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Abstract 

In military operations Unmanned Aerial Vehicles (UAVs) are used for reconnaissance of target 

locations in the area of operations. These target locations each have their own priority. In this thesis 

the UAV-Mission Planning Problem (UAV-MPP) is addressed where the fuel usage of the flight 

between each pair of targets is known a priori only probabilistically and the information about the 

target locations can only be obtained within their assigned time window. The goal is to maximize the 

total gathered information value during a flight which is restricted by the fuel capacity of the UAV. 

This problem can be modeled by the Stochastic Orienteering Problem with Time Windows (SOPTW), 

which is both practically and theoretically relevant. 

To solve this problem, two different approaches are presented. The first approach constructs an 

initial tour before the flight which is adjusted to the realized fuel usages during the flight. To 

construct an initial tour, different stochastic programming models are used including three variants 

of a chance constrained programming model and two variants of a recourse model. The second 

approach is a One-Step-Ahead Routing (OSAR) approach in which the next location is determined 

after recording the previous. A case study is performed to evaluate and compare the presented 

methods.  
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Part I 

Background 
In this first part we will introduce the problem addressed in this 
thesis and we will discuss both the military and the scientific 
background of the problem. In Chapter 1 the practical and theoretical 
relevance of the UAV mission planning problem with time windows 
and stochastic fuel consumption is discussed. After that, we will give 
a formal description of the problem in Chapter 2. In Chapter 3 we will 
review the found literature about problems related to our research.  
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1. Introduction 

During military operations, Unmanned Aerial Vehicles (UAVs) are used for reconnaissance, especially 

when it is too dangerous for a manned aircraft. The flight of a UAV can be partly controlled by 

computers on board or remotely by an operator on the ground or in another vehicle. The technology 

in the scout vehicles is able to capture both full motion videos and still imagery of valuable targets in 

the area of operations. Each target in the area has its own given information value. It is therefore 

necessary to create a route before the flight, taking into account all restrictions such as fuel capacity 

and time windows of the targets. Since it is unlikely that a UAV can visit all targets in one flight, a 

tour which visits only a subset of targets, should be planned. The main objective of this tour is to 

maximize the total gathered reward from the planned targets. Therefore, UAV-mission planning can 

be seen as an optimization problem. The value of the parameters can be deterministic and therefore 

known beforehand or parameters can be random variables that follow a certain probability 

distribution. In that case, their values are known a priori only probabilistically.   

The basic UAV-mission planning problem (UAV-MPP), where all parameters are assumed to be 

known, can be modeled like an Orienteering Problem (OP), according to Evers et al. [1]. The name of 

this problem comes from the family of sports, orienteering, as mentioned by Chao et al. in [2]. 

Players of such a game have to visit as much as possible control points and go back to the start 

location within a certain time frame. To navigate in the rough terrain, they have a compass and a 

map. Each of the control posts has an associated score and the player who gathered the most points, 

is the winner of the game.   

The OP can be seen as a combination between two widely known combinatorial optimization 

problems, the Knapsack Problem (KP) and the Travelling Salesman Problem (TSP). It can also be seen 

as a generalization of the TSP, where it is not necessary to visit all vertices during the tour. 

In the following part of this section we will discuss four practical elements which results in four 

variants of the basic UAV-MPP.   

First of all, due to several circumstances during the flight, the realized fuel consumption of a UAV is 

not fixed in reality. For instance, the wind direction during a UAV-mission can affect the fuel 

consumption. Flying headwind will be more costly, while flying downwind will be less consuming, 

which means that the fuel usage on an arc can fluctuate. Since the wind direction is quite predictable 

in advance, this can be used in the planning of the tour. Sudden changes in the wind direction are 

unfortunately not predictable. It is therefore necessary to model the fuel consumption with a 

probability distribution, in order to consider both positive and negative unforeseen events. Since the 

fuel consumption is not deterministic anymore, but a random variable, the problem is stochastic. 

Therefore, we will refer to this variant as the Stochastic Orienteering Problem (SOP). 

Through telephone tabs, social media and other intelligence, sometimes more information about the 

targets is available. When this is additional information about the time of the activity at a target, this 

can be modeled like a time window. A time window is given by an earliest and a latest time a target 

can be visited. Outside this time window, there is less or no information at that particular target and 

thus the reward of the target is less or nothing. It is referred to as ‘time-sensitive-targeting’. An 

example of a realistic situation in a UAV-mission is that the operators have picked up some 

information about a possible meeting of a suspicious group of people. This meeting will probably 
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take place between half past three and half past four. To get more information about this meeting, 

the UAV has to record this target within the given time window. Before and after this time window, 

there is less or possibly no useful information at this target and therefore recording in those 

moments can be not valuable. Because time windows are introduced, the optimization of the UAV-

MPP becomes more difficult. Therefore, (meta-)heuristics are often used to solve this extension of 

the problem, which can be modeled by the Orienteering Problem with Time Windows (OPTW).  

In the case of large missions, there is a possibility to do a UAV-mission with multiple vehicles. All of 

these vehicles have their own route and visit their own group of targets. Since it is not possible to 

earn a reward of a target twice, it is advisable to visit each target only once. The Team Orienteering 

Problem (TOP) can be used to model this extension of the UAV-MPP. 

The last extension of the basic problem is the online version of the UAV-MPP. This means that there 

is a changing set of targets. Targets in the area may appear or disappear during the flight. When new 

target information comes available, the tour of the UAV has to be reoptimized. At the moment, 

there is less literature available about the Online Orienteering Problem (OOP), but the research on 

this problem is in progress.  

In this thesis, a combination of these four extensions is investigated. We will focus on the UAV-

mission planning problem with time windows and stochastic fuel consumption. Note that fuel 

consumption in our research is a measure for time. All travel costs and time windows are given in 

fuel units. This variant can be modeled by the Stochastic Orienteering Problem with Time Windows 

(SOPTW). To the best of our knowledge, no research is available on this problem. In UAV mission 

planning, this variant is certainly practically relevant as we discussed before.   

Theoretically this problem is relevant as well, since proposed methods for the SOP cannot be used 

for the SOP with time windows. In these methods, time windows are not considered and therefore 

applying these algorithms can violate the time window constraint.  However, solution approaches 

for a variant of the OP with time windows can be used for the same variant without time windows. 

Furthermore, due to the stochasticity of the fuel consumption, deterministic solution approaches of 

the OPTW cannot be used for the SOPTW. By planning an initial tour, the uncertainty in the 

parameters is not taken into account. This can result in violated time windows and an exceeded fuel 

limit during the flight. Since an approximation for the distribution of the fuel consumption can be 

made, it is useful to consider this information in an a priori planning.  

To solve the UAV-MPP with time windows and stochastic fuel consumption, there are different 

approaches. We will discuss the two most widely used.  

In the first approach the problem is divided into two parts. The offline problem is the part before the 

flight. During this part, an initial tour is constructed. This can be done either exactly or heuristically. 

All a priori known information, such as time windows and probability distribution functions of the 

fuel consumption, is included in these calculations. Since the targets are known in advance, a large 

amount of computation time is available. It is therefore not a problem if creating such a tour takes 

several hours.   

During the flight, information about the realized values of the fuel consumption comes available. It 

could be necessary to adjust the initial tour, due to disappointing realizations caused by poor flight 

conditions. Sometimes, especially when the circumstances are comfortable to flight, it is possible to 

visit more targets than planned in the initial tour. Also in that case, a new tour has to be created. 
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This problem is called the online part of the UAV-MPP. The calculations in this part have to be done 

very quickly, since the computation time in real-time situations is limited. It is therefore necessary to 

implement a fast, but effective heuristic.   

This approach is commonly used in research for routing problems where new targets may appear 

during the flight. Every time a new target appears the initial tour is reoptimized, like is done by Lorini 

et al. [3].   

Another approach is to determine only the next target to visit in the tour. This can be done by 

constructing a new complete tour at the moment of departing a target. Just only the first target of 

this tour is considered. The advantage of this method is that the whole area is taken into account. 

Another method is to consider only the neighborhood of the current target and select one of the 

unvisited targets in this area.   

Since the calculations in this approach have to be done during the flight and therefore very quickly, 

like during the online part of the first approach, it is possible to use the same methods. The main 

difference is that in this second approach reoptimizing takes place after recording just one target, 

while for the online part of the first approach a strategy is selected when the tour should be 

reoptimized. This strategy could be reoptimized after recording just one or two targets, but also 

construct a new tour only three times during the flight.   

In the literature this approach is mostly used for problems with time-dependent or stochastic travel 

times, e.g. costs, such as done by Garcia et al. in [4] and by Gao and Huang in [5].  

The goal of this thesis is to construct and implement several methods, both exactly and heuristically, 

for the discussed approaches of the UAV-mission planning problem with time windows and 

stochastic fuel consumption. To test the different methods, a case study is done. A Monte-Carlo 

simulation is used for each of the several datasets. The empirical results of this case study are 

summarized using some quality measures.  

This thesis is organized as follows. In the rest of this part, the background of the problem is further 

investigated. In the second part of this thesis several methods for solving the offline problem are 

proposed, while in the third part some strategies for the real-time adaptive routing are presented. 

The case study, which is executed to test and compare the different proposed approaches, and its 

results are discussed in Part IV. We will end up in Part V with a conclusion and some outlines for 

further research.    
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2. Problem description 

In this chapter we will give a formal description of the problem.  

In the SOPTW,   represents a given set of targets. The starting point is denoted by vertex   and the 

ending point by vertex  . For notational convenience, set   is defined as   { }  { } and | | as its 

cardinality. In the case of UAV-missions the start and end point coincide and this is the depot, most 

of the time. Each target     has a given information (profit) value   . The value of the start and 

end point is equal to zero. A time window [     ] is assigned to each target. Recording of a target is 

only possible within its time window. We assume that the time windows of all targets are hard, 

which means that before the earliest time    and after the latest time    the information value is 

equal to zero. When the vehicle arrives too early at a target, there is the possibility to wait until the 

target is ‘open’, which means that recording is possible.   

The given set   contains the flight paths       between each pair of locations in  , where    . 

There are no arcs terminating in vertex   and no arcs originating from vertex  . The fuel consumption 

on arc        , denoted by    , is the fuel usage needed both to travel from location   to location   

and to gather information at location  . Note that recording is unnecessary and therefore excluded if 

location   is the end point. These parameters are assumed to be random variables that follow a 

certain probability distribution. Their values are known a priori only probabilistically. Since the fuel 

capacity of a UAV is limited by a given amount of fuel  , it is possible that not all targets can be 

recorded. In the SOPTW a tour is determined which maximizes the total expected collected 

information, from the starting point, passing along a subset of targets, to the end point, taking into 

account the fuel uncertainty. The methods to solve the SOPTW, discussed in this thesis, handle the 

fuel capacity and the time windows for the targets differently.   

The SOPTW can also be seen as a graph,        , where   is the vertex set and   is the arc set. In 

this definition an information value    and a time window [     ] are associated with each vertex 

    and a probabilistic fuel consumption     with each arc        . To solve the SOPTW, a 

Hamiltonian path      over a subset of  , with a fixed start   and end point  , has to be 

determined, in order to maximize the total expected gathered information value. For this 

optimization process the fuel uncertainty and limitations on the total fuel usage on this path and the 

departure time of the vehicle from each target should be taken into account.    
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3. Literature review 

In this chapter we will review the available literature about the problems which are related to our 

research. For all of the discussed problems we will describe the differences to our research and the 

difficulties in implementing the proposed methods.  

3.1 The Orienteering Problem  

Since the introduction of the Orienteering Problem (OP) by Tsiligrides in [6], a lot of research is done 

on this problem. Several exact, meta-heuristic and heuristic approaches have been proposed. During 

the first years, research on the OP was focused on finding new solution methods as found by 

Tsiligrides [6] and Golden et al. [7]. Later on, extensions of the basic problem were introduced, such 

as the Orienteering Problem with Time Windows (OPTW) by Kantor and Rosenwein [8], the Team 

Orienteering Problem (TOP) by Chao et al. [2] and the combination of these two, the Team 

Orienteering Problem with Time Windows (TOPTW) by Vansteenwegen et al. [9]. These are all 

deterministic variants of the OP. In such variants the travel time between two targets is assumed to 

be fixed and therefore fluctuations are not taken into account. As we already mentioned in the 

introduction, the application of solution approaches for these extensions to our problem, carries the 

risk that time windows will be violated or the UAV is running out of fuel under disappointing 

circumstances. When using these methods in our research, at least a worst scenario control has to 

be provided. A detailed overview of these variants of the OP can be found in the survey of 

Vansteenwegen et al. [10].    

The last few years another extension of the OP has been investigated, the Stochastic Orienteering 

Problem (SOP).  In this variant, the deterministic travel and service times between two targets are 

replaced by random variables, which follow a certain probability distribution. These times, and 

therefore the travelling costs, are known a priori only probabilistically. For the OP related problems, 

this is first introduced and solved by Teng et al. [11], who present the Time-Constrained Traveling 

Salesman Problem with Stochastic Travel and Service Times (TCTSP). Their model is limited to 

discrete travel and service time distributions. Another related problem is the Stochastic Selective 

Travelling Salesperson Problem (SSTSP), introduced by Tang and Miller-Hooks in [12]. In the SSTSP, 

the travel and service times are stochastic and the authors propose both exact and heuristic 

methods for solving the SSTSP. Campbell et al. [13] present the Orienteering Problem with Stochastic 

Travel and Service Times (OPSTS). In this paper, for some special cases, a dynamic programming 

model is used for solving the OPSTS exactly. Since the running time for this model grows 

exponentially with the number of nodes, they suggest a variable neighborhood search heuristic 

(VNS) to solve the larger and more realistic cases. Other methods to handle the uncertainty are 

Robust Planning, applied to the OP by Evers et al. [1], and Stochastic Programming. For that, the 

Two-Stage Orienteering Problem (TSOP) is presented by Evers et al. [14]. In their paper, they 

compare the Robust Orienteering Problem (ROP) with the TSOP.   

Since time windows are not considered in the SOP, the discussed methods cannot be used directly in 

our research. For the most of these methods, adjusting is difficult or impossible. However, a VNS 

heuristic can be adapted to our problem relatively easily, since there are route improving  heuristics 

for routing problems with time windows available in literature, such as presented by Potvin and 

Rousseau [15].   
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To the best of our knowledge, there is no research available about the Stochastic Orienteering 

Problem with Time Windows (SOPTW). This extension of the OP contains both stochastic travel 

times and a time window for each target. As there are many practical situations, e.g. UAV mission 

planning, where this modeling is more realistic than the deterministic variant, it is interesting to 

investigate this problem. It is therefore necessary to analyze the available literature on related 

problems.  

Closely related to the SOP is the Time-dependent Orienteering Problem (TDOP), which is introduced 

by Fomin and Lingas in [16]. In this problem, the travel and service times are dependent of the time 

of departure. Therefore, the travel times can be described with an explicit function which is known 

in advance. The authors of this article give a detailed proof of the accuracy of their greedy heuristic. 

An application of the TDOP in the field of discrete manufacturing is given by Wang and Tang [17]. 

This paper considers a hybrid meta-heuristic for the prize-collecting single machine scheduling 

problem with sequence-dependent setup times. Del Bimbo and Pernici [18] describe another 

application of the TDOP. They use it to optimize the saccades planning for distant target 

identification. Recently, Li et al. [19] proposed a mathematical model and an exact algorithm to solve 

the TDOP.   

Also for this basic problem extensions are introduced. For multiple parallel tours, the Time-

dependent Team Orienteering Problem (TDTOP) is presented by Li in [20]. The Time-dependent 

Orienteering Problem with Time Windows (TDOPTW), which is introduced by Garcia et al. [4], is 

useful for tourists to plan a tour for one day in a city with a lot of Points Of Interest (POIs). Tourists 

can choose to travel between POIs by public transportation or on foot. In this paper, a hybrid 

approach, which combines an Iterated Local Search (ILS) with a precalculated average travel time 

matrix, is used for real-time route planning. When a tourist stays for several days in the city it is 

necessary, according to Garcia et al. [21],  to solve a Time-dependent Team Orienteering Problem 

with Time Windows (TDTOPTW).   

In contrast to our problem, the TDOP and its variants are deterministic problems, because all 

parameters are known in advance. These problems can be solved exactly or heuristically. Some 

proposed heuristic methods, such as the Hybrid Approach, presented by Garcia et al. [4], can also be 

applied to the SOPTW, since this method uses only the average travel time between two targets. 

3.2 The Vehicle Routing Problem  

Also Vehicle Routing Problems (VRPs) are related to the (Team) Orienteering Problem. A VRP can be 

seen as a TOP with two extra constraints. First of all, all targets must be visited by a vehicle. 

Secondly, each vehicle has a fixed capacity. Besides that, the objectives of the two problems are also 

different. The main goal of the OP is to maximize the total reward, while that of the VRP is to 

minimize the total number of vehicles or the total number of kilometers. A lot of research on the 

VRP and its extensions is done. In this literature review only the extensions which are closely related 

to the SOPTW are discussed.  

The Vehicle Routing Problem with Time Windows (VRPTW) is introduced by Baker in [22]. 

Thereafter, a large number of exact and (meta-)heuristic solution approaches are proposed, e.g. by 

Desrosiers et al. [23] and Solomon [24]. The issue with this deterministic problem is the same as with 

the (T)OPTW, since in both the travel times are fixed. Therefore, most of the solution approaches for 

this problem cannot be applied to the SOPTW. An interested reader can refer to the overview of El-

Sherbeny [25].   
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Another related extension of the VRP is the Stochastic Vehicle Routing Problem (SVRP), first studied 

by Laporte et al. in [26]. This problem consists of the planning of optimal vehicle routes with 

probabilistic travel and service times. In the found literature, several methods are used to solve this 

problem. Chance-constrained programming (CCP) is an often used method. Laporte et al. [26] are 

the first who implement an L-Shaped algorithm to successfully solve the CCP-formulation of the 

SVRP. Creating a modeling scheme based on queuing theory, as has been done by Woensel et al. in 

[27], is another way to solve the SVRP. Travellers’ equilibrium is used by Connors and Sumalee [28] 

to study the stochasticity of the travel times. Since in this stochastic VRP time windows are not 

considered, like in the SOP, application of the proposed methods for the SVRP is very hard. 

Therefore, it could be more useful to analyze the presented solution approaches for the SVRP with 

time windows.  

The Stochastic Vehicle Routing Problem with Time Windows (SVRPTW) has been introduced more 

recently. Wong et al. [29] propose a two-stage stochastic integer program with recourse for this 

problem. In their paper, only discrete random distributed travel times are taken into account. To 

handle all probability distributions, Ando and Taniguchi [30] use in their case study a Genetic 

Algorithm (GA) to solve the problem. Also Gao [31] uses a GA to solve the CCP-formulation of the 

SVRPTW. In order to accelerate the solution process, Li et al. [32] present a Tabu Search-based 

heuristic. In these last four referred articles, the time windows are assumed to be hard, which means 

that a location can only be visited within its time window. In the found literature, there are also 

researchers who assume that in time windows in the SVRPTW are soft. By incurring a penalty, a 

location can be visited outside its time window. These penalties are developed using a fixed cost, a 

linear cost and sometimes a quadratic loss penalty. This Stochastic Vehicle Routing Problem with 

Soft Time Windows (SVRPSTW) can be found by Hsu et al. in [33], by Russell and Urban in [34] and by 

Taş et al. in [35].   

Presented solution approaches for the SVRPTW, such as Chance-constrained Programming by Li et 

al. [32], can be adapted to the SOPTW relatively easily. In the following chapter we will present a 

CCP-formulation for the SOPTW, based on these adjustments.  
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Part II 

The offline problem 
In the second part of this thesis we will discuss the offline part of the 
UAV-MPP with time windows and stochastic fuel consumption, 
where an initial tour is constructed taking into account the 
stochasticity of the fuel consumption. In the first two chapters of this 
part we will introduce some different approaches to create an initial 
tour. In Chapter 4 a chance-constrained programming model for the 
SOPTW is presented, while in Chapter 5 two stochastic programming 
models with recourse are introduced. In Chapter 6 we will discuss 
some solution methods for the introduced models.  
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4. Chance-Constrained Programming  

In this chapter we will discuss how Chance-Constrained Programming (CCP) can be used to create an 

initial tour. First, we will give a mathematical formulation for the deterministic OPTW. After that, a 

CCP-formulation is presented. Finally, we will introduce a quadratically constrained programming 

reformulation of the model.   

4.1 Deterministic Orienteering Problem with Time Windows 

As discussed in Chapter 2, in the SOPTW the fuel consumption on a flight path between two 

locations is not fixed, but a random variable that follows a certain probability distribution.  Since the 

value of these parameters is known a priori only probabilistically, this is a stochastic problem. When 

the fuel consumption is assumed to be fixed and known in advance, the problem is deterministic. To 

start our research on the SOPTW, it will be useful to consider first a mathematical formulation for 

the deterministic OPTW. Therefore we present a formulation of the OPTW making use of the 

notation introduced in Chapter 2. As previously mentioned, the only difference is that the fuel 

consumption     is no longer stochastic, but deterministic in this case.  

To formulate a Mixed Integer Programming (MIP) for the OPTW, the following decision variables are 

defined. First of all,     1, if target   is visited on the tour and 0 otherwise. Decision variables  

     1, if target   is visited right after target  , this means that the flight path from target   to target 

  is selected in the tour and 0 otherwise. Finally,    is the departure time of the vehicle, e.g. the UAV, 

after recording target  . The MIP formulation of the OPTW (P4.1) is the following: 

                ∑    

   

                                                                                                                                   

          ∑        

{         }

                                                                        { }                                    

                     ∑        
{         }

                                                                         { }                                  

                       ∑         

       

                                                                                                                         

                                (     )                                                                                             

                                                                                                                                                    

                         {   }                                                                                                                              

                          {   }                                                                                                                         

                                                                                                                                                              

The Objective function (4.1) maximizes the total gathered information value. Constraint sets (4.2) 

and (4.3) guarantee that the tour is connected and each target is visited at most once. Constraint 

(4.4) limits the total fuel consumption. Constraint set (4.5) excludes sub tours and defines the 
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departure times. Constraint set (4.6) restricts the end of the recording to the time window. Note 

that the departure time can be equal to the earliest time, since the fuel consumption     includes the 

fuel usage during the recording of target  . It is therefore necessary to define    as the earliest time 

a target can be left after recording.  

The possibility to wait until a target is ‘open’ is not explicitly modeled in this formulation, but it is 

implicitly possible by Constraint set (4.5). This constraint set requires that when the flight path from 

target   to target   is selected in the tour, the difference between the departure times of these 

targets has to be larger or equal to the fuel consumption on this path. Since this difference could be 

larger than the fuel used both during the flight from target   to target   and during the recording of 

target  , it is possible to wait until the reached target is ‘open’. The fuel consumption during this 

waiting time is not included in the total fuel usage calculated in Constraint (4.4). However, this extra 

fuel usage while waiting at a target, is included in the definition of the departure times of the next 

targets in the tour and therefore also in the arrival time at the end point   by Constraint set (4.5). By 

setting the latest time of the end point   equal to the fuel capacity of the vehicle, the total amount 

of fuel used during flying, waiting and recording should be less than or equal to the fuel capacity   

by Constraint set (4.6). Note that it is also possible to wait longer than strictly necessary. Since 

spending fuel for additional waiting yields nothing, the amount of fuel that is used for waiting will be 

minimized in the optimal solution.     

4.2 Chance-Constrained programming formulation 

Due to the stochastic fuel consumption, it is not possible to use the MIP-formulation of the OPTW, 

presented in Section 4.1, for the SOPTW. To formulate a deterministic mathematical model for 

stochastic problems such as the SOPTW, stochastic programming is introduced in literature. There 

are several different approaches in this spectrum, but for routing problems chance-constrained 

programming is one of the most commonly used methods. As we have seen in our literature review 

in Chapter 3, Laporte et al. [26] have used CCP to solve the SVRP and Gao [31] and Li et al. [32] for 

the SVRPTW. Chance-constrained programming is introduced by Charnes and Cooper in [36]. The 

main idea of this approach is to maximize the objective subject to both deterministic constraints and 

stochastic constraints which must be satisfied with prescribed levels of probability.  

Taking the stochastic fuel consumption into account, Constraint (4.4) and Constraint set (4.6) of 

(P4.1) will be stochastic constraints and we will therefore model them by a chance constraint. These 

chance constraints are based on Li et al. [32]. Since Li et al. study the SVRPTW, some adjustments 

are required to fit the SOPTW that we are addressing.  

Considering Constraint (4.4), the fuel usage during the flight will be a variable sum of random 

numbers. In real-world situations, a UAV has a fixed fuel capacity, which cannot be exceeded. In the 

corresponding chance constraint, the total fuel consumption may exceed the fuel capacity   with a 

certain probability.  Note that when this threshold is less than 1, adjusting the tour during the flight 

could be necessary.  The chance constraint according to Constraint (4.4) is 

 { ∑         
       

}                                                                                                                                 



21 
 

where P is the probability measure and   is the threshold. This constraint implies that the total fuel 

usage during the flight may exceed the capacity of the UAV with a probability less than    . A 

lower value of   means that adjusting during the flight is required with a higher probability. Since a 

chance constraint is based on a linear constraint from the deterministic model, it is reasonable that 

this threshold is about     or higher and consequently the probability to meet the corresponding 

deterministic constraint will be large.  

Secondly, we consider the probability of departing from a target outside its time windows. One way 

to formulate a chance constraint with respect to the time windows is by defining a confidence level 

  by which all targets are to be recorded within their time windows. A higher value of   indicates 

that the route has a lower probability of causing additional waiting time or missing time windows. As 

Chance constraint (C1) this chance constraint is based on a deterministic constraint set and 

therefore it is reasonable that threshold   is also about     or higher.   

The following chance constraint set is introduced for the time windows of each target: 

 {            }                                                                                                                          

Due to Constraint set (4.5) of (P4.1), the value of    depends on the stochastic fuel consumption 

both during the flight and during the recording of the targets. Therefore,    is a random variable.  

Another possibility to formulate a chance constraint set for the time windows is to consider only a 

hard deadline, i.e. the UAV only has to depart from a target before the latest time with a probability 

 . The earliest time of the time window is used to restrict the waiting time. The probability that the 

UAV arrives before the earliest time and has to wait until the target is ‘open’ and recording is 

possible, has to be smaller than    . The lower value of   means that the UAV has a smaller 

probability of waiting. The corresponding Chance constraint set (C3) can be written as 

{
            
            

                                                                                                                            
      

      
  

Note that when both Set (C3.1) and (C3.2) are considered, the probability that the UAV arrives and 

departs within the time windows, which is modeled by   in (C2), is equal to      . The main 

difference between (C2) and (C3) is that the probabilities of waiting on the opening of a target   and 

missing a target   are fixed in Set (C3) and can vary in Set (C2), since only the sum minus one is fixed 

by  . To ensure that the probability a target is departed within its time window is sufficiently larger, 

both   and   should be about      or higher.  

When only the second set of chance constraints is taken into account, the problem should called 

Stochastic Orienteering Problem with Deadlines (SOPD), based on literature [37]. In this problem to 

each target only a latest time is assigned for which the recording should take place. There is still no 

literature available about this problem, but the models discussed in this thesis can be relatively 

easily adapted to the SOPD by removing the earliest time constraint or waiting time constraints. 

1 
The numbering of the constraints and equations in this chapter is organized as follows: 
- The number of linear constraints starts with the number of the chapter, followed by a serial number 
- The number of chance constraints starts with a C, followed by a serial number.  
- The number of quadratic constraints starts with a Q, followed by the same serial number as the corresponding chance 

constraint. 
- Equations starting with an R are auxiliary equations for the rewriting of the chance constraints to quadratic constraints. 

The serial number of these equations begins with the same number as the corresponding chance constraint, followed 
by its own serial number.   
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4.3 Quadratically constrained programming reformulation  

To rewrite the CCP-formulation of the SOPTW to a quadratically constrained program, an 

assumption about the probability distribution of the fuel consumption on each arc has to be made. 

We assume that the fuel usage on the arc between target   and target   is normally distributed, thus 

      (       
 ). Furthermore, the fuel consumption on different arcs is assumed to be 

independently. Since predicted deviations such as weather and wind forecasts are already included 

in the expected value of    , only unforeseen circumstances which occur randomly will affect the fuel 

consumption. Based on this assumption, the chance constraint sets of previous section can be 

rewritten to their deterministic equivalent.  

4.3.1 Fuel Constraint 

Starting at Chance constraint (C1), 

 { ∑         
       

}     

with       (       
 ) and   is the threshold. This can be rewritten as  

 {   }                                                                                                                                                        

where   is the total fuel consumption during the flight, thus   ∑              . Since the sum of 

independent normally distributed random numbers is also normally distributed with its mean equal 

to the sum of the means and its variance equal to the sum of the variances, 

    (∑               ∑    
           ). Based on the characteristics of the normal distribution, (R1.1) 

is equivalent to 

 {  
    

  
}                                                                                                                                             

where   is a standard normally distributed variable,     ∑               and    √∑    
           . 

Given the properties of a standard normally distributed variable, (R1.2) can be rewritten as 

    

  
                                                                                                                                                         

where      is the z-score corresponding to the  -percentile. This value is given when   is known. 

Note that Equation (R1.3) is therefore deterministic and can also be written as 

                                                                                                                                                          

which is equivalent to 

  ∑       

       

     √ ∑    
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This is a deterministic, but non-linear constraint, since the square root of a variable is a non-linear 

operation. Equation (R1.5) can be reformulated as a quadratic constraint by squaring both sides. 

Consequently, Chance constraint (C1) can be rewritten as  

[  ∑       

       

]

 

  [    ] ∑    
    

       

                                                                                             

Note that this last rewriting is only correct when   ∑               is nonnegative and      . 

These requirements are similar, since the z-score of the 0.5-percentile is equal to zero. As mentioned 

before, the requirement       is a reasonable assumption, because a chance constraint is based 

on a linear constraint from the deterministic model and therefore the threshold to meet this 

deterministic constraint will be large.  

4.3.2 Deadline and Waiting Constraint 

For Chance constraint set (C2) and (C3), approximately the same reasoning can be used to 

reformulate the deterministic quadratic equivalent. In the following part, we will discuss the 

quadratic deterministic equivalent of Constraint set (C3). We will start with the second constraint set 

of Chance constraint set (C3), because reformulating this set is most related to the reformulation of 

Chance constraint (C1). 

Recall Constraint set (C3.2), 

                                                                                                                                                     

In Equation (R3.2.1),    is the random variable. Due to the assumption that the fuel consumption is 

normally distributed,    is also normally distributed. Note that in this assumption the waiting time of 

the vehicle is ignored to simplify the problem. This means that the departure time of a target could 

be before the earliest time of that target and thus recording could take place before the target is 

‘open’.  Consequently, this results in an overestimating of the total gathered profit. In the third 

variant of the CCP, discussed in the last subsection of this section, the expected waiting times are 

taken into account by determining the departure times of the targets.   

Based on the assumption that    is normally distributed, the mean of    is equal to the sum of the 

means of the arcs before target  , while the variance of    is equal to the sum of the variances of the 

arcs before target    To determine the mean and variance of   , some auxiliary variables are 

introduced. First of all, the integer variables    denote the position of target   in the tour. Therefore, 

the following constraint set is added to the MIQCP, which is based on the IP formulation of the TSP 

presented by Miller et al. in [38]:  

               | |                                                                                                                  

where    {    | |}. Constraint set (4.10) replaces Constraint set (4.5) in the MIQCP, since both 

constraints avoid sub tours. Furthermore, Constraint set (4.5) defines the departure times using the 

fuel usage. In the SOPTW these parameters are stochastic and therefore only probabilistically 

known.  
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Secondly, the binary variables      , if target   comes before target   in the tour, which means 

that       and 0 otherwise. This can be done by adding the following constraint set to the MIQCP: 

{
         | |

               | |
                                                                                                             

where     {   }   

The final set of introduced auxiliary variables are also binary variables,       , if arc       is in the 

tour before arriving at target  , which means that both       and       and 0 otherwise. To 

implement these variables, the following constraint set is added to the program: 

{

              

     
       

 

                                                                                                               

where      {   }. The first constraint set ensures that        if both       and      , while 

the second restricts the value of      to zero otherwise. The second one is also necessary, because 

in the third variant of the CCP the expected waiting time is minimized. When the vehicle arrives too 

early at a target, it will be better for the objective to increase one of the     -variables to one, 

instead of collecting some waiting time.  

Based on this notation,       (∑                ∑    
            ). Consequently, Equation (R3.2.1) 

can be rewritten as  

 {  
        

   

}                                                                                                                            

where   is a standard normally distributed variable,    
  ∑                and 

   
 √∑    

            .  For the same reasoning as in the reformulation of Chance constraint (C1), 

the quadratic deterministic equivalent of (R3.2.2) is 

[     ∑        

       

]

 

  [    ] ∑    
     

       

                                                                         

Note that this is only correct when      ∑                is nonnegative and      . As we 

already mentioned, these assumptions are reasonable. 

Using the introduced auxiliary variables, we can also formulate the quadratic deterministic 

equivalent of the first set of Chance constraint set (C3). The Chance constraint set (C3.1), 

                                                                                                                                                    

can be rewritten as 
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where        (    
    

 ). Based on the characteristics of the normal distribution, Equation 

(R3.1.2) is equivalent to 

 {  
         

   

}                                                                                                                        

which is similar to Equation (R3.2.2). Thus, the quadratic deterministic equivalent of Chance 

constraint set (C3.1) is  

[      ∑        

       

]

 

  [    ] ∑    
     

       

                                                                     

Note that also       ∑                has to be nonnegative and      . 

Based on the discussed reformulations of (C1) and (C3) and the introduced auxiliary variables, the 

MIQCP of the CCP-formulation for the SOPTW is as follows:  

                      ∑    

   

                                                                                                                             

                                                                        

                     [  ∑       

       

]

 

  [    ] ∑    
    

       

                                                                       

                       ∑       

       

                                                                                                                     

                     [      ∑        

       

]

 

  [    ] ∑    
     

       

                                                

                           ∑        

       

                                                                                                 

                     [     ∑        

       

]

 

  [    ] ∑    
     

       

                                                    

                          ∑        

       

                                                                                                    

                        {    | |}                                                                                                                     

                         {   }                                                                                                                         

                         {   }                                                                                                               
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4.3.3 Time Windows Constraint  

In this part we will discuss the quadratic deterministic equivalent of Chance constraint set (C2). 

Chance constraint set (C2) can be split into two parts. The first part ensures that waiting is not 

necessary with probability   , while the second part ensures that the target is recorded before the 

deadline with probability     To combine these parts, an extra constraint set is added. The sum of 

these probabilities minus 1 has to be larger or equal to the given threshold  .  

{

             

             

         
                                                                                                                                

Note that the first two constraints are the same as (C3), except that   and   are fixed in Set (C3) and 

in (C2’)    and    are decision variables and may vary for each target and only   is fixed. Therefore, 

we can rewrite  

                                                                                                                                                     

as 

[      ∑        

       

]

 

  [     ]
 ∑    

     

       

                                                                      

Since    is a decision variable in this case and not a given probability like in the previous part, 

Equation (R2.1.2) is not linear, due to the non-linear operation of determining a z-score given a 

variable percentile. To give a linear approximation of this equation, we introduce two new sets, a set 

of possibilities   and a set of times  . Each possibility   has a given threshold    and a given 

squared z-score   . Each target   has two times, an earliest time and a latest time. We also introduce 

an extra binary decision variable      which is assigned the value 1 in case possibility   is chosen for 

time   of target  . Only one threshold can be assigned to each time of each target. Consequently, 

the following constraint has to be added to the MIQCP: 

∑      

   

                                                                                                                                              

where      {   }.   

Constraint (4.17) ensures that the sum of the thresholds of a target minus 1 has to be larger or equal 

to the probability that the departure time falls within the time window.  

∑ ∑      

   

  

   

                                                                                                                            

Based on this notation, the quadratic approximation of Equation (R2.1.2) will be   

[      ∑        

       

]

 

  ∑       
   

∑    
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Furthermore, the second Constraint set of (C2’), 

                                                                                                                                                    

can be quadratically approximated by 

[     ∑        

       

]

 

  [     ]
 ∑    

     

       

                                                                         

which is equivalent to  

[     ∑        

       

]

 

  ∑       
   

∑    
     

       

                                                                   

Based on the reformulation of (C2) the MIQCP for SOPTW can also be formulated as: 

                      ∑    

   

                                                                                                                             

                                                                            

                     [      ∑        

       

]

 

  ∑       
   

∑    
     

       

                                           

                           ∑        

       

                                                                                                 

                     [     ∑        

       

]

 

  ∑      
   

∑    
     

       

                                              

                          ∑        

       

                                                                                                   

                         {   }                                                                                                    

4.3.4 Waiting time 

As we mentioned before, the expected value of the waiting time at each target is not taken into 

account in both Formulation (P4.2) and (P4.3) to simplify the problem. This simplification results in 

an overestimating of the expected total gathered profit. In this third formulation we will discuss a 

CCP-formulation of the SOPTW where we also consider the expected waiting time of the vehicle 

during the flight. Note that this results in a decrease in the expected total gathered profit, compared 

to (P4.2) or (P4.3), but also in a more adequate estimation of the realized total gathered profit.  

The nonnegative variable waiting time    is the expected waiting time at target  , which is defined in 

the MIQCP by the following constraint set: 
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      ∑        

       

                                                                                                             

where      and     is the sum of the expected waiting times before target  . The relation 

between these two variables is  

                                                                                                                                      

We can rewrite Equation (R4.1.1) to Constraint set (4.20), which is added to the MIQCP. 

{
            (     )

             (     )
                                                                                                     

where   is a big number. 

Using the introduced variables, the expected departure time of target   is equal to    
 

∑                      . Consequently, the realized departure time of target   is the sum of the 

realized fuel consumption before target   and the realized waiting time at and before target  . Note 

that the realized value of the waiting time is inversely proportional to the realized fuel consumption 

before target  . However, the waiting time is not normally distributed, since all ‘negative values’, 

which is the case as the UAV departs after the earliest departure time, are set equal to zero.  

Therefore, the distribution of the departure time of target   is the sum of a normal distribution and 

a one-sided truncated normal distribution which are dependent. Since the shape of the distribution 

is not very important and only the value of the  -percentile is relevant, we assume that the 

departure time of target   is normally distributed with its mean equal to    
 as stated above and its 

variance    

  equal to the variance of the fuel consumption before target   multiplied by a scale 

parameter  . This is a reasonable assumption, because of two reasons. First, since the sum of two 

normally distributed variables is normally distributed and by a one-sided truncated normal 

distribution one of the tails follows approximately a normal distribution, the sum of a normally 

distributed variable and a one-sided truncated normally distributed variable is also approximately 

normally distributed. Secondly, because of the dependency between the two distributions, the 

covariance is nonzero. The scale parameter    is added to the variance of the departure times in 

order to compensate this covariance.  

To minimize the error originated to this assumption, the total expected waiting time should be 

minimized.  This can be done by changing the Objective function of the MIQCP (4..1) to  

   ∑    

   

                                                                                                                                                 

Deadline Constraint 

The introduction of the waiting time will also change the deadline Constraint sets (Q3.2) and (Q3.2’). 

Recall Equation (R3.2.2),  

 {  
        

   

}                                                                                                                            

which can be rewritten as 
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where      is the z-score corresponding to the  -percentile. We have assumed that  

     ∑                        ∑    
             . Consequently, Equation (R4.2.1) is 

equivalent to  

[     ∑        

       

       ]

 

   [    ] ∑    
     

       

                                             

which is only correct when      ∑                         and      .  

A condition of Mixed Integer Quadratically Constrained Programming is the convexity of the 

program, according to Galli and Letchford [39]. This means that the    matrix of Quadratic constraint 

 , rewritten in the standard form 

  
           ,  

should be positive semi-definite in minimization problems and negative semi-definite in 

maximization problems. A quadratic constraint is also convex when it can be transformed into a 

second order cone. Unfortunately, Quadratic constraint set (Q4.1) satisfies neither requirements. 

However, due to the non-negative condition of the waiting time, the combination between 

Constraint set (Q4.1) and Constraint set (Q4’), 

     ∑        

       

                                                                                                     

is convex.  

To solve the MIQCP, it is necessary to rewrite Constraint set (Q4.1) to a convex equivalent. Therefore 

we introduce two auxiliary binary variables,       and       , such that 

∑         
       

                                                                                                                               

 and 

∑          
       

                                                                                                                         

where              {   } and parameter     is a trivial matrix with the values in each column is 

equal to           . 

Since a sum of binary variables is restricted, the convex equivalent of Constraint set (Q4.1) is 

[     ∑        

       

 ∑           
       

       ]

 

  [    ] ∑    
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Fuel Constraint 

Also the fuel consumption during the waiting time should be taken into account. The expected total 

fuel consumption during the flight is increased by the total expected waiting time to ∑               

∑      . The distribution of the total fuel consumption   is the sum of normal distributions and 

truncated normal distributions, which are dependent. Like for the distribution of the departure time, 

we assume a normal distribution with a mean equal to the expected total fuel consumption and a 

variance equal to the variance of the fuel consumption during the flight time and the recording time 

multiplied by a scale parameter  . Combining Equation (R1.4) and the assumption 

   (∑               ∑        ∑    
           ), we can rewrite (Q1) to  

[  ∑       

       

 ∑  

   

]

 

  [    ] ∑    
    

       

                                                                            

under the condition that   ∑               ∑         and      .  

Like the Constraint set (Q4.1), Constraint (Q1.1) is not convex in itself. Due to the non-negativity of 

the waiting times, the combination of Constraint (Q1.1) and Constraint (Q1.1’), 

  ∑       

       

 ∑  

   

                                                                                                                           

is convex.  

We introduce another auxiliary binary variable       to rewrite Constraint (Q1.1) to its convex 

equivalent, such that 

∑         
       

 ∑  

   

                                                                                                                                

where       {   }.  

Consequently, the convex equivalent of Quadratic constraint (Q1.1) is equal to  

[  ∑       

       

 ∑         
       

]

 

  [    ] ∑    
    

       

                                                         

The total MIQCP including the waiting time is as follows: 

                      ∑    

   

                                                                                                                      
   

                                                                           

                      [  ∑       

       

 ∑         
       

]

 

  [    ] ∑    
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                        ∑       

       

 ∑  

   

                                                                                                      

                      [     ∑        

       

 ∑           
       

       ]

 

  [    ] ∑    
     

       

 

                                                                                                                                                                      

                           ∑        

       

                                                                               

                            {   }                                                                                                       

                             {   }                                                                                                    

                            {   }                                                                                                        
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5. Two-Stage Stochastic Programming with Recourse 

In this chapter we will discuss the application of another widely used approach in stochastic 

programming. Two variants of a two-stage stochastic programming problem for the SOPTW will be 

presented.  

5.1 Stochastic Programming with Recourse 

Stochastic Programming with Recourse (SPR) is an approach of stochastic programming which is 

introduced by Dantzig in [40]. For routing problems it is for example applied by Laporte et al. [26] to 

the SVRP, by Li et al. [32] to the SVRPTW and by Evers et al. [14] to the SOP. In SPR the problem is 

modeled in multiple stages. At each stage more realizations of the stochastic parameters are 

observed. Furthermore, at each stage decisions should be made, such that the expected objective of 

the current and subsequent stages is maximized or minimized. Most of the SPR-formulations for 

routing problems make use of two-stage stochastic programming. In the first stage an a priori route 

is constructed. After the values of the stochastic travel times are realized between the first and the 

second stage, the costs of final route is determined by incurring a penalty for time overruns or loss 

of missed targets.   

In this chapter we will introduce two different stochastic programming models with recourse for the 

SOPTW. The first model is based on the TSOP, introduced by Evers et al. [14] for the SOP without 

time windows. We present the Two-stage Orienteering Problem with Time Windows (TSOPTW) to 

solve the SOPTW. In this model before the flight an initial tour is constructed based on the 

probability distributions of the fuel usages on the arcs. We assume that the fuel realization on arc 

      is observed after both flying from target   to target   and the recording of target  . For the arcs 

that have not yet been traversed only the distribution function of the fuel usage is known. In the 

second stage of this model the next target of the final route is determined by applying a so-called 

recourse action. We assume that the time windows are hard in this model, which means that 

recording outside a time window yields nothing. Note that the initially constructed tour in 

combination with a recourse action is a solution for both the offline and the online part of the UAV-

MPP.     

In the second model instead of applying a recourse action, we use a penalty function for a late 

departure from a target after its deadline, like is done by Li et al. [32] and Russell and Urban [34]. We 

introduce different penalty functions for lateness. This Penalized Orienteering Problem with Time 

Windows (POPTW) is also modeled in two stages. The expected execution costs of the tour, 

constructed in the first stage, are considered in the second stage. In this model we assume that all 

fuel usages are realized at the same time between the first and the second stage, since the first 

stage tour cannot be adjusted in the second stage. Notice that in this model the information value of 

a target without its time window is not by definition equal to zero, which means that the time 

windows are assumed to be soft in this case.  

5.2 Two-stage Orienteering Problem with Time Windows 

In this section we will formulate the Two-stage Orienteering Problem with Time Windows (TSOPTW), 

which consists of two stages. During the first stage an initial tour is constructed and when the fuel 

realizations are observed one by one in the second stage, the final route is determined. The order of 

the targets in this final route should be the same as in the initial tour, but it is allowed to skip targets 
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because of their time window or to return to the depot earlier than planned due to the fuel level of 

the UAV. 

5.2.1 First stage 

In this first stage an initial tour is constructed, which maximizes the expected profit gathered by the 

executing of this tour. By the construction of the initial tour, time windows and the total fuel 

capacity are not imposed explicitly, but considered in the objective of this stage.  

To formulate the first stage of the TSOPTW, all sets and parameters introduced in Chapter 2 and the 

binary decision variables,    and    , introduced in Section 4.1 are used. Also the integer variables    

which denote the position of target   in the initial tour are used. The stochastic variable  ̃ represents 

the stochastic fuel usages. The MIP formulation of the first stage of the TSOPTW (P5.1) is the 

following: 

                   ̃ [ (   ̃)]                                                                                                                          

          ∑        

{         }

                                                                 { }                                            

                     ∑        
{         }

                                                                  { }                                          

                                     | |                                                                                            

                                      | |                                                                                         

                         {   }                                                                                                                               

                          {   }                                                                                                                           

                         {    | |}                                                                                                                     

The Objective function (5.2.1) maximizes the expected profit given the probability distribution of the 

fuel realizations gathered in the second stage. Constraint sets (5.2.2) and (5.2.3) guarantee that the 

initial tour is connected and each target is visited at most once. Constraint sets (5.2.4) and (5.2.5) 

define the order of the tour and avoid sub tours.  

Since the possibility exists to skip targets from the initial tour in the final route, the initial tour can 

include all targets. The targets which will not be included in the first stage when Program (P5.1) is 

used, can be added at the end of the tour. These targets will be visited in none of the final routes, 

otherwise it would be optimal for Program (P5.1) to include them in the initial tour. Note that in this 

case the first stage of the TSOPTW corresponds to a travelling salesman problem with a different 

objective function. Program (P5.1) has the objective to maximize the expected gathered profit in the 

second stage instead of the normal objective of the TSP to minimize the total distance. Program 

(P5.2) is the new Mixed Integer Program of the first stage of the TSOPTW.  
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                   ̃ [ (   ̃)]                                                                                                                         

                                                    

                     ∑     
{         }

                                                                      { }                                           

                     ∑      
{         }

                                                                    { }                                           

The Objective function (5.2.1) and the Constraint sets (5.2.4), (5.2.7) and (5.2.8) are the same as in 

Program (P5.1). Constraint sets (5.2.9) and (5.2.10) guarantee that the initial tour is connected and 

each target is visited. Notice that in Program (P5.1) both Constraint set (5.2.4) as Constraint set 

(5.2.5) are necessary to define the order of the tour correctly and therefore also the positions of the 

targets in the tour indicated by the   -variables. This is due to the characteristic of the OP that not 

all targets have to be visited. Since the order of the tour should be used in the second stage, it is 

necessary that the values of the   -variables are correct, which means that the positions of two 

consecutive targets differ only one from each other. Otherwise, deviations in the order of the final 

route with respect to the order of the initial tour are possible. In Program (P5.2) all targets have to 

be visited and therefore only Constraint set (5.2.4) is necessary to define the   -variables correctly.     

The main advantage of Program (P5.2) over Program (P5.1) is that the calculation time of (P5.2) is 

much shorter than that of (P5.1). The reduction in the calculating time is the consequence of the 

smaller number of decisions that should be made in the program. In Program (P5.1) both the 

included targets and the order of the included targets have to be determined. On the other hand in 

program (P5.2) only the order of the targets should be decided.  

5.2.2 Second stage 

In the second stage of the TSOPTW the final route is constructed step by step. Based on the initial 

tour, the already observed fuel realizations and the recourse action at each location the next target 

of the flight is determined. In the TSOPTW the following recourse action is applied: the next target in 

the final route is equal to the next target in the initial tour, except when the probability that this 

target can be reached before its deadline is below a predefined level   or when the remaining fuel 

quantity is insufficient to fly to this target and back to the depot in the worst case. In that case the 

next target of the initial tour is skipped in the final route. Note that the next target in the final route 

is the first target in the initial tour which satisfies the recourse requirements, starting at the current 

location. This means that this target can be reached before its deadline with a probability of at least 

  and when the remaining fuel quantity is sufficient to fly to this target and back to the depot in the 

worst case.  

In order to determine whether the recourse requirements are satisfied for the next target in the 

initial tour, two limit values could be calculated. The first limit value is equal to sum of the fuel 

consumption up to the current location and the  -percentile of the fuel usage on the flight path 

between the current and the next location. If this value is smaller than or equal to the deadline of 

the next location the first recourse requirement is satisfied. The second limit value is equal to the 

sum of the fuel consumption up to the current location and the worst case realizations from the 
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current to the next location and from the next location to the depot. To meet the second recourse 

requirement this value should be smaller or equal to the fuel capacity of the UAV.  

Deviations in these limit values could have both negative and positive effects on the total gathered 

profit. It is reasonable that increasing a limit value could have a negative effect. This is the case when 

the next target should be skipped, because the increased limit value is larger than its deadline or the 

fuel capacity. It is also reasonable that decreasing a limit value could have a positive effect. When 

the decreased limit value is smaller than the deadline of next target or than the fuel capacity, a 

target which should be skipped, is recorded in the final route. If this recording takes place before the 

deadline, the total gathered profit is increased.  

However, also an increase of a limit value could have a positive effect on the total gathered profit, 

while a decrease could also have a negative effect. The total gathered profit is decreased by a 

decrease of the limit value, if this results in the recording of the next location and causing that 

another, more valuable, target of the initial tour should be skipped. Moreover, an increase of a limit 

value results in an increase of the total gathered profit if this makes that the next target should be 

skipped, while a more valuable target later in the initial tour can be included in the final route.  

Note that this reasoning is also valid for deviations in other decision variables such as the sum of the 

realized fuel usages and the waiting time.   

For each scenario     of the fuel consumption the final route is determined using a Mixed Integer 

Program (MIP). Given the initial tour, the recourse action and the fuel consumption in the given 

scenario, the final route is fixed, but to optimize the initial tour of the first stage the determination 

of the final route is also modeled as a MIP. In this second stage the initial tour and the realized fuel 

consumptions      are given. The decision variables of the first stage are used to describe the initial 

tour. Since the initial tour cannot be changed during the second stage, both the binary variables    

and     and the integer variables    are parameters in the MIP of this stage (P5.3).  

In the remainder of this section we will introduce a mixed integer programming model for the 

second stage of the TSOPTW. Because of the size of the model, we will discuss its constraints in 

parts.  

First of all, in the final route not all targets which are included in the initial tour have to be visited. 

Therefore, we introduce the binary decision variables    , for which holds that       if target   is 

visited in the final route of scenario   and 0 otherwise. Not only the selected targets are important, 

but also the selected flight paths. Hence, we define the binary variables     , if the flight path from 

target   to target   is in the final route of scenario  ,        and 0 otherwise. Like the initial tour, 

the final route has to be connected and each selected target should be visited once. Consequently, 

Constraint sets (5.2.11) and (5.2.12) are the first two sets of constraints in Program (P5.3).  

∑         

{         }

                                                                                       { }                           

∑         

{         }

                                                                                       { }                           
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where          {   }   

If target   is included in the initial tour but skipped in the final route of scenario  , we set binary 

variable       and 0 otherwise. Based on this definition, in each scenario for each target which is 

included in the initial tour, either     or     could be equal to one, which is guaranteed by  

                                                                                                                                            

where     {   }. Note that this constraint set can only be used when in the first stage the decision 

variables    are defined as described in Program (P5.1). When Program (P5.2) is used, Constraint set 

(5.2.13) should be 

                                                                                                                                             

where     {   }. 

Since the order of visited targets in the final route should the same as in the initial tour, the 

following constraint is added to Program (P5.3): 

        (      )| |                                                                                                        

To determine the departure time of the vehicle from target   in scenario  , we define the auxiliary 

nonnegative decision variable     . The value of this variable is the realized fuel consumption up to 

and including the recording of target   in scenario  .  Constraint set (5.2.15) and (5.2.16) together 

ensure that the value of      is equal to the realizations of fuel usages in scenario   on the arcs 

before target  .  

               (      )                                                                                            

                (      )                                                                                         

where       .  As we discussed earlier in this subsection, both constraints are necessary since 

deviations could increase the total gathered profit. Remark that in the combination of these two 

constraint sets, the fuel consumption during the time waiting before a target can be recorded is not 

included. Therefore, we introduce the nonnegative decision variable     which represents the 

realized waiting time at target   in scenario  . To define the value of these variables, the following 

constraint set is included in Program (P5.3):  

                                                                                                                              

where       and      is the sum of the realized waiting times before target   in scenario  . The 

relation between these two variables is defined by 

{
              (      ) 

               (      ) 
                                                                                  

where       . Also in this case both constraints are necessary for the reasoning given earlier in 

this subsection. 
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The realized departure time from target   in scenario   is equal to the sum of the realized fuel usage 

during the flight up to target  , including the realized waiting times before and at target  . The 

definition of the realized departure time     is  

                                                                                                                            

where      . 

When the departure time of a target falls outside of the given time window of that particular target, 

the gathered profit at that target is zero, because we have assumed that the time windows are hard 

in our case. The binary decision variable      , if the departure time from target   in scenario   is 

before the latest time and the target is visited and 0 otherwise. The following constraint set is 

included in the second stage program to define    : 

{
               

       
                                                                                                                 

where     {   }  

To implement the recourse action, we introduce several auxiliary decision variables. First of all, the 

nonnegative variable      represents the  -percentile of the departure time from target   in 

scenario   when arc       is used. This means that the departure time of the vehicle from target   

coming from target   in scenario   is smaller than      with a probability of  . Consequently,  

              

where        and     is the  -percentile of the arc      . Note that this definition is only true 

when target   is not skipped, which means that      . Therefore, Constraint set (5.2.21) is added 

to Program (P5.3). 

{
                 

                  
                                                                                                       

To define this limit value correctly, both constraints are essential. 

When a target j is skipped in scenario  , the values of the     -variables remain the same, but the 

next target is different. For instance, suppose that the vehicle is at target   and      , which means 

that the next target in the initial tour is target   and according to the recourse action, target   should 

be skipped. The new next target will be target   for which holds that      . In order to determine 

whether target   should also be skipped according to the recourse action, it is necessary to consider 

target k from target  . For this reason, the values of the     -variables are the same as the values of 

the     -variables for scenario   if       and      . Consequently, 

{
           [(     )  (     )]

            [(     )  (     )]
                                                              

Also both these constraints are necessary to prevent deviations in the limit values. 
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The second auxiliary variable we introduce, is the binary variable     . If it is possible to use the 

flight path from target   to target   in scenario   regarding the latest time of target  ,        and 

0 otherwise. Constraint set (5.2.23) guarantees that       , if         and 0 otherwise. 

{
                 

              
                                                                                                           

where      {   }. Since the definition of this variable is only based on satisfying the requirement 

that the departure time of target   should be earlier than the latest time with a probability of  , 

another two auxiliary variables are introduced for meeting the second requirement of the recourse 

action. The value of the nonnegative variable       is the arrival time at the depot in scenario   

when the vehicle returns at the depot immediately after visiting target   coming from target   and 

the fuel usage on both arcs is equal to the worst case realizations. Given that     is the sum of the 

worst case realizations of arc       and arc      ,  

              

if target   is not skipped in the final route, which means that      . Consequently, 

{
                  

                   
                                                                                                   

where       {   }. As mentioned before, both increasing and decreasing the limit values could 

have a positive effect on the total gathered profit. Therefore, also these both constraints are 

essential to define the limit values correctly. 

For the same reasoning as previously mentioned,  

             

if       and      . Hence, 

{
             [(     )  (     )]

              [(     )  (     )]
                                                       

To indicate whether it is possible to use the flight path from   to   while satisfying the requirement 

that the total fuel consumption in scenario   returned at the depot after visiting target   coming 

from target   under worst case circumstances should be smaller than the fuel capacity of the vehicle, 

we introduce the binary variable      . If the mentioned requirement is met,         and 0 

otherwise, which is ensured by Constraint set (5.2.26). 

{
                  

               
                                                                                                    

where       {   }  In order to prevent deviations in the limit values, both constraints should be 

added to the MIP. 

The last auxiliary variable we introduce for Program (P5.3), is the binary variable      . If both 

requirements of the recourse action are satisfied for the combination of target   and   in scenario  , 
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which means that both      as       are equal to 1,         and 0 otherwise. Therefore, 

Constraint set (5.2.27) is added to Program (P5.3). 

{

                  

          

 
      

                                                                                                   

where       {   }  

According to the recourse action, a target from the initial tour could only be skipped in the case that 

at least one of the requirements is not satisfied. Based on the definitions of the introduced auxiliary 

variables in this section, a target should be skipped in scenario   when         and      . This 

means that in the initial tour the next target is target  , but it is not allowed to use the flight path 

from target   to target   in scenario   and therefore target   should be skipped in the final route. 

This last constraint set of Program (P5.3) guarantees that a target is only skipped, when the 

requirements are not met. 

{

    (       )        (     )

    (       )

 
     (     )

                                                                          

Note that the addition of  (     ) is necessary, since the decision about skipping target   should 

not be affected by a flight path from target   to target   which is not included in the initial tour.  

5.2.3 Objective function 

In the previous section we have discussed the constraints of Program (P5.3). In this section we will 

discuss the objective function of the second stage program, Program (5.3).  

First, we will investigate the profit of the final route. When a target is visited within its time window 

and the vehicle has departed before the latest time, the profit of the recording of that target is equal 

to the parameter   , which we have introduced in Chapter 2. The binary variable      , if the 

departure time of the vehicle from target   in scenario   is before the latest time, which means that 

the target is visited within its time window, and 0 otherwise. Based on this definition, the 

information is gathered from target   in scenario   if      . Consequently, the total profit 

gathered in the second stage in scenario   is equal to  

∑     

   

 

The objective of the second stage is not only to maximize the total gathered profit in scenario  , but 

also to minimize the waiting time. This is necessary, because additional waiting time could have a 

positive effect on the profit value in the execution of the recourse action. If the vehicle arrives 

before the earliest time of target   in scenario  , waiting time occurs. This means that the 

nonnegative variable     will be strictly positive. Since the all    -variables should be larger or 

equal to 0, the total waiting time, incurred during the final route of scenario  , is  
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∑    

   

 

where   is a scale parameter for the waiting time. 

For this reason, the objective function of Program (P5.3) is  

           ∑     

   

 ∑    

   

 

5.2.4 Summary  

The TSOPTW is a large mixed integer program with the objective of finding an initial tour resulting in 

the maximum total estimated expected profit, based on the predefined recourse action that will be 

applied during the actual flight. For each scenario    , the gathered profit minus the waiting time 

is determined based on the first stage initial tour and the recourse action. The complete formulation 

of the TSOPTW (P5.3) is as follows: 

                        ̃ [ (   ̃)]                                                                                                                      

                                                                            

                                  {   }                                                                                                  

                           {   }                                                                                                               
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5.3 Penalty Method for Stochastic Programming with Recourse 

In this section we will introduce another two-stage stochastic programming model with recourse for 

the SOPTW, the Penalized Orienteering Problem with Time Windows (POPTW). In this model a 

penalty is incurred when a target is visited after its latest time. During the first stage a tour is 

constructed, such that the profit is maximized and the expected incurred penalty in the second stage 

is minimized. We will introduce four different types of penalty functions. The first two types of 

penalty functions are developed using a fixed cost which means that the penalty is independent of 

the length of the delay, while the other two types are smooth penalty functions, where the penalty 

increases as the length of the delay becomes longer.    

5.3.1 First stage 

During the first stage a tour is constructed, of which cannot be derogated in the second stage. This 

means that all included targets have to be visited in the second stage. In the first stage the time 

windows of the targets and the fuel capacity of the vehicle are not taken into account. However, 

lateness and running out of fuel during the execution of the tour does not affect the feasibility, since 

the time windows are assumed to be soft, but a penalized cost will be subtracted from the objective 

function value. Also sub tours are not excluded during the first stage of the POPTW. However, since 

solutions which contain sub tours are not feasible in the second stage, sub tours are implicitly 

excluded in the first stage.  

In the Mixed Integer Programming formulation of the first stage we make use of the already 

mentioned binary variables,    and    . The variable     , if target   is included in the tour and 0 

otherwise and the variable      , if the flight path from target   to target   is selected in the tour. 

The MIP formulation of the first stage (P5.4) is the following:  

                 ∑    

   

   ̃[ (   ̃)]                                                                                                        

          ∑        

{         }

                                                                 { }                                            

                     ∑        
{         }

                                                                  { }                                          

                         {   }                                                                                                                               

                          {   }                                                                                                                           

The objective of Program (P5.4) is to maximize the total gathered profit, of which the expected 

incurred penalty is subtracted.  Constraint sets (5.3.2) and (5.3.3) guarantee that the tour is 

connected and each target is visited at most once.  

5.3.2 Second stage  

At the beginning of the second stage we assume that all fuel realizations are available. Based on 

these realizations the incurred penalty costs of the first stage tour are determined for each scenario 

   .  

Since deviations from the constructed tour are not allowed, the first stage decision variables    and 
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    are parameters in this stage. Given these parameters and the fuel realizations of scenario       , 

the departure times from the targets in scenario   are defined using by the following constraint: 

               (     )                                                                                               

where the decision variable     is the departure time from target   in scenario   and      . This 

constraint ensures that the departure time of two consecutive targets in the tour differs at least the 

fuel usage on the arc       from each other and that sub tours are excluded from the tour. In this 

program waiting time is not explicitly modeled, but Constraint (5.3.5), 

                                                                                                                                               

ensures that the departure time from target   in each scenario is after the earliest time. Note that 

the waiting time resulting from Constraint (5.3.5) is both authorized and included in the departure 

times of the rest of the tour by Constraint (5.3.4).  

To determine whether a penalty should be incurred at target   in scenario  , which means that the 

departure of the vehicle from target   is later than its deadline, we introduce the binary variable    . 

If the departure time of target   in scenario  ,     is larger than the latest time of target  ,   ,  

      and 0 otherwise, which is guaranteed by  

                                                                                                       { }                            

where     {   }. 

5.3.3 Penalty Function 

In this subsection we will introduce four different types of penalty functions and we will discuss their 

implementation.  

First of all, we should notice that the different penalty functions affect the penalty for lateness at a 

target. The penalty for running out of fuel in scenario   is always the same and is equal to  

  ∑  

   

 

which means that all information value gathered in that scenario is inherently offset and the yield of 

that scenario is less or equal to zero. This penalty is incurred for scenario   when the arrival time at 

the end point is later than its latest time   , which is equal to the fuel capacity    In that case, 

       and consequently,      .  

The first two types of penalty functions are developed using a fixed cost for lateness at the targets. 

In the first type, the costs of lateness at a target are the same for each target. This means that when 

the departure time of a target is later than its deadline, a penalty    is incurred. When the value of 

this penalty is low compared to the profits of the targets, it is likely to have more late targets. Note 

that the yield of a late target which is recorded after the deadline, can be either positive or negative, 

like is displayed in Figure 5.1.  

The penalty cost function for the first stage tour         is in this first case 
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          ∑   

   

                                                                                                                

The penalty function of the second type is target dependent. In this case the penalty which is 

incurred by a late target, can be different for each target. We assume that this penalty     is a 

function of the profit of target  . The information value gathered by recording a target after its 

deadline, is only a part of the profit gathered by recording within the time window. This part,  , is 

fixed for each target. Consequently,         , where      . Note that when    , the yield 

of recording a late target is equal to zero and the time windows are hard in this case. However, 

when    , there is no penalty incurred for recording a target after its deadline. In Figure 5.2 the 

second type of penalty function and the consequences of this type for the yield of target   are 

displayed.  

With this second type of penalty function the penalty cost function for the first stage tour is 

        ∑      

   

                                                                                                                

 

 

 

 

 

 

 

 

Figure 5.1: The first type of penalty function and its consequences for the yield of target   

 

 

 

 

 

 

 

 

Figure 5.2: The second type of penalty function and its consequences for the yield of target   
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The two other types of penalty functions are smooth penalty functions, which means that the 

incurred penalty increases when the late period becomes longer. In the first smooth penalty 

function the costs for lateness increases linearly to the late time. In this case the penalty incurred for 

a late departure from target   is a decision variable instead of a parameter, as it is the case in the 

cost functions of the first two types. The nonnegative variable      represents the incurred penalty 

for lateness at target   in scenario   and is defined by Constraint (5.3.9). 

                                                                                                                                     

where        and parameter   is the scale parameter of the penalty function. 

The main advantage of a smooth penalty function is that not only the number of late targets is 

minimized, but also the length of the delay at the late targets. When the value of the parameter   is 

large, the total delay will be small. In Figure 5.3 the linear penalty function and the yield of target   

are displayed. 

The penalty cost function in the case of a linear penalty function is equal to 

        ∑    

   

                                                                                                                         

The last type of penalty function is the quadratic penalty function. This means that the cost for 

lateness increases quadratically with the length of the delay. The penalty incurred at target   in 

scenario  ,      is defined with a quadratic constraint:  

              
                                                                                                                        

where parameter c is the scale parameter of the penalty function. Based on the definition 

mentioned earlier,       if the vehicle departs too late from target   in scenario  . Consequently, 

a penalty is only incurred if      , which means that         . Note that when         , 

        
    and a penalty is incorrectly incurred according to Constraint (5.3.11). Therefore, 

instead of Constraint (5.3.11) Constraint (5.3.11’) is used to guarantee that a penalty is only incurred 

when      . 

              
                                                                                                  

In Constraint set (5.3.11’)    is used instead of  , because of the quadratic term at the left side of 

the constraint. This quadratic term         
  can be larger than   when target   is in the 

beginning of the tour and the latest time of target   is large, therefore the square of   used.   

This quadratic smooth penalty function and its consequences for the yield of target   are displayed in 

Figure 5.4.  

The cost function for the first stage tour using a quadratic smooth penalty function is the same as 

the penalty cost function in the case that a linear penalty function is used.   
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Figure 5.3: The linear penalty function and its consequences for the yield of target    

 

 

 

 

 

 

 

 

Figure 5.4: The quadratic penalty function and its consequences for the yield of target    

 

5.3.4 Summary 

In the POPTW the objective is to determine a first stage tour which maximizes the total gathered 

information value and minimizes the total expected incurred penalty. The complete formulation of 

the POPTW is as follows: 

                 ∑    

   

   ̃[ (   ̃)]                                                                                                        

                                       

                          {   }                                                                                                                  

                                                                                                                                                   

Note that when a smooth penalty function is considered,  

                                                                                                                                                  

should be added to Program (P5.5). In case of a linear penalty function also Constraint (5.3.9) should 

be included and in case of a quadratic penalty function Constraint (5.3.11’).  
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6. Solution methods 

In this chapter some solution methods for the CCP-model and the both SPR-models, the TSOPTW 

and the POPTW, are presented. First, we will discuss some approaches which are specific for a model 

and subsequently we will introduce a Tabu-Search Based Heuristic, based on Li et al. [32], which can 

efficiently solve all presented models.  

6.1 Chance-Constrained Programming model 

In this section we will discuss two solution methods for the Chance-Constrained Programming 

model, presented in Chapter 4.  

The Mixed Integer Quadratically Constrained Problems (MIQCPs), presented in Section 4.3, are 

quadratic reformulations of the Chance-Constrained Program, presented in Section 4.2. These 

quadratically constrained problems, (P4.2)-(P4.4), can be solved by the optimization software 

package IBM ILOG CPLEX Optimization Studio (CPLEX). This solver can solve linear programming 

problems and mixed integer linear problems, but also convex and non-convex quadratic problems 

and convex quadratically constrained problems. As mentioned in Subsection 4.3.4, our 

reformulations of the CCP-formulation are convex quadratically constrained problems, therefore 

CPLEX can solve them to optimality. However, because the OPTW is proved to be NP-hard [8], it is 

unlikely that these problems can be solved in polynomial time.     

The software package CPLEX has to be controlled by an external program, such as Java, C++ or 

Matlab. It is also accessible through independent modeling systems such as AIMMS. This last 

modeling system also provides a robust optimization add-on which can solve linear and mixed 

integer programming models with uncertain parameters to optimality. In this add-on also chance 

constraints are included in the functionalities. This means that the chance constraints discussed in 

Section 4.2 can be directly imported into AIMMS combined with the deterministic OPTW (P4.1).  

Subsequently, AIMMS makes a second order cone reformulation of the chance constrained problem, 

which is solved by CPLEX. This second order cone reformulation of the problem will be very similar to 

the first presented quadratically constrained reformulation (P4.2).   

The main advantage of the quadratically constrained reformulations discussed in this thesis is that 

when CPLEX is used by an interface as for example Java or Matlab, the chance constrained 

programming formulation of the SOPTW can still be solved. Without these reformulations CPLEX 

should be used with an independent modeling system which can handle chance constraints. Note 

that most independent modeling systems can handle both formulations, which means that the 

quadratically constrained reformulation can also be solved using for example AIMMS.   

6.2 Stochastic Programming models with Recourse  

In this section we will discuss a solution method for both stochastic programming models with 

recourse, presented in Chapter 5.  

Since we have assumed that the fuel consumption on an arc follows a continuous probability 

distribution, the objective functions of both SPR-models are nonlinear. Furthermore, for 

computational reasons it is impossible to take all scenarios of a continuous distribution into account. 

In order to solve these problems, Sample Average Approximation (SAA) can be used. SAA is a well-

known method in literature, used to solve stochastic models with a large or infinite number of 
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scenarios. It is introduced for two-stage stochastic programs with recourse by Shapiro and Homem-

de-Mello in [41]. Their work is extended by Mak et al. [42] and Kleywegt et al. [43]. In this technique 

the expected value function in the objective function of a stochastic problem is approximated by the 

standard sample mean estimator.  

Given a random sample   of size | |of the fuel usages   the standard sample mean estimator of the 

objective function of P(5.3), 

      ̃ [ (   ̃)]                                                                                                                                               

is equivalent to  

    

 

| |
∑        

   

 

Recall that decision variable   denotes that chosen arcs in the tour and parameter   represents the 

fuel consumption. 

Therefore, the SAA objective function of the TSOPTW becomes 

   
 

| |
∑ [∑     

   

 ∑    

   

]

   

                                                                                                               

where    is the profit of target  , decision variable      , if the recording of target   falls within its 

time window in scenario   and    denotes the waiting time before target   in scenario  . 

Note that by increasing the sample size | |, the solution based on the SAA objective function will 

exponentially converge to the optimal solution of the TSOPTW with a probability of one, according 

to Kleywegt et al. [43].  

As in the TSOPTW, we can also use SAA to solve the POPTW, because of the continuity of the 

probability distributions of the fuel usages. Recall the Objective function of the first stage (5.3.1), 

    ∑    

   

   ̃[ (   ̃)]                                                                                                                            

where   ̃[ (   ̃)] is the expected penalty cost in the second stage. In the previous chapter we have 

introduced different penalty cost functions for the first stage tour. For fixed penalty costs, Cost 

function (5.3.7) should be used. Cost function (5.3.8) should be used for target dependent penalty 

costs. For smooth penalty costs, Cost function (5.3.10) should be selected.  

The SAA-objective function of the POPTW is 

   ∑    

   

 
 

| |
∑        

   

                                                                                                                     

where         is the penalty cost function corresponding to the selected type of penalty function.  
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When the original objective function of the TSOPTW or the POPTW is replaced by the SAA-objective 

function, both problems are linear and deterministic. Therefore, it is possible to solve these 

problems with CPLEX, but only for small sets of targets. This is caused by the large number of 

constraints and variables in these models. Furthermore, the SAA of the objective function is better 

when a lot of scenarios are taken into account, which would entail many second-stage variables. 

Therefore, we will present a Tabu-Search Based Heuristic in next section.  

6.3 Tabu-Search Based Heuristic 

In this section we will introduce a Tabu-Search Based Heuristic for the SOPTW (TSB), which is based 

on the heuristic for the SVRPTW presented by Li et al. in [32]. As mentioned earlier, the OPTW is 

proved to be NP-hard [8]. It is therefore unlikely that the CCP-model, the TSOPTW or the POPTW can 

be solved in polynomial time. To construct an offline tour for the Case Study later in this thesis, a TS-

based heuristic is developed. This heuristic can efficiently approximate the CCP-model and both the 

TSOPTW and the POPTW. The heuristic starts with a tour which is feasible for the given model and 

contains a tabu list to prevent circling. After a general overview about tabu-search, the main 

components of the heuristic are outlined and a detailed description of the algorithm is provided.  

6.3.1 Tabu-Search 

Tabu-Search (TS) is one of the oldest meta-heuristics, introduced by Glover in [44]. In each iteration 

of the original heuristic all solutions in the neighborhood of the current solution are investigated and 

the best of them is selected as the new current solution, even if this solution is worse than the 

current solution. This enables the algorithm to escape from a local optimum. Visiting recently 

selected solutions is forbidden by a tabu list to prevent circling. This tabu list often does not contain 

forbidden solutions, but only forbidden moves. After a fixed number of iterations or after a constant 

number of iterations without an improvement of the best found solution, the algorithm is finished 

and the best found solution is returned.   

In literature tabu-search is frequently used to solve both deterministic and stochastic routing 

problems. For example, TS is applied by Gendreau et al. [45] to solve the VRP and by Bräysy and 

Gendreau [46] to the VRPTW. In the case of the SVRPTW, Li et al. [32] and Taş et al. [35] have 

applied this technique. Also for the deterministic TOP, there are several researchers who use TS to 

solve the problem. The first were Tang and Miller-Hooks in [47] and after them also Archetti et al. in 

[48]. In this thesis we will apply TS to the SOPTW.  

6.3.2 Main Components of the Tabu-Search Based Heuristic 

In this subsection the main components of the TSB are discussed. We will describe the construction 

of the initial solution, the solution evaluation, the neighborhood structure and the tabu structure.  

Initial Solution  

Similar to other local search algorithms, the TSB needs an initial solution to start its exploration in 

the solution space. In contrast to Li et al. [32], this solution should be feasible and therefore the 

deterministic solution cannot be used as initial solution like is done in the cited article. Note that the 

deterministic solution could be feasible, but this cannot be guaranteed for the CCP-model. In the TBS 

a feasible initial solution is created using a best neighbor strategy. This solution is constructed by 

adding repeatedly from the allowed targets, the target with the highest information value-distance 

ratio. This ratio is equal to        , where     is the distance to target   from the previous added 

target  . This procedure is repeated until none of the non-included targets is allowed.  
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In case of the CCP-model, a target is allowed when, depending on the chosen modeling, the time 

window constraint or the deadline and eventually the waiting time constraint are satisfied with a 

probability of at least the given threshold  . Furthermore, the overall fuel constraint should also be 

fulfilled for the route including that target with a probability of at least the given threshold  .  

In the TSOPTW and the POPTW all solutions are feasible, since either targets can be skipped or a 

penalty is incurred for a late visit at the targets. In case of the TSOPTW, a target is allowed if it can 

visited before its deadline with a probability of   and the depot can be reached after recording this 

target both in the worst case. In case of the POPTW, a target is allowed if recording this target has a 

positive expected yield. In both cases, the fuel realizations are assumed to be equal to their mean in 

this constructing phase.   

Solution Evaluation 

The solution evaluation is different for each of the three models. The score of a solution is equal to 

the objective function value of that particular model. Consequently, for the CCP-model the score of a 

solution is equal to the sum of the information values of the targets included in that route, 

eventually minus a fraction   the total expected waiting time. For the TSOPTW and the POPTW, 

sample scenario evaluation is used to determine the score of a route, which means that the 

expectation of the objective function is estimated by the mean of the scores of a sample of 

scenarios. When the TSOPTW should be approximate by the heuristic, for each scenario the recourse 

action is applied to the given solution and the score of the route is set equal to the mean of the 

realized profits over all scenarios. The score of a solution for the POPTW is determined by calculating 

the penalty incurred by execution of the route for all scenarios. The total gathered profit minus the 

average incurred penalty will be the score of the route. Note that for every solution evaluation of 

the TSOPTW or the POPTW the same scenarios should be used for an equitable comparison between 

the score of different solutions.     

Neighborhood Structure 

The neighborhood of a solution is defined by six different neighborhood operators. A neighbor, 

which is a candidate solution, can be generated by applying one of the operators to the current 

solution. The six operators we have used this TS-based heuristic are   

 Reversal: the inversion of a continuous segment of targets in the tour. 

 Exchange: the interchange of two targets in the tour. 

 Relocation: the displacement of a target in the tour to another place in the tour.  

 Replacement: the substitution of a target in the tour by a non-included target.  

 Insertion: the addition of a target to the tour.  

 Removal: the deletion of a target from the tour.  

Note that in Li et al. [32] the SVRPTW is studied, while the SOPTW is addressed in this thesis. 

Therefore, most operators used in our research differ from the operators used in the previously 

mentioned article. The Reversal operator is also used in the cited article, which is called the 2-Opt 

operator. The Exchange and Relocation operators are based on the operators with the same name in 

the research by Li et al. [32], but adjusted to the SOPTW. The other three operators are specific for 

the Orienteering Problem and therefore not based on the used article. Since in the VRP all targets 

should be visited, these operators are not allowed or not possible.  
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For each candidate solution an operator is randomly selected and applied to the current solution. To 

decrease the number of solution evaluations required in each iteration, only a fixed number of all 

candidate solutions is investigated. The probability to select a particular operator to generate a 

candidate solution is the same for each operator. In contrast to Li et al. [32], all candidate solutions 

should be feasible. All possible solutions are feasible for the TSOPTW and for the POPTW, but in the 

CCP-models a solution is feasible if the chance constraints are satisfied. 

In order to consider the problem structure with time windows and to improve the quality of the 

candidate solution, the operators are not randomly applied to the current solution, like is done by Li 

et al. [32]. We have divided the current solution into   equal parts. The Reversal and Exchange 

operator are applied within a randomly chosen part of the current solution. The displacement of a 

target in the Relocation operator is also only allowed within a randomly chosen part. However, these 

operators are applied to randomly chosen targets or segment of targets within the given part. For 

the application of the Replacement and Insertion operator a non-included target is randomly 

selected. According to the deadline of this target, the part of substitution or insertion is determined. 

Part   is selected if the deadline of the target which should be inserted, falls in the ⌊
 

 
⌋ -th part of the 

fuel capacity  . Within this determined part the place of the inserted or substituted target is 

randomly chosen. The last operator, Removal, is not affected by the dividing into parts of the current 

solution and by applying this operator a randomly chosen target of the current solution is deleted.  

The new current solution is the solution in the investigated neighbors with the highest score. Note 

that this score can be lower than the score of the current solution. However, the solution with the 

highest overall score will be stored.  

Tabu Structure 

To avoid circling between a subset of solutions and to explore a larger part of the solution space, a 

tabu list with prohibited moves is implemented. These prohibited moves are the reverse moves of 

the previous modifications in order to prevent a return to a previous visited solution. In each 

iteration after a new current solution is selected, the inverse of the modification leading to this 

solution is declared tabu and stored in the tabu list. We consider a random tabu structure, as is done 

by Gendreau et al. in [45] and by Li et al. in [32]. This means that the number of iterations a 

prohibited modification is tabu, is a random integer which is uniformly generated from [   ]  Note 

that this number of iterations could be different for each prohibited modification.  

We define six different tabu lists       where          , to achieve the prohibited modifications 

for the six operators. The first five tabu lists are matrices, where element            specifies the 

tabu status of the modification       for operator  . If             , modification       is tabu 

for operator  . The sixth tabu list is a column where element          indicates the tabu status of 

the modification     for the sixth operator. If           , modification     is tabu for operator 

Removal. 

The modification       with     in Reversal is defined as the inversion of the part between the     

and     target in the tour. Therefore, repeating modification       leads to the original solution. 

Also applying modification       after modification       restores the original solution. For this 

reason it is forbidden to re-inverse the segment between the     and     target in the tour and 

consequently, the modifications       and       for operator 1 become tabu.   
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In Exchange the modification       with     represents the interchange of the     and the     

target in the tour. As in Reversal, both repeating modification       and modification       re-

establishes the original solution. Therefore, these both modifications become tabu for operator 2. 

Note that Exchange modification       can also be undone by Reversal modification       or       if 

the absolute difference between   and   is less than three. The opposite is true as well, applying 

Exchange modification       or       after Reversal modification       restores the original solution 

if |   |   . To prevent circling also these modifications has to become tabu after the respective 

modification. 

The displacement of the     target of the tour to the     position in the tour is denoted by 

Relocation modification       with    . Notice that the new position of the     target is 

determined in the tour without this target. This displacement can be undone by the inverse 

modification      , which has to become tabu to avoid a return to previous solutions. When a target 

is moved only one position forward or backward, which means that |   |   , the Relocation 

modification       can also be undone by repeating Relocation modification       or by executing 

Exchange modifications       or       or Reversal modifications       or      , since exchanging of 

two consecutive targets in the tour is the same as moving one of the two targets one position 

forward or backward. This means that also the Exchange modification       and Reversal 

modification       can be reversed by Relocation modification       or       when |   |   . 

The Replacement modification       is defined as the substitution of the     target in the tour by 

target  , where target   has not yet been included in the tour. This modification can be reversed by 

the Replacement modification      , where target   is equal to the     target of the original tour. 

Note that this operator can only be applied when not all targets are included in the current solution. 

Furthermore, this is also the case for the fifth operator, Insertion.   

In Insertion the modification       describes the addition of the not yet included target   at position 

  in the tour. Operator Removal effectuates the opposite, because the deletion of the     target in 

the tour is denoted by Removal modification    . Therefore, Removal modification     after Insertion 

modification       leads to the original solution and also Insertion modification       after Removal 

modification     where target   is equal to the     target of the original tour restores the original 

tour. Consequently, it is forbidden to reinsert target   at position   or to remove the just inserted 

target at position  .  

We have implemented a tabu list with prohibited modifications instead of prohibited solutions in 

order to reduce the computation time to verify a solution is tabu. However, this often results in 

more than one solution being tabu. Some of these prohibited solutions could have a high score and 

might not have been visited. To mitigate this problem, aspiration criteria are introduced. These 

criteria allow overriding of the tabu status of a solution if they are satisfied. In this thesis we use a 

commonly used aspiration criterion that a tabu solution can be overridden if it has a higher objective 

value than the currently best known solution. 
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6.3.1 Tabu-Search Based Heuristic for the SOPTW 

In this subsection we will provide a detailed description of the Tabu-Search Based Heuristic for the 

SOPTW (TSB).  

The heuristic starts with constructing an initial solution in the way described in the previous 

subsection, corresponding to the model which should be solved by the TSB. For this initial solution, 

which is the current solution, the objective function of the investigated model is calculated. Since 

this is the only solution found up to this far, it is also the currently best known solution.   

Subsequently, the heuristic follows a loop for a fixed number of iterations,     .   

First, a constant number      of candidate solutions, which are neighbors of the current solution, 

are generated using the six operators, presented in the previous subsection. The tabu status of the 

modifications made by the different operators is not taken into account in this stadium of the loop 

but the candidate solutions should be feasible. Each of these      candidate solutions is evaluated 

and the score of the model objective function is calculated.   

Secondly, for all tabu solutions in the investigated part of the neighborhood is verified whether the 

aspiration criterion is satisfied. If that is not the case, the tabu solution is removed from the list of 

candidate solutions, otherwise the solution is stored by the non-tabu solutions at the list of 

admissible solutions.   

After that the best solution, which is the solution with the highest score in the list of admissible 

solutions, is determined. If the score of this best solution is higher than the score of the best solution 

found so far, the currently best known solution is updated. The best solution found in this iteration is 

the new current solution.   

Consequently, the tabu list should be updated. The inversion of the modification made to move from 

the previous current solution to the new current solution has become tabu for a random number of 

iterations. The tabu status of all other modifications is reduced by one.   

After the completion of the loop, the algorithm is finished and the best solution found is returned.  

The stopping criterion of the TBS is also different of the TS-based heuristic of Li et al. in [32]. In our 

heuristic we use only one stopping criterion which is that the heuristic is finished after a fixed 

number of iterations, while in Li et al. [32] the heuristic is also finished when there is no 

improvement of the best found score for a constant number of consecutive iterations. 
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Part III 

Adaptive Routing 
In this part we will discuss some strategies to adjust the planned tour 
during the flight in real-time in order to anticipate to the realized fuel 
consumptions. In Chapter 7 we will introduce adaptive routing 
strategies for the online part of the UAV-MPP with time windows and 
stochastic fuel consumption where the initial tour constructed in the 
offline part is adapted to respond to the actual circumstances. In the 
other chapter of this part we will present one-step-ahead routing 
strategies, where only the next location is determined. Both 
deterministic strategies where the stochasticity of the fuel 
consumption is not taken into account and stochastic strategies are 
introduced in Chapter 8. 
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7. The online problem 

In this chapter we will discuss some strategies to adjust the initially constructed tour to the realized 

fuel usages. The initial tour which is constructed with the methods presented in Part II, could not be 

achievable under all circumstances. For example, during the execution of an initial tour constructed 

with the CCP-model, the UAV is running out of fuel with a probability of    . The TSOPTW 

approach is likely to schedule a relatively high number of targets, since the TSOPTW policy allows 

planned targets to be skipped. Since for running out of fuel in the POPTW only a penalty is incurred, 

the initial tour constructed in the POPTW could require more fuel than the given fuel capacity of the 

UAV. Therefore, two adaption strategies are proposed in this chapter. The first adaption strategy is 

the recourse action we already used in the determination of the initial tour of the TSOPTW while an 

alternative recourse action is used in the second adaption strategy.  

7.1 Recourse Action 

First, we will recall the recourse action we have defined in Section 5.2. In the second stage of the 

TSOPTW we have applied the recourse action that the next target in the final route is equal to the 

next target in the initial tour, except when the probability that this target can be reached before its 

deadline is below a predefined level   or when the remaining fuel quantity is insufficient to fly to 

this target and back to the depot in the worst case. In that case the next target of the initial tour is 

skipped in the final route. This means that the next target in the final route is the first target in the 

initial tour which satisfies the recourse requirements, starting from the current location. This 

recourse action is applied during the second stage of the TSOPTW, which means that the initial tour 

constructed with this method is optimized for this adaptive routing strategy. During the flight this 

strategy can be applied to all initial tours. However, it is expected that the final tour based on the 

initial tour of the TSOPTW will gather more information value than the final tours based on an initial 

tour of another method. This is due to the fact that the recourse action is already taken into account 

in the construction of the initial tour in the TSOPTW.  

7.2 Alternative Recourse Action 

In order to overcome the problem just mentioned, we will define also another recourse action which 

is more based on the structure of the CCP-model and the POPTW. In contrast to the TSOPTW, the 

possibility to skip targets during the execution of the initial tour does not exist in the CCP-model and 

the POPTW. Therefore, in the alternative recourse action the initial tour is followed until the 

remaining fuel quantity is insufficient to fly to the next target and back to the depot in the worst 

case. In that case the UAV has to go back to the depot and the flight is finished. Since it is not 

possible to skip a target because of the small probability to reach it before its deadline, it is 

reasonable that the departure time of some targets in the flight will fall outside their time window. 

The gathered profit for these targets is equal to zero. It is expected that this is often the case by the 

execution of the by TSOPTW constructed initial tour, because in the construction the possibility to 

skip targets is considered.  
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8. One-Step-Ahead Routing 

In this chapter we will discuss another approach to solve the SOPTW. The previous approach 

constructs an initial tour before the flight which is adjusted to the realized fuel usages during the 

flight, while in this approach the next location is determined after recording the previous.  We will 

introduce this approach as the One-Step-Ahead Routing (OSAR) approach. In this chapter we will 

present both Deterministic and Stochastic One-Step-Ahead Routing.  

In OSAR the next location is determined during the flight when the recording of a target is finished. 

At that moment the realized fuel usage on the flight path just flown, as well as the realized fuel 

during the recording of the current target becomes available and consequently, also the total fuel 

consumption during the flight up to that point is known. Before the UAV, can continue its flight, the 

next location should be determined. This means that the determination of the next target has to be 

done very quickly, since it should be done in a real-time situation.  

We will present two approaches for Deterministic OSAR in this chapter. Both approaches ignore the 

stochasticity of the fuel consumption, which means that the probability distribution functions of the 

fuel usages is not taken into account in the determination of the following location of the flight. In 

order to prevent the UAV of running out of fuel, the worst case realizations of the fuel usages are 

however taken into consideration. We will also present the stochastic variant of both approaches, 

which do take into account the probability distribution of the fuel consumption.  

8.1 Best Neighbor Approach 

The first approach we will introduce is the Best Neighbor Approach (BNA). In this approach the next 

location of the UAV is determined by selecting the feasible target with the highest profit-fuel ratio. 

Two variants of the BNA are presented in this section, the Deterministic Best Neighbor Approach 

(DBNA) and the Stochastic Best Neighbor Approach (SBNA).  

8.1.1 Deterministic Best Neighbor Approach 

In this deterministic approach the stochasticity of the fuel consumption is ignored, which means that 

in the determination of the next location of the flight of the UAV is assumed that the fuel usage on 

each arc is fixed and equal to the mean of the given probability distribution function. Therefore, a 

target is feasible if it can be recorded before its deadline, taking into account the already used fuel 

and the expected fuel usage on the arc from the current position to that target. Given the current 

position  , the total fuel consumption up to the current location,     and the expected fuel usage on 

the arc      ,    , target   is feasible if 

                                                                                                                                                                  

Note that the total fuel consumption at the departure of the depot at the beginning of the flight is 

equal to zero, accordingly      . Note that for the depot    . 

In order to prevent the UAV for running out of fuel, a worst case control is also provided for the 

targets. A target is feasible if both the deadline condition and the worst case condition are satisfied.  

The worst case control for a target is fulfilled if the remaining fuel is sufficient to fly from the current 

position to that target, to record that target and to fly back to the depot, all under the worst case 
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circumstances. Given the worst case fuel usage for the flight from the current position   through 

target   back to the depot,    , the worst case condition is met for target   if 

                                                                                                                                                                

where     is the total fuel consumption up to the current location and   is the fuel capacity of the 

UAV.  

The next location in the tour of the UAV is the feasible target with the highest profit-fuel ratio, which 

has not yet been visited, i.e. the maximum information value per fuel unit is selected. The profit-fuel 

ratio for a target is calculated as the profit of that target divided by the fuel usage to collect this 

information value. The fuel required to collect the information value of target   is the sum of the fuel 

used to fly from the current location   to target  , the fuel spent on the recording of target   and if 

the UAV arrives before the earliest time of target  , the fuel consumed during the waiting time 

before target  . The profit-fuel ratio of target   is equal to   

  

      
 

where    is the profit of target   and    is the waiting time before target  . 

This process is repeated until there are no feasible and unvisited targets anymore. In that case the 

following location of the UAV is the depot and subsequently the flight is finished.     

8.1.2 Stochastic Best Neighbor Approach 

Since the stochasticity of the fuel consumption, which is ignored in the DBNA, is taken into account 

in the SBNA, the feasibility conditions and the profit-fuel ratio are different than in the DBNA. The 

main processes of the approach, such as the selection of the following destination of the UAV, are 

still the same. Due to the stochastic fuel usages on the flight paths in the area of operations, a target 

is feasible if there is a strictly positive probability that the target can be recorded before its deadline 

given the total fuel consumption up to the current position of the UAV. Independent of the assumed 

probability distribution function of the fuel usages on the arcs, the probability to reach a target with 

a deadline smaller than the already used fuel is equal to zero, since a negative fuel usage on an arc is 

meaningless. Given the total fuel consumption up to the current position  ,    , the deadline 

condition for target   is satisfied if  

                                                                                                                                                                         

Besides the deadline condition, the worst case control is applied in the SBNA as well, which means 

that feasible targets should also meet the worst case condition, Condition 8.1.2. 

Moreover, also in the profit-fuel ratio used in the SBNA, the stochasticity of the fuel consumption is 

considered. The profit-fuel ratio of a target is the expected profit of that target given the current fuel 

consumption divided by the expected fuel required to collect this information value, thus the ratio is 

equal to 
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The expected profit of a target is calculated as the probability to record that target before its 

deadline multiplied by the information value of that target. For the definition of this probability for 

target  , the remaining time before its deadline    should be determined, which is equal to  

          

To record target   before its deadline, the realized fuel consumption of arc       should be smaller or 

equal to time   . The probability that target   can be reached before its deadline, given the total fuel 

consumption up to the current position  , is equal to 

          

where     is the stochastic fuel usage on the arc      , which follows a given probability distribution. 

Consequently, the expected profit of target   is  

           (      )     

The expected fuel to collect this information value contains two parts. The first part is the expected 

fuel usage during the flight from current location   to target   and during the recording of target  . 

The expected fuel usage       on arc       is equal to    . The second part is the expected waiting 

time before target  . The waiting time of target   is defined as the maximum between zero and the 

earliest time of target   of which the realized fuel usage on arc       and the fuel consumption 

before the current position   are subtracted, accordingly 

                      

Consequently, the expected waiting time before target   is  

                         

Therefore, the profit-fuel ratio for target   in the SBNA is equal to 

 (      )    

       (            )
 

where   is the current position and     is the total fuel consumption up to target  . 

8.2 Repeated Tabu-Search Based Heuristic Approach 

We will now present another method to determine the following destination in OSAR. While in the 

BNA only the best neighbor of the current position is selected, also the neighborhood of the 

following destination is taken into account in the Repeated Tabu-Search Based Heuristic Approach 

(RTSBA). In this approach a deterministic or stochastic variant of the Tabu-Search Based Heuristic 

(TSB), presented in Section 6.3, is executed to determine the next target of the flight. The output of 

this heuristic is a route for the remaining part of the flight, but only the first target of this route from 

the current position is considered. In the remainder of this section we will discuss two variants of the 

RTSBA, the Repeated Deterministic Tabu-Search Based Heuristic Approach (RDTSBA) and the 

Repeated Stochastic Tabu-Search Based Heuristic Approach (RSTSBA). In the first variant the 

stochasticity of the fuel consumption is ignored, while the second variant will take this information 

into account.  
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8.2.1 Repeated Deterministic Tabu-Search Based Heuristic Approach 

In this approach a deterministic variant of the TSB, presented in Section 6.3, is executed to 

determine the next location in the flight of the UAV. Every time the UAV has arrived at a target and 

the recording of that target is finished, the feasible and unvisited targets are selected. These targets 

are the input of the TSB. A target is feasible if both Condition (8.1.1) and Condition (8.1.2) are 

satisfied.  

The main structure of the deterministic variant of the TSB is the same as the main structure of the 

TSB, only a part of the main components of the heuristic are adjusted. Both the Neighborhood 

Structure and the Tabu Structure remain the same. The initial solution is constructed using the DBNA 

of Section 8.1.1 where is assumed that the realized fuel consumption is equal to its expectation. The 

score of a route which is determined in the solution evaluation is equal to sum of the profits of the 

targets in the route. Note that these solutions are routes starting at the current position.  

As in the original TSB, all candidate solutions should be feasible. In this deterministic variant a route 

is feasible if each target in the route can be reached before its deadline when is assumed that all fuel 

realizations are equal to their expectation. Each target in the tour should also satisfied the worst 

case control when is assumed that all fuel realizations before that target are equal to their 

expectation. Given the current position   and the realized fuel consumption before the current 

position    , the first condition is satisfied for solution   if 

                                                                                                                                                        

where    is the sum of the expectations of the fuel usages on the arcs in   before target   and 

target   is after target   in solution  . 

The second condition is a worst case condition, which is applied to prevent the UAV for running out 

of fuel. Given the current position, the realized fuel consumption before the current position and the 

targets   and  , which are consecutive targets in solution R, the worst case condition is satisfied if 

                                                                                                                                            

where     is the worst case fuel usage for the flight from target   through target   back to the depot 

and   is the fuel capacity of the UAV. 

The output of this deterministic variant of the TSB is the best found route with the highest score 

from the current position to the depot. Only the first target in this route is considered, since RDTSBA 

is a One-Step-Ahead Routing Approach.  

8.2.2 Repeated Stochastic Tabu-Search Based Heuristic Approach 

In this section we will discuss an approach where repeatedly a stochastic variant of the TSB is 

executed. Like in the RDTSBA, every time the recording of a target is finished, the set of feasible and 

unvisited targets is determined. In RSTSBA targets are feasible if both Condition 8.1.3 and Condition 

8.1.2 are satisfied. This set of targets is the input of the stochastic variant of the TSB.  

The initial solution of the stochastic variant of the TSB is constructed using the SBNA, where we 

assume that the realized fuel usages are not available and only their distribution function is known.  

This results in a larger uncertainty in the departure times of the following targets. In order to 
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prevent a long initial solution with a lot of targets which have a probability of zero to be reached 

before their deadline, for each target in the initial solution should hold that the minimum fuel usage 

during the route before that target is smaller than its deadline. Consequently, all targets in the initial 

solution have a positive probability to be reached before their deadline.  

Furthermore, the solution evaluation in this stochastic variant of the TSB is also different as the 

evaluation of the deterministic variant, presented in Subsection 8.2.1. The score of a solution in the 

stochastic TSB is equal to the expected gathered information value during the executing of the 

route. The expected profit of target   in solution  , which is a route from the current location   to 

the depot, is equal to  

           (      )     

where target   is the immediate predecessor of   and             . The score of solution   is 

equal to the sum of the expected profits of all targets in the tour.  

In this stochastic variant we assume that all solutions are feasible. By using the just presented 

solution evaluation, solutions with at the beginning of the route a target which has a small 

probability to be reached before its deadline, will have a low score. This is caused by the fuel 

consumption during the flight to and the recording of this ‘closed’ target. Through this useless fuel 

usage the following targets have a smaller probability to be recorded in time and therefore their 

expected profit will be smaller. Note that the worst case control for the entire route is not 

necessary, since the worst case condition, Condition 8.1.3, is satisfied for all input targets and only 

the first target of the route is taken into account.  

Like the deterministic variant, the output of this stochastic variant of the TSB is the best route found 

with the highest score from the current position to the depot. As mentioned before, since the 

RSTSBA is an OSAR approach, only the first target in the output route is considered.   
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Part IV 

Case Study 
In this part we will evaluate a case study executed to test the 
previously discussed approaches to solve the SOPTW. In Chapter 9 
we will describe the data used in our case study. The model settings 
and the used performance measures are discussed in Chapter 10, 
while in the following chapters the results of the different 
approaches are presented. In Chapter 11 the results of the hybrid 
approach are presented. The One-Step-Ahead-Routing approach is 
evaluated in Chapter 12.  
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9. Data description 

To test the in Part II and III introduced approaches, models and strategies, we extend some of the 

deterministic datasets used by Vansteenwegen in [9] to stochastic datasets by introducing stochastic 

fuel consumption on the flight paths. From these datasets we only use the first nine datasets (c101-

c109). These sets are based on the Solomon’s datasets of vehicle routing problems with time 

windows. For all of these considered datasets the deterministic optimal routes are known. In this 

chapter we will give a description of the structure of these datasets and the probability distribution 

of the fuel usages on the flight paths and during the recording.  

9.1 Test instances 

All test instances contain the same     targets in an area of    x   . As starting and ending point 

of the flight a depot is situated in the middle of the area. The targets are situated in clusters of 

approximately ten targets around the depot. Each of these targets has a fixed information value 

which is a multiple of ten in the range of [     ]. In figure 9.1 the area of operations of our case 

study is displayed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1: The area of operations where the size of a target represents its information value and the 

depot is displayed by a red square 
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Since both the locations of the targets and depot and the information values of the targets are the 

same for each of the nine test instances, the differences between the considered test instances are 

in the time windows of the targets. However, the time window of the depot is equal for each 

instance, which means that the fuel capacity of the vehicle, e.g. UAV, is also the same in each test 

instance. We assume that the UAV has a fuel capacity   of 1236 units.  

In the remaining part of this section we will discuss for each test instance some characteristics of the 

assigned time windows.  

The time windows of first four test instances follow a specific structure. All assigned time windows in 

Test instance c101 have a length of less than 100 fuel units, which means that for each target   in the 

instance          . In the second instance 75 targets have a small time window, which means 

that it has a length of less than 100 units, and 25 targets have a very large time window, which 

means that it has a length of more than 1000 fuel units. The small time windows are the same as the 

time windows in the first test instance. The percentage of very large time windows increases in the 

third test instance to 50%, which means that 50 targets have a small time window and 50 targets 

have a very large one, and to 75% in the fourth instance. The targets with a very large time window 

in an instance are also in the part of targets with a very large time window in the consecutive test 

instance. Therefore, comparing two consecutive test instances, the time windows of only 25 targets 

will be different.  

The other five test instances are individual cases where the time windows are different for each 

instance. Test instances c105, c106 and c108 include time windows of different length. In Test 

instance c105 the assigned time windows have a length of at least 75 up to 177 fuel units. The 

minimum length of the time windows in Test instance c106 is 29 fuel units and the maximum length 

in this test instance is 387 units, while in Test instance c108 the length of time windows ranges 

between 149 and 353 fuel units.   

In the Test instance c107 and c109 the length of all time windows is the same. This length is equal to 

180 units for Test instance c107 and for Test instance c109 this length is equal to 360 fuel units.    

In Table 9.1 for each test instance the average length of the time windows as well the minimum and 

maximum length are displayed. Based on the characteristics of the lengths of the assigned time 

windows the test instances are classified in categories. The first category contains the test instance 

with small time windows. The average length of the time windows of the test instance in Category 1 

is at most 160 fuel units, while the maximum length should be lower than 400 units. The average 

length of the time windows of the test instances in the second category is slightly longer than of the 

test instances in Category 1. Therefore, Category 2 includes three test instances with medium time 

windows. The test instances with both small and very large time windows are classified in Category 

3. The maximum length of the time windows of the test instances in this third category is more than 

1100 fuel units, while the minimum length is less than 50. In the fourth column of Table 9.2 shows 

the category classification of the test instances.  
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Test instance 
Average 

Length 
Minimum 

Length 
Maximum 

Length 
Category 

c101 60.76 37 89 1 
c102 325.69 43 1135 3 
c103 588.49 43 1136 3 
c104 852.94 43 1136 3 
c105 121.61 75 177 1 
c106 156.15 29 387 1 
c107 180 180 180 2 
c108 243.28 149 353 2 
c109 360 360 360 2 
 

Table 9.1: The characteristics of the assigned time windows in the test instance as well their category 

classification.   

9.2 Stochastic fuel consumption 

The average fuel usage on the flight path of target   to target   is equal to the Euclidean distance 

between target    and target  . We set the average fuel usage during the recording of target   equal 

to the recording times    that are given in the data sets.  This deterministic recording time is the 

same for all targets and is equal to 90 fuel units. The recording time of the depot is equal to zero. 

Consequently, the mean of the probability distribution function of the fuel usage on arc       is 

equal to           , where     is the distance between target   and target  .  

We assume that the maximum deviation     of this average usage on arc       consists of two parts. 

The first part is related to the distance between the two locations. We assume that this part is a 

fixed percentage   of the given distance. The second part is related to the time spend for recording a 

target, which is assumed to be a fixed percentage   of the recording time of a target. Summarizing, 

the realizations of the fuel usage on arc       are in the interval [               ], where     is 

equal to         . In this case study we use        and       , consistent with the settings 

used by Evers et al. [1].  

In the reformulation of the Chance-Constrained Programming model it is assumed that the fuel 

usage on each individual arc is normally distributed, while in the Recourse Action of the TSOPTW is 

assumed that the worst case usage on each arc can be defined. Since the normal distribution ranges 

from negative infinity to positive infinity, we assume that the fuel usages are truncated normally 

distributed. To construct this truncated distribution we use a normal distribution with the mean 

equal to    , which we have defined earlier. The variance of this normal distribution is based on the 

triangular distribution. In contrast to the normal distribution, the triangular distribution is a 

continuous probability distribution with a lower limit  , an upper limit   and a mode  . According to 

Evans et al. [49], the variance of a triangular distribution is equal to  

                 

  
                                                                                                                             

When the limits of this triangular distribution are set equal to the limits of the interval of the fuel 

usage and the mode is set equal to the mean, the variance of the normal distribution of the fuel 

usage of arc       is equal to  
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Equation (9.2) can be rewritten as 

   
 

 
                                                                                                                                                                               

which means that the standard deviation of this probability distribution is equal to 

    
   

√ 
                                                                                                                                                                   

In figure 9.2 the probability density functions of both the triangular distribution and the normal 

distribution of arc       are displayed. 

 

 

 

 

 

 

 

 

 

 

Figure 9.2: The probability density functions of both the triangular distribution and the normal 

distribution of arc      . 

To construct the truncated normal distribution of arc      , this given normal distribution is 

truncated at the limits of the interval of the fuel usage on the arc. In the scenario construction this is 

done by changing all values outside the interval in a random sample of the given normal distribution 

by a new random number of the given distribution, until this value falls inside the interval.  

By truncating the normal distribution an error is made in the CCP-models which assume that the fuel 

usages are normally distributed. Since at both sides of the normal distribution less than one percent 

is truncated, this error will be small. For illustration in Figure 9.3 depicts the cumulative density 

functions of the right tail of both the normal distribution and the corresponding truncated normal 

distribution of arc      .  
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Figure 9.3: The cumulative density functions of the right tail of both the normal distribution and the 

truncated normal distribution of arc      . 
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10. Experimental Settings 

In this chapter we will discuss the model settings of the different approaches used in this case study. 

In the first section the settings of both the hybrid approach and the One-Step-Ahead-Routing 

approach are discussed. After that, the performance measures used in this case study are presented 

in the second section. 

10.1 Model Settings 

In this section the parameters of hybrid approach are discussed. We will describe the parameter 

settings of the TSB-heuristic as well as the parameter settings of both the different offline 

approaches and online strategies. Subsequently, the parameter settings of the OSAR-approach will 

be discussed. 

10.1.1 Hybrid Approach 

In this subsection we will discuss consecutively the parameter settings of the TBS, the offline 

methods which are used to construct an initial tour and the online strategies which are used to 

adjust the tour during the flight.  

Tabu-Search Based Heuristic 

In our case study we use the TSB-heuristic which is presented in Section 6.3 to construct an initial 

tour for the hybrid approach of the SOPTW. The TSB requires some settings defining the 

experimental design. In the first part of this subsection we will discuss which values for the 

parameters are chosen.  

For all different approaches to construct an initial tour, we fix the maximum computation time to 

one minute. This results in a limitation of the total number of solution evaluations during the 

construction by the TSB-heuristic. For the different approaches, the total number of solution 

evaluations which can be done within one minute is displayed in the first column of Table 9.2. 

Recall that in every iteration of the TSB heuristic      candidate solutions are constructed and 

evaluated. The total number of solution evaluations should be divided over the iterations. For 

example, all solution evaluations can be done within one iteration. In that case, the number of 

iterations      is equal to one, while the number of candidate solutions      is equal to the total 

number of solutions evaluations. Also, the opposite is possible where every iteration only one 

candidate solution is constructed. From earlier experiments, the best division of the total number of 

solution evaluations is determined and the corresponding values of      and       are displayed in 

the second and third column of Table 9.2.  

Approach 
# of solution 
evaluations 

          

TSOPTW 60000 2400 25 
CCP-model 120000 960 125 
POPTW with Penalty Function 1 300000 625 480 
POPTW with Penalty Function 2 300000 1500 200 
POPTW with Penalty Function 3 300000 32  9375 
POPTW with Penalty Function 4 300000 250  1200 
 

Table 9.2: Parameter settings for the TSB for the different approaches. 
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Preliminary experimental testing showed that good results are obtained when the prohibited moves 

remain tabu for as much as at least 10 iterations with a maximum of 15 iterations. We therefore use 

     and     , where   and   are the minimum and maximum values of the random interval of 

the tabu structure. These values are the same for all different approaches.  

For each test instance an initial tour is constructed using the TSB-heuristic. Since the TSB-heuristic is 

dependent of random numbers, for each test instance and for some approaches,   initial tours are 

individually constructed for each threshold or parameter setting as well. The selected initial tour is 

the tour with the highest score in the pool of   initial tours. In our case study we use      for the 

test instances of Category 1, for the test instance of Category 2 we use     , while for the test 

instances of Category 3      is used.  

The Offline Methods 

Also the different offline methods, which are presented in Chapter 4 and 5, require some parameter 

settings. Both the CCP-model and the TSOPTW are dependent of some thresholds or predefined 

uncertainty levels. Since the values of these thresholds have a large influence on the initial tour and 

therefore also on the final route, we use different values of uncertainty in this case study. In all 

variants of the CCP-model we need to define the threshold  , which represents the probability that 

the depot is reached within the available fuel capacity. This value is chosen equal to cumulative 

density of the maximum limit in the assumed normal distribution of the fuel usage on arc      , 

which is 

                 

where                 , introduced in Section 9.2 and     is the maximum deviation of the realized 

fuel usage of its average. Note that this probability is close to one. 

The first variant of the CCP-model, which is the variant with the deadline and waiting time 

constraint, requires also the settings of the thresholds   and  . Threshold   represents the minimum 

probability that the UAV does not have to wait for a target, while the minimum probability that the 

UAV departs from a target before its deadline is given by  . Since the expected waiting time is not 

taken into account in this first variant, we restrict the probability to wait for a target to 0.5. 

Therefore, the value of threshold   is in our case study equal to 0.5. For threshold   we use different 

values to investigate the influence of this parameter on the final route. We use in our case study 

  {                       }   

The second variant of the CCP-model has a time window constraint, which means that the 

probability that the UAV arrives at and departs from a target within its time window should be at 

least as high as the fixed threshold  . For this threshold we use the same values as used for 

threshold   in the first variant.  

The third variant of the CCP-model has only a deadline constraint, but the expected waiting time is 

taken into account. For threshold  , which represents the minimum probability the UAB departs a 

target before its deadline, is the same as in the first variant and therefore also the same values are 

used. Parameter   is the fraction of the waiting time which is included in the objective function to 

minimize the total expected waiting time. Since the realized waiting time does not affect the 

realization of the objective during the execution of the case study, this parameter is chosen equal to 



70 
 

zero. The time the UAV should wait for a target is already lost time. This is due to the fact that 

spending fuel on waiting does not have any value for the objective function. In this third variant also 

two parameters are introduced to compensate the error which is made by considering the expected 

waiting time. The value of these parameters, which are   and  , is in our case study equal to one. 

In the TSOPTW we need to define an uncertainty level  . Note that this   represents a different 

probability than the threshold   in the first variant of the CCP-model. This level of uncertainty 

represents the minimum probability a target could be reached before its deadline if it should not be 

skipped in the final route. For this parameter we use in our case study the same values as we use for 

threshold   in the first and third variant of the CCP-model. Note that this could result in six different 

initial tours, one for each value of  .  

For the POPTW we have introduced four different penalty functions to determine the incurred 

penalty for a late departure from a target. All these penalty functions require some parameter 

settings. In our case study we assume that the time windows of the targets are hard, which means 

that recording a target outside its time window yields nothing. Therefore, we use for parameter    

in Penalty function 1 a value of 50, which results in a nonpositive yield for late recording of a target. 

For parameter     in Penalty function 2 we use the value of 1, through this the yield of a late 

recording is equal to zero. In both smooth penalty functions a scale parameter is included. For the 

linear smooth penalty function we set scale parameter   equal to 5, while for the quadratic smooth 

penalty function scale parameter   is chosen to be equal to 2.5. 

Furthermore, in the construction of the initial tour of both the TSOPTW and the POPTW a sample set 

of | | scenarios is required to determine the score of a solution. We use for both approaches the 

same set of scenarios. In this case study during the construction of the initial tour of both recourse 

models a sample set of 1000 scenarios is used, therefore | |       .  

The Online Strategies 

Also two of the online strategies that were introduced in Chapter 7 require some parameter settings. 

First, the recourse action is developed to prevent that the UAV departs from a lot of targets later 

than the deadline of the time window, which yields no information value. The decision to skip a 

target is based on a predefined uncertainty level  . We use in our case study uncertainty level 

  {                       }  which are the same values as for threshold   in the CCP-model and 

as for the level of uncertainty in the TSOPTW.  

10.1.2 One-Step-Ahead Routing  

Also the Repeated Tabu-Search Based Heuristic Approach presented in Section 8.2 requires some 

parameter settings. In this thesis we have executed at each step of the RTSBA a Tabu-Search Based 

heuristic with a fixed number of iterations      equal to 50 in which 75 candidate solutions are 

constructed. Consequently,        . The upper and lower bound of the random interval of the 

tabu structure are set to     and      in this RTSBA.  
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10.2 Performance Measures 

To compare the different approaches which are used to construct an initial tour and the different 

adaptive routing strategies which are used to adjust the initial tour to the fuel realizations, for each 

combination the constructed initial tour and the strategy are executed for   scenarios. In this case 

study we use        . Based on these executions we can calculate some performance measures.  

The first performance measure we use to evaluate the different approaches introduced is the 

average realized profit. This value is calculated by taking the mean over the realized profits of all   

executed scenarios. This measure is an estimation of the expected realized profit for the used 

approach and strategy. 

The second measure is the absolute gap between the average realized profit and the sum of the 

profits of the targets in the initial tour, while the third measure is the percentage gap between the 

average realized profit and the planned profit in the initial tour. These two measures indicate both 

how close the expected realized profit is to the planned profit.  

The average number of skipped targets is the fourth performance measure. The value of this 

measure is calculated by taking the mean over the differences between the number of targets in the 

initial tour and the number of visited targets in the final route of all   executed scenarios. Since 

skipping a target means that the initial tour has to be adjusted, it is preferred that the average 

number of skipped targets during the executions of the tour is small. This performance measure is 

used, because it is an indication of the endurance of the initial constructed tour. In military settings a 

predictable route of the flight could be desirable.   

The fifth and last performance measure we use to evaluate the different approaches is the average 

percentage of the Profit by Complete Information (PCI). The PCI could be calculated for each 

scenario by solving a deterministic OPTW where the fuel consumption on the flight paths     is equal 

to the fuel realizations of that scenario. The objective value of this OPTW is the total profit which 

could be gathered in this scenario if all fuel realizations were available before the flight. Therefore, 

the average realized percentage of this value should be large. Note that the deterministic OPTW is 

proven to be NP-hard [8]. Therefore, due to the very large calculation time this performance 

measure is only determined for the test instance in Category 1. 

For the One-Step-Ahead Routing approaches only the first and the fifth performance measures are 

used to evaluate these approaches. In OSAR there is no initial tour planned before the flight, 

therefore the difference between the planned tour and the executed tour cannot be determined. 

  



72 
 

11. Evaluation of the Hybrid Approach 

In this chapter we will present the results of the hybrid approach of the SOPTW. We will compare 

the different methods to construct an initial tour. In the second part of this thesis we have 

introduced 9 different methods to construct an initial tour. The first was the optimal solution of the 

deterministic OPTW. Using the CCP-model three different initial tours could be constructed. Besides 

these methods, also the TSOPTW could be used to construct an initial tour. Finally, based on the 

different penalty functions, the last four initial tours can be constructed using the POPTW.  

Preliminary experimental testing has shown that both the first variant of the CCP-model with the 

deadline and waiting time constraint and the second variant with the time window constraint 

provide poor performances compared to the third version of the CCP-model. The main reason for 

these undesirable outcomes is that the expected waiting time is not taken into account, while the 

execution of the initial tour is affected by waiting time. The third variant considers the expected 

waiting time and therefore this variant outperforms the first two variants of the CCP-model. Besides 

that, for some test instances of the first and second category it is not possible to construct an initial 

tour which is feasible for the second variant of the CCP-model with a certain value for threshold  . 

This is due to the fact that in these instances there is no target which can be reached after its earliest 

time with a minimum probability larger than 0.5. Consequently, for these values of threshold   this 

variant cannot be used. For these two reasons we will only present the results of the third variant of 

the CCP-model in this chapter.  

Furthermore, due to the parameter settings of the first penalty function of the POPTW, the yield of a 

late recording of a target is zero or in some cases even negative. For the given parameter settings of 

the second penalty function, the yield of a late recording is always equal to zero. This could result in 

a shorter initial tour for the first penalty function, since the penalties of some targets are higher than 

when Penalty function 2 is applied. Therefore, during the execution, the realized profit of the initial 

tour of the second penalty function is the same or more than the realization of the first penalty 

function. Except this, since we have assumed that the time windows are hard in our case study, the 

yield of a late recording is always equal to zero. In Penalty function 2 this is also the case, therefore 

the results of the POPTW combined with Penalty function 1 are left out in this chapter.  

For the POPTW we also consider two different smooth penalty functions. By these penalty functions 

the penalty costs are dependent on the late period, which means that the yield of a late recording is 

not always equal to zero. Since the yield of a late recording could be positive, the time windows are 

soft in this case. However, during the execution of the initial tour hard time windows are considered. 

For the linear penalty function the penalty for late recording increases less rapidly than the penalty 

of the quadratic penalty function. This results in a better approximation of the hard time windows 

which we consider during the execution for the linear penalty function. Therefore, the results of the 

POPTW combined with the quadratic smooth penalty function are also left out in this chapter.   

We will combine the remaining five methods with different adaptive routing strategies. In the first 

section we will evaluate the different offline methods combined with the recourse action, while in 

the second section the results of the execution of the initial tours adjusted by the Alternative 

Recourse Action are presented.  
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11.1 Recourse Action 

In this section we will present the results of the different methods combined with the recourse 

action. The complete table of remaining results can be found in Table A.1 of the appendix. To discuss 

the results, we will use an illustrative instance, since all test instances of all categories follow 

approximately the same pattern. Table 11.1 shows the results of Test instance c107 of Category 2 for 

different levels of uncertainty  : the minimum probability level to continue to the next target, 

applied in the recourse action. Note that these uncertainty levels are also used in the construction of 

the initial tour of both the CCP-model and the TSOPTW.  For the five considered offline methods the 

values of the introduced performance measures are given. In the first column the sum of the profits 

of the targets in the initial tour is displayed. The profit which is realized by evaluation of this initial 

tour combined with the recourse action is given in the second column. Column 3 and 4 show the gap 

between the planned profit and the realized profit. The third column shows the absolute gap 

between those two values, while in the fourth column the percentage gap is displayed. Column 5 

contains the average number of skipped targets of the initial tour due to the recourse action.  

The initial tour of the deterministic OPTW is the same for all levels of uncertainty, since this method 

does not take uncertainty into account. Therefore, also the planned profit is the same for all 

uncertainty levels. The average realized profit is the largest for a level of uncertainty of 0.6. Both 

smaller and larger uncertainty levels provide a lower average profit during the execution. When the 

level of uncertainty is equal to 1, the average realized profit is the lowest. This is caused by the fact 

that at this level, the number of targets that should be skipped due to the recourse action is the 

highest out of all levels of alpha. The average absolute gap is between 37 and 45 units of profit, 

which corresponds to a percentage gap between 10 and 12 percent.  

The constructed initial tours of the CCP-models are shorter than the optimal deterministic tour. 

Therefore, the planned profit of these tours is also less than the planned profit of the deterministic 

tour. Note that in the optimal deterministic tour all targets can be reached with probability 0.5, since 

we have assumed that the deterministic fuel consumption is equal to the means of the truncated 

normal distributions. However, due to the total fuel constraint of the CCP-model, this optimal 

deterministic tour can be not feasible for the CCP-model with waiting time. Since in the CCP-model 

the uncertainty of the whole tour is considered, the initial tour which is feasible for uncertainty level 

1 is shorter than the other initial tours. However, the gap between the realized profit and the 

planned profit is smaller for this level of uncertainty compared to both the absolute and the 

percentage gap of the other uncertainty levels. The realized profit is lower for larger levels of 

uncertainty caused by the larger number of targets of the initial tour that should be skipped due to 

the recourse action. With respect to the realized profit, the CCP-model outperforms the 

deterministic OP approach. Furthermore, both the average gap between the planned and the 

realized profit and the average number of skipped targets are smaller than the gaps of the first 

considered method. 

For the TSOPTW the constructed initial tours are longer than all other initial tours and therefore also 

the planned profit is larger. This is due to the fact that in the construction of the initial tour of the 

TSOPTW the recourse action is already taken into account, which means that the possibility to skip 

targets is considered. Consequently, both the average number of skipped targets and the average 

gap are much larger than for the other methods. However, for all levels of uncertainty the average 

realized profit for the TSOPTW is larger than the average realized profit for all other methods. 
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c107

0.5 370 332.308 37.692 10.187 0.8525

0.6 370 332.884 37.116 10.031 0.8768

0.7 370 332.840 37.160 10.043 0.9006

0.8 370 332.250 37.750 10.203 0.9308

0.9 370 330.790 39.210 10.597 0.9668

1.0 370 324.796 45.204 12.217 1.0634

0.5 350 347.839 2.161 0.617 0.0208

0.6 350 347.695 2.305 0.659 0.0265

0.7 350 347.345 2.655 0.759 0.0377

0.8 350 346.667 3.333 0.952 0.0560

0.9 350 344.682 5.318 1.519 0.1036

1.0 330 329.382 0.618 0.187 0.0218

0.5 380 348.700 31.300 8.237 1.8805

0.6 410 349.304 60.696 14.804 2.8834

0.7 410 349.765 60.235 14.691 2.8829

0.8 410 349.951 60.049 14.646 2.8848

0.9 410 349.406 60.594 14.779 2.8915

1.0 470 340.113 129.887 27.636 7.0113

0.5 350 347.839 2.161 0.617 0.0208

0.6 350 347.695 2.305 0.659 0.0265

0.7 350 347.345 2.655 0.759 0.0377

0.8 350 346.667 3.333 0.952 0.0560

0.9 350 344.682 5.318 1.519 0.1036

1.0 350 329.252 20.748 5.928 0.4214

0.5 350 347.812 2.188 0.625 0.0243

0.6 350 347.650 2.350 0.671 0.0301

0.7 350 347.282 2.718 0.777 0.0413

0.8 350 346.572 3.428 0.979 0.0606

0.9 350 344.537 5.463 1.561 0.1096

1.0 350 329.056 20.944 5.984 0.4280

Recourse Action
Deterministic OPTW

CCP-model

TSOPTW

POPTW - Fixed Penalty

alpha
Planned 

profit

Realized 

profit

Absolute 

Gap

Percentage 

Gap

# of skipped 

targets

alpha
Planned 

profit

Realized 

profit

Absolute 

Gap

Percentage 

Gap

# of skipped 

targets

alpha
Planned 

profit

Realized 

profit

Absolute 

Gap

Percentage 

Gap

# of skipped 

targets

# of skipped 

targets

alpha
Planned 

profit

Realized 

profit

Absolute 

Gap

Percentage 

Gap

# of skipped 

targets

alpha
Planned 

profit

Realized 

profit

Absolute 

Gap

Percentage 

Gap

POPTW - Smooth Penalty

 
Table 11.1: The results of Instance c107 for different methods combined with the recourse action. 
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The constructed initial tours of both variants of the POPTW have a lower planned profit than the 

sum of the profits of the targets in the optimal deterministic tour. This profit is the same for all levels 

of uncertainty, because the values of   are not taken into consideration in the POPTW. For most of 

the levels of uncertainty, the values of the performance measures of both variants of the POPTW are 

comparable with the results of the CCP-model, except for the case when the uncertainty level is 

equal to 1. In that case both the gap between the planned profit and the realization and the average 

number of skipped targets is larger than for the CCP-model. This is due to the fact that the initial 

tour of the CCP-model is adjusted to the uncertainty level, while the initial tours of the POPTW are 

the same for all levels of uncertainty.  

11.2 Alternative Recourse Action 

The execution of the initial tours constructed using the five considered methods combined with the 

alternative recourse action is evaluated in this section. Recall that the alternative recourse action 

prescribes that all planned targets are visited as long as the UAV is still able to return to the depot in 

worst case. Contrary to the recourse action, in none of the offline methods the alternative recourse 

action is taken into account. Furthermore, during the execution the flight has to be adjusted at most 

one time, since only targets at the end of the tour might be skipped.  

The levels of uncertainty which are taken into consideration in the construction of the initial tours of 

the CCP-model and the TSOPTW are not applied in the alternative recourse action. Therefore, we 

consider for each of the five different offline methods just one of the available initial tours. For the 

deterministic OPTW and both variants of POPTW only one initial tour is constructed for each test 

instance. However, for the TSOPTW and the CCP-model an initial tour is available for each of the six 

different levels of uncertainty. In this section we evaluate for the TSOPTW the initial tour with the 

smallest average number of skipped targets due to the recourse action in Section 11.1. This selected 

tour had the least adjustments during the flight. Consequently, when the possibility to skip targets 

due to their time windows is left out, the realized profit of this tour will be larger than the realized 

profit of the other initial TSOPTW-tours associated to other levels of alpha. For the TSOPTW the 

initial tour which is constructed based on the uncertainty level equal to 0.5 has for all test instances 

the smallest average number of skipped targets out of all initial tours. In the construction of the 

initial tour of the CCP-model, it is assumed that the tour cannot be adjusted during the flight. Due to 

the deadline constraint the tours are longer for smaller threshold. Therefore, we select for each test 

instance the initial tour which is based on a threshold equal to 0.5. 

In Table 11.2 the results for two illustrative test instances of the execution of the initial tours 

combined with the alternative recourse action are given. The results for the other instances can be 

found in Table A.2 of the appendix. The other test instances of Category 1 and 2 show similar results 

as illustrative case c105 and the results of the other instances of Category 3 are similar to the results 

of illustrative case c103.  

For Test instance c105 of Category 1 we see that the realized profit of the TSOPTW is lower than the 

realized profit of the other methods. The time windows are small in this test instance and therefore 

the probability to depart from a target after its deadline is larger. This probability is increased by the 

fact that the possibility to skip targets due to their time windows is considered during the 

construction of the initial tour, but this possibility does not exists in the alternative recourse action. 

In contrast to Test instance c105, half of the time windows of Test instance c103 are very large. The 
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probability to reach a target within its deadline is therefore much larger, even when it is not possible 

to skip targets during the flight. Consequently, the realized profit of the TSOPTW is the largest for 

test instances with large time windows.  

For both instances the deterministic optimal tour gathered on average fewer profit during the 

execution than the CCP-model and both POPTW variants. This means that when the stochasticity of 

the fuel consumption is taken into account, this will result in a larger realized profit. For Test 

instance c103 the average gathered profit during the execution of the initial tour of the CCP-model is 

larger than the realized profit of both POPTW tours, while for the small time windows of c105 the 

realized profit of the CCP-model is equal to the realization of the POPTW with a fixed penalty. The 

POPTW with a smooth penalty function has in both test instances a lower realized profit than the 

CCP-model and the POPTW with a fixed penalty. 

The gap between the planned and the realized profit of the deterministic OPTW and the TSOPTW is 

much larger than the gap of the other three methods. For Test instance c105 the realized profit of 

the TSOPTW is only 48% of the planned profit. For the very large time windows of Test instance c103 

the gap between the realized and planned profit is the smallest for the POPTW with a fixed penalty, 

while for the small time windows of Instance c105 this gap is the smallest for the POPTW with a 

smooth penalty function.  

Also the average number of skipped targets during the execution of the initial tour of the TSOPTW is 

much larger than for the other models. For both instances the method with the smallest gap is also 

the method with the lowest average number of skipped targets. Note that in Test instance c105 

there is no target skipped during the execution of the initial tour of the POPTW with a smooth 

penalty function, but the realized profit is not equal to the planned profit. This is due to the fact that 

some targets are recorded outside their time window and therefore the yield of the recording was 

equal to zero.  

c103

OPTW 390 331.434 58.566 15.017 0.9428 -

CCP-model (α=0.5) 370 363.897 6.103 1.649 0.1175 -

TSOPTW (α=0.5) 430 376.521 53.479 12.437 2.5613 -

Fixed Penalty 360 359.980 0.020 0.006 0.0005 -

Smooth Penalty 360 355.338 4.662 1.295 0.1554 -

c105

OPTW 340 291.819 48.181 14.171 0.0704 0.8671

CCP-model (α=0.5) 330 327.930 2.070 0.627 0.0045 0.9488

TSOPTW (α=0.5) 420 199.885 220.115 52.408 5.0832 0.5788

Fixed Penalty 330 327.930 2.070 0.627 0.0045 0.9488

Smooth Penalty 320 319.794 0.206 0.064 0.0000 0.9261

# of skipped 

targets

% of the 

PCI

Alternative Recourse Action

Method
Planned 

profit

Realized 

profit

Absolute 

Gap

Percentage 

Gap

Method
Planned 

profit

Realized 

profit

Absolute 

Gap

Percentage 

Gap

# of skipped 

targets

% of the 

PCI

Table 11.2: The results of Test instances c103 and c105 for different methods combined with the 

alternative recourse action. 
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12. Evaluation of the One-Step-Ahead Routing Approach 

In this chapter we will evaluate the different One-Step-Ahead-Routing Approaches. In Chapter 8 we 

have introduced four different OSAR approaches. The first two approaches are Best-Neighbor 

approaches, where the first is the Deterministic Best Neighbor Approach (DBNA) which does not 

take uncertainty into account and the second is the Stochastic Best Neighbor Approach (SBNA) 

which considers the stochasticity of the fuel consumption. Both these approaches do not take the 

remainder of the flight into consideration in the determination of the location to visit next. The 

other two approaches on the other hand, do consider the remainder of the flight in the 

determination of the next location by constructing a whole route for the remainder of the flight and 

selecting the first location in this route as next location. These two approaches execute repeatedly a 

tabu-search based heuristic. The first Repeated Tabu-Search-Based heuristic Approach is the 

Deterministic RTSBA, where uncertainty is ignored. In the constructing of a route for the remainder 

of the flight, the Stochastic RTSBA considers the stochasticity of the fuel usages.  

We have evaluated these four approaches for the same   scenarios as the scenarios which we used 

for the evaluation of the five offline methods combined with the recourse actions. In OSAR there is 

no initial tour constructed before the flight which should be adaptive during the flight. After 

recording a target, the next location of the flight is determined using an OSAR approach. Therefore, 

only the realized profit and the percentage of the PCI can be used as performance measures in this 

case.  

In Table 12.1 contains the realized profit and the percentage of the PCI for the four OSAR 

approaches: DBNA, SBNA, RDTSBA and RSTSBA.  

For the Best-Neighbor approaches, we see that the realized profits of the deterministic variant are 

less than the realized profit of the stochastic variant for the test instances with small or medium 

time windows. The realized profit of the stochastic variant of the test instances with very large time 

windows is smaller than the realization of the deterministic variant. Taking into account the 

stochasticity of the fuel usages is more important for small time windows, since the probability to 

arrive at the target after its deadline is much larger than for large time windows. In instances with 

very large time windows it is less important to take the uncertainty into account in the  

 

c101 299.274 0.9273 299.376 0.9231 307.124 0.9492 309.560 0.9580

c102 322.418 - 320.628 - 335.307 - 338.359 -

c103 375.994 - 374.635 - 376.648 - 376.362 -

c104 388.160 - 387.764 - 388.094 - 389.238 -

c105 317.115 0.9353 317.981 0.9254 324.719 0.9472 328.276 0.9548

c106 315.309 0.8989 322.225 0.9183 320.017 0.9146 329.760 0.9433

c107 312.755 - 317.922 - 336.721 - 335.975 -

c108 327.456 - 328.156 - 339.608 - 341.248 -

c109 343.534 - 345.773 - 354.553 - 354.029 -

DBNA SBNA

Realized 

Profit

% of the 

PCI
Realized 

Profit

% of the 

PCI

% of the 

PCI
Realized 

Profit

% of the 

PCI

RDTSBA RSTSBA

Realized 

Profit

Table 12.1: The results of the One-Step-Ahead Routing Approaches for all considered test instances.  
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determination of the next location. Furthermore, in the SBNA the targets which can be reached 

before their deadline with a probability equal to one are overrated in the determination of next 

target. In case there are a lot of targets with the same profit, which have a probability to be reached 

before their deadline equal to one, the nearest of these targets is selected as the next location. This 

selection could have a negative impact on the realized profit. 

For the most test instances the realized profits of the repeated TSB approaches are for both variants 

significant larger than the realizations of the profit of the BNA. We can see that the realized profit of 

the stochastic variant is for the most instances larger than the deterministic variant. However, for a 

few test instances the total average gathered profit of the stochastic variant is smaller than the 

realizations of the profit for the deterministic variant, but these differences are small. The 

improvement of the realized profit by considering of the stochasticity of the fuel usages is the largest 

by the test instances with the smallest time windows. This is due to the fact that the probability a 

small time window is reached after its deadline by higher fuel usages is much larger than when the 

width of the time windows is larger. Therefore, taking into account the stochasticity of the fuel 

consumption is more recommended in these test instances.  

Compared to the results of the hybrid approach, presented in Chapter 11, we can see that the 

realized profits of the OSAR approaches are smaller than the highest realized profits of the hybrid 

approach for all test instances. These differences are the smallest for the test instances of Category 

1, where adjusting the flight to the realizations of the fuel usages is the most profitable because of 

the small time windows.    
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Part V 

Conclusions 
In this part we will summarize our research done in this thesis. In 
Chapter 13 an overview of advantages and disadvantages of the 
presented methods and strategies is given, while a summary and a 
short conclusion are provided in Chapter 14. This part will end with 
some ideas for further research in Chapter 15.  
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13. Overview Solution Strategies 

The diagram below contains the advantages and disadvantages of the methods and approaches.  

Hybrid Approach 

Offline Methods 

Approach/Method Advantages Disadvantages Section 

Deterministic 
OPTW 

 “Optimal” solution can be found 
for most instances 

 Uncertainty not taken into 
account 

4.1 

CCP-model – 
Deadline and 
Waiting Constraint 

 Maximal probability to wait for a 
target is fixed 

 Not feasible for some test 
instances 

 Expected waiting time not 
included 

4.3.2 

CCP-model – Time 
Window Constraint 

 Minimal probability to reach 
within time window is fixed 

 Not feasible for some test 
instances 

 Expected waiting time not 
included 

4.3.3 

CCP-model – 
Waiting Time 

 Expected waiting time included 

 Small gap between planned and 
realized profit  

 No exact distribution of sum 
of fuel consumption and 
waiting time can be 
determined 

4.3.4 

TSOPTW  Recourse action taken into 
account 

 Less specific assumptions on 
probability distribution required 

 Largest realized profit 

 Large average number of 
skipped targets during the 
execution 

 Large gap between planned 
and realized profit 

5.2 

POPTW – fixed 
penalty function 

 Less specific assumptions on 
probability distribution required 

 Both soft or hard time windows 
can be assumed 

 Small gap between planned and 
realized profit 

 Loss in potential profit due to 
disregarding possibility of 
skipping targets 

5.3 

POPTW – smooth 
penalty function 

 Less specific assumptions on 
probability distribution required 

 Small gap between planned and 
realized profit 

 Assumed soft time windows 

 Loss in potential profit due to 
disregarding possibility of 
skipping targets 

5.3 

Online Strategies 

Recourse Action  Optimized for time windows  Less predictable first part of 
the flight by skipping 
intermediate targets during 
the flight. 

7.1 

Alternative 
Recourse Action 

 More predictable first part of 
the flight by skipping only 
targets at the end of the flight. 

 Not optimized for time 
windows 

7.2 

OSAR approach 

Best Neighbour 
approach  

 Fast determination of next 
location 

 Local focus on only the best 
next location 

8.1 

Repeated TSB 
approach 

 Also targets close to the next 
location taken into account 

 Longer determination of next 
location 

8.2 
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14. Summary and Conclusion 

In this thesis we have addressed the UAV-mission planning problem with time windows and 

stochastic fuel consumption. In the area of operations, several targets are identified, which each 

have their own information value (represented by a profit value in our models). Since the fuel 

capacity of the UAV is fixed, during a mission only a subset of these targets can be recorded. 

Furthermore, the fuel usage on the flight paths between each two targets is not fixed, but only 

known a priori probabilistically. This means that before the flight only a probability distribution 

function is known for the fuel usage on each flight path. Besides that, to all targets a time windows is 

assigned, consisting of an earliest and a latest time. When recording takes place within the assigned 

time window, information is collected and a profit is gathered. After the deadline of a target there is 

no information to collect and therefore the gathered profit is equal to zero. If the UAV arrives at a 

target before the earliest time, it should wait until the target is 'open'. In this thesis we have 

presented methods to construct a route which maximizes the total collected information value, 

taking into account the stochasticity of the fuel consumption. This route is restricted by the fuel 

capacity of the UAV and the time windows of the targets.  

We have detected that this problem can be modeled as a stochastic orienteering problem with time 

windows, which to the best of our knowledge has not yet been investigated in the literature. 

However, literature about related problems, such as the stochastic vehicle routing problem with 

time windows, can be found in literature.  

Based on this found literature, we have decided to focus on two different approaches to solve the 

addressed problem: a hybrid approach and a One-Step-Ahead Routing approach. In the hybrid 

approach an initial route is constructed before the flight, which can be adjusted during the flight to 

the fuel realizations. The first method to construct an initial tour is a chance-constrained 

programming model, which prescribes a minimum probability that a target in the tour should be 

reached before its deadline. The minimum probability that the depot should be reached before the 

fuel capacity is completely used is also set in this model. The second and the third offline methods 

are both stochastic programming models with recourse, which means that a tour is constructed in 

the first stage, while in the second case the recourse costs of this tour are determined. The first 

recourse model is the two-stage orienteering problem with time windows. In this model a recourse 

action is applied to prevent the UAV both for running out of fuel and for missing a lot of time 

windows. In the second recourse model a penalty is incurred for late recordings and for a late arrival 

at the depot. In this thesis we have introduced four different penalty functions.  

To construct an initial tour using one of these methods, a tabu-search based heuristic is presented. 

In each iteration of the heuristic a fixed number of candidate solutions are constructed by applying 

one of the six different neighbor operators to the current solution. The candidate solution with the 

highest score is selected as new current solution. This process is repeated until the maximum 

number of iterations is reached. The solution with the best overall score is the output of the 

heuristic.  

To adjust the initial tour to the realizations of the fuel consumption during execution of the tour, 

two recourse actions are introduced. The first recourse action is the same recourse action which is 

considered in the TSOPTW, while the second is based on a problem without time windows.  
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The second approach to our UAV-mission planning problem is the One-Step-Ahead Routing (OSAR) 

approach. In this approach no initial tour is constructed before the flight. At the departure from a 

target the next location is determined by an OSAR approach. In this thesis we have presented four 

different of such approaches. The first two approaches are best neighbor approaches, where in the 

first the uncertainty of the fuel usages is not taken into account, while in the second variant the 

stochasticity of the fuel consumption is considered. In the third and fourth approach not only the 

best next location is determined but also the best direction of the next location. This is done by 

constructing an entire route for the remaining part of the flight using a variant of the Tabu-Search 

based heuristic. From this route only the first location is considered. In the third approach the 

uncertainty of the fuel usages is not considered, while this is done in the fourth approach.  

We have a case study to compare these different approaches and the methods within these 

approaches. In this case study we have extended some of the deterministic orienteering problem 

with time window test instances from literature to stochastic test instances. We have presented the 

results of the case study using five performance measures.  

From this case study we can overall conclude that taking into account the uncertainty of the fuel 

consumption leads to better results. If the initial tours are adjusted during the flight using the 

recourse action, the realizations of the gathered profit are the largest for the TSOPTW. Also the 

initial tour of the CCP-model and the POPTW combined with the recourse action gather more profit 

during the execution than the deterministic optimal tour for the most test instances. Besides that, 

for the CCP-model the average gap between the planned profit in the initial tour and the realized 

profit during the execution and the average number of skipped targets are both the smallest out of 

all models. However, during the execution of the TSOPTW initial tour the largest average number of 

targets is skipped and therefore also the gap between the planned and the realized profit is the 

largest for the TSOPTW.     

If the alternative recourse action is used to adjust the initial tour during the flight, the TSOPTW 

gathers again the most profit during the execution of the flight for the instances with very large time 

windows. For the test instances with smaller time windows the TSOPTW performs poorly, while the 

CCP-model and the POPTW with a fixed penalty give the best results. Also in this case, realization of 

the profit of the execution of the deterministic optimal tour is fewer than the realizations of the 

other stochastic programming methods. 

Furthermore, also for the OSAR approaches we can conclude that taking into account the 

stochasticity of the fuel consumption increases the average total gathered profit during the flight for 

most test instances. However, for the BNA the realization of the profit of the test instance with very 

large time windows is larger when the uncertainty of the fuel usages is not considered. Furthermore, 

we can also conclude that considering the whole route of the remaining part of the flight leads to 

larger realizations of the total gathered profit.  

Overall, we can conclude that the hybrid approach leads to better realizations of the gathered profit 

for the most test instances. Moreover, this approach is suitable to the military setting, since tours 

are more predictable. That is, planned tour can only be changed by skipping targets, while by the 

OSAR approach the next location is unknown until the recording of the current location is finished.   
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15. Further Research 

In this research we have addressed the problem situation in which the location of the targets is 

assumed to be fixed and known beforehand. Further research could focus on target locations that 

change during execution of the tour. This is for example the case when the targets represent 

individuals or groups of people that move from one place to the other. This uncertainty in the target 

locations will require an approach that deals with this dynamic situation, probably in a different way 

than the methods we have introduced in this thesis. However, if the movement of the targets is 

limited, our OSAR approach might still perform well since it takes into account all current available 

information at each step of the determination of the next location.  

A similar reasoning applies to the situation where new targets appear during the flight. In this 

situation an initial tour could be used, based on target information that is available before the flight. 

During the flight the route could be reoptimized based on the current information on both fuel 

usages and new targets. Since the OSAR can also take this current information into account, this 

approach could be used as well. Depending on the expected number of new targets that appear 

during the flight, additional approaches might be required to take these dynamics into account.  

Recall that we have assumed that no profit can be gathered outside the time window. Usually this is 

suitable to the military setting. However, in some cases part of profit might still be obtainable when 

arrive some time before or after the time window. In that case, we expect our penalized recourse 

models to perform well.     
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Part 

Appendices 
This part includes the list of references and the appendix with the 
results of the remaining test instances for both the recourse action 
and the alternative recourse action.   
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Appendix 

c101

0.5 320 294.554 25.446 7.952 0.6436 0.9003

0.6 320 294.003 25.997 8.124 0.7363 0.9034

0.7 320 292.803 27.197 8.499 0.8387 0.8994

0.8 320 290.602 29.398 9.187 0.9778 0.8899

0.9 320 286.604 33.396 10.436 1.1830 0.8851

1.0 320 275.714 44.286 13.839 1.7116 0.8486

0.5 310 306.955 3.045 0.982 0.0421 0.9475

0.6 310 306.615 3.385 1.092 0.0703 0.9469

0.7 310 306.049 3.951 1.275 0.1116 0.9463

0.8 300 298.506 1.494 0.498 0.0398 0.9208

0.9 300 297.871 2.129 0.710 0.0682 0.9195

1.0 240 240.000 0.000 0.000 0.0000 0.7404

0.5 420 309.282 110.718 26.361 5.0558 0.9538

0.6 420 309.750 110.250 26.250 5.0652 0.9567

0.7 420 310.552 109.448 26.059 5.1009 0.9697

0.8 420 310.830 109.170 25.993 5.0999 0.9619

0.9 420 308.807 111.193 26.475 5.1138 0.9509

1.0 340 297.348 42.652 12.545 3.1812 0.9157

0.5 310 306.955 3.045 0.982 0.0421 0.9475

0.6 310 306.615 3.385 1.092 0.0703 0.9469

0.7 310 306.049 3.951 1.275 0.1116 0.9463

0.8 310 304.878 5.122 1.652 0.1885 0.9386

0.9 310 302.137 7.863 2.536 0.3404 0.9344

1.0 310 289.846 20.154 6.501 0.9357 0.8923

0.5 300 298.845 1.155 0.385 0.0148 0.9235

0.6 300 298.789 1.211 0.404 0.0199 0.9235

0.7 300 298.691 1.309 0.436 0.0278 0.9235

0.8 300 298.506 1.494 0.498 0.0398 0.9208

0.9 300 297.871 2.129 0.710 0.0682 0.9195

1.0 300 294.044 5.956 1.985 0.2258 0.9059
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profit
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profit
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Gap
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Recourse Action
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alpha
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% of the 
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POPTW - Fixed Penalty
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profit
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Absolute 

Gap

Percentage 

Gap

# of skipped 

targets
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c102

0.5 360 326.071 33.929 9.425 0.9001

0.6 360 326.212 33.788 9.386 0.9194

0.7 360 325.974 34.026 9.452 0.9492

0.8 360 324.923 35.077 9.744 0.9923

0.9 360 322.037 37.963 10.545 1.0679

1.0 360 310.576 49.424 13.729 1.3136

0.5 340 329.040 10.960 3.224 0.1343

0.6 340 328.034 11.966 3.519 0.1919

0.7 340 326.444 13.556 3.987 0.2668

0.8 320 319.996 0.004 0.001 0.0002

0.9 320 319.991 0.009 0.003 0.0003

1.0 320 319.902 0.098 0.031 0.0022

0.5 380 339.545 40.455 10.646 2.5934

0.6 400 339.620 60.380 15.095 3.2992

0.7 440 339.719 100.281 22.791 4.7973

0.8 510 339.526 170.474 33.426 6.8029

0.9 510 337.978 172.022 33.730 6.8392

1.0 410 335.688 74.312 18.125 4.1569

0.5 340 331.143 8.857 2.605 0.1037

0.6 340 329.894 10.106 2.972 0.1575

0.7 340 328.016 11.984 3.525 0.2321

0.8 340 324.803 15.197 4.470 0.3388

0.9 340 318.606 21.394 6.292 0.5175

1.0 340 299.945 40.055 11.781 1.0013

0.5 330 329.763 0.237 0.072 0.0105

0.6 330 329.764 0.236 0.072 0.0106

0.7 330 329.761 0.239 0.072 0.0107

0.8 330 329.758 0.242 0.073 0.0108

0.9 330 329.711 0.289 0.088 0.0122

1.0 330 328.632 1.368 0.415 0.0472
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targets

 



93 
 

c103

0.5 390 348.298 41.702 10.693 0.9946

0.6 390 349.973 40.027 10.263 0.9969

0.7 390 351.210 38.790 9.946 1.0026

0.8 390 352.132 37.868 9.710 1.0095

0.9 390 352.264 37.736 9.676 1.0336

1.0 390 339.071 50.929 13.059 1.2726

0.5 370 366.550 3.450 0.932 0.0378

0.6 370 366.387 3.613 0.976 0.0484

0.7 370 366.024 3.976 1.075 0.0654

0.8 360 359.838 0.162 0.045 0.0054

0.9 360 359.838 0.162 0.045 0.0054

1.0 350 349.769 0.231 0.066 0.0077

0.5 430 379.884 50.116 11.655 2.1089

0.6 480 380.004 99.996 20.833 4.9391

0.7 480 380.138 99.862 20.805 4.9441

0.8 480 380.188 99.812 20.794 4.9476

0.9 430 380.068 49.932 11.612 2.1152

1.0 430 379.881 50.119 11.656 2.1486

0.5 360 359.368 0.632 0.176 0.0158

0.6 360 359.368 0.632 0.176 0.0158

0.7 360 359.368 0.632 0.176 0.0158

0.8 360 359.368 0.632 0.176 0.0158

0.9 360 359.368 0.632 0.176 0.0158

1.0 360 359.368 0.632 0.176 0.0158

0.5 360 359.352 0.648 0.180 0.0216

0.6 360 359.352 0.648 0.180 0.0216

0.7 360 359.352 0.648 0.180 0.0216

0.8 360 359.352 0.648 0.180 0.0216

0.9 360 359.352 0.648 0.180 0.0216

1.0 360 359.352 0.648 0.180 0.0216

Recourse Action
Deterministic OPTW

CCP-model

TSOPTW

POPTW - Fixed Penalty
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*

 
* Stopped after 6 hours of calculation time 
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c104

0.5 410 379.012 30.988 7.558 0.9742

0.6 410 378.858 31.142 7.596 0.9779

0.7 410 378.658 31.342 7.644 0.9820

0.8 410 378.271 31.729 7.739 0.9886

0.9 410 377.401 32.599 7.951 0.9980

1.0 410 372.901 37.099 9.049 1.0233

0.5 380 379.076 0.924 0.243 0.0020

0.6 380 379.053 0.947 0.249 0.0028

0.7 380 378.822 1.178 0.310 0.0096

0.8 380 378.409 1.591 0.419 0.0209

0.9 380 376.874 3.126 0.823 0.0560

1.0 370 367.359 2.641 0.714 0.0689

0.5 460 397.051 62.949 13.685 2.1570

0.6 460 397.051 62.949 13.685 2.1570

0.7 460 397.051 62.949 13.685 2.1570

0.8 460 397.050 62.950 13.685 2.1570

0.9 460 397.050 62.950 13.685 2.1570

1.0 460 396.961 63.039 13.704 2.1585

0.5 380 379.079 0.921 0.242 0.0019

0.6 380 379.074 0.926 0.244 0.0021

0.7 380 378.854 1.146 0.302 0.0091

0.8 380 378.412 1.588 0.418 0.0211

0.9 380 376.868 3.132 0.824 0.0562

1.0 380 365.469 14.531 3.824 0.2907

0.5 380 379.043 0.957 0.252 0.0025

0.6 380 379.038 0.962 0.253 0.0027

0.7 380 378.822 1.178 0.310 0.0096

0.8 380 378.389 1.611 0.424 0.0214

0.9 380 376.843 3.157 0.831 0.0566

1.0 380 365.467 14.533 3.824 0.2907
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*

 
* Stopped after 6 hours of calculation time 
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c105

0.5 340 309.008 30.992 9.115 0.6429 0.9069

0.6 340 309.056 30.944 9.101 0.6961 0.9087

0.7 340 308.641 31.359 9.223 0.7495 0.9064

0.8 340 307.783 32.217 9.476 0.8077 0.8989

0.9 340 305.602 34.398 10.117 0.8776 0.8938

1.0 340 299.946 40.054 11.781 1.0027 0.8683

0.5 330 327.982 2.018 0.612 0.0352 0.9497

0.6 330 327.811 2.189 0.663 0.0465 0.9497

0.7 330 327.605 2.395 0.726 0.0591 0.9477

0.8 330 327.141 2.859 0.866 0.0799 0.9459

0.9 330 326.291 3.709 1.124 0.1129 0.9438

1.0 300 300.000 0.000 0.000 0.0000 0.8683

0.5 420 328.662 91.338 21.747 4.9948 0.9521

0.6 420 328.690 91.310 21.740 4.9973 0.9533

0.7 420 328.728 91.272 21.731 4.9986 0.9521

0.8 460 329.224 130.776 28.430 6.0589 0.9596

0.9 460 329.358 130.642 28.400 6.0510 0.9561

1.0 430 326.234 103.766 24.132 6.0212 0.9427

0.5 330 327.982 2.018 0.612 0.0352 0.9497

0.6 330 327.811 2.189 0.663 0.0465 0.9497

0.7 330 327.605 2.395 0.726 0.0591 0.9477

0.8 330 327.141 2.859 0.866 0.0799 0.9459

0.9 330 326.291 3.709 1.124 0.1129 0.9438

1.0 330 321.200 8.800 2.667 0.2673 0.9330

0.5 320 319.777 0.223 0.070 0.0011 0.9261

0.6 320 319.741 0.259 0.081 0.0022 0.9261

0.7 320 319.694 0.306 0.096 0.0044 0.9250

0.8 320 319.547 0.453 0.142 0.0092 0.9250

0.9 320 319.295 0.705 0.220 0.0170 0.9202

1.0 320 316.567 3.433 1.073 0.0872 0.9108
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c106

0.5 340 321.621 18.379 5.406 0.4806 0.9147

0.6 340 321.135 18.865 5.549 0.5255 0.9125

0.7 340 320.177 19.823 5.830 0.5744 0.9114

0.8 340 318.321 21.679 6.376 0.6331 0.9088

0.9 340 315.378 24.622 7.242 0.7091 0.9037

1.0 340 306.690 33.310 9.797 0.8805 0.8767

0.5 330 328.182 1.818 0.551 0.0614 0.9299

0.6 330 327.999 2.001 0.606 0.0749 0.9293

0.7 330 327.766 2.234 0.677 0.0919 0.9287

0.8 330 327.361 2.639 0.800 0.1183 0.9270

0.9 320 319.702 0.298 0.093 0.0086 0.9050

1.0 300 299.803 0.197 0.066 0.0115 0.8495

0.5 380 331.956 48.044 12.643 2.1182 0.9476

0.6 380 332.565 47.435 12.483 2.1284 0.9468

0.7 380 332.622 47.378 12.468 2.1419 0.9489

0.8 380 332.613 47.387 12.470 2.0789 0.9461

0.9 380 331.904 48.096 12.657 2.0762 0.9447

1.0 380 327.662 52.338 13.773 2.0743 0.9351

0.5 330 328.182 1.818 0.551 0.0614 0.9299

0.6 330 327.999 2.001 0.606 0.0749 0.9293

0.7 330 327.766 2.234 0.677 0.0919 0.9287

0.8 330 327.361 2.639 0.800 0.1183 0.9270

0.9 330 326.684 3.316 1.005 0.1552 0.9248

1.0 330 323.432 6.568 1.990 0.2948 0.9160

0.5 320 319.747 0.253 0.079 0.0088 0.9061

0.6 320 319.716 0.284 0.089 0.0098 0.9052

0.7 320 319.682 0.318 0.099 0.0112 0.9052

0.8 320 319.641 0.359 0.112 0.0128 0.9052

0.9 320 319.498 0.502 0.157 0.0171 0.9033

1.0 320 318.189 1.811 0.566 0.0533 0.8956
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c108

0.5 370 335.493 34.507 9.326 0.8354

0.6 370 336.023 33.977 9.183 0.8344

0.7 370 336.093 33.907 9.164 0.8343

0.8 370 335.577 34.423 9.304 0.8356

0.9 370 334.340 35.660 9.638 0.8351

1.0 370 328.757 41.243 11.147 0.8547

0.5 350 348.776 1.224 0.350 0.0165

0.6 350 348.754 1.246 0.356 0.0161

0.7 350 348.294 1.706 0.487 0.0315

0.8 350 348.173 1.827 0.522 0.0319

0.9 350 347.031 2.969 0.848 0.0576

1.0 330 329.983 0.017 0.005 0.0006

0.5 410 353.185 56.815 13.857 2.8633

0.6 410 353.431 56.569 13.797 2.8690

0.7 410 353.477 56.523 13.786 2.8752

0.8 410 353.481 56.519 13.785 2.8513

0.9 410 353.059 56.941 13.888 2.8499

1.0 500 348.384 151.616 30.323 5.9445

0.5 350 348.838 1.162 0.332 0.0134

0.6 350 348.754 1.246 0.356 0.0161

0.7 350 348.562 1.438 0.411 0.0213

0.8 350 348.173 1.827 0.522 0.0319

0.9 350 347.031 2.969 0.848 0.0576

1.0 350 335.802 14.198 4.057 0.2857

0.5 350 348.776 1.224 0.350 0.0165

0.6 350 348.688 1.312 0.375 0.0194

0.7 350 348.490 1.510 0.431 0.0249

0.8 350 348.104 1.896 0.542 0.0354

0.9 350 346.959 3.041 0.869 0.0612

1.0 350 335.766 14.234 4.067 0.2875
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c109

0.5 380 360.186 19.814 5.214 0.7473

0.6 380 360.343 19.657 5.173 0.7473

0.7 380 360.401 19.599 5.158 0.7473

0.8 380 360.419 19.581 5.153 0.7473

0.9 380 359.720 20.280 5.337 0.7708

1.0 380 355.943 24.057 6.331 0.8902

0.5 370 366.678 3.322 0.898 0.0774

0.6 370 366.461 3.539 0.956 0.0911

0.7 370 366.042 3.958 1.070 0.1123

0.8 370 365.432 4.568 1.235 0.1381

0.9 370 364.223 5.777 1.561 0.1829

1.0 360 358.159 1.841 0.511 0.0503

0.5 400 372.517 27.483 6.871 1.7347

0.6 400 372.558 27.442 6.861 1.7350

0.7 450 372.732 77.268 17.171 3.7094

0.8 450 372.821 77.179 17.151 3.7082

0.9 450 372.640 77.360 17.191 3.7058

1.0 450 370.000 80.000 17.778 3.7398

0.5 370 366.052 3.948 1.067 0.0796

0.6 370 365.960 4.040 1.092 0.0947

0.7 370 365.736 4.264 1.152 0.1142

0.8 370 365.270 4.730 1.278 0.1380

0.9 370 364.223 5.777 1.561 0.1829

1.0 370 359.564 10.436 2.821 0.3366

0.5 360 359.597 0.403 0.112 0.0055

0.6 360 359.571 0.429 0.119 0.0069

0.7 360 359.533 0.467 0.130 0.0091

0.8 360 359.438 0.562 0.156 0.0130

0.9 360 359.180 0.820 0.228 0.0211

1.0 360 357.308 2.692 0.748 0.0713
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Table A.1: The results of the test instance for different methods combined with the recourse action. 
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c101

OPTW 320 283.572 36.428 11.384 0.0028 0.8689

CCP-model 310 307.084 2.916 0.941 0.0000 0.9482

TSOPTW 420 192.524 227.476 54.161 5.1970 0.5942

Fixed Penalty 310 307.084 2.916 0.941 0.0000 0.9482

Smooth Penalty 300 298.800 1.200 0.400 0.0000 0.9235

c102

OPTW 360 324.288 35.712 9.920 0.8471 -

CCP-model 340 329.329 10.671 3.139 0.0006 -

TSOPTW 380 335.680 44.320 11.663 2.6829 -

Fixed Penalty 340 332.107 7.893 2.321 0.0139 -

Smooth Penalty 330 329.597 0.403 0.122 0.0188 -

c104

OPTW 410 377.948 32.052 7.818 0.9964 -

CCP-model 380 379.087 0.913 0.240 0.0016 -

TSOPTW 460 377.540 82.460 17.926 2.8115 -

Fixed Penalty 380 379.078 0.922 0.243 0.0019 -

Smooth Penalty 380 379.075 0.925 0.243 0.0015 -

c106

OPTW 340 310.550 29.450 8.662 0.3622 0.8896

CCP-model 330 328.399 1.601 0.485 0.0017 0.9310

TSOPTW 380 268.172 111.828 29.428 2.1735 0.7648

Fixed Penalty 330 328.399 1.601 0.485 0.0017 0.9310

Smooth Penalty 320 319.775 0.225 0.070 0.0059 0.9061

c107

OPTW 370 298.438 71.562 19.341 0.6826 -

CCP-model 350 348.074 1.926 0.550 0.0062 -

TSOPTW 380 333.999 46.001 12.106 1.8212 -

Fixed Penalty 350 348.074 1.926 0.550 0.0062 -

Smooth Penalty 350 348.069 1.931 0.552 0.0088 -
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c108

OPTW 370 296.699 73.301 19.811 0.7520 -

CCP-model 350 348.951 1.049 0.300 0.0081 -

TSOPTW 410 317.656 92.344 22.523 2.5558 -

Fixed Penalty 350 349.003 0.997 0.285 0.0056 -

Smooth Penalty 350 348.951 1.049 0.300 0.0081 -

c109

OPTW 380 353.099 26.901 7.079 0.8722 -

CCP-model 370 366.282 3.718 1.005 0.0418 -

TSOPTW 400 369.506 30.494 7.624 1.8798 -

Fixed Penalty 370 365.425 4.575 1.236 0.0057 -

Smooth Penalty 360 359.554 0.446 0.124 0.0038 -

Method
Planned 

profit

Realized 

profit

Absolute 

Gap

Percentage 

Gap

# of skipped 

targets

% of the 

PCI

Alternative Recourse Action

Method
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profit
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profit

Absolute 

Gap

Percentage 

Gap
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Table A.2: The results of the test instances for different methods combined with the alternative 

recourse action. 
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