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- Albert Einstein

i



Acknowledgments

First and foremost I would like to thank my parents for giving me the opportu-
nity to study in the Netherlands as well as for their support and encouragement
through out my studies.
I wish to express my gratitude to Geeske Vlaming and prof. Michel Vellekoop for
giving me an opportunity to do my master thesis at All Options. Their guidance
and valuable suggestions were an essential part of this project.
My thanks goes out to Sing Kwong Cheung for his very helpful advices and pro-
gramming tips as well as to Rob Willems for assisting me with all the practical
issues.
I would also like to thank to my supervisor at Erasmus University Rotterdam,
Dick van Dijk for his help and valuable remarks.

ii



Abstract

This research investigates the importance of including the overnight behavior of the
stock price in an option pricing model. During the trading hours stock prices pro-
cess follows a stochastic model, which allows for stochastic volatility and random
jumps. We model the overnight behavior by a single jump, which is independent
of the intra-day component. In our research we consider Heston, Bates and Vari-
ance Gamma models, extend them by introducing an overnight jump and compare
their performance. We �nd that introducing an overnight component in already
existing option pricing models leads to option prices closer to the ones observed
on the market. However the overnight jump alone is not able to capture the stock
price behavior, random jumps should also be included. We �nd that the most
successful of the considered option pricing model uses both a random jump during
the day and scaled-t distributed overnight jumps, where the improvement from a
normally distributed overnight jumps is signi�cant.

KEYWORDS: Option pricing, Overnight jump, Stochastic volatility, Scaled-t dis-
tribution, Variance Gamma
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Chapter 1

Introduction

Information important for �nancial markets accumulates globally around the clock.
However most of �nancial markets are only opened from morning until late after-
noon. During the time they are closed a lot of relevant information can become
available, but can not be incorporated in the securities price. For example a Euro-
pean trader might expect the opening price today to be di�erent from the closing
prices yesterday, if there were some public announcements during the time the
market was closed. Since �nancial markets around the world are generally corre-
lated, the good or bad performance on Asian and American markets also in�uences
the opening price on the European market. This overnight information is incor-
porated in the option price by investors who submit the orders to the exchange
before the opening hours and with that in�uence the opening price.

The goal of this research is to capture this overnight behavior and introduce
it into an already existing option pricing model. This idea was �rst presented in
the article of Boes, Drost and Werker [10], who extend the Bates model by adding
an overnight jump component. In their research they assume that intra-day and
overnight stock price processes follow a normal distribution. This assumption of
normality has been rejected several times by the literature (Mandelbrot [22] and
Fama [12]), since returns usually exhibit negative skewness, have higher peaks and
fatter tails than assumed under normality.

Our research incorporates these characteristics of returns, by considering alter-
native distributions to describe intra-day and overnight returns. Several distribu-
tions that describe stock returns more accurately than the normal distribution have
been proposed in the literature. Mandelbrot [22] argues that stock returns are well
captured by stable Paretian distributions with a characteristic exponent less than
2. The logistic distribution was proposed by Smith [30], exponential power distri-
bution by Hsu [17]. The distribution that is considered to describe overnight re-
turns rather accurately is the scaled-t distribution proposed by Praetz [25]. Madan
and Seneta [21] considered the variance gamma distribution when describing the
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Chapter 1. Introduction

returns.
We look at all of these distributions and test which one captures intra-day and

overnight returns of stocks in DAX index best. Intra-day returns are captured
most accurately by the variance gamma distribution and overnight returns by the
scaled-t distribution. We include those two distributions in our option pricing
models and compare their performance to already existing option pricing models,
based on the option prices of Allianz, one of the stocks in the DAX index.

The existing option pricing models that we consider in our research are �rstly
the Black-Scholes model [8], which despite his wide us has two well know short
comings [27], the volatility smiles and the skewness premium. Therefore we also
evaluate the Heston model [16] that introduces stochastic volatility in the Black-
Scholes model and the Bates [5] model that extends the Heston model by adding
a random jump process. As mentioned before we also consider the Stochastic
Volatility Model with Random and Overnight Jumps (SVRJOJ) and the Stochastic
Volatility Model with an Overnight Jumps (SVOJ) proposed by Boes, Drost and
Werker [10] that add a normal overnight jump to the Bates and Heston model
respectively. Our research extends these models by adding a scaled-t distributed
jump to the SVRJOJ model instead of normally distributed jump.

The distribution that �ts the intra-day returns best is the variance gamma
distribution. Therefore we consider the variance gamma (VG) option pricing model
proposed by Madan, Carr and Cheng [19] and extend it by adding a normally and
scaled-t distributed jump.

All the above models are �tted to Allianz option data and evaluated based on
how well they minimize the squared percentage error objective function, absolute
pricing errors and out of sample pricing performance. We �nd that based on
the above criteria models that include stochastic volatility, random and overnight
jumps perform best, especially when the overnight jump is scaled-t distributed.
Out of sample performance of all the considered models is poor.

The remainder of the report is organized as follows. In the next section we
brie�y discuss the option pricing theory and present the SVRJOJ model. Sec-
tion 3 describes how well the above mentioned distributions �t the intra-day and
overnight returns. In Section 4 the extended models that we propose are intro-
duced. Later on in Section 6 we explain how to implement the option pricing mod-
els we consider in this research using Fourier transform and characteristic function.
Our empirical results are presented in section 7. Finally Section 8 concludes.
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Chapter 2

Theoretical Overview

In this chapter we brie�y discuss the most important de�nitions and concepts
considered in option pricing and this research.

De�nition 2.0.1. An option is a �nancial derivative that represents a contract
sold by one party (option writer) to another party (option holder). The contract
o�ers the buyer the right, but not the obligation, to buy (call) or sell (put) a
security or other �nancial asset at an agreed-upon price (the strike price) during
a certain period of time or on a speci�c date (exercise date) [18].

De�nition 2.0.2. European option is an option that can only be exercised at the
end of its life, at its maturity. European options tend to sometimes trade at a dis-
count to its comparable American option. This is because American options allow
investors more opportunities to exercise the contract. The prices of an European
call and put option at time t equal

ct = exp(−r(T − t))EQ
t [max(ST −K, 0)], (2.1)

pt = exp(−r(T − t))EQ
t [max(K − ST , 0)], (2.2)

where with c and p we denote the price of the European call and put option
respectively. T stands for the maturity and r for the interest rate.

2.1 Pricing Options

When pricing options in complete markets risk neutral pricing can be used to
determine the theoretical �fair�price of an option. This is done due to the fact that
a risk-less portfolio consisting of the position in the option and a position in the
stock can be set up. A risk-less portfolio can be constructed due to the fact that
the price of an option and the stock price are both e�ected by the same source of

3



Chapter 2. Theoretical Overview

uncertainty: stock price movements. Therefore when an appropriate portfolio of
the stock and an option is established (replicating portfolio), the gain or loss from
the stock position always o�sets the gain or loss from the option position.
We show how to price options for the example of the Black-Scholes model. For
models considered later on, similar principles apply.

2.1.1 Black-Scholes Model

The Black-Scholes model is the most frequently considered option pricing model
in the literature. Under this model the stock price follows the process

dSt = µtStdt+ σtStdWt, (2.3)

where Wt is a Brownian motion under real world measure P. As we mentioned
before fair option prices are obtained under the risk neutral measure, therefore we
introduce the equivalent martingale measure Q, such that

W̃t = Wt + νt,

where ν = (µ− r)/σ. Under this new measure the stock price process follows

dSt = rStdt+ σtStdW̃t. (2.4)

Here we show why the price of a call option with strike K and maturity T equals
2.1. The claim for such an option equals (ST − K)+. The price of an option at
time zero should equal the value of the replicating strategy discounted back to
time zero at the risk free rate, which equals

exp(−rT )EQ((ST −K)+), (2.5)

where Q is the martingale measure for Ste
−rt. The value (ST −K)+ only depends

on the stock price at the maturity T. In order to �nd an expectation of this claim
we need to �nd the marginal distribution under Q.

To do that we look at the logarithm of St that is obtained by applying Itôs
lemma to equation (2.4)

d(log(St)) = σdW̃t + (r − 1

2
σ2)dt,

hence log(St) = log(S0)+σW̃t+(r− 1
2
σ2)t and thus St = S0 exp(σW̃t+(r− 1

2
σ2)t).

From that we can see that ST has a marginal distribution equal to the S0 multiplied
with the exponential of the normal distribution with mean (r− 1

2
σ2)T and variance

σ2T . Therefore if we say that Z is normally distributed N(−1
2
σ2T, σ2T ), we can

4



Chapter 2. Theoretical Overview

write ST = S0 exp(Z + rT ) and (2.5) equals exp(−rT )E((s exp(Z + rT ) −K)+),
which can be written as

V (S0, T ) = S0Φ(
log(S0

K
) + (r + 1

2
σ2)T

σ
√
T

)−K exp(−rT )Φ(
log(S0

K
) + (r − 1

2
σ2)T

σ
√
T

),

(2.6)

where Φ(x) is the cumulative standard normal distribution function. Formula
(2.6) is the Black-Scholes formula for pricing European call options. The price of
a call option was obtained under the risk neutral measure, however this price also
holds under the real world measure. When we move from risk neutral measure to
real world measure the expected growth rate in the stock price changes and the
discount rate changes as well. It happens that these two changes always o�set
each other. For more detail on the topic of risk neutral pricing and Black-Scholes
model we refer to [7].

Despite its wide use the Black-Scholes model has several shortcomings. As we
have see the Black-Scholes model assumes that volatility is constant and indepen-
dent of the strike price and maturity, hence the volatility surface should be �at.
However in practice we observe skewed volatility surface often refereed to as the
volatility simile and can not the be explained by the Black-Scholes model. There-
fore alternative models were considered. One of those models is the Stochastic
Volatility Model with Random and Overnight Jump, which is a building-block of
our research and is described in the next section.

2.2 The Stochastic Volatility Model with Random

and Overnight Jumps

The vast majority of exchanges are closed from the late afternoon until the next
morning and the information that becomes available during that time can not be
incorporated in the stock price immediately. However is included into the option
price by investors who submit orders to the exchange before opening and hence
in�uence the opening price.

The Stochastic Volatility Model with Random and Overnight Jumps (SVR-
JOJ), �rst introduced by Boes, Drost and Werker [10] as an extension of the Bates
model, can capture this behavior of �nancial markets and therefore has the poten-
tial to price options more closely to the ones observed by the market. Here their
model is introduced. Later on some possible extensions are considered.

The interest rates in�uence the option prices, so the SVRJOJ model assumes
the risk free rate to follow a process dBt

Bt
= rdt i.e Bt = exp(rt) . The model has

the following four risk components: stock price movement, volatility, random jump

5



Chapter 2. Theoretical Overview

and overnight jump. Since only the stock process is a traded asset, the market is
incomplete and therefore the equivalent martingale measure is no longer unique.
The value process of the stock at time t under the risk neutral probability measure
Q is de�ned as

dSt
St−

= rdt+ σtdW
S
t +

Nt∑
i=1

(Yi − 1)− λµRJdt+ d

b252tc∑
i=1

(Vi − 1), (2.7)

log Yi ∼ N(log(1 + µRJ)− 1

2
σ2
RJ , σ

2
RJ), (2.8)

log Vi ∼ N(−1

2
σ2
OJ , σ

2
OJ), (2.9)

where {W S
t } is a standard Brownian Motion independent of the Poisson Process

{Nt} where,

Nt ∼ Poisson(λt).

Both {W S
t } and {Nt} are assumed to be independent of jumps {Yi} and {Vi}. It

is assumed that the weekend is a single night, therefore there are 252 trading days
per year, hence also 252 overnight jumps per year. The distribution of random
and overnight returns is chosen in such a way that E[Vi] = 1 and E[Yi] = 1 +µRJ .

The time varying stochastic volatility process in (2.7) is taken from Heston [16]
and de�ned as

dσ2
t = −κ(σ2

t − σ2)dt+ σσσtdW
V
t , (2.10)

Corrt(W
V
t ,W

S
t ) = ρ, (2.11)

where κ is the speed of mean reversion, σ2 is the long run mean of the variance,
and σσ volatility of volatility. This speci�cation of volatility allows for a negative
premium of volatility risk, although we know volatility can not be negative. From
equation (2.11) we can see that the Brownian Motions from the stock price process
and stochastic volatility process are correlated. With this the fact that the large
decline in the stock price is accompanied by a positive shock in volatility levels is
incorporated in the model.

Under the risk neutral measure Q the process St+∆t

St
is a martingale, therefore

the return over ∆t should equal

EQ[
St+∆t

St
|St] = exp(r∆t).

To show that process (2.7) really is a martingale under measure Q after discount-
ing, we look at expectation of di�erent parts of process (2.7) separately. For process

6



Chapter 2. Theoretical Overview

(2.7) to be a martingale the expectation of the random jump component should
equal E[

∑Nt
i=1(Yi − 1)] = λµRJt. We can show that is the case, since taking the

distribution of a random jump (2.8) into account it follows

E[Yi] = E[exp(log(1 + µRJ)− 1

2
σ2
RJ + σRJZ)],

where Z ∼ N(0, 1). Considering the fact that E[exp(−1
2
σ2
RJ + σRJZ)] = 1, it

follows that E[Yi] = 1 + µRJ . The number or jump occurrences follows a Poisson
process with intensity λ, therefore E[Nt] = λt. Using conditioning we see that
E[

∑Nt
i=1(Yi − 1)] = λµRJt.

For process (2.7) to equal exp(rt) in the expectation, the overnight jump factor
should have a mean of 1. This holds since Vi follows (2.9) and similarly as before
we can show that E[exp(σOJZ − 1

2
σ2
OJ)] = 1, from here it is straightforward to

show that E[
∑b252tc

i=1 (Vi − 1)] = 0.

7



Chapter 3

Distribution of Stock Returns

The assumptions that stock prices and stock returns are log-normally and normally
distributed is often used in �nance. This is due to the fact that they are rather
simple distributions and are therefore it is easy to work with, as well as due to the
Central Limit Theorem. They are also used in basic stochastic calculus and Itôs
Lemma, that are often applied in derivatives pricing.
Let us �rst explain why log-normal and normal distribution follow from the Central
limit theorem. Using Si and Ri to represent the stock price and random stock
return at time i respectively, we can write

S1 = S0(1 +R1)

and after n days the return equals to

Sn = S0

n∏
i=1

(1 +Ri). (3.1)

If we apply the logarithm on both sides of equation (3.1) we get

log(Sn) = log(S0) +
n∑
i=1

log(1 +Ri).

We know that each Ri is random, therefore also each log(1 + Ri) is random. As
long as Ri are independent and identically distributed, with the �nite mean and
�nite standard deviation of log(1 +Ri), we can apply the Central Limit Theorem
and conclude that log(Sn) are normally distributed. From that it follows that
Sn is log-normally distributed and since log( Sn

Sn−1
) ≈ Sn−Sn−1

Sn−1
(�rst order Taylor

approximation, for small Sn − Sn−1) we can see that returns are approximately
normally distributed.

8



Chapter 3. Distribution of Stock Returns

Even though assuming the returns to be normal is very convenient, several contra-
dictions to it can be found in the literature. First evidences against normality were
stated in the empirical research of Mandelbrot [22] and Fama [12], who claimed
that price changes follow a stable Pareto distribution, with characteristic expo-
nent less then 2, hence exhibit fat tails and in�nite variance and are therefore
more risky than assumed under normality. After those in�uential publications
extensive research was done on the topic. The logistic distribution was proposed
by Smith [30] due to its fatter tails compared to normal, scaled-t distribution by
Praetz [25], since it exhibits fatter tails as well as allows for skewness. Hsu [17]
argued that exponential power distribution describes returns well due to its fat
tails that shrink at exponential speed. Seneta and Madan [21] proposed a variance
gamma distribution that can capture fat tails and skewness. Returns could also
be described by the combination of two distributions, Press [26] suggested to use
the mixture of two normal distributions, since it would allow for skewness in the
model.
In the remainder of this section we �rst describe the return data used in our re-
search, later on we present all the above mentioned distributions in more detail.
Only the pareto distribution was excluded, since its capability to capture returns
was rejected by Clark [11]. All the distributions are �tted to the data and the pa-
rameter estimates are reported. To conclude which distribution �ts the data best,
a Chi Squared Goodness of Fit Test is conducted and as a visual tool QQ-plots
are presented. We consider intra-day and overnight returns separately, since they
possess di�erent characteristics.

3.1 Data

Data used in this research are the stock prices of Allianz SE (ALV). For each
trading day between January 2, 2007 to December 30, 2011 the opening and the
closing price of the stock was obtained from public data by Bloomberg. The stock
prices were corrected for dividends beforehand. The analyzed series returns are
de�ned as

ORt =
OPt+1 − CPt

CPt
,

for overnight returns, where OP denotes opening price of the stock and CP closing
price of the stock. Intra-day returns are calculated as

DRt =
CPt −OPt

OPt
,

hence we can see the returns expressed as proportion of stock price. Table 1 below
reports the empirical statistics of the stock returns under consideration. This

9



Chapter 3. Distribution of Stock Returns

information helps to understand the behavior of stock returns and choosing an
appropriate distribution to capture them.

Table 3.1: Moments of intra-day and overnight returns

Returns Mean St. dev. Min Max Skw Krt
of series

Intra-day -0.0010 0.0226 -0.1408 0.1729 0.325 9.644
Overnight 0.0009 0.0157 -0.0998 0.1792 1.2339 24.7048

Moments of intra-day and overnight returns.Skw stands for skewness and Krt for kurtosis.

From the table above we can see that the intra-day returns are on average negative,
while overnight returns are positive. For a normal distribution the skewness and
kurtosis equal zero and three respectively. Since skewness and kurtosis reported
in the table are far from those values for both intra-day and overnight returns we
can assume that both returns are skewed and leptokurtic. The distribution chosen
to �t the returns should be able to mimic this behavior.

3.2 Alternative distributions

As shown in the previous section intra-day, and overnight returns on the Allianz
stock exhibit skewness, higher peaks and heavier tails than assumed under nor-
mality. In this part we present the above mentioned distributions that have at
least one of the described characteristics of returns. The same distributions are
considered for intra-day and overnight returns.

Logistic Distribution

This distribution was �rst proposed by Smith [30] and tested by Gray and French
[15]. It is very similar to the normal distribution, however its tails are heavier.
The density function of the logistic distribution is

f(x) =
exp(−x−µ

α
)

α[1 + exp(−x−µ
α

)]2
,

where µ is a location parameter and α > 0 is a scale parameter. If a random
variable X follows a logistic distribution then E[X] = µ and V [X] = (π2/3)α2.

Scaled-t Distribution

First this distribution was considered by Praetz [25]. Later on also Blattberg and
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Chapter 3. Distribution of Stock Returns

Gonedes [9] and Peiro [24] con�rmed that scaled-t distributions describes returns
better than several other proposed distributions, since it allows for fatter tails
when degrees of freedom are small. Its density function has the following form

f(x) =
Γ(ν+1

2
)

σ
√
νπΓ(ν

2
)
[
ν + (x−µ

σ
)2

ν
]−( ν+1

2
),

where µ and σ are location and scale parameter respectively and ν is a degrees
of freedom parameter and Γ the gamma function. It holds that E[X] = µ and
V [X] = ν

ν−2
σ2, when ν > 2.

Exponential Power Distribution

The exponential power distribution presented by Hsu [17] allows for fat tails that
shrink at an exponential rate and a high peak, therefore it should provide a rea-
sonably good �t for stock returns. The density function is given as

f(x) =
exp[−1

2
|x−µ
α
|(

2
1+β

)]

2( 3+β
2

)αΓ(3+β
2

)
,

where µ, α > 0 and β(−1 < β ≤ 1) are location, scale and shape parameter
respectively. The exponential power distribution equals normal distribution when
β = 0. When 0 < β ≤ 1 fat tails and high peaks are obtained, with the fatness
of tails increasing with β. If X follows an exponential power distribution then
E[X] = µ and V [X] = 2(1+β) Γ[3(1+β)/2]

Γ[(1+β)/2]
α2.

Variance Gamma distribution

This distribution is de�ned as normal variance mean mixture, where the mixing
density is the gamma density. It was �rst proposed by Madan and Seneta [21]
and later on extended by Madan and Milne [20] and Seneta [29]. The variance
gamma distribution capturers returns well since it allows for peakedness, fat tails
and skewness. Its distribution function is of the form

f(x) =
2 exp(θx/σ2)

σ
√

2πν1/νΓ(1/ν)
(

|x|√
(2σ2/ν + θ2)

)1/ν−1/2K1/ν−1/2(
|x|

√
2σ2/ν + θ2

σ2
),

(3.2)

where ν > 0 and θ are the shape and asymmetry parameter respectively. Skew-
ness is adjusted by θ, negative values mean negative skewness. If X is a random
variable, its mean under variance gamma distributions equals E[X] = θ and its
variance V [X] = σ2 + θ2ν . In the above density function K1/ν−1/2(.) denotes the
Bessel function of the third order, also known as Hankel function.
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Chapter 3. Distribution of Stock Returns

Mixture of two Normal distributions

We can also assume that returns are generated by a mixture of distributions.
Press [26] proposed to use a combination of two normal distributions connected
by a jump process, to describe the stock returns. This kind of distribution can
capture large informational shocks as well as skewness. The density function of
the mixture normal distributions is written as

f(x) =
1√

2πσ2
1

exp
−[

(x−µ1)2

2σ2
1

]
λ+

1√
2πσ2

2

exp
−[

(x−µ2)2

2σ2
2

]
(1− λ),

where µi and σ
2
i (σi > 0) are the mean and the variance respectively. This mixture

can be explained as drawing samples from a normal distribution with mean µ1 and
variance σ2

1 with probability λ and from an independent normal distribution with
mean µ2 and variance σ2

2 with probability 1 − λ. If a random variable X has a
mixture normal distribution, then the mean equals E[X] = µ = λµ1 + (1 − λ)µ2

and variance V [X] = λ((µ1 − µ)2 + σ2
1) + (1− λ)((µ2 − µ)2 + σ2

2) as described in
Aparicio and Estrada [1].
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Chapter 3. Distribution of Stock Returns

3.3 Parameter Estimation and Testing

To conclude which of the above described distributions would �t the intra-day
and overnight returns best we perform a goodness of �t test and present QQ-
plots. However the theoretical distributions �rst need to be �tted to the return
data. In the table below the maximum likelihood estimations of the parameters
are reported.

Table 3.2: Parameter Estimates

Distribution Parameter Intra-day Overnight

N
µ -0.000998 0.000699
σ 0.0226 0.0123

S-t
µ -0.000948 0.000952
σ 0.0286 0.0064
ν 2.5185 2.8228

L
µ -0.0011 0.00091
α 0.0111 0.05314

EP
µ -0.0012 0.0012
α 0.0076 0.0038
β 1 1

MN

µ1 -0.0011 0.000528
σ1 0.0368 0.0351
µ1 -0.0011 0.000843
σ2 0.0113 0.0074
λ 0.3102 0.081

VG

c -0.000924 0.00115
σ 0.0217 0.0104
θ -0.000072 0.00045
ν 1.131 1.091

Parameter estimates of the following distributions are reported, N=Normal, S-t = Scaled t, L =

Logistic, EP=Exponential power, MN = Mixture Normal, VG=Variance gamma

Looking at the results from the Table 3.2 we can observe that all the estimates
for the means of the intra- day returns are negative and positive for the overnight
returns, consistent with the results from Table 3.1. It is a well known fact that
the student-t distribution converges towards the normal distribution when the
number of degrees of freedom is big, however here we can see that the estimate
for the degrees of freedom is rather small, indicating fatter tails of the scaled-t
distribution in comparison to normal. Similarly the normal distribution equals
the exponential power distribution when β = 0, however Table 3.2 reports very
high estimates of β, again implying thick tails. The parameter estimates when
considering intra-day returns are rather di�erent to the ones estimated for the
overnight returns, showing that the returns exhibit di�erent characteristics and
should indeed be treated separately.
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Chapter 3. Distribution of Stock Returns

For the visual presentation of how well di�erent distributions �t the intra-day
and overnight returns, we present the plots of �tted distributions compared to the
empirical distribution of returns.

Figure 3.1: Intra-day distributions

Figure 3.2: Overnight distributions
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From at the �rst plot of intra-day distributions we can see that all distributions,
besides normal capture intra-day returns rather well. There are some deviations
in description of peaks and tails, where variance gamma and scaled-t distribution
present the best �t. As expected the normal distribution does not manage to
capture the peak behavior.

In comparison to the previous plot the distributions did not manage to capture
the overnight return data well. They had problems especially with description of
the peak, where only scaled-t and variance gamma distribution performed well.
Again the normal distribution presented the poorest �t.

3.3.1 Goodness of Fit Test

In order to compare the relative �t of the described theoretical distributions, Pear-
son's Chi Squared Goodness of Fit Test is considered. This test is conducted in
the following way. First, observations are divided in k non-overlapping intervals,
then the probabilities of the outcomes to fall in intervals by the distribution under
H0 are calculated. The test statistics equals:

X2 =
k∑
i=1

(ni −Npi)2

Npi
,

where pi and ni stand for the probability of being in partition i and number
of observations in partition i respectively, N is the total number of observations
(
∑k

i=1 ni = N). The calculated statistic is compared to the chi-squared distribu-
tion with (k − ep − 1) degrees of freedom and chosen signi�cance level, where ep
denotes the number of estimated parameters.

Despite of the wide use of Chi Squared Goodnes of Fit test, it is still not clear
how many partition points should be used and whether the partitions should be
equiprobable or not. Based on Stuart, Ord and Arnold [32] we decided to use
equiprobable partitions. Literature recommends to use a rather large number of
partitions (Mann and Wald [23]), however this drastically reduces the power of the
test, therefore we use 8 partitions.

In the table below we report the results of the test, run on all considered
distributions. The zero hypothesis of the test is that the returns are governed by
the assumed distribution, against the alternative (returns are not governed by the
assumed distribution). The signi�cance level used in the test is 0.01.
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Table 3.3: Chi Squared Test

Intra-day return Overnight return
Distribution Test P-value Test P-value

N 1 0.0000 1 0.0000
S-t 0 0.233 0 0.6829
L 1 0.0000 1 0.0000
EP 1 0.0000 1 0.0000
MN 1 0.0002 1 0.0053
VG 0 0.013 1 0.0072

Results of the Chi Squared Test, if 1 is written for the test, that means that the null hypothesis

was rejected, if there is 0 the hypothesis was not rejected.

As expected the goodness of �t test rejects the normal distribution, for both
intra-day and overnight returns. Despite the fact that the logistic, exponential
power and mixture normal distributions are capable of capturing some of the
characteristics of returns, the test still rejects the hypothesis that returns are
generated by any of those distributions. The results show support for the variance
gamma distribution that was not rejected for intra-day returns. However the best
�t for both returns is the Scaled-t distribution.

Since Chi Squared Goodness of Fit tests can be biased due to the number of
chosen partitions, we also report the QQ-plots before concluding which distribu-
tions describe intra-day and overnight returns best.

3.3.2 QQ-plots

The quantile-quantile (Q-Q) plot is a graphical technique for determining if two
data sets come from the same family of distributions. A QQ-plot is a plot of
quantiles of the �rst data set against the second data set, where quantile is a
point below which a given fraction of points lies. Since we are interested whether
the returns come from any of the above described distributions, we plot quantiles
of returns against quantiles obtained from the random sample from each of the
proposed distributions. Here we only report the QQ-plots of normal, scaled-t and
variance gamma distributions, since other distributions were clearly rejected by
the goodness of �t test, they are however presented in the Appendix. QQ-plots
for intra-day and overnight returns are presented separately.
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Figure 3.3: QQ-plots: Intra-day returns

(a) Normal Distribution (b) Scaled-t Distribution

(c) Variance Gamma Distribution

From the QQ-plots we can see that scaled-t and variance gamma distribution
present a much better �t to the intra-day returns than the normal distribution.
As expected normal distribution �ts poorly in the tails. Both the scaled-t and the
variance gamma distribution describe tail behavior rather well, however the second
captures the left tail behavior better. In the right tail there is some imprecision in
both distributions, but the variance gamma distribution �ts to the red line longer.
From the QQ-plots we can conclude that the variance gamma distribution �ts
intra-day returns best.

In the plots below, similarly as before the performance of the normal distribu-
tion is very poor in comparison to the alternative. The scaled-t and the variance
gamma distribution both describe overnight returns well, however the variance
gamma does not manage to capture the left tail behavior, therefore we conclude
that the scaled-t distribution �ts overnight returns best.
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Figure 3.4: QQ-plots: Overnight returns

(a) Normal Distribution (b) Scaled-t Distribution

(c) Variance Gamma Distribution

The Chi Squared Goodness of Fit Test reports di�erent results from QQ-plots
regarding which distribution �ts intra-day and overnight returns best. We decide to
follow the QQ-plots, since the Goodness of Fit Test is dependent on the number of
partitions we choose. Therefore we conclude that the variance gamma distribution
describes intra-day returns best, while scaled-t distribution captures overnight
jumps most accurately.

Similar research as reported here was done on all stock in DAX index for the
same period of time as described for Allianz stock. The results were more or less
consistent with results obtained for Allianze stock. For most intra-day returns
variance gamma was found to capture them best, while the overnight returns were
best described with scaled-t distribution. In the appendix, the similar results as
for the Allianz stock are reported for BMW and Deutsche Bank stock.
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3.4 Independence of Intra-day and Overnight Re-

turns

The research studies done in this area indicate that small negative correlation
between intra-day and overnight returns exists ( Wang, Shieh, Havlin and Stanley
[33]). For example when overnight returns are small the intra-day returns are likely
to be bigger and the other way around. When the overnight returns are high the
reason of low intra-day returns is usually the in�ation in the stock price at the
opening of the exchange.

The SVRJOJ model assumes that intra-day and overnight returns are uncor-
related by implementing independence between the Brownian Motion W S

t , the
Poisson process Nt, the random jumps Yi and the overnight jumps Vi. In this part
we examine whether this assumption holds for intra-day and overnight returns of
Allianz stock and whether introducing dependence would lead to a more accurate
model. The independence between overnight (ORt−1) and intra-day (DRt) as well
as intra-day (DRt) and overnight (ORt) returns is tested. To evaluate whether the
returns are correlated we test if the correlation matrix of overnight and intra-day
returns is an identity matrix, the test used is a Chi Squared Barlett and Box test.
For a visual presentation scatter plots are reported.

3.4.1 Bartlett-Box Test

With Bartlett-Box test we test whether a correlation matrix R is an identity
matrix. The test is based on the proposition made by Bartlett [4], that Y =
− log(det(R)(N − 1 − (2p + 5)/6)) is chi squared distributed if R is an identity
matrix, where N equals the number of rows or columns in a correlation matrix and
p is a p-value. The H0 of the test: R is an identity matrix. If the test statistics Y
exceeds the critical value χ2

1−p,N−1, then the H0 is rejected at signi�cance level p.

Table 3.4: Bartlett-Box Test

Returns Correlation Test Stat. P-value
ORt−1 −DRt 0.0477 2.889 0.0891
DRt −ORt 0.0466 2.758 0.097

Summery of the Bartlett-Box test. With ORt−1 − DRt we denote the correlation between

overnight returns and the intra-day returns next day, similarly DRt−ORt denotes the correlation

between returns on the same day.

The results of the test do not reject the null hypothesis for the signi�cance level
p = 0.05 that we choose. Based on that result we will assume that the returns
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are independent of one another, although the hypothesis not being rejected does
not mean the hypothesis is being correct. The table reports very low positive
correlation between returns, contradicting the negative values usually denoted in
the literature.

3.4.2 Scatter Plots

Scatter plots show the relationship between two pairs of variables, by plotting
them against each other on a two dimensional graph. They are often used for
investigating whether two variables are correlated. The variables are positively
correlated when the values increase together from left to right and are negatively
correlated when they decrease from left to right. However the positive correlations
in our case are so small that we can not see the patterns on the scatter plots.

Figure 3.5: Scatter plots of intra-day and overnight correlations

(a) DRt −ORt

(b) ORt−1 −DRt

Scatter plots do not exhibit a clear pattern, therefore we assume they are not
correlated and con�rm the results we obtained from the Barlett-Box test. This
result was expected, due to very low correlation values.
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Extending the SVRJOJ Model

The SVRJOJ model assumes that intra-day and overnight returns follow a normal
distribution. However as shown above the normal distribution does not manage
to capture the returns well, since it suggests that extreme returns occur less often
than they do in the real world. In order to describe the stock price behavior
better, other distributions should be considered. From the previous section we can
conclude that the variance gamma distribution describes intra-day returns best,
while the scaled-t distribution captures the overnight behavior most accurately.

In this part we present three extensions of the SVRJOJ model. The �rst
extension is the model that combines the variance gamma process for intra-day
returns with the normal overnight jumps, second is the Bates model with the
scaled-t overnight jump and in the last we combine the variance gamma process
with the scaled-t overnight jumps.

4.1 Variance Gamma Process

The variance gamma process is a Lévy process obtained by evaluating Brownian
Motion at a random time change given by a gamma process (see [19]). It was
�rst introduced by Madan and Seneta [21] and later on extended by Madan, Carr
and Chang [19] and Seneta [29]. The model presents two additional parameters,
compared to the geometrical Brownian Motion, which control the asymmetry (θ)
and shape (ν) of the distribution of returns.

Under the variance gamma process the stock prices evolve over time t ≥ 0 as

St = S0 exp(rt+ θTt + σW (Tt)) = S0 exp(rt+Xt), (4.1)

where θ and σ ≥ 0 are constants. The time at which the Brownian motion is
evaluated is a gamma process and increments g = Tt+h − Tt have the following
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distribution, for g > 0

fh(g) = (
θ

ν
)( θ

2h
ν

) g
θ2h
ν
−1 exp(− θ

ν
g)

Γ( θ
2h
ν

)
,

where Γ(.) denotes the gamma function. The log returns corresponding to the
stock price process can be written as

Xt = θTt + σW (Tt), (4.2)

with a density function de�ned as (3.2). Since a density function of Xt is rather
complex, its characteristic function is used instead whenever possible, it has the
following form

φX(u) = E[exp(iuXt)](1− iθνu+ (σ2νu2)/2)−t/ν , (4.3)

for −∞ < u <∞.
To show how parameters of the variance gamma process in�uence its behavior
we present its �rst four centralized moments. The calculations are omitted here,
however they can be found in Madan, Carr and Chang [19]. The moments are
equal to

E[Xt] = θt,

V [Xt] = (σ2 + θ2ν)t,

E[(Xt − E[Xt])
3] = (2θ3ν2 + 3σ2θν)t

E[(Xt − E[Xt])
4] = (3σ4ν + 12σ2θ2ν2 + 6θ4ν3)t+ (3σ4 + 6σ2θ2ν + 3θ4ν2)t2.

From the calculated moments we can see that θ and ν are not themselves the
skewness and kurtosis of the variance gamma process, however have a big in�uence
on those moments. The equation for skewness shows that skewness has the same
sign as θ. When θ = 0 there is no skewness and the variance of the process equals
σ2t.

Since options are priced under the risk neutral measure we are interested in
the stock price which follows a variance gamma process under the risk neutral
measure. As mentioned before stock prices discounted at the risk free rate are
martingales under the risk free measure. Therefore the stock price process follows

St = S0 exp((rt+Xt(σ, θ, ν) + ωt), t > 0, (4.4)

where by setting ω = (1/ν) log(1−θν− 1
2
σ2ν), the mean rate of return on the stock

equals the interest rate r, hence the stock process is a martingale after discounting.
We calculate ω by setting wt = − log(φXt(−i)).
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4.2 Variance GammaModel with Normal Overnight

Jump

In this part we add an overnight jump to the variance gamma process in order to
capture the behavior of stock returns as close as possible. The stock price of this
model under measure Q is written as

St = S0 exp(rt+Xt(σ, θ, ν) + ωt)

b252tc∏
i=1

(Vi), t > 0, (4.5)

where Vi follows (2.9). In order for the above equation to be a martingale we set
ω = (1/ν) log(1−θν− 1

2
σ2ν). Here ω is the same as in the variance gamma process

without the overnight jump, this follows since the expected value of the overnight
jump with distribution (2.9) is equal to 1, as we showed in the Section 2.2.

4.3 SVRJOJ Model with Scaled-t Overnight Jump

The stock price in this model has the same process for intra-day returns as the
SVRJOJ model, however overnight returns are no longer normally distributed. We
exchange the normal distribution with the student-t distribution, since it o�ers a
better �t to our overnight returns data. The model under the Q measure is written
as

dSt
St−

= rdt+ σtdW
S
t +

Nt∑
i=1

(Yi − 1)− λµRJdt+ d

b252tc∑
i=1

(Vi − 1), t > 0. (4.6)

where the distribution of log Vi equals

log(V̂i) ∼ SC(µ, σ2), (4.7)

log(Vi) = log(V̂i)− log(Φlog V̂i
(−i)), (4.8)

where SC is denoted as a scaled-t distribution. In comparison to the SVRJOJ
model where we only simulate from the normal distribution to obtain the samples
for the log Vi, here also a part log(φV̂i(−i)) is added. This is the case, since for the
scaled-t distribution it no longer holds that the expected value of the exponentiated
draw from St(−1

2
σ2
OJ , σ

2
OJ) equals to 1. In order for (4.6) to be a martingale

log(φV̂i(−i)) is added. The intra-day part of the process (4.6) is a martingale as
shown for the SVRJOJ model.
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4.4 Variance GammaModel with Scaled-t Overnight

Jump

This model should capture the behavior of the stock price best, since it includes
the variance gamma distribution and the scaled-t distribution, which were the
best �t for intra-day and overnight returns respectively. In this case the stock
price process under measure Q is equal to equation (4.5), however the overnight
jump no longer follows (2.9), but is written as (4.7). The ω remains the same as in
VG-N, since the intra-day component remains the same and the overnight jump
component is already written in such a form that the VG-SC is a martingale under
measure Q .
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Option Pricing

As mentioned in Chapter 2 options are priced in a risk-neutral framework. The
price for the European call option at time �is calculated as

Ct = exp(−r(T − t))EQ
t [max(ST −K, 0)],

where T is the maturity of an option and K is its strike price. For some stock
pricing models (for example Black-Scholes) there exists a closed form solution for
the option price, although for several other models this is no longer the case. For
those models option price can be estimated with Monte Carlo simulation, however
this approach is very computationally demanding.

The solution to this problem was presented in a paper of Stein and Stein [31],
who suggested rewriting the option price in terms of a characteristic function
of the logarithm of the terminal stock price, using Fourier transforms. The main
advantage of this method is that it is general, it applies to any option pricing model
as long as the terminal stock price has an explicitly known characteristic function.
This approach is considerably faster than the methods described in Heston [16]
and Stein and Stein [31], therefore it is very convenient for model calibration.

Due to its several advantages the Fourier transforms and characteristic func-
tions are used when pricing options in all the models we consider, even when there
exists a closed form solution. In our implementation of this approach we follows
the article [14]. The following formula proposed by Scott [28] is used for valuation
of the call option

C(t, T ) = StP1 − exp(−r(T − t))KP2, (5.1)

where

P1 =

∫ ∞
K

ST

EQ
t [ST ]

p(ST )dST ,

P2 = P (ST > K).
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For most models the probability density function for the terminal stock price is
unavailable, therefore Fourier inversion techniques are used to derive the formulas
for P1 and P2.
The Fourier transform (F{.}) and the inverse Fourier transform (F−1{.}) for an
integrable function are given as

F{f(x)} =

∫ ∞
−∞

exp(iux)f(x)dx = φ(u),

F−1{φ(u)} =
1

2π

∫ ∞
−∞

exp(−iux)φ(u)du = f(x),

where f(x) stands for risk-neutral density of log-returns of the stock price process.
With φ we denote the characteristic function.

Here we only report the values for P1 and P2, however the exact calculations
can be found in Bakshi and Madan [2]

P1 =
1

2
+

1

π

∫ ∞
0

Re(
exp(−iu log(K))φ(u− i)

iuφ(−i)
)du, (5.2)

P2 =
1

2
+

1

π

∫ ∞
0

Re(
exp(−iu log(K))φ(u)

iu
)du, (5.3)

where φ(u) equals the characteristic function under Q, conditioned on t, of the log-
arithm of the terminal stock price log(ST ) and Re indicates that we only integrate
over the real part of the complex number. Due to the de�nition of characteristic
functions we can also write φ(u) = EQ

t [exp(iu logST )]. When pricing options, we
evaluate the equations 5.2 and 5.3 numerically using Gauss Lobatto integration
scheme.

5.1 The SVRJOJ model

Here we show how the option price in the SVRJOJ model is obtained. The calcu-
lations follow directly from [10].

The Fourier transformation approach to option pricing is based on the loga-
rithm of the terminal stock price and its characteristic function, therefore we �rst
use Itô's Lemma and transform the stock price process (2.7) into

log(St) = log(S0) +

∫ t

u=0

(r − 1

2
σ2
u)du+

∫ t

u=0

σuW
S
u + (

Nt∑
i=1

log(Yi))− λµRJt+ (

b252tc∑
i=1

log(Vi)),

(5.4)
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where −1
2
σ2
t in the �rst part of the equations 5.4 follows from the transformation

of the St into log(St). When we take a logarithm of an overnight part of the stock

price, the term
∑b252tc

i=1 (Vi − 1) it is transformed to
∑b252tc

i=1 log(Vi).
The characteristic function of logST can then be written as

φ(u) = EQ
t [exp(iu logST )] =

= EQ
t [exp(iu(logSt + rτ − 1

2

∫ T

t

σ2
udu+

∫ T

t

σudW
S
u )+

+

NT∑
i=Nt+1

log Yi − λµRJτ +

b252T c∑
b252tc+1

log(Vi))] =

= EQ
t [exp(iu(logSt + rτ − 1

2

∫ T

t

σ2
udu+

∫ T

t

σudW
S
u ))]×

EQ
t [exp(iu(

Nt∑
i=Nt+1

log Yi − λµRJτ ))]EQ
t [exp(iu

b252T c∑
b252tc+1

log(Vi)],

where τ = (T − t) . The characteristic functions for each part can be calculated
separately, due to the property of characteristic functions that states φ(XY ) =
φ(X)φ(Y ), when X and Y are independent random variables. Since the model
assumes W S

t , Nt, Yi and Vi to be independent of one another under Q this rule
also applies here.
Solving the �rst expectation is equal to calculating the characteristic function of
the Heston model. In literature there are several di�erent approaches, which all
lead to the same result.

EQ
t [exp(iu(logSt + rτ − 1

2

∫ T

t

σ2
udu+

∫ T

t

σudW
S
u ))] =

= exp(C(τ, u) +D(τ, u)σ2
t + iu logSt), (5.5)

where

C(τ ;u) = riuτ +
κσ2

σ2
σ

((κ− ρσσiu+ d)τ − 2 log
1− gedτ

1− g
),

D(τ ;u) =
κ− ρσσiu+ d

σ2
σ

1− edτ

1− gedτ

and g and d are expressed as

g =
κ− ρσσiu+ d

κ− ρσσiu− d
,

d =
√

(ρσσiu− κ)2 + σσ(iu+ u2).
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Now the characteristic function for the random jump is calculated. If we multi-
ply the characteristic function of the Heston model with the characteristic function
of the random jump we obtain the characteristic function of the log stock price of
the Bates model.

EQ
t [exp(iu(

Nt∑
i=Nt+1

log Yi − λµRJτ ))] =

= exp(λτ((1 + µRJ)iu exp((
iu

2
)(iu− 1)σ2

RJ)− 1)− iuλµRJτ). (5.6)

As last we calculate the characteristic function of the overnight jump, which
follows straight from the characteristic function of the normal distribution.

EQ
t [exp(iu

b252T c∑
b252tc+1

log(Vi)] = exp(−1

2
u(u+ i)nσ2

OJ/252), (5.7)

where n = b252T c − b252tc.
To calculate an option price of the SVRJOJ model all three characteristic functions
are multiplied to obtain the characteristic function of the log price of the stock
price process. From that the integrals (5.2) (5.3) are calculated and inserted into
the equation (5.1) to get the option price.

5.2 The Variance Gamma model with a Normal

Overnight Jump

The approach to option price calculation of this model is the same as the described
before for the SVRJOJ model. First we calculate the log stock price process
under the risk neutral measure, which follows the process (4.5). Since there is no
Brownian Motion in this equation we do not have to use Itô's lemma and therefore
the logarithm of the stock price equals

log(St) = log(S0) + (r + w)t+Xt(σ, θ, ν) +

b252tc∑
i=1

log(Vi), (5.8)

where Vi − 1 was exchanged with log Vi based on the reasoning explained in the
previous model. Since overnight and intra-day returns in this model are assumed
to be independent, we calculate their characteristic function separately. The char-
acteristic function of intra-day returns follows

φST (u) = exp(log(S0)iu+ (r + ω)iuT )(1− iθνu+
1

2
σ2u2ν)−T/ν , (5.9)
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where u is an argument of the characteristic function and ω is calculated as shown
in [19]. The characteristic function of log stock returns in this model is obtained
by multiplying (5.7) and (5.9). To calculate the option price the same steps as in
the previous part should be taken.

5.3 The Variance Gamma Model with the Scaled-t

Overnight Jump

In this model the logarithm of the intra-day stock price is the same as for the vari-
ance gamma model with the normal overnight jump and therefore follows equation
(5.8). The characteristic function for an intra-day stock prices is still equal to (5.9),
however the characteristic function of an overnight part changes, since the loga-
rithm of the jump is scaled-t distributed.

The characteristic function of a scaled-t distribution with p degrees of free-
dom is calculated from the characteristic function corresponding to the student-t
distribution, which equals

φY (u) =
K p

2
(
√
p|u|)(√p|u|)p/2

Γ(p
2
)2p/2−1

,

where K p
2
is the modi�ed Bessel Function of the second kind. To obtain the char-

acteristic function of Scaled-t distribution we use the following property. If x is
scaled-t distributed then y = x−µ

σ
is student-t distributed, therefore the character-

istic function of scaled-t distribution can be calculated as φX = E[exp(iu(Y σ+µ))]
which equals

φX(u) = exp (iuµ)φY (uσ).

This is however only a characteristic function of log(Vi) and we would like to �nd

the characteristic function of
∑b252tc

i=1 log Vi. Due to the property of characteristic
function which states that characteristic function of a sum of independent random
variables equals the product of characteristic functions

φ∑b252tc
i=1 log Vi

(u) = (φlog(Vi)(u))b252tc.

The calculated characteristic function is only a characteristic function of the loga-
rithm of the scaled-t distributed overnight jump, however we still have to correct
the jump part in order for the Variance Gamma Model with Scaled-t Overnight
Jump (VG-SC) to be a martingale under measure Q after discounting, hence the
overnight jumps should equal to 1 under expectation. This is achieved by setting
the characteristic function of the overnight jump to

φ(u) = φ∑b252tc
i=1 log Vi

(u) exp(−iu log(φ∑b252tc
i=1 log Vi

(−i))). (5.10)
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The characteristic function of the log stock prices following a VG-SC model is now
obtained by multiplying (5.10) with (5.9), since it is assumed that the intra-day
and overnight stock price process are independent.

5.4 The SVRJOJ model with Scaled-t Overnight

Jump

The logarithm of stock price process for this model equals equation (5.4), where
the overnight jump is distributed as (4.8). The characteristic function for the
intra-day returns in this model is obtained by multiplying (5.5) with (5.6) and the
characteristic function of overnight returns equals (5.10).
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Option Data and Model Estimation

To estimate the parameters of the option pricing models, option data is needed
as well as the objective function based on which we minimize the error of an
option pricing model. First the option data is described; later on we elaborate on
estimation and on which objective function to use.

6.1 Data

We use American option prices on the Allianz (ALV) stock between October 1, 2010
to October 14, 2010, without the weekends this gives us 10 days of observation.
The data was provided by All Options and is based on the internal option pricing
model, which calculates the option prices that are close to the mid market option
price at the end of each trading day. Each day option prices for the following four
maturities are given: October 15, 2010, November 19, 2010, December 17, 2010
and March 18, 2011. Next to option prices and maturities also strike price, risk
free rate and stock price at the end of the trading day are reported.

It is never optimal to exercise an American call option on a non-dividend paying
stock early, therefore American and European call options have the same price
when there are no dividends until the expiration of an option [18]. Since when the
call is in the money and investor plans to hold the stock even after the expiration
it is better to hold a call until maturity in order to protect himself/herself from
the downside risk as well as earn interest on the strike price between now and the
maturity. On the other hand when the investor believes that the stock is overpriced
and considers exercising the call and selling the stock immediately, he/she should
sell the call instead. This holds due to inequality C ≥ S0 − K exp(−rT ) proven
by [18], where C denotes price of an American call option.

During October 1, 2010 to March 18, 2011 there were no dividends on the
Allianz SE stock, therefore American options can be used to calibrate models with
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which we price European options.

Following Bakshi, Charles and Zhiwu [3] Table 5 provides descriptive statistics
of call options that satisfy the criteria:

• Options with less then six days to expiration are excluded from the sample,
since they might have liquidity related biases.

• Price quotes lower then 0.02e are not included, due to very high relative
errors obtained when using a squared percentage error objective function.

• Quotes for which the following arbitrage restriction does not hold are ex-
cluded, since our models assume arbitrage is not possible

C(t, T ) ≥ max(0, St exp(T − t)−K exp(−r(T − t))).

In the literature they usually also exclude options with too big bid-ask spread,
however the bid-ask spreads were not available for our research.

Table 6.1: Option data overview

Day return Overnight return
S/K < 60 60− 180 Subtotal

OTM (< 0.97)
0.378 1.253
(79) (172) (251)

ATM (0.97− 1.03)
2.277 4.4256
(47) (57) (104)

ITM (> 1.03)
11.227 13.716
(118) (210) (328)

The reported numbers are average call option prices and in the brackets number of options in

each category is reported.

The option data in the table is divided based on the moneyness and time to
expiration. The call option is said to be out-of-the-money (OTM) if S/K ≤ 0.97,
at-the-money (ATM ) if 0.97 ≤ S/K ≤ 1.03 and in-the-money if S/K ≥ 1.03.
By maturity options can be classi�ed as short term (< 60 days) and mid-term
(60-180 days). Altogether there are 683 call option observations, with OTM and
ITM options amounting to 37% and 48% respectively. In our research we only use
OTM options for consistency with [10].
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6.2 Estimation

When one wishes to price an option using an option pricing model the strike price
and the maturity are speci�ed in the contract, the spot stock price and risk free
rate can be taken from published data. However spot volatility and structural
parameters are unobserved and need to be estimated. These estimates can be
obtained by using maximum likelihood or a generalized method of moments, but
this approach might be inconvenient due to large historical data set requirements.
Therefore practitioners and academics usually use option-implied volatility given
by the model. This approach leads to signi�cant improvement of di�erent option
pricing model's performances [5] and [6].

Estimation Procedure

We adopt the estimation procedure proposed by [3], where parameters under the
risk neutral measure Q are estimated as:

Step 1: For each day t N options on the same stock from the same point in
time are chosen and their closing price is observed. The number of observed prices
should be equal or greater to one plus the number of estimated parameters. For
every i = 1, 2, ..., N τi represents the time to maturity and Ki the strike price.
With Ĉi(t, τi, Ki) we denote the observed option price and with Ci(t, τi, Ki) the
one calculated by one of the proposed models. For example in the SVRJOJ model
the di�erence between Ĉi(t, τi, Ki) and Ci(t, τi, Ki) depends on implied volatility
σt and the parameter vector is denoted by Φ = (µRJ , σRJ , λ, σOJ , κ, σ, σσ, ρ) . For
each i the error of the pricing model is de�ned as

εi[V (t),Φ] = Ĉi(t, τi, Ki)− Ci(t, τi, Ki).

Step 2: Di�erent objective functions can be used to �nd the parameters for
which the model has the smallest error. We will use the objective function that
was considered in [10]

SSE(t) = min
σt,Φ

N∑
i=1

(
εi[σt,Φ]

Ci(t, τi, Ki)
)2. (6.1)

This is called the squared percentage error objective function and it assigns more
weight to the OTM options. In the literature [3] also the squared relative objective
function is considered, which gives more weight to relatively expensive options
(ITM options and options with long maturity).

With this approach we obtain di�erent set of parameters for each model each
day. Later on we only report their average. Since parameters are estimated sep-
arately time variation of the parameters is not excluded. However our research
only includes 10 days of option data. Therefore time varying parameters are not
required.
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Empirical Results

In this Chapter we report the estimation results by applying the described esti-
mation techniques to all of the described models. For an easier comparison the
models are divided in two groups. In �rst are the models based on the stochas-
tic volatility and in the second the ones containing the variance gamma process.
The parameter estimates obtained in our research are compared to the existing
literature.

7.1 Models Based on Stochastic Volatility

All the models with exception of SVRJOJ-SC considered in this section were al-
ready discussed in the literature. The Heston and Bates models were evaluated
by [2] and [10], the latter also introduced and evaluated the SVOJ and SVRJOJ
model. Their model estimation techniques are very similar to the ones used in
this research, however the options they use are written on the S&P500 index,
while we use the options based on Allianz to calibrate the models. In the arti-
cle [2] they estimate the models based on all available option prices and the at
the money options, while in [10] parameters are estimated using out of the money
options. When estimating the parameters we use squared percentage error objec-
tive function, which is also the case for [10], however in [2] they apply absolute
squared errors objective function. Since the techniques used in [10] are more in
line with our research, we assume parameter estimates form [10] should o�er a
better comparison for our estimates.
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Table 7.1: Parameter estimates: Models with stochastic volatility

BS Heston Bates SVOJ SVRJOJ SVRJOJ-SC
µRJ -0.4352 -0.1571 -0.1532

(21.26%) (25.31%) (6.01 %)
σRJ 0.1906 0.0578 0.1237

(20.53%) (6.68%) (5.81 %)
λ 0.0968 0.1024 0.3976

(0.15) (0.13) (0.11 %)
µOJ -0.1499

(0.122.73 %)
σOJ 0.1329 0.0951 0.0624

(5.97%) (5.71%) (1.71 %)
κ 1.8909 13.1319 1.5319 3.8419 0.3302

(1.65) (2.31) (3.39) (5.15) (0.26)
σ 0.2273 0.2072 0.2801 0.1779 0.2331

(0.68%) (1.39%) (11.92%) (5.01%) (1.85%)
σσ 1.3855 0.56486 0.4488 0.52 0.5986

(59.71%) (40.07%) (22.56%) (41.02%) (15.92 %)
ρ -0.3567 -0.4946 -0.7256 -0.6569 -0.1444

(0.08) (0.44) (0.25) (0.31) (0.15)
σt 0.2102 0.1886 0.1953 0.1348 0.1566 0.2200

(0.48%) (4.5%) (3.26%) (5.21%) (5.45%) (0.59 %)
p 3.8810

(14.52 %)
SSE 0.2376 0.0432 0.0314 0.0383 0.0303 0.0267

The values reported as the parameter estimates are the mean of 10 parameter estimations done

for each day separately, in the brackets standard deviations of the parameters are reported. In

SSE we report the mean of the objective function over 10 days.

Before commenting on the obtained results it is important to point out that
the reported estimates for all of the parameters are actually average values, since
we estimate the parameters of each model every day separately. When taking the
average of the estimated parameters to calculate the sum of objective functions
over 10 days, the result would no longer equal SEE, since the SEE is obtained from
the actual parameter estimates. The results are reported in this way, due to easier
comparison between parameter estimates in di�erent models and consistency with
the existing literature.

Let us �rst consider the instantaneous volatility (σ2
t ) estimates reported in the

Table 7.1. We can see that the highest value is obtained when evaluating the
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SVRJOJ-SC model followed by Black Scholes, Bates and Heston model, smaller
values are reported for SVOJ and SVRJOJ model. This result is intuitively correct,
with the exception of the SVRJOJ-SC and Bates model. Since the total variation
in the SVRJOJ model is divided to the variation of the random and overnight
jump as well as the variation coming from the stochastic volatility part of the
model, therefore the instantaneous volatility can be smaller. These results are to
some extent consistent with the literature, however our instantaneous volatility
estimates are higher compared to those in [10], which can be explained due to
di�erent option data used when estimating the models.

In order to show the complete variance decomposition of the models we calcu-
late the variation of the log-return due to random jump

V ar(

Nt+1−Nt∑
i=1

log Yi) = λσ2
RJ + λ(log(1 + µRJ)− 1

2
σ2
RJ)2.

The variation of the overnight part is already reported in the σOJ . In the following
table we present the variance decomposition in the Bates, SVOJ, SVRJOJ and
SVRJOJ-SC model.

Table 7.2: Variance decomposition

Bates SVOJ SVRJOJ SVRJOJ-SC
Continuous Part 0.0381 0.0182 0.0245 0.0484

Random Jump Part 0.0378 0.0034 0.0181
Overnight Jump Part 0.0177 0.0090 0.0039

Total 0.0759 0.0357 0.0369 0.0704

Variance decomposition of Bates, SVOJ, SVRJOJ and SVRJOJ-SC model.

From the table we can see that random and overnight jumps can play an
important role in the total variance of the model. In the Bates model the random
jump variation is as big as the continuous part variation, while in SVRJOJ and
SVRJOJ-SC model it accounts for approximately 9% and 26% respectively. The
overnight jump variation plays an especially important role in the SVOJ model
where it is almost as high as the continuous variation. We assume this is the
case due to the absence of the random jump component. In the SVRJOJ model
overnight jump accounts for 25%, while in the SVRJOJ-SC model it only represents
5% of the total variation.

Compared to the Bates model the random jump component plays a less im-
portant role in SVRJOJ and SVRJOJ-SC model, this can be the case due to
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introduction of the overnight jump that now accounts for the part of the variation
that is considered under the random component in the Bates model. Similarly
a decline can also be observed in the mean of the random jump (µRJ). On the
other hand the value of lambda in the SVRJOJ and SVRJOJ-SC model is higher
than the one in Bates, therefore we can assume that by introducing the overnight
jump component the model can �t more jumps with smaller mean. This result is
consistent with [10]. Overall the variation components in table 7 are higher then
the ones reported in [10].

Previous research [10], [2] and [5] show that when random or overnight jumps
are introduced in the model the values of parameter estimates σσ and ρ should
decrease, since the on average negative jumps can partly capture the negative
skewness that is observed in the distribution of stock returns. The above statement
also holds for our research, with the exception of the estimate for the ρ parameter
in the Bates model, that has a a higher value compared to the Heston model.

Besides the parameter estimates we also report their standard deviations, this
helps us to evaluate how stable di�erent parameter estimates are. However we
should consider the fact that standard deviations were only calculated based on
10 estimates for each parameter. Table 7.1 reports relatively small standard devi-
ations for parameters σ2

t , σ
2 and σ2

OJ . This result is consistent with [10], however
they report slightly lower standard deviations. That could be explained by dif-
ference in the underlying or the time period. On the other hand the parameter
estimates for all the other parameters are relatively unstable. Depending on the
model standard deviations of λ, µRJ and σRJ lie between 10%-25% . The mean
reversion κ has the most extreme standard deviation which goes all the way to
515% in the SVRJOJ model. Big deviations in estimation of κ are also observed
in the literature [10]. When comparing di�erent models and their parameter con-
sistency it can be observed that Black Scholes model is by fare the most stable
one, however this is not surprising, since it only has one parameter. However the
second most stable model is the SVRJOJ-SC model, this result is rather surprising
indicating that the scaled-t overnight jump leads to more consistency.

To evaluate the performance of the option pricing models we consider the value
of the objective function (SSE). The smaller the objective function, the better the
�t of the model. As expected all the described models are a big improvement
in comparison to the Black-Scholes model. From the table it can be seen that
the best model is the SVRJOJ-SC model, followed by the SVRJOJ model. This
result is not surprising, however we �nd it interesting how much the �t to the
objective functions improves when the overnight returns are scaled-t distributed
compared to the normal distribution, since changing the distribution leads to a
bigger improvement than for example adding an overnight jump to the Bates
model. The third best model is the Bates model, from that we can conclude that
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the random component is more important than the overnight component, since
the performance of the Bates model was considerably better then the one of the
SVOJ model. Similar conclusions regarding how well di�erent models minimize
the value of the objective function were found in [10], however the reported values
of SEE in their article are considerably higher. This can be explained with the fact
that they use more options to �t the models, as well as options with a maturity
of more than 6 months. Such options are on average more expensive compared
to the shorter maturities and the squared percentage error objective function is
better at �tting relatively cheap options.

7.2 Models Based on the Variance Gamma Process

In this section we consider the Variance Gamma Model (VG), Variance Gamma
Model with Normal Overnight Jump (VG-N) and the Variance Gamma Model with
Scaled-t Overnight Jump (VG-SC). Only the VG model was already discussed in
the literature, �rst in [19] and later also in [13], however the techniques used in
their research di�er signi�cantly from our work. First they consider options on
the S&P500 index while we use options on Allianz SE stock. Also time period is
di�erent. However the biggest change comes from the technique used to estimate
the parameters. As mentioned before we minimize the objective function to obtain
parameter estimates, on the other hand [19] and [13] use maximum likelihood
estimation.

As already discussed σν , θ and ν are not by itself the standard deviation, the
skewness and the kurtosis parameter respectively. Therefore it is not possible
to separate the impact of a parameter on a moment without a�ecting the other
moments too. Looking at the estimates of parameter θ that describes the mean as
well as the skewness, we can see that across all three models the parameter value
is negative, however the estimates di�er from one another a lot. The estimate for
θ reported in [19] is much bigger then in our case and equals -0.1436.

Again big di�erences can be observed in parameter estimates of ν, where the
estimate in VG-N is much higher compared to other models. Partly this can be
explained by scaled-t jump in VG-SC model, that can also capture a part of the
kurtosis.

When looking at the standard deviation of parameter estimates, reported in
the brackets, we can see that VG-SC model has a rather stable parameters, with
the exception of parameter p, µOJ and θ. In model VG estimate of parameter θ is
very high and also has a big standard deviation, on the other hand the standard
deviation in other two parameters is insigni�cant.
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Table 7.3: Parameter estimates: Models based on variance gamma process

VG VG-N VG-SC
θ -8.0389 -0.2192 -0.7589

(274.84 %) (32.78 %) (20.93% )
ν 0.001 3.9137 0.0122

(0.00731 %) (279.75 %) (0.96% )
σν 0.000842 0.0982 0.2156

(0.0098%) (6.22 %) (0.79% )
µOJ 0.3732

(40.67% )
σOJ 0.1635 0.0011

(8.01 %) (0.10% )
p 5.6664

(173.35% )
SSE 0.11516 0.09154 0.0677

Parameter estimates of the VG, VG-N and VG-SC. We report the mean and the standard

deviation of the parameters across 10 days.With SSE we denote the average value of the objective

function over 10 days.

Similarly as before we also evaluate these models based on how well they mini-
mize the objective function. As expected also models based on the variance gamma
processes are a big improvement in comparison to the Black-Scholes model, how-
ever the improvement is much smaller than in the previous section. This is mostly
the case due to the fact that this model could not �t the options for one or two
days well, however the �t for other days were similar to the ones of the stochastic
volatility models.

To estimate the parameters of the models we used the squared percentage error
objective function, however also some other objective functions could be consid-
ered. To conclude how the objective function in�uences the parameter estimates,
we evaluate the parameters when using an absolute error objective function. The
estimates are reported in the appendix A.7 and A.8.

When comparing the estimates of models based on stochastic volatility we can
see there are especially big di�erences in the estimation of kappa, on the other
hand for other parameters the di�erence between estimates depend on the model.
Also the consistency of the parameters depends on the model, for example when
using absolute error objective function the parameters of the SVOJ model are
more stable, however the opposite holds for the SVRJOJ model. When looking at
the models based on the variance gamma process we can see that the situation is
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similar. There are big di�erences in the estimation of θ, while other estimates are
relatively close together.

Based on these results we can as expected conclude that the choice of an ob-
jective function does in�uence the parameter estimates. On the other hand the
models that performed best under squared percentage error objective function also
perform best under absolute error objective function.

7.3 Alternative Evaluation of Option Pricing Mod-

els.

In the previous section we estimated all the considered option pricing models
and evaluate their performance based on how well they minimize the value of
the objective function. However the e�ciency of the option pricing model can
not be evaluated only based on this criteria. Therefore in this section we discuss
alternative indicators that help us conclude which model prices the options most
accurately. First we consider statistical indicators, such as the mean of the error
and the mean squared error. Later on we compare the models based on the absolute
errors for di�erent maturities. In the end we evaluate the models, considering
an indicator based on the bid and ask spread, that is used in practice. When
evaluating models based on the above criteria, we use the parameter estimates
obtained by squared percentage error objective function.

7.3.1 Statistical indicators

In the table below we report the statistical indicators that can help us conclude
which model captures the option prices most accurately.
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Table 7.4: Statistical indicators for option pricing models

MAE St. Dev. Min Max MSE Mean MPE
BS 2.3506 46.36% 1.6744 3.167 0.6351 -2.2305 2.0666
H 0.7755 35.85% 0.3300 1.3845 0.0908 -0.5384 0.7773
B 0.5717 28.93% 0.2537 1.0915 0.0441 -0.3016 0.6732

SV OJ 0.6632 30.46% 0.2573 1.2815 0.0652 -0.4437 0.7464
SV RJOJ 0.5304 25.33% 0.2872 1.0534 0.0406 -0.2898 0.6509

SV RJOJ − SC 0.4191 29.41% 0.1276 0.6184 0.0202 -0.0697 0.6480

V G 1.2342 81.41% 0.7393 1.7197 0.1998 -0.9345 1.3082
V G−N 1.0908 67.22% 0.4184 1.8413 0.1596 -0.8473 1.2042
V G− SC 1.0109 38.23% 0.4148 1.6582 0.1364 -0.7822 1.0560

Table summarizes statistical indicators for all the models. MAE denotes the mean over 10 days

of the sum of absolute errors. St .Dev. tell us how much the MAE variates. Min and Max denote

the minimal and the maximal sum of absolute errors over 10 days. MSE and MPE stand for

mean squared error and mean absolute percentage error respectively, mean is again taken over

the days. With Mean we denote the mean of the sum of the errors. Best result in each category

is highlighted.

First we consider the MAE that contains information on the absolute di�erence
between the option price calculated by the models compared to the market price
of an option. As expected the SVRJOJ model has the smallest MAE followed by
the SVRJOJ and Bates model, surprisingly however the maximum error of the
SVRJOJ-SC is much lower compared to the other models. The Bates model is
again more accurate than the SVOJ model, con�rming the assumption from the
previous section, that adding a random jump is more important than adding an
overnight jump. Models based on the variance gamma process perform the worst,
they are only successful compared to the Black-Scholes model.

In statistics MSE is often used to evaluate the performance of the estimator,
since it presents a trade-o� between the increase in the bias for a larger decease in
the variance and vice-versa. Also based on this criteria the situation is similar as
in MAE, SVRJOJ-SC and SVRJOJ again perform the best, while models based
on variance gamma process do not seem to be a good �t.

When looking at MAE and MSE we mostly focus on how well models esti-
mate the prices of relatively expensive options, however for an overall view we
also compare the models based on the mean squared error. Also in this case the
SVRJOJ-SC model is the best, however the di�erence between SVRJOJ-SC and
SVRJOJ model is much smaller here, indicating that SVRJOJ-SC model might
be better in capturing relatively expensive options.

Option pricing model should not always overvalue or undervalue the option
price, since this leads to the conclusion that there is a structural error in the
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model. Optimally the mean error should be close to zero indicating that the over
and under pricing in the model is balanced. We check whether this is the case for
our models, by looking at the mean reported in the table. Regardless of which
model we use the mean error is always negative, indicating that models are under-
priced on average.

Based on the statistical indicators we come to the same conclusion as in the
previous section. The SVRJOJ-SC model performs best based on MAE, MSE as
well as the MPE and is followed by the SVRJOJ model.

7.3.2 Indicators Based on the Absolute Error

In this part we evaluate the models based on the absolute error. With the absolute
error we mean the absolute di�erence between the option price calculated by our
model compared to the actual option price reported by the market. First we plot
graphs of absolute errors separately for all four maturities. For the most successful
models, we also present 3-D plots, where it is shown how the absolute error changes
through the strike price and the maturity. The results in this section are based on
the parameter estimates from October1, 2020.

Figure 7.1: Absolute error for maturity 0.031 years (ALV).
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Figure 7.2: Absolute error for maturity 0.120 years (ALV).

Figure 7.3: Absolute error for maturity 0.210 years (ALV).
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Figure 7.4: Absolute error for maturity 0.4603 years (ALV).

In the table below we summarize which models perform best based on four
maturities. Our conclusions are drawn from the graphs reported above.

Table 7.5: Best performing option pricing models depending on the maturity

Maturity 1-mat 2-mat 3-mat 4-mat
H SVRJOJ-SC SVRJOJ-SC SVRJOJ-SC

VG-N VG B SVRJOJ
SVRJOJ B H VG-N

The model reported �rst for each of the maturities is the model that �tted option prices best.

As we can see from the table and the graphs above, the performance of the
option pricing model depends on the maturity. For example SVRJOJ-SC model
performs best for all maturities but �rst, where surprisingly Heston is the most
accurate model. Through maturities the accuracy of the models seems to be
decreasing, this can be partly explained by the fact that with increasing maturity
options become more expensive and are no longer �tted so well, due to squared
percentage error objective function.

When we evaluated option pricing models based on statistical indicators and
on which model minimizes the objective function best, we concluded that models
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based on the variance gamma process are only better than the Black-Scholes model.
However here we can see this is no longer the case, since especially VG-N model
preforms very well for the �rst and fourth maturity, although the errors at other
maturities are then relatively large, leading to the overall poor result.

For the most successful models from the table above we also plot 3-D plots
that show the absolute errors across maturities and the strike prices for each model
separately. This helps us evaluate at which maturities and which strikes the model
performs best. The results presented are again based on the parameter estimates
of day one.

When comparing the absolute errors in the Bates and SVRJOJ model we can
see that the models perform in a similar way. The errors increase throughout the
maturities, they are bigger for higher strikes. The main di�erence that we notice is
that the Bates model captures options with higher strikes better, than the SVRJOJ
model. On the other hand SVRJOJ model performs better with relatively more
expensive options, since its peaks are colored blue in comparison to the red.

Figure 7.5: Absolute pricing errors: Bates model
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Figure 7.6: Absolute pricing errors: SVRJOJ model

Figure 7.7: Absolute pricing errors: SVRJOJ-SC model
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Figure 7.8: Absolute pricing errors: VG-N model

The 3-D plot of absolute errors for VG-N model is very similar to the ones of
the Bates and SVRJOJ model. It manages to capture errors at higher strikes well,
however at lower strikes it no longer performs so well, for example the errors of
value between 0.05-0.1 already start for the �rst maturity.

On the other hand, the performance of SVRJOJ-SC model is surprisingly good
through both strikes and maturities, since the errors never exceed the value of
0.04. In comparison to all other models the errors in SVRJOJ-SC model are no
longer increasing with maturity, unexpectedly there is a very small error for the
lowest strike and the longest maturity. That can be explained by the fact that
SVRJOJ-SC model might capture extremes better due to the scaled-t distribution
of the overnight jump.

Considering all the criteria, from the minimization of the objective function
to the statistical indicators and plots of absolute errors, we can conclude that
SVRJOJ-SC model is the best option pricing model, followed by the SVRJOJ
model. This result was to some extend expected, since SVRJOJ-SC model has the
most parameters and can therefore capture the option price behavior best. On the
other hand we are surprised with the poor performance of the models based on
variance gamma process. Even though they manage to capture the option price
for certain moments extremely well, they present a poor overall performance.
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7.3.3 Model Evaluation Based on the Bid-Ask Spread

Market makers use an internal option pricing model to price the options. They
compare the price obtained by their model to the bid and ask price given by the
market. Bid is the highest price a buyer is prepared to pay for an option and ask
the lowest price for which a a seller is willing to sell an option. The di�erence
between the bid and the ask is called bid-ask spread.

The internal option pricing models should calculate an option price close to
the mid market price, which is the mean of bid and ask. From this price given by
the internal option pricing model, a market maker can calculate the bid and ask
price indicated by his model. For example if the option price given by the model
is higher then the mid market price reported, then the bid and ask price implied
by the model will also be higher then the ones reported by the market. In the case
when the market makers trusts theirr option pricing model, they can quote at the
higher bid and ask, since they believes that the option is under-priced.

Depending on the option, the option price given by the model should not be
more than 15% of the spread away from the mid market price. Sightly bigger
deviations are allowed for options that are far in or far out of the money. The
deviation from the mid market indicates on the trading opportunity, however if
the model thinks there is a trading opportunity in almost every option it is more
likely that the option pricing model does not capture prices well, than that the
market is constantly wrong.

To evaluate how well the above described models perform based on the this
bid-ask spread criteria we use new date, since no bid and ask prices were available
for the options we considered in the previous parts. Here we take the option data
on Allianz stock from October 1, 2012 to October 5, 2012, all-together this gives
5 days of observations. Each day we have 18 option prices with di�erent strikes
and the maturity December 21, 2012. Compared to the previous parts we use
only one maturity when calibrating the models, since this allows for more accurate
parameter estimation. This approach is also used in practice.

When calibrating the models we consider the squared percentage error objective
function. The estimated parameters are reported in the appendix A.9 and A.10.
From those table we can see that the average value of the objective function is
smaller in this case, this can be explained by the smaller amount of options we use
as well as the fact that we only consider one maturity, which allows us to �t the
models more accurately. Big improvement can be noticed especially when looking
at the Bates, SVRJOJ, SVRJOJ-SC, VG-N and VG-SC model.

We �rst report the average absolute deviations of our models from the mid-
market price for each day separately. The deviations are expressed in the form of
the percentage of the bid-ask spread (absolute error divided by the bid-ask spread).
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Table 7.6: Average percentage deviations from the mid-market price

1-day 2-day 3-day 4-day 5-day
BS 377.15 % 295.82 % 343.39 % 219.40 % 242.11 %
H 54.24 32.55 53.97 27.56 28.74
B 37.35 14.01 50.39 20.88 11.19

SVOJ 45.68 33.89 47.42 22.55 26.11
SVRJOJ 27.60 8.37 49.12 15.51 11.62

SVRJOJ-SC 24.43 7.57 89.44 13.94 10.06
VG 323.45 245.47 307.32 229.89 243.94
VG-N 41.95 29.526 89.83 37.68 12.53
VG-SC 53.29 18.63 101.17 54.20 32.95

The table reports average percentage deviations of the option prices calculated by our models

compared to the mid-market price. Results presented in the table equal mean over absolute value

of the di�erence between option prices calculated by our models and the mid-market price.

From the table we can observe that the deviations from the mid-market price
are mostly larger than the advised 15% of the bid-ask spread. The Black-Scholes
and VG model performance is very poor, exceeding the deviation of 100% each
day. On the other hand as expected SVRJOJ and SVRJOJ-SC model perform
best and manage to stay in the 15% band for three out of �ve days. We can see
that all models do not manage to capture option price behavior on day 3, where
SVRJOJ-SC model performs wost than most of the others.

In order to show how the option price deviations between our models and mid-
market price depend on the strike, we plot option prices given by our models,
mid-market price, bid and ask price. We do not plot option prices given by Black-
Scholes and Variance Gamma model, due to too large deviations. For the better
clarity of the results we deduce mid-market price, from option price given by our
model, mid-market price, bid and ask price.

On October 2, 2012 Allianz stock was worth 94.24e, therefore the options
on the left from the strike 94.24e are out of the money puts and on the right
we have out of the money calls. From the picture we can see that the bid-ask
spread changes through di�erent strikes. When the options are further out of the
money the spread is bigger. This is the case since options that are further out of
the money are usually less liquid. Similar behavior can be observed when looking
at the di�erence between the option price calculated by our model and the mid-
market price. All the models give an option price that is relatively close to the
mid-market price for puts that are not that far out of the money, on the other
hand only SVRJOJ, SVRJOJ-SC, Bates and VG-N stay close to the mid market
price when looking at the out of the money calls.
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Figure 7.9: Option prices given by the models compared to mid-market price

From the Table 7.6 and the picture above we can see that SVRJOJ-SC, SVR-
JOJ and Bates model manage to price options closest to the mid-market price
and stay between the bid and the ask price for most of the strikes. Based on this
we can assume that those option pricing models are more reliable. However we
can not come to solid conclusions since the check for which deviations from the
mid-market price were actually trading opportunities and which were model errors
exceeds the scope of this research.

7.4 Out of Sample Pricing Errors

In the previous parts we have shown that in-sample �t of option prices is the
best for the SVRJOJ-SC model. However one could argue that this is the case
due to a large number of structural parameters compared to the other models.
To lower the impact of the number of parameters on the model performance, we
examine the out-of-sample pricing accuracy of the models. This approach might
favor models with less parameters, since the presence of extra parameters might
cause over-�tting.
To evaluate the out-of-sample pricing performance of all the considered models,
we use the parameter estimates of each of the models calculated for every day
separately. When calculating the option price using the proposed model, we use
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the model parameters estimated the previous day. We report the average absolute
and absolute percentage pricing errors for each model, every day separately. In the
end we also show the average errors of the option prices calculated by parameters
estimates for that day, to show the di�erence in option price accuracy in sample
and out of sample.

Table 7.7: Absolute pricing errors: Out of sample

BS H B SVOJ SVRJOJ SVRJOJ-SC VG VG-N VG-SC
2 0.135 0.081 0.080 0.087 0.080 0.065 0.097 0.087 0.085
3 0.066 0.068 0.093 0.080 0.095 0.095 0.071 0.062 0.064
4 0.082 0.028 0.026 0.031 0.031 0.025 0.053 0.045 0.037
5 0.116 0.040 0.036 0.037 0.028 0.041 0.081 0.047 0.062
6 0.116 0.013 0.018 0.016 0.016 0.019 0.038 0.056 0.049
7 0.110 0.015 0.014 0.015 0.015 0.029 0.053 0.075 0.022
8 0.099 0.044 0.029 0.038 0.030 0.018 0.055 0.038 0.022
9 0.067 0.038 0.038 0.037 0.042 0.068 0.045 0.059 0.047
10 0.103 0.033 0.026 0.037 0.030 0.038 0.030 0.022 0.024

Mean 0.089 0.036 0.036 0.038 0.037 0.039 0.052 0.049 0.041
Max Err. 0.134 0.081 0.093 0.087 0.095 0.095 0.097 0.087 0.085

The table reports average absolute pricing errors for each day separately. When calculating the

option price given by the model, parameters estimates from the previous day are used. With

Mean we denote the mean percentage absolute error and with Max Err. we denote maximum

average absolute error. Errors are denoted in Euros.

The highlighted numbers denote the model that has the smallest average ab-
solute error for each day separately. From the above table we can see that non
of the models signi�cantly outperforms the others. Based on the overall mean
and maximum average absolute error we can see Heston, Bates, SVOJ, SVRJOJ
and SVRJOJ-SC behave very similarly, the di�erences in their performance are
so small that we can not conclude which one is the best. Also the best model
based on variance gamma process is not to fare behind, although based on the low
number of parameters we could expect that VG and VG-N model would perform
better. They seem to me more sensitive to parameter change than some other
models.

From the below table that summarizes the mean absolute percentage errors we
can see that the Heston and Bates model are again very close. We can learn that
the performance between models is very similar, for example on day 2 all models
are extremely inaccurate, indicating on a signi�cant change in the option prices
from the previous day.
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Table 7.8: Percentage pricing errors: Out-of-sample

BS H B SVOJ SVRJOJ SVRJOJ-SC VG VG-N VG-SC
2-day 16.68 % 12.99 % 13.75 % 13.91 % 13.80 % 13.09% 15.09% 14.77 % 14.27 %
3-day 19.07 19.01 20.43 21.66 20.95 21.17 17.98 17.28 18.17
4-day 9.11 5.41 5.43 6.43 5.73 5.04 6.89 6.14 6.21
5-day 10.42 3.99 3.97 3.76 4.37 4.76 8.013 6.05 5.92
6-day 9.67 2.05 2.58 2.65 2.74 2.87 7.22 4.50 4.82
7-day 9.68 3.37 3.52 3.44 3.53 4.21 5.28 5.81 3.75
8-day 10.57 5.66 4.89 6.75 4.87 6.10 6.28 6.35 5.77
9-day 11.18 9.22 9.13 8.62 9.05 11.58 9.40 9.24 11.12
10-day 7.99 5.02 5.00 4.92 5.16 4.47 4.77 3.82 3.91
Mean 10.44 6.67 6.68 7.21 7.02 7.33 8.09 7.40 7.39

Max Err. 19.07 19.01 20.43 21.66 20.95 21.17 17.98 17.28 18.17

The table reports average absolute percentage pricing errors for each day separately. When

calculating the option price given by the model, parameters estimates from the previous day are

used. With Mean we denote the mean percentage absolute error and with Max Err. we denote

maximum absolute percentage error. Results are given in percentages

When comparing the mean absolute errors between models with parameter
estimates from that day to the ones that use the parameter estimates from the
previous day, we can observe large di�erences. First as expected, the mean errors
in Table 7.9 are much smaller, compared to Table 7.7 with the biggest di�erences
on day 2 and 3. Also maximum mean absolute errors are two or three times higher
when using the parameters estimates from the previous day. Surprisingly we can
see that in some cases the models with parameter estimates from the previous
day even perform better. This can be explained with the fact that the models
were �tted to the squared error objective function and here we are comparing the
absolute errors.

Table 7.9: Absolute pricing errors: In-sample

BS H B SVOJ SVRJOJ SVRJOJ-SC VG VG-N VG-SC
2-day 0.060 0.046 0.012 0.026 0.010 0.008 0.046 0.061 0.055
3-day 0.085 0.019 0.019 0.021 0.022 0.012 0.051 0.041 0.032
4-day 0.101 0.033 0.029 0.031 0.016 0.025 0.066 0.038 0.049
5-day 0.122 0.014 0.014 0.010 0.011 0.010 0.045 0.064 0.054
6-day 0.107 0.014 0.011 0.011 0.012 0.010 0.054 0.076 0.017
7-day 0.099 0.039 0.024 0.028 0.024 0.018 0.052 0.027 0.022
8-day 0.089 0.038 0.036 0.034 0.031 0.027 0.049 0.032 0.033
9-day 0.107 0.032 0.021 0.035 0.024 0.028 0.037 0.020 0.025
10-day 0.080 0.032 0.026 0.023 0.029 0.026 0.035 0.026 0.028
Mean 0.094 0.029 0.022 0.025 0.020 0.017 0.0484 0.043 0.035

Max Err. 0.122 0.046 0.035 0.035 0.031 0.028 0.066 0.076 0.055

The table reports average absolute pricing errors of option calculated with parameter estimates

for the that day. Highlighted numbers denote the model with the smallest average absolute error.
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From the above results we can conclude that parameter estimates from the
previous day should not be used when modeling option prices, since the errors
on average deviate from 6% - 10 % and can in the worst case even reach 20% or
more. Such errors are much to high, therefore we would advice to reestimate the
parameters each day separately. For models to still be able to calculate the option
prices on the day of interest, parameters could be estimated in the �rst few trading
hours and later on used for pricing options. The e�ectiveness of models with such
parameters estimates exceeds the scope of this project and will be left for future
research.

As expected, models with more parameters that performed best in-sample are
no longer as successful, due to the over-�tting e�ect.

The fact that distributions are very similar intuitively makes sense since the
models were calibrated using the same data.
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Conclusion and Further Research

8.1 Conclusion

In our research we show that incorporating an overnight jump into already existing
option pricing models leads to more accurate option prices. The existing research
assumed that intra-day as well as overnight returns followed a normal distribu-
tion. However by looking at the intra-day and overnight returns of stocks in the
DAX index we conclude that the variance gamma distribution describes intra-day
returns best, while overnight returns are captured most accurately by the scaled-t
distribution.
We introduce those two distributions into the option pricing modes and propose
the SVRJOJ-SC, VG-N and VG-SC model. Comparing the performance of the
models based on the minimization of the objective function, absolute errors and
statistical indicators we conclude that SVRJOJ-SC model captures the option price
behavior best, followed by the SVRJOJ model. The good performance of the above
mentioned models can be partly explained by a large number of parameters that
enables them to �t the option data better. Models based on the variance gamma
process only outperform the Black-Scholes model. By comparing the performance
of SVOJ and Bates model, we conclude that a random jump is more important
than the overnight jump, since Bates model outperforms the SVOJ model.
When looking at the out of sample performance of the option pricing models, there
is no clear winner. Models that captured option prices best in sample, no longer
do so well due to the over-�tting e�ect. Therefore we advice to reestimate the
parameters each day separately.
This research concludes that total jump risk should be separated in the random
and jump risk component. Where the overnight jump component should follow
the scaled-t distribution, since this leads to improvement in pricing options.
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8.2 Further Research

In this section we propose some possible extensions of our research.
First, we suggest looking at the bigger date set when estimating the parameters of
the model. In our research we took 10 days of data, however a longer time period
would allow to compare the standard deviations of the parameters in di�erent
models more accurately. This research shows that the parameters are more stable
in SVRJOJ-SC model compared to SVRJOJ, Bates, SVOJ and Heston model,
however the date set is too short to come to any reliable conclusion.
Second, out of sample performance of all the models we consider was relatively
poor. Therefore we suggest reestimating the parameters more often. For example
use the option data from the previous hour to �t the parameters of the models for
the next hour.
Finally, hedging performance under the considered models should be evaluated.
Similar research as in [10] for Heston and Bates model could be also conducted for
the new models we proposed, especially for SVRJOJ and SVRJOJ-SC model, due
to their good in sample performance.
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Appendix A

Appendix

In the appendix we �rst present results regarding the distribution of intra-day
and overnight returns, that were mentioned but not shown in the report until
now. Later on we give parameter estimates of the considered models when using
absolute error objective function as well as parameter estimates for the models
used in section 7.3.3.

A.1 QQ-plots of the Allianz stock returns

QQ-plots of the Allianz intra-day and overnight stock returns for logistic, expo-
nential power and mixture normal distribution are presented in this part.

Figure A.1: QQ-plots - alternative distributions: Intra-day (ALV)

Logistic Distribution Exp. Power Distribution

Mixture Normal Distribution
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Figure A.2: QQ-plots - alternative distributions: Overnight (ALV)

Logistic Distribution Exp. Power Distribution

Mixture Normal Distribution

A.2 Fitting Distribution to Alternative Data

We determine which distributions describe intra-day and overnight returns on
BMW and Deutsche Bank stock best. This stocks are considered to show that
distributions obtained to �t intra-day and overnight returns on Allanz stock best
also manage to capture returns of other stocks most accuratelly. Similar results
were obtained for all the stock in German DAX.

A.2.1 Distributions of BMW Stock Returns

First we report the empirical statistics of BMW stock returns.

Table A.1: Moments of intra-day and overnight returns: BMW

Returns Mean St. dev. Min Max Skw Kr
of series

Intra-day 0.0001 0.0226 -0.1319 0.166 0.308 7.5103
Overnight 0.0004 0.0127 -0.0974 0.0857 -0.7093 13.6367

Moments of intra-day and overnight returns on BMW stock. Sskw = Standerdized skewness ans

Skrt = standardized kurtosis

The parameter estimates of the considered distributions are summarized in the
following table:
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Table A.2: Distribution estimates: BMW

Distribution Parameter Intra-day Overnight

N
µ 0.000094223 0.00042888
σ 0.0226 0.0127

S-t
µ -0.0002488 0.0006657
σ 0.0168 0.0075
ν 4.3469 2.9753

L
µ -0.0001666 0.0006009
α 0.0119 0.061

EP
µ -0.0002849 0.0007273
α 0.0115 0.0042
β 1 0.673

MN

µ1 -0.00027337 0.0001899
σ1 0.0403 0.0296
µ1 -0.0001394 0.0006147
σ2 0.0163 0.008
λ 0.1775 0.1204

VG

c -0.001918 0.001475
σ 0.022078 0.0117
θ -0.002012 0.001044
ν 0.59489 0.87696

Distributions are �tted to the BMW stock.Parameter estimates of the following distributions

are reported, N=Normal, S-t = Scaled t, L = Logistic, EP=Exponential power, MN = Mixture

Normal, VG=Variance gamma.

The Goodness of �t test results show similar results as when considering ALV
stock

Table A.3: Chi Squared Test: BMW

Intra-day return Overnight return
Distribution Test P-value Test P-value

N 1 0.0000 1 0.0000
S-t 0 0.5132 0 0.1905
L 1 0.0000 1 0.0000
EP 1 0.0023 1 0.0000
MN 1 0.0097 1 0.0093
VG 0 0.0713 1 0.0083

Results of the Chi Squared Test, if 1 is written under the test, that means that the null hypothesis

was rejected, if there is 0 the hypothesis was not rejected. Test is based on the BMW data.

QQ-plots for intra-day and overnight returns, for normal, variance gamma and
scaled-t distribution are reported on the next page.
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Figure A.3: QQ-plots: Intra-day (BMW)

BMW Normal Distribution BMW Scaled-t Distribution

BMW Variance Gamma Distribution

62



Appendix A. Appendix

Figure A.4: QQ-plots: Overnight (BMW)

BMW Normal Distribution BMW Scaled-t Distribution

BMW Variance Gamma Distribution

A.2.2 Distribution of DBK Stock Returns

First we report the empirical statistics of DBK stock returns.

Table A.4: Moments of intra-day and overnight returns: DBK

Returns Mean St. dev. Min Max Skw Krt
of series

Intra-day -0.0014 0.0236 -0.0931 0.1027 0.1431 5.1643
Overnight 0.0015 0.0141 -0.0987 0.1082 0.374 12.0142

Moments of intra-day and overnight returns on DBK stock.

63



Appendix A. Appendix

Table A.5: Distribution estimates: DBK

Distribution Parameter Intra-day Overnight

N
µ -0.0014 0.0015
σ 0.0236 0.0141

S-t
µ -0.0015 0.0015
σ 0.0169 0.0077
ν 3.7053 2.4272

L
µ -0.0015 0.0014
α 0.0124 0.068

EP
µ -0.0012 0.0018
α 0.0104 0.0048
β 0.8024 1

MN

µ1 -0.0011 0.0019
σ1 0.0341 0.0257
µ1 -0.0017 0.0015
σ2 0.0138 0.0075
λ 0.1317 0.2377

VG

c -0.004028 0.001506
σ 0.022831 0.013269
θ 0.002657 -0.000035
ν 0.118402 1.15778

Distributions are �tted to the DBK stock.Parameter estimates of the following distributions are

reported, N=Normal, S-t = Scaled t, L = Logistic, EP=Exponential power, MN = Mixture

Normal, VG=Variance gamma.

The Goodness of �t test results

Table A.6: Chi Squared Test: DBK

Intra-day return Overnight return
Distribution Test P-value Test P-value

N 1 0.0000 1 0.0000
S-t 0 0.4832 0 0.3435
L 1 0.0000 1 0.0000
EP 1 0.0031 1 0.0000
MN 1 0.0000 1 0.0000
VG 0 0.0045 1 0.0013

Results of the Chi Squared Test, if 1 is written under the test, that means that the null hypothesis

was rejected, if there is 0 the hypothesis was not rejected. Test is based on the DBK data.

QQ-plots for intra-day and overnight returns, for normal, variance gamma and
scaled-t distribution are reported bellow.
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Figure A.5: QQ-plots: Intra-day (DBK)

DBK Normal Distribution DBK Scaled-t Distribution

DBK Variance Gamma Distribution
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Figure A.6: QQ-plots: Overnight (DBK)

DBK Normal Distribution DBK Scaled-t Distribution

DBK Variance Gamma Distribution
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A.3 Parameter Estimates when using Absolute Er-

ror Objective Function

Table A.7: Parameter estimates - Absolute error objective function (Stochastic
volatility models)

BS Heston Bates SVOJ SVRJOJ SVRJOJ-SC
µRJ -0.6945 -0.3500 -0.1896

(16.96%) (73.82%) (4.51 %)
σRJ 0.7176 0.0578 0.1758

(63.98%) (54.41%) (5.55 %)
λ 0.0675 0.0538 0.6351

(1.47%) (2.64%) (33.32 %)
µOJ 0.0038

( 0.71%)
σOJ 0.050 0.1106 0.0591

(3.67%) (5.67%) (3.25 %)
κ 0.1203 13.1319 0.0517 1.1576 0.366

(7.91%) (231.54%) (6.19%) (162.23%) (69.80 %)
σ 0.2530 0.1966 0.763 0.7704 0.3512

(0.89%) (0.81%) (40.7%) (77.72%) (38.80%)
σσ 1.060 0.3209 0.835 0.52 0.1539

(33.63%) (120.47%) (13.91%) (41.02%) (4.73%)
ρ -0.2695 -0.4946 -0.509 -0.4775 0.3660

(17.91%) (44.02%) (3.49%) (47.35%) (51.26%)
σt 0.2191 0.2139 0.1953 0.2197 0.1802 0.2033

(0.37%) (1.5%) (1.50%) (1.74%) (4.51%) (1.11 %)
p 4.7028

(39.23 %)
SEE 1.3798 0.33264 0.29535 0.3231 0.2833 0.1946

Estimates are based on the absolute error objective function. The values reported as the pa-

rameter estimates are the mean of 10 parameter estimations done for each day separately and in

brackets standard deviations of the parameters are reported. With SSE we denote the average

value of the objective function over 10 days.
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Table A.8: Parameter estimates - Absolute error objective function (VG)

VG VG-N VG-SC
θ -2.6961 -0.1625 -0.5257

(59.92%) (24.60%) (1.46% )
ν 0.0081 4.3038 0.0366

(0.25 %) (303.86 %) (1.46% )
σν 0.0021 0.0713 0.2278

(0.28%) (5.70%) (0.63% )
µOJ -0.1518

(34.25% )
σOJ 0.1766 0.0022

(5.89 %) (0.15% )
p 4.4763

(176.80% )
SEE 0.7691 0.5227 0.5096

Estimates are based on the absolute error objective function. The values reported as the pa-

rameter estimates are the mean of 10 parameter estimations done for each day separately and in

brackets standard deviations of the parameters are reported. With SSE we denote the average

value of the objective function over 10 days.
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A.3.1 Parameter estimates for data with only one maturity

Table A.9: Parameter estimates - Absolute error objective function (Stochastic
volatility models)

BS Heston Bates SVOJ SVRJOJ SVRJOJ-SC
µRJ -0.1781 -0.1869 -0.0773

(11.90%) (11.57%) (5.18 %)
σRJ 0.1353 0.3897 0.23.04

(12.52%) (27.00%) (13.31 %)
λ 0.1973 0.2978 0.2978

(5.51%) (13.25%) (13.25 %)
µOJ 0.2839

( 80.79%)
σOJ 0.0573 0.0634 0.0457

(1.46%) (1.62%) (1.48%)
κ 0.01 1.8234 1.0569 0.0887 0.5281

(0.01%) (200.93%) (3.39%) (11.34%) (24.56%)
σ 1.2550 1.4657 0.763 0.9099 0.5905

(2.71%) (50.19%) (40.7%) (20.69%) (7.91%)
σσ 0.362 0.2276 0.6961 0.2695 0.2257

(1.37%) (0.71%) (22.42%) (3.52%) (1.16%)
ρ -0.4184 -0.4535 -0.4456 -0.4510 -0.3849

(1.50%) (31.74%) (1.42%) (8.33%) (13.81%)
σt 0.2219 0.032 0.1089 0.011 0.1596 0.2267

(0.29%) (0.1%) (7.58%) (0.22%) (7.76%) (1.39 %)
p 3.8896

(11.75 %)
SEE 4.7029 0.0349 0.0157 0.03198 0.0121 0.0117

Estimates are based on the absolute error objective function. The values reported as the pa-

rameter estimates are the mean of 5 parameter estimations done for each day separately and in

brackets standard deviations of the parameters are reported. With SSE we denote the average

value of the objective function over 5 days.
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Table A.10: Parameter estimates - Absolute error objective function (VG)

VG VG-N VG-SC
θ -1.5891 -0.1706 -0.2212

(11.67%) (2.37%) (5.57% )
ν 0.0273 0.6694 0.1444

(0.45%) (21.67 %) (3.57% )
σν 0.0001 0.0803 0.2605

(0.01%) (5.62%) (2.62% )
µOJ 0.0151

(61.23% )
σOJ 0.0333 0.0076

(0.77 %) (0.57% )
p 4.4143

(48.23% )
SEE 0.5824 0.0306 0.0351

Estimates are based on the absolute error objective function. The values reported as the pa-

rameter estimates are the mean of 10 parameter estimations done for each day separately and in

brackets standard deviations of the parameters are reported. With SSE we denote the average

value of the objective function over 10 days.
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