327 0.340 0.337 0.340 0.337 0.340 0.337 0.341 0.423 0.413 0.458 0.551 0.521 0.521 0.521 0.521 0.521 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.367 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.558 0.5	Autocorrelation	Partial Correlation	1 1 2 3 4 5 6 7 8 9 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 22 24 25 26 26 27 28 29 30 20 21 22 22 24 25 26 26 27 28 29 30 20 21 22 22 24 25 26 26 27 28 29 20 21 22 22 24 25 26 26 27 28 29 20 21 22 22 24 25 26 28 29 20 21 22 22 24 25 26 26 27 28 29 20 21 22 22 24 25 26 26 27 28 28 29 30 11 20 21 22 22 24 25 26 28 28 28 28 28 28 28 28 28 28	AC 0.107 0.092 0.264 0.104 0.104 0.145 0.104 0.145 0.0145 0.0145 0.048 0.0148 0.048 0.0128 0.048 0.040 0.000 0.000 0.092 0.061 0.013 0.012 0.013 0.013 0.013 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.014 0.014 0.014 0.014 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	PAC 0.107 0.081 0.287 -0.057 -0.003 0.108 0.018 0.018 0.014 0.024 0.021 0.048 0.044 0.024 0.025 0.045 0.025 0.014 0.024 0.025 0.015 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.02 0.02	Q-Stat 1.4500 2.5276 11.450 12.868 13.631 16.391 16.391 16.391 16.391 16.391 16.391 20.452 20.724 20.23 23.348 20.724 22.927 24.202 27.887 27.887 27.929 28.92 29.218 29.728 29.978 33.456 33.456 33.456 35.934 36.329 35.934 36.329 36.324 37.843 36.309 36.324 37.843 36.309 36.324 37.843 36.309 36.324 37.843 36.309 36.324 37.843 37.843 36.309 36.324 37.843 37.843 36.309 36.324 37.843 37.843 36.309 36.324 37.843 37.843 36.309 36.324 37.843 37.843 36.309 36.324 37.843 37.843 36.309 36.324 37.843 37.843 37.843 37.843 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845 37.845	Prob 0.228 0.230 0.009 0.012 0.009 0.012 0.022 0.015 0.022 0.015 0.022 0.015 0.022 0.025 0.023 0.023 0.025 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.022 0.025 0.020 0.022 0.025 0.020 0.022 0.025 0.020 0.022 0.025 0.020 0.022 0.025 0.022 0.025 0.026 0.022 0.025 0.022 0.025 0.025 0.022 0.025 0.025 0.025 0.026 0.025 0.025 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.027 0.026 0.026 0.026 0.027 0.026 0.026 0.026 0.026 0.026 0.027 0.026 0.026 0.026 0.027 0.026 0.026 0.027 0.026 0.027 0.026 0.027 0.026 0.026 0.027 0.027 0.026 0.026 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.0
		33 34 35 36	0.028 0.031 0.024 0.025	-0.029 -0.084 0.072	49.120 49.220 49.332	0.036 0.045 0.056 0.068			33 34 35 36	-0.050 -0.038 -0.111 -0.003	-0.016 0.004 -0.083 0.015	29.061 29.309 31.477 31.479	0.664 0.697 0.639 0.683			33 34 35 36	0.011 0.131 -0.034 0.032	-0.024 0.082 -0.019 -0.009	38.223 41.202 41.399 41.579	0.244 0.185 0.212 0.241

25.3.

Rating (left) and Product Search (right)

Date: 10/19/12 Time: 15:00 Sample: 4/01/2012 8/01/2012 Included observations: 122

25.4. News (left) and Web Search (right)

25.5. MacBook (left) and MacBook Pro (right)

25.6. MacBook Air (left) and iMac (right)

Date: 10/19/12 Time Sample: 4/01/2012 8 Included observation	e: 14:58 V01/2012 s: 121					
Autocorrelation	Partial Correlation		AC	PAC	Q∙Stat	Prob
	Partal Correlation	1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20 21	AC -0.500 0.000 0.000 0.000 0.300 -0.600 0.300 0.300 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000 0.000000 0.00000 0.00000000	PAC -0.500 -0.333 -0.250 -0.200 -0.167 -0.364 -0.261 -0.211 -0.174 -0.174 -0.129 0.107 -0.160 -0.138 -0.121 -0.108 -0.2121 -0.108 -0.200 -0.108 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.201 -0.167 -0.211 -0.160 -0.120 -0.108 -0.203 -0.120 -0.108 -0.203 -0.201 -0.108 -0.203 -0.203 -0.200 -0.108 -0.201 -0.108 -0.201 -0.108 -0.201 -0.008 -0.0075 -0.008 -0.0075	Q-Stat 31.006 31.006 31.006 31.006 31.006 31.006 42.654 89.653 101.51 101.51 101.51 101.51 102.88 109.85	Prob 0,000 0,0
		22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	0.000 0.000 0.000 0.000 0.000 0.100 0.0000 0.000 0.000 0.0000 0.0000 0.000000	-0.073 -0.060 -0.062 -0.055 -0.055 -0.080 -0.074 -0.069 -0.064 -0.060 -0.055 -0.063 -0.051 -0.063 -0.059	109.85 109.85 109.85 109.85 109.85 109.85 119.85 119.45 119.45 119.45 119.45 119.45 119.45 119.45 121.7 128.09 129.84	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

26. Estimation Outcome Model 1 **Dependent ER** 26.1.

26.1.1. VAR(4)

Dependent Variable: DER Method: Least Squares Sample (adjusted): 7/16/2008 8/08/2012 Included observations: 213 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.865958	0.361349	-2.396458	0.0192
DER(-1)	-0.852981	0.114289	-7.463371	0.0000
DER(-2)	-0.722963	0.139087	-5.197915	0.0000
DER(-3)	-0.531920	0.139278	-3.819131	0.0003
DER(-4) DABR(1)	-0.35/251	0.112920	-3.103393	0.0023
DABR(-1)	0.060085	0.075868	0.791966	0.4310
DABR(-2)	-0.021795	0.069872	-0 311925	0.7560
DABR(-4)	-0.014064	0.064451	-0.218205	0.8279
R	-0.004038	0.010039	-0.402205	0.6887
R(-1)	0.000311	0.009762	0.031847	0.9747
R(-2)	-0.009269	0.010140	-0.914123	0.3637
R(-3)	0.004196	0.009261	0.453067	0.6519
R(-4)	0.003057	0.009177	0.333070	0.7400
R(-5)	-0.002658	0.010132	-0.262352	0.7938
R(-0) P(-7)	0.008127	0.008/33	0.930625	0.3552
R(-7) R(-8)	-0.003381	0.003631	-0.092389	0.1408
R(-9)	0.002432	0.003375	0 720599	0.4735
DS	6.42E-06	1.45E-05	0.443015	0.6591
DS(-1)	-2.06E-06	9.66E-06	-0.213376	0.8316
DS(-2)	-1.12E-06	8.51E-06	-0.131214	0.8960
DS(-3)	-2.05E-06	8.26E-06	-0.248346	0.8046
DS(-4)	-4.23E-06	7.70E-06	-0.549229	0.5845
DS(-5)	4.08E-06	7.82E-06	0.522024	0.6033
DS(-6)	-2.97E-06	5.81E-06	-0.511220	0.6108
DS(-7)	7.52E-08	5.34E-06	0.014085	0.9888
$DS(-\delta)$	1.13E-00	5.61E-00	0.217820	0.2007
DS(-10)	-1.24E-00 2.97E-06	5.61E-06	0 529447	0.5981
DS(-11)	-2.22E-06	5.69E-06	-0.389776	0.6979
DS(-12)	-3.24E-06	5.79E-06	-0.559334	0.5777
DS(-13)	1.82E-06	6.91E-06	0.263098	0.7932
DS(-14)	1.44E-06	9.40E-06	0.152734	0.8790
DIRS	1.06E-06	3.08E-06	0.342674	0.7328
DIRS(-1)	6.18E-07	2.86E-06	0.216470	0.8292
DIRS(-2)	2.58E-06	2.52E-06	1.023608	0.3094
DIRS(-3)	/./4E-0/ 4.12E-07	2.39E-06	0.323986	0.7469
DIRS(-4) DIRS(-5)	4.13E-07 4.65E-07	2.37E-00 2.48E-06	0.100830	0.8727
SR POS	0.000661	0.000520	1 271414	0.2077
SR POS(-1)	0.000152	0.000530	0.287892	0.7743
SR POS(-2)	0.000565	0.000583	0.970104	0.3352
SR_POS(-3)	-0.000536	0.000598	-0.895234	0.3736
SR_POS(-4)	-1.29E-05	0.000563	-0.022890	0.9818
SR_POS(-5)	0.000579	0.000562	1.030784	0.3061
SR_POS(-6)	0.000189	0.000616	0.306902	0.7598
SR_POS(-7)	0.000329	0.000613	0.536213	0.5935
$SR_POS(-8)$	-0.000661	0.000577	-1.144211	0.2505
SR_POS(-10)	0.000668	0.000583	1 144387	0.2563
SR_POS(-11)	-0.000269	0.000597	-0.451031	0.6533
SR POS(-12)	0.000648	0.000531	1.222214	0.2256
SR NEUT	-0.037182	0.038036	-0.977546	0.3316
SR_NEUT(-1)	0.019052	0.038167	0.499160	0.6192
SR_NEUT(-2)	0.012748	0.040461	0.315081	0.7536
SR_NEUT(-3)	0.017858	0.044680	0.399686	0.6906
SR_NEUT(-4)	0.063543	0.045479	1.397202	0.1666
SK_NEU1(-5)	0.078622	0.047908	1.641102	0.1051
SK_NEUI(-0)	0.06/096	0.044705	1.500863	0.1378
SR_NEUT(-8)	0.049707	0.040883	0 156095	0.2920
SR NEUT(-9)	0.035204	0.041271	0.853002	0.3965
SR NEUT(-10)	0.035672	0.040748	0.875425	0.3843
SR NEUT(-11)	0.058707	0.041802	1.404401	0.1645
SR_NEUT(-12)	0.071877	0.040402	1.779062	0.0795
SR_NEG	0.050729	0.039049	1.299096	0.1981
SR_NEG(-1)	0.081448	0.039213	2.077062	0.0414
SR_NEG(-2)	0.042947	0.040907	1.049864	0.2973
SR_NEG(-3)	0.007/623	0.040126	0.189990	0.8499
SK_NEG(-4)	0.061597	0.037904	1.625080	0.1085

Erasmus universiteit rotterdam ζ.

Prob(F-statistic)	0.055689		5011 Stat	2.170230
Log likelihood	805.5077	Hannan-Qui	nn criter.	-5.340280
Sum squared resid	0.006474	Schwarz crit	terion	-4.014428
S.E. of regression	0.210142	S.D. depend Akaike info	criterion	-6.239509
R-squared	0.731746	Mean depen	dent var	4.32E-05
MAC(-5)	0.086399	0.139116	0.621060	0.5365
MAC(-4)	0.278090	0.137057	2.029010	0.0462
MAC(-3)	-0.159190	0.150716	-1.056227	0.2944
MAC(-2)	-0.154720	0.146040	-1.059441	0.2929
MAC(-1)	-0.088835	0.148/51	-0.597208	0.5522
MM(-5)	0.044919	0.040183	1.117870	0.2673
MM(-4)	-0.006262	0.044052	-0.142159	0.8874
MM(-3)	0.003992	0.044789	0.089128	0.9292
MM(-1)	-0.000968 0.030037	0.048015	-1.394/31 0.620145	0.1074
MM MM(1)	-0.003109	0.036603	-0.084943	0.9325
IB(-9)	-0.026716	0.037305	-0.716152	0.4762
IB(-8)	0.019598	0.037917	0.516857	0.6068
IB(-7)	-0.038403	0.043781	-0.877162	0.3833
IB(-6)	-0.003604	0.048728	-0.073968	0.9412
ID(-4) IB(-5)	-0.051156 0.039006	0.053890	-0.949265 0.764311	0.345/
IB(-3) IB(-4)	0.024667	0.058087	0.424663	0.6723
IB(-2)	0.024284	0.054176	0.448242	0.6553
IB(-1)	0.010448	0.048779	0.214188	0.8310
IB	0.010489	0.043058	0.243611	0.8082
IM(-4) IM(-5)	-0.010350	0.015530	-0.0004/4	0.5072
IM(-3)	0.008608	0.015191	0.566645	0.5727
IM(-2)	-0.008146	0.015037	-0.541732	0.5897
IM(-1)	0.004545	0.016440	0.276474	0.7830
IM	-0.010379	0.012739	-0.814779	0.4179
MBA(-3)	0.012034	0.021928	-0.024510	0.3343
MBA(-2)	-0.011920	0.022182	-0.537375	0.5927
MBA(-1)	0.004871	0.021316	0.228505	0.8199
MBA	-0.015579	0.020091	-0.775439	0.4406
MB	0.004733	0.003569	1.326406	0.1889
MBP(-6)	0.002795	0.006339	1.189814	0 2380
MBP(-4) MBP(-5)	-0.004665 0.002795	0.00/4/0	-0.624474	0.5343
MBP(-3)	0.003012	0.007965	0.378198	0.7064
MBP(-2)	0.003301	0.008134	0.405856	0.6861
MBP(-1)	-0.004447	0.007571	-0.587302	0.5588
MBP	-0.001726	0.009432	-0.182976	0.8553
NS(-7)	0.000230	0.000186	1.234990	0.2208
NS(-5) NS(-6)	-/.93E-06 -6.15E-05	0.000219	-0.036277	0.9712
NS(-4)	8.41E-05	0.000232	0.362225	0.7182
NS(-3)	0.000267	0.000238	1.119118	0.2668
NS(-2)	-0.000114	0.000235	-0.485202	0.6290
NS(-1)	-1.10E-05	0.000245	-0.044747	0.9644
r5(-5) NS	-2.62E-05 -0.000232	0.000235	-0.111468	0.9116
PS(-4)	-3.70E-05	0.000265	-0.139757	0.8892
PS(-3)	0.000399	0.000275	1.453341	0.1505
PS(-2)	8.74E-06	0.000271	0.032220	0.9744
PS(-1)	-2.3412-03	0.000229	-1.088683	0.2799
w S(-10) PS	-9.86E-05 -2.54F-05	0.000173	-0.571179 -0.110643	0.569/
WS(-9)	0.000105	0.000204	0.516450	0.6071
WS(-8)	-8.10E-05	0.000213	-0.380367	0.7048
WS(-7)	-0.000508	0.000385	-1.319024	0.1913
WS(-5) WS(-6)	-1.11E-05 0.000248	0.000486	0.680153	0.9818
WS(-4)	-0.000417	0.000512	-0.814299	0.4182
WS(-3)	-0.000406	0.000482	-0.842286	0.4024
WS(-2)	0.000331	0.000477	0.693677	0.4901
WS(-1)	0.000581	0.000512	1.132946	0.2610
SK_NEG(-8) WS	0.063539	0.034878	1.821744	0.0726
SR_NEG(-7)	0.007771	0.036093	0.215299	0.8301
SR_NEG(-6)	-0.014203	0.035907	-0.395559	0.6936
SK_NEG(-3)	0.022569	0.035014	0.644570	0.5213

26.1.2. VAR(4) Reduced

Dependent Variable: DER Method: Least Squares Sample (adjusted): 7/16/2008 8/08/2012 Included observations: 213 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.663731	0.276615	-2.399476	0.0184
DER(-1)	-0.851977	0.100242	-8.499164	0.0000
DER(-2)	-0.709540	0.121303	-5.849331	0.0000
DER(-3) DER(-4)	-0.309432	0.098339	-3.146597	0.0002
DABR(-1)	0.031880	0.049898	0.638900	0.5244
DABR(-2)	0.036700	0.056589	0.648541	0.5182
DABR(-3)	0.006509	0.054947	0.118467	0.9060
DABR(-4)	0.016041	0.048420	0.331294	0.7412
K P(1)	-0.004388	0.007512	-0.584189	0.5605
R(-1) R(-2)	-0.004721	0.007310	-0.645866	0.5199
R(-3)	0.000654	0.007219	0.090545	0.9280
R(-4)	0.004327	0.006980	0.619938	0.5368
R(-5)	-0.002342	0.007499	-0.312286	0.7555
R(-6)	0.004157	0.006521	0.637442	0.5254
R(-/)	-0.004330	0.002923	-1.481188	0.1419
R(-0)	0.000400	0.002930	0.819837	0.8909
DS	6.96E-06	1.10E-05	0.635136	0.5269
DS(-1)	2.77E-06	7.67E-06	0.361402	0.7186
DS(-2)	-1.28E-08	6.34E-06	-0.002014	0.9984
DS(-3)	-5.09E-06	6.32E-06	-0.805600	0.4225
DS(-4)	2.11E-06	6.14E-06	0.343692	0.7318
DS(-5) DS(-6)	2.03E-00 2.50E-06	0.52E-00 4.52E-06	0.403019	0.0878
DS(-0)	1.06E-06	4.32E-00 4.21E-06	0 252712	0.3800
DS(-8)	1.53E-06	4.51E-06	0.339759	0.7348
DS(-9)	-2.31E-06	4.75E-06	-0.486766	0.6276
DS(-10)	3.99E-06	4.65E-06	0.857563	0.3933
DS(-11)	-4.50E-06	4.75E-06	-0.946485	0.3463
DS(-12)	-3.95E-06	4.96E-06	-0.796209	0.4279
DS(-13) DS(-14)	9.19E-07	5.08E-00 7.83E-06	0.101805	0.8/18
DIRS	1.08E-06	2.29E-06	0.473057	0.4321
DIRS(-1)	-2.13E-07	2.12E-06	-0.100318	0.9203
DIRS(-2)	1.06E-06	1.96E-06	0.539372	0.5909
DIRS(-3)	5.78E-07	1.77E-06	0.325712	0.7454
DIRS(-4)	-3.20E-07	1.82E-06	-0.176475	0.8603
SR POS	0.000619	0.000416	1 487470	0.9193
SR POS(-1)	1.21E-05	0.000410	0.026667	0.9788
SR POS(-2)	0.000271	0.000483	0.561556	0.5758
SR_POS(-3)	-0.000214	0.000477	-0.447840	0.6553
SR_POS(-4)	1.41E-05	0.000450	0.031276	0.9751
SR_POS(-5)	0.000259	0.000447	0.580211	0.5632
SR_POS(-0) SR_POS(-7)	-6 54E-06	0.000474	-0.013515	0.0385
SR POS(-8)	-0.000389	0.000473	-0.823411	0.4124
SR_POS(-9)	-0.000199	0.000479	-0.415860	0.6785
SR_POS(-10)	0.000643	0.000494	1.302920	0.1958
SR_POS(-11)	-0.000420	0.000500	-0.839460	0.4033
SR_POS(-12)	0.0004/1	0.000455	1.033994	0.3038
SR_NEUT(-1)	0.013728	0.033073	0.415078	0.6790
SR NEUT(-2)	-0.002905	0.032900	-0.088295	0.9298
SR_NEUT(-3)	0.024172	0.036510	0.662073	0.5095
SR_NEUT(-4)	0.046564	0.036976	1.259290	0.2110
SR_NEUT(-5)	0.051340	0.036656	1.400589	0.1646
SR_NEUI(-6)	0.04/205	0.035250	1.339125	0.1838
SR_NEUT(-8)	0.044701	0.035088	0.676112	0.2130
SR NEUT(-9)	0.024307	0.033346	0.728939	0.4679
SR NEUT(-10)	0.042172	0.033914	1.243476	0.2168
SR_NEUT(-11)	0.043054	0.033603	1.281268	0.2033
SR_NEUT(-12)	0.051633	0.032018	1.612618	0.1102
SK_NEG	0.050115	0.033133	1.512532	0.1338
SR_NEG(-1) SR_NEG(-2)	0.049010	0.030232	1.021101 1.006747	0.1083
SR_NEG(-3)	-0.011844	0.031890	-0.371399	0.7112
SR NEG(-4)	0.029645	0.030826	0.961694	0.3387
SR_NEG(-5)	0.020507	0.029641	0.691854	0.4907
SR_NEG(-6)	-0.008442	0.030134	-0.280135	0.7800
SR_NEG(-7)	-0.000767	0.029653	-0.025863	0.9794
SK_NEG(-8)	0.064961	0.029096	2.232649	0.0279
WS(-1)	0.000132	0.000313	1.683593	0.0956
· 、 /	·····			

WS(-2)	-3.52E-05	0.000310	-0.113614	0.9098
WS(-3)	-0.000735	0.000310	-2.365941	0.0200
WS(-4)	0.000209	0.000318	0.659417	0.5112
WS(-5)	0.000271	0.000320	0.845683	0 3999
WS(-6)	0.000143	0.000298	0.480271	0.6322
WS(-7)	-0.000426	0.000318	-1 340564	0.1833
WS(-8)	1.04E-05	0.000174	0.060027	0.9523
WS(-0)	0.10E.05	0.000174	0.5070027	0.5520
WS(10)	3 22E 05	0.000130	0.232503	0.3380
W3(-10)	5.22E-05	0.000139	0.232303	0.0107
PS (1)	-0.41E-03	0.000180	-0.555042	0.7229
PS(-1)	-0.000198	0.000218	-0.910112	0.3031
PS(-2)	7.01E-05	0.000219	0.547705	0.7288
PS(-3)	0.000353	0.000226	1.562980	0.1214
PS(-4)	-0.000190	0.000226	-0.8392/8	0.4034
PS(-5)	6.9/E-05	0.000188	0.370725	0./11/
NS	-0.000118	0.000167	-0.707599	0.4809
NS(-1)	-3.35E-05	0.000181	-0.185517	0.8532
NS(-2)	2.70E-05	0.000176	0.153031	0.8787
NS(-3)	0.000480	0.000172	2.797947	0.0062
NS(-4)	-0.000119	0.000170	-0.700490	0.4854
NS(-5)	-5.74E-05	0.000167	-0.343032	0.7323
NS(-6)	-5.05E-05	0.000155	-0.326526	0.7448
NS(-7)	0.000135	0.000151	0.895245	0.3729
MBP	-0.001414	0.007078	-0.199740	0.8421
MBP(-1)	0.000636	0.006034	0.105470	0.9162
MBP(-2)	0.003186	0.006154	0.517780	0.6058
MBP(-3)	-0.000915	0.005924	-0.154421	0.8776
MBP(-4)	-0.002420	0.005733	-0.422117	0.6739
MBP(-5)	0.002331	0.005886	0.395947	0.6930
MBP(-6)	0.006921	0.005307	1.304070	0.1954
MB	0.003131	0.002476	1.264558	0.2092
MBA	-0.013430	0.016342	-0.821836	0.4133
MBA(-1)	0.004167	0.018623	0.223757	0.8234
MBA(-2)	-0.015073	0.018785	-0.802413	0.4243
MBA(-3)	-0.016195	0.018656	-0.868090	0.3876
MBA(-4)	0.020552	0.014282	1.439003	0.1535
IM	-0.010108	0.009811	-1.030304	0.3055
IM(-1)	-0.003157	0.011928	-0.264699	0.7918
IM(-2)	-0.005492	0.011761	-0.466964	0.6416
IM(-3)	0.010065	0.012383	0.812821	0.4184
IM(-4)	-0.009921	0.012027	-0.824959	0.4115
IM(-5)	-0.000446	0.009594	-0.046537	0.9630
D among	0 602154	Maan danandarita		4 22E 05
A divisted D servers	0.092134	Niean dependent v	ai -	4.52E-05
Adjusted K-squared	0.305/09	S.D. dependent va	I 	0.010669
S.E. of regression	0.008890	Akaike into criteri	ion	-0.308415
Sum squared resid	0.007429	Schwarz criterion		-4.430510
Log likelihood	790.8462	Hannan-Quinn cri	ter.	-5.549491
F-statistic	1.791079	Durbin-Watson sta	at	2.212914
Prod(F-statistic)	0.001780			

26.1.3. VARMA(4,4)

Dependent Variable: DER Method: Least Squares Date: 11/11/12 Time: 22:52 Sample (adjusted): 7/16/2008 8/08/2012 Included observations: 213 after adjustments Estimation settings: tol= 0.00010, derivs=analytic (linear)

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	-0.867902	0.298086	-2.911580	0.0049	-
DER(-1)	-0.814307	0.271297	-3.001528	0.0038	
DER(-2)	-0.782211	0.264768	-2.954323	0.0043	
DER(-3)	-0.517572	0.240858	-2.148870	0.0352	
DER(-4)	-0.297785	0.132650	-2.244887	0.0280	
DABR(-1)	0.049131	0.071593	0.686258	0.4949	
DABR(-2)	0.061015	0.076765	0.794822	0.4295	
DABR(-3)	-0.016478	0.069637	-0.236628	0.8137	
DABR(-4)	-0.014900	0.066387	-0.224446	0.8231	
R	-0.003421	0.009958	-0.343553	0.7322	
R(-1)	0.000566	0.010544	0.053702	0.9573	
R(-2)	-0.009157	0.010474	-0.874253	0.3851	
R(-3)	0.005255	0.009660	0.544010	0.5882	
R(-4)	0.003147	0.009769	0.322158	0.7483	
R(-5)	-0.003608	0.010653	-0.338671	0.7359	
R(-6)	0.008005	0.008776	0.912065	0.3650	
R(-7)	-0.005640	0.003782	-1.491319	0.1405	
R(-8)	0.000115	0.003964	0.028990	0.9770	

2 Constant C ζ.

R(-9)	0.002263	0.003461	0.653805	0.5154
DS DS(1)	6.5/E-06 2.04E-06	1.43E-05 9.96E-06	0.459659	0.64/2
DS(-1) DS(-2)	-3.63E-07	8.87E-06	-0.040953	0.9675
DS(-3)	-1.18E-06	8.25E-06	-0.142455	0.8871
DS(-4)	-1.98E-06	7.78E-06	-0.254798	0.7996
DS(-5)	2.53E-06	8.44E-06	0.300209	0.7649
DS(-7)	-2.04E-00 5.86E-07	5.4E-06	0.103986	0.0729
DS(-8)	6.40E-06	5.86E-06	1.091503	0.2789
DS(-9)	-1.62E-06	5.90E-06	-0.274164	0.7848
DS(-10)	1.87E-06	5.70E-06	0.328331	0.7437
DS(-11) DS(-12)	-3.72E-06	5.98E-06	-0.621569	0.5363
DS(-12) DS(-13)	-2.73E-06	0.22E-00 7 25E-06	0 164244	0.0398
DS(-14)	1.33E-06	9.44E-06	0.140630	0.8886
DIRS	8.13E-07	3.04E-06	0.267222	0.7901
DIRS(-1)	2.40E-07	2.88E-06	0.083244	0.9339
DIRS(-2) DIRS(-3)	2.3/E-06 3.22E.07	2.52E-06 2.19E-06	0.937006	0.3521
DIRS(-3)	5.85E-08	2.19E-00 2.47E-06	0.023637	0.8834
DIRS(-5)	4.56E-07	2.49E-06	0.183431	0.8550
SR_POS	0.000641	0.000542	1.183221	0.2408
SR_POS(-1)	0.000206	0.000573	0.359497	0.7203
SR_POS(-2) SR_POS(-3)	0.000555	0.000588	0.943232	0.3489
SR_POS(-4)	-5 53E-05	0.000579	-0.095586	0.4041
SR_POS(-5)	0.000593	0.000588	1.008490	0.3168
SR_POS(-6)	0.000253	0.000643	0.393624	0.6951
SR_POS(-7)	0.000365	0.000639	0.571683	0.5694
SR_POS(-8)	-0.000662	0.000605	-1.093266	0.2781
SR_POS(-10)	0.000625	0.000614	1.016932	0.3822
SR POS(-11)	-0.000286	0.000630	-0.453383	0.6517
SR_POS(-12)	0.000616	0.000514	1.196971	0.2355
SR_NEUT	-0.035939	0.039361	-0.913062	0.3644
SR_NEUT(-1)	0.022450	0.036870	0.608884	0.5446
SR NEUT(-3)	0.019328	0.042570	0.454027	0.6513
SR_NEUT(-4)	0.063124	0.043946	1.436421	0.1555
SR_NEUT(-5)	0.076815	0.047753	1.608578	0.1123
SR_NEUT(-6)	0.065899	0.043211	1.525062	0.1319
SR_NEUT(-7) SR_NEUT(-8)	0.048008	0.046481	0.157257	0.3053
SR NEUT(-9)	0.031633	0.039115	0.808730	0.4215
SR_NEUT(-10)	0.028832	0.037586	0.767087	0.4457
SR_NEUT(-11)	0.056269	0.039168	1.436598	0.1554
SR_NEU1(-12)	0.069095	0.040451	1.708139	0.0922
SR_NEG(-1)	0.082335	0.039283	2.095945	0.0398
SR NEG(-2)	0.046674	0.042543	1.097096	0.2765
SR_NEG(-3)	0.010348	0.041053	0.252069	0.8017
SR_NEG(-4)	0.063415	0.037164	1.706367	0.0925
SR_NEG(-5) SR_NEG(-6)	0.023169	0.035296	0.656417	0.5138
SR NEG(-7)	0.012096	0.035801	0.337874	0.7365
SR_NEG(-8)	0.066052	0.034827	1.896606	0.0621
WS	0.000419	0.000470	0.890168	0.3765
WS(-1)	0.000586	0.000534	1.096642	0.2767
WS(-2) WS(-3)	-0.000338	0.000492	-0 691488	0.4718
WS(-4)	-0.000390	0.000534	-0.731569	0.4669
WS(-5)	8.98E-07	0.000504	0.001783	0.9986
WS(-6)	0.000232	0.000384	0.604309	0.5476
WS(-/)	-0.000531 8 55E 05	0.000396	-1.338639	0.1851
WS(-8)	9.06E-05	0.000227	0 424379	0.6726
WS(-10)	-6.62E-05	0.000167	-0.396819	0.6927
PS	-7.43E-06	0.000228	-0.032659	0.9740
PS(-1)	-0.000295	0.000297	-0.990532	0.3254
PS(-2) PS(-3)	2.16E-05 0.000369	0.000292	0.074053	0.9412
PS(-4)	-5.15E-05	0.000292	-0.177870	0.8594
PS(-5)	2.03E-05	0.000247	0.082278	0.9347
NS	-0.000233	0.000249	-0.935682	0.3527
NS(-1) NS(-2)	5.5/E-06 0.000142	0.000257	0.021/10	0.9827
NS(-2)	0.000247	0.000245	0.966963	0.3370
NS(-4)	5.89E-05	0.000259	0.226830	0.8212
NS(-5)	-2.61E-05	0.000227	-0.115273	0.9086
NS(-6)	-6.84E-05	0.000200	-0.342562	0.7330
NS(-/) MRP	0.000228	0.000185	1.234098	0.2214
MBP(-1)	-0.006691	0.007971	-0.839518	0.4041
MBP(-2)	0.002487	0.008440	0.294629	0.7692
MBP(-3)	0.003219	0.008239	0.390641	0.6973
MBP(-4) MBP(-5)	-0.003227	0.007652	-0.421713	0.6746
MBP(-6)	0.007721	0.006625	1.165549	0.2479
× · /	= -			

erasmus universiteit rotterdam

MB	0.004651	0.003113	1.493947	0.1398
MBA	-0.015740	0.019213	-0.819218	0.4155
MBA(-1)	0.002604	0.022302	0.116747	0.9074
MBA(-2)	-0.011401	0.022940	-0.496985	0.6208
MBA(-3)	-0.013391	0.023257	-0.575794	0.5667
MBA(-4)	0.011395	0.017249	0.660583	0.5111
IM	-0.009508	0.013019	-0.730333	0.4677
IM(-1)	0.005103	0.017510	0 291408	0.7716
IM(-2)	-0.007383	0.015580	-0.473856	0.6371
IM(-3)	0.008918	0.015805	0.564272	0.5744
IM(-4)	-0.010439	0.016083	-0.649030	0.5185
IM(-5)	-0.008003	0.013148	-0.608688	0.5448
IB	-0.010797	0.040368	-0.267463	0.7899
IB(-1)	0.008165	0.049131	0.166192	0.8685
IB(-2)	0.027989	0.055399	0.505229	0.6150
IB(-3)	0.031368	0.062605	0.501050	0.6180
IB(-4)	-0.043888	0.055221	-0.794768	0 4295
IB(-5)	0.035627	0.053108	0.670842	0.5046
IB(-6)	-0.009932	0.051119	-0.194293	0.8465
IB(-7)	-0.030316	0.044280	-0.684640	0.4959
IB(-8)	0.025680	0.039410	0.651595	0.5169
IB(-9)	-0.026319	0.037547	-0.700960	0.4857
MM	-0.006152	0.035344	-0.174062	0.8623
MM(-1)	-0.059909	0.049083	-1.220568	0.2265
MM(-2)	0.027543	0.051251	0.537407	0.5927
MM(-3)	-0.001488	0.048322	-0.030791	0.9755
MM(-4)	-0.006637	0.047135	-0.140814	0.8884
MM(-5)	0.050140	0.041361	1.212262	0.2296
MAC	-0.070384	0.144293	-0.487785	0.6273
MAC(-1)	-0.031625	0.150035	-0.210781	0.8337
MAC(-2)	-0.162507	0.144759	-1.122604	0.2656
MAC(-3)	-0.153139	0.154782	-0.989381	0.3260
MAC(-4)	0.260288	0.139317	1.868319	0.0660
MAC(-5)	0.073661	0.140218	0.525328	0.6011
MA(1)	-0.352086	0.290934	-1.210192	0.2304
MA(2)	-0.090231	0.319345	-0.282549	0.7784
MA(3)	-0.345720	0.272801	-1.267298	0.2094
MA(4)	-0.210849	0.268289	-0.785902	0.4347
R-squared	0.805686	Mean depend	lent var	4.32E-05
Adjusted R-squared	0.394197	S.D. depende	ent var	0.010669
S.E. of regression	0.008304	Akaike info	criterion	-6.524407
Sum squared resid	0.004689	Schwarz crite	erion	-4.236203
Log likelihood	839.8493	Hannan-Quir	nn criter.	-5.599668
F-statistic	1.957976	Durbin-Wats	on stat	2.082098
Prob(F-statistic)	0.001146			
Inverted MA Roots	1.00	1068i	10+.68i	45

26.1.4. VARMA(4,4) Reduced

Dependent Variable: DER Method: Least Squares Date: 11/11/12 Time: 22:52 Sample (adjusted): 7/16/2008 8/08/2012 Included observations: 213 after adjustments Estimation settings: tol= 0.00010, derivs=analytic (linear)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.663279	0.215715	-3.074794	0.0028
DER(-1)	-0.789815	0.278549	-2.835468	0.0057
DER(-2)	-0.652083	0.261783	-2.490931	0.0146
DER(-3)	-0.393030	0.228377	-1.720967	0.0887
DER(-4)	-0.201665	0.111330	-1.811409	0.0734
DABR(-1)	0.049453	0.052629	0.939650	0.3499
DABR(-2)	0.053046	0.058456	0.907443	0.3666
DABR(-3)	0.018013	0.056482	0.318916	0.7505
DABR(-4)	0.022237	0.049731	0.447138	0.6558
R	-0.003429	0.007453	-0.460119	0.6465
R(-1)	0.003561	0.008369	0.425499	0.6715
R(-2)	-0.004515	0.008515	-0.530255	0.5972
R(-3)	0.001224	0.008097	0.151198	0.8802
R(-4)	0.004330	0.007984	0.542327	0.5889
R(-5)	-0.003903	0.007983	-0.488960	0.6261
R(-6)	0.004319	0.006671	0.647416	0.5190
R(-7)	-0.004928	0.003044	-1.618797	0.1090
R(-8)	0.000592	0.003274	0.180755	0.8570
R(-9)	0.002526	0.002709	0.932727	0.3535
DS	1.07E-05	1.08E-05	0.982659	0.3284
DS(-1)	4.53E-06	7.83E-06	0.579159	0.5639
DS(-2)	1.43E-06	6.36E-06	0.225422	0.8222
DS(-3)	-3.74E-06	6.27E-06	-0.596831	0.5521
DS(-4)	3.74E-06	6.08E-06	0.615131	0.5400
DS(-5)	2.21E-06	7.08E-06	0.311837	0.7559

2 Constant C ζ.

DS(-6)	-1.99E-06	5.00E-06	-0.398063	0.6915
DS(-7)	1.93E-06	4.60E-06	0.419734	0.6757
DS(-8)	9.53E-07	4.73E-06	0.201620	0.8407
DS(-9)	-2.74E-06	5.03E-06	-0.545326	0.5869
DS(-10)	3.57E-06	4.82E-06	0.740040	0.4612
DS(-11) DS(-12)	-5.18E-00	5.08E-00	-1.019890	0.5105
DS(-12) DS(-13)	-3.30E-00 1.80E-06	5.75E-00 6.22E.06	-0.008127	0.3440
DS(-13)	9.17E-06	0.22E-00 8 01E-06	1 144960	0.7751
DIRS	6 78E-07	2 29E-06	0.296616	0.2555
DIRS(-1)	-8 78E-07	2.25E-06	-0 390170	0.6973
DIRS(-2)	4.78E-07	1.89E-06	0.253469	0.8005
DIRS(-3)	5.28E-08	1.67E-06	0.031632	0.9748
DIRS(-4)	-6.75E-07	1.68E-06	-0.402675	0.6881
DIRS(-5)	2.89E-07	1.81E-06	0.159598	0.8736
SR_POS	0.000585	0.000414	1.411644	0.1615
SR_POS(-1)	4.80E-05	0.000504	0.095129	0.9244
SR_POS(-2)	0.000325	0.000506	0.641966	0.5225
SR_POS(-3)	-0.000154	0.000492	-0.311870	0.7559
SR_POS(-4)	-7.89E-05	0.000472	-0.167011	0.8677
SR_POS(-5)	0.000206	0.000476	0.433678	0.6656
SK_POS(-6)	0.000209	0.000503	0.414998	0.6/91
$SK_POS(-7)$ SP_POS(-8)	0./0E-00 0.000272	0.000511	0.013230	0.9895
$SR_{POS(-8)}$	-0.000373	0.000515	-0.720038	0.4095
SR_POS(-10)	0.000611	0.000538	1 136148	0.2589
SR_POS(-11)	-0.000520	0.000560	-0.927788	0.3560
SR_POS(-12)	0.000415	0.000476	0.871054	0.3860
SR NEUT	-0.045104	0.033292	-1.354812	0.1789
SR NEUT(-1)	0.016105	0.033364	0.482697	0.6305
SR_NEUT(-2)	-0.002605	0.032598	-0.079900	0.9365
SR_NEUT(-3)	0.024495	0.035923	0.681877	0.4971
SR_NEUT(-4)	0.046478	0.037330	1.245061	0.2163
SR_NEUT(-5)	0.049051	0.036538	1.342461	0.1828
SR_NEUT(-6)	0.046624	0.034998	1.332181	0.1862
SR_NEUT(-7)	0.043403	0.036382	1.192985	0.2360
SR_NEUT(-8)	0.023266	0.035172	0.661500	0.5100
SR_NEUT(-9)	0.022862	0.0320/1	0.712871	0.4778
SR_NEU1(-10)	0.038934	0.032105	1.212/03	0.2284
SK_NEUT(-11) SP_NEUT(-12)	0.042775	0.031891	1.541291	0.1852
SR_NEU1(-12)	0.051520	0.031/89	1.020888	0.1085
SR_NEG(-1)	0.050739	0.032831	1.789300	0.0709
SR_NEG(-2)	0.029857	0.031999	0.933063	0.1009
SR NEG(-3)	-0.012076	0.031055	-0.388839	0.6983
SR NEG(-4)	0.033127	0.031155	1.063315	0.2905
SR NEG(-5)	0.023130	0.030719	0.752943	0.4534
SR_NEG(-6)	-0.004003	0.030463	-0.131417	0.8957
SR_NEG(-7)	0.001424	0.030960	0.045990	0.9634
SR_NEG(-8)	0.065090	0.029613	2.198011	0.0305
WS	0.000144	0.000273	0.525598	0.6005
WS(-1)	0.000530	0.000337	1.572988	0.1192
WS(-2)	-2.96E-05	0.000333	-0.088953	0.9293
WS(-3)	-0.000712	0.000334	-2.134698	0.0355
WS(-4)	0.000228	0.000370	0.014805	0.5402
WS(-5)	0.000292	0.000334	0.820002	0.4110
WS(-0)	-0.000131	0.000333	-1 420538	0.0551
WS(-8)	2.82E-05	0.000197	0 143442	0.8863
WS(-9)	8.11E-05	0.000171	0.475863	0.6353
WS(-10)	3.84E-05	0.000138	0.278646	0.7812
PS	-4.46E-05	0.000179	-0.248879	0.8040
PS(-1)	-0.000179	0.000231	-0.777302	0.4390
PS(-2)	9.50E-05	0.000238	0.400016	0.6901
PS(-3)	0.000305	0.000250	1.217901	0.2264
PS(-4)	-0.000215	0.000256	-0.836472	0.4051
PS(-5)	8.36E-05	0.000216	0.386443	0.7001
NS	-0.000103	0.000160	-0.645259	0.5204
NS(-1)	-1.33E-05	0.000194	-0.068928	0.9452
NS(-2)	1.08E-05	0.000195	0.080148	0.9315
NS(-3)	0.000469	0.000180	2.001800	0.0108
NS(-5)	-7 52E-05	0.000208	-0.390329	0.4979
NS(-6)	-5.81E-05	0.000175	-0.332105	0.7406
NS(-7)	0.000147	0.000160	0.919430	0.3603
MBP	-0.001940	0.006758	-0.287139	0.7747
MBP(-1)	-0.001377	0.006216	-0.221574	0.8251
MBP(-2)	0.002696	0.006309	0.427310	0.6702
MBP(-3)	-0.001069	0.006199	-0.172503	0.8634
MBP(-4)	-0.001582	0.006145	-0.257510	0.7974
MBP(-5)	0.003666	0.006086	0.602350	0.5485
MBP(-6)	0.007115	0.005545	1.283106	0.2027
MB	0.002212	0.001921	1.151155	0.2527
MBA	-0.010304	0.015585	-0.661132	0.5102
MBA(-1)	0.005325	0.020153	0.264219	0.7922
MBA(-2)	-0.015021	0.020122	-0./40488	0.45/3
MBA(-3)	-0.013990	0.019//5	-0.000937	0.4207
IM	-0 009472	0.009369	-1 010969	0 3147
****	0.007772	0.007507	1.010/0/	0.017/
- erasmus universiteit rotterdam

The Impact of UGC on Firm's Performance for Personal Computer Product

IM(1)	0.002705	0.012828	0.217894	0 8280
IN((-1))	-0.002793	0.012828	-0.217884	0.8280
IM(-2)	-0.004938	0.012395	-0.398418	0.6913
IM(-3)	0.010936	0.013103	0.834636	0.4061
IM(-4)	-0.009960	0.012736	-0.782042	0.4362
IM(-5)	-0.002843	0.009114	-0.311906	0.7558
MA(1)	-0.326611	0.288690	-1.131359	0.2609
MA(2)	-0.204012	0.319122	-0.639290	0.5243
MA(3)	-0.241369	0.254324	-0.949059	0.3451
MA(4)	-0.227379	0.252432	-0.900753	0.3701
R-squared	0.762677	Mean depend	ent var	4.32E-05
Adjusted R-squared	0.440973	S.D. dependent var		0.010669
S.E. of regression	0.007977	Akaike info criterion		-6.531035
Sum squared resid	0.005727	Schwarz criterion		-4.590007
Log likelihood	818.5552	Hannan-Quir	n criter.	-5.746601
F-statistic	2.370741	Durbin-Watson stat		2.166087
Prob(F-statistic)	0.000012			
Inverted MA Roots	1.00	0663i	06+.63i	56

26.1.5. GARCH(2) ARCH(4) Model

Dependent Variable: DER Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/07/12 Time: 20:15 Sample (adjusted): 7/16/2008 8/08/2012 Included observations: 213 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.662958	0.264820	-2.503431	0.0123
DER(-1)	-0.788145	0.346951	-2.271630	0.0231
DER(-2)	-0.644057	0.325434	-1.979072	0.0478
DER(-3)	-0.456159	0.289902	-1.573496	0.1156
DER(-4)	-0.129418	0.162461	-0.796610	0.4257
DABR(-1)	0.051720	0.059484	0.869490	0.3846
DABR(-2)	0.048577	0.060617	0.801377	0.4229
DABR(-3)	0.004877	0.061885	0.078801	0.9372
DABR(-4)	0.054150	0.051117	1.059346	0.2894
R	-0.006572	0.007415	-0.886300	0.3755
R(-1)	0.003503	0.007095	0.493722	0.6215
R(-2)	-0.004273	0.008480	-0.503854	0.6144
R(-3)	-0.000295	0.006787	-0.043392	0.9654
R(-4)	0.003414	0.008063	0.423401	0.6720
R(-5)	-0.003057	0.007278	-0.420038	0.6745
R(-6)	0.004612	0.006339	0.727528	0 4669
R(-7)	-0.001214	0.002724	-0.445652	0.6558
R(-8)	0.001388	0.002753	0.504256	0.6141
R(-9)	0.001638	0.003467	0.472421	0.6366
DS	1.12E-05	1.09E-05	1.018942	0.3082
DS(-1)	1.82E-07	5.98E-06	0.030472	0.9757
DS(-2)	1.45E-06	4.61E-06	0.313570	0.7538
DS(-3)	-3.09E-06	5.42E-06	-0.570559	0.5683
DS(-4)	1.81E-06	4.71E-06	0.383217	0.7016
DS(-5)	1.90E-06	5.58E-06	0.340353	0.7336
DS(-6)	-8.51E-08	3.70E-06	-0.023032	0.9816
DS(-7)	-2.99E-07	2.97E-06	-0.100772	0.9197
DS(-8)	8.50E-07	3.18E-06	0.267180	0.7893
DS(-9)	2.17E-06	3.53E-06	0.614371	0.5390
DS(-10)	3.26E-06	3.78E-06	0.860336	0.3896
DS(-11)	-4.15E-06	4.20E-06	-0.988257	0.3230
DS(-12)	-2.41E-06	6.12E-06	-0.394375	0.6933
DS(-13)	1.94E-06	5.75E-06	0.336423	0.7366
DS(-14)	5.46E-06	8.57E-06	0.636467	0.5245
DIRS	9.28E-07	2.15E-06	0.430712	0.6667
DIRS(-1)	-4.90E-07	1.84E-06	-0.265933	0.7903
DIRS(-2)	4.80E-07	1.75E-06	0.275131	0.7832
DIRS(-3)	6.86E-07	1.60E-06	0.428910	0.6680
DIRS(-4)	-7.02E-08	1.45E-06	-0.048534	0.9613
DIRS(-5)	7.69E-07	1.62E-06	0.473686	0.6357
SR POS	0.000366	0.000397	0.922868	0.3561
SR POS(-1)	0.000236	0.000547	0.432408	0.6654
SR POS(-2)	0.000476	0.000570	0.836014	0.4031
SR_POS(-3)	-0.000387	0.000454	-0.850521	0.3950
SR_POS(-4)	0.000212	0.000468	0.451847	0.6514
SR_POS(-5)	-2.56E-05	0.000348	-0.073388	0.9415
SR_POS(-6)	0.000128	0.000533	0.239580	0.8107
SR_POS(-7)	0.000169	0.000519	0.325054	0.7451
SR_POS(-8)	-0.000354	0.000436	-0.812216	0.4167
SR_POS(-9)	2.47E-05	0.000497	0.049768	0.9603
SR_POS(-10)	0.000418	0.000557	0.751346	0.4524
SR_POS(-11)	-0.000521	0.000458	-1.136491	0.2558
SR_POS(-12)	0.000515	0.000414	1.243054	0.2138

C a fung erasmus universiteit rotterdam ζ.

SR_NEUT	-0.042458	0.042556	-0.997709	0.3184
SR_NEUT(-1)	0.011040	0.039678	0.278232	0.7808
SR_NEUT(-2)	-0.003794	0.043487	-0.087254	0.9305
SR_NEUT(-3)	0.028042	0.052453	0.534615	0.5929
SR_NEUT(-4)	0.044898	0.037960	1.182/86	0.2369
SR_NEU1(-5)	0.049861	0.035608	1.400278	0.1614
SK_NEUI(-6)	0.046222	0.039030	1.184255	0.2363
SR_NEUI(-/)	0.045050	0.036633	1.229/6/	0.2188
SK_NEUI(-8)	0.025993	0.032944	0.789000	0.4301
SR_NEUT(-9)	0.021087	0.035/03	0.606415	0.5442
SR_NEUT(11)	0.042551	0.024893	1.700477	0.0890
SK_NEUI(-II)	0.042658	0.030493	1.398944	0.1618
SR_NEUI(-12)	0.048670	0.023430	2.077299	0.0378
SR_NEC(1)	0.040071	0.020280	1.//3343	0.0738
SK_NEG(-1) SP_NEG(-2)	0.033439	0.028821	1.054044	0.0030
SR_NEG(2)	0.030090	0.034000	0.027088	0.2890
$SR_NEG(4)$	0.001171	0.041834	0.027988	0.9777
SR_NEG(5)	0.023033	0.033980	0.712431	0.4702
SR_NEG(6)	0.002847	0.028245	0.100803	0.9197
SR_NEG(7)	0.003403	0.030042	0.250461	0.8022
SR_NEG(-7)	0.055991	0.030942	1 807644	0.0707
WS	7 88E 05	0.000244	0 323463	0.7463
WS(-1)	0.000639	0.000244	1 930975	0.0535
WS(-1)	-9.02E-05	0.000381	-0.236828	0.8128
WS(-2) WS(-3)	-0.000559	0.000388	-1 440179	0.1498
WS(-4)	0.000189	0.000327	0 577371	0.5637
WS(-5)	0.000273	0.000336	0.811887	0.4169
WS(-6)	0.000191	0.000333	0 574978	0.5653
WS(-7)	-0.000636	0.000344	-1 848674	0.0645
WS(-8)	0.000128	0.000175	0.730035	0.4654
WS(-9)	9 37E-05	0.000170	0 551894	0.5810
WS(-10)	-4 38E-05	0.000119	-0.367252	0.7134
PS	-9 80E-05	0.000229	-0.428805	0.6681
PS(-1)	-0.000172	0.000324	-0 529894	0.5962
PS(-2)	1.01E-05	0.000269	0.037630	0.9700
PS(-3)	0.000338	0.000292	1 159519	0.2462
PS(-4)	-0.000179	0.000360	-0 496682	0.6194
PS(-5)	0.000127	0.000292	0.435558	0.6632
NS	-9 96E-05	0.000149	-0.669520	0.5032
NS(-1)	-0.000109	0.000165	-0.658291	0.5104
NS(-2)	7.14E-05	0.000154	0 463995	0.6427
NS(-3)	0.000369	0.000225	1.637304	0.1016
NS(-4)	-5.72E-05	0.000197	-0.290399	0.7715
NS(-5)	-7.91E-05	0.000152	-0.521691	0.6019
NS(-6)	-0.000133	0.000187	-0.710822	0.4772
NS(-7)	0.000233	0.000177	1.318405	0.1874
MBP	0.000239	0.005883	0.040623	0.9676
MBP(-1)	0.000198	0.006081	0.032525	0.9741
MBP(-2)	0.001222	0.006056	0.201870	0.8400
MBP(-3)	-0.000208	0.006914	-0.030020	0.9761
MBP(-4)	-0.000387	0.005662	-0.068289	0.9456
MBP(-5)	0.002410	0.006647	0.362594	0.7169
MBP(-6)	0.004519	0.005749	0.785970	0.4319
MB	0.002740	0.001945	1.408698	0.1589
MBA	-0.008627	0.014023	-0.615172	0.5384
MBA(-1)	0.002242	0.021620	0.103683	0.9174
MBA(-2)	-0.011530	0.020554	-0.560949	0.5748
MBA(-3)	-0.016669	0.020538	-0.811633	0.4170
MBA(-4)	0.015749	0.013748	1.145555	0.2520
IM	-0.007030	0.012046	-0.583601	0.5595
IM(-1)	-0.007424	0.016211	-0.457963	0.6470
IM(-2)	-0.005190	0.013676	-0.379469	0.7043
IM(-3)	0.009930	0.018327	0.541797	0.5880
IM(-4)	-0.006796	0.013058	-0.520460	0.6027
IM(-5)	-0.001831	0.007917	-0.231296	0.8171
MA(1)	-0.333963	0.374135	-0.892628	0.3721
MA(2)	-0.078542	0.370343	-0.212079	0.8320
MA(3)	-0.229193	0.345104	-0.664126	0.5066
MA(4)	-0.294421	0.30/818	-0.956477	0.3388
	Variance Equation	n		
C	1 95E-07	9 60E-07	0 202640	0 8394
RESID(-1)^2	0.132106	0.205582	0.642598	0.5205
RESID(-2)^2	0.10-100	0.04(707	0.106673	0.9150
	0.026319	0.246/27		0.0100
RESID(-3)^2	0.026319 0.087498	0.246727 0.197276	0.443533	0.65/4
RESID(-3) ² RESID(-4) ²	0.026319 0.087498 0.183060	0.246727 0.197276 0.294965	0.443533 0.620618	0.6574 0.5349
RESID(-3)^2 RESID(-4)^2 GARCH(-1)	0.026319 0.087498 0.183060 0.461394	0.246727 0.197276 0.294965 1.228023	0.443533 0.620618 0.375721	0.6574 0.5349 0.7071
RESID(-3)^2 RESID(-4)^2 GARCH(-1) GARCH(-2)	0.026319 0.087498 0.183060 0.461394 0.134705	0.246727 0.197276 0.294965 1.228023 0.876943	0.443533 0.620618 0.375721 0.153608	0.6574 0.5349 0.7071 0.8779
RESID(-3)^2 RESID(-4)^2 GARCH(-1) GARCH(-2)	0.026319 0.087498 0.183060 0.461394 0.134705	0.246727 0.197276 0.294965 1.228023 0.876943	0.443533 0.620618 0.375721 0.153608	0.6574 0.5349 0.7071 0.8779
RESID(-3) ² RESID(-4) ² GARCH(-1) GARCH(-2) R-squared	0.026319 0.087498 0.183060 0.461394 0.134705 0.677006	0.246727 0.197276 0.294965 1.228023 0.876943 Mean dependent	0.443533 0.620618 0.375721 0.153608	0.6574 0.5349 0.7071 0.8779 4.32E-05
RESID(-3)^2 RESID(-4)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared	0.026319 0.087498 0.183060 0.461394 0.134705 0.677006 0.239170	0.246727 0.197276 0.294965 1.228023 0.876943 Mean dependent 's.D. dependent 's	0.443533 0.620618 0.375721 0.153608 var	0.6574 0.5349 0.7071 0.8779 4.32E-05 0.010669
RESID(-3)^2 RESID(-4)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression	0.026319 0.087498 0.183060 0.461394 0.134705 0.677006 0.239170 0.009306	0.249/27 0.294965 1.228023 0.876943 Mean dependent v S.D. dependent v Akaike info criter	0.443533 0.620618 0.375721 0.153608 var ar	0.6574 0.5349 0.7071 0.8779 4.32E-05 0.010669 -6.916117
RESID(-3)^2 RESID(-4)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid	0.026319 0.087498 0.183060 0.461394 0.134705 0.677006 0.239170 0.009306 0.007794	0.240727 0.197276 0.294965 1.228023 0.876943 Mean dependent v Akaike info criter Schwarz criterion	0.443533 0.620618 0.375721 0.153608 var ar	0.6574 0.5349 0.7071 0.8779 4.32E-05 0.010669 -6.916117 -4.864625
RESID(-3)^2 RESID(-4)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	0.026319 0.087498 0.183060 0.461394 0.134705 0.677006 0.239170 0.009306 0.007794 866.5665	0.240727 0.197276 0.294965 1.228023 0.876943 Mean dependent v: Akaike info criter Schwarz criterion Hannan-Quinn cr	0.443533 0.620618 0.375721 0.153608 var ar iter.	0.6574 0.5349 0.7071 0.8779 4.32E-05 0.010669 -6.916117 -4.864625 -6.087041
RESID(-3)^2 RESID(-4)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.026319 0.087498 0.183060 0.461394 0.134705 0.677006 0.239170 0.009306 0.007794 866.5665 1.874160	0.246727 0.197276 0.294965 1.228023 0.876943 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr	0.443533 0.620618 0.375721 0.153608 var ar ion	0.6574 0.5349 0.7071 0.8779 4.32E-05 0.010669 -6.916117 -4.864625 -6.087041
RESID(-3)^2 RESID(-4)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.026319 0.087498 0.183060 0.461394 0.134705 0.677006 0.239170 0.009306 0.007794 866.5665 1.874160	0.249/27 0.294965 1.228023 0.876943 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr	0.443533 0.620618 0.375721 0.153608 var ar ion	0.6574 0.5349 0.7071 0.8779 4.32E-05 0.010669 -6.916117 -4.864625 -6.087041

Dependent ABR 26.2. 26.2.1. VAR(4)

Dependent Variable: DABR Method: Least Squares Sample (adjusted): 7/16/2008 8/01/2012 Included observations: 212 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.784711	0.592892	1.323531	0.1899
DER(-1)	-0.109919	0.187927	-0.584901	0.5605
DER(-2)	-0.238734	0.230802	-1.034368	0.3045
DER(-3)	-0.125036	0.230461	-0.542546	0.5891
DER(-4)	0.090238	0.186945	0.482699	0.6308
DABR(-1)	-0.818645	0.111155	-7.364900	0.0000
DABR(-2)	-0.622077	0.124488	-4.99/0/0	0.0000
DABR(-3)	-0.440340	0.114803	-3.633332	0.0003
R	0.011994	0.016478	0 727889	0.4691
R(-1)	-0.002725	0.016035	-0.169921	0.8656
R(-2)	-0.004642	0.016647	-0.278821	0.7812
R(-3)	-0.014605	0.015435	-0.946271	0.3472
R(-4)	0.019752	0.015823	1.248305	0.2160
R(-5)	-0.016959	0.016666	-1.017595	0.3123
R(-6)	0.013654	0.015649	0.872485	0.3859
R(-/)	-0.003357	0.006245	-0.53/620	0.5925
R(-6) P(-0)	0.000987	0.003978	0.147151	0.2402
DS	2 21E-05	2 38F-05	0.930899	0.3551
DS(-1)	-1.40E-05	1.59E-05	-0.885129	0.3791
DS(-2)	6.65E-06	1.40E-05	0.475961	0.6356
DS(-3)	-3.29E-05	1.39E-05	-2.362148	0.0209
DS(-4)	-1.80E-05	1.56E-05	-1.151824	0.2533
DS(-5)	-1.06E-05	1.33E-05	-0.797480	0.4278
DS(-6)	-1.10E-06	9.60E-06	-0.114151	0.9094
DS(-7)	-2.17E-06	8.78E-06	-0.247161	0.8055
DS(-8)	3.59E-06	9.29E-06	0.380118	0.7006
DS(-9)	-0.43E-00 7.06E.07	9.42E-00 9.22E-06	-0.082020	0.4971
DS(-11)	-1.04E-05	9.36E-06	-1 113229	0.2694
DS(-12)	1.11E-05	9.51E-06	1.166660	0.2473
DS(-13)	1.29E-06	1.14E-05	0.113352	0.9101
DS(-14)	-2.90E-06	1.54E-05	-0.187938	0.8515
DIRS	-5.06E-06	5.06E-06	-1.001315	0.3201
DIRS(-1)	-4.63E-06	4.69E-06	-0.987592	0.3267
DIRS(-2)	-2.57E-06	4.14E-06	-0.621265	0.5364
DIRS(-3)	7.14E-06	4.08E-06	1.751845	0.0841
DIRS(-4) DIRS(-5)	1.37E-06	4.94E-06 4 70E-06	0.518501	0.7510
SR POS	-0.001000	0.000858	-1 164817	0.2480
SR POS(-1)	0.000685	0.000870	0.787720	0.4335
SR POS(-2)	0.000270	0.000966	0.279780	0.7805
SR_POS(-3)	0.000884	0.000982	0.900199	0.3711
SR_POS(-4)	-2.59E-05	0.000924	-0.028009	0.9777
SR_POS(-5)	-0.001086	0.000944	-1.150200	0.2539
SR_POS(-6)	0.000461	0.001011	0.455931	0.6498
$SR_POS(-7)$	-8.74E-05	0.001007	-0.080820	0.9311
SR_POS(-9)	0.000622	0.000975	0.638168	0.5254
SR POS(-10)	0.000322	0.000960	0.335503	0.7382
SR_POS(-11)	0.000538	0.000979	0.549790	0.5842
SR_POS(-12)	0.000224	0.000871	0.256845	0.7980
SR_NEUT	0.028294	0.062417	0.453303	0.6517
SR_NEUT(-1)	0.035748	0.062651	0.570591	0.5701
SR_NEUT(-2)	0.029800	0.066397	0.448818	0.6549
SR_NEUT(-4)	-0.181190	0.073430	-0.937638	0.0100
SR_NEUT(-5)	-0.074532	0.080290	-0.928288	0.3564
SR NEUT(-6)	0.094087	0.073356	1.282602	0.2038
SR_NEUT(-7)	-0.140439	0.076975	-1.824475	0.0723
SR_NEUT(-8)	-0.000973	0.075808	-0.012839	0.9898
SR_NEUT(-9)	-0.013722	0.067735	-0.202589	0.8400
SR_NEUT(-10)	-0.112490	0.067701	-1.661574	0.1010
$SK_NEUT(-11)$	-0.038020	0.008010	-0.334184	0.3812
SR_NEG	-0.046150	0.060313	-0.723780	0.4704
SR_NEG(-1)	-0.036769	0.064437	-0.570623	0.5701
SR NEG(-2)	0.063424	0.067649	0.937540	0.3517
SR_NEG(-3)	-0.011204	0.066125	-0.169433	0.8659
SR_NEG(-4)	-0.107933	0.062193	-1.735461	0.0870
SR_NEG(-5)	-0.075744	0.057816	-1.310080	0.1944
SR_NEG(-6)	-0.076259	0.058915	-1.294397	0.1997
SK NEG(-7)	-0.03/038	0.059327	-0.624304	0.5344

Erasmus universiteit rotterdam ζ.

SR_NEG(-8)	-0.004101	0.058656	-0.069912	0.9445
WS	-0.000873	0.000765	-1.140998	0.2577
WS(-1)	-0.000788	0.000841	-0.93/424	0.3517
WS(-2) WS(-3)	0.000259	0.000787	0.328882	0.7432
WS(-4)	-0.001726	0.000844	-2 045709	0.0300
WS(-5)	-0.000636	0.000805	-0.790004	0.4322
WS(-6)	0.000382	0.000603	0.634042	0.5281
WS(-7)	0.001886	0.000632	2.982668	0.0039
WS(-8)	0.000203	0.000350	0.578123	0.5650
WS(-9)	-0.000362	0.000339	-1.066999	0.2896
WS(-10)	3.25E-05	0.000283	0.114590	0.9091
PS DS(1)	-4.38E-06	0.000379	-0.011561	0.9908
PS(-1)	0.000454	0.000465	0.977108	0.3318
PS(-2) PS(-3)	-0.000342	0.000446	-1 660948	0.2279
PS(-4)	0.000706	0.000434	1 625685	0.1011
PS(-5)	-0.000476	0.000386	-1.231726	0.2221
NS	0.000287	0.000402	0.713424	0.4779
NS(-1)	0.000442	0.000404	1.095907	0.2768
NS(-2)	-0.000554	0.000391	-1.417719	0.1606
NS(-3)	-0.000486	0.000397	-1.223681	0.2251
NS(-4)	0.000490	0.000384	1.274920	0.2065
NS(-5)	0.000192	0.000359	0.533435	0.5954
NS(-0)	9.14E-05 0.000980	0.000309	0.296101	0.7680
MBP	-0.000980	0.000307	-3.194285	0.3825
MBP(-1)	-0.014718	0.012534	-1.174188	0.2442
MBP(-2)	0.002981	0.013378	0.222799	0.8243
MBP(-3)	0.014528	0.013084	1.110357	0.2706
MBP(-4)	-0.011867	0.012285	-0.966013	0.3373
MBP(-5)	0.013384	0.011644	1.149466	0.2542
MBP(-6)	-0.016671	0.010408	-1.601793	0.1136
MB	-0.000239	0.005856	-0.040849	0.9675
MBA MBA(1)	-0.008039	0.032973	-0.243791	0.8081
MBA(-1) MBA(-2)	0.084580	0.036413	2 322838	0.2033
MBA(-3)	-0.054636	0.035980	-1.518511	0.1333
MBA(-4)	0.026577	0.027901	0.952539	0.3441
IM	0.050804	0.020915	2.429049	0.0177
IM(-1)	-0.028390	0.026983	-1.052122	0.2963
IM(-2)	-0.037945	0.024727	-1.534574	0.1293
IM(-3)	-0.002363	0.025330	-0.093285	0.9259
IM(-4)	0.022902	0.025529	0.897096	0.3/2/
IN(-5)	0.012033	0.022034	0.914685	0.3635
IB(-1)	-0.195878	0.080042	-2.447175	0.0169
IB(-2)	0.157288	0.090202	1.743725	0.0855
IB(-3)	0.056793	0.095704	0.593418	0.5548
IB(-4)	-0.048248	0.088426	-0.545631	0.5870
IB(-5)	-0.005546	0.084748	-0.065442	0.9480
IB(-6)	-0.128453	0.080728	-1.591184	0.1160
IB(-7)	0.054576	0.0/1836	0.759729	0.4499
IB(-8)	0.044292	0.062372	0./10128	0.4800
MM	-0.036599	0.060064	-0.609332	0.2797
MM(-1)	-0.035747	0.078785	-0.453732	0.6514
MM(-2)	0.076530	0.079710	0.960100	0.3403
MM(-3)	-0.089562	0.074700	-1.198957	0.2345
MM(-4)	0.102542	0.072296	1.418372	0.1605
MM(-5)	-0.008551	0.066277	-0.129014	0.8977
MAC	0.150960	0.244071	0.618508	0.5382
MAC(-1)	0.25430/	0.244313	0.544801	0.5015
MAC(-2) MAC(-3)	-0.150567	0.239620	-0.344891	0.3873
MAC(-4)	-0.438441	0.225358	-1.945530	0.0557
MAC(-5)	0.220190	0.228637	0.963052	0.3388
R-squared	0.861051	Mean dependent	/ar	-7.13E-05
Adjusted K-squared	0.587068	S.D. dependent va	ar ion	0.024211
S.E. OI regression	0.015558	Akaike into criter	1011	-5.252209
Log likelihood	697 7342	Hannan-Ouinn or	iter	-3.019/05
F-statistic	3.142712	Durbin-Watson st	at	2.037045
Prob(F-statistic)	0.000000			

26.2.2. VAR(4) Reduced

Dependent Variable: DABR Method: Least Squares Date: 11/11/12 Time: 22:54 Sample (adjusted): 7/16/2008 8/01/2012 Included observations: 212 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.493665	0.514754	0.959031	0.3400
DER(-1)	0.002826	0.185627	0.015223	0.9879
DER(-2)	-0.178359	0.225731	-0.790140	0.4315
DER(-3) DER(-4)	-0.014997	0.224239	-0.066880	0.9468
DABR(-1)	-0.818671	0.092666	-8 834677	0.0272
DABR(-2)	-0.701131	0.105339	-6.655958	0.0000
DABR(-3)	-0.520722	0.101817	-5.114276	0.0000
DABR(-4)	-0.341570	0.089678	-3.808851	0.0003
R P(1)	0.005085	0.013950	0.364491	0.7163
R(-1) R(-2)	0.002190	0.013351	0.164029	0.8701
R(-3)	-0.026226	0.013543	-1.936466	0.0558
R(-4)	0.023613	0.013375	1.765482	0.0808
R(-5)	-0.015526	0.013961	-1.112078	0.2690
R(-6)	0.017134	0.012830	1.335485	0.1850
R(-7) R(-8)	-0.002476	0.005430	-0.430018 0.780757	0.0494
R(-9)	-0.000359	0.005036	-0.071195	0.9434
DS	1.66E-05	2.04E-05	0.816769	0.4161
DS(-1)	-1.02E-05	1.42E-05	-0.720090	0.4733
DS(-2)	6.96E-06	1.17E-05	0.592479	0.5550
DS(-3) DS(-4)	-3.72E-05 -1.37E-05	1.19E-05 1.35E-05	-3.139320	0.0023
DS(-1) DS(-5)	-1.47E-05	1.22E-05	-1.197766	0.2341
DS(-6)	6.98E-06	8.48E-06	0.823321	0.4124
DS(-7)	-4.11E-06	7.81E-06	-0.526231	0.6000
DS(-8)	2.16E-06	8.41E-06	0.257207	0.7976
DS(-9) DS(-10)	-1.52E-06 2.41E-07	8.82E-06 8.63E-06	-0.1/2849	0.8031
DS(-10)	-6.65E-06	8.81E-06	-0.754967	0.4522
DS(-12)	1.16E-05	9.19E-06	1.266388	0.2085
DS(-13)	3.77E-07	1.05E-05	0.035823	0.9715
DS(-14)	6.87E-07	1.45E-05	0.047352	0.9623
DIRS DIRS(1)	-2.35E-06	4.24E-06 3.95E-06	-0.553324	0.5814
DIRS(-1)	-4.04E-06	3.62E-06	-1.115759	0.2674
DIRS(-3)	7.33E-06	3.44E-06	2.133111	0.0355
DIRS(-4)	1.96E-06	3.88E-06	0.504731	0.6149
DIRS(-5)	4.56E-06	3.75E-06	1.216084	0.2270
SR_POS SR_POS(-1)	-0.001250	0.000774	-1.014841 0.220225	0.1097
SR_POS(-2)	7.28E-05	0.000907	0.080256	0.9362
SR_POS(-3)	0.000946	0.000885	1.069652	0.2875
SR_POS(-4)	9.86E-05	0.000835	0.118106	0.9062
SR_POS(-5)	-0.000632	0.000836	-0.755698	0.4517
SR_POS(-7)	-0.000368	0.000898	-0 409664	0.6830
SR_POS(-8)	-0.001852	0.000876	-2.115155	0.0371
SR_POS(-9)	0.000458	0.000896	0.510439	0.6110
SR_POS(-10)	0.000872	0.000921	0.947147	0.3460
SR_POS(-11) SR_POS(-12)	0.000422	0.000926	0.455905	0.6495
SR_105(-12)	0.008403	0.060675	0.138492	0.8902
SR_NEUT(-1)	0.055315	0.061283	0.902622	0.3691
SR_NEUT(-2)	0.034548	0.060942	0.566901	0.5721
SR_NEUT(-3)	-0.108557	0.067608	-1.605694	0.1117
SR_NEU1(-4) SR_NEUT(-5)	-0.034984	0.068045	-0.509655	0.0115
SR NEUT(-6)	0.010937	0.065386	0.167271	0.8675
SR_NEUT(-7)	-0.149887	0.066402	-2.257256	0.0263
SR_NEUT(-8)	0.004176	0.068749	0.060744	0.9517
SR_NEUT(-9)	0.043095	0.061771	0.697668	0.4871
SR_NEU1(-10) SR_NEUT(-11)	-0.038967	0.063000	-0.018522	0.5377
SR NEUT(-12)	-0.044890	0.059526	-0.754120	0.4527
SR_NEG	-0.083844	0.061771	-1.357334	0.1780
SR_NEG(-1)	-0.014001	0.056162	-0.249296	0.8037
SR_NEG(-2)	0.052878	0.058349	0.906231	0.3672
SR_NEG(-3) SR_NEG(-4)	-0.081589	0.059200	-1.5/8002	0.1/15
SR_NEG(-5)	-0.044127	0.055053	-0.801540	0.4249
SR_NEG(-6)	-0.045252	0.055861	-0.810095	0.4200
SR_NEG(-7)	-0.042301	0.054912	-0.770346	0.4430
SK_NEG(-8)	-0.012671	0.054964	-0.230537	0.8182
W .J	-0.000300	0.000321	-0.3/334/	0.0004

ERASMUS UNIVERSITEIT ROTTERDAM

WS(-1)	-0.000564	0.000580	-0.972502	0.3333
WS(-2)	-0.000305	0.000574	-0.531097	0.5966
WS(-3)	0.001369	0.000595	2 301737	0.0236
WS(-4)	-0.002344	0.000588	-3.984550	0.0001
WS(-5)	0.000190	0.000599	0 317778	0.7514
WS(-6)	0.000407	0.000554	0 734207	0 4647
WS(-7)	0.001598	0.000589	2 713758	0.0079
WS(-8)	7 22E-05	0.000323	0 223486	0.8236
WS(-9)	-0.000139	0.000291	-0 476412	0.6349
WS(-10)	3.87E-06	0.000257	0.015058	0.9880
PS	-0.000171	0.000334	-0 512664	0.5000
PS(1)	-0.000171 8 00F 05	0.000334	0.210008	0.8264
PS(-2)	0.001012	0.000403	2 483515	0.0148
PS(3)	0.001012	0.000408	1 648578	0.1026
PS(4)	-0.000090	0.000410	1 206605	0.1020
PS(5)	0.000757	0.000419	1.000005	0.0741
PS(-3)	-0.000091	0.000349	-1.981929	0.0304
NS NS(1)	0.000300	0.000309	0.969457	0.3348
NS(-1)	0.000283	0.000335	0.846645	0.3994
NS(-2)	-0.000287	0.000327	-0.8//299	0.3826
NS(-3)	-0.000331	0.000327	-1.012395	0.3140
NS(-4)	0.000514	0.000316	1.624889	0.1076
NS(-5)	7.69E-05	0.000312	0.246904	0.8055
NS(-6)	-7.17E-05	0.000287	-0.249917	0.8032
NS(-7)	-0.000791	0.000281	-2.815038	0.0060
MBP	0.005895	0.013118	0.449385	0.6542
MBP(-1)	-0.010086	0.011198	-0.900732	0.3701
MBP(-2)	0.009116	0.011404	0.799390	0.4261
MBP(-3)	0.011084	0.010969	1.010463	0.3149
MBP(-4)	-0.013078	0.010617	-1.231809	0.2211
MBP(-5)	0.011388	0.010939	1.041093	0.3005
MBP(-6)	-0.013341	0.009828	-1.357475	0.1779
MB	0.003024	0.004592	0.658493	0.5118
MBA	-0.033010	0.030261	-1.090820	0.2782
MBA(-1)	-0.030124	0.034525	-0.872542	0.3852
MBA(-2)	0.083116	0.034798	2.388522	0.0189
MBA(-3)	-0.057266	0.034576	-1.656247	0.1010
MBA(-4)	0.030694	0.026549	1.156127	0.2506
IM	0.032580	0.018175	1.792610	0.0763
IM(-1)	-0.033138	0.022089	-1.500230	0.1369
IM(-2)	-0.030605	0.021801	-1.403840	0.1637
IM(-3)	0.003732	0.022997	0.162284	0.8714
IM(-4)	0.034510	0.022472	1.535697	0.1280
IM(-5)	0.002201	0.017822	0.123479	0.9020
R-squared	0.796229	Mean depen	dent var	-7.13E-05
Adjusted R-squared	0.537681	S.D. depend	ent var	0.024211
S.E. of regression	0.016462	Akaike info	criterion	-5.076866
Sum squared resid	0.025203	Schwarz crit	erion	-3.192745
Log likelihood	657.1478	Hannan-Qui	nn criter.	-4.315348
F-statistic	3.079621	Durbin-Wats	son stat	2.053608
Prob(F-statistic)	0.000000			

26.2.3. VARMA(4,3)

Dependent Variable: DABR

Method: Least Squares Date: 11/11/12 Time: 23:00 Sample (adjusted): 7/16/2008 8/01/2012 Included observations: 212 after adjustments Estimation settings: tol= 0.00010, derivs=analytic (linear) MA derivatives use accurate numeric methods

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.785383	0.551553	1.423950	0.1591
DER(-1)	-0.107472	0.204588	-0.525309	0.6011
DER(-2)	-0.276417	0.251846	-1.097566	0.2763
DER(-3)	-0.136134	0.259079	-0.525454	0.6010
DER(-4)	0.066771	0.213576	0.312632	0.7555
DABR(-1)	-0.838216	0.179669	-4.665346	0.0000
DABR(-2)	-0.711603	0.179011	-3.975190	0.0002
DABR(-3)	-0.484912	0.149471	-3.244180	0.0018
DABR(-4)	-0.168984	0.117277	-1.440900	0.1543
R	0.012484	0.017337	0.720099	0.4740
R(-1)	-0.002508	0.016729	-0.149943	0.8813
R(-2)	-0.003790	0.016507	-0.229578	0.8191
R(-3)	-0.015559	0.015311	-1.016207	0.3132
R(-4)	0.019858	0.016210	1.225047	0.2248
R(-5)	-0.017732	0.017101	-1.036920	0.3035

Erasmus universiteit rotterdam ζ.

R(-6)	0.013334	0.016356	0.815232	0.4178
R(-/) R(-0.004224	0.0062/3	-0.6/3330	0.5031
R(-8) R(-9)	-1 69E-05	0.005711	-0.002990	0.2307
DS	2.12E-05	2.43E-05	0.872399	0.3861
DS(-1)	-1.38E-05	1.71E-05	-0.805205	0.4235
DS(-2)	6.46E-06	1.53E-05	0.422959	0.6737
DS(-3)	-3.57E-05	1.43E-05	-2.501816	0.0148
DS(-4)	-1.71E-05	1.59E-05	-1.077053	0.2853
DS(-5)	-7.91E-06	1.38E-05	-0.571627	0.5695
DS(-6)	-3.30E-00	1.01E-05 0.27E-06	-0.352008	0.7259
DS(-7)	-4.99E-07 5.69E-06	9.57E-00 9.69E-06	-0.033224	0.9377
DS(-9)	-4 94E-06	1.02E-05	-0.485510	0.6289
DS(-10)	3.10E-07	9.47E-06	0.032784	0.9739
DS(-11)	-9.24E-06	9.83E-06	-0.940253	0.3505
DS(-12)	1.30E-05	9.85E-06	1.317739	0.1921
DS(-13)	-2.17E-08	1.16E-05	-0.001860	0.9985
DS(-14)	-1.81E-06	1.59E-05	-0.114295	0.9093
DIRS	-4.61E-06	5.26E-06	-0.8//650	0.3833
DIRS(-1) DIRS(-2)	-4.11E-06	4.84E-06 4.22E-06	-0.849757	0.3985
DIRS(-2) DIRS(-3)	7 33E-06	4.03E-06	1 819017	0.0734
DIRS(-4)	1.51E-06	5.00E-06	0.301613	0.7639
DIRS(-5)	4.11E-06	4.74E-06	0.867195	0.3889
SR_POS	-0.000821	0.000911	-0.901228	0.3707
SR_POS(-1)	0.000795	0.000894	0.888936	0.3772
SR_POS(-2)	5.95E-05	0.000960	0.062040	0.9507
SR_POS(-3)	0.001182	0.001004	1.176477	0.2436
SR_POS(-4)	9.36E-07	0.000940	0.000996	0.9992
SK_POS(-5)	-0.001125	0.000987	-1.139321	0.2580
SR_POS(-0)	-0.000283	0.001040	-0.270313	0.0742
SR_POS(-8)	-0.001531	0.000963	-1 589519	0.1167
SR POS(-9)	0.000421	0.001055	0.398792	0.6913
SR POS(-10)	0.000172	0.001020	0.169047	0.8663
SR_POS(-11)	0.000697	0.000989	0.705139	0.4832
SR_POS(-12)	0.000399	0.000864	0.461163	0.6462
SR_NEUT	0.020776	0.063348	0.327958	0.7440
SR_NEUT(-1)	0.036853	0.062845	0.586402	0.5596
SK_NEUT(-2)	0.031330	0.005894	0.4/5550	0.0339
SR_NEUT(-4)	-0.069003	0.079856	-0.864090	0.3906
SR NEUT(-5)	-0.072000	0.084535	-0.851716	0.3974
SR NEUT(-6)	0.099903	0.075868	1.316796	0.1924
SR_NEUT(-7)	-0.134588	0.076176	-1.766803	0.0818
SR_NEUT(-8)	0.000695	0.080193	0.008662	0.9931
SR_NEUT(-9)	-0.018817	0.066808	-0.281667	0.7791
SR_NEUT(-10)	-0.112531	0.067625	-1.664040	0.1008
$SR_NEUT(-12)$	-0.052887	0.071731	-0.474930	0.0304
SR_NEG	-0.098169	0.069011	-1.422514	0.1595
SR NEG(-1)	-0.027639	0.067346	-0.410412	0.6828
SR_NEG(-2)	0.070372	0.070287	1.001212	0.3203
SR_NEG(-3)	0.001818	0.072510	0.025070	0.9801
SR_NEG(-4)	-0.099505	0.065700	-1.514524	0.1346
SR_NEG(-5)	-0.085616	0.058505	-1.463402	0.1480
SK_NEG(-0) SP_NEG(-7)	-0.080630	0.060809	-1.323949	0.1894
SR_NEG(-7)	-0.042138	0.059522	-0.201859	0.4814
WS	-0.000900	0.000794	-1.133284	0.2611
WS(-1)	-0.000573	0.000843	-0.679861	0.4989
WS(-2)	0.000289	0.000787	0.367057	0.7147
WS(-3)	0.001522	0.000802	1.896910	0.0622
WS(-4)	-0.001820	0.000876	-2.076367	0.0417
WS(-5)	-0.000613	0.000862	-0./1124/	0.4794
WS(-0)	0.000357	0.000655	0.544004	0.5882
WS(-7) WS(-8)	0.001824	0.000701	0.762168	0.0114
WS(-9)	-0.000543	0.000333	-1.628594	0.1081
WS(-10)	1.12E-05	0.000289	0.038592	0.9693
PS	-2.65E-05	0.000399	-0.066227	0.9474
PS(-1)	0.000393	0.000485	0.810467	0.4205
PS(-2)	0.000508	0.000451	1.126304	0.2641
PS(-3)	-0.0007/6	0.000473	-1.640912	0.1055
r 5(-4) PS(-5)	-0.000828	0.000439	-1 335486	0.0040
NS	0.000296	0.000427	0.693237	0.4906
NS(-1)	0.000290	0.000400	0.725585	0.4706
NS(-2)	-0.000644	0.000406	-1.586739	0.1173
NS(-3)	-0.000451	0.000414	-1.090275	0.2795
NS(-4)	0.000504	0.000394	1.280397	0.2048
NS(-5)	0.000176	0.000382	0.461139	0.6462
NS(-6)	8.85E-05	0.000327	0.270833	0.7874
NS(-/) MDD	-0.000915	0.000329	-2./83537	0.0070
MBP(-1)	-0.016216	0.013532	-1 198366	0.2855
MBP(-2)	0.000996	0.014668	0.067925	0.9460
MBP(-3)	0.014495	0.013514	1.072631	0.2873

MBP(-4)	-0.009978	0.013012	-0.766863	0 4459
MBP(5)	0.01/010	0.011060	1 247425	0.2166
MBP(-6)	-0.017860	0.011067	-1 613796	0.1113
MB (-0)	0.000982	0.005843	0.168121	0.8670
MBA	-0.010304	0.005345	-0.293501	0.3070
MBA(1)	0.027108	0.036622	0.740220	0.4618
MBA(-1) MBA(-2)	0.02/108	0.038064	2 218400	0.0200
MBA(-2) MBA(-3)	0.061023	0.037804	1 61/200	0.1112
MBA(-3) MBA(-4)	-0.001023	0.037804	-1.014200	0.1112
MBA(-4)	0.029098	0.023340	2 561722	0.0127
INI IM(1)	0.039339	0.023249	0.086478	0.0127
IM(-1)	-0.028079	0.029072	-0.980478	0.3274
IM(-2)	-0.032/98	0.026420	-1.241400	0.2188
IM(-3)	-0.009049	0.020039	-0.34/49/	0.7293
IM(-4)	0.017400	0.020373	0.000014	0.5115
INI(-3)	0.012659	0.022222	1.056759	0.3034
ID ID(1)	0.0/4/33	0.070740	1.030/38	0.2944
IB(-1)	-0.185201	0.081550	-2.270850	0.0264
IB(-2)	0.105/55	0.096159	1./25/42	0.0894
IB(-5)	0.052812	0.100114	0.49/695	0.6203
IB(-4)	-0.030000	0.091544	-0.400529	0.6900
IB(-5)	0.004306	0.089157	0.048295	0.9616
IB(-0)	-0.1643/5	0.079966	-2.055555	0.0437
IB(-/)	0.045/18	0.0/5341	0.606807	0.5460
IB(-8)	0.034742	0.064874	0.555557	0.3941
IB(-9)	0.081238	0.066840	1.215405	0.2285
	-0.045515	0.001100	-0.744192	0.4594
MM(-1)	-0.046400	0.079935	-0.580482	0.3035
MM(-2)	0.0/1600	0.083239	0.859900	0.3929
MM(-3)	-0.063271	0.079772	-0./93144	0.4305
MM(-4)	0.099/51	0.080285	1.242451	0.2184
MM(-5)	-0.014581	0.069/52	-0.206179	0.8373
MAC 1)	0.13/52/	0.244853	0.561670	0.5762
MAC(-1)	0.210491	0.245515	0.85/345	0.3943
MAC(-2)	-0.112///	0.225223	-0.500736	0.6182
MAC(-3)	-0.1081/3	0.233502	-0.463261	0.6447
MAC(-4)	-0.453236	0.229481	-1.9/5048	0.0524
MAC(-5)	0.251600	0.236298	1.064/59	0.2908
MA(1)	-0.1/8593	0.221865	-0.804962	0.4237
MA(2)	-0.09/564	0.209308	-0.466127	0.6426
MA(3)	-0.238998	0.206551	-1.15/093	0.2513
MA(4)	-0.483111	0.199692	-2.419279	0.0183
R-squared	0 892067	Mean depend	ent var	-7 13E-05
Adjusted R-squared	0.660090	S.D. depende	nt var	0.024211
S.E. of regression	0.014115	Akaike info c	riterion	-5.467064
Sum squared resid	0.013349	Schwarz crite	rion	-3.171286
Log likelihood	724 5088	Hannan-Ouin	n criter	-4 539164
F-statistic	3 845508	Durbin-Watso	on stat	1,999710
Prob(F-statistic)	0.000000	Durom Wuld		1.,,,,,10
	0.000000			
Inverted MA Roots	1.00	04+.81i	0481i	73

26.2.4. VARMA(4,3) Reduced

Dependent Variable: DABR Method: Least Squares Date: 11/11/12 Time: 22:53 Sample (adjusted): 7/16/2008 8/01/2012 Included observations: 212 after adjustments Estimation settings: tol= 0.00010, derivs=analytic (linear) MA derivatives use accurate numeric methods

Variable	Coefficient	Std. Error	t-Statistic	Prob.	_
С	0.494358	0.426057	1.160311	0.2490	=
DER(-1)	0.037617	0.201459	0.186724	0.8523	
DER(-2)	-0.124671	0.250643	-0.497403	0.6201	
DER(-3)	0.032161	0.252536	0.127352	0.8989	
DER(-4)	0.165256	0.202408	0.816452	0.4164	
DABR(-1)	-0.835452	0.201113	-4.154137	0.0001	
DABR(-2)	-0.675048	0.216970	-3.111254	0.0025	
DABR(-3)	-0.483431	0.162024	-2.983696	0.0037	
DABR(-4)	-0.230056	0.100134	-2.297476	0.0239	
R	0.005698	0.014467	0.393882	0.6946	
R(-1)	0.002868	0.013744	0.208647	0.8352	
R(-2)	0.000442	0.013593	0.032498	0.9741	
R(-3)	-0.026144	0.013860	-1.886242	0.0625	
R(-4)	0.023410	0.013799	1.696431	0.0933	
R(-5)	-0.017056	0.014717	-1.158888	0.2496	
R(-6)	0.014941	0.013589	1.099522	0.2745	
R(-7)	-0.001527	0.005761	-0.265157	0.7915	
R(-8)	0.004473	0.005413	0.826345	0.4108	
R(-9)	0.001703	0.005099	0.333986	0.7392	

2 Constant C ζ.

DS	1.59E-05	2.11E-05	0.751265	0.4545
DS(-1)	-1.19E-05	1.54E-05	-0.768742	0.4441
DS(-2)	5.72E-06	1.27E-05	0.450836	0.6532
DS(-3)	-3.61E-05	1.21E-05	-2.974231	0.0038
DS(-4)	-1.07E-05	1.41E-05	-0.761000	0.4487
DS(-5)	-9./2E-06	1.24E-05	-0./80/58	0.4370
DS(-0)	3.43E-00 2.06E-06	8.92E-00 8.23E-06	0.010924	0.3428
DS(-7)	-3.90E-00 4 10E 06	8.23E-00 8.72E.06	-0.480449	0.6321
DS(-9)	3.84E-07	9.54E-06	0.400777	0.0519
DS(-10)	1.60E-06	9.05E-06	0.177199	0.8598
DS(-11)	-4 65E-06	9.16E-06	-0 507831	0.6128
DS(-12)	1.34E-05	9.44E-06	1.418189	0.1596
DS(-13)	5.13E-07	1.08E-05	0.047335	0.9624
DS(-14)	7.28E-07	1.54E-05	0.047228	0.9624
DIRS	-1.93E-06	4.39E-06	-0.440092	0.6609
DIRS(-1)	-3.64E-06	4.02E-06	-0.905503	0.3676
DIRS(-2)	-3.89E-06	3.50E-06	-1.111060	0.2695
DIRS(-3)	6.81E-06	3.17E-06	2.143617	0.0348
DIRS(-4)	1.10E-06	3.91E-06	0.282489	0.7782
DIRS(-5)	3.88E-06	3.80E-06	1.020018	0.3105
SR_POS	-0.001249	0.000/43	-1.680305	0.0964
$SK_POS(-1)$	0.000335	0.000837	0.399975	0.6901
$SK_POS(-2)$ SP_POS(-2)	0.20E-00	0.000947	1 222225	0.9930
SR_POS(-4)	4.05E-05	0.000922	0.046502	0.2211
SR_POS(-5)	-0.000786	0.000872	-0.908296	0.3662
SR_POS(-6)	0.000300	0.000931	0.321560	0.7485
SR POS(-7)	-0.000488	0.000953	-0.511859	0.6100
SR POS(-8)	-0.001737	0.000897	-1.935886	0.0561
SR POS(-9)	0.000328	0.000973	0.337488	0.7365
SR POS(-10)	0.000913	0.000998	0.914684	0.3628
SR_POS(-11)	0.000489	0.001008	0.484842	0.6290
SR_POS(-12)	0.000181	0.000880	0.205187	0.8379
SR_NEUT	0.006053	0.061515	0.098392	0.9218
SR_NEUT(-1)	0.055493	0.062554	0.887112	0.3774
SR_NEUT(-2)	0.033798	0.062703	0.539019	0.5912
SR_NEUT(-3)	-0.112700	0.067673	-1.665364	0.0994
SR_NEUT(-4)	-0.032760	0.073930	-0.443121	0.6588
SR_NEU1(-5)	-0.04560/	0.0/190/	-0.634252	0.5275
SK_NEUI(-0)	0.01/301	0.067434	0.200007	0.7981
SR_NEUT(8)	-0.144559	0.000091	-2.10428/	0.0331
SR_NEUT(-9)	0.007954	0.072339	0.109040	0.5129
SR_NEUT(-10)	-0.039274	0.065661	-0 598138	0.5513
SR NEUT(-11)	0.005628	0.064636	0.087079	0.9308
SR NEUT(-12)	-0.047293	0.059515	-0.794644	0.4289
SR NEG	-0.076897	0.063459	-1.211761	0.2288
SR_NEG(-1)	-0.007588	0.057548	-0.131860	0.8954
SR_NEG(-2)	0.046562	0.060065	0.775191	0.4403
SR_NEG(-3)	-0.082355	0.061662	-1.335583	0.1851
SR_NEG(-4)	-0.095082	0.059129	-1.608051	0.1114
SR_NEG(-5)	-0.062103	0.057877	-1.073013	0.2862
SR_NEG(-6)	-0.047669	0.059208	-0.805114	0.4229
SR_NEG(-7)	-0.042477	0.05/183	-0.742834	0.4595
SK_NEG(-8)	-0.022580	0.000524	-0.401484	0.6890
WS(-1)	-0.000230	0.000534	-0.408071	0.0409
WS(-2)	-0.000333	0.000605	-0.395249	0.6936
WS(-3)	0.001245	0.000619	2.010934	0.0474
WS(-4)	-0.002354	0.000636	-3.698492	0.0004
WS(-5)	0.000273	0.000704	0.388153	0.6988
WS(-6)	0.000474	0.000641	0.739424	0.4616
WS(-7)	0.001473	0.000689	2.136403	0.0354
WS(-8)	0.000177	0.000339	0.522995	0.6023
WS(-9)	-0.000266	0.000296	-0.897546	0.3718
WS(-10)	1.55E-05	0.000271	0.057127	0.9546
PS	-0.000128	0.000337	-0.381015	0.7041
PS(-1)	-0.000173	0.000410	-0.423027	0.6733
PS(-2)	0.0009/9	0.000430	2.276792	0.0252
PS(-3)	-0.000695	0.0004/4	-1.466468	0.1460
PS(5)	0.000777	0.000432	1.719807	0.0889
NS	0.000176	0.000319	0 550481	0.5834
NS(-1)	0.000262	0.000343	0.762296	0 4479
NS(-2)	-0.000391	0.000355	-1.102382	0.2733
NS(-3)	-0.000266	0.000337	-0.790004	0.4316
NS(-4)	0.000521	0.000327	1.593795	0.1145
NS(-5)	4.41E-05	0.000334	0.132041	0.8953
NS(-6)	-9.01E-05	0.000308	-0.293079	0.7701
NS(-7)	-0.000747	0.000315	-2.371742	0.0199
MBP	0.011993	0.013246	0.905410	0.3677
MBP(-1)	-0.009097	0.011890	-0.765125	0.4462
MBP(-2)	0.007696	0.012670	0.607375	0.5451
MBP(-3)	0.012661	0.011239	1.126500	0.2630
MBP(-4)	-0.013365	0.011523	-1.159858	0.2492
MBP(-5)	0.015178	0.011557	1.142283	0.2564
MB	-0.0130/2	0.010213	-1.33400/	0.1284
	0.002072	0.003920	0.001323	0.72/3

Zafung Perasmus universiteit rotterdam

The Impact of UGC on Firm's Performance for Personal Computer Product

MBA	-0.026946	0.030339	-0.888139	0.3769
MBA(-1)	-0.028739	0.036709	-0.782882	0.4358
MBA(-2)	0.088031	0.036828	2.390328	0.0189
MBA(-3)	-0.065109	0.037385	-1.741575	0.0850
MBA(-4)	0.027408	0.028041	0.977409	0.3310
IM	0.034407	0.017860	1.926498	0.0572
IM(-1)	-0.032838	0.022861	-1.436404	0.1544
IM(-2)	-0.028598	0.023938	-1.194683	0.2354
IM(-3)	0.005501	0.024118	0.228081	0.8201
IM(-4)	0.031716	0.023484	1.350528	0.1803
IM(-5)	-0.002315	0.018090	-0.127960	0.8985
MA(1)	-0.147160	0.230677	-0.637951	0.5251
MA(2)	-0.292884	0.222507	-1.316292	0.1915
MA(3)	-0.200497	0.235672	-0.850745	0.3972
MA(4)	-0.359453	0.211981	-1.695686	0.0934
R-squared	0.833526	Mean depend	ent var	-7.13E-05
Adjusted R-squared	0.605325	S.D. depende	nt var	0.024211
S.E. of regression	0.015210	Akaike info c	riterion	-5.241286
Sum squared resid	0.020590	Schwarz crite	rion	-3.293832
Log likelihood	678.5763	Hannan-Quin	n criter.	-4.454171
F-statistic	3.652603	Durbin-Wats	on stat	2.064590
Prob(F-statistic)	0.000000			
Inverted MA Roots	1.00	0569i	05+.69i	75

27. GARCH(4) ARCH(3)

Dependent Variable: DABR Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/07/12 Time: 20:17 Sample (adjusted): 7/16/2008 8/01/2012 Included observations: 212 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear) MA derivatives use accurate numeric methods

Variable	Coefficient	Std. Error	z-Statistic	Prob.
	0.404/05	0.4007(1	1 1 (72 (0	0.2421
$\mathbf{DER}(1)$	0.494685	0.423701	1.10/308	0.2431
DER(-1)	0.133226	0.194709	0.039070	0.9285
DER(-2) DER(-3)	-0.074880	0.198928	-0.376420	0.7066
DER(-4)	0.131762	0.171455	0.768495	0.4422
DABR(-1)	-0 777591	0 187131	-4 155330	0.0000
DABR(-2)	-0.651705	0 201486	-3 234487	0.0012
DABR(-3)	-0.428263	0.160315	-2.671393	0.0076
DABR(-4)	-0.276589	0.101567	-2.723213	0.0065
R	0.004177	0.013949	0.299471	0.7646
R(-1)	0.001783	0.013949	0.127818	0.8983
R(-2)	0.000618	0.014558	0.042476	0.9661
R(-3)	-0.026374	0.015082	-1.748725	0.0803
R(-4)	0.023766	0.011961	1.986886	0.0469
R(-5)	-0.015757	0.014927	-1.055588	0.2912
R(-6)	0.016661	0.012455	1.337672	0.1810
R(-7)	-0.004772	0.005862	-0.814007	0.4156
R(-8)	0.005706	0.005631	1.013209	0.3110
R(-9)	-0.000628	0.004837	-0.129864	0.8967
DS	2.29E-05	1.93E-05	1.187068	0.2352
DS(-1)	-1.65E-05	1.50E-05	-1.101247	0.2708
DS(-2)	1.32E-05	1.24E-05	1.063520	0.2875
DS(-3)	-4.05E-05	1.47E-05	-2.752967	0.0059
DS(-4)	-6.04E-06	1.38E-05	-0.437543	0.6617
DS(-5)	-1.71E-05	1.22E-05	-1.410657	0.1583
DS(-6)	1.10E-05	6.34E-06	1.733018	0.0831
DS(-7)	-2.43E-06	6.73E-06	-0.361537	0.7177
DS(-8)	4.76E-06	8.05E-06	0.591202	0.5544
DS(-9)	4.40E-06	9.95E-06	0.442235	0.6583
DS(-10)	-3./IE-06	7.99E-06	-0.4045/5	0.0422
DS(-11) DS(-12)	-1.20E-05	1.44E-05	-0.8/1/0/	0.3834
DS(-12) DS(-12)	0.08E.07	1.10E-05	1.330988	0.1195
DS(-13) DS(-14)	9.98E-07	1.16E-05	0.084911	0.9323
DIRS	1.00E.06	1.49E-05 4.10E-06	0.334734	0.5791
DIRS(1)	-1.99E-00	4.19E-00	1 030057	0.0347
DIRS(-1)	4.16E.06	4.08E-00 3.10E-06	1 305570	0.2984
DIRS(-2)	7 22E-06	3.92E-06	1 838882	0.0659
DIRS(-4)	2.04E-06	4 01E-06	0.508631	0.6110
DIRS(-5)	4 38E-06	3 57E-06	1 226593	0.2200
SR POS	-0.001316	0.000720	-1 828431	0.0675
SR_POS(-1)	0.000169	0.000733	0 230079	0.8180
SR_POS(-2)	0.000564	0.000842	0.669789	0.5030
00(_)	0.000001	5.0000.2	0.0007707	0.0000

2 Constant C ζ.

25 BO2(A)				
SR_POS(-3)	0.000770	0.001049	0.734483	0.4627
SR_POS(-4)	-0.000213	0.001091	-0.195645	0.8449
SR_POS(-5)	-0.000569	0.000921	-0.617815	0.5367
SR_POS(-6)	0.000413	0.000829	0.497912	0.6185
SR_POS(-7)	-0.000435	0.001058	-0.411431	0.6808
SR_POS(-8)	-0.001737	0.001044	-1.663869	0.0961
SR_POS(-9)	0.000281	0.001108	0.253226	0.8001
SR POS(-10)	0.000968	0.000997	0.971075	0.3315
SR POS(-11)	0.000366	0.001223	0.299297	0.7647
SR POS(-12)	0.000198	0.000962	0.205595	0.8371
SR NEUT	0.007106	0.057112	0.124431	0.9010
SR NEUT(-1)	0.057002	0.063977	0.890966	0.3729
SR NEUT(-2)	0.035953	0.075527	0.476028	0.6341
SR NEUT(-3)	-0.107864	0.084679	-1.273806	0.2027
SR NEUT(-4)	-0.038602	0.067985	-0.567805	0.5702
SR NEUT(-5)	-0.045137	0.078586	-0.574367	0.5657
SR_NEUT(-6)	0.014002	0.057756	0 242430	0.8084
SR_NEUT(-7)	-0 146804	0.065266	-2 249327	0.0245
SR_NEUT(-8)	0.007495	0.060871	0.123133	0.9020
SP NEUT(0)	0.042101	0.054667	0.771705	0.4402
SP_NEUT(10)	0.042191	0.034007	0.424774	0.4402
SR_NEUT(11)	-0.0333996	0.064/4/	-0.424774	0.0710
SR_NEUT(12)	0.000840	0.076042	0.009321	0.9288
SR_NEUT(-12)	-0.043941	0.075404	-0.582745	0.5601
SR_NEG	-0.077624	0.056900	-1.304233	0.1725
SR_NEG(-1)	-0.001522	0.055609	-0.02/3/1	0.9782
SK_NEG(-2)	0.04/020	0.0094/0	0.0/0803	0.4985
SR_NEG(-3)	-0.073806	0.059056	-1.249760	0.2114
SR_NEG(-4)	-0.100577	0.061675	-1.630762	0.1029
SK_NEG(-5)	-0.030913	0.054517	-0.56/034	0.5707
SR_NEG(-6)	-0.041370	0.058947	-0.701817	0.4828
SR_NEG(-7)	-0.050716	0.052416	-0.967562	0.3333
SR_NEG(-8)	-0.020919	0.054681	-0.382556	0.7020
WS	-0.000241	0.000521	-0.462777	0.6435
WS(-1)	-0.000692	0.000549	-1.261744	0.2070
WS(-2)	-0.000386	0.000709	-0.544304	0.5862
WS(-3)	0.001377	0.000730	1.885914	0.0593
WS(-4)	-0.002237	0.000638	-3.508170	0.0005
WS(-5)	0.000201	0.000747	0.269251	0.7877
WS(-6)	0.000501	0.000715	0.700582	0.4836
WS(-7)	0.001339	0.000762	1.756636	0.0790
WS(-8)	0.000182	0.000298	0.610764	0.5414
WS(-9)	-0.000140	0.000303	-0.460378	0.6452
WS(-10)	-7.88E-05	0.000244	-0.322959	0.7467
PS	-0.000155	0.000295	-0.527218	0.5980
PS(-1)	-9.28E-05	0.000470	-0.197251	0.8436
PS(-2)	0.001031	0.000467	2.205057	0.0275
PS(-3)	-0.000769	0.000484	-1.586966	0.1125
PS(-4)	0.000793	0.000457	1.736001	0.0826
PS(-5)	-0.000834	0.000399	-2.090876	0.0365
NS	0.000162	0.000295	0.548317	0.5835
NS(-1)	0.000341	0.000338	1.009817	0.3126
NS(-2)	-0.000265	0.000469	-0.565204	0.5719
NS(-3)	-0.000415	0.000371	-1.118221	0.2635
NS(-4)	0.000509	0.000359	1.417671	0.1563
NS(-5)	0.000158	0.000355	0.445675	0.6558
NS(-6)	-0.000149	0.000360	-0.413377	0.6793
NS(-7)	-0.000637	0.000347	-1.834690	0.0666
MBP	0.011222	0.010892	1.030289	0.3029
MBP(-1)	-0.011783	0.017094	-0.689311	0.4906
MBP(-2)	0.006619	0.015940	0.415241	0.6780
MBP(-3)	0.010472	0.012656	0.827376	0.4080
MBP(-4)	-0.009688	0.009729	-0.995807	0.3193
MBP(-5)	0.011299	0.008823	1.280612	0.2003
MBP(-6)	-0.013623	0.008328	-1.635855	0.1019
MB	0.002463	0.003965	0.621093	0.5345
MBA	-0.027957	0.034544	-0.809307	0.4183
MBA(-1)	-0.029344	0.043200	-0.679258	0.4970
MBA(-2)	0.078008	0.039534	1.973179	0.0485
MBA(-3)	-0.051390	0.051007	-1.007494	0.3137
MBA(-4)	0.025501	0.038231	0.667040	0.5047
IM	0.039822	0.020741	1.919953	0.0549
IM(-1)	-0.037286	0.028125	-1.325744	0.1849
IM(-2)	-0.028364	0.026091	-1.08/107	0.2770
IM(-3)	0.004030	0.027718	0.145391	0.8844
IM(-4)	0.029892	0.022175	1.348000	0.1777
IM(-5)	0.000840	0.016880	0.049/90	0.9603
MA(1)	-0.123758	0.247431	-0.500172	0.6170
MA(2)	-0.161986	0.238592	-0.678926	0.4972
MA(3)	-0.082020	0.238112	-0.344457	0.7305
MA(4)	-0.205223	0.176819	-1.160639	0.2458
	Variance Equation	1		
C	2 27E 05	4 17E-05	0 544011	0 5850
RESID(-1)^2	0.349275	0.255040	1 364674	0.3636
RESID(-1) 2 RESID(-2)^2	0 143990	0.510170	0 282240	0.1724
RESID(-2) 2 RESID(-3)^2	-0 019687	0 438799	-0.044865	0.9642
RESID(-4)^2	-0.062875	0 293828	-0 213985	0.8306
GARCH(-1)	0.397631	1.038007	0.383072	0.7017
\ /			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

GARCH(-2)	-0.031519	0.716256	-0.044005	0.9649
R-squared	0.783508	Mean depend	lent var	-7.13E-05
Adjusted R-squared	0.486743	S.D. depende	ent var	0.024211
S.E. of regression	0.017345	Akaike info c	riterion	-5.241400
Sum squared resid	0.026776	Schwarz crite	erion	-3.183116
Log likelihood	685.5884	Hannan-Quir	in criter.	-4.409490
Durbin-Watson stat	2.030846			
Inverted MA Roots	.82	0262i	02+.62i	66

28. Dependent Variable: Sales (GARCH(3) ARCH(4))

Dependent Variable: DS Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/06/12 Time: 21:44 Sample (adjusted): 7/16/2008 8/08/2012 Included observations: 213 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear)

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	4081.506	2843.875	1.435192	0.1512	
DER(-1)	-510.2500	1160.383	-0.439726	0.6601	
DER(-2)	-1274.523	1354.984	-0.940618	0.3469	
DER(-3)	-1063.518	1745.794	-0.609189	0.5424	
DER(-4)	-379.8553	1137.772	-0.333859	0.7385	
DABR(-1)	-1004.268	643.5850	-1.560427	0.1187	
DABR(-2)	-362.0723	658.4140	-0.549916	0.5824	
DABR(-3)	-93.08278	612.6756	-0.151928	0.8792	
DABR(-4)	-763.0907	536.2775	-1.422940	0.1548	
R	-530.8239	53.09634	-9.997373	0.0000	
R(-1)	188.5125	92.47192	2.038592	0.0415	
R(-2)	168.2432	98.30142	1.711504	0.0870	
R(-3)	170.5430	111.8800	1.524339	0.1274	
R(-4)	-100.1918	103.4423	-0.968576	0.3328	
R(-5)	144.8987	93.97639	1.541863	0.1231	
R(-6)	-120.4065	77.67037	-1.550224	0.1211	
R(-/)	53.4/360	29.19824	1.831398	0.0670	
R(-8)	-24.09359	35.73318	-0.6/4264	0.5001	
R(-9)	-31.89299	31.489/5	-1.012805	0.3112	
DS(-1)	-0.208009	0.121801	-1./0//8/	0.08//	
DS(-2)	-0.0/402/	0.099333	-0./45242	0.4561	
DS(-3)	0.06/963	0.105012	0.64/186	0.5175	
DS(-4)	0.023521	0.073869	0.318420	0.7502	
DS(-5)	-0.039837	0.09/96/	-0.406638	0.6843	
DS(-6)	0.021683	0.04166/	0.520386	0.6028	
DS(-7)	-0.004125	0.036436	-0.113207	0.9099	
DS(-8)	-0.064517	0.063144	-1.021/52	0.3069	
DS(-9)	0.050445	0.050548	0.99/950	0.3183	
DS(-10)	-0.003857	0.061854	-0.062353	0.9503	
DS(-11)	-0.028031	0.073494	-0.5/9512	0.7045	
DS(-12) DS(-13)	0.010505	0.071911	2 608200	0.8859	
DS(-13)	-0.203390	0.050925	-3.008200	0.0003	
DIRS	-0.300373	0.004830	-7.813879	0.0000	
DIRS(-1)	0.1/4232	0.024605	4 216004	0.0000	
DIRS(-1)	0.052432	0.024005	1 728378	0.0839	
DIRS(-2)	-0.017223	0.024362	-0 706962	0.4796	
DIRS(-4)	0.001/225	0.020815	0.048300	0.9615	
DIRS(-5)	-0.028247	0.023615	-1 196167	0.2316	
SR POS	-5 283809	5 183808	-1 019291	0.3081	
SR_POS(-1)	3 476661	5 891448	0 590120	0.5551	
SR_POS(-2)	-15.70716	5.541484	-2.834468	0.0046	
SR_POS(-3)	8 728445	7 605357	1 147671	0 2511	
SR_POS(-4)	5.519228	6.786677	0.813245	0.4161	
SR POS(-5)	0.999168	6.257579	0.159673	0.8731	
SR POS(-6)	5.500289	6.739737	0.816098	0.4144	
SR POS(-7)	-8.082002	7.246933	-1.115231	0.2648	
SR POS(-8)	-1.231774	5.592732	-0.220245	0.8257	
SR POS(-9)	0.760196	6.280147	0.121047	0.9037	
SR POS(-10)	-3.134630	5.881376	-0.532976	0.5941	
SR POS(-11)	9.391484	5.599682	1.677146	0.0935	
SR POS(-12)	-7.563209	5.023782	-1.505481	0.1322	
SR NEUT	228,9244	357.3104	0.640688	0.5217	
SR NEUT(-1)	-185.8683	414.5779	-0.448331	0.6539	
SR NEUT(-2)	-540.5725	327.2947	-1.651638	0.0986	
SR NEUT(-3)	546.5067	414.2016	1.319422	0.1870	
SR NEUT(-4)	-439.8709	516.6426	-0.851403	0.3945	
SR_NEUT(-5)	47.79332	484.9232	0.098559	0.9215	

Erasmus universiteit rotterdam ζ.

SR_NEUT(-6)	-121.4489	418.3943	-0.290274	0.7716
SR_NEUT(-7)	-182.4882	479.0115	-0.380968	0.7032
SR_NEUT(-8)	-153.0635	401.6297	-0.381106	0.7031
SR NEUT(-9)	-199.1397	466.0770	-0.427268	0.6692
SR NEUT(-10)	-153.9360	447.6931	-0.343843	0.7310
SR NEUT(-11)	-283.8810	422.6542	-0.671662	0.5018
SR NEUT(-12)	-450.6674	334.5058	-1.347263	0.1779
SR NEG	-729.5991	397.9314	-1.833480	0.0667
SR NEG(-1)	-276.6652	415.5420	-0.665794	0.5055
SR NEG(-2)	224,1483	335.3538	0.668393	0.5039
SR NEG(-3)	-276.6508	361,9420	-0.764351	0.4447
SR_NEG(-4)	-108.7828	364,9020	-0.298115	0.7656
SR_NEG(-5)	163 0228	364 4032	0 447369	0.6546
SR_NEG(-6)	-571 4673	277 3667	-2.060331	0.0394
SR_NEG(-7)	317 0114	309 8548	1 023097	0.3063
SR_NEG(-8)	-519 9775	272 0312	-1 911463	0.0559
WS	7 325542	6 091887	1 202508	0 2292
WS(-1)	-4 9229342	5 124183	-0.960726	0.3367
WS(-1) WS(-2)	0.017053	1 772004	0 102358	0.8475
WS(-2) WS(-3)	2 118114	3 782472	0.550082	0.5755
WS(4)	4 591009	5.762472	0.002522	0.3755
WS(-4)	-4.361096	5.073880	-0.902323	0.5008
ws(-5)	-5.2/0150	3.028023	-0.030304	0.3133
WS(-0)	0.593626	4.18/4/2	0.141/62	0.88/3
WS(-7)	6.408020	5.349092	1.19/964	0.2309
WS(-8)	-2.535058	1.948855	-1.301102	0.1932
WS(-9)	0.4/8194	2.284843	0.209290	0.8342
WS(-10)	1.124/14	1.754893	0.640902	0.5216
PS	-2.961883	1.893335	-1.564374	0.1177
PS(-1)	0.835044	2./36484	0.305152	0.7603
PS(-2)	3.122680	2.385533	1.309007	0.1905
PS(-3)	2.722293	3.230003	0.842815	0.3993
PS(-4)	0.434512	2.626164	0.165455	0.8686
PS(-5)	-3.074738	2.193328	-1.401859	0.1610
NS	-3.441153	2.543911	-1.352702	0.1762
NS(-1)	0.472577	3.108308	0.152037	0.8792
NS(-2)	-0.823243	2.439630	-0.337446	0.7358
NS(-3)	-1.370816	2.214103	-0.619129	0.5358
NS(-4)	2.680145	2.543501	1.053723	0.2920
NS(-5)	2.614054	2.360215	1.107549	0.2681
NS(-6)	-0.056769	2.126144	-0.026700	0.9787
NS(-7)	-2.652610	2.134723	-1.242602	0.2140
MBP	13.96075	99.42393	0.140416	0.8883
MBP(-1)	84.33033	63.44411	1.329206	0.1838
MBP(-2)	-97.48705	61.02734	-1.597432	0.1102
MBP(-3)	-37.45317	96.80131	-0.386908	0.6988
MBP(-4)	-53.07137	83.24624	-0.637523	0.5238
MBP(-5)	75.33819	70.62814	1.066688	0.2861
MBP(-6)	-0.743504	70.24950	-0.010584	0.9916
MB	-31.77142	28.44581	-1.116910	0.2640
MBA	168.2336	204.8827	0.821122	0.4116
MBA(-1)	-119.6272	234.6688	-0.509771	0.6102
MBA(-2)	93.72014	294.5080	0.318226	0.7503
MBA(-3)	187.6829	343.5236	0.546347	0.5848
MBA(-4)	-227.6555	305.8664	-0.744297	0.4567
IM	-89.32440	157.9813	-0.565411	0.5718
IM(-1)	237.0702	169.2372	1.400816	0.1613
IM(-2)	-22.25145	147.8748	-0.150475	0.8804
IM(-3)	-246.3088	151.5226	-1.625559	0.1040
IM(-4)	156.6186	158.9328	0.985440	0.3244
IM(-5)	-2.338293	118.2788	-0.019769	0.9842
MA(1)	-0.117954	0.222352	-0.530482	0.5958
MA(2)	-0.188834	0.225032	-0.839146	0.4014
MA(3)	0.056163	0.164769	0.340861	0.7332
MA(4)	-0.036827	0 190691	-0 193124	0.8469
	0.050027	0.190091	0.199121	0.010)
	Variance Equation	ı		
C	2107 207	(020.072	0.2(5079	0.71.51
	2197.797	0020.073	0.3030/8	0./151
KESID(-1) ²	0.07/329	0.154766	0.499655	0.6173
KESID(-2) ²	-0.081303	0.258102	-0.315003	0.7528
RESID(-3)^2	-0.013338	0.312166	-0.042728	0.9659
RESID(-4)^2	-0.059841	0.352190	-0.169911	0.8651
GARCH(-1)	0.228569	3.251436	0.07/0298	0.9440
GARCH(-2)	0.012981	2.683672	0.004837	0.9961
GARCH(-3)	0.105041	2.538741	0.041375	0.9670
R-squared	0.928612	Mean dependent v	/ar	-1.211268
Adjusted R-squared	0.833691	S.D. dependent v	r	205,7720
S.E. of regression	83,91600	Akaike info criter	ion	12.00277
Sum squared resid	640812.5	Schwarz criterion		14.05426
Log likelihood	-1148.295	Hannan-Ouinn cri	ter.	12.83184
Durbin-Watson stat	1.944225			

29. Outcomes Release Date 1 Model (GARCH(1) ARCH(2))

Dependent Variable: DER Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/06/12 Time: 22:20 Sample (adjusted): 1/09/2009 5/01/2009 Included observations: 113 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.021656	0.367108	-0.058992	0.9530
DER(-1)	-0.903856	0.206267	-4.381963	0.0000
DER(-2)	-0.614425	0.243193	-2.526485	0.0115
DER(-3)	-0.301894	0.225771	-1.337167	0.1812
DER(-4)	-0.217654	0.209063	-1.041093	0.2978
DABR(-1)	-0.263010	0.263003	-1.000025	0.31/3
DABR(-2) DABR(-3)	-0.182142	0.310800	-0.386044	0.3378
DABR(-4)	-0.092578	0.201255	-0 460004	0.6455
DR	0.000901	0.005520	0.163189	0.8704
DR(-1)	0.002097	0.006172	0.339813	0.7340
DR(-2)	-0.001584	0.006229	-0.254270	0.7993
DR(-3)	-0.006697	0.005882	-1.138565	0.2549
DR(-4)	0.005079	0.006785	0.748576	0.4541
D_{25} $D_{25}(1)$	-0.000134	0.000174	-0.880720	0.3732
D2S(-2)	-0.000345	0.000352	-0.980176	0.3270
D2S(-3)	-0.000400	0.007559	-0.052917	0.9578
D2S(-4)	-0.000196	0.000712	-0.274802	0.7835
D2S(-5)	-0.000293	0.000618	-0.474274	0.6353
D2S(-6)	0.000136	0.000313	0.434709	0.6638
SR_NEG	-0.021953	0.088943	-0.246825	0.8050
SR_NEG(-1)	-0.030330	0.082136	-0.369265	0.7119
$SR_NEG(-2)$	0.029434	0.038439	0.303073	0.0145
SR_NEG(-4)	0.055030	0.068186	0.807067	0.4196
SR NEG(-5)	-0.016919	0.068964	-0.245329	0.8062
SR_NEG(-6)	-0.005765	0.051159	-0.112682	0.9103
SR_NEG(-7)	-0.000947	0.066147	-0.014321	0.9886
SR_NEUT (1)	0.010218	0.076090	0.134290	0.8932
SR_NEUT(-1)	-0.1162//	0.065082	-1.770292	0.0767
SR_NEUT(-3)	0.021796	0.073506	0.296519	0.7668
SR NEUT(-4)	0.043298	0.067701	0.639536	0.5225
SR_NEUT(-5)	0.003290	0.056847	0.057881	0.9538
SR_NEUT(-6)	0.025281	0.060096	0.420675	0.6740
SR_NEUT(-7)	-0.013489	0.050737	-0.265871	0.7903
SK_POS SR_POS(1)	-2.90E-05 9.78E-05	0.001/32	-0.016/51	0.9866
SR_POS(-2)	0.002226	0.002058	1 131916	0.2577
SR POS(-3)	1.44E-05	0.002450	0.005857	0.9953
SR_POS(-4)	-0.001553	0.001552	-1.001050	0.3168
SR_POS(-5)	-0.001080	0.002206	-0.489693	0.6244
SR_POS(-6)	0.001002	0.001711	0.5854/1	0.5582
D2WS	0.001237	0.016354	0.212013	0.8321
D2WS(-1)	0.006023	0.017304	0.348079	0.7278
D2WS(-2)	-0.000847	0.018463	-0.045900	0.9634
D2WS(-3)	0.000269	0.013618	0.019759	0.9842
D2WS(-4)	-0.002776	0.011858	-0.234074	0.8149
D2PS D2PS(1)	0.001091	0.002323	0.469694	0.6386
D2PS(-1) D2PS(-2)	-0.002393	0.002383	-1.08/300	0.2708
D2PS(-3)	0.0002505	0.002399	0.277593	0.7813
D2PS(-4)	-0.001193	0.001375	-0.868038	0.3854
D2NS	-0.001602	0.008010	-0.200041	0.8414
D2NS(-1)	-0.003263	0.008682	-0.375880	0.7070
D2NS(-2)	0.005303	0.008409	0.630589	0.5283
D2NS(-3) D2NS(-3)	0.000683	0.007080	0.096433	0.9232
D2MBP	0.003239	0.223098	0.131072	0.8957
D2MBP(-1)	-0.054598	0.331663	-0.164618	0.8692
D2MBP(-2)	-0.244243	0.297549	-0.820850	0.4117
D2MBP(-3)	-0.214138	0.261813	-0.817902	0.4134
D2MBP(-4)	0.081593	0.193876	0.420850	0.6739
D2MB(-1)	-0.002/50	0.025614	-0.10/3/1	0.9145
D2MB(-1)	0.054672	0.035028	1.560813	0.1186
D2MB(-3)	-0.015860	0.036873	-0.430120	0.6671
D2MB(-4)	-0.013783	0.026768	-0.514890	0.6066
D2MBA	-0.844603	0.993649	-0.850002	0.3953
D2MBA(-1) D2MBA(-2)	-1.758667	1.050007	-1.674910	0.0940
D2MBA(-2) D2MBA(-3)	-1.183511	0.799540	-1.480239	0.1388

D2MBA(-4)	-0.808033	0.689615	-1.171715	0.2413
D2IM	-0.027302	0.102292	-0.266907	0.7895
D2IM(-1)	0.034576	0.131398	0.263141	0.7924
D2IM(-2)	-0.057619	0.125086	-0.460637	0.6451
D2IM(-3)	0.123389	0.131180	0.940608	0.3469
D2IM(-4)	-0.073937	0 104865	-0 705064	0 4808

	Variance Equation				
С	8.89E-05	0.000197	0.450574	0.6523	
RESID(-1)^2	0.004507	0.191832	0.023492	0.9813	
RESID(-2)^2	-0.092837	0.134003	-0.692801	0.4884	
GARCH(-1)	0.607845	1.017757	0.597240	0.5503	
R-squared	0.847316	Mean depend	dent var	-9.58E-05	
Adjusted R-squared	0.481799	S.D. depende	ent var	0.034867	
S.E. of regression	0.025100	Akaike info	criterion	-4.305321	
Sum squared resid	0.020790	Schwarz crit	erion	-2.277882	
Log likelihood	327.2506	Hannan-Quir	nn criter.	-3.482607	
Durbin-Watson stat	2.219389				

. .

Dependent Variable: DABR Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/06/12 Time: 22:22 Sample (adjusted): 1/09/2009 5/01/2009 Included observations: 113 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear) Variable Coefficient Std Error

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	0.141325	0.230075	0.614255	0.5390	_
DER(-1)	0.074571	0.140703	0.529986	0.5961	
DER(-2)	0.146830	0.158836	0.924414	0.3553	
DER(-3)	-0.027054	0.169751	-0.159373	0.8734	
DER(-4)	-0.025880	0.125325	-0.206507	0.8364	
DABR(-1)	-0.676561	0.231534	-2.922076	0.0035	
DABR(-2)	-0.199762	0.223279	-0.894675	0.3710	
DABR(-3)	-0.021259	0.149933	-0.141792	0.8872	
DABR(-4)	0.032591	0.179267	0.181801	0.8557	
DR	0.008645	0.004256	2.031444	0.0422	
DR(-1)	0.002686	0.005913	0.454240	0.6497	
DR(-2)	-0.005569	0.005873	-0.948357	0.3429	
DR(-3)	0.003149	0.005636	0.558704	0.5764	
DR(-4)	0.001482	0.003998	0.370623	0.7109	
D2S	6.41E-05	0.001921	0.033362	0.9734	
D2S(-1)	-5.87E-05	0.000756	-0.077609	0.9381	
D2S(-2)	1.28E-05	0.000779	0.016466	0.9869	
D2S(-3)	0.000125	0.000761	0.164512	0.8693	
D2S(-4)	7.05E-05	0.000739	0.095434	0.9240	
D2S(-5)	0.000213	0.000719	0.296184	0.7671	
D2S(-6)	0.000192	0.000150	1.284713	0.1989	
SR_NEG	0.048486	0.044371	1.092736	0.2745	
SR_NEG(-1)	-0.026805	0.057294	-0.467845	0.6399	
SR_NEG(-2)	-0.016224	0.047242	-0.343415	0.7313	
SR_NEG(-3)	0.044043	0.044863	0.981719	0.3262	
SR_NEG(-4)	-0.024466	0.048570	-0.503726	0.6145	
SR_NEG(-5)	-0.090552	0.037192	-2.434729	0.0149	
SR_NEG(-6)	0.033129	0.039581	0.836981	0.4026	
SR_NEG(-7)	0.054090	0.045823	1.180404	0.2378	
SR_NEUT	-0.059138	0.045222	-1.307733	0.1910	
SR_NEUT(-1)	0.004377	0.048667	0.089930	0.9283	
SR_NEUT(-2)	-0.019105	0.051114	-0.373774	0.7086	
SR_NEUT(-3)	0.005367	0.046343	0.115808	0.9078	
SR_NEUT(-4)	-0.009177	0.036923	-0.248546	0.8037	
SR_NEUT(-5)	-0.021433	0.046601	-0.459919	0.6456	
SR_NEUT(-6)	-0.019366	0.048763	-0.397144	0.6913	
SR_NEUT(-7)	0.027918	0.047325	0.589916	0.5552	
SR_POS	0.000349	0.001029	0.338949	0.7346	
SR_POS(-1)	-0.002702	0.001449	-1.864837	0.0622	
SR_POS(-2)	0.001666	0.001950	0.854443	0.3929	
SR_POS(-3)	0.000432	0.001721	0.251138	0.8017	
SR_POS(-4)	-0.000977	0.001334	-0.732881	0.4636	
SR_POS(-5)	0.000171	0.001521	0.112096	0.9107	
SR_POS(-6)	-9.15E-05	0.001358	-0.067413	0.9463	
SR_POS(-7)	-0.000180	0.001009	-0.178050	0.8587	
D2WS	-0.001517	0.011643	-0.130283	0.8963	
D2WS(-1)	-0.019944	0.014311	-1.393592	0.1634	
D2WS(-2)	-0.000780	0.012260	-0.063584	0.9493	
D2WS(-3)	0.001200	0.010661	0.112551	0.9104	
D2WS(-4)	-0.008803	0.007193	-1.223838	0.2210	
D2PS	0.000106	0.001187	0.089118	0.9290	
D2PS(-1)	-0.001045	0.001917	-0.544946	0.5858	
D2PS(-2)	-9.61E-05	0.002513	-0.038238	0.9695	
D2PS(-3)	0.002340	0.001793	1.305302	0.1918	
D2PS(-4)	0.000631	0.001759	0.358840	0.7197	

Erasmus UNIVERSITEIT ROTTERDAM

The Impact of UGC on Firm's Performance for Personal Computer Product

D2NS	0.002022	0.004386	0.460926	0.6449
D2NS(-1)	0.010603	0.006659	1.592189	0.1113
D2NS(-2)	-0.004659	0.005552	-0.839091	0.4014
D2NS(-3)	-0.005570	0.006526	-0.853461	0.3934
D2NS(-4)	0.002115	0.002129	0.993383	0.3205
D2MBP	-0.006504	0.177439	-0.036655	0.9708
D2MBP(-1)	0.146523	0.191734	0.764199	0.4447
D2MBP(-2)	0.016590	0.244664	0.067806	0.9459
D2MBP(-3)	-0.424894	0.205717	-2.065426	0.0389
D2MBP(-4)	-0.463369	0.192474	-2.407432	0.0161
D2MB	-0.002425	0.033474	-0.072447	0.9422
D2MB(-1)	0.020554	0.029867	0.688172	0.4913
D2MB(-2)	-0.007729	0.030513	-0.253305	0.8000
D2MB(-3)	0.016503	0.034127	0.483587	0.6287
D2MB(-4)	0.063769	0.022218	2.870106	0.0041
D2MBA	-0.088775	0.819109	-0.108380	0.9137
D2MBA(-1)	0.187203	1.006518	0.185991	0.8525
D2MBA(-2)	-1.451280	0.969720	-1.496597	0.1345
D2MBA(-3)	-1.996600	0.993384	-2.009897	0.0444
D2MBA(-4)	0.183570	0.417262	0.439939	0.6600
D2IM	-0.011047	0.068190	-0.162000	0.8713
D2IM(-1)	-0.073180	0.079083	-0.925361	0.3548
D2IM(-2)	0.037427	0.130263	0.287319	0.7739
D2IM(-3)	0.136806	0.129641	1.055271	0.2913
D2IM(-4)	0.104605	0.085238	1.227214	0.2197

Variance Equation

С	1.91E-06	1.17E-05	0.162875	0.8706
RESID(-1)^2	0.330673	0.542843	0.609151	0.5424
RESID(-2)^2	0.141663	0.605537	0.233947	0.8150
GARCH(-1)	0.566861	0.406273	1.395271	0.1629
R-squared	0.803328	Mean depend	dent var	6.58E-05
Adjusted R-squared	0.332507	S.D. dependent var		0.027785
S.E. of regression	0.022700	Akaike info criterion		-5.179765
Sum squared resid	0.017005	Schwarz criterion		-3.152326
Log likelihood	376.6567	Hannan-Quir	nn criter.	-4.357051
Durbin-Watson stat	2.070306			

30. Outcome of Release Date 2 Model (GARCH(2) ARCH(1))

Dependent Variable: DER Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/06/12 Time: 22:33 Sample (adjusted): 6/11/2009 9/22/2009 Included observations: 104 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear)

VariableCoefficientStd. Errorz-StatisticProb.C -0.086739 0.063213 -1.372181 0.1700 DER(-1) -0.483862 0.149256 -3.241829 0.0012 DER(-2) -0.682348 0.152390 -4.477632 0.0000 DER(-3) -0.625468 0.209930 -2.979414 0.0029 DER(-4) -0.554173 0.179753 -3.082969 0.0020 DABR(-1) -0.009649 0.116496 -0.082826 0.9340 DABR(-3) 0.020176 0.167449 0.120489 0.90411 DABR(-3) 0.020176 0.167449 0.120489 0.90411 DABR(-4) -0.103854 0.152451 -0.681227 0.4957 DR 0.000307 0.001622 0.189290 0.8499 DR(-1) -0.000650 0.001690 -0.384640 0.7005 DR(-2) -0.001652 0.002409 -0.685559 0.4930 DR(-3) -0.001338 0.001574 -0.849726 0.3955 D2S $7.33E-05$ $2.25E-05$ 3.250998 0.0011 D2S(-2) $6.98E-06$ $3.6E-05$ -1.411744 0.1580 D2S(-1) $-3.36E-05$ -2.625873 0.00866 SR_NEG(-1) 0.039264 0.077395 0.507313 0.6119 SR_NEG(-2) -0.124616 0.047457 -2.625873 0.00866 SR_NEG(-4) 0.037545 0.050858 0.738239 0.4604 SR_NEUT(-1) -0.070793 0.03					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Variable	Coefficient	Std. Error	z-Statistic	Prob.
C-0.086/390.065213-1.3/21810.1/00DER(-1)-0.4838620.149256-3.2418290.0012DER(-2)-0.6823480.152390-4.4776320.0000DER(-3)-0.6254680.209930-2.9794140.0029DER(-4)-0.5541730.179753-3.0829690.0020DABR(-1)-0.0096490.116496-0.0828260.9340DABR(-2)-0.0314260.169890-0.1849770.8532DABR(-3)0.0201760.1674490.1204890.9041DABR(-4)-0.1038540.152451-0.6812270.4957DR0.0003070.0016220.1892900.8499DR(-1)-0.0006500.00209-0.6855590.4930DR(-2)-0.00116520.002409-0.6855590.4930DR(-3)-0.0013380.001574-0.8497260.3955D2S7.33E-052.38E-05-1.4117440.1580D2S(-1)-3.36E-050.2077870.8354SR_NEG0.0010370.0758910.0136680.9891SR_NEG(-1)0.0392640.0773950.5073130.6119SR_NEG(-3)0.0472230.053280.8535060.3934SR_NEG(-4)0.0375450.050880.7382390.4604SR_NEUT(-3)0.0670700.0421891.5897620.1119SR_NEUT(-3)0.0670700.0421891.5897620.1119SR_NEUT(-4)-0.030770.048525-0.6816480.4955SR_POS	0	0.00(720	0.0(2212	1 272101	0.1700
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C DED(1)	-0.086/39	0.063213	-1.3/2181	0.1700
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DER(-1)	-0.483862	0.149256	-3.241829	0.0012
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DER(-2)	-0.682348	0.152390	-4.477632	0.0000
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DER(-3)	-0.625468	0.209930	-2.979414	0.0029
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DER(-4)	-0.554173	0.179753	-3.082969	0.0020
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DABR(-1)	-0.009649	0.116496	-0.082826	0.9340
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DABR(-2)	-0.031426	0.169890	-0.184977	0.8532
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DABR(-3)	0.020176	0.167449	0.120489	0.9041
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DABR(-4)	-0.103854	0.152451	-0.681227	0.4957
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DR	0.000307	0.001622	0.189290	0.8499
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DR(-1)	-0.000650	0.001690	-0.384640	0.7005
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DR(-2)	-0.001652	0.002409	-0.685559	0.4930
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DR(-3)	-0.001338	0.001574	-0.849726	0.3955
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D2S	7.33E-05	2.25E-05	3.259098	0.0011
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D2S(-1)	-3.36E-05	2.38E-05	-1.411744	0.1580
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D2S(-2)	6.98E-06	3.36E-05	0.207787	0.8354
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SR NEG	0.001037	0.075891	0.013668	0.9891
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SR NEG(-1)	0.039264	0.077395	0.507313	0.6119
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SR NEG(-2)	-0.124616	0.047457	-2.625873	0.0086
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SR NEG(-3)	0.047223	0.055328	0.853506	0.3934
SR_NEUT 0.077740 0.039393 1.973467 0.0484 SR_NEUT(-1) -0.070793 0.033677 -2.102152 0.0355 SR_NEUT(-2) 0.041311 0.033781 1.222923 0.2214 SR_NEUT(-3) 0.067070 0.042189 1.589762 0.1119 SR_NEUT(-4) -0.033077 0.048525 -0.681648 0.4955 SR_POS -0.000633 0.000774 -0.818818 0.4129 SR_POS(-1) -0.00266 0.000639 -0.416309 0.6772 SR_POS(-2) -0.01505 0.000774 -1.944794 0.0518	SR NEG(-4)	0.037545	0.050858	0.738239	0.4604
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SR NEUT	0.077740	0.039393	1.973467	0.0484
SR_NEUT(-2) 0.041311 0.033781 1.222923 0.2214 SR_NEUT(-3) 0.067070 0.042189 1.589762 0.1119 SR_NEUT(-4) -0.033077 0.048525 -0.681648 0.4955 SR_POS -0.000633 0.000774 -0.818818 0.4129 SR_POS(-1) -0.00266 0.000639 -0.416309 0.6772 SR_POS(-2) -0.01505 0.000774 -1.944794 0.0518	SR NEUT(-1)	-0.070793	0.033677	-2.102152	0.0355
SR_NEUT(-3) 0.067070 0.042189 1.589762 0.1119 SR_NEUT(-4) -0.033077 0.048525 -0.681648 0.4955 SR_POS -0.000633 0.000774 -0.818818 0.4129 SR_POS(-1) -0.000266 0.000639 -0.416309 0.6772 SR_POS(-2) -0.01505 0.000774 -1.944794 0.0518	SR NEUT(-2)	0.041311	0.033781	1 222923	0.2214
SR_NEUT(-4) -0.033077 0.048525 -0.681648 0.4955 SR_POS -0.000633 0.000774 -0.818818 0.4129 SR_POS(-1) -0.000266 0.000639 -0.416309 0.6772 SR_POS(-2) -0.01505 0.000774 -1.944794 0.0518	SR NEUT(-3)	0.067070	0.042189	1 589762	0 1119
SR_POS -0.000633 0.000774 -0.818818 0.4129 SR_POS(-1) -0.000266 0.000639 -0.416309 0.6772 SR_POS(-2) -0.001505 0.000774 -1.944794 0.0518	SR NEUT(-4)	-0.033077	0.048525	-0.681648	0 4955
SR_POS(-1) -0.000266 0.000639 -0.416309 0.6772 SR_POS(-2) -0.001505 0.000774 -1.944794 0.0518	SR POS	-0.000633	0.000774	-0.818818	0 4129
SR POS(-2) -0.001505 0.000774 -1.944794 0.0518	SR_POS(-1)	-0.000266	0.000639	-0.416309	0.6772
0.001000 0.000//1 1.911/91 0.0010	SR POS(-2)	-0.001505	0.000774	-1.944794	0.0518

- erasmus universiteit rotterdam

SR POS(-3)	0.000333	0.000811	0.410925	0.6811
SR POS(-4)	0.000333	0.000605	0.551093	0.5816
D2WS	0.003649	0.009480	0.384947	0.7003
D2WS(-1)	-0.003060	0.004288	-0.713478	0.4756
D2WS(-2)	-0.002251	0.004492	-0.501060	0.6163
D2WS(-3)	-0.001894	0.005190	-0.364972	0.7151
D2WS(-4)	-0.001415	0.004310	-0.328325	0.7427
D2WS(-5)	-0.001192	0.004291	-0.277784	0.7812
D2WS(-6)	-0.002582	0.003265	-0.790804	0.4291
D2WS(-7)	-0.004809	0.003963	-1.213626	0.2249
D2NS	-0.000840	0.003291	-0.255271	0.7985
D2NS(-1)	0.002015	0.001203	1.674278	0.0941
D2NS(-2)	0.000286	0.001213	0.235431	0.8139
D2NS(-3)	0.000315	0.001287	0.244896	0.8065
D2NS(-4)	0.001046	0.001314	0.795826	0.4261
D2NS(-5)	0.000254	0.001425	0.178452	0.8584
D2NS(-6)	0.001003	0.001099	0.912463	0.3615
D2NS(-7)	0.000356	0.001991	0.178742	0.8581
D2PS	0.000575	0.000893	0.643630	0.5198
D2PS(-1)	0.000113	0.001088	0.104205	0.9170
D2PS(-2)	0.000665	0.001116	0.596038	0.5511
D2PS(-3)	4.04E-05	0.001190	0.033958	0.9729
D2PS(-4)	0.000209	0.001011	0.207276	0.8358
D2PS(-5)	4.6/E-06	0.000959	0.004868	0.9961
D2PS(-6)	0.001915	0.000868	2.205239	0.02/4
D2PS(-/)	0.000875	0.000828	1.030304	0.2908
D_2MBP	0.108085	0.110340	0.92/440	0.333/
$D_2MBP(-1)$ $D_2MPP(-2)$	0.033170	0.082908	0.040849	0.5210
$D_2 MDP(-2)$	-0.032333	0.031298	-0.034233	0.5239
$D_2 MDP(-3)$ $D_2 MBP(-4)$	-0.023403	0.003030	-0.400039	0.0091
$D_2 MDP(-4)$ $D_2 MDP(-5)$	0.059940	0.033657	0./13294	0.4/44
$D_2 MBP(-3)$	0.030551	0.049085	0.702207	0.3111
$D_2MBP(-0)$	0.031043	0.043002	1.055527	0.4020
$D_2 MBP(8)$	0.105380	0.090150	1.033327	0.2912
D2MBr(-8)	0.041090	0.033330	0.480626	0.2207
$D_2 M B_1$	-0.022334	0.040025	-0.489020	0.0244
D2MB(-1)	0.000901	0.033723	0.01/889	0.2219
D2MB(-2) D2MB(-3)	0.043333	0.040707	0.970309	0.5518
D2MB(-4)	-0.006145	0.037203	-0 165184	0.8688
D2MB(-5)	-0.001413	0.027890	-0.050656	0.9596
D2MBA	-0.789556	0.261836	-3 015462	0.0026
D2MBA(1)	0.165398	0.423402	0 390642	0.6961
D2MBA(2)	0.622882	0.484256	1 286267	0 1984
D2MBR(2)	0.105247	0.101250	0.5210(2	0.1201
D/21M		0 /01986	-0.571063	11 011/3
D2IM D2IM(-1)	-0.105247	0.201986	-0.521063	0.6023
D2IM D2IM(-1) D2IM(-2)	-0.103247 0.115577 -0.008468	0.201986 0.177795 0.123817	-0.521063 0.650054 -0.068395	0.6023 0.5157 0.9455
D2IM D2IM(-1) D2IM(-2)	-0.103247 0.115577 -0.008468	0.201986 0.177795 0.123817	-0.521063 0.650054 -0.068395	0.8023 0.5157 0.9455
D2IM D2IM(-1) D2IM(-2)	-0.103247 0.115577 -0.008468 Variance Equation	0.201986 0.177795 0.123817	-0.321063 0.650054 -0.068395	0.5157 0.9455
D2IM D2IM(-1) D2IM(-2)	-0.103247 0.115577 -0.008468 Variance Equation	0.201986 0.177795 0.123817	-0.521063 0.650054 -0.068395	0.5023 0.5157 0.9455
D2IM D2IM(-1) D2IM(-2)	-0.103247 0.115577 -0.008468 Variance Equation	0.201986 0.177795 0.123817	-0.521063 0.650054 -0.068395	0.9455
D2IM D2IM(-1) D2IM(-2)	-0.103247 0.115577 -0.008468 Variance Equation	0.201986 0.177795 0.123817	-0.521063 0.650054 -0.068395	0.8631 0.4000
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 CAPCH(1)	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.568752	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.526072	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778	0.8631 0.4450 0.4450 0.8631
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-1) GARCH(-2)	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114	0.201986 0.177795 0.123817 1 1.01E-06 0.545496 1.536973 1.187207	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481	0.8631 0.9452 0.8631 0.4990 0.7138 0.9462
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2)	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114	0.201986 0.177795 0.123817 1 1.01E-06 0.545496 1.536973 1.187207	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481	0.8631 0.9455 0.8631 0.4990 0.7138 0.9462
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2)	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481	0.8631 0.9455 0.9455 0.8631 0.4990 0.7138 0.9462
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481	0.8631 0.9455 0.8631 0.4990 0.7138 0.9462
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612	0.201986 0.177795 0.123817 1 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v S.D. dependent v	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481	0.8631 0.9455 0.8631 0.4990 0.7138 0.9462 7.85E-05 0.014061
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302	0.201986 0.177795 0.123817 1 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v S.D. dependent v Akaike info criter	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481	0.8631 0.9455 0.8631 0.4990 0.7138 0.9462 7.85E-05 0.014061 -6.581433
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481	0.8631 0.9455 0.9455 0.8631 0.4990 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent va Akaike info criter Schwarz criterion Hannan-Quinn cr	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.366778 0.067481	0.8631 0.9455 0.9455 0.9455 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 var ur ion iter.	0.8631 0.9455 0.9455 0.9455 0.9455 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 var ar ion iter.	0.8631 0.9455 0.9455 0.9455 0.138 0.990 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481	0.8631 0.9455 0.9455 0.9455 0.9455 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ABCH (Margung	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 	0.201986 0.177795 0.123817 1.123817 1.123817 1.125496 1.536973 1.187207 Mean dependent va Akaike info criter Schwarz criterion Hannan-Quinn cr	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481	0.8631 0.9455 0.9455 0.9455 0.04990 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquan Date: 11/06/12 - Time: 22:35	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent va Akaike info criter Schwarz criterion Hannan-Quinn cr	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 var ar ion iter.	0.8631 0.9455 0.9455 0.9455 0.9455 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341
D2IM D2IM(-1) D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquan Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/2	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri	0.201986 0.177795 0.123817 1 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 var ar iter.	0.8631 0.9455 0.9455 0.9455 0.9455 0.9452 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341
D2IM D2IM(-1) D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquat Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/2: Included observations: 104 after a	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri	0.201986 0.177795 0.123817 1 1.01E-06 0.545496 1.536973 1.187207 Mean dependent va Akaike info criter Schwarz criterion Hannan-Quinn cr	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481	0.8631 0.9455 0.9455 0.9455 0.9455 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquan Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/27 Included observations: 104 after a Estimation settings: tol= 0.00010	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481	0.8631 0.9455 0.9455 0.9455 0.9455 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquat Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/22 Included observations: 104 after a Estimation settings: tol= 0.00010,	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent va Akaike info criter Schwarz criterion Hannan-Quinn cr bution	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 //ar ar ion iter.	0.8631 0.9455 0.9455 0.9455 0.9455 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquat Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/22 Included observations: 104 after a Estimation settings: tol= 0.00010,	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent va Akaike info criter Schwarz criterion Hannan-Quinn cr bution meric (linear)	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 //ar ur ion iter.	0.8631 0.9455 0.9455 0.9455 0.9455 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquat Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/22 Included observations: 104 after a Estimation settings: tol= 0.00010, Variable	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur Coefficient	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr bution neric (linear)	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 //ar ur ion iter.	0.8631 0.9455 0.9455 0.9455 0.9455 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341 Prob.
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquan Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/22 Included observations: 104 after a Estimation settings: tol= 0.00010, Variable	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur Coefficient	0.201986 0.177795 0.123817 1 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr bution neric (linear)	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 //ar ur ion iter.	0.8631 0.9455 0.9455 0.9455 0.9455 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341 Prob.
D2IM D2IM(-1) D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquan Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/22 Included observations: 104 after a Estimation settings: tol= 0.00010, Variable	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur Coefficient	0.1986 0.177795 0.123817 1 1.01E-06 0.545496 1.536973 1.187207 Mean dependent va Akaike info criter Schwarz criterion Hannan-Quinn cr bution neric (linear)	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 //ar /	0.8631 0.9455 0.9455 0.9455 0.9455 0.04990 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341 Prob.
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquat Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/22 Included observations: 104 after a Estimation settings: tol= 0.00010, Variable	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur Coefficient -0.062780 0.24272	0.1986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr bution neric (linear) Std. Error	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 /ar ur ion iter. z-Statistic -0.571955 1.00077	0.023 0.5157 0.9455 0.9455 0.9455 0.9455 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341 Prob.
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquat Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/22 Included observations: 104 after a Estimation settings: tol= 0.00010, Variable	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur Coefficient -0.062780 -0.346078 -0.346078	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.387207 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr bution meric (linear) Std. Error	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 //ar ar ion iter. -0.571955 -1.098376	0.8631 0.9455 0.9455 0.9455 0.9455 0.014061 -6.581433 -4.547286 -5.757341 Prob. 0.5674 0.2720 0.14061
D2IM D2IM(-1) D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquan Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/22 Included observations: 104 after a Estimation settings: tol= 0.00010, Variable C DER(-1) DER(-2)	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur Coefficient -0.062780 -0.389846 -0.389846	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr bution meric (linear) Std. Error 0.109764 0.315081 0.270682	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 //ar ar ion iter. -0.571955 -1.098376 -1.440238 1.266441	0.8631 0.9455 0.9455 0.9455 0.04990 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341 Prob. 0.5674 0.2720 0.1498 0.517
D2IM D2IM(-1) D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquan Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/22 Include doservations: 104 after a Estimation settings: tol= 0.00010, Variable C DER(-1) DER(-2) DER(-3) DER(-4)	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur Coefficient -0.062780 -0.346078 -0.389846 -0.431988 -0.431988	0.1986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr bution neric (linear) Std. Error 0.109764 0.315081 0.270682 0.316071	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 //ar ar ion iter. -0.571955 -1.098376 -1.440238 -1.366744 2.566744	0.8631 0.9455 0.9455 0.9455 0.9455 0.9455 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341 Prob. 0.5674 0.2720 0.1498 0.1717 0.9221
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquan Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/27 Included observations: 104 after a Estimation settings: tol= 0.00010, Variable C DER(-1) DER(-2) DER(-4) DER(-4) DADP(-1)	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur Coefficient -0.062780 -0.346078 -0.389846 -0.431988 -0.525698 0.00576	0.1986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr bution meric (linear) Std. Error 0.109764 0.315081 0.270682 0.316071 0.245358	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 //ar ar ion iter. -0.571955 -1.098376 -1.440238 -1.366744 -2.142573 4.7965	0.8631 0.9455 0.9455 0.9455 0.9455 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341 Prob. 0.5674 0.2720 0.1498 0.1717 0.0321 0.9000
D2IM D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquat Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/22 Included observations: 104 after a Estimation settings: tol= 0.00010, Variable C C DER(-1) DER(-2) DER(-3) DER(-4) DABR(-1) DABR(-1)	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur Coefficient -0.062780 -0.346078 -0.389846 -0.431988 -0.525698 -0.939576 0.939576	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.187207 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr bution meric (linear) Std. Error 0.109764 0.315081 0.270682 0.316071 0.245358 0.196300 0.277815	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 /ar ur ion iter. -0.571955 -1.098376 -1.440238 -1.366744 -2.142573 -4.786434 -2.57207	0.8631 0.9455 0.9455 0.9455 0.9455 0.9455 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341 Prob. 0.5674 0.2720 0.1498 0.1717 0.0321 0.0000
D2IM D2IM(-1) D2IM(-2) D2IM(-2) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquat Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/2: Included observations: 104 after a Estimation settings: tol= 0.00010, Variable C DER(-1) DER(-1) DER(-2) DER(-3) DER(-4) DABR(-2) DABR(-2)	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur Coefficient -0.062780 -0.346078 -0.389846 -0.431988 -0.525698 -0.325698 -0.339576 -0.689350 0.572020	0.201986 0.177795 0.123817 1.101E-06 0.545496 1.536973 1.536973 1.187207 Mean dependent v S.D. dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr bution meric (linear) Std. Error 0.109764 0.315081 0.270682 0.316071 0.245358 0.196300 0.267846 0.32015	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 /ar ar ion iter. -0.571955 -1.098376 -1.440238 -1.366744 -2.142573 -4.786434 -2.573686 -2.450107	0.8631 0.9455 0.9455 0.9455 0.9455 0.04990 0.7138 0.9462 7.85E-05 0.014061 -6.581433 -4.547286 -5.757341 0.5674 0.2720 0.1498 0.1717 0.0321 0.0000 0.0101 0.0120
D2IM D2IM(-1) D2IM(-1) D2IM(-2) C RESID(-1)^2 GARCH(-1) GARCH(-2) R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat Dependent Variable: DABR Method: ML - ARCH (Marquat Date: 11/06/12 Time: 22:35 Sample (adjusted): 6/11/2009 9/2 Included observations: 104 after a Estimation settings: tol= 0.00010, Variable C C DER(-1) DER(-2) DER(-3) DER(-4) DABR(-1) DABR(-2) DABR(-3) DABR(-4)	-0.103247 0.115577 -0.008468 Variance Equation 1.74E-07 0.368752 0.563728 0.080114 0.791933 0.234612 0.012302 0.004237 422.2345 1.969582 rdt) - Normal distri 2/2009 djustments derivs=accurate nur Coefficient -0.062780 -0.346078 -0.389846 -0.431988 -0.525698 -0.339576 -0.689350 -0.573030 0 145966	0.201986 0.177795 0.123817 1.01E-06 0.545496 1.536973 1.387207 Mean dependent v Akaike info criter Schwarz criterion Hannan-Quinn cr bution meric (linear) Std. Error 0.109764 0.315081 0.270682 0.316071 0.245358 0.196300 0.267846 0.233015 0.242811	-0.521063 0.650054 -0.068395 0.172379 0.675993 0.366778 0.067481 /ar ir ion iter. -0.571955 -1.098376 -1.440238 -1.366744 -2.142573 -4.786434 -2.573686 -2.459197 0.577444	0.8631 0.9455 0.9455 0.9455 0.9455 0.014061 -6.581433 -4.547286 -5.757341 0.5674 0.2720 0.1498 0.1717 0.0321 0.0000 0.0101 0.0139 0.5502

Erasmus UNIVERSITEIT ROTTERDAM ζ.

DR	0.001304	0.002582	0.505256	0.6134
DR(-1)	0.000626	0.003416	0.183180	0.8547
DR(-2)	-0.000557	0.003604	-0.154569	0.8772
DK(-3) D2S	0.003451 2.46E-05	0.003424 5.74E-05	1.008084	0.3134
D2S(-1)	2.11E-05	5.31E-05	0.396701	0.6916
D2S(-2)	6.81E-05	4.63E-05	1.469054	0.1418
SR_NEG	-0.005792	0.113156	-0.051183	0.9592
SR_NEG(-1)	0.105640	0.145940	0.723855	0.4692
SR_NEG(-2) SR_NEG(-3)	0.103594	0.082294	1.258828	0.2081
SR_NEG(-4)	0.090755	0.060792	1.492876	0.1355
SR_NEUT	-0.062258	0.068385	-0.910405	0.3626
SR_NEUT(-1)	0.078823	0.070163	1.123435	0.2613
SR_NEUT(-2)	-0.085264	0.063323	-1.346487	0.1781
SR_NEUT(-3)	0.058997	0.038277	0.686553	0.4924
SR POS	0.001308	0.000952	1.374103	0.1694
SR_POS(-1)	0.001131	0.001194	0.947011	0.3436
SR_POS(-2)	0.001085	0.001155	0.939533	0.3475
SR_POS(-3)	0.000112	0.001075	0.104643	0.9167
D2WS	-0.002914	0.007674	-0 379778	0.7041
D2WS(-1)	0.000108	0.005872	0.018431	0.9853
D2WS(-2)	0.001357	0.007259	0.186881	0.8518
D2WS(-3)	-0.001809	0.007112	-0.254418	0.7992
D2WS(-4) D2WS(-5)	-0.002561	0.00/556	-0.338982	0.7346
D2WS(-6)	0.004989	0.006069	0.821970	0.4111
D2WS(-7)	0.005078	0.007586	0.669473	0.5032
D2NS	0.000583	0.003177	0.183619	0.8543
D2NS(-1)	7.35E-05	0.002200	0.033421	0.9733
D2NS(-2) D2NS(-3)	0.001005	0.002619	0.3836/1	0.7012
D2NS(-3)	0.002525	0.001983	1.273008	0.2030
D2NS(-5)	0.000193	0.002090	0.092454	0.9263
D2NS(-6)	-0.001520	0.002133	-0.712429	0.4762
D2NS(-7)	-0.001363	0.002820	-0.483401	0.6288
D2PS D2PS(-1)	0.000197	0.001778	0.110010	0.9119
D2PS(-2)	0.001123	0.002252	0.498828	0.6179
D2PS(-3)	0.000968	0.002126	0.455134	0.6490
D2PS(-4)	0.000875	0.001975	0.442727	0.6580
D2PS(-5)	0.000902	0.001701	0.530170	0.5960
D2PS(-0) D2PS(-7)	0.002640	0.002066	1.277645	0.2014
D2MBP	0.092728	0.238904	0.388138	0.6979
D2MBP(-1)	0.054417	0.192285	0.283000	0.7772
D2MBP(-2)	0.119711	0.111750	1.071239	0.2841
D2MBP(-3)	0.032088	0.092698	0.346160	0.7292
D2MBP(-4) D2MBP(-5)	-0.051989	0.082664	-0.628917	0.5294
D2MBP(-6)	-0.045652	0.049701	-0.918531	0.3583
D2MBP(-7)	-0.034717	0.155572	-0.223160	0.8234
D2MBP(-8)	-0.007993	0.066540	-0.120129	0.9044
D_2MB	0.049322	0.084/04	0.582285	0.5604
D2MB(-1) D2MB(-2)	0.015412	0.066519	0.231695	0.8168
D2MB(-3)	0.010099	0.055474	0.182045	0.8555
D2MB(-4)	0.031753	0.056128	0.565727	0.5716
D2MB(-5)	0.021355	0.038187	0.559239	0.5760
D_2MBA $D_2MBA(1)$	0.155995	0.556693	0.280217	0.7793
D2MBA(2)	0.196383	0.593662	0.330800	0.7408
D2IM	-0.284313	0.366119	-0.776558	0.4374
D2IM(-1)	-0.112070	0.346065	-0.323840	0.7461
D2IM(-2)	-0.166348	0.215543	-0.771765	0.4403
	Variance Equation			
C	-3.30E-09	4.62E-08	-0.071394	0.9431
RESID(-1)^2	0.622281	0.429705	1.448158	0.1476
GARCH(-1) GARCH(-2)	0.499323 -0.027070	0.695045 0.483924	0.718404 -0.055938	0.4725 0.9554
K-squared	0.749668	Mean dependent v	ar r	-0.000121
S E, of regression	0.019138	Akaike info criteri	ion	-6.607067
Sum squared resid	0.009970	Schwarz criterion		-4.572920
Log likelihood	423.5675	Hannan-Quinn cri	ter.	-5.782974
Durkin Watson stat	2 275689			

31. Outcomes of Release Date 3 Model (GARCH(3) ARCH(5))

Dependent Variable: DER Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/06/12 Time: 22:44 Sample (adjusted): 2/11/2010 6/01/2010 Included observations: 111 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.031310	0.074859	-0.418254	0.6758
DER(-1)	-0.707120	0.162807	-4.343295	0.0000
DER(-2)	-0.395125	0.194155	-2.035099	0.0418
DER(-3)	-0.526291	0.160857	-3.271793	0.0011
DER(-4)	-0.127231	0.144783	-0.878769	0.3795
DABR(-1)	0.005087	0.052377	0.097128	0.9226
DABR(-2)	-0.090504	0.074220	-1.219397	0.2227
DABR(-3)	-0.08/144	0.084164	-1.035399	0.3005
DABR(-4)	-0.168246	0.063348	-2.655881	0.00/9
D_{25} $D_{25}(1)$	2.10E-05 3.96E-05	2.36E-05	0.882917	0.3773
$D_{25}(-1)$	3.40E-05	3.88E-05	0.876472	0 3808
DR	0.000767	0.001387	0.552775	0.5804
DR(-1)	0.001714	0.001515	1.131457	0.2579
DR(-2)	0.001418	0.001629	0.870699	0.3839
DR(-3)	-0.000865	0.001679	-0.515403	0.6063
DR(-4)	0.000416	0.001540	0.270157	0.7870
SR_POS	0.000696	0.000421	1.651670	0.0986
SR_POS(-1)	-0.000764	0.000482	-1.583961	0.1132
SR_POS(-2)	0.000137	0.000568	0.241991	0.8088
SR_POS(-3)	0.000312	0.000493	0.632214	0.5272
SR_POS(-4)	-0.000708	0.000493	-1.434/63	0.1514
SR_NEUT(-1)	-0.027788	0.024570	-0.906538	0.9575
SR_NEUT(-2)	0.016784	0.030052	0.420126	0.5047
SR_NEUT(-3)	0.057693	0.030773	1.874773	0.0608
SR NEUT(-4)	0.023031	0.038777	0.593925	0.5526
SR NEG	-0.009258	0.031671	-0.292318	0.7700
SR_NEG(-1)	-0.154736	0.027618	-5.602652	0.0000
SR_NEG(-2)	-0.018640	0.031614	-0.589610	0.5555
SR_NEG(-3)	-0.027686	0.032450	-0.853206	0.3935
SR_NEG(-4)	0.080003	0.029571	2.705399	0.0068
D2WS	0.006930	0.004123	1.680696	0.0928
$D_2WS(-1)$	0.009289	0.005050	1.049945	0.0990
D2WS(-2) D2NS	-0.007969	0.005908	-1.077931	0.1818
D2NS(-1)	-0.005745	0.005789	-1.061285	0.2886
D2NS(-2)	-0.001612	0.005971	-0.270049	0.7871
D2NS(-3)	-0.001790	0.002637	-0.678593	0.4974
D2NS(-4)	-0.000427	0.003094	-0.138051	0.8902
D2NS(-5)	0.000622	0.001828	0.340086	0.7338
D2PS	-0.001636	0.004132	-0.395925	0.6922
D2PS(-1)	-0.000509	0.003260	-0.156251	0.8758
D2PS(-2)	-0.001128	0.002431	-0.464175	0.6425
D2MBP (1)	0.01/165	0.026800	0.640481	0.5219
$D_2MBP(-1)$	0.005188	0.028740	1 313680	0.8508
D2MBP(-3)	0.035027	0.02/119	0.683976	0.1390
D2MBP(-4)	0.013191	0.024242	0.544132	0.5864
D2MBP(-5)	0.001873	0.022618	0.082798	0.9340
D2MBP(-6)	0.004671	0.020301	0.230096	0.8180
D2MBP(-7)	0.000506	0.017124	0.029557	0.9764
D2MBP(-8)	-0.016149	0.009920	-1.627918	0.1035
D2MB	-0.032257	0.034979	-0.922182	0.3564
D2MB(-1)	-0.017307	0.031930	-0.542028	0.5878
D2MB(-2)	-0.018161	0.034568	-0.525368	0.5993
$D_2MB(-3)$	-0.00/060	0.033310	-0.211897	0.8322
D2MBA	0.289657	0.361656	0.800920	0.9933
D2MBA(-1)	0.047115	0.412507	0.114215	0.9091
D2MBA(-2)	0.136043	0.471977	0.288240	0.7732
D2MBA(-3)	0.156149	0.383019	0.407679	0.6835
D2MBA(-4)	-0.041839	0.348413	-0.120084	0.9044
D2IM	0.058381	0.148407	0.393388	0.6940
D2IM(-1)	-0.184153	0.149627	-1.230747	0.2184
D2IM(-2)	-0.211001	0.165123	-1.277842	0.2013
D2IM(-3)	-0.087014	0.129986	-0.669406	0.5032
D2IM(-4)	-0.046262	0.088826	-0.520821	0.6025

Variance Equation

С	1.32E-05	1.62E-05	0.817765	0.4135
RESID(-1)^2	0.226088	0.145145	1.557670	0.1193
RESID(-2)^2	-0.027953	0.536387	-0.052114	0.9584
RESID(-3)^2	-0.052212	0.368447	-0.141709	0.8873
RESID(-4)^2	-0.011301	0.176936	-0.063870	0.9491
RESID(-5)^2	0.117698	0.189636	0.620654	0.5348
GARCH(-1)	0.304655	1.639292	0.185846	0.8526
GARCH(-2)	0.005104	1.404425	0.003634	0.9971
GARCH(-3)	-0.045916	0.546118	-0.084077	0.9330
R-squared	0.800948	Mean depend	dent var	-0.000132
Adjusted R-squared	0.490798	S.D. depende	ent var	0.016385
S.E. of regression	0.011692	Akaike info	criterion	-6.186073
Sum squared resid	0.005879	Schwarz crit	erion	-4.306489
Log likelihood	420.3271	Hannan-Quii	nn criter.	-5.423582
Durbin-Watson stat	1.852960			

Dependent Variable: DABR Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/07/12 Time: 21:42 Sample (adjusted): 2/11/2010 6/01/2010 Included observations: 111 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Variable	Coefficient	Std. Error	z-Statistic	Prob.
DER(-1) -0.354248 0.615019 -0.75996 0.5646 DER(-2) -0.02144 0.812077 -0.026037 0.9792 DER(-4) -0.474666 0.560598 -0.267201 0.7893 DABR(-1) -0.959157 0.280756 -3.415850 0.00013 DABR(-3) -1.631690 0.320797 -3.216018 0.0013 DABR(-4) -0.80321 0.261161 -1.45626 0.0143 DABR(-4) -0.80321 0.261161 -1.45626 0.0143 D2S(-1) 8.81E-05 0.000102 0.860824 0.3359 DR(-1) 0.01081 0.006411 1.572517 0.1188 DR(-2) 0.011463 0.005762 1.989319 0.04467 DR(-3) 0.008522 0.00660 0.599172 0.5760 DR(-4) 0.00170 0.002387 -0.368851 0.7122 DR(-4) 0.001707 0.002180 -0.48797 0.6250 DR(-4) 0.001766 0.254413 0.79992 <t< td=""><td>С</td><td>0.123869</td><td>0.233588</td><td>0.530289</td><td>0.5959</td></t<>	С	0.123869	0.233588	0.530289	0.5959
DER(-2) -0.021144 0.812077 -0.026037 0.7992 DER(-3) -0.161854 0.667759 -0.267201 0.7893 DER(-4) -0.474686 0.560758 -0.846750 0.3971 DABR(-1) -0.95177 0.280796 -3.415850 0.00016 DABR(-2) -1.031690 0.320797 -3.216018 0.0013 DABR(-4) -0.380321 0.261161 -1.456269 0.1453 D2S(-1) 2.816-45 0.000102 0.860824 0.3893 D2S(-1) 2.91E-65 0.000110 0.288230 0.7732 DR 0.005649 0.005762 1.989319 0.0467 DR(-2) 0.01463 0.006782 1.989319 0.0467 DR(-3) 0.008822 0.00708 0.559172 0.5760 DR(-4) 0.002522 0.006738 0.774943 0.4384 SR_POS(-1) 0.001860 0.0559172 0.5760 DR(-4) 0.002387 -0.368851 0.7122 DR(-1) <t< td=""><td>DER(-1)</td><td>-0.354248</td><td>0.615019</td><td>-0.575996</td><td>0.5646</td></t<>	DER(-1)	-0.354248	0.615019	-0.575996	0.5646
DER(-3) -0.161854 0.605739 -0.267201 0.7893 DABR(-1) -0.959157 0.280796 -3.415850 0.0006 DABR(-3) -1.031690 0.320797 -3.216018 0.0013 DABR(-3) -0.661695 0.354178 -1.868256 0.0617 DABR(-4) -0.380321 0.261161 -1.456269 0.1453 D2S 7.20E-05 0.000102 0.86824 0.3893 D2S(-2) 2.91E-05 0.000101 0.288230 0.7732 DR 0.005469 0.005762 1.989319 0.0467 DR(-1) 0.010681 0.006738 0.774943 0.4384 DR(-3) 0.003222 0.006738 0.774943 0.4384 SR_POS(-1) 0.00170 0.002387 -0.368851 0.7122 SR_POS(-4) 0.000708 0.02130 -0.488797 0.6250 SR_POS(-4) 0.000768 0.254413 0.7992 SR_POS(-4) 0.002696 0.539172 0.5405 SR_POS(-4) 0.000352	DER(-2)	-0.021144	0.812077	-0.026037	0.9792
DER(-4) -0.474686 0.560598 -0.84750 0.371 DABR(-1) -0.95157 0.280796 -3.415850 0.0006 DABR(-2) -1.031690 0.320797 -3.216018 0.0013 DABR(-4) -0.800321 0.261161 -1.465269 0.1453 D2S 7.20E-05 0.000102 0.860824 0.3893 D2S(-1) 8.81E-05 0.000110 0.288230 0.7732 DR 0.005469 0.005762 1.989319 0.0467 DR(-2) 0.011463 0.005762 1.989319 0.0467 DR(-3) 0.008322 0.007600 1.095099 0.2735 DR(-4) 0.002522 0.006738 0.77343 0.4384 SR_POS(-1) 0.001070 0.002596 0.559172 0.5760 SR_POS(-1) 0.001070 0.002596 0.559172 0.5760 SR_POS(-1) 0.001070 0.0254413 0.7992 SR_POS(-1) 0.01266 0.153774 0.4326 SR_POS(-1) 0.001266	DER(-3)	-0.161854	0.605739	-0.267201	0.7893
DABR(-1) -0.959157 0.280796 -3.415850 0.0006 DABR(-2) -1.016690 0.320797 -3.216018 0.0013 DABR(-3) -0.661695 0.354178 -1.868256 0.00617 DABR(-4) -0.380321 0.261161 -1.456269 0.4533 D2S(-1) 8.81E-05 0.000108 0.668638 0.3537 D2S(-2) 2.91E-05 0.000101 0.288230 0.7732 DR 0.005469 0.005924 0.923150 0.3559 DR(-1) 0.01081 0.006411 1.572517 0.1158 DR(-2) 0.011463 0.007502 1.989319 0.0467 DR(-3) 0.002322 0.006738 0.774943 0.7122 DR(-4) 0.000507 0.002366 0.559172 0.5760 SR_POS(-2) -0.01070 0.02266 0.559172 0.5760 SR_NEUT 0.032046 0.132374 0.246924 0.8905 SR_NEUT(-1) -0.12860 0.155788 -0.082549 0.9342	DER(-4)	-0.474686	0.560598	-0.846750	0.3971
DABR(-2) -1.031690 0.220797 -3.216018 0.0013 DABR(-4) -0.380321 0.251161 -1.456226 0.0617 DABR(-4) -0.380321 0.261161 -1.456226 0.0453 D2S 7.20E-05 0.000102 0.860824 0.3893 D2S(-2) 2.91E-05 0.000101 0.288230 0.3732 DR 0.005469 0.005762 1.98319 0.0467 DR(-2) 0.011463 0.005762 1.98319 0.0467 DR(-3) 0.008322 0.006700 1.095009 0.2735 DR(-4) 0.002522 0.006738 0.734943 0.4384 SR POS -0.001070 0.002596 0.559172 0.5760 SR POS(-1) 0.00157 0.002596 0.559172 0.5760 SR POS(-3) 0.000454 0.001786 0.25413 0.71922 SR POS(-3) 0.000454 0.01786 0.25413 0.7992 SR POS(-3) 0.002460 0.155788 -0.042622 0.8065 <	DABR(-1)	-0.959157	0.280796	-3.415850	0.0006
DABR(-3) -0.661695 0.354178 -1.868256 0.0617 DABR(-4) -0.33021 0.261161 -1.455269 0.1453 D2S 7.20E-05 0.000108 0.668638 0.5037 D2S(-1) 8.81E-05 0.000101 0.288230 0.7732 DR 0.005469 0.005924 0.923150 0.3559 DR(-1) 0.01081 0.006411 1.572517 0.1158 DR(-2) 0.011463 0.007502 1.993919 0.0467 DR(-3) 0.008322 0.007538 0.774943 0.7122 SR POS -0.000880 0.002387 -0.368451 0.7122 SR POS(-2) -0.001070 0.002596 0.559172 0.5760 SR POS(-3) 0.000454 0.001786 0.254413 0.7992 SR POS(-3) 0.002806 0.153784 -0.4819345 0.4125 SR NEUT(-1) -0.128845 0.157284 -0.819345 0.4126 SR NEUT(-2) -0.012860 0.153784 -0.422082 0.808	DABR(-2)	-1.031690	0.320797	-3.216018	0.0013
DABR(-4) -0.380321 0.261161 -1.456269 0.1453 D2S 7.20E-05 0.000102 0.860824 0.3893 D2S(-2) 2.91E-05 0.0001012 0.860824 0.3893 D2S(-2) 2.91E-05 0.000101 0.288230 0.7732 DR 0.005469 0.005762 1.989319 0.0467 DR(-2) 0.011463 0.005762 1.989319 0.0467 DR(-3) 0.008322 0.006738 0.774943 0.4384 SR_POS(-1) 0.001507 0.002696 0.59172 0.5760 SR_POS(-2) -0.001070 0.002190 -0.488797 0.6250 SR_POS(-4) -0.000882 0.001384 0.046924 0.8050 SR_NEUT(-1) -0.128455 0.114329 0.246924 0.8050 SR_NEUT(-1) -0.128460 0.157578 -0.082549 0.9342 SR_NEUT(-1) -0.012860 0.153748 -0.042620 9.649 SR_NEUT(-1) -0.128460 0.153748 -0.044062	DABR(-3)	-0.661695	0.354178	-1.868256	0.0617
D2S 7.20E-05 0.000108 0.668638 0.5037 D2S(-1) 8.81E-05 0.000101 0.288230 0.7732 DR 0.005469 0.00592 0.923150 0.3559 DR(-1) 0.010081 0.006411 1.572517 0.1158 DR(-2) 0.011463 0.005762 1.983319 0.0467 DR(-3) 0.008322 0.007600 1.095009 0.2735 DR(-4) 0.005222 0.006738 0.774943 0.4384 SR_POS(-2) -0.001070 0.002896 0.559172 0.5760 SR_POS(-2) -0.001070 0.002896 0.254413 0.7992 SR_POS(-4) -0.000382 0.001900 -0.21236 0.8405 SR_NEUT 0.028031 0.114329 0.246924 0.8950 SR_NEUT(-1) -0.128640 0.157378 -0.028249 0.9342 SR_NEUT(-2) -0.012860 0.157378 -0.024924 0.8967 SR_NEG(-1) 0.066666 0.149667 0.444720 0.6547 <td>DABR(-4)</td> <td>-0.380321</td> <td>0.261161</td> <td>-1.456269</td> <td>0.1453</td>	DABR(-4)	-0.380321	0.261161	-1.456269	0.1453
D2S(-1) 8 × 1E-45 0.000102 0.800×24 0.3893 D2S(-2) 2.91E-05 0.000101 0.288230 0.7732 DR 0.005469 0.005924 0.923150 0.3559 DR(-1) 0.010081 0.006411 1.572517 0.1158 DR(-2) 0.011463 0.005762 1.989319 0.0467 DR(-4) 0.00522 0.006788 0.774943 0.4384 SR_POS(-1) 0.001507 0.002596 0.559172 0.5760 SR_POS(-1) 0.001670 0.002196 -0.488797 0.6250 SR_POS(-3) 0.000454 0.01786 0.2542413 0.7992 SR_POS(-3) 0.000454 0.01786 0.245924 0.8050 SR_NEUT(-1) -0.128455 0.157254 -0.819345 0.4126 SR_NEUT(-1) -0.128454 0.153274 0.240924 0.8067 SR_NEUT(-1) -0.012860 0.153758 -0.082549 0.9342 SR_NEG(-1) 0.006666 0.149067 0.447220 <t< td=""><td>D2S</td><td>7.20E-05</td><td>0.000108</td><td>0.668638</td><td>0.5037</td></t<>	D2S	7.20E-05	0.000108	0.668638	0.5037
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D2S(-1)	8.81E-05	0.000102	0.860824	0.3893
DR 0.003469 0.003924 0.923150 0.3539 DR(-1) 0.010081 0.006411 1.572517 0.1158 DR(-2) 0.011463 0.005762 1.989319 0.0467 DR(-3) 0.008322 0.007600 1.095009 0.2735 DR(-4) 0.005222 0.006738 0.714943 0.4384 SR_POS(-1) 0.001507 0.00266 0.559172 0.5760 SR_POS(-3) 0.000454 0.001786 0.254413 0.7992 SR_POS(-3) 0.000454 0.01786 0.254413 0.7992 SR_NEUT 0.02880 0.01900 -0.201236 0.8405 SR_NEUT(-1) -0.128640 0.157254 -0.819445 0.4126 SR_NEUT(-4) -0.002660 0.15978 -0.042082 0.8087 SR_NEG(-1) -0.012860 0.132374 0.242082 0.8087 SR_NEG(-1) -0.064612 0.145512 -0.044062 0.9649 SR_NEG(-1) -0.066666 0.149967 0.447220	D2S(-2)	2.91E-05	0.000101	0.288230	0.7732
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DR DR(1)	0.005469	0.005924	0.923150	0.3559
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DR(-1)	0.010081	0.000411	1.3/231/	0.1136
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DR(-2)	0.011403	0.003762	1.969319	0.0407
$\begin{array}{llllllllllllllllllllllllllllllllllll$	DR(-4)	0.003322	0.007000	0 774943	0.4384
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SR POS	-0.000880	0.002387	-0.368851	0.7122
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SR_POS(-1)	0.001507	0.002696	0.559172	0.5760
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SR POS(-2)	-0.001070	0.002190	-0.488797	0.6250
SR_POS(-4) -0.000382 0.001900 -0.201236 0.8405 SR_NEUT 0.028231 0.114329 0.246924 0.8050 SR_NEUT(-1) -0.12884 0.157254 -0.819345 0.4126 SR_NEUT(-2) -0.012860 0.155788 -0.082549 0.9342 SR_NEUT(-3) 0.032046 0.132374 0.24082 0.8087 SR_NEUT(-4) -0.006412 0.145512 -0.044062 0.9649 SR_NEG(-1) 0.066666 0.149067 0.447220 0.6547 SR_NEG(-2) -0.040742 0.138434 -0.294307 0.7685 SR_NEG(-4) -0.043681 0.143976 -0.33394 0.7616 D2WS 0.003911 0.020470 0.191087 0.8485 D2WS(-1) 0.001444 0.017208 0.083930 0.9331 D2WS(-2) -0.007680 0.015956 -0.481304 0.6303 D2NS(-1) -0.003638 0.023654 0.256911 0.7972 D2NS(-1) -0.0006078 0.013805 -0.05	SR POS(-3)	0.000454	0.001786	0.254413	0.7992
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SR POS(-4)	-0.000382	0.001900	-0.201236	0.8405
SR_NEUT(-1) -0.128845 0.157254 -0.819345 0.4126 SR_NEUT(-2) -0.012860 0.155788 -0.082549 0.9342 SR_NEUT(-3) 0.032046 0.132374 0.242082 0.8087 SR_NEUT(-4) -0.006412 0.145512 -0.044062 0.9649 SR_NEG(-1) 0.066666 0.149067 0.447220 0.6547 SR_NEG(-1) 0.066666 0.149067 0.447220 0.6547 SR_NEG(-1) 0.0040742 0.138434 -0.294307 0.7685 SR_NEG(-4) -0.043681 0.143976 -0.303394 0.7616 D2WS 0.003911 0.020470 0.191087 0.8485 D2WS(-2) -0.007680 0.015956 -0.481304 0.6303 D2WS(-2) -0.0006078 0.023644 0.256941 0.7972 D2NS(-1) -0.003137 0.010734 0.292290 0.7701 D2NS(-5) 0.000813 0.007857 0.103431 0.9176 D2NS(-5) 0.0000745 0.013805 -0	SR NEUT	0.028231	0.114329	0.246924	0.8050
SR_NEUT(-2) -0.012860 0.155788 -0.082549 0.9342 SR_NEUT(-3) 0.032046 0.132374 0.242082 0.8087 SR_NEUT(-4) -0.006412 0.145512 -0.044062 0.9649 SR_NEG(-1) 0.066666 0.149067 0.47720 0.6547 SR_NEG(-2) -0.040742 0.138434 -0.294307 0.7685 SR_NEG(-3) -0.038537 0.152184 -0.253227 0.8001 SR_NEG(-4) -0.043681 0.143976 -0.303394 0.7616 D2WS 0.003110 0.020470 0.191087 0.8485 D2WS(-1) 0.001444 0.017208 0.083930 0.9331 D2WS(-2) -0.007680 0.015956 -0.481304 0.6303 D2NS(-1) -0.003638 0.023644 -0.178791 0.8581 D2NS(-2) 0.006078 0.023654 0.256941 0.7972 D2NS(-3) 0.001317 0.007455 0.008456 -0.562670 0.5737 D2NS(-5) 0.000813 0.007857 0.103431 0.9176 D2PS(-1) 0.002567 <t< td=""><td>SR_NEUT(-1)</td><td>-0.128845</td><td>0.157254</td><td>-0.819345</td><td>0.4126</td></t<>	SR_NEUT(-1)	-0.128845	0.157254	-0.819345	0.4126
SR_NEUT(-3) 0.032046 0.132374 0.242082 0.8087 SR_NEUT(-4) -0.006412 0.145512 -0.044062 0.9649 SR_NEG 0.071197 0.124472 0.571991 0.5673 SR_NEG(-1) 0.066666 0.149067 0.447220 0.6547 SR_NEG(-2) -0.040742 0.138434 -0.253227 0.8001 SR_NEG(-3) -0.043681 0.143976 -0.303394 0.7616 D2WS 0.003911 0.020470 0.191087 0.8485 D2WS(-1) 0.014444 0.017208 0.083930 0.9331 D2WS(-2) -0.007680 0.015956 -0.481304 0.6303 D2NS(-1) -0.003638 0.02344 -0.178791 0.8581 D2NS(-2) 0.006078 0.023654 0.256941 0.7972 D2NS(-4) -0.007455 0.008456 -0.562670 0.5375 D2NS(-4) -0.002109 0.008917 -0.03394 0.9176 D2PS -0.002109 0.008917 -0.236544	SR_NEUT(-2)	-0.012860	0.155788	-0.082549	0.9342
SR_NEUT(-4) -0.006412 0.145512 -0.044062 0.9649 SR_NEG 0.071197 0.124472 0.571991 0.5673 SR_NEG(-1) 0.066666 0.149067 0.447220 0.6547 SR_NEG(-2) -0.040742 0.138434 -0.294307 0.7685 SR_NEG(-3) -0.038537 0.152184 -0.253227 0.8001 D2WS 0.003911 0.020470 0.191087 0.8485 D2WS(-1) 0.001444 0.017208 0.083930 0.93311 D2WS(-2) -0.007680 0.015956 -0.481304 0.6303 D2NS(-1) -0.003638 0.02343 -0.086971 0.9307 D2NS(-2) 0.006078 0.023654 0.256941 0.7972 D2NS(-3) 0.003137 0.01734 0.292290 0.7701 D2NS(-3) 0.000813 0.007857 0.15834 0.81331 0.9176 D2NS(-5) 0.000813 0.007675 0.58519 0.5582 D2PS(-1) 0.002567 0.13805	SR_NEUT(-3)	0.032046	0.132374	0.242082	0.8087
SR_NEG 0.071197 0.124472 0.571991 0.5673 SR_NEG(-1) 0.066666 0.149067 0.447220 0.6547 SR_NEG(-2) -0.040742 0.138434 -0.294307 0.7685 SR_NEG(-3) -0.038537 0.152184 -0.253227 0.8001 SR_NEG(-4) -0.043681 0.143976 -0.303394 0.7616 D2WS 0.003911 0.020470 0.191087 0.8485 D2WS(-1) 0.01444 0.01708 0.083930 0.9331 D2WS(-2) -0.007680 0.015956 -0.481304 0.6303 D2NS(-1) -0.003638 0.02343 -0.178791 0.8581 D2NS(-2) 0.006078 0.023654 0.256941 0.7972 D2NS(-3) 0.003137 0.010734 0.292290 0.7701 D2NS(-5) 0.000813 0.007857 0.103431 0.9176 D2NS(-5) 0.000745 0.013805 -0.053955 0.9570 D2PS(-1) 0.002567 0.01805 -0.053954 <t< td=""><td>SR_NEUT(-4)</td><td>-0.006412</td><td>0.145512</td><td>-0.044062</td><td>0.9649</td></t<>	SR_NEUT(-4)	-0.006412	0.145512	-0.044062	0.9649
SR_NEG(-1) 0.066666 0.149067 0.447220 0.6547 SR_NEG(-2) -0.040742 0.138434 -0.294307 0.7685 SR_NEG(-3) -0.038537 0.152184 -0.253227 0.8001 SR_NEG(-4) -0.043681 0.143976 -0.303394 0.7616 D2WS 0.003911 0.020470 0.191087 0.8485 D2WS(-1) 0.001444 0.017208 0.089300 0.9331 D2WS(-2) -0.007680 0.015956 -0.481304 0.6303 D2NS(-1) -0.003638 0.020348 -0.178791 0.8581 D2NS(-2) 0.006078 0.023654 0.256641 0.7972 D2NS(-4) -0.004758 0.008456 -0.562670 0.5737 D2NS(-5) 0.000813 0.007857 0.103431 0.9176 D2PS(-1) 0.002567 0.012606 0.23657 0.8386 D2PS(-1) 0.002772 0.093194 0.297474 0.7661 D2MBP 0.044953 0.07675 0.58519 <t< td=""><td>SR_NEG</td><td>0.071197</td><td>0.124472</td><td>0.571991</td><td>0.5673</td></t<>	SR_NEG	0.071197	0.124472	0.571991	0.5673
SR_NEG(-2) -0.040742 0.138434 -0.294307 0.7685 SR_NEG(-3) -0.038537 0.152184 -0.235227 0.8001 SR_NEG(-4) -0.043681 0.143976 -0.0303394 0.7616 D2WS 0.003911 0.020470 0.191087 0.8485 D2WS(-1) 0.001444 0.017208 0.083930 0.9331 D2WS(-2) -0.007680 0.015956 -0.481304 0.6303 D2NS -0.002021 0.023643 -0.086971 0.9307 D2NS(-1) -0.003638 0.023654 0.256941 0.7972 D2NS(-3) 0.006078 0.023654 0.256941 0.7972 D2NS(-4) -0.004758 0.008456 -0.562670 0.5737 D2NS(-5) 0.000813 0.007857 0.103431 0.9176 D2PS -0.000745 0.013805 -0.053955 0.9570 D2PS(-1) 0.002567 0.8386 0.203657 0.8386 D2PS(-2) -0.002109 0.008917 -0.236544 0.8130 D2MBP(-1) 0.027723 0.093194 0.297474	SR_NEG(-1)	0.066666	0.149067	0.447220	0.6547
SR_NEG(-3) -0.038537 0.152184 -0.25227 0.8001 SR_NEG(-4) -0.043681 0.143976 -0.303394 0.7616 D2WS 0.003911 0.020470 0.191087 0.8485 D2WS(-1) 0.001444 0.017208 0.083930 0.9331 D2WS(-2) -0.007680 0.015956 -0.481304 0.6303 D2NS -0.002021 0.023243 -0.086971 0.9307 D2NS(-1) -0.006078 0.023654 0.256941 0.7972 D2NS(-2) 0.006078 0.023654 0.256941 0.7972 D2NS(-3) 0.003137 0.010734 0.292290 0.7701 D2NS(-4) -0.004758 0.008456 -0.562670 0.5737 D2NS(-5) 0.000813 0.007857 0.103431 0.9176 0.2PS(-1) 0.002567 0.012606 0.203657 0.8386 D2PS(-2) -0.002109 0.008917 -0.236544 0.8130 D2MBP 0.044953 0.076775 0.585519 0.5582 D2MBP(-1) 0.022176 0.074873 -0.255197 0.79	SR_NEG(-2)	-0.040742	0.138434	-0.294307	0.7685
SR_NEG(-4) -0.043681 0.143976 -0.303394 0.7616 D2WS 0.003911 0.020470 0.191087 0.8485 D2WS(-1) 0.001444 0.017208 0.083930 0.9331 D2WS(-2) -0.007680 0.015956 -0.481304 0.6303 D2NS -0.002021 0.023243 -0.086971 0.9307 D2NS(-1) -0.003638 0.020364 -0.178791 0.8581 D2NS(-2) 0.006078 0.023654 0.256941 0.7972 D2NS(-3) 0.003137 0.010734 0.292290 0.7701 D2NS(-4) -0.004758 0.008456 -0.562670 0.5737 D2NS(-5) 0.000745 0.013805 -0.053955 0.9570 D2PS -0.002109 0.08917 -0.236544 0.8130 D2MBP 0.044953 0.076775 0.585519 0.5582 D2MBP(-1) 0.027723 0.093194 0.297474 0.7661 D2MBP(-2) 0.074493 0.111044 0.670839 0.5023 D2MBP(-3) -0.024104 0.094451 -0.255197 <	SR_NEG(-3)	-0.038537	0.152184	-0.253227	0.8001
D2WS 0.003911 0.020470 0.191087 0.8485 D2WS(-1) 0.001444 0.017208 0.083930 0.9331 D2WS(-2) -0.007680 0.015956 -0.481304 0.6303 D2NS -0.002021 0.023243 -0.086971 0.9307 D2NS(-1) -0.003638 0.020348 -0.178791 0.8581 D2NS(-2) 0.006078 0.023654 0.256941 0.7972 D2NS(-3) 0.003137 0.010734 0.292290 0.7701 D2NS(-4) -0.004758 0.008456 -0.562670 0.5737 D2NS(-4) -0.000745 0.013805 -0.033955 0.9570 D2PS -0.000745 0.013805 -0.03657 0.8386 D2PS(-2) -0.002109 0.08917 -0.236544 0.8130 D2MBP 0.044953 0.076775 0.585519 0.5582 D2MBP(-1) 0.027723 0.093194 0.297474 0.7661 D2MBP(-3) -0.024104 0.094451 -0.255197 0.7986<	SK_NEG(-4)	-0.043681	0.1439/6	-0.303394	0.7616
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D2W8	0.003911	0.0204/0	0.19108/	0.8485
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_2 WS(-1)$	0.001444	0.01/208	0.085950	0.9331
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D2WS(-2)	-0.007080	0.013930	0.086071	0.0303
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D2NS(-1)	-0.003638	0.020348	-0.178791	0.8581
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D2NS(-2)	0.006078	0.023654	0 256941	0.7972
D2NS(-4) -0.004758 0.008456 -0.562670 0.5737 D2NS(-4) -0.004758 0.008456 -0.562670 0.5737 D2NS(-5) 0.000813 0.007857 0.103431 0.9176 D2PS -0.000745 0.013805 -0.033955 0.9570 D2PS(-1) 0.002567 0.012606 0.203657 0.8386 D2PS(-2) -0.002109 0.008917 -0.236544 0.8130 D2MBP 0.044953 0.07675 0.585519 0.5582 D2MBP(-1) 0.027723 0.093194 0.297474 0.7661 D2MBP(-3) -0.024104 0.094451 -0.255197 0.7986 D2MBP(-4) 0.020156 0.077512 0.260033 0.7948 D2MBP(-5) -0.018971 0.074873 -0.253370 0.8000 D2MBP(-6) -0.024552 0.080020 -0.306827 0.7590 D2MBP(-7) -0.017008 0.084136 -0.202150 0.8398 D2MBP(-8) -0.024551 0.080241 -0.268331	D2NS(-3)	0.003137	0.010734	0.292290	0.7701
$\begin{array}{llllllllllllllllllllllllllllllllllll$	D2NS(-4)	-0.004758	0.008456	-0.562670	0.5737
D2PS -0.000745 0.013805 -0.053955 0.9570 D2PS(-1) 0.002567 0.012606 0.203657 0.8386 D2PS(-2) -0.002109 0.008917 -0.236544 0.8130 D2MBP 0.044953 0.07675 0.585519 0.5582 D2MBP(-1) 0.027723 0.093194 0.297474 0.7661 D2MBP(-2) 0.074493 0.111044 0.670839 0.5023 D2MBP(-3) -0.024104 0.094451 -0.255197 0.7986 D2MBP(-4) 0.020156 0.077512 0.260033 0.7948 D2MBP(-5) -0.018971 0.074873 -0.253370 0.8000 D2MBP(-6) -0.024552 0.80020 -0.306827 0.7590 D2MBP(-7) -0.017008 0.84136 -0.202150 0.8398 D2MBP(-8) -0.024551 0.80020 -0.306827 0.7590 D2MBP(-8) -0.024552 0.80020 -0.306827 0.7590 D2MBP(-8) -0.024551 0.80828 -0.654823	D2NS(-5)	0.000813	0.007857	0.103431	0.9176
D2PS(-1) 0.002567 0.012606 0.203657 0.8386 D2PS(-2) -0.002109 0.008917 -0.236544 0.8130 D2MBP 0.044953 0.076775 0.585519 0.5582 D2MBP(-1) 0.027723 0.093194 0.297474 0.7661 D2MBP(-2) 0.074493 0.111044 0.670839 0.5023 D2MBP(-3) -0.024104 0.094451 -0.255197 0.7986 D2MBP(-4) 0.020156 0.077512 0.260033 0.7948 D2MBP(-5) -0.018971 0.074873 -0.253370 0.8000 D2MBP(-6) -0.024552 0.080020 -0.306827 0.7590 D2MBP(-7) -0.017008 0.084136 -0.202150 0.8398 D2MBP(-8) -0.024551 0.080241 -0.268331 0.7884 D2MB -0.044564 0.098598 -0.654823 0.5126 D2MB(-1) -0.109448 0.099835 -1.096288 0.2730 D2MB(-2) -0.094659 0.111772 -0.846893	D2PS	-0.000745	0.013805	-0.053955	0.9570
D2PS(-2) -0.002109 0.008917 -0.236544 0.8130 D2MBP 0.044953 0.076775 0.585519 0.5582 D2MBP(-1) 0.027723 0.093194 0.297474 0.7661 D2MBP(-2) 0.074493 0.111044 0.670839 0.5023 D2MBP(-3) -0.024104 0.094451 -0.255197 0.7986 D2MBP(-4) 0.020156 0.077512 0.260033 0.7948 D2MBP(-5) -0.018971 0.074873 -0.253370 0.8000 D2MBP(-6) -0.024552 0.080020 -0.306827 0.7590 D2MBP(-7) -0.017008 0.084136 -0.202150 0.8398 D2MBP(-8) -0.024551 0.080241 -0.268331 0.7884 D2MB -0.064564 0.098598 -0.654823 0.5126 D2MB(-1) -0.109448 0.099835 -1.096288 0.2730 D2MB(-2) -0.094659 0.111772 -0.846893 0.3971 D2MB(-3) -0.001161 0.07937 -0.016371	D2PS(-1)	0.002567	0.012606	0.203657	0.8386
D2MBP 0.044953 0.076775 0.585519 0.5582 D2MBP(-1) 0.027723 0.093194 0.297474 0.7661 D2MBP(-2) 0.074493 0.111044 0.670839 0.5023 D2MBP(-3) -0.024104 0.094451 -0.255197 0.7986 D2MBP(-4) 0.020156 0.077512 0.260033 0.7948 D2MBP(-5) -0.018971 0.074873 -0.253370 0.8000 D2MBP(-6) -0.024552 0.080020 -0.306827 0.7590 D2MBP(-7) -0.017008 0.084136 -0.202150 0.8398 D2MBP(-8) -0.021531 0.080241 -0.268331 0.7884 D2MB -0.064564 0.098598 -0.654823 0.5126 D2MB(-1) -0.109448 0.099835 -1.096288 0.2730 D2MB(-2) -0.094659 0.111772 -0.846893 0.3971 D2MB(-3) -0.001161 0.070937 -0.016371 0.9869 D2MB(-3) -0.053398 0.057416 -0.930029	D2PS(-2)	-0.002109	0.008917	-0.236544	0.8130
D2MBP(-1) 0.027723 0.093194 0.297474 0.7661 D2MBP(-2) 0.074493 0.111044 0.670839 0.5023 D2MBP(-3) -0.024104 0.094451 -0.255197 0.7986 D2MBP(-4) 0.020156 0.077512 0.260033 0.7948 D2MBP(-5) -0.018971 0.074873 -0.253370 0.8000 D2MBP(-6) -0.024552 0.080020 -0.306827 0.7590 D2MBP(-7) -0.017008 0.084136 -0.202150 0.8398 D2MBP(-8) -0.021531 0.080241 -0.268331 0.7884 D2MB -0.064564 0.098598 -0.654823 0.5126 D2MB(-1) -0.109448 0.099835 -1.096288 0.2730 D2MB(-2) -0.094659 0.111772 -0.846893 0.3971 D2MB(-3) -0.001161 0.070937 -0.016371 0.9869 D2MB(-3) -0.053398 0.057416 -0.930029 0.3524 D2MB(-4) 0.053398 0.057431 0.5828 <td>D2MBP</td> <td>0.044953</td> <td>0.076775</td> <td>0.585519</td> <td>0.5582</td>	D2MBP	0.044953	0.076775	0.585519	0.5582
D2MBP(-2) 0.074493 0.111044 0.670839 0.5023 D2MBP(-3) -0.024104 0.094451 -0.255197 0.7986 D2MBP(-4) 0.020156 0.07512 0.260033 0.7948 D2MBP(-5) -0.018971 0.074873 -0.253370 0.8000 D2MBP(-6) -0.024552 0.80020 -0.306827 0.7590 D2MBP(-7) -0.017008 0.84136 -0.202150 0.8398 D2MBP(-8) -0.024551 0.080241 -0.268331 0.7884 D2MB -0.064564 0.098598 -0.654823 0.5126 D2MB(-1) -0.109448 0.099835 -1.096288 0.2730 D2MB(-2) -0.094659 0.111772 -0.846893 0.3971 D2MB(-3) -0.001161 0.070937 -0.016371 0.9869 D2MB(-3) -0.053398 0.057416 -0.930029 0.3524 D2MB(-4) 0.053398 1.057416 0.549331 0.5828	D2MBP(-1)	0.027723	0.093194	0.297474	0.7661
D2MBP(-3) -0.024104 0.094451 -0.255197 0.7986 D2MBP(-4) 0.020156 0.077512 0.260033 0.7948 D2MBP(-5) -0.018971 0.074873 -0.253370 0.8000 D2MBP(-6) -0.024552 0.080020 -0.306827 0.7590 D2MBP(-7) -0.017008 0.084136 -0.202150 0.8398 D2MBP(-8) -0.024551 0.080241 -0.268331 0.7884 D2MB -0.064564 0.098598 -0.654823 0.5126 D2MB(-1) -0.109448 0.099835 -1.096288 0.2730 D2MB(-2) -0.094659 0.111772 -0.846893 0.3971 D2MB(-3) -0.001161 0.070937 -0.016371 0.9869 D2MB(-3) -0.053398 0.057416 -0.930029 0.3524 D2MBA 0.768981 1.401508 0.549331 0.5828	D2MBP(-2)	0.074493	0.111044	0.670839	0.5023
D2MBP(-4) 0.020156 0.07/512 0.260033 0.7948 D2MBP(-5) -0.018971 0.074873 -0.253370 0.8000 D2MBP(-6) -0.024552 0.080020 -0.306827 0.7590 D2MBP(-7) -0.017008 0.084136 -0.202150 0.8398 D2MBP(-8) -0.021531 0.080241 -0.268331 0.7884 D2MB -0.064564 0.098598 -0.654823 0.5126 D2MB(-1) -0.109448 0.099835 -1.096288 0.2730 D2MB(-2) -0.094659 0.111772 -0.846893 0.3971 D2MB(-3) -0.001161 0.070937 -0.016371 0.9869 D2MB(-4) -0.053398 0.057416 -0.930029 0.3524 D2MBA 0.76891 1.401508 0.549331 0.5828	D2MBP(-3)	-0.024104	0.094451	-0.255197	0.7986
D2MBP(-5) -0.018971 0.074873 -0.253370 0.8000 D2MBP(-6) -0.024552 0.080020 -0.306827 0.7590 D2MBP(-7) -0.017008 0.084136 -0.202150 0.8398 D2MBP(-8) -0.021531 0.080241 -0.268331 0.7884 D2MB -0.064564 0.098598 -0.654823 0.5126 D2MB(-1) -0.109448 0.099835 -1.096288 0.2730 D2MB(-2) -0.094659 0.111772 -0.846893 0.3971 D2MB(-3) -0.001161 0.070937 -0.016371 0.9869 D2MB(-4) -0.653398 0.57416 -0.930029 0.3524 D2MBA 0.768891 1.401508 0.549331 0.5828	D2MBP(-4)	0.020156	0.077512	0.260033	0.7948
D2/MBP(-0) -0.024552 0.080020 -0.00827 0.7590 D2MBP(-7) -0.017008 0.084136 -0.202150 0.8398 D2MBP(-8) -0.021531 0.080241 -0.268331 0.7884 D2MB -0.064564 0.098598 -0.654823 0.5126 D2MB(-1) -0.109448 0.099835 -1.096288 0.2730 D2MB(-2) -0.094659 0.111772 -0.846893 0.3971 D2MB(-3) -0.001161 0.070937 -0.016371 0.9869 D2MB(-4) -0.053398 0.057416 -0.930029 0.3524 D2MBA 0.768991 1.401508 0.549331 0.5828	D2MBP(-5)	-0.018971	0.074873	-0.253370	0.8000
D2MBP(-7) -0.01 /008 0.084156 -0.202150 0.8398 D2MBP(-8) -0.021531 0.080241 -0.268331 0.7884 D2MB -0.064564 0.098598 -0.654823 0.5126 D2MB(-1) -0.109448 0.099835 -1.096288 0.2730 D2MB(-2) -0.094659 0.111772 -0.846893 0.3971 D2MB(-3) -0.001161 0.070937 -0.016371 0.9869 D2MB(-4) -0.053398 0.057416 -0.930029 0.3524 D2MBA 0.768891 1.401508 0.549331 0.5828	D2MBP(-0)	-0.024552	0.080020	-0.306827	0.7390
D2MBT(-0) -0.021331 0.080241 -0.263531 0.7884 D2MB -0.064564 0.098598 -0.654823 0.5126 D2MB(-1) -0.109448 0.099835 -1.096288 0.2730 D2MB(-2) -0.094659 0.111772 -0.846893 0.3971 D2MB(-3) -0.001161 0.070937 -0.016371 0.9869 D2MB(-4) -0.053398 0.057416 -0.930029 0.3524 D2MBA 0.769891 1.401508 0.549331 0.5828	$D_2MBP(-/)$	-0.01/008	0.084130	-0.202150	0.8398
D2MB -0.004304 0.098398 -0.054823 0.5126 D2MB(-1) -0.109448 0.099835 -1.096288 0.2730 D2MB(-2) -0.094659 0.111772 -0.846893 0.3971 D2MB(-3) -0.001161 0.070937 -0.016371 0.9869 D2MB(-4) -0.053398 0.057416 -0.930029 0.3524 D2MBA 0.769891 1.401508 0.549331 0.5828	D_{2} ND_{2} D_{2} D_{2} ND_{2} D_{2} $D_$	-0.021551	0.000241	-0.208331	0.7684
D2MB(-1) -0.109440 0.099853 -1.090266 0.2130 D2MB(-2) -0.094659 0.111772 -0.846893 0.3971 D2MB(-3) -0.001161 0.070937 -0.016371 0.9869 D2MB(-4) -0.053398 0.057416 -0.930029 0.3524 D2MBA 0.769891 1.401508 0.549331 0.5828	$D_{2}WB$ (1)	-0.004304	0.098398	-0.034823	0.3120
D2MB(-2) -0.074037 0.111772 -0.040873 0.3971 D2MB(-3) -0.001161 0.070937 -0.016371 0.9869 D2MB(-4) -0.053398 0.057416 -0.930029 0.3524 D2MBA 0.769891 1.401508 0.549331 0.5828	$D_{2MB}(-1)$	0.004650	0.077033	-1.070200	0.2750
D2MB(-4) -0.053398 0.057416 -0.930029 0.3524 D2MBA 0.769891 1.401508 0.549331 0.5828	$D_{2MB}(-2)$ $D_{2MB}(-3)$	-0.094039	0.111//2	-0.040075	0.3771
D2MBA 0.769891 1.401508 0.549331 0.5828	D2MB(-4)	-0.053398	0.057416	-0.930029	0 3524
	D2MBA	0.769891	1.401508	0.549331	0.5828

erasmus universiteit rotterdam

The Impact of UGC on Firm's Performance for Personal Computer Product

D2MBA(-1) D2MBA(-2) D2MBA(-3) D2MBA(-4) D2IM D2IM(-1) D2IM(-1) D2IM(-2) D2IM(-3) D2IM(-4)	0.332437 1.333114 -0.545172 0.007408 0.200417 0.125290 0.392702 -0.265862 0.247044	1.497999 1.700528 1.344913 0.922003 0.753254 0.679474 0.628240 0.478888 0.315591	0.221921 0.783941 -0.405358 0.008035 0.266068 0.184392 0.625083 -0.555165 0.782798	0.8244 0.4331 0.6852 0.9936 0.7902 0.8537 0.5319 0.5788 0.4337
	Variance Equa	tion		
0	0.000122	0.000102	0 (700.17	0.5010
	0.000123	0.000183	0.6/284/	0.5010
RESID(-1)/2 DESID(-1)/2*(DESID(-1)-0)	0.060814	0.555258	0.1/1195	0.8041
$\frac{\text{RESID}(-1)}{2} (\frac{\text{RESID}(-1)}{0})$	0.043/34	0.422932	0.108155	0.9139
$\frac{\text{RESID}(-2)}{2}$	-0.038185	0.327403	-0.177070	0.0330
$\frac{\text{RESID}(-2)}{2} (\frac{\text{RESID}(-2)}{0})$	0.002044	1 080848	0.002724	0.9855
$RESID(-3)^{2} (RESID(-3)<0)$	0.030993	0.463907	0.066809	0.9978
RESID(-3)^2	0.006866	0.521376	0.013170	0.9895
$RESID(-4)^{2}$ RESID(-4)^2*(RESID(-4)<0)	0.002222	0.462286	0.004807	0.9962
$RESID(-5)^2*(RESID(-5)<0)$	0.058709	0.350958	0.167281	0.8671
RESID(-6)^2*(RESID(-6)<0)	-0.083360	0.364621	-0 228621	0.8192
RESID(-7)^2*(RESID(-7)<0)	0 135260	0.846478	0 159791	0.8730
RESID(-8)^2*(RESID(-8)<0)	-0.060780	1 352269	-0.044947	0.9641
RESID(-9)^2*(RESID(-9)<0)	-0.021901	1 264175	-0.017324	0.9862
GARCH(-1)	0 279328	5 089893	0.054879	0.9562
GARCH(-2)	0.010869	6.549084	0.001660	0.9987
GARCH(-3)	-0.007327	3.354752	-0.002184	0.9983
GARCH(-4)	-0.004770	1.350408	-0.003532	0.9972
GARCH(-5)	0.026527	1.856763	0.014287	0.9886
GARCH(-6)	0.032048	0.726751	0.044097	0.9648
R-squared	0.793590	Mean depen	dent var	-2.46E-06
Adjusted R-squared	0.471974	S.D. depend	ent var	0.034424
S.E. of regression	0.025014	Akaike info	criterion	-4.142050
Sum squared resid	0.026905	Schwarz crit	erion	-1.993954
Log likelihood	317.8838	Hannan-Qui	nn criter.	-3.270631
Durbin-Watson stat	1.719045			

32. Outcomes of Release Date 4 Model

Dependent Variable: DER Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/07/12 Time: 11:21 Sample (adjusted): 12/11/2010 4/01/2011 Included observations: 112 after adjustments

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.010735	0.046918	-0.228801	0.8190
DER(-1)	-0.572535	0.137880	-4.152414	0.0000
DER(-2)	-0.791788	0.200666	-3.945791	0.0001
DER(-3)	-0.205004	0.222809	-0.920087	0.3575
DER(-4)	-0.251463	0.193893	-1.296915	0.1947
DABR(-1)	0.002622	0.051589	0.050827	0.9595
DABR(-2)	-0.075434	0.052365	-1.440534	0.1497
DABR(-3)	-0.063021	0.044374	-1.420226	0.1555
DABR(-4)	-0.061127	0.047643	-1.283033	0.1995
D2S	-7.95E-06	1.17E-05	-0.680887	0.4959
D2S(-1)	0.000174	8.86E-05	1.964233	0.0495
D2S(-2)	7.24E-05	8.97E-05	0.807040	0.4196
DR	-0.001528	0.001396	-1.093924	0.2740
DR(-1)	-0.004062	0.001882	-2.157857	0.0309
DR(-2)	-0.003352	0.001875	-1.787622	0.0738
DR(-3)	-0.001147	0.002261	-0.507120	0.6121
DR(-4)	0.000172	0.001633	0.105173	0.9162
DR(-5)	-9.09E-05	0.001373	-0.066258	0.9472
SR_POS	-3.18E-05	0.000230	-0.138360	0.8900
SR_POS(-1)	0.000267	0.000238	1.122293	0.2617
SR_POS(-2)	-0.000165	0.000303	-0.544496	0.5861
SR_POS(-3)	5.15E-05	0.000280	0.184092	0.8539
SR_POS(-4)	-0.000145	0.000242	-0.601391	0.5476
SR_NEUT	0.021144	0.013579	1.557123	0.1194
SR_NEUT(-1)	-0.000584	0.012808	-0.045594	0.9636
SR_NEUT(-2)	-0.017105	0.015319	-1.116617	0.2642
SR_NEUT(-3)	0.013600	0.010716	1.269119	0.2044
SR_NEUT(-4)	0.012285	0.013583	0.904445	0.3658
SR_NEUT(-5)	-0.009867	0.019694	-0.501002	0.6164
SR_NEG	0.003222	0.017962	0.179351	0.8577

SR NEG(-1)	-0.020141	0.012432	-1.620136	0.1052
SR NEG(-2)	0.002809	0.016928	0.165934	0.8682
SR NEG(-3)	-0.024168	0.016484	-1.466184	0.1426
SR NEG(-4)	0.004934	0.017358	0.284261	0.7762
D2WS	-1.78E-05	0.003480	-0.005103	0.9959
D2WS(-1)	-0.001000	0.004683	-0.213581	0.8309
D2WS(-2)	-0.000274	0.003993	-0.068629	0.9453
D2WS(-3)	0.000283	0.001830	0.154915	0.8769
D2NS	-0.001115	0.001376	-0.810543	0.4176
D2NS(-1)	7.86E-05	0.001904	0.041280	0.9671
D2NS(-2)	-0.000614	0.001941	-0.316164	0.7519
D2NS(-3)	-0.000384	0.000992	-0.386846	0.6989
D2NS(-4)	0.000253	0.000388	0.650282	0.5155
D2PS	0.004304	0.003112	1.383155	0.1666
D2PS(-1)	0.001180	0.003400	0.347089	0.7285
D2PS(-2)	-0.000593	0.001110	-0.534405	0.5931
D2PS(-3)	-0.001082	0.000598	-1.808338	0.0706
D2MBP	0.048212	0.050401	0.956558	0.3388
D2MBP(-1)	0.033973	0.060241	0.563948	0.5728
D2MBP(-2)	-0.032690	0.042687	-0.765822	0.4438
D2MBP(-3)	-0.041700	0.044194	-0.943562	0.3454
D2MBP(-4)	-0.001823	0.042626	-0.042770	0.9659
D2MBP(-5)	0.005838	0.045993	0.126927	0.8990
D2MBP(-6)	0.009861	0.046748	0.210947	0.8329
D2MBP(-7)	0.007981	0.030211	0.264168	0.7917
D2MBP(-8)	0.004705	0.020049	0.234665	0.8145
D2MB	-0.018887	0.031783	-0.594266	0.5523
D2MB(-1)	-0.018797	0.037708	-0.498493	0.6181
D2MB(-2)	0.006304	0.035024	0.179977	0.8572
D2MB(-3)	0.007706	0.029867	0.257994	0.7964
D2MB(-4)	-0.015621	0.024311	-0.642538	0.5205
D2MB(-5)	-0.005352	0.027000	-0.198243	0.8429
D2MB(-6)	-0.011777	0.025297	-0.465546	0.6415
D2MBA	0.390208	0.349887	1.115239	0.2647
D2MBA(-1)	0.156058	0.297937	0.523795	0.6004
D2MBA(-2)	-0.111820	0.178514	-0.626391	0.5311
D2IM	-0.117435	0.116520	-1.007850	0.3135
D2IM(-1)	0.044429	0.135839	0.327068	0.7436
D2IM(-2)	0.113950	0.166291	0.685245	0.4932
D2IM(-3)	0.108289	0.174417	0.620861	0.5347
D2IM(-4)	0.163974	0.142916	1.147351	0.2512
D2IM(-5)	0.107162	0.133363	0.803538	0.4217
D2IM(-6)	0.164609	0.111578	1.475288	0.1401

Variance Equation

С	3.85E-06	4.88E-06	0.788166	0.4306
RESID(-1)^2	-0.078229	0.100786	-0.776197	0.4376
RESID(-2)^2	0.167966	0.184864	0.908589	0.3636
RESID(-3)^2	0.395545	0.372277	1.062502	0.2880
GARCH(-1)	0.481711	0.618698	0.778588	0.4362
GARCH(-2)	-0.090180	0.861953	-0.104623	0.9167
GARCH(-3)	-0.165628	0.660099	-0.250914	0.8019
GARCH(-4)	0.060161	0.378247	0.159052	0.8736
R-squared	0.750585	Mean dependent	var	-4.51E-05
Adjusted R-squared	0.290127	S.D. dependent va	ar	0.010476
S.E. of regression	0.008827	Akaike info criter	rion	-6.926770
Sum squared resid	0.003038	Schwarz criterion		-4.960713
Log likelihood	468.8991	Hannan-Quinn cr	iter.	-6.129078
Durbin-Watson stat	1.976127			

Dependent Variable: DABR Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/07/12 Time: 11:23 Sample (adjusted): 12/11/2010 4/01/2011 Included observations: 112 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear)

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
0	0.050427	0.004/00	0.552770	0.5707	
	0.052437	0.094690	0.553779	0.5/9/	
DER(-1)	1.070539	0.388493	2./55618	0.0059	
DER(-2)	0.035179	0.674520	0.052154	0.9584	
DER(-3)	-0.009557	0.868757	-0.011001	0.9912	
DER(-4)	0.004170	0.637231	0.006544	0.9948	
DABR(-1)	-0.705472	0.176565	-3.995535	0.0001	
DABR(-2)	-0.470115	0.221164	-2.125639	0.0335	
DABR(-3)	-0.304878	0.200157	-1.523192	0.1277	
DABR(-4)	-0.201999	0.173820	-1.162117	0.2452	
D2S	7.02E-06	7.51E-05	0.093550	0.9255	
D2S(-1)	-1.71E-05	0.000239	-0.071573	0.9429	
D2S(-2)	0.000205	0.000183	1.119788	0.2628	

DR	-0.000408	0.005907	-0.069006	0.9450
DR(-1)	-0.006855	0.005307	-1.291820	0.1964
DR(-2)	-0.002215	0.006880	-0.321902	0.7475
DR(-3)	-0.000443	0.006715	-0.065923	0.9474
DR(-4)	0.001039	0.006093	0.170595	0.8645
DR(-5)	0.000958	0.004440	0.215778	0.8292
SR POS	-0.000156	0.000874	-0.178412	0.8584
SR POS(-1)	-0.001288	0.000941	-1.369829	0.1707
SR POS(-2)	0.000687	0.000889	0.771976	0.4401
SR POS(-3)	0.000812	0.000888	0.914151	0.3606
SR POS(-4)	-0.000212	0.000916	-0.231062	0.8173
SR NEUT	0.008448	0.043744	0.193117	0.8469
SR NEUT(-1)	-0.053266	0.040029	-1.330672	0.1833
SR NEUT(-2)	0.016734	0.043452	0.385117	0.7002
SR NEUT(-3)	0.061247	0.035403	1.730029	0.0836
SR NEUT(-4)	-0.058206	0.040952	-1.421316	0.1552
SR NEUT(-5)	-0.019529	0.048984	-0.398674	0.6901
SR NEG	-0.028354	0.061777	-0.458976	0.6463
SR NEG(-1)	-0.024096	0.059774	-0.403123	0.6869
SR NEG(-2)	0.149237	0.071594	2.084471	0.0371
SR NEG(-3)	-0.006567	0.063001	-0.104242	0.9170
SR NEG(-4)	-0.065949	0.062854	-1.049245	0.2941
D2WS	0.017583	0.012196	1.441706	0.1494
D2WS(-1)	0.003058	0.007651	0.399742	0.6893
D2WS(-2)	-0.001338	0.006974	-0.191938	0.8478
D2WS(-3)	0.004712	0.005119	0.920541	0.3573
D2NS	-0.006180	0.005653	-1.093147	0.2743
D2NS(-1)	-0.000474	0.004604	-0.102911	0.9180
D2NS(-2)	-0.005429	0.003779	-1.436839	0.1508
D2NS(-3)	-0.003465	0.002773	-1.249522	0.2115
D2NS(-4)	-0.001868	0.001534	-1.218053	0.2232
D2PS	-0.006711	0.008885	-0.755230	0.4501
D2PS(-1)	0.004806	0.006000	0.800983	0.4231
D2PS(-2)	0.000345	0.003367	0.102310	0.9185
D2PS(-3)	-0.002562	0.002042	-1.254613	0.2096
D2MBP	-0.080087	0.131380	-0.609586	0.5421
D2MBP(-1)	0.141456	0.136095	1.039389	0.2986
D2MBP(-2)	0.231310	0.158585	1.458583	0.1447
D2MBP(-3)	-0.052451	0.149504	-0.350834	0.7257
D2MBP(-4)	-0.033565	0.131582	-0.255086	0.7987
D2MBP(-5)	-0.130460	0.127113	-1.026331	0.3047
D2MBP(-6)	-0.008281	0.138928	-0.059605	0.9525
D2MBP(-7)	-0.126084	0.084930	-1.484560	0.1377
D2MBP(-8)	-0.114517	0.073344	-1.561371	0.1184
D2MB	0.010766	0.076343	0.141027	0.8878
D2MB(-1)	-0.147601	0.109595	-1.346785	0.1780
D2MB(-2)	-0.171385	0.081906	-2.092459	0.0364
D2MB(-3)	0.060745	0.083117	0.730842	0.4649
D2MB(-4)	0.027472	0.063507	0.432581	0.6653
D2MB(-5)	0.074225	0.059996	1.237181	0.2160
D2MB(-6)	-0.017285	0.066514	-0.259876	0.7950
D2MBA	0.160245	1.016717	0.157611	0.8748
D2MBA(-1)	0.946552	0.789364	1.199132	0.2305
D2MBA(-2)	1.758208	0.503461	3.492244	0.0005
D2IM	0.089251	0.415536	0.214786	0.8299
D2IM(-1)	0.669430	0.421830	1.586967	0.1125
D2IM(-2)	0.677362	0.346866	1.952805	0.0508
D2IM(-3)	0.020111	0.363303	0.055355	0.9559
D2IM(-4)	-0.041720	0.322673	-0.129296	0.8971
D2IM(-5)	0.165698	0.367210	0.451236	0.6518
D2IM(-6)	0.304656	0.334611	0.910478	0.3626

Variance Equation

С	2.80E-05	0.000135	0.207821	0.8354
RESID(-1)^2	0.216651	0.381039	0.568579	0.5696
RESID(-2)^2	0.786934	0.966210	0.814455	0.4154
RESID(-3) ²	-0.075609	2.333823	-0.032397	0.9742
GARCH(-1)	0.226177	2.880924	0.078508	0.9374
GARCH(-2)	-0.105762	0.775145	-0.136441	0.8915
GARCH(-3)	-0.116117	0.506929	-0.229059	0.8188
GARCH(-4)	0.069996	0.464803	0.150593	0.8803
R-squared	0.818447	Mean depend	dent var	8.40E-05
Adjusted R-squared	0.483274	S.D. depende	ent var	0.037005
S.E. of regression	0.026600	Akaike info	criterion	-4.523141
Sum squared resid	0.027596	Schwarz crit	erion	-2.557084
Log likelihood	334.2959	Hannan-Quir	nn criter.	-3.725449
Durbin-Watson stat	2.261177			

33. Outcomes of Release Date 5 Model

Dependent Variable: DER Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/08/12 Time: 13:20 Sample (adjusted): 8/11/2011 1/01/2012 Included observations: 144 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.043795	0.133801	0.327314	0.7434
DER(-1)	-0.790633	0.214823	-3.680401	0.0002
DER(-2)	-0.361682	0.223655	-1.617147	0.1058
DER(-3) DER(-4)	-0.291/29	0.190996	-1.52/405	0.1267
DER(-4) DER(-5)	-0.525400	0.202108	-2.599604	0.0093
DER(-6)	-0.442938	0.236455	-1.873244	0.0610
DER(-7)	-0.357835	0.261012	-1.370951	0.1704
DER(-8)	-0.228312	0.182263	-1.252656	0.2103
DABR(-1) DABR(-2)	-0 113013	0.0075617	-1 494545	0.9755
DABR(-3)	-0.051807	0.067182	-0.771148	0.4406
DABR(-4)	0.036835	0.075608	0.487176	0.6261
DABR(-5)	-0.029220	0.070914	-0.412047	0.6803
DABR(-0)	-0.071226	0.059749	-1.192103	0.2332
DABR(-8)	-0.030025	0.046364	-0.647595	0.5172
DR	0.004591	0.003140	1.462044	0.1437
DR(-1)	0.009043	0.005286	1.710832	0.0871
DR(-2)	0.004195	0.006650	0.630845	0.5281
DR(-4)	0.002056	0.007363	0.279249	0.7801
DR(-5)	0.003700	0.009233	0.400768	0.6886
DR(-6)	0.010861	0.009978	1.088488	0.2764
DR(-7)	0.015686	0.009898	1.584752	0.1130
DR(-8) DR(-9)	0.005520	0.007423	1 331223	0.3802
SR POS	-0.000665	0.000894	-0.744095	0.4568
SR_POS(-1)	0.001510	0.001713	0.881657	0.3780
SR_POS(-2)	-0.001676	0.001309	-1.280266	0.2005
SR_POS(-3) SR_POS(-4)	-0.000458	0.001/48	-0.262062	0.7933
SR_POS(-5)	0.000568	0.000970	0.585564	0.5582
SR_POS(-6)	0.000373	0.001051	0.355212	0.7224
SR_POS(-7)	-0.000297	0.001078	-0.275648	0.7828
SR_POS(-8) SP_NEUT	-0.000321	0.001365	-0.235013	0.8142
SR_NEUT(-1)	-0.063089	0.057882	-1.089952	0.2757
SR_NEUT(-2)	0.056595	0.059218	0.955696	0.3392
SR_NEUT(-3)	-0.069380	0.058932	-1.177299	0.2391
SR_NEUT(5)	0.019869	0.06/533	0.294203	0.7686
SR_NEUT(-6)	-0.085438	0.078769	-1.084665	0.2781
SR_NEUT(-7)	-0.010661	0.072470	-0.147111	0.8830
SR_NEG	0.002286	0.054578	0.041880	0.9666
SR_NEG(-1) SR_NEG(-2)	0.009193	0.079345	0.115867	0.9078
SR_NEG(-2)	0.034739	0.071492	0.485907	0.6270
SR_NEG(-4)	0.033067	0.071753	0.460845	0.6449
SR_NEG(-5)	0.034502	0.073800	0.467511	0.6401
SR_NEG(-6) SR_NEG(-7)	0.015066	0.076985	0.195694	0.8448
SR_NEG(-8)	0.044619	0.059149	0.754346	0.4506
D2WS	0.003546	0.004072	0.870761	0.3839
D2WS(-1)	-0.002419	0.005097	-0.474569	0.6351
D2WS(-2) D2WS(-3)	0.003998	0.002669	1.49/994	0.1341
D2WS(-4)	0.002032	0.001897	1.071284	0.2840
D2NS	-0.003108	0.003017	-1.030112	0.3030
D2NS(-1)	0.001603	0.003861	0.415211	0.6780
D2NS(-2)	-0.003850	0.001793	-2.14/389	0.0318
D2NS(-3)	-0.000925	0.001296	-0.713686	0.4754
D2NS(-5)	-0.000104	0.000619	-0.167785	0.8668
D2NS(-6)	0.000177	0.000514	0.343903	0.7309
D2NS(-7) D2NS(-8)	-0.000210	0.000562	-0.373200	0.7090
D2PS	0.002887	0.003853	0.749232	0.4537
D2PS(-1)	0.001921	0.003947	0.486705	0.6265
D2PS(-2)	-0.000272	0.003560	-0.076325	0.9392
D2PS(-3)	0.000200	0.003396	0.058753	0.9531
D2F5(-4) D2PS(-5)	-0.001518 0.000261	0.002851	-0.332430	0.3944
D2PS(-6)	0.000690	0.002646	0.260637	0.7944
D2MBP	0.029203	0.102127	0.285949	0.7749

C	4.925.05	5 1 4E 05	0.0290/7	0.2477
	Variance Equa	tion		
D2IM(-4)	-0.235579	0.110960	-2.123092	0.0337
D2IM(-3)	0.074171	0.158476	0.468026	0.6398
D2IM(-2)	0.135296	0.174085	0.777185	0.4370
D2IM(-1)	-0.048845	0.234423	-0.208362	0.8349
D2IM	-0.024253	0.204858	-0.118390	0.9058
D2MBA(-7)	-0.106331	0.278329	-0.382033	0.7024
D2MBA(-6)	0.039689	0.516482	0.076845	0.9387
D2MBA(-5)	0.061788	0.552035	0.111928	0.9109
D2MBA(-4)	0.235476	0.647221	0.363827	0.7160
D2MBA(-3)	0.179097	0.629879	0.284335	0.7762
D2MBA(-2)	-0.210229	0.722516	-0.290967	0.7711
D2MBA(-1)	0.211664	0.624606	0.338875	0.7347
D2MBA	0.107443	0.580049	0.185230	0.8530
D2MB(-6)	-0.027729	0.041499	-0.668198	0.5040
D2MB(-5)	-0.025359	0.051399	-0.493378	0.6217
D2MB(-4)	-0.004081	0.050018	-0.081596	0.9350
D2MB(-3)	-0.061441	0.055020	-1.116707	0.2641
D2MB(-2)	-0.040044	0.060697	-0.659744	0.5094
D2MB(-1)	-0.044039	0.053827	-0.818168	0.4133
D2MB	-0.025799	0.039847	-0.647456	0.5173
D2MBP(-8)	0.107730	0.118074	0.912391	0.3616
D2MBP(-7)	0.102269	0.128301	0.797102	0.4254
D2MBP(-6)	0.032947	0.126722	0.259995	0.7949
D2MBP(-5)	0.064357	0.136646	0.470977	0.6377
D2MBP(-4)	0.149837	0.151115	0.991544	0.3214
D2MBP(-3)	0.067327	0.125696	0.535634	0.5922
D2MBP(-2)	0.041102	0.143049	0.287332	0.7739
D2MBP(-1)	0.084613	0.138057	0.612885	0.5400

С	4.82E-05	5.14E-05	0.938967	0.3477
RESID(-1)^2	0.304754	0.296387	1.028231	0.3038
GARCH(-1)	0.347546	0.828912	0.419280	0.6750
GARCH(-2)	-0.226967	1.007786	-0.225214	0.8218
GARCH(-3)	-0.164516	1.043003	-0.157733	0.8747
GARCH(-4)	0.180997	0.669953	0.270164	0.7870
R-squared	0.814845	Mean depend	dent var	0.000289
Adjusted R-squared	0.354217	S.D. dependent var		0.023136
S.E. of regression	0.018592	Akaike info	criterion	-5.066533
Sum squared resid	0.014172	Schwarz crit	erion	-2.818549
Log likelihood	473.7904	Hannan-Qui	nn criter.	-4.153079
Durbin-Watson stat	1.991170			

Dependent Variable: DABR Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/08/12 Time: 13:18 Sample (adjusted): 8/11/2011 1/01/2012 Included observations: 144 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.205128	0.867673	0.236411	0.8131
DER(-1)	0.006076	0.461180	0.013174	0.9895
DER(-2)	-0.021883	0.578591	-0.037821	0.9698
DER(-3)	-1.045672	0.706194	-1.480714	0.1387
DER(-4)	-0.490219	0.655265	-0.748124	0.4544
DER(-5)	0.754181	0.661556	1.140011	0.2543
DER(-6)	0.779925	0.828121	0.941800	0.3463
DER(-7)	0.595751	0.932437	0.638918	0.5229
DER(-8)	0.316402	0.721229	0.438698	0.6609
DABR(-1)	-0.708697	0.152969	-4.632953	0.0000
DABR(-2)	-0.631113	0.194152	-3.250619	0.0012
DABR(-3)	-0.564486	0.210352	-2.683539	0.0073
DABR(-4)	-0.493062	0.291351	-1.692332	0.0906
DABR(-5)	-0.609655	0.265762	-2.293990	0.0218
DABR(-6)	-0.469630	0.240374	-1.953742	0.0507
DABR(-7)	-0.149503	0.246648	-0.606139	0.5444
DABR(-8)	-0.150225	0.162756	-0.923004	0.3560
DR	-0.006554	0.013630	-0.480817	0.6306
DR(-1)	0.014780	0.021551	0.685825	0.4928
DR(-2)	0.016865	0.025188	0.669570	0.5031
DR(-3)	0.015914	0.022928	0.694081	0.4876
DR(-4)	0.023189	0.021571	1.075037	0.2824
DR(-5)	0.010663	0.019093	0.558477	0.5765
DR(-6)	-0.007296	0.021375	-0.341317	0.7329
DR(-7)	0.020063	0.022372	0.896812	0.3698
DR(-8)	-0.016958	0.024215	-0.700304	0.4837
DR(-9)	0.016250	0.016221	1.001797	0.3164
SR POS	-0.004311	0.003343	-1.289730	0.1971
SR_POS(-1)	0.000808	0.005840	0.138403	0.8899
SR_POS(-2)	-0.001220	0.003713	-0.328692	0.7424
SR_POS(-3)	0.004832	0.004886	0.988952	0.3227

SR_POS(-4)	-0.001801	0.003742	-0.481297	0.6303
SR_POS(-5)	0.000583	0.003738	0.155969	0.8761
SR_POS(-0) SR_POS(-7)	0.000922	0.003533	0.069230	0.7834
SR_POS(-8)	-0.000898	0.004687	-0.191603	0.8481
SR_NEUT	0.505273	0.223260	2.263155	0.0236
SR_NEUT(-1)	-0.242509	0.167481	-1.447981	0.1476
SR_NEUT(-2)	0.154390	0.236087	0.053955	0.5131
SR_NEUT(-4)	-0.125680	0.197623	-0.635961	0.5248
SR_NEUT(-5)	0.080277	0.256760	0.312654	0.7545
SR_NEUT(-6)	-0.262766	0.189472	-1.386835	0.1655
SR_NEUT(-7)	-0.060182	0.304113	-0.197892	0.8431
SR_NEG(-1)	-0.239978	0.365408	-0.656740	0.5113
SR_NEG(-2)	0.082899	0.272319	0.304419	0.7608
SR_NEG(-3)	0.349376	0.211454	1.652255	0.0985
SR_NEG(-4)	-0.062587	0.223597	-0.279909	0.7795
SR_NEG(-5) SR_NEG(-6)	0.1355/6	0.236987	0.5/2082 0.148504	0.56/3
SR NEG(-7)	-0.031382	0.172150	-0.182298	0.8553
SR_NEG(-8)	-0.128132	0.235421	-0.544268	0.5863
D2WS	-0.002006	0.014212	-0.141155	0.8877
D2WS(-1)	-0.001003	0.013129	-0.076386	0.9391
$D_2 WS(-2)$ $D_2 WS(-3)$	0.013971	0.009378	1.436360	0.1447
D2WS(-4)	-0.006030	0.009836	-0.613045	0.5398
D2NS	0.002298	0.011219	0.204836	0.8377
D2NS(-1)	0.000896	0.011897	0.075305	0.9400
D2NS(-2) D2NS(-3)	-0.005964	0.007808	-0.763801	0.4450
D2NS(-3) D2NS(-4)	0.008320	0.006530	1.274114	0.2026
D2NS(-5)	0.002767	0.001892	1.462594	0.1436
D2NS(-6)	0.001628	0.001928	0.844713	0.3983
D2NS(-7)	0.001810	0.002088	0.866670	0.3861
D2NS(-8) D2PS	0.001963	0.001412	0.204914	0.1643
D2PS(-1)	-0.010794	0.013489	-0.800212	0.4236
D2PS(-2)	-0.012112	0.012826	-0.944308	0.3450
D2PS(-3)	-0.003766	0.014734	-0.255604	0.7983
D2PS(-4)	0.000144	0.015435	0.009300	0.9926
D2PS(-5) D2PS(-6)	-0.001806	0.009434	-0.191392 0.336967	0.8482
D2MBP	0.003141	0.290220	0.010823	0.9914
D2MBP(-1)	-0.200386	0.359475	-0.557441	0.5772
D2MBP(-2)	0.183325	0.369445	0.496217	0.6197
D2MBP(-3) D2MBP(-4)	-0.003923	0.327367	-0.011984	0.9904
D2MBP(-4) D2MBP(-5)	-0.039604	0.314981	-0.253015	0.8003
D2MBP(-6)	-0.137758	0.361881	-0.380671	0.7034
D2MBP(-7)	0.469185	0.516377	0.908610	0.3636
D2MBP(-8)	-0.198264	0.407166	-0.486937	0.6263
D2MB	-0.020719	0.189857	-0.109129	0.9131
D2MB(-1) D2MB(-2)	0.233505	0.171145	1.364375	0.1724
D2MB(-3)	-0.007743	0.156134	-0.049593	0.9604
D2MB(-4)	0.127321	0.152559	0.834568	0.4040
D2MB(-5)	0.206410	0.180956	1.140662	0.2540
D2MB(-6)	-0 568390	2 253608	0.529284	0.5966
D2MBA(-1)	1.446416	1.991488	0.726299	0.4677
D2MBA(-2)	-0.653760	1.918701	-0.340731	0.7333
D2MBA(-3)	-0.194614	1.790992	-0.108663	0.9135
D2MBA(-4) D2MBA(-5)	-0.810074	1.755792	-0.461372	0.6445
D2MBA(-6)	-1 642493	1 330040	-1 234920	0.2169
D2MBA(-7)	-1.630681	1.197586	-1.361640	0.1733
D2IM	0.359676	0.564748	0.636879	0.5242
D2IM(-1)	0.873615	0.588046	1.485623	0.1374
D2IM(-2) D2IM(-3)	-1.038348	0.63/046	-1.629942	0.1031
D2IM(-3) D2IM(-4)	-0.184220	0.474089	-0.388376	0.3541
-(')				
	V			
<i>a</i>	variance Equation	0.000100	0.1(0101	0.0445
C RESID(-1)^2	3.16E-05 0.950530	0.000188	0.168131	0.8665
GARCH(-1)	-0.012012	0.068180	-0.176183	0.8602
GARCH(-2)	0.006360	0.130529	0.048723	0.9611
GARCH(-3)	-0.037989	0.162486	-0.233800	0.8151
GARCH(-4)	0.215677	0.201027	1.072876	0.2833

34. Release Date 6

Dependent Variable: DER Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/07/12 Time: 11:44 Sample (adjusted): 4/12/2012 8/01/2012 Included observations: 112 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.134668	0.121213	1.111007	0.2666
DER(-1)	-0.641009	0.422037	-1.518845	0.1288
DER(-2)	-0.393588	0.308936	-1.274011	0.2027
DER(-3)	-0.094105	0.31/838	-0.290054	0.7672
DABR(-1)	-0.137663	0.088738	-1.551334	0.1208
DABR(-2)	-0.045015	0.087435	-0.514842	0.6067
DABR(-3)	-0.042745	0.099995	-0.427465	0.6690
DABR(-4)	0.008331	0.082241	0.101302	0.9193
D2S	-1.30E-05	0.001392	-0.009355	0.9925
D2S(-1)	-0.0001/5	0.001550	-0.112/94	0.9102
D2S(-2) D2S(-3)	0.000420	0.002087	0.086101	0.9314
D2S(-4)	0.000567	0.004804	0.118090	0.9060
D2S(-5)	0.000792	0.003897	0.203342	0.8389
DR	0.001250	0.010788	0.115878	0.9077
DR(-1)	0.003232	0.007628	0.423706	0.6718
DR(-2)	0.008216	0.006585	1.24//14	0.2121
DR(-3)	-0.000536	0.005034	-0.092733	0.7194
DR(-5)	-0.005634	0.007508	-0.750461	0.4530
DR(-6)	0.000962	0.005388	0.178639	0.8582
DR(-7)	-0.001163	0.004517	-0.257506	0.7968
DR(-8)	0.000508	0.004416	0.115147	0.9083
DR(-9)	-0.001633	0.004109	-0.397494	0.6910
SR POS	-0.001044	0.003623	-0.455555	0.6302
SR_POS(-1)	0.001892	0.001236	1.530080	0.1260
SR POS(-2)	-0.000200	0.001291	-0.155125	0.8767
SR_POS(-3)	0.000842	0.001834	0.459098	0.6462
SR_NEUT	-0.072151	0.059028	-1.222323	0.2216
SR_NEG	0.019072	0.082099	0.232304	0.8163
SR_NEG(-1) SR_NEG(-2)	-0.091882	0.070479	-1.303004	0.1923
SR_NEG(-2)	-0.081983	0.107887	-0.759898	0.4473
D2WS	0.007574	0.023365	0.324147	0.7458
D2WS(-1)	0.001856	0.027584	0.067268	0.9464
D2WS(-2)	0.012114	0.013014	0.930861	0.3519
D2WS(-3)	0.008450	0.013222	0.639100	0.5228
$D_2 WS(-4)$ $D_2 WS(-5)$	0.008797	0.018933	0.536987	0.7196
D2WS(-6)	-0.007740	0.015596	-0.496296	0.6197
D2WS(-7)	0.012935	0.027465	0.470972	0.6377
D2WS(-8)	0.011810	0.033362	0.353998	0.7233
D2WS(-9)	0.007062	0.009017	0.783130	0.4336
D2PS (1)	-0.004650	0.008223	-0.565549	0.5/1/
D2PS(-2)	-0.000440	0.008589	-0.998169	0.3182
D2PS(-3)	-0.004588	0.008144	-0.563407	0.5732
D2PS(-4)	-0.000774	0.008795	-0.088041	0.9298
D2PS(-5)	-0.003814	0.007072	-0.539333	0.5897
D2PS(-6)	-0.000314	0.007753	-0.040475	0.9677
D2PS(-7) D2PS(-8)	-0.004005	0.009/98	-0.408800	0.6827
D2PS(-9)	0.004111	0.003685	1.115454	0.2647
D2NS	-0.000349	0.006746	-0.051757	0.9587
D2NS(-1)	0.007910	0.008369	0.945081	0.3446
D2NS(-2)	0.000622	0.005688	0.109285	0.9130
D2NS(-3)	0.000166	0.006853	0.024296	0.9806
D2NS(-4) D2NS(-5)	0.003/50	0.009360	0.400631	0.6887
D2NS(-6)	0.002043	0.0000389	1 785566	0.0742
D2NS(-7)	-0.000677	0.007967	-0.084926	0.9323
D2NS(-8)	0.000668	0.007329	0.091184	0.9273
D2NS(-9)	-0.000831	0.003783	-0.219695	0.8261
D2MBP (1)	-0.138241	0.382280	-0.361623	0.7176
$D_2 MBP(-1)$	0.14441/	0.455988	0.310/11	0.7515
D2MBP(-3)	-0.034985	0.341576	-0.102422	0.9184
D2MBP(-4)	0.104515	0.542209	0.192759	0.8471
D2MBP(-5)	-0.011395	0.254931	-0.044699	0.9643
D2MBP(-6)	0.202509	0.271918	0.744744	0.4564
D2MBP(-7)	-0.181224	0.356584	-0.508222	0.6113
D2MB	0.099890	0.457105	0.210499	0.8270
	0.000111	0.100221	0.122020	0.0720

D2MB(-1)	-0.076202	0.189882	-0.401314	0.6882	
D2MB(-2)	0.083515	0.102717	0.813059	0.4162	
D2MB(-3)	0.005708	0.110989	0.051429	0.9590	
D2MB(-4)	-0.070901	0.183494	-0.386394	0.6992	
D2MB(-5)	-0.023765	0.086585	-0.274463	0.7837	
D2MB(-6)	-0.084422	0.074814	-1.128422	0.2591	
D2MB(-7)	0.025764	0.089670	0.287324	0.7739	
D2MB(-8)	-0.060871	0.092797	-0.655960	0.5118	
D2MBA	-0.298049	0.820487	-0.363259	0.7164	
D2MBA(-1)	0.287476	0.924679	0.310893	0.7559	
D2MBA(-2)	-0.397858	0.784008	-0.507466	0.6118	
D2MBA(-3)	-0.337020	0.660573	-0.510193	0.6099	
D2MBA(-4)	-0.047926	0.469707	-0.102034	0.9187	
D2MBA(-5)	-0.251496	0.495876	-0.507176	0.6120	
D2IM	-0.135514	0.337021	-0.402093	0.6876	
D2IM(-1)	-0.451605	0.667957	-0.676100	0.4990	
D2IM(-2)	-0.145659	0.378437	-0.384897	0.7003	

Variance Equation

С	1.01E-05	0.000166	0.061184	0.9512
RESID(-1)^2	0.091543	0.602683	0.151892	0.8793
RESID(-2)^2	0.028001	3.019713	0.009273	0.9926
RESID(-3)^2	0.025226	2.124624	0.011873	0.9905
RESID(-4)^2	0.023465	0.634874	0.036961	0.9705
GARCH(-1)	0.361359	31.01171	0.011652	0.9907
GARCH(-2)	0.022494	40.37821	0.000557	0.9996
GARCH(-3)	0.022601	17.76659	0.001272	0.9990
P. squared	0.862001	Maan danan	dont vor	0.000120
A divisted D servered	0.003991	S D. domond		-0.000130
Adjusted K-squared	0.243130	S.D. depende	ent vai	0.013439
S.E. of regression	0.011693	Akaike info	criterion	-6.025984
Sum squared resid	0.002735	Schwarz crit	Schwarz criterion	
Log likelihood	437.4551	Hannan-Qui	nn criter.	-5.041179
Durbin-Watson stat	1.891508			

Dependent Variable: DABR Method: ML - ARCH (Marquardt) - Normal distribution Date: 11/07/12 Time: 11:43 Sample (adjusted): 4/12/2012 8/01/2012 Included observations: 112 after adjustments Estimation settings: tol= 0.00010, derivs=accurate numeric (linear)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	0.300524	0.321706	0.934160	0.3502
DER(-1)	1.000900	0.852346	1.174288	0.2403
DER(-2)	0.477764	0.676423	0.706309	0.4800
DER(-3)	0.972953	0.646576	1.504778	0.1324
DER(-4)	0.873681	0.540847	1.615394	0.1062
DABR(-1)	-0.253517	0.195765	-1.295008	0.1953
DABR(-2)	0.115277	0.195061	0.590979	0.5545
DABR(-3)	-0.342875	0.162803	-2.106076	0.0352
DABR(-4)	-0.153875	0.203461	-0.756289	0.4495
D2S	-0.001747	0.013544	-0.128966	0.8974
D2S(-1)	-0.001526	0.013258	-0.115070	0.9084
D2S(-2)	0.003608	0.014390	0.250728	0.8020
D2S(-3)	0.001534	0.004999	0.306850	0.7590
D2S(-4)	0.001090	0.003157	0.345068	0.7300
D2S(-5)	-0.000770	0.001606	-0.479379	0.6317
DR	0.031107	0.016232	1.916371	0.0553
DR(-1)	0.024681	0.011513	2.143656	0.0321
DR(-2)	-0.000720	0.009527	-0.075559	0.9398
DR(-3)	-0.002635	0.011197	-0.235303	0.8140
DR(-4)	0.013254	0.013179	1.005698	0.3146
DR(-5)	0.020412	0.017000	1.200753	0.2298
DR(-6)	0.000997	0.013328	0.074806	0.9404
DR(-7)	-0.004566	0.010274	-0.444381	0.6568
DR(-8)	-0.008427	0.009951	-0.846895	0.3971
DR(-9)	-0.001166	0.007130	-0.163594	0.8701
DR(-10)	0.013780	0.007853	1.754756	0.0793
SR_POS	0.005939	0.003634	1.634266	0.1022
SR_POS(-1)	0.002107	0.003361	0.626961	0.5307
SR_POS(-2)	-0.004350	0.003505	-1.241083	0.2146
SR_POS(-3)	0.000186	0.003528	0.052670	0.9580
SR_NEUT	-0.110611	0.180622	-0.612390	0.5403
SR_NEG	-0.470585	0.141432	-3.327283	0.0009
SR_NEG(-1)	0.289288	0.137031	2.111110	0.0348
SR_NEG(-2)	-0.329389	0.158265	-2.081256	0.0374
SR_NEG(-3)	0.101456	0.232075	0.437170	0.6620

Erasmus universiteit rotterdam 6

D2WS	-0.038983	0.039813	-0.979143	0.3275
D2WS(-1)	0.013701	0.039549	0.346438	0.7290
D2WS(-2)	0.084215	0.032735	2.572618	0.0101
D2WS(-3)	-0.012394	0.031552	-0.392812	0.6945
D2WS(-4)	0.000776	0.038210	0.020304	0.9838
D2WS(-5)	-0.029803	0.030431	-0.979369	0.3274
D2WS(-6)	-0.003088	0.024290	-0.127112	0.8989
D2WS(-7)	-0.065213	0.048930	-1 332798	0 1826
$D_2WS(-8)$	-0.086246	0.048486	-1 778757	0.0753
$D_2WS(-9)$	0.023057	0.020341	1 133547	0.2570
D2PS	0.002732	0.015098	0 180967	0.8564
D2PS(-1)	-0.026984	0.021843	-1 235368	0.2167
D2PS(-2)	-0.037135	0.021241	-1 748268	0.0804
D2PS(-3)	0.000632	0.019234	0.032873	0.9738
D2PS(-4)	-0.013047	0.016477	-0 791847	0.4284
D2PS(-5)	-0.0013047	0.016005	-0.262335	0.7931
D2PS(-5)	0.018870	0.014574	1 20/700	0.1954
D2PS(7)	0.040274	0.021652	2 275720	0.1934
D2PS(8)	0.049274	0.021032	0.080606	0.0229
D2PS(-0)	0.023134	0.023049	0.980090	0.3207
D2F5(-9)	-0.007850	0.009301	-0.838310	0.4017
D2NS(1)	0.012240	0.013170	0.929409	0.5327
D2NS(-1)	-0.008913	0.015889	-0.041/03	0.3210
D2NS(-2)	-0.01/401	0.010449	-1.001570	0.2884
D2NS(-3)	0.01/801	0.015/28	1.501018	0.1933
D2NS(-4)	-0.008525	0.010001	-0.5149/1	0.0000
D2NS(-5)	0.009038	0.012292	0./35210	0.4622
D2NS(-6)	0.006910	0.0112/2	0.613003	0.5399
D2NS(-7)	0.012375	0.015238	0.812116	0.416/
D2NS(-8)	0.014/0/	0.010330	0.900649	0.3678
D2NS(-9)	-0.00/085	0.007828	-0.905094	0.3654
D2MBP	0.760901	0.788700	0.964/54	0.3347
D2MBP(-1)	-1.5/9160	0.695567	-2.2/0321	0.0232
D2MBP(-2)	-1.254803	0.720669	-1./41164	0.0817
D2MBP(-3)	0.617510	0.696564	0.886509	0.3753
D2MBP(-4)	0.189059	0.859356	0.220001	0.8259
D2MBP(-5)	0.304178	0.601109	0.506028	0.6128
D2MBP(-6)	0.490772	0.511758	0.958994	0.3376
D2MBP(-7)	1.739172	0.803438	2.164662	0.0304
D2MBP(-8)	1.645408	0.790001	2.082793	0.0373
D2MB	-0.410533	0.298263	-1.376411	0.1687
D2MB(-1)	0.505786	0.282767	1.788705	0.0737
D2MB(-2)	0.463350	0.278223	1.665393	0.0958
D2MB(-3)	-0.307717	0.281139	-1.094536	0.2737
D2MB(-4)	0.002768	0.327607	0.008448	0.9933
D2MB(-5)	0.065007	0.201762	0.322198	0.7473
D2MB(-6)	-0.210402	0.151915	-1.384999	0.1661
D2MB(-7)	-0.442690	0.211355	-2.094532	0.0362
D2MB(-8)	-0.269585	0.207225	-1.300934	0.1933
D2MBA	2.072628	1.387447	1.493844	0.1352
D2MBA(-1)	-2.240948	1.583671	-1.415033	0.1571
D2MBA(-2)	-3.661030	1.394124	-2.626043	0.0086
D2MBA(-3)	0.650957	1.209069	0.538395	0.5903
D2MBA(-4)	-0.356215	1.447211	-0.246139	0.8056
D2MBA(-5)	-1.543885	0.864172	-1.786549	0.0740
D2IM	0.827881	0.746419	1.109137	0.2674
D2IM(-1)	2.197437	0.930789	2.360833	0.0182
D2IM(-2)	0.178048	0.727859	0.244619	0.8068

Variance Equation

С	9.64E-05	0.000740	0.130150	0.8964
RESID(-1)^2	0.045225	0.631095	0.071660	0.9429
RESID(-2)^2	0.018005	0.938832	0.019178	0.9847
RESID(-3)^2	0.020781	0.623462	0.033332	0.9734
RESID(-4)^2	0.038590	0.439174	0.087869	0.9300
GARCH(-1)	0.309327	16.19701	0.019098	0.9848
GARCH(-2)	-0.023098	17.04708	-0.001355	0.9989
GARCH(-3)	-0.020286	7.658712	-0.002649	0.9979
R-squared	0.941696	Mean depend	lent var	7.27E-05
Adjusted R-squared	0.676413	S.D. depende	ent var	0.051888
S.E. of regression	0.029516	Akaike info	criterion	-4.177040
Sum squared resid	0.017424	Schwarz criterion		-1.749808
Log likelihood	333.9142	Hannan-Quii	nn criter.	-3.192235
Durbin-Watson stat	2.342403			