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Abstract

Starting with a project and several agents willing to execute it, the
goal is to find a sequence of agents which can work on the project if the
previous agent fails. Each sequence has a total cost and probability of
finishing within the deadline. Two objectives for optimization are intro-
duced: reliability and cost. We model a bi-objective optimization problem
for solving these procurements efficiently. First, we propose an alternative
for the traditional weighted sum method to find a Pareto front. Further-
more, an adapted branch and bound algorithm is proposed to compete
with the adaptive weighted sum method in terms of quality and computa-
tion time. In the experiments we present the running times on which the
number of agents has huge influence. The discussion handles the shape
of the Pareto front and discusses its dependence on the parameters. In
terms of both cost and time efficiency, our algorithm offers a useful tool
for solving procurement problems.

1 Introduction
If a project to allocate services or goods is started, there can be several parties
willing to execute the job. An auction is a frequently used method to assign
a project to an agent, which will be the winning company to execute the job.
Auctions give transparency and provide the auctioneer with the best possible
offers. The goal of this paper is to provide a tool for the auctioneer that will
help finishing the project within time against minimum cost.

The auctioneer imposes a deadline D before which the agents should finish
the project. Each agent participating in the auction provides information on
the cost of executing a task (ci), the deadline within the task can be executed
(di) and the backup cost for standby(bi) while reliability (ri) is available to the
auctioneer based on historical information from previous contracts. Reliability
is the probability that an agent will finish before the deadline di. The main
issue in procurement, which happens way too often, is that an agent might
fail to finish within the deadline di. Then, usually a new auction is started to
determine the next possible agent to execute the task. These practices are very
time consuming and do not contribute to the efficiency of our economy.

In this paper we aim to develop a method to determine a sequence of agents
in advance where the next agent can takeover if one might fail. Such a sequence
of winners provides a high reliability of finishing within time (D) although, since
backup fees are payed, a higher total cost is incurred compared to hiring one
agent. When two objectives are optimized simultaneously, cost and reliability
in this case, there might not be one single optimal solution to both objectives.
The goal is to find a number of solutions which give a trade-off between total
cost and reliability.

In Section 2 we give a brief introduction of the variables used and the goal
of our research. Section 3 discusses the previous research in this field and bring
other methods to our attention. Then we present a new method called the
adaptive weighted sum method in Section 4. The main technique of this method
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is based on varying the weights of the objectives to obtain different optimal
solutions. The actual algorithms are carefully explained in Section 5 and 6.
Both the qualitative and quantitative results appear in Section 7 and Section 8,
after which we conclude with our final remarks.

Own contribution The field of multi-objective optimization is well explored,
however, it is not very often applied to procurement problems. Compared to
existing approaches, where mostly single-objective optimization is performed,
we want to include multiple objectives in the problem. Our aim is to develop
one or more methods to solve a bi-objective procurement problem. We lay
emphasis on the understandability of the methods so that they can be easily
used or explored for further research.
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2 Detailed problem description
When procurement of a new project occurs, several agents apply to complete
the task. All agents provide the auctioneer with parameters such as deadline,
reliability and cost for the specified project. The probability of finishing in time
should be verifiable by the auctioneer by checking historical data on the agent.
The auctioneer can pick one agent of choice, however, this might be difficult
due to large variation of the parameters. It is even more difficult to determine
a sequence of agents in which the following agent in line can take over if the
previous agent fails. Our problem of finding an optimal sequences of agents has
the following parameters.

The parameters of this problem are cost (ci), deadline of agent (di), backup
cost (bi), reliability (ri) and project deadline (D). The execution cost ci of an
agent is incurred when the agent starts working on his assignment. Since it
might happen that this agent fails to finish within his proposed deadline di,
another agent is put standby which yields him the backup cost bi. Based on
historical data, one can assign a probability ri of finishing within time di to
each agent.

Two objectives are present, J1 which correspond to one minus the reliability
of a sequence and J2 which is the total cost of a sequence and . The aim is to
use bi-objective optimization methods to minimize (J1, J2), this means finding
a sequence of agents that maximizes the total reliability while the total cost is
minimized. The constraint on the optimization is that the optimal sequences
can finish the project within the deadline D.

The set X ⊂ Rn of all feasible solutions is called the decision space. Since
there are two objective functions to be minimized, J1 and J2, the objective space
is two-dimensional. This is mathematically represented as Ji : Rn → R2(i =
1, 2). A graphical representation of the relation between decision and objective
space is given in Figure 1.

Figure 1: Relation between decision and objective space

The goal is to find a sequence of agents for which cost is minimized and
reliability is maximized. When optimizing two objectives, an optimal solution
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for both at the same time is mostly not feasible. What happens is that several
optimal solutions can be found, each having a trade-off between cost and reli-
ability. This is depicted by the dots in the objective space in Figure 1, each
representing an optimal solution to the bi-objective optimization. In Section 3
we will consider several possible methods for this optimization.
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3 Literature review on bi-objective optimization
The area of multiobjective optimization, well explored by Ehrgott (2008), has
grown a lot over the past decades. The goal in multiobjective optimization is
to find the so-called Pareto Front, defined below, consisting of non-dominated
solutions. A solution is dominated if better values for at least one objective can
be found. For a non-dominated solution it is not possible to improve one objec-
tive without worsening another. A solution strictly dominates another solution
if all objective values are better, this is written as y ≺ y′ which means that
y1 ≤ y′1 and y1 ≤ y′2 where at least one inequality is strict. All non-dominated
solutions constitute the Pareto Front which is formally defined below.

Definition 1 (Pareto optimality fromMarco Laumanns and Zitzler (2005)).
Let f : X → F where X is called decision space and F ⊆ Rm objective space. The
elements of X are called decision vectors and the elements of F objective vectors. A
decision vector x∗ ∈ X is Pareto optimal if there is no other x ∈ X that dominates
x∗. For x to dominate x∗, denoted as x � x∗, it must be true that fi(x) ≤ fi(x∗) for
all i = 1, . . . ,m and fi(x) < fi(x∗) for at leaste one index i. Note that the inequalities
are inverted if a maximization instead of minimization problem is present. The set of
all Pareto-optimal decision vectors X∗ is called the Pareto set. F∗ = f(X∗) is the set
of all Pareto-optimal objective vectors and is denoted as the Pareto front.

Finding the Pareto front is our main goal and can be done in many different
ways. We select the most popular and interesting methods to compare their
features and advantages. One of the oldest but widely used methods to solve a
problem with multiple objectives is to transform the objectives into one single
objective which is easier to handle. The weighted sum method does this by
assigning weights to each objective function and varies them to obtain multiple
solutions. Although this method is very insightful and easy to understand,
it is not able to find solutions on non-convex parts of the frontier. Another
disadvantage of the weighted sum method is its inability to find Pareto efficient
solutions that are equally spaced. It is common that solutions are mostly found
around the inflection points of the frontier. The even distribution of Pareto
efficient solutions is desirable because each solution contains its own piece of
valuable information about the problem. If all solutions are grouped together
on parts of the frontier, there will be only information on those groups but not
on the parts of the frontier where no solutions are present.

Marglin (1967) developed the ε-constraint method where a chosen objec-
tive is minimized with a constraint placed on the other objective functions,
for example Jk ≤ ε where Jk is the k-th objective function, hence the name
epsilon-constraint method. The idea of this method is iteratively decreasing the
constraint bound ε by a pre-defined constant δ. Since only one solution can
be found in each iteration, δ should be chosen small enough to avoid missing
any Pareto-optimal solutions. The necessity to choose such a constant is the
main difficulty and drawback of this method. The advantage of the ε-constraint
method is that it is capable of finding Pareto efficient solutions in non-convex
regions. To get around the difficulty of finding proper δ, Marco Laumanns and
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Zitzler (2005) proposed an adaptive scheme for the epsilon constraint method
with the idea to make use of the information about the objective space as soon
as it is available, which is during the search process. In this way, δ can be
adjusted according to the solutions already found. Unfortunately, they indicate
that the running times would exponentially increase with the number agents
which makes it less useful for our problem.

Another popular method in optimization is the evolutionary approach. Evo-
lutionary algorithms can also be used for generating a Pareto front such as
developed by Shukla and Deb (2005) and Bentley and Wakefield (1997). The
steps performed in multi-objective evolutionary algorithms are similar to the
steps performed in the traditional single objective variant. In practice, the
evolutionary method stores the optimal solutions, assigns fitness values based
on Pareto dominance and removes solutions that are almost similar to reduce
the number of non-dominated solutions without losing characteristics of non-
dominated points. The advantage is an evenly distributed Pareto front, however,
a drawback is the much longer running time compared to the other methods.

Normal Boundary Intersection (NBI) is developed by Das and Dennis (1996).
Unlike the weighted sum method, NBI is capable of finding a uniform spread of
Pareto points by using a scalarization scheme. The original technique is based on
finding Pareto points on a continuous Pareto front. Opposite to that, the Pareto
front containing solutions to our problem will be discrete. The discontinuity of
our Pareto front causes that only customizations of NBI can be used, which are
complex to implement for our specific case.
Several methods have been briefly discussed, each with its own advantages and
disadvantages. Despite the drawbacks of the weigthed sum method, we choose
an adaptive variant which is actually able to find solutions on concave parts of
the Pareto front but retains its simplicity. The concept and generic steps of this
approach are explained in Section 4.
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4 The adaptive weighted summethod for bi-objective
optimization

Finding a set of Pareto efficient solutions is the goal of multiobjective optimiza-
tion. The definition of Pareto optimality is given in Definition 1 in Section 3 but
will be explained here for the bi-objective case.

A solution is Pareto efficient if it is non-dominated. For a solution to be
non-dominated, no other solution can improve one objective without worsening
another. Our objective functions are J1 and J2 for reliability and cost respec-
tively. Mathematically, if there is no x′ ∈ X such that J1(x′) ≤ J1(x) and
J2(x′) < J2(x) or that J2(x′) ≤ J2(x) and J1(x′) < J1(x) , the solution is
Pareto efficient. We define x∗ as a Pareto efficient solution which implies that
z∗ = J(x∗) is a non-dominated point. The set of all z∗ is called the Pareto front
or efficient frontier, which is exactly what we are looking for.

Generating the Pareto front can be done using several methods which are
listed in Section 3. One of the simplest among them is the weighted sum method.
This method uses weight functions to reflect the importance of each objective:
2∑
i=1

λiJi(x), where λi are the weights assigned to each objective function. Due

to its simplicity it has some drawbacks such as the need to choose weights
subjectively, inability to find solutions in concave regions, unevenly distributed
solutions and the fact that small changes in λ may cause enormous changes in
the objective vectors. That is why this method is not suitable for our purposes;
it cannot generate a complete Pareto front.

To overcome the inability of finding solutions in concave regions, we pro-
pose the adaptive weighted sum (AWS) method developed by Kim and de Weck
(2005). In the AWS method the weights are not predetermined but they evolve
according to the Pareto front of the problem. In Figure 2 we depicted the differ-
ence between the weighted sum method and the adaptive weighted sum method.
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Figure 2: Comparison of WS with AWS method

As shown in Figure 2a, the weighted sum method primarily generates solu-
tions near the inflection and anchor points which clearly visualizes a disadvan-
tage of this method.

The AWS method in Figure 2b defines regions by setting each pair of two
consecutive Pareto points as the limits of the region. In 2c two additional
inequalities to define the search space are added to each region. By optimizing
for different λ we obtain new solutions in Figure 2d. From here, the process is
repeated iteratively until a given termination criterion is met.

As stated above, the AWS method does not have the drawbacks mentioned
earlier. It is capable of finding solutions on concave parts of the frontier which
are more evenly distributed than with the traditional weighted sum method.
We cannot guarentee equally spaced Pareto points since the Pareto front is dis-
continuous in our case. However, the AWS method removes nearly overlapping
solutions and focusses on regions where no solutions have been found yet. All
steps of the AWS method will be explored in detail in the next section.
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4.1 Steps for the adaptive weighted sum method
The AWS method consists of 7 steps which are discussed in the section. In these
steps we make use of the constants ninitial,C,ε and δJ which will be explained
at the time of use.

Step 1: We define x∗i as the optimal value for objective i. Then, the utopia
point JU is defined as:

JU = [J1(x∗1), J2(x∗2)]

The nadir point is exactly the opposite of the utopia point and it is defined
as:

JN = [J2(x∗1), J1(x∗2)].

Now that the utopia and nadir point are defined, we can normalize the
objective functions in the objective space by:

Ji =
Ji − JUi
JNi − JUi

.

The normalization is required to ensure that both objective functions have
the same order of magnitude. For convenience, we will use Ji as the notation
for our objective functions and introduce sfi as a scaling factor defined as:

sfi =
Ji

Ji
.

Step 2: To obtain initial solutions to start the AWS method we use the
traditional weighted sum method with different λ to minimize λ

sf1
·J1+ (1−λ)

sf2
·J2

under the deadline constraint. Our problem is described in detail in Section
5.1. We solve the problem using branch and bound which is further explained
in Section 5.2.1. The weighting factors λ are based on ninitial which is the step
size that should be small, 3 for example, such that not too many iterations are
performed. Then, the weighting factors are defined by

4λ =
1

ninitial
,

which gives λ = {0,4λ, 24λ, . . . 1}.

Step 3: In step 2 we have acquired a few Pareto points using the traditional
weighted sum method. We sort these Pareto points in ascending value for cost
and draw a straight line between each two consecutive points. The straight line
drawn constitutes a segment which is included in set LA. Solutions nearly over-
lap if the euclidian distance between two solutions is smaller than the a chosen
constant ε. If this occurs we delete all neighbouring solutions and their corre-
sponding segments except for the one with lowest cost. The remaining segments
constitute set LF .
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Step 4: The Pareto points that form the remaining segments LF in step
3 also define the vertices of regions, for example points P1 and P2 in Figure
3. Each search region has a rectangular shape with sides parallel to the axis
and two vertices defined by two consecutive Pareto points the forms a segment.
Each region has to be refined a number of times depending on the length of the
segment that defines the region. If a segment is large, it needs to be refined
more. The number of refinements is given by:

ni = round(C
li
lavg

)

for the i-th segment. Here, li is the length of segment i, lave is the average length
of all remaining segments in set LF and C is a constant that determines the
number of refinements. If ni is less then or equal to one, no further refinements
are required on this segment. Otherwise, go to the next step.

Step 5: The size of the regions from step 4 to search for new solutions is
decreased in this step. A piecewise linearized line connects the two endpoint
solutions P1 and P2 of segment i. the angle to the horizontal shown in Figure
3b is computed by:

θ = tan−1(−P
y
1 − P

y
2

P x1 − P x2
)

where P x1 is the first coordinate of the end point P1. Now we introduce the
offset distance δJ (shown in Figure 3b); only Pareto points with an euclidian
distance to another Pareto points that is larger than constant δJ are considered.
Then, δ1 = δJcosθ and δ2 = δJsinθ. From this we can compute the new bounds
for the region to be refined. The lower and upper bounds on J1 are given by
yL = P y1 + δ2 and yU = P y2 − δ2. The bounds on J2 are given by xL = P x2 + δ1
and xU = P x1 − δ1.

Step 6: Using the lower and upper bounds from step 5, we add new inequal-
ity constraints to the original problem and conduct sub-optimization with the
weighted sum method. The problem is then stated as:

min λ J1(x)
sf1(x)

+ (1− λ) J2(x)sf2(x)

s.t.

original constraints (as defined in Section 5.1)

xL ≤ J1(x) ≤ xU

yL ≤ J2(x) ≤ yU

Here, sf1 and sf2 are scaling factors for J1 and J2 respectively. These scaling
factors ensure that each objective has the same order of magnitude in a region
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and are defined in step 1. The weighting factors equal λ = {0,∆λ, 2∆λ, . . . 1} by
using ni from step 4 and ∆λ = 1

ni
. The unique solutions from the optimization

are added to the set Pareto points.

Step 7: Sort the Pareto points by ascending cost and create segments be-
tween each two consecutive Pareto points. If all segments have a length less
than δJ , terminate. Otherwise go to step 3.

Figure 3: Identify and refine region by AWS method

The adaptive weighted sum method described above is a general method
for solving a bi-objective optimization problem. In Section 5 we give a de-
tailed problem description, propose a branch and bound method to solve the
optimization in step 6 and apply the AWS method to our problem.
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5 Adaptive weighted sum method for procure-
ment

5.1 Integer program for finding an optimal sequence of
agents

In step 3 and step 6 of the adaptive weighted sum method in Section 4.1 we
perform an optimization to find an optimal sequence of agents. In this Section
we propose a method to solve this optimization problem. All input parameters
for this problem, namely ci, di, bi and ri, are described in Section 2. The
variables and objectives are declared below.

The decision variable xij is a binary variable that determines whether an
agent is used in the sequence and at what place. m is the total number of
agents we can put in a sequence. To vary the importance of each objective
function, we use the weights λ which are defined in Section 4.1.

In Section 4 we have used Ji for the i-th objective. For our specific problem
we explicitly define two objectives J1 and J2 which are aggregated into one
objective function: λ

sf1
· J1 + (1−λ)

sf2
· J2.

Objective J1 constitutes the probability of finishing within the deadline D
of a sequence. Note that maximizing the probability of succes is equal to mini-
mizing the probability of failure. The probability of failure for agent i is equal
to (1 − ri). Therefore, the probability of failure of a sequence of agents, that
is not finishing within the deadline, is defined as the product of (1− ri) for all
agents i in the sequence. Consequently, the probability of failure of a sequence
is given by:

J1 =

m∏
j=1

m∏
i=1

(1− rixij). (1)

To determine the expected cost of a sequence, we propose the second part
of the objective function. The value

m∑
j=1

m∑
i=1

(xijci + xij+1bi)

defines the sum of all execution and backup costs incurred by a feasible solution
x. However, there is only a probability of

j∏
p=2

m∑
k=1

xk,p−1(1− rk)

that the j-th agent will actually provide service. The product of the cost and
chance of execution gives us the total expected cost. This is given by:

J2 =

m∑
j=1

m∑
i=1

(xijci + xij+1bi)

j∏
p=2

m∑
k=1

xk,p−1(1− rk). (2)
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A representation of these objectives in the objective space is given in Figure 3,
the costs are on the x-axis while (1 - reliability) is on the y-axis.

In step 6 of Section 5 we perform the following problem optimization prob-
lem.

min λ
sf1

m∏
j=1

m∏
i=1

(1− rixij) + (1−λ)
sf2

m∑
j=1

m∑
i=1

(xijci +xij+1bi)
j∏
p=2

m∑
k=1

xk,p−1(1− rk)

s.t.

m∑
i=1

dixij ≤ D for j = 1, . . . ,m (3)

m∑
i=1

xij ≤ 1 for j = 1, . . . ,m (4)

m∑
j=1

xij ≤ 1 for i = 1, ...,m (5)

m∑
i=1

xij ≥
m∑
i=1

xi,j+1 for j = 1, ...,m− 1 (6)

xij ∈ [0, 1] for i = 1, ...,m and j = 1, ...,m (7)

yL ≤ J1(x) ≤ yU (8)

xL ≤ J2(x) ≤ xU (9)

Constraint 3 ensures that the total deadline is not exceeded. The 4-th limits
the number of agents on a place in the sequence to one. The 5-th constraint
makes sure that an agent cannot be used more than once in the sequence.
Constraint 6 is there to fill up the sequence from the start. Constraint 7 sets
the variable xij as a binary value.

In Section 5.2.1 we propose a branch and bound algorithm for solving the
optimization problem above. Both constraint 8 and 9 are the bounds on the
region defined in step 6 of Section 4.1. These constraints assure that the branch
and bound algorithm in Section 5.2.1 is only examining the current regions
search space.

5.2 Algorithm
5.2.1 Branch and bound

To solve the integer program in Section 5.1, we use a branch and bound algo-
rithm. Each node of our branch and bound tree corresponds to a sequence of
agents which is depicted in Figure 4. The starting node is an empty sequence
S of zero agents, while all nodes one level below contain one agent. All steps of
the branch and bound algorithm are carefully explained below.
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1. Branch and bound (for pseudocode see Algorithm 4 in the Appendix).

(a) Compute general lower bound and general upper bound. The bounds from
constraint 8 and 9 are used to define the search space. The general
lower bound is defined as LBg = λ yU

sf1(x)
+ (1 − λ) xL

sf2(x)
, while the

general upper bound is defined as UBg = λ yL
sf1(x)

+ (1− λ) xU

sf2(x)
.

(b) Start with a set S containing all sequences with one agent, that is: {1, 2, 3, . . . ,m}.
If a sequence contains n agents, the depth level in the branch and
bound tree is n (see Figure 4).

Figure 4: Branch and bound tree for 3 agents

(c) First we define the set B which contains the possible lower and upper
bounds for a node. For each sequence at current depth level, that is,
at each node:

i. Calculate lower bound (LB) of the node (for pseudocode see Algo-
rithm 5 in the Appendix). Let sc be the sequence of agents at the
current node and add this sequence to the set S. From all agents
not in sc we select the one with minimum cost, append it to sc
and call the new sequence slbcost. Then, we create a sequence
starting with the agents in sc and append agents to this sequence.
Adding these agents is a problem equal to the knapsack problem
where you choose, from a given set of objects with given volume
and profit, the most profitable subset that fits into a knapsack of
finite capacity. Many ways of solving this particular problem are
known, we chose to use dynamic programming which is shown in
Algorithm 2 in the Appendix. We set di as volume, −ln(1−ri) as
profit and D as capacity constraint to find the sequence, starting
with sc, with maximum reliability within D. The natural loga-

rithm is necessary since we want to minimize
m∏
j=1

m∏
i=1

(1 − rixij)

which is equal to exp(
m∑
j=1

m∑
i=1

ln(1 − rixij)). The sequence which

is the result of the knapsack algorithm is denoted by slbrel. The
lower bound is equal to λJ1(slbrel)sf1(x)

+ (1−λ)J2(slbcost)sf2(x)
where Ji(s)

15



is the value of objective Ji for sequence s. There are two rea-
sons why this is a lower bound for the current node. First, the
probability of failure for sequences starting with sc is minimized.
Consequently, there cannot be a child of the current node with
lower failure probability (= higher reliability). Secondly, the cost
of a sequence starting with sc is minimized; there cannot be a
child of the current node with lower cost. Finally, we add the
lower bound to the set B.

ii. Calculate possible upper bound (UB) for this node, that is, the ob-
jective value λ J1(x)

sf1(x)
+ (1−λ) J2(x)sf2(x)

for the sequence of agents at
this node sc. Add this value to the set B.

(d) For all solutions at this ’depth level’, find a solution that satisfies the
deadline constraint and has minimum cost. This solution will give the
upperbound at this node and is denoted by UBmin

(e) For all new solutions, if a solution satisfies: LB > UBmin or LB >
UBg(the general upper bound) or deadline > D, then:

i. prune this node including its children delete and remove the corre-
sponding values from S and B

(f) Add new sequences to set S. For each sequence at current ’depth level’,
append an agent which is not yet in the sequence. New sequences
are created for all nodes on which is branched.

(g) If any new sequences are added, go to step (c). Else go to step (h).

(h) Find the minimum upper bound, this is the optimal value of the
branch and bound tree. The corresponding cost and reliability are
the optimal solution to this iteration of the adaptive weighted sum
method.

The proposed branch and bound algorithm finds one solution at a time. There-
fore, it is necessary to run the branch and bound algorithm for different λ and
different regions. This is exactly what the adaptive weighted sum method does
in Section 5.2.2.

5.2.2 Adaptive weighted sum with branch and bound

The adaptive weighted sum method solves the branch and bound algorithm for
all regions and varying weights such that the Pareto front will be generated.
The two steps below explain how the solutions are obtained.

1. Calculate the sequence with lowest cost and sequence with highest relia-
bility within D.

(a) Lowest cost: find agent with lowest cost whose deadline is within D.

(b) Highest reliability: execute dynamic programming algorithm (see Al-
gorithm 1 in the Appendix) to solve the knapsack problem with di
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as volume, −ln(1− ri) as profit and D as capacity constraint to find
the sequence with maximum reliability within D. The natural loga-

rithm is necessary since we want to minimize
m∏
j=1

m∏
i=1

(1− rixij) which

is equal to exp(
m∑
j=1

m∑
i=1

ln(1− rixij)).

(c) The pseudocode of the knapsack algorithm is given in Algorithm 2
in the Appendix.

(d) The cost and reliability of these sequences are added to the set of
Pareto points.

2. Adaptive weighted sum method, generally explained in Section 4.1 (for
pseudocode see Algorithm 3 in the Appendix).

(a) Calculate scaling factors to ensure that both reliability and cost are
in the same order of magnitude. They are defined in step 1 in Section
4.1.

(b) Sort Pareto points for increasing cost and calculate the lengths li
between each consecutive set of points. If li < ε (nearly overlapping),
delete Pareto point with higher cost.

(c) Calculate average segment length lave.
(d) Calculate the number of refinements on each segment ni = round(C li

lave
).

(e) Calculate the corresponding lambda’s for this segment according to
4λ = 1

ni
.

(f) According to step 5 in the AWS algorithm in Section 4.1, calculate
the bounds to define the search space.

(g) For each λ in λ = [0,4λ, 24λ, . . . , 1], run the branch and bound
algorithm described in Section 5.2.1.

(h) If no new solutions are found, terminate. Else go to step 2(b).

All steps introduced above have also been written in detailed pseudocode for
easy reference. In these pseudocodes, several standard functions are used. The
function RL is defined by equation 1, expcost by equation 2 and deadline is

given by
m∑
j=1

m∑
i=1

dixij . The function knapsack is a dynamic programming algo-

rithm to find the best combination of weights to achieve the highest reliability
satisfying the capacity constraint.

The method described above is able to find a Pareto front in every case.
However, the running time of the algorithm is an important factor in practice.
Every different lambda creates a corresponding branch and bound tree which
has to be searched through all the way. Depending on the density of Pareto
points on the frontier the algorithm can be very slow. We provide a solution
for the slow running time by proposing a new method of solving the problem
in the next section. This method is also able to find the complete Pareto front,
but searches the branch and bound tree only once.
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6 A new branch and bound algorithm for finding
the Pareto front

In this section we propose to find the Pareto front by using a modification of
the original branch and bound algorithm (see Section 5.2.1) instead of the AWS
method from Section 5.2.2. The difference between the two methods is that the
AWS method searches the branch and bound tree several times depending on
4λ = 1

ni
(Section 5.2.2, step 2e) while the new branch and bound algorithm

searches the tree only once. It uses a global upper bound to find out if nodes
can be optimal and discards them if necessary.

The new branch and bound algorithm operates by constructing nodes which
correspond to sequences of agents. The starting node is an empty sequence of
zero agents, while all nodes one level below contain one agent. We will show
that all Pareto solutions are found within one exploration of the branch and
bound tree. The two steps below describe this method in detail.

1. Modified branch and bound (for pseudocode see Algorithm 6in the Ap-
pendix).

(a) Start with a set S containing all sequences with 1 agent, that is:
{1,2,3...,k}. If a sequence contains n agents, the depth level in the
branch and bound tree is n (see Figure 4). The total number of
agents is m.

(b) Calculate global upper bound. We use the knapsack algorithm (for
pseudocode see Algorithm 2 in the Appendix) to determine a se-
quence of agents smaxr that has highest reliability satisfying the
deadline constraint. Now that we know the combination of agents
with highest possible reliability, we want to get the order with the
lowest cost. Since the cost of a sequence does depend on the order
of agents, we use another branch and bound algorithm to find the
optimal order. Solving the new branch and bound algorithm only for
the agents in sequence smaxr yields a lowest cost for using all agents.
The lowest cost is set as the minimum upper bound UBmin, a global
bound, in the algorithm.

(c) For each sequence of agents at current depth level:

i. Calculate lower bound LB, that is, the objective value J2 which
equals the expected cost for the sequence at this node. Each
child has more agents than the current node and more agents
implies higher cost. Therefore, the cost of the current sequence
is a lower bound for the current node.

ii. Calculate the deadline of the sequence. That is the sum of all
deadlines of the individual agents.

(d) For all nodes explored in step (c) that satisfies LB > UBmin from
step (b) or deadline > D, delete corresponding sequence from set S
and prune this node and subnodes.
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(e) Add new sequences to set S. For each sequence at current ’depth
level’, append an arbitrary agent which is not yet in the sequence.
New sequences are created for all nodes on which is branched.

(f) If any new sequences are added, go to step 1(c). Else go to step 2.

2. Calculate cost and reliability for all sequences from the nodes we branched
on.

(a) For all sequences in S, calculate the corresponding solutions contain-
ing cost, reliability and deadline.

(b) Get Pareto points from these solutions:

i. Calculate the values of J1 and sort them.
ii. For all solutions the share the same reliability, determine lowest

cost and discard other solutions.
iii. If the solution from step (ii) satisfies the deadline and the cost

is smaller than that of the previously added Pareto point, add
this solution to the set Pareto points. If the set Pareto points is
empty, add the solution obtained in step (ii).

iv. Go to step (i) until all solutions are examined.
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6.1 Correctness of the algorithm
Next we will prove that this algorithm finds all the Pareto points.

An important fact is that the reliability of a sequence of agents does not
depend on their order, however the total cost does. Upper bounds and lower
bounds are computed according to step 1(b) and 1(c) in the algorithm above.
The lower bound is the cost of the current sequence. The upper bound is a
global bound which is equal to the lowest cost for a sequence with maximum
reliability under the deadline constraint.

Firstly, the knapsack algorithm with deadline constraint (for pseudocode
see Algorithm 2 in the Appendix) is used to find the optimal combination of
agents in terms of reliability called Smaxr. Subsequently the branch and bound
algorithm finds an optimal ordering of the agents in Smaxr. This ordered set
will be named Sopt. The obtained lowest cost of Sopt is set as upper bound,
UBmin, for all nodes in the tree.

Now notice that each sequence in the tree can have at most a reliability
equal to that of Sopt since this has been optimized by the knapsack algorithm.
Therefore, if the cost of a sequence X is higher than the cost of sequence Sopt,
sequence X and all sequences starting with X can be safely neglected in our
search (see step 1(d) in the algorithm). Since all other points are examined
and tested for domination, we are sure that the non-dominated points found
actually constitute the complete Pareto front.

For easy reference, we have included the pseudocode for the new branch and
bound method in Algorithm 6 in the Appendix.
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7 Numerical results

7.1 Data description
In this section we will explain how we generate data sets to test our algorithms
with. Before executing the algorithms explained in Section 5 and Section 6, we
define the paremeters D and info.

D is the total deadline and info is the set of data containing the cost (ci),
deadline (di), backup cost (bi) and reliability (ri) for each agent. The data set
is randomly generated and reliability is dependent on the execution cost and
deadline. The pseudocode for generating data is given in Algorithm 7 in the
Appendix. This algorithm generates the four parameters mentioned above for
one agent at a time.

To see how the Pareto front differs among different data instances, we have
plotted the solutions of five randomly generated intances (by Algorithm 7 in

Appendix) in Figure 5 with D �
m∑
i=1

di where m is the total number of agents

in the system.
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Figure 5: Pareto fronts for five different instances generated with the new branch
and bound method

It is clear that the graphical representation of the Pareto fronts heavily
depends on the original data. However, they show the similarity that many
Pareto points are found in areas with high reliability which will be explored in
detail later on.
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7.2 Effect of the deadline constraint on running times
Running times of an algorithm are always interesting to users since large running
times may make an algorithm not useful in practice. The running times are
particularly dependent on the number of agents and the deadline constraint.
For varying D, the running times for both the AWS method and new branch
and bound algorithm are shown in Figure 6. To test the new branch and bound
method we use a data set containing 100 different data instances with 10 agents
each. For the adaptive weighted sum method we use only 10 different data
instances with 10 agents each due to the large running time. The deadline
constraint D is varied from 100 to 1000 with increments of 100.

100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Deadline constraint in days

A
ve

ra
ge

 r
un

ni
ng

 ti
m

e 
in

 s
ec

on
ds

Average running time against deadline constraint for AWS (red) and new Branch and Bound (blue)

 

 

Adaptive weighted sum
New Branch and Bound

Figure 6: Average running time for the AWS method and new branch and bound
method with D = 100, 200, . . . , 1000

To see the large difference in running times, the y-axis has a logarithmic
scale. In terms of performance, the modified branch and bound method is on
average more than ten times faster than the adaptive weighted sum method.
Due to the way the Pareto front is computed, the solution quality for the new
branch and bound method is always equal to or better than that of the adaptive
weighted sum method. This is shown for an abitrary data instance in Figure 7.
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Figure 7: Pareto front on logaritmic scale for both the AWS and B&B method

Combining the results obtained above, we can conclude that the adaptive
weighted sum method performs worse in both running time and solution qual-
ity. Therefore, we will discard the adaptive weighted sum method for now and
continue using the modified branch and bound algorithm for our experiments.

7.2.1 Numerical experiments with the new branch and bound algo-
rithm

As can be seen in Figure 6, the variation in running time for different D is
more than four orders of magnitude among the different values of the deadline
constraint. This could be due to the number of Pareto points that are found
for a specific D. To explore this hypothesis, a graphical representation of the
number of Pareto points against deadline constraint is given in Figure 8.
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Figure 8: Average number of Pareto points for 100 data instances with D =
100, 200, . . . , 1000

From the comparison of Figure 6 and 8 we can conclude that the number
of Pareto points to find has influence on the running time of the algorithm.
However, two characteristics are remarkable. Firstly, the absolute number of
Pareto points on Pareto front grows slower when the deadline is higher, while
the running times increase almost exponentially. Secondly, the running times
eventually decrease again when the deadline constraints gets large but the num-
ber of Pareto points is always increasing. The concave shape of Figure 8 is easily
understood by taking note of the fact that each set of agents has a maximum

number of Pareto points. When the deadline constraint satisfies D >
m∑
di

i=1

for

all data sets, the slope will be zero and the graph is completely horizontal. To
explain the peak in Figure 6, we should look at Figure 9 which is generated
using one data set with ten agents. Figure 9 contains the ten different Pareto
fronts for each D with particularly high running times.
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D 100 200 300 400 500 600 700 800 900 1000
seconds 0.0053 0.0163 0.2435 0.6256 16.61 225.4 5708 43.78 0.5915 1.238

nodes explored 54 218 2543 4878 24538 102706 383565 32559 1703 1837

Figure 9: 10 Pareto fronts for equal agents with D = 100, 200, . . . , 1000

Not many Pareto points are present for a small deadline constraint since only
a few agents are included in the optimal sequences. As D increases, the
reliability also increases. For D between 500 and 800, this results in quite a
large expected cost for the maximum reliability. Since the expected cost for
maximum reliability is the upper bound for the modified branch and bound
algorithm, it means that all points with cost below this bound have to be
explored. This is the cause for a large running time; it is due to a high upper
bound which in turn is the result of a high deadline constraint. For D = 900
and 1000 the upper bound is smaller and thus the running times are
considerably less.

The region where the reliability is high is of most interested to us, since high
reliability is desirable in practice. In Figure 10 we take a closer look at the
region where the reliability is high, that is, a probability of finishing of 98% or
higher.

25



110 120 130 140 150 160 170
0

0.005

0.01

0.015

0.02

Expected cost

1 
−

 r
el

ia
bi

lit
y

High reliability region of 1 − reliability against expected cost

Figure 10: High reliability region of Figure 9 of ten Pareto fronts with D =
100, 200, . . . , 1000

A lot of Pareto points can be found in the region where the reliability is high.
Actually, for the Pareto fronts in Figure 10, 138 out of 219 Pareto points have
a reliability higher than 98%. That is more than 63% of the Pareto points for
this specific data instance. The fact that most Pareto points are found in
regions with high reliability is due to the nature of the initial problem. The
advantage of chosing a sequence of agents over one agent becomes readily
apparent with the following example. Imagine a sequence of just four different
agents with a propability of finishing within di of 0.7 each, the result is an
overal reliability of 99.19%.

7.3 Effect of the number of agents on running times
The speed of the Branch and Bound algorithm depends heavily on the number of
agents in the data set. Table 1 gives us an insight in the increase in running time.

These running times are tested for only one instance of agents with D �
m∑
i=1

di.

The deadline constraint is chosen to be large to see the effect of the number of
agents independently.
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Number of agents Running time in seconds
10 0.8143
15 17.459
20 32.51
30 653.3
40 8.541 · 103

Table 1: Running time against number of agents without deadline constraint

It is also interesting to test the dependency of the running time on the
number of agents for a fixed deadline constraint. For this case we use 1 to 15
agents per instance. Since running times for an instance with 15 agents can
go up to ten hours, we chose to examine only 20 different instances for each
number of agents. In Figure 11 we display the average, median, minimum and
maximum running time against the number of agents in the instance.
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Figure 11: Running time on a logarithmic scale against number of agents with
D = 500

For larger amounts of agents, the curve seems to follow an exponential in-
crease. It is also remarkable that the minimum running time remains short
although the number of agents goes up. Clearly, the probability that running
time is high depends on the number of agents. However, the difference between
running times increases for more agents per instance.

7.4 Effect of the cost and reliability parameters on run-
ning times

To see how the combination of cost and reliability effect the running time, we
computed the running times for nine different instances combining different cost
and reliability. All data instances contain 10 agents and the running time is an
average of 1000 different instances for D = 400 (Figure 12) and 100 different
instances for D = 500 (Table 2).
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Figure 12: Analysis on running times with different parameters for cost and
reliability with D = 400

Low RL (r̄ = 0.45) Medium RL (r̄ = 0.65) High RL (r̄ = 0.80)

Low cost (c̄ = 50) 2.1179 | 0.3436 1.4963 | 0.2266 13.9389 | 0.2566
Medium cost (c̄ = 100) 2.6270 | 0.3258 1.0012 | 0.1092 1.4115 | 0.1295
High cost (c̄ = 150) 0.8482 | 0.3354 0.2017 | 0.0980 0.6386 | 0.0863

Table 2: Average and median running times in seconds for different instances
with D = 500

The cost parameters are defined as a random discrete number between 1 and
100 plus a, with a = 0, 50 or 100 for low, medium and high cost respectively.
Reliability is defined as a random continuous number between 0 and 0.4 plus
b, with b = 0.25, 0.45 or 0.6 for low, medium and high reliability respectively.
The average di = 100, so the average total deadline is 1000 for all 10 agents.

It is clear that an overall higher cost decreases the computation time signif-
icantly. This behaviour is explained by backup costs remaining constant while
execution costs change in the experiment. When execution costs get higher,
backup costs will have less impact wherefore the algorithm needs less time to
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determine the agents in the solution.
Another remarkable feature of this data is that the running time is lowest

for medium reliability. The standard deviation of the reliability is equal, namely
0.115 for each testing case, low, medium and high so this cannot be the cause.
However, for the high reliability case the standard deviation is percentually
smaller than that of the low reliability case. Therefore, it might be harder to
pick the best agent if their reliabilities do not differ that much.

Figure 12a and 12d clearly show a strong correlation between running time
and the number of nodes explored by the algorithm. This result is intuitive
since running time is directly dependent on the number of calculations.

Figure 12b shows the percentage of Pareto points found against the number
of nodes explored. It is noteworthy that the algorithm seems to perform better
in terms of found Pareto points per node explored for high reliability. Since
Figure 12b depends directly on 12c and 12d we should seek an explanation in
these graphs.

In Figure 12c we observe that the average number of Pareto points increases
as the cost increases but decreases as reliability increases. Unfortunately there
is no indication that more optimal solutions should be present at higher cost or
lower reliability.

For another deadline constraint, D = 900, we also computed the running
times for the same 100 instances as used in Table 2.

Low RL (r̄ = 0.45) Medium RL (r̄ = 0.65) High RL (r̄ = 0.80)

Low cost (c̄ = 50) 353.64 174.26 285.49
Medium cost (c̄ = 100) 32.991 9.8734 201.79
High cost (c̄ = 150) 11.061 1.1783 27.976

Table 3: Average running times in seconds for different instances with D = 900

In Table 3 is shown that running time decreases as cost gets higher which is
supported by the fact that a smaller number of Pareto points is present at high
costs just as in Figure 12c. Again we obtain the shortest running times from
data instances containing agents with medium reliability.

To explain the cause of the huge difference in running times we look at
Figure 13 which contains the Pareto fronts of one data instance with medium
reliability. The running times are denoted in the legend to indicate the effect
on the frontier.
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Figure 13: Three Pareto fronts for low, medium and high cost

The legend in Figure 13 shows the cost region and running times for three
different Pareto fronts. The running time of the Pareto front with low cost is
particularly large. This is caused by the relatively large upper bound (denoted
by the arrow) compared to the other Pareto points on that front.

Such extraordinary running times are a defficiency of the modified branch
and bound algorithm since that upper bound is not updated but used globally.
An extreme example of this behaviour is depicted in the following graph.
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Figure 14: 2 Pareto fronts with their running times for agents generated with
equal parameters

As can be seen in Figure 14, Pareto fronts for similar sets of agents can
differ significantly. To have a clear view at the high reliability region, the y-axis
has a logarithmic scale. The Pareto point on the red frontier with maximum
reliability lies far away from the closest optimal point. Since the branch and
bound algorithm explores each possible solution (satisfying the deadline con-
straint) with cost lower than this point, the running time for this Pareto front is
very large. Moreover, the difference in reliability between the two points on the
red frontier with highest reliability is only 0.001%. We will discuss a heuristic
to overcome the problem of large running times in Section 8.2.

In the next section we will give a discussion on our results.
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8 Trade-offs

8.1 Trade-off between cost and reliability
In Section 7 we have shown the results from our experiments. These test cases
are only based on theoretical data. Unfortunately, we do not have acces to real
data, but we can give qualitative arguments which apply to real cases. For real
world applications, it is interesting to know what the trade-off in costs is for
having a higher reliability. Table 4 gives the set of Pareto points. Figure 15
gives a graphical representation of the frontier.
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Figure 15: Pareto front for a data set with 10 agents and D = 600

% increase in cost Reliability
0 0.4017

6.15 0.5585
44.62 0.7181
71.85 0.7359
72.15 0.7745
90.00 0.8755
100.62 0.8993
108.46 0.9255
108.62 0.9364
115.23 0.9501
116.62 0.9716
121.23 0.9845
121.85 0.9855

% increase in cost Reliability
122.92 0.9886
124.00 0.9913
124.77 0.9932
124.77 0.9942
125.54 0.9954
125.85 0.9965
126.00 0.9972
126.62 0.9981
126.62 0.9983
132.00 0.9985
132.15 0.9988
132.15 0.9990
132.46 0.9992

Table 4: Pareto points of Figure 15

From Table 4 we can see that a cost increase of 6.15% already yields a
reliability increase of 15 percentage points.. To increase the reliability to 95%
the costs are more than doubled compared to the lowest cost. To determine
whether this increase in cost is worth the higher reliability, a cost-benefit analysis
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should be performed. When an auctioneer is able to tell what the penalty costs
are for delaying a project, he can choose the Pareto solution that fits him best.

These results are based on just one data instance of ten agents. To get real
insight in this matter, we should test for a lot of different data instances, just
as in Section 7. Since the Pareto fronts are not continuous, it is actually impos-
sible to compare different sets on reliability; there might not be Pareto efficient
solutions with the exact same reliability which makes them incomparable.

However, it is possible to compare value which lie close to each other. We
chose to determine the percentage cost increase from the cheapest possibility to
the cost for 95%, 98% and 99% reliability. To make the reliabilities comparable,
we searched within a range defined below.

Reliability to find 95% 98% 99%
Search range 93-97 97-99 >99

The following results are an average for 1000 different instances containing
10 agents each with D = 500.

Reliability range 93-97% 97-99% >99%
Cost increase compared to cheapest agent 98.13% 107.2% 114.6%

A cost increase of about 100% for a reliability of 95% or more can be expected
compared to hiring the cheapest agent. Again, it is up to the auctioneer to decide
which factors are most important to him.

8.2 Trade-off between running time and accuracy
As shown in Figure 14 there can be huge differences in running time for sets
of agents that seem very similar on the eye. To avoid extremely long running
times we propose a heuristic that significantly shortens the running time.

In practice an auctioneer may want to have an indication of the cost for
reliabilities up to 99%. Since major part of the running time is spended on
finding Pareto points in the region >99%, the running time can be small when
these points are not taken into account. Technically, this is achieved by pruning
nodes in the branch and bound tree with reliability higher than the maximum
value. To examine this theory we used three different maximum reliability
values, namely 99%, 99.9% and 100% to see how the running times differ. We
used a data set containing 1000 instances of 10 agents each with D = 500.

Maximum reliability 99% 99.9% 100%
Average running time in seconds 0.2672 2.332 4.894

Table 5: Average running times of 1000 instances for different maximum relia-
bilities, each instance contains 10 agents and D = 500

In Table 5 the average running times for different values of the desired max-
imum reliability are given. From these results it is clear that the running time
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can be decreased almost 20-fold if a concession is made. However, such a trade-
off contradicts the goal of finding the whole Pareto front and is not further
explored for that reason.

In section 9 we keynote our final thoughts on the problem and give our
conclusion.
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9 Conclusion and further research
We developed two methods to find optimal solutions for the procurement prob-
lem. Both the adaptive weighted sum method and the modified branch and
bound method are able to generate the Pareto front. Since the adaptive weighted
sum method has to solve the problem in Section 5.1 numerous times, it performs
significantly less well than our new branch and bound algorithm in terms of
running time. However, the adaptive weighted sum method might add value
to the new branch and bound algorithm since only a certain region is searched.
Searching the whole region causes the new branch and bound method to be slow
sometimes. Therefore, the two different methods of bounding combined might
yield even better results in terms of running time.

We have seen in Figure 9 that a deadline constraint might result in higher
costs for the same reliability. Sometimes it can be advantageous to increase the
deadline constraint a bit to save costs. To achieve this, the model should be
extended to a multi-objective optimization problem. Then, we want to optimize
not only reliability and cost but also deadline.

In earlier research by Zhang and Verwer (2012) a method for receiving trust-
worthy information from each agent was proposed. The combination of obtain-
ing reliable information about reliability and deadline and bi-objective opti-
mization results in a useful tool for our economy. The right implementation of
such a tool in several companies could yield higher profits, less delays and thus
higher efficiency.
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Appendix

Algorithm 1 Knapsack dynamic programming principle
The principle of this knapsack algorithm is based on dynamic programming.
First we initialize the variable V [0, w] = 0 with 0 ≤ w ≤ D. We can define
V [i, w] recursively as follows for all w:

1. If the new item is more than the current weight limit, that is di > w, than
V [i, w] = V [i− 1, w].

2. If di ≤ w, than V [i, w] = max(V {i− 1, w], vi + V [i− 1, w − di]) for 1 ≤
i ≤ m, 0 ≤ w ≤ D.

3. Then, the optimal solution is equal to V [m,D] withm as the total number
of agents.
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Algorithm 2 Knapsack pseudocode
1: input: values, volumes, Capacity
2: n←size of values
3: A←zero matrix with size (n+1 x Capacity +1)
4: % Comment % A(j + 1, Y + 1) means the value of the best knapsack with

capacity Y using the first j items
5: for j ← 1 : n do
6: for Y ← 1 : Capacity do
7: if (volumes(j) > Y ) then
8: A(j + 1, Y + 1)← A(j, Y + 1)
9: else

10: A(j+1, Y +1)← max( A(j, Y +1), values(j)+A(j, Y −volumes(j)+
1) )

11: end if
12: end for
13: end for
14: best← A(n+ 1, Capacity + 1)
15: a← best
16: j ←size of values
17: Y ← Capacity
18: while a > 0 do
19: while A(j + 1, Y + 1) = a do
20: j ← j − 1
21: end while
22: j ← j + 1
23: add j to set OptS
24: Y ← Y − volumes(j)
25: j ← j − 1
26: a← A(j + 1, Y + 1)
27: end while
28: output: OptS
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Algorithm 3 Adaptive weighted sum method
1: input: Paretopoints (contains Pareto points found. Initial: two x and y

coordinates for points with lowest cost and highest reliability within D)

2: input: info (the information of all agents including cost, backup cost, reli-
ability and deadline)

3: input: D (D is the deadline constraint)
4: Segmentlengths contains the euclidian distance between two consecutive

Pareto points
5: Sf1,0 = average reliability of two extreme Pareto points
6: Sf2,0 = average cost of two extreme Pareto points
7: epsilon,δj, C % Constants which determine minimum distance between

Pareto points and the number of refinements
8: m ← 1, np1 ← 1, np2 ← 0. np1 and np2 are respectively the number of

Pareto points before and after solving the branch and bound
9: while (m > 0 & np1 6= np2) do

10: Paretopoints ← sort Paretopoints by ascending cost
11: i← 1
12: while (i < size of Paretopoints) do
13: Segmentlengths(i)← euclidian distance between Paretopoints
14: if (Segmentlengths(i) < epsilon) then
15: Paretopoints(i,:) = {} delete Pareto points
16: Segmentlengths(i,:) = {} delete segment
17: else
18: i = i+ 1
19: end if
20: end while
21: if (np1 6= np2) if new Pareto points are found in last iteration then
22: np1 ← size of Paretopoints
23: m← size of Segmentlengths
24: lave ← average length of Segmentlengths
25: for i← 1 : m do
26: n(i) = round(C · Segment(i)lave

) % nr. of refinements in region i
27: if (n(i) > 1) then
28: ∆λ = 1

n(i) % calculate step size for weights
29: p2x =x-coordinate of the i-th Pareto point
30: p1x =x-coordinate of the i+1-th Pareto point
31: p1y =y-coordinate of the i+1-th Pareto point
32: p2y =y-coordinate of the i-th Pareto point

33: θ = tan−1(− p
1
y−p

2
y

p1x−p2x
) % establish lower and upper bounds

34: LBx = p2x + δJcos(θ)
35: UBx = p1x − δJcos(θ)
36: LBy = p1y + δJsin(θ)
37: UBy = p2y − δJsin(θ)
38: for all λ : 0 with steps ∆λ till 1 (% see Algorithm 4) do
39: [Paretopoints]← BB(LBx, UBx, LBy, UBy, λ, Sf1,0, Sf2,0,Paretopoints,info,D)

40: end for
41: end if
42: end for
43: end if
44: np2 ← size of Paretopoints
45: end while
46: output: Paretopoints
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Algorithm 4 Original branch and bound algorithm for AWS
1: input: LBx, UBx, LBy, UBy, λ,Paretopoints,info,D
2: n← number of agents
3: LBg ← λ

Sf1,0
· LBy + 1−λ

Sf2,0
· LBx

4: UBg ← λ
Sf1,0

· UBy + 1−λ
Sf2,0

· UBx
5: i← 1, j ← 1, mold ← 1, S ← all individual agents
6: while (i <= n+ 1) do
7: for a← mold : number of agents in S do
8: solutions(a, 1) =Lowerbound(info, S, λ, D, Sf ) (see Algorithm 5)

9: solutions(a, 2) = λ
Sf1,0
·RL(info, S (a)) + (1−λ)

Sf2,0
· expcost (info, S (a))

10: solutions(a, 3) = deadline (info, S (a))
11: end for
12: % Refinement %
13: x← 1
14: while (x = 1 & number of solutions 6= 0 & mold 6= 0) do
15: [UBmin z] =location and value of minimum of newly found solutions

16: if (deadline of sequence z from solutions > D) then
17: delete solution z
18: delete sequence z
19: else
20: x = 0
21: end if
22: end while
23: m←size of solutions
24: k ← min(mold,m)
25: while (k <=size of solutions & m 6= 0 & mold 6= 0) do
26: if (LB of solution k > UBmin or deadline of solution k > D) then
27: delete solution k
28: delete sequence k
29: else
30: k = k + 1
31: end if
32: end while
33: % Add new sequences %
34: if (i <= n) then
35: m←number of sequences
36: for k ← mold : m do
37: for l← 1 : n do
38: if (l is not yet in sequence S) then
39: S ← [S l] append agent l to sequence S
40: end if
41: end for
42: end for
43: mold ← m+ 1
44: end if
45: j ← j + 1
46: i← i+ 1
47: end while
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Continuing Algorithm 4:
1: t←number of points in Paretopoints
2: z ← 1
3: while z=1 do
4: [top seqnum] =minimum lower bound from all nodes
5: if (top < LBg) then
6: delete value top from solutions
7: else
8: z = 0
9: end if

10: end while
11: seq =sequence with minimum lower bound
12: Paretopoints(t+ 1, 1) =expcost(info, seq)
13: Paretopoints(t+ 1, 2) =RL(info, seq)
14: output: Paretopoints

Algorithm 5 Lowerbound
15: input: info, S, λ, D, Sf
16: info_temp←info, n = size(info), z ← 1, S1 ← S
17: lc =agent with lowest cost not in S1
18: S1 = [S1 lc] append agent with lowest cost to S1
19: T =constant with high value to give agents in sequence S high profit
20: for all agents in S do
21: ri = ri ·T % assures that each agent in S will be in sequence Srel
22: end for
23: Srel =knapsack(di, ri, D)
24: % Srel is a sequence with maximum possible reliability containing all agents

from S
25: output: LB= λ

Sf1,0
·RL(info, St) + (1−λ)

Sf2,0
· expcost (info, S1)
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Algorithm 6 Modified branch and bound
26: input: info,D
27: n←number of agents
28: i← 1, j ← 1, mold ← 1, S ← all n individual agents
29: UBmin ← cost of Pareto point with highest reliability (by knapsack)
30: while (i <= n+ 1) do
31: for a← mold : number of agents in S do
32: solutions(a, 1) =expcost (info, S (a))
33: solutions(a, 2) = deadline (info, S (a))
34: end for
35: % Refinement %
36: m←size of solutions
37: k ← min(mold,m)
38: while (k <=size of solutions & m 6= 0 & mold 6= 0) do
39: if (LB of solution k > UBmin or deadline of solution k > D) then
40: delete solution k
41: delete sequence k
42: else
43: k = k + 1
44: end if
45: end while
46: % Add new sequences %
47: if (i <= n) then
48: m←number of sequences
49: % for all sequences at current depth level
50: for k ← mold : m do
51: % iterate over all agents
52: for l← 1 : n do
53: % if agent l is not in S
54: if (l is not yet in sequence S) then
55: S ← [S l] append agent l to sequence S
56: end if
57: end for
58: end for
59: mold ← m+ 1
60: end if
61: j ← j + 1
62: i← i+ 1
63: end while
64: CostRelD←compute cost, reliability and deadline for all sequences in S
65: if (CostRelD 6= ∅) then
66: [Paretopoints, Sopt] = GetBestValues (CostRelD, S,D) filter dominated

solutions described in step 2.
67: end if
68: output: Paretopoints
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Algorithm 7 Set data for agents
The function UnifDiscRand(x) draws a discrete random number between 0
and x
UnifContRand(y, z) draws a continuous random number between y and
z.
1: ci = UnifDiscRand(100) + 50
2: di = UnifDiscRand(100) + 50
3: bi = UnifDiscRand(10) + 5
4: if (ci + di >= 260) then
5: ri = UnifContRand(0, 0.4) + 0.6
6: end if
7: if (220 < ci + di < 260) then
8: ri = UnifContRand(0, 0.4) + 0.5
9: end if

10: if (180 < ci + di < 220) then
11: ri = UnifContRand(0, 0.4) + 0.4
12: end if
13: if (140 < ci + di < 180) then
14: ri = UnifContRand(0, 0.4) + 0.3
15: end if
16: if (ci + di < 140) then
17: ri = UnifContRand(0, 0.4) + 0.2
18: end if
19: output: ci, di, bi, ri
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