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Abstract

In military operations Unmanned Aerial Vehicles (UAVs) are used for reconnaissance of target
locations in the area of operations. These target locations each have their own priority. In this thesis
the UAV-Mission Planning Problem (UAV-MPP) is addressed where the fuel usage of the flight
between each pair of targets is known a priori only probabilistically and the information about the
target locations can only be obtained within their assigned time window. The goal is to maximize the
total gathered information value during a flight which is restricted by the fuel capacity of the UAV.
This problem can be modeled by the Stochastic Orienteering Problem with Time Windows (SOPTW),
which is both practically and theoretically relevant.

To solve this problem, two different approaches are presented. The first approach constructs an
initial tour before the flight which is adjusted to the realized fuel usages during the flight. To
construct an initial tour, different stochastic programming models are used including three variants
of a chance constrained programming model and two variants of a recourse model. The second
approach is a One-Step-Ahead Routing (OSAR) approach in which the next location is determined
after recording the previous. A case study is performed to evaluate and compare the presented
methods.
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Part ]

Background

In this first part we will introduce the problem addressed in this
thesis and we will discuss both the military and the scientific
background of the problem. In Chapter 1 the practical and theoretical
relevance of the UAV mission planning problem with time windows
and stochastic fuel consumption is discussed. After that, we will give
a formal description of the problem in Chapter 2. In Chapter 3 we will
review the found literature about problems related to our research.






1. Introduction

During military operations, Unmanned Aerial Vehicles (UAVs) are used for reconnaissance, especially
when it is too dangerous for a manned aircraft. The flight of a UAV can be partly controlled by
computers on board or remotely by an operator on the ground or in another vehicle. The technology
in the scout vehicles is able to capture both full motion videos and still imagery of valuable targets in
the area of operations. Each target in the area has its own given information value. It is therefore
necessary to create a route before the flight, taking into account all restrictions such as fuel capacity
and time windows of the targets. Since it is unlikely that a UAV can visit all targets in one flight, a
tour which visits only a subset of targets, should be planned. The main objective of this tour is to
maximize the total gathered reward from the planned targets. Therefore, UAV-mission planning can
be seen as an optimization problem. The value of the parameters can be deterministic and therefore
known beforehand or parameters can be random variables that follow a certain probability
distribution. In that case, their values are known a priori only probabilistically.

The basic UAV-mission planning problem (UAV-MPP), where all parameters are assumed to be
known, can be modeled like an Orienteering Problem (OP), according to Evers et al. [1]. The name of
this problem comes from the family of sports, orienteering, as mentioned by Chao et al. in [2].
Players of such a game have to visit as much as possible control points and go back to the start
location within a certain time frame. To navigate in the rough terrain, they have a compass and a
map. Each of the control posts has an associated score and the player who gathered the most points,
is the winner of the game.

The OP can be seen as a combination between two widely known combinatorial optimization
problems, the Knapsack Problem (KP) and the Travelling Salesman Problem (TSP). It can also be seen
as a generalization of the TSP, where it is not necessary to visit all vertices during the tour.

In the following part of this section we will discuss four practical elements which results in four
variants of the basic UAV-MPP.

First of all, due to several circumstances during the flight, the realized fuel consumption of a UAV is
not fixed in reality. For instance, the wind direction during a UAV-mission can affect the fuel
consumption. Flying headwind will be more costly, while flying downwind will be less consuming,
which means that the fuel usage on an arc can fluctuate. Since the wind direction is quite predictable
in advance, this can be used in the planning of the tour. Sudden changes in the wind direction are
unfortunately not predictable. It is therefore necessary to model the fuel consumption with a
probability distribution, in order to consider both positive and negative unforeseen events. Since the
fuel consumption is not deterministic anymore, but a random variable, the problem is stochastic.
Therefore, we will refer to this variant as the Stochastic Orienteering Problem (SOP).

Through telephone tabs, social media and other intelligence, sometimes more information about the
targets is available. When this is additional information about the time of the activity at a target, this
can be modeled like a time window. A time window is given by an earliest and a latest time a target
can be visited. Outside this time window, there is less or no information at that particular target and
thus the reward of the target is less or nothing. It is referred to as ‘time-sensitive-targeting’. An
example of a realistic situation in a UAV-mission is that the operators have picked up some
information about a possible meeting of a suspicious group of people. This meeting will probably



take place between half past three and half past four. To get more information about this meeting,
the UAV has to record this target within the given time window. Before and after this time window,
there is less or possibly no useful information at this target and therefore recording in those
moments can be not valuable. Because time windows are introduced, the optimization of the UAV-
MPP becomes more difficult. Therefore, (meta-)heuristics are often used to solve this extension of
the problem, which can be modeled by the Orienteering Problem with Time Windows (OPTW).

In the case of large missions, there is a possibility to do a UAV-mission with multiple vehicles. All of
these vehicles have their own route and visit their own group of targets. Since it is not possible to
earn a reward of a target twice, it is advisable to visit each target only once. The Team Orienteering
Problem (TOP) can be used to model this extension of the UAV-MPP.

The last extension of the basic problem is the online version of the UAV-MPP. This means that there
is a changing set of targets. Targets in the area may appear or disappear during the flight. When new
target information comes available, the tour of the UAV has to be reoptimized. At the moment,
there is less literature available about the Online Orienteering Problem (OOP), but the research on
this problem is in progress.

In this thesis, a combination of these four extensions is investigated. We will focus on the UAV-
mission planning problem with time windows and stochastic fuel consumption. Note that fuel
consumption in our research is a measure for time. All travel costs and time windows are given in
fuel units. This variant can be modeled by the Stochastic Orienteering Problem with Time Windows
(SOPTW). To the best of our knowledge, no research is available on this problem. In UAV mission
planning, this variant is certainly practically relevant as we discussed before.

Theoretically this problem is relevant as well, since proposed methods for the SOP cannot be used
for the SOP with time windows. In these methods, time windows are not considered and therefore
applying these algorithms can violate the time window constraint. However, solution approaches
for a variant of the OP with time windows can be used for the same variant without time windows.
Furthermore, due to the stochasticity of the fuel consumption, deterministic solution approaches of
the OPTW cannot be used for the SOPTW. By planning an initial tour, the uncertainty in the
parameters is not taken into account. This can result in violated time windows and an exceeded fuel
limit during the flight. Since an approximation for the distribution of the fuel consumption can be
made, it is useful to consider this information in an a priori planning.

To solve the UAV-MPP with time windows and stochastic fuel consumption, there are different
approaches. We will discuss the two most widely used.

In the first approach the problem is divided into two parts. The offline problem is the part before the
flight. During this part, an initial tour is constructed. This can be done either exactly or heuristically.
All a priori known information, such as time windows and probability distribution functions of the
fuel consumption, is included in these calculations. Since the targets are known in advance, a large
amount of computation time is available. It is therefore not a problem if creating such a tour takes
several hours.

During the flight, information about the realized values of the fuel consumption comes available. It
could be necessary to adjust the initial tour, due to disappointing realizations caused by poor flight
conditions. Sometimes, especially when the circumstances are comfortable to flight, it is possible to
visit more targets than planned in the initial tour. Also in that case, a new tour has to be created.
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This problem is called the online part of the UAV-MPP. The calculations in this part have to be done
very quickly, since the computation time in real-time situations is limited. It is therefore necessary to
implement a fast, but effective heuristic.

This approach is commonly used in research for routing problems where new targets may appear
during the flight. Every time a new target appears the initial tour is reoptimized, like is done by Lorini
etal. [3].

Another approach is to determine only the next target to visit in the tour. This can be done by
constructing a new complete tour at the moment of departing a target. Just only the first target of
this tour is considered. The advantage of this method is that the whole area is taken into account.
Another method is to consider only the neighborhood of the current target and select one of the
unvisited targets in this area.

Since the calculations in this approach have to be done during the flight and therefore very quickly,
like during the online part of the first approach, it is possible to use the same methods. The main
difference is that in this second approach reoptimizing takes place after recording just one target,
while for the online part of the first approach a strategy is selected when the tour should be
reoptimized. This strategy could be reoptimized after recording just one or two targets, but also
construct a new tour only three times during the flight.

In the literature this approach is mostly used for problems with time-dependent or stochastic travel
times, e.g. costs, such as done by Garcia et al. in [4] and by Gao and Huang in [5].

The goal of this thesis is to construct and implement several methods, both exactly and heuristically,
for the discussed approaches of the UAV-mission planning problem with time windows and
stochastic fuel consumption. To test the different methods, a case study is done. A Monte-Carlo
simulation is used for each of the several datasets. The empirical results of this case study are
summarized using some quality measures.

This thesis is organized as follows. In the rest of this part, the background of the problem is further
investigated. In the second part of this thesis several methods for solving the offline problem are
proposed, while in the third part some strategies for the real-time adaptive routing are presented.
The case study, which is executed to test and compare the different proposed approaches, and its
results are discussed in Part IV. We will end up in Part V with a conclusion and some outlines for
further research.
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2. Problem description

In this chapter we will give a formal description of the problem.

In the SOPTW, N represents a given set of targets. The starting point is denoted by vertex s and the
ending point by vertex t. For notational convenience, set V is defined as N U {s} U {t} and |V| as its
cardinality. In the case of UAV-missions the start and end point coincide and this is the depot, most
of the time. Each target i € V has a given information (profit) value p;. The value of the start and
end point is equal to zero. A time window [Ej, L;] is assigned to each target. Recording of a target is
only possible within its time window. We assume that the time windows of all targets are hard,
which means that before the earliest time E; and after the latest time L; the information value is
equal to zero. When the vehicle arrives too early at a target, there is the possibility to wait until the
target is ‘open’, which means that recording is possible.

The given set A contains the flight paths (i,j) between each pair of locations in V, where i # j.
There are no arcs terminating in vertex s and no arcs originating from vertex t. The fuel consumption
on arc (i,j) € A, denoted by f;;, is the fuel usage needed both to travel from location i to location j
and to gather information at location j. Note that recording is unnecessary and therefore excluded if
location j is the end point. These parameters are assumed to be random variables that follow a
certain probability distribution. Their values are known a priori only probabilistically. Since the fuel
capacity of a UAV is limited by a given amount of fuel F, it is possible that not all targets can be
recorded. In the SOPTW a tour is determined which maximizes the total expected collected
information, from the starting point, passing along a subset of targets, to the end point, taking into
account the fuel uncertainty. The methods to solve the SOPTW, discussed in this thesis, handle the
fuel capacity and the time windows for the targets differently.

The SOPTW can also be seen as a graph, G = (V, A), where V is the vertex set and A is the arc set. In
this definition an information value p; and a time window [E}, L;] are associated with each vertex
i €V and a probabilistic fuel consumption f;; with each arc (i,j) € A. To solve the SOPTW, a
Hamiltonian path G’ € G over a subset of V/, with a fixed start s and end point t, has to be
determined, in order to maximize the total expected gathered information value. For this
optimization process the fuel uncertainty and limitations on the total fuel usage on this path and the
departure time of the vehicle from each target should be taken into account.
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3. Literature review

In this chapter we will review the available literature about the problems which are related to our
research. For all of the discussed problems we will describe the differences to our research and the
difficulties in implementing the proposed methods.

3.1 The Orienteering Problem

Since the introduction of the Orienteering Problem (OP) by Tsiligrides in [6], a lot of research is done
on this problem. Several exact, meta-heuristic and heuristic approaches have been proposed. During
the first years, research on the OP was focused on finding new solution methods as found by
Tsiligrides [6] and Golden et al. [7]. Later on, extensions of the basic problem were introduced, such
as the Orienteering Problem with Time Windows (OPTW) by Kantor and Rosenwein [8], the Team
Orienteering Problem (TOP) by Chao et al. [2] and the combination of these two, the Team
Orienteering Problem with Time Windows (TOPTW) by Vansteenwegen et al. [9]. These are all
deterministic variants of the OP. In such variants the travel time between two targets is assumed to
be fixed and therefore fluctuations are not taken into account. As we already mentioned in the
introduction, the application of solution approaches for these extensions to our problem, carries the
risk that time windows will be violated or the UAV is running out of fuel under disappointing
circumstances. When using these methods in our research, at least a worst scenario control has to
be provided. A detailed overview of these variants of the OP can be found in the survey of
Vansteenwegen et al. [10].

The last few years another extension of the OP has been investigated, the Stochastic Orienteering
Problem (SOP). In this variant, the deterministic travel and service times between two targets are
replaced by random variables, which follow a certain probability distribution. These times, and
therefore the travelling costs, are known a priori only probabilistically. For the OP related problems,
this is first introduced and solved by Teng et al. [11], who present the Time-Constrained Traveling
Salesman Problem with Stochastic Travel and Service Times (TCTSP). Their model is limited to
discrete travel and service time distributions. Another related problem is the Stochastic Selective
Travelling Salesperson Problem (SSTSP), introduced by Tang and Miller-Hooks in [12]. In the SSTSP,
the travel and service times are stochastic and the authors propose both exact and heuristic
methods for solving the SSTSP. Campbell et al. [13] present the Orienteering Problem with Stochastic
Travel and Service Times (OPSTS). In this paper, for some special cases, a dynamic programming
model is used for solving the OPSTS exactly. Since the running time for this model grows
exponentially with the number of nodes, they suggest a variable neighborhood search heuristic
(VNS) to solve the larger and more realistic cases. Other methods to handle the uncertainty are
Robust Planning, applied to the OP by Evers et al. [1], and Stochastic Programming. For that, the
Two-Stage Orienteering Problem (TSOP) is presented by Evers et al. [14]. In their paper, they
compare the Robust Orienteering Problem (ROP) with the TSOP.

Since time windows are not considered in the SOP, the discussed methods cannot be used directly in
our research. For the most of these methods, adjusting is difficult or impossible. However, a VNS
heuristic can be adapted to our problem relatively easily, since there are route improving heuristics
for routing problems with time windows available in literature, such as presented by Potvin and
Rousseau [15].
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To the best of our knowledge, there is no research available about the Stochastic Orienteering
Problem with Time Windows (SOPTW). This extension of the OP contains both stochastic travel
times and a time window for each target. As there are many practical situations, e.g. UAV mission
planning, where this modeling is more realistic than the deterministic variant, it is interesting to
investigate this problem. It is therefore necessary to analyze the available literature on related
problems.

Closely related to the SOP is the Time-dependent Orienteering Problem (TDOP), which is introduced
by Fomin and Lingas in [16]. In this problem, the travel and service times are dependent of the time
of departure. Therefore, the travel times can be described with an explicit function which is known
in advance. The authors of this article give a detailed proof of the accuracy of their greedy heuristic.
An application of the TDOP in the field of discrete manufacturing is given by Wang and Tang [17].
This paper considers a hybrid meta-heuristic for the prize-collecting single machine scheduling
problem with sequence-dependent setup times. Del Bimbo and Pernici [18] describe another
application of the TDOP. They use it to optimize the saccades planning for distant target
identification. Recently, Li et al. [19] proposed a mathematical model and an exact algorithm to solve
the TDOP.

Also for this basic problem extensions are introduced. For multiple parallel tours, the Time-
dependent Team Orienteering Problem (TDTOP) is presented by Li in [20]. The Time-dependent
Orienteering Problem with Time Windows (TDOPTW), which is introduced by Garcia et al. [4], is
useful for tourists to plan a tour for one day in a city with a lot of Points Of Interest (POls). Tourists
can choose to travel between POIs by public transportation or on foot. In this paper, a hybrid
approach, which combines an Iterated Local Search (ILS) with a precalculated average travel time
matrix, is used for real-time route planning. When a tourist stays for several days in the city it is
necessary, according to Garcia et al. [21], to solve a Time-dependent Team Orienteering Problem
with Time Windows (TDTOPTW).

In contrast to our problem, the TDOP and its variants are deterministic problems, because all
parameters are known in advance. These problems can be solved exactly or heuristically. Some
proposed heuristic methods, such as the Hybrid Approach, presented by Garcia et al. [4], can also be
applied to the SOPTW, since this method uses only the average travel time between two targets.

3.2 The Vehicle Routing Problem

Also Vehicle Routing Problems (VRPs) are related to the (Team) Orienteering Problem. A VRP can be
seen as a TOP with two extra constraints. First of all, all targets must be visited by a vehicle.
Secondly, each vehicle has a fixed capacity. Besides that, the objectives of the two problems are also
different. The main goal of the OP is to maximize the total reward, while that of the VRP is to
minimize the total number of vehicles or the total number of kilometers. A lot of research on the
VRP and its extensions is done. In this literature review only the extensions which are closely related
to the SOPTW are discussed.

The Vehicle Routing Problem with Time Windows (VRPTW) is introduced by Baker in [22].
Thereafter, a large number of exact and (meta-)heuristic solution approaches are proposed, e.g. by
Desrosiers et al. [23] and Solomon [24]. The issue with this deterministic problem is the same as with
the (T)OPTW, since in both the travel times are fixed. Therefore, most of the solution approaches for
this problem cannot be applied to the SOPTW. An interested reader can refer to the overview of El-
Sherbeny [25].
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Another related extension of the VRP is the Stochastic Vehicle Routing Problem (SVRP), first studied
by Laporte et al. in [26]. This problem consists of the planning of optimal vehicle routes with
probabilistic travel and service times. In the found literature, several methods are used to solve this
problem. Chance-constrained programming (CCP) is an often used method. Laporte et al. [26] are
the first who implement an L-Shaped algorithm to successfully solve the CCP-formulation of the
SVRP. Creating a modeling scheme based on queuing theory, as has been done by Woensel et al. in
[27], is another way to solve the SVRP. Travellers’ equilibrium is used by Connors and Sumalee [28]
to study the stochasticity of the travel times. Since in this stochastic VRP time windows are not
considered, like in the SOP, application of the proposed methods for the SVRP is very hard.
Therefore, it could be more useful to analyze the presented solution approaches for the SVRP with
time windows.

The Stochastic Vehicle Routing Problem with Time Windows (SVRPTW) has been introduced more
recently. Wong et al. [29] propose a two-stage stochastic integer program with recourse for this
problem. In their paper, only discrete random distributed travel times are taken into account. To
handle all probability distributions, Ando and Taniguchi [30] use in their case study a Genetic
Algorithm (GA) to solve the problem. Also Gao [31] uses a GA to solve the CCP-formulation of the
SVRPTW. In order to accelerate the solution process, Li et al. [32] present a Tabu Search-based
heuristic. In these last four referred articles, the time windows are assumed to be hard, which means
that a location can only be visited within its time window. In the found literature, there are also
researchers who assume that in time windows in the SVRPTW are soft. By incurring a penalty, a
location can be visited outside its time window. These penalties are developed using a fixed cost, a
linear cost and sometimes a quadratic loss penalty. This Stochastic Vehicle Routing Problem with
Soft Time Windows (SVRPSTW) can be found by Hsu et al. in [33], by Russell and Urban in [34] and by
Tas et al. in [35].

Presented solution approaches for the SVRPTW, such as Chance-constrained Programming by Li et
al. [32], can be adapted to the SOPTW relatively easily. In the following chapter we will present a
CCP-formulation for the SOPTW, based on these adjustments.
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Part 11

The offline problem

In the second part of this thesis we will discuss the offline part of the
UAV-MPP with time windows and stochastic fuel consumption,
where an initial tour is constructed taking into account the
stochasticity of the fuel consumption. In the first two chapters of this
part we will introduce some different approaches to create an initial
tour. In Chapter 4 a chance-constrained programming model for the
SOPTW is presented, while in Chapter 5 two stochastic programming
models with recourse are introduced. In Chapter 6 we will discuss
some solution methods for the introduced models.
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4. Chance-Constrained Programming

In this chapter we will discuss how Chance-Constrained Programming (CCP) can be used to create an
initial tour. First, we will give a mathematical formulation for the deterministic OPTW. After that, a
CCP-formulation is presented. Finally, we will introduce a quadratically constrained programming
reformulation of the model.

4.1 Deterministic Orienteering Problem with Time Windows

As discussed in Chapter 2, in the SOPTW the fuel consumption on a flight path between two
locations is not fixed, but a random variable that follows a certain probability distribution. Since the
value of these parameters is known a priori only probabilistically, this is a stochastic problem. When
the fuel consumption is assumed to be fixed and known in advance, the problem is deterministic. To
start our research on the SOPTW, it will be useful to consider first a mathematical formulation for
the deterministic OPTW. Therefore we present a formulation of the OPTW making use of the
notation introduced in Chapter 2. As previously mentioned, the only difference is that the fuel
consumption fl-j is no longer stochastic, but deterministic in this case.

To formulate a Mixed Integer Programming (MIP) for the OPTW, the following decision variables are
defined. First of all, x; =1, if target i is visited on the tour and O otherwise. Decision variables
yij =1, if target j is visited right after target i, this means that the flight path from target i to target
j is selected in the tour and 0 otherwise. Finally, d; is the departure time of the vehicle, e.g. the UAV,
after recording target i. The MIP formulation of the OPTW (P4.1) is the following:

(P4.1) maprixi (4.1)
IEN
subject to Z Yij = X; Vi € V\{t} (4.2)
{j:(i.j)eA}
{i:(i,j)e4}
Z fijyij < F (4.4)
(iL,))€EA
di—di+fi; < (1—y;)F v(i,j) EA (4.5)
Eixi < di < Lixl- VieVv (46)
x; €{0,1} VieV 4.7)
yi; €{0,1} v(i,j)EA (4.8)
d; =0 Viev (4.9)

The Objective function (4.1) maximizes the total gathered information value. Constraint sets (4.2)
and (4.3) guarantee that the tour is connected and each target is visited at most once. Constraint
(4.4) limits the total fuel consumption. Constraint set (4.5) excludes sub tours and defines the
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departure times. Constraint set (4.6) restricts the end of the recording to the time window. Note
that the departure time can be equal to the earliest time, since the fuel consumption f;; includes the
fuel usage during the recording of target j. It is therefore necessary to define E; as the earliest time
a target can be left after recording.

The possibility to wait until a target is ‘open’ is not explicitly modeled in this formulation, but it is
implicitly possible by Constraint set (4.5). This constraint set requires that when the flight path from
target i to target j is selected in the tour, the difference between the departure times of these
targets has to be larger or equal to the fuel consumption on this path. Since this difference could be
larger than the fuel used both during the flight from target i to target j and during the recording of
target j, it is possible to wait until the reached target is ‘open’. The fuel consumption during this
waiting time is not included in the total fuel usage calculated in Constraint (4.4). However, this extra
fuel usage while waiting at a target, is included in the definition of the departure times of the next
targets in the tour and therefore also in the arrival time at the end point t by Constraint set (4.5). By
setting the latest time of the end point t equal to the fuel capacity of the vehicle, the total amount
of fuel used during flying, waiting and recording should be less than or equal to the fuel capacity F
by Constraint set (4.6). Note that it is also possible to wait longer than strictly necessary. Since
spending fuel for additional waiting yields nothing, the amount of fuel that is used for waiting will be
minimized in the optimal solution.

4.2 Chance-Constrained programming formulation

Due to the stochastic fuel consumption, it is not possible to use the MIP-formulation of the OPTW,
presented in Section 4.1, for the SOPTW. To formulate a deterministic mathematical model for
stochastic problems such as the SOPTW, stochastic programming is introduced in literature. There
are several different approaches in this spectrum, but for routing problems chance-constrained
programming is one of the most commonly used methods. As we have seen in our literature review
in Chapter 3, Laporte et al. [26] have used CCP to solve the SVRP and Gao [31] and Li et al. [32] for
the SVRPTW. Chance-constrained programming is introduced by Charnes and Cooper in [36]. The
main idea of this approach is to maximize the objective subject to both deterministic constraints and
stochastic constraints which must be satisfied with prescribed levels of probability.

Taking the stochastic fuel consumption into account, Constraint (4.4) and Constraint set (4.6) of
(P4.1) will be stochastic constraints and we will therefore model them by a chance constraint. These
chance constraints are based on Li et al. [32]. Since Li et al. study the SVRPTW, some adjustments
are required to fit the SOPTW that we are addressing.

Considering Constraint (4.4), the fuel usage during the flight will be a variable sum of random
numbers. In real-world situations, a UAV has a fixed fuel capacity, which cannot be exceeded. In the
corresponding chance constraint, the total fuel consumption may exceed the fuel capacity F with a
certain probability. Note that when this threshold is less than 1, adjusting the tour during the flight
could be necessary. The chance constraint according to Constraint (4.4) is

P Z fijyij <F; >za (Cll)
(i.j)eA
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where P is the probability measure and « is the threshold. This constraint implies that the total fuel
usage during the flight may exceed the capacity of the UAV with a probability less than 1 — a. A
lower value of @ means that adjusting during the flight is required with a higher probability. Since a
chance constraint is based on a linear constraint from the deterministic model, it is reasonable that
this threshold is about 0.8 or higher and consequently the probability to meet the corresponding
deterministic constraint will be large.

Secondly, we consider the probability of departing from a target outside its time windows. One way
to formulate a chance constraint with respect to the time windows is by defining a confidence level
B by which all targets are to be recorded within their time windows. A higher value of § indicates
that the route has a lower probability of causing additional waiting time or missing time windows. As
Chance constraint (C1) this chance constraint is based on a deterministic constraint set and
therefore it is reasonable that threshold 8 is also about 0.8 or higher.

The following chance constraint set is introduced for the time windows of each target:

P{Eixi < di < Lixi} > ,8 VieN (CZ)

Due to Constraint set (4.5) of (P4.1), the value of d; depends on the stochastic fuel consumption
both during the flight and during the recording of the targets. Therefore, d; is a random variable.

Another possibility to formulate a chance constraint set for the time windows is to consider only a
hard deadline, i.e. the UAV only has to depart from a target before the latest time with a probability
§. The earliest time of the time window is used to restrict the waiting time. The probability that the
UAV arrives before the earliest time and has to wait until the target is ‘open’ and recording is
possible, has to be smaller than 1 —y. The lower value of y means that the UAV has a smaller
probability of waiting. The corresponding Chance constraint set (C3) can be written as

C3.1
VieN ( )

{P(di =Ex;) =y
S (C3.2)

)=
P(dl < Lixi) =

Note that when both Set (C3.1) and (C3.2) are considered, the probability that the UAV arrives and
departs within the time windows, which is modeled by £ in (C2), is equal to y + § — 1. The main
difference between (C2) and (C3) is that the probabilities of waiting on the opening of a target y and
missing a target § are fixed in Set (C3) and can vary in Set (C2), since only the sum minus one is fixed
by B. To ensure that the probability a target is departed within its time window is sufficiently larger,
both ¥ and § should be about 0.8 or higher.

When only the second set of chance constraints is taken into account, the problem should called
Stochastic Orienteering Problem with Deadlines (SOPD), based on literature [37]. In this problem to
each target only a latest time is assigned for which the recording should take place. There is still no
literature available about this problem, but the models discussed in this thesis can be relatively
easily adapted to the SOPD by removing the earliest time constraint or waiting time constraints.

"The numbering of the constraints and equations in this chapter is organized as follows:

- The number of linear constraints starts with the number of the chapter, followed by a serial number

- The number of chance constraints starts with a C, followed by a serial number.

- The number of quadratic constraints starts with a Q, followed by the same serial number as the corresponding chance
constraint.

- Equations starting with an R are auxiliary equations for the rewriting of the chance constraints to quadratic constraints.
The serial number of these equations begins with the same number as the corresponding chance constraint, followed
by its own serial number.
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4.3 Quadratically constrained programming reformulation

To rewrite the CCP-formulation of the SOPTW to a quadratically constrained program, an
assumption about the probability distribution of the fuel consumption on each arc has to be made.
We assume that the fuel usage on the arc between target i and target j is normally distributed, thus
fij ~N(uij, aizj). Furthermore, the fuel consumption on different arcs is assumed to be
independently. Since predicted deviations such as weather and wind forecasts are already included
in the expected value of f;;, only unforeseen circumstances which occur randomly will affect the fuel
consumption. Based on this assumption, the chance constraint sets of previous section can be
rewritten to their deterministic equivalent.

4.3.1 Fuel Constraint
Starting at Chance constraint (C1),

P z fijyij <F >
(L.j)eA

with f;; ~N(,ul-]-, aizj) and a is the threshold. This can be rewritten as
P{T<F}=>a (R1.1)

where T is the total fuel consumption during the flight, thus T = ¥(; jea fi;¥ij- Since the sum of
independent normally distributed random numbers is also normally distributed with its mean equal
to the sum of the means and its variance equal to the sum of the variances,
T ~N(Z (i jyeatijVij » Lijyea 0Yij)- Based on the characteristics of the normal distribution, (R1.1)
is equivalent to

F —
P{Z < ”T} > a (R1.2)
or

where Z is a standard normally distributed variable, ur = X j)ea ti;jyij and op = ’Z(i,j)eA al-zjyl-j.

Given the properties of a standard normally distributed variable, (R1.2) can be rewritten as

F—pur
ar

> 7Z(a) (R1.3)

where Z(a) is the z-score corresponding to the a-percentile. This value is given when « is known.
Note that Equation (R1.3) is therefore deterministic and can also be written as

F—ur =2 Z(a)or (R1.4)

which is equivalent to

F— Z Kijyij = Z(a) Z olyij (R1.5)
(i,j)eA (i,j)ea
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This is a deterministic, but non-linear constraint, since the square root of a variable is a non-linear
operation. Equation (R1.5) can be reformulated as a quadratic constraint by squaring both sides.
Consequently, Chance constraint (C1) can be rewritten as

2

F— Z wiyii| = [Z(@)]? Z alyij QD

(i./)€A (i./)eA

Note that this last rewriting is only correct when F — ¥ iyea i;j¥ij is nonnegative and a > 0.5.
These requirements are similar, since the z-score of the 0.5-percentile is equal to zero. As mentioned
before, the requirement @ > 0.5 is a reasonable assumption, because a chance constraint is based
on a linear constraint from the deterministic model and therefore the threshold to meet this
deterministic constraint will be large.

4.3.2 Deadline and Waiting Constraint
For Chance constraint set (C2) and (C3), approximately the same reasoning can be used to
reformulate the deterministic quadratic equivalent. In the following part, we will discuss the
guadratic deterministic equivalent of Constraint set (C3). We will start with the second constraint set
of Chance constraint set (C3), because reformulating this set is most related to the reformulation of
Chance constraint (C1).

Recall Constraint set (C3.2),
P(d; <Lix)=6 VieN (R3.2.1)

In Equation (R3.2.1), d; is the random variable. Due to the assumption that the fuel consumption is
normally distributed, d; is also normally distributed. Note that in this assumption the waiting time of
the vehicle is ignored to simplify the problem. This means that the departure time of a target could
be before the earliest time of that target and thus recording could take place before the target is
‘open’. Consequently, this results in an overestimating of the total gathered profit. In the third
variant of the CCP, discussed in the last subsection of this section, the expected waiting times are
taken into account by determining the departure times of the targets.

Based on the assumption that d; is normally distributed, the mean of d; is equal to the sum of the
means of the arcs before target i, while the variance of d; is equal to the sum of the variances of the
arcs before target i. To determine the mean and variance of d;, some auxiliary variables are
introduced. First of all, the integer variables u; denote the position of target i in the tour. Therefore,
the following constraint set is added to the MIQCP, which is based on the IP formulation of the TSP
presented by Miller et al. in [38]:

where u; € {1, ..., |[V|}. Constraint set (4.10) replaces Constraint set (4.5) in the MIQCP, since both
constraints avoid sub tours. Furthermore, Constraint set (4.5) defines the departure times using the
fuel usage. In the SOPTW these parameters are stochastic and therefore only probabilistically
known.
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Secondly, the binary variables Qy; = 1, if target i comes before target k in the tour, which means
that u; < uy and O otherwise. This can be done by adding the following constraint set to the MIQCP:

{ U — U < QpilV|

Vk,VieV 411
wi—ug +e < (1— Q)IV| (4.11)

where Qy; € {0,1}.

The final set of introduced auxiliary variables are also binary variables, Hyij =1, if arc (i,)) is in the
tour before arriving at target k, which means that both Qi; = 1 and y;; = 1 and 0 otherwise. To
implement these variables, the following constraint set is added to the program:

Qi +yij — 1 < Hy;
Qi + Yij vk € V,V(i,j) EA (4.12)

Hyj <
kij 2

where Hy;; € {0,1}. The first constraint set ensures that Hy;; = 1 if both Qy; = 1 and y;; = 1, while
the second restricts the value of Hy;; to zero otherwise. The second one is also necessary, because
in the third variant of the CCP the expected waiting time is minimized. When the vehicle arrives too
early at a target, it will be better for the objective to increase one of the Hy;j-variables to one,
instead of collecting some waiting time.

Based on this notation, d; ~ N(Z(i'j)eA,uinkij,Z(i,j)eA al-szkl-j). Consequently, Equation (R3.2.1)

can be rewritten as

Lyx;, —
P{Z < %ﬂd"} > § vk €N (R3.2.2)
dg

where Z is a standard normally distributed variable, w4, = X jjeattijHrij and

Oq, = ’Z(l-,j)eA aiszkl-j. For the same reasoning as in the reformulation of Chance constraint (C1),

the quadratic deterministic equivalent of (R3.2.2) is

2

Lyxy — z tijHeii| = [Z(8)] Z 0/ Hyij Vk € N (Q3.2)
(i,j)eA (i,j)eA

Note that this is only correct when Lyxy — X j)eaMijHyij is nonnegative and § = 0.5. As we
already mentioned, these assumptions are reasonable.

Using the introduced auxiliary variables, we can also formulate the quadratic deterministic
equivalent of the first set of Chance constraint set (C3). The Chance constraint set (C3.1),

P(Ex;<d;)) =y VieN (R3.1.1)
can be rewritten as

P(—d; < —Ex) =y VieN (R3.1.2)
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where —di~N(—udi,a£i). Based on the characteristics of the normal distribution, Equation

(R3.1.2) is equivalent to
—Epx, +
P{Z < %ﬂd"} >y vk e N (R3.1.3)
dg

which is similar to Equation (R3.2.2). Thus, the quadratic deterministic equivalent of Chance
constraint set (C3.1) is

2

—Epxy + Z wiiHij| = [ZW)1? Z 0 Hyij Vk €N (Q3.1)
(L,))eA (i,))eA

Note that also —Ejxy + X j)ea HijHkij has to be nonnegative and y > 0.5.

Based on the discussed reformulations of (C1) and (C3) and the introduced auxiliary variables, the
MIQCP of the CCP-formulation for the SOPTW is as follows:

(P4.3) max Z DiX; 4.1
ieN
subject to Constraints (4.2), (4.3), (4.7), (4.8), (4.10), (4.11) and (4.12)

2

F— Z wiyii| = [Z(@)]? Z olyij QD
(i.j)eA (i.j)ea
F— z WijYij >0 (Qll)
(Lj)eA
2
—Epx, + Z tijHeii| = [ZW)]? Z o/Hx; VkEN (Q3.1)
(L,))eA (L,))eA
—E.x; + Z .uinkij >0 VkeN (Q3.1H
(i,)EA
2
Lyxy — Z wijHj| = [Z(O)]? Z ofiHy;  Vk€EN (Q3.2)
(L,))eA (L.)eA
kak - Z ,ul-ijl-j >0 VkeN (QBZI)
(i.j)eA
u; €90, ..., |V|} Viev (4.13)
ki €{0,1} vk, Vi€V (4.14)
Hy;; € {0,1} vk eV,v(i,j) e A (4.15)
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4.3.3 Time Windows Constraint
In this part we will discuss the quadratic deterministic equivalent of Chance constraint set (C2).

Chance constraint set (C2) can be split into two parts. The first part ensures that waiting is not
necessary with probability y;, while the second part ensures that the target is recorded before the
deadline with probability §; To combine these parts, an extra constraint set is added. The sum of
these probabilities minus 1 has to be larger or equal to the given threshold .

P(d; = E;x;) 2 y;
P(dl < Lixi) > 6; VieN (CZ’)
Yi + 51’ —-1> ,3

Note that the first two constraints are the same as (C3), except that y and § are fixed in Set (C3) and
in (C2’) ¥; and §; are decision variables and may vary for each target and only 8 is fixed. Therefore,
we can rewrite

P(d; > E;x;) = v, ViEN (R2.1.1)
as
2
—Epx, + Z | = 2] Z 02 vkEeN (R2.1.2)
(i,j)eA (i,j)eA

Since y; is a decision variable in this case and not a given probability like in the previous part,
Equation (R2.1.2) is not linear, due to the non-linear operation of determining a z-score given a
variable percentile. To give a linear approximation of this equation, we introduce two new sets, a set
of possibilities P and a set of times W. Each possibility p has a given threshold t,, and a given
squared z-score z,. Each target i has two times, an earliest time and a latest time. We also introduce
an extra binary decision variable c;,;, which is assigned the value 1 in case possibility p is chosen for
time w of target i. Only one threshold can be assigned to each time of each target. Consequently,
the following constraint has to be added to the MIQCP:

Z Cowp = 1 VieN (4.16)
pPEP

where ¢;,,, € {0,1}.

Constraint (4.17) ensures that the sum of the thresholds of a target minus 1 has to be larger or equal
to the probability that the departure time falls within the time window.

Z Z tpCiwp —1 2P VieN (4.17)
WEW pEeP

Based on this notation, the quadratic approximation of Equation (R2.1.2) will be

2

—Ekxk + Z :uinkij = Z chklp Z O-iszkij vk €N (QZl)
(i,j)eA pEP (i,j)eA

26



Furthermore, the second Constraint set of (C2’),
P(d; < L;x;) = 6; VieN (R2.2.1)

can be quadratically approximated by

2

kak_ Z :u'inkij = [Z((Sl)]z Z O'iZijij VkeN (R222)
(i.j)eA (Lj)eA

which is equivalent to

2

Lixy — Z tijHyij zzzpcm z 0/ Hyij vk €N (Q2.2)

(i,)€A DEP (i,))€eA
Based on the reformulation of (C2) the MIQCP for SOPTW can also be formulated as:
(P4.2) max Z DiX; (4.1)
iEN
subject to Constraints (4.2), (4.3), (4.7), (4.8), (4.10) — (4.17),(Q1) and (Q1")

2

—Ekxk + Z l’linkij = Z chklp Z O-iszkij vk €N (Q21)
(i,j))eA pEP (i,j))eA
—Ekxk + Z .uinkij >0 Vk €N (QZII)
(i.))eA
2
kak — Z :uinkij > Z chk2p Z O-iszkij vk €N (QZZ)
(i,))eA pEP (i,j))eA
kak - Z .uinkl'j >0 VkeN (QZZ,)
(L.))eA
Ciwp € {0,1} Vie NVwe W,Vvp € P (4.18)

4.3.4 Waiting time
As we mentioned before, the expected value of the waiting time at each target is not taken into
account in both Formulation (P4.2) and (P4.3) to simplify the problem. This simplification results in
an overestimating of the expected total gathered profit. In this third formulation we will discuss a
CCP-formulation of the SOPTW where we also consider the expected waiting time of the vehicle
during the flight. Note that this results in a decrease in the expected total gathered profit, compared
to (P4.2) or (P4.3), but also in a more adequate estimation of the realized total gathered profit.

The nonnegative variable waiting time w; is the expected waiting time at target i, which is defined in
the MIQCP by the following constraint set:
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Wi = Ek - Z l’tinkij — WWg VkeN (419)
(i.j)eA

where w;, = 0 and wwy, is the sum of the expected waiting times before target k. The relation
between these two variables is

ww; = ww; +w; ifyij=1 v(i,j) €A (R4.1.1)

We can rewrite Equation (R4.1.1) to Constraint set (4.20), which is added to the MIQCP.

ww; —ww;—w; = M(1 — y;;
{ J o (1 =) V(i,j) EA (4.20)

ww; — ww;—w; < —M(l - yij)
where M is a big number.

Using the introduced variables, the expected departure time of target k is equal to Ua, =
(i, jeaMijHyij + wi + wwy. Consequently, the realized departure time of target k is the sum of the
realized fuel consumption before target k and the realized waiting time at and before target k. Note
that the realized value of the waiting time is inversely proportional to the realized fuel consumption
before target k. However, the waiting time is not normally distributed, since all ‘negative values’,
which is the case as the UAV departs after the earliest departure time, are set equal to zero.
Therefore, the distribution of the departure time of target k is the sum of a normal distribution and
a one-sided truncated normal distribution which are dependent. Since the shape of the distribution
is not very important and only the value of the §-percentile is relevant, we assume that the
departure time of target k is normally distributed with its mean equal to Ua, as stated above and its
variance ajk equal to the variance of the fuel consumption before target k multiplied by a scale
parameter A. This is a reasonable assumption, because of two reasons. First, since the sum of two
normally distributed variables is normally distributed and by a one-sided truncated normal
distribution one of the tails follows approximately a normal distribution, the sum of a normally
distributed variable and a one-sided truncated normally distributed variable is also approximately
normally distributed. Secondly, because of the dependency between the two distributions, the
covariance is nonzero. The scale parameter 1 is added to the variance of the departure times in
order to compensate this covariance.

To minimize the error originated to this assumption, the total expected waiting time should be
minimized. This can be done by changing the Objective function of the MIQCP (4..1) to

max Z piX; — KW; 4.1)
iev

Deadline Constraint
The introduction of the waiting time will also change the deadline Constraint sets (Q3.2) and (Q3.2’).
Recall Equation (R3.2.2),

Lyx;, —
P{Z < M} > vk eN (R3.2.2)
O-dk

which can be rewritten as
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kak - ‘lek > Z(6)Udk vk €N (R421)

where Z(§)is the z-score corresponding to the J-percentile. We have assumed that
di~NQ (i, jyeaMijHrij + Wi + wwi, A3 jyea al-Zijij). Consequently, Equation (R4.2.1) is
equivalent to

kak - Z :uinkij — Wi — WWyg = /1[Z(6)]2 Z Jizj'Hkij Vk eN (Q41)
(@i.))eA (i.))eA

which is only correct when Lyxy — X jyea MijHkij — Wk — wwy = 0and § = 0.5.

A condition of Mixed Integer Quadratically Constrained Programming is the convexity of the
program, according to Galli and Letchford [39]. This means that the P, matrix of Quadratic constraint
q, rewritten in the standard form

T T
a;x+x qu <71y,

should be positive semi-definite in minimization problems and negative semi-definite in
maximization problems. A quadratic constraint is also convex when it can be transformed into a
second order cone. Unfortunately, Quadratic constraint set (Q4.1) satisfies neither requirements.
However, due to the non-negative condition of the waiting time, the combination between
Constraint set (Q4.1) and Constraint set (Q4’),

kak - Z .uinkij — Wi — WWy >0 vk €N (QA‘,)
(i.j)eA

is convex.

To solve the MIQCP, it is necessary to rewrite Constraint set (Q4.1) to a convex equivalent. Therefore
we introduce two auxiliary binary variables, Wtyrg and wWiysg, such that

Cfthkfg = Wg Vk eN (421)
(f.9)€F
and

CfgWWtkfg = WWg Vk €N (422)
(f.9)€EF

where Wty g, WWityrg € {0,1} and parameter Crg is a trivial matrix with the values in each column is
equalto 1 10~(0-D,
Since a sum of binary variables is restricted, the convex equivalent of Constraint set (Q4.1) is

2

Lyxy — z ijHyij — Z CrgWipg +wwiyeg)| = A[Z(8)]? Z 0 Hyij
(i,))eA (f.9)EF (i.j)eA

Vk EN (Q4.2)
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Fuel Constraint

Also the fuel consumption during the waiting time should be taken into account. The expected total
fuel consumption during the flight is increased by the total expected waiting time to Z(i_j)eA Kijyij +
Yiey W;. The distribution of the total fuel consumption T is the sum of normal distributions and
truncated normal distributions, which are dependent. Like for the distribution of the departure time,
we assume a normal distribution with a mean equal to the expected total fuel consumption and a
variance equal to the variance of the fuel consumption during the flight time and the recording time
multiplied by a scale parameter 6. Combining Equation (R1.4) and the assumption

T~N(Z (i jyeatijyij + Liev Wi, 0 X jea Uizjyl'j), we can rewrite (Q1) to

2

F— Z .uinij_ZWi > 0[Z(a)]? z alyij (QL1)

(i,))eA icv (L,))eA
under the condition that F — }.; jyea MijYij — ZievW; = 0and a@ = 0.5.

Like the Constraint set (Q4.1), Constraint (Q1.1) is not convex in itself. Due to the non-negativity of
the waiting times, the combination of Constraint (Q1.1) and Constraint (Q1.1),

F— Z HijYij _Zwi =0 (Q1.1")
(i,j)eA iev
is convex.

We introduce another auxiliary binary variable twtr, to rewrite Constraint (Q1.1) to its convex
equivalent, such that

Z CfgtWtfg = Z w; (423)
(f.9)EF LEV

where twtr, € {0,1}.

Consequently, the convex equivalent of Quadratic constraint (Q1.1) is equal to

2

F— Z KijYij — Z Crgtwirg| = 0[Z(a)]? Z olyij (Q1.2)
(i.j)eA (f.9)EF (i,j)eA

The total MIQCP including the waiting time is as follows:

(P4.4) max Z DiX; — KW; (4.1)
iev

subject to Constraints (4.2), (4.3), (4.7), (4.8), (4.10) — (4.15), (4.19) — (4.23)

2

F— Z HijYij — Z Crgtwtrg | = 0[Z(a)]? Z a5iyij (Q1.2)

(i./)€A (f.9)€EF (i.))eA
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F — Z WijYij — Zwi >0 (Q1.1)

(i,j)eA iev

Lyxy — Z WijHyij — Z crgWtyrg +wwiyrg)| = A[Z(8)]? 2 0/ Hyij

(i.))eA (f.9)€F @i.)eA
vk €N (Q4.2)
L x; — Z tijHyij — wi —wwy =2 0 vk € N (Q4"H
@i.j)eA
Wtyrg € {0,1} vk eV,v(f,g) EF (4.24)
wwityrg € {0,1} vk eV,V(f,g) EF (4.25)
twt, € {0,1} vk eV,Vv(f,g) EF (4.26)
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5. Two-Stage Stochastic Programming with Recourse

In this chapter we will discuss the application of another widely used approach in stochastic
programming. Two variants of a two-stage stochastic programming problem for the SOPTW will be
presented.

5.1 Stochastic Programming with Recourse

Stochastic Programming with Recourse (SPR) is an approach of stochastic programming which is
introduced by Dantzig in [40]. For routing problems it is for example applied by Laporte et al. [26] to
the SVRP, by Li et al. [32] to the SVRPTW and by Evers et al. [14] to the SOP. In SPR the problem is
modeled in multiple stages. At each stage more realizations of the stochastic parameters are
observed. Furthermore, at each stage decisions should be made, such that the expected objective of
the current and subsequent stages is maximized or minimized. Most of the SPR-formulations for
routing problems make use of two-stage stochastic programming. In the first stage an a priori route
is constructed. After the values of the stochastic travel times are realized between the first and the
second stage, the costs of final route is determined by incurring a penalty for time overruns or loss
of missed targets.

In this chapter we will introduce two different stochastic programming models with recourse for the
SOPTW. The first model is based on the TSOP, introduced by Evers et al. [14] for the SOP without
time windows. We present the Two-stage Orienteering Problem with Time Windows (TSOPTW) to
solve the SOPTW. In this model before the flight an initial tour is constructed based on the
probability distributions of the fuel usages on the arcs. We assume that the fuel realization on arc
(i,)) is observed after both flying from target i to target j and the recording of target j. For the arcs
that have not yet been traversed only the distribution function of the fuel usage is known. In the
second stage of this model the next target of the final route is determined by applying a so-called
recourse action. We assume that the time windows are hard in this model, which means that
recording outside a time window yields nothing. Note that the initially constructed tour in
combination with a recourse action is a solution for both the offline and the online part of the UAV-
MPP.

In the second model instead of applying a recourse action, we use a penalty function for a late
departure from a target after its deadline, like is done by Li et al. [32] and Russell and Urban [34]. We
introduce different penalty functions for lateness. This Penalized Orienteering Problem with Time
Windows (POPTW) is also modeled in two stages. The expected execution costs of the tour,
constructed in the first stage, are considered in the second stage. In this model we assume that all
fuel usages are realized at the same time between the first and the second stage, since the first
stage tour cannot be adjusted in the second stage. Notice that in this model the information value of
a target without its time window is not by definition equal to zero, which means that the time
windows are assumed to be soft in this case.

5.2 Two-stage Orienteering Problem with Time Windows
In this section we will formulate the Two-stage Orienteering Problem with Time Windows (TSOPTW),
which consists of two stages. During the first stage an initial tour is constructed and when the fuel
realizations are observed one by one in the second stage, the final route is determined. The order of
the targets in this final route should be the same as in the initial tour, but it is allowed to skip targets
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because of their time window or to return to the depot earlier than planned due to the fuel level of
the UAV.

5.2.1 First stage
In this first stage an initial tour is constructed, which maximizes the expected profit gathered by the
executing of this tour. By the construction of the initial tour, time windows and the total fuel
capacity are not imposed explicitly, but considered in the objective of this stage.

To formulate the first stage of the TSOPTW, all sets and parameters introduced in Chapter 2 and the
binary decision variables, x; and y;;, introduced in Section 4.1 are used. Also the integer variables u;
which denote the position of target i in the initial tour are used. The stochastic variable f represents
the stochastic fuel usages. The MIP formulation of the first stage of the TSOPTW (P5.1) is the
following:

(P5.1)  maxy Ez [h(y, )] (5.2.1)
subject to Z Yij = X; vi € V\{t} (5.2.2)
{:(L.)ea}
Yij = Xj vj € V\{s} (5.2.3)
{i:(i,))eA}
u—ui+1<1—-y;)|V| v(i,j) €A (5.2.4)
u—uj+1=—1-y;)|V| v(i,j) €A (5.2.5)
x; €{0,1} ViEeN (5.2.6)
yij €{0,1} v(i,j) €A (5.2.7)
u; €{1,...,|V|[} VieN (5.2.8)

The Objective function (5.2.1) maximizes the expected profit given the probability distribution of the
fuel realizations gathered in the second stage. Constraint sets (5.2.2) and (5.2.3) guarantee that the
initial tour is connected and each target is visited at most once. Constraint sets (5.2.4) and (5.2.5)
define the order of the tour and avoid sub tours.

Since the possibility exists to skip targets from the initial tour in the final route, the initial tour can
include all targets. The targets which will not be included in the first stage when Program (P5.1) is
used, can be added at the end of the tour. These targets will be visited in none of the final routes,
otherwise it would be optimal for Program (P5.1) to include them in the initial tour. Note that in this
case the first stage of the TSOPTW corresponds to a travelling salesman problem with a different
objective function. Program (P5.1) has the objective to maximize the expected gathered profit in the
second stage instead of the normal objective of the TSP to minimize the total distance. Program
(P5.2) is the new Mixed Integer Program of the first stage of the TSOPTW.
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(P5.2)  maxy, E7 [h(y, f)] (5.2.1)

subject to Constraints (5.2.4), (5.2.7) and (5.2.8)

U:@.)eA}

yij=1 vj € V\{s} (5.2.10)
{i:(inea)

The Objective function (5.2.1) and the Constraint sets (5.2.4), (5.2.7) and (5.2.8) are the same as in
Program (P5.1). Constraint sets (5.2.9) and (5.2.10) guarantee that the initial tour is connected and
each target is visited. Notice that in Program (P5.1) both Constraint set (5.2.4) as Constraint set
(5.2.5) are necessary to define the order of the tour correctly and therefore also the positions of the
targets in the tour indicated by the u;-variables. This is due to the characteristic of the OP that not
all targets have to be visited. Since the order of the tour should be used in the second stage, it is
necessary that the values of the u;-variables are correct, which means that the positions of two
consecutive targets differ only one from each other. Otherwise, deviations in the order of the final
route with respect to the order of the initial tour are possible. In Program (P5.2) all targets have to
be visited and therefore only Constraint set (5.2.4) is necessary to define the u;-variables correctly.

The main advantage of Program (P5.2) over Program (P5.1) is that the calculation time of (P5.2) is
much shorter than that of (P5.1). The reduction in the calculating time is the consequence of the
smaller number of decisions that should be made in the program. In Program (P5.1) both the
included targets and the order of the included targets have to be determined. On the other hand in
program (P5.2) only the order of the targets should be decided.

5.2.2 Second stage

In the second stage of the TSOPTW the final route is constructed step by step. Based on the initial
tour, the already observed fuel realizations and the recourse action at each location the next target
of the flight is determined. In the TSOPTW the following recourse action is applied: the next target in
the final route is equal to the next target in the initial tour, except when the probability that this
target can be reached before its deadline is below a predefined level a or when the remaining fuel
guantity is insufficient to fly to this target and back to the depot in the worst case. In that case the
next target of the initial tour is skipped in the final route. Note that the next target in the final route
is the first target in the initial tour which satisfies the recourse requirements, starting at the current
location. This means that this target can be reached before its deadline with a probability of at least
a and when the remaining fuel quantity is sufficient to fly to this target and back to the depot in the
worst case.

In order to determine whether the recourse requirements are satisfied for the next target in the
initial tour, two limit values could be calculated. The first limit value is equal to sum of the fuel
consumption up to the current location and the a-percentile of the fuel usage on the flight path
between the current and the next location. If this value is smaller than or equal to the deadline of
the next location the first recourse requirement is satisfied. The second limit value is equal to the
sum of the fuel consumption up to the current location and the worst case realizations from the
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current to the next location and from the next location to the depot. To meet the second recourse
requirement this value should be smaller or equal to the fuel capacity of the UAV.

Deviations in these limit values could have both negative and positive effects on the total gathered
profit. It is reasonable that increasing a limit value could have a negative effect. This is the case when
the next target should be skipped, because the increased limit value is larger than its deadline or the
fuel capacity. It is also reasonable that decreasing a limit value could have a positive effect. When
the decreased limit value is smaller than the deadline of next target or than the fuel capacity, a
target which should be skipped, is recorded in the final route. If this recording takes place before the
deadline, the total gathered profit is increased.

However, also an increase of a limit value could have a positive effect on the total gathered profit,
while a decrease could also have a negative effect. The total gathered profit is decreased by a
decrease of the limit value, if this results in the recording of the next location and causing that
another, more valuable, target of the initial tour should be skipped. Moreover, an increase of a limit
value results in an increase of the total gathered profit if this makes that the next target should be
skipped, while a more valuable target later in the initial tour can be included in the final route.

Note that this reasoning is also valid for deviations in other decision variables such as the sum of the
realized fuel usages and the waiting time.

For each scenario w € Q of the fuel consumption the final route is determined using a Mixed Integer
Program (MIP). Given the initial tour, the recourse action and the fuel consumption in the given
scenario, the final route is fixed, but to optimize the initial tour of the first stage the determination
of the final route is also modeled as a MIP. In this second stage the initial tour and the realized fuel
consumptions f,;; are given. The decision variables of the first stage are used to describe the initial
tour. Since the initial tour cannot be changed during the second stage, both the binary variables x;
and y;; and the integer variables u; are parameters in the MIP of this stage (P5.3).

In the remainder of this section we will introduce a mixed integer programming model for the
second stage of the TSOPTW. Because of the size of the model, we will discuss its constraints in
parts.

First of all, in the final route not all targets which are included in the initial tour have to be visited.
Therefore, we introduce the binary decision variables b,,;, for which holds that b,,; = 1 if target i is
visited in the final route of scenario w and 0 otherwise. Not only the selected targets are important,
but also the selected flight paths. Hence, we define the binary variables t,,;;, if the flight path from
target i to target j is in the final route of scenario w, t,,;; = 1 and 0 otherwise. Like the initial tour,
the final route has to be connected and each selected target should be visited once. Consequently,
Constraint sets (5.2.11) and (5.2.12) are the first two sets of constraints in Program (P5.3).

twij = Do Vw € Q,Vi € V\{t} (5.2.11)
{J:(i.))eA}

twij = Do, Vo € Q,Vj € V\{s} (5.2.12)
{i:(i,j)eA}
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where t,,;j, by € {0,1}.

If target i is included in the initial tour but skipped in the final route of scenario w, we set binary
variable c,,; = 1 and 0 otherwise. Based on this definition, in each scenario for each target which is
included in the initial tour, either b,; or c,,; could be equal to one, which is guaranteed by

ba)i + Cpi = X Vw € QVieEN (5213)

where c,; € {0,1}. Note that this constraint set can only be used when in the first stage the decision
variables x; are defined as described in Program (P5.1). When Program (P5.2) is used, Constraint set
(5.2.13) should be

byi+cpi=1 Yw € Q,ViEeN (5.2.13")
where c,; € {0,1}.

Since the order of visited targets in the final route should the same as in the initial tour, the
following constraint is added to Program (P5.3):

U —uj+1 < (11— ty)IV] Vo € Q,V(i,j) €A (5.2.14)

To determine the departure time of the vehicle from target i in scenario w, we define the auxiliary
nonnegative decision variable f f,,;. The value of this variable is the realized fuel consumption up to
and including the recording of target i in scenario w. Constraint set (5.2.15) and (5.2.16) together
ensure that the value of ff,); is equal to the realizations of fuel usages in scenario w on the arcs
before target i.

floi = [fwj + fuij < (1 — twi)F Vo € O, V(i,j) €A (5.2.15)

ffoi = [fwj + fwij = —(1 = twij)F Vo € Q,V(i,j) €A (5.2.16)

where ff,; = 0. As we discussed earlier in this subsection, both constraints are necessary since
deviations could increase the total gathered profit. Remark that in the combination of these two
constraint sets, the fuel consumption during the time waiting before a target can be recorded is not
included. Therefore, we introduce the nonnegative decision variable w,,; which represents the
realized waiting time at target i in scenario w. To define the value of these variables, the following
constraint set is included in Program (P5.3):

Weyi = Ei — ffoi — WWyi VYw e, VieN (5.2.17)
where w,,; = 0 and ww,; is the sum of the realized waiting times before target i in scenario w. The

relation between these two variables is defined by

WWyj — WWei =Wy < (1 = tyj)F
{ wj wi™ Wi ( wu) Vo € O,V(i,j) €A (5.2.18)

WWj — WWei =Wy = —(1 - twij)F

where ww,,; = 0. Also in this case both constraints are necessary for the reasoning given earlier in
this subsection.

36



The realized departure time from target i in scenario w is equal to the sum of the realized fuel usage
during the flight up to target i, including the realized waiting times before and at target i. The
definition of the realized departure time d; is

Aepi = [ fwi + Wei + Www,,; Yw € Q,ViEN (5.2.19)
where d,,; = 0.

When the departure time of a target falls outside of the given time window of that particular target,
the gathered profit at that target is zero, because we have assumed that the time windows are hard
in our case. The binary decision variable h,; = 1, if the departure time from target i in scenario w is
before the latest time and the target is visited and 0 otherwise. The following constraint set is
included in the second stage program to define h;:

L. <(1—=h. .
{d(ul Ly < (1= hy)F Vw €, VieEN (5.2.20)

hwi < bwi
where h,,; € {0,1}.

To implement the recourse action, we introduce several auxiliary decision variables. First of all, the
nonnegative variable g,;; represents the a-percentile of the departure time from target j in
scenario w when arc (i, ) is used. This means that the departure time of the vehicle from target j
coming from target i in scenario w is smaller than g,,;; with a probability of a. Consequently,

Juwij = dei + a;j

where g,;; = 0 and a;; is the a-percentile of the arc (i,j). Note that this definition is only true
when target i is not skipped, which means that c,; = 0. Therefore, Constraint set (5.2.21) is added
to Program (P5.3).

{ Jowij — Aepi — Ajj < CyuiFF

wlj wl 1] = wl

To define this limit value correctly, both constraints are essential.

When a target j is skipped in scenario w, the values of the g,;;-variables remain the same, but the
next target is different. For instance, suppose that the vehicle is at target i and y;; = 1, which means
that the next target in the initial tour is target j and according to the recourse action, target j should
be skipped. The new next target will be target k for which holds that yj;, = 1. In order to determine
whether target k should also be skipped according to the recourse action, it is necessary to consider
target k from target i. For this reason, the values of the g, jx-variables are the same as the values of

the g, ix-variables for scenario w if ¢,,; = 1 and y;; = 1. Consequently,

{ Joik = oi < F|(1 = cay) + (1= y;)] Vo € V(i j) EAVKEN (5.2.22)

Gwjr — Jwir = —F[(1 = cu;) + (1 — yi)]

Also both these constraints are necessary to prevent deviations in the limit values.
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The second auxiliary variable we introduce, is the binary variable m,,;;. If it is possible to use the
flight path from target i to target j in scenario w regarding the latest time of target j, m,;; = 1 and

0 otherwise. Constraint set (5.2.23) guarantees that m,,;; = 1, if g,,;; < L; and 0 otherwise.

{gwij —Lj < (1 —mg;)F

LS —muF Vo € Q,V(i,j) €A (5.2.23)
wij jo= wij

where m,,;; € {0,1}. Since the definition of this variable is only based on satisfying the requirement
that the departure time of target j should be earlier than the latest time with a probability of «,
another two auxiliary variables are introduced for meeting the second requirement of the recourse
action. The value of the nonnegative variable gd,,;; is the arrival time at the depot in scenario w
when the vehicle returns at the depot immediately after visiting target j coming from target i and
the fuel usage on both arcs is equal to the worst case realizations. Given that W;; is the sum of the
worst case realizations of arc (i, j) and arc (j, t),

9dwij = dwi + Wi
if target i is not skipped in the final route, which means that c,,; = 0. Consequently,

{ 9Awij — doi — Wij < ciF

9Awij — depi — Wij = —c4iF

Vo € QV(i,j) €A (5.2.24)

where gqij € {0,1}. As mentioned before, both increasing and decreasing the limit values could
have a positive effect on the total gathered profit. Therefore, also these both constraints are
essential to define the limit values correctly.

For the same reasoning as previously mentioned,

gdwjk = 9duik

if ¢,; = 1and y;; = 1. Hence,

{ 9dwjic =~ 9dwi < F|(1 — coj) + (1= y3)] Vo € V() €A VK EN (5.2.25)

9dwjk — 9dwir = —F[(1 = cuj) + (1 = yij)]

To indicate whether it is possible to use the flight path from i to j while satisfying the requirement
that the total fuel consumption in scenario w returned at the depot after visiting target j coming
from target i under worst case circumstances should be smaller than the fuel capacity of the vehicle,
we introduce the binary variable md,,;;. If the mentioned requirement is met, md,,;; =1 and 0
otherwise, which is ensured by Constraint set (5.2.26).

dpii —F < (1 —md;;)F
{g wij ( md ;) Yo € O,V(i,j) EA (5.2.26)

gdwij —F > —mdwijF

where md,,;; € {0,1}. In order to prevent deviations in the limit values, both constraints should be
added to the MIP.

The last auxiliary variable we introduce for Program (P5.3), is the binary variable mt,,;;. If both
requirements of the recourse action are satisfied for the combination of target i and j in scenario w,
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which means that both m,;; as md,,;; are equal to 1, mt,;; =1 and 0 otherwise. Therefore,
Constraint set (5.2.27) is added to Program (P5.3).

Vw € Q,V(i,j) €A (5.2.27)

where mt,,;; € {0,1}.

According to the recourse action, a target from the initial tour could only be skipped in the case that
at least one of the requirements is not satisfied. Based on the definitions of the introduced auxiliary
variables in this section, a target should be skipped in scenario w when mt,,;; = 0 and y;; = 1. This
means that in the initial tour the next target is target j, but it is not allowed to use the flight path
from target i to target j in scenario w and therefore target j should be skipped in the final route.
This last constraint set of Program (P5.3) guarantees that a target is only skipped, when the
requirements are not met.

Yij + (1 — mtwij) —-1< Cwj + (1 — yl})
4+ (1 —mt, Va)EQ,V(i,j) eA (5.2.28)
el 2 i), = coj = (1= )

Note that the addition of i(l — yl-j) is necessary, since the decision about skipping target j should
not be affected by a flight path from target i to target j which is not included in the initial tour.

5.2.3 Objective function
In the previous section we have discussed the constraints of Program (P5.3). In this section we will
discuss the objective function of the second stage program, Program (5.3).

First, we will investigate the profit of the final route. When a target is visited within its time window
and the vehicle has departed before the latest time, the profit of the recording of that target is equal
to the parameter p;, which we have introduced in Chapter 2. The binary variable h,; = 1, if the
departure time of the vehicle from target i in scenario w is before the latest time, which means that
the target is visited within its time window, and O otherwise. Based on this definition, the
information is gathered from target i in scenario w if h,; = 1. Consequently, the total profit
gathered in the second stage in scenario w is equal to

Z Pihwi

iIEN

The objective of the second stage is not only to maximize the total gathered profit in scenario w, but
also to minimize the waiting time. This is necessary, because additional waiting time could have a
positive effect on the profit value in the execution of the recourse action. If the vehicle arrives
before the earliest time of target i in scenario w, waiting time occurs. This means that the
nonnegative variable w,,; will be strictly positive. Since the all w,;-variables should be larger or
equal to 0, the total waiting time, incurred during the final route of scenario w, is
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iEN
where K is a scale parameter for the waiting time.

For this reason, the objective function of Program (P5.3) is

h(y, fw) = maxz Pihewi — Z KW

IEN iIEN

5.2.4 Summary
The TSOPTW is a large mixed integer program with the objective of finding an initial tour resulting in
the maximum total estimated expected profit, based on the predefined recourse action that will be
applied during the actual flight. For each scenario w € (), the gathered profit minus the waiting time

is determined based on the first stage initial tour and the recourse action. The complete formulation
of the TSOPTW (P5.3) is as follows:

(P5.3) max, Ez [h(y, f)] (5.2.1)

subject to Constraints (5.2.4), (5.2.7) — (5.2.12),(5.2.13"),(5.2.14) — (5.2.28)

Buir Coi» hui € {0,1} Vo €QVi€EN (5.2.30)
twij € {0,1} Vw € Q,V(i,j) €A (5.2.31)
[ fwir Wi WWei, dyi =0 Yw €EQVieEN (5.2.32)
wij» 9Qwijs Meij Mdgij, My, =0 Yw € Q,V(i,j) EA (5.2.33)
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5.3 Penalty Method for Stochastic Programming with Recourse

In this section we will introduce another two-stage stochastic programming model with recourse for
the SOPTW, the Penalized Orienteering Problem with Time Windows (POPTW). In this model a
penalty is incurred when a target is visited after its latest time. During the first stage a tour is
constructed, such that the profit is maximized and the expected incurred penalty in the second stage
is minimized. We will introduce four different types of penalty functions. The first two types of
penalty functions are developed using a fixed cost which means that the penalty is independent of
the length of the delay, while the other two types are smooth penalty functions, where the penalty
increases as the length of the delay becomes longer.

5.3.1 First stage

During the first stage a tour is constructed, of which cannot be derogated in the second stage. This
means that all included targets have to be visited in the second stage. In the first stage the time
windows of the targets and the fuel capacity of the vehicle are not taken into account. However,
lateness and running out of fuel during the execution of the tour does not affect the feasibility, since
the time windows are assumed to be soft, but a penalized cost will be subtracted from the objective
function value. Also sub tours are not excluded during the first stage of the POPTW. However, since
solutions which contain sub tours are not feasible in the second stage, sub tours are implicitly
excluded in the first stage.

In the Mixed Integer Programming formulation of the first stage we make use of the already
mentioned binary variables, x; and y;;. The variable x; = 1, if target i is included in the tour and 0
otherwise and the variable y;; = 1, if the flight path from target i to target j is selected in the tour.
The MIP formulation of the first stage (P5.4) is the following:

(P5.4)  max, Z pix; — E¢c(y. F)] (5.3.1)
iEN

subject to z Yij = X; vi € V\{t} (5.3.2)
{j:(i.j)eA}
{i:(i,)eA}

x; € {0,1} VieN (5.3.4)

yij €{0,1} V(i,j) € A (5.3.5)

The objective of Program (P5.4) is to maximize the total gathered profit, of which the expected
incurred penalty is subtracted. Constraint sets (5.3.2) and (5.3.3) guarantee that the tour is
connected and each target is visited at most once.

5.3.2 Second stage
At the beginning of the second stage we assume that all fuel realizations are available. Based on
these realizations the incurred penalty costs of the first stage tour are determined for each scenario
w € Q.
Since deviations from the constructed tour are not allowed, the first stage decision variables x; and
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yij are parameters in this stage. Given these parameters and the fuel realizations of scenario w, f,;;,

the departure times from the targets in scenario w are defined using by the following constraint:
dwi — dowj + fwij < F(1—y45) Vw € Q,V(i,j) €A (5.3.4)

where the decision variable d,; is the departure time from target i in scenario w and d,; = 0. This
constraint ensures that the departure time of two consecutive targets in the tour differs at least the
fuel usage on the arc (i,j) from each other and that sub tours are excluded from the tour. In this
program waiting time is not explicitly modeled, but Constraint (5.3.5),

d(ui = El-xi Vw €, ViEN (535)

ensures that the departure time from target i in each scenario is after the earliest time. Note that
the waiting time resulting from Constraint (5.3.5) is both authorized and included in the departure
times of the rest of the tour by Constraint (5.3.4).

To determine whether a penalty should be incurred at target i in scenario w, which means that the
departure of the vehicle from target i is later than its deadline, we introduce the binary variable q,,;.
If the departure time of target i in scenario w, d,,; is larger than the latest time of target i, L;,
q.i = 1 and 0 otherwise, which is guaranteed by

dei — Li < quiF Yw € O, Vi € V\{s} (5.3.6)
where q,,; € {0,1}.

5.3.3 Penalty Function
In this subsection we will introduce four different types of penalty functions and we will discuss their
implementation.

First of all, we should notice that the different penalty functions affect the penalty for lateness at a
target. The penalty for running out of fuel in scenario w is always the same and is equal to

P:ZPL'

which means that all information value gathered in that scenario is inherently offset and the yield of
that scenario is less or equal to zero. This penalty is incurred for scenario w when the arrival time at
the end point is later than its latest time L;, which is equal to the fuel capacity F. In that case,
dyt = Ly and consequently, g, = 1.

The first two types of penalty functions are developed using a fixed cost for lateness at the targets.
In the first type, the costs of lateness at a target are the same for each target. This means that when
the departure time of a target is later than its deadline, a penalty pf is incurred. When the value of
this penalty is low compared to the profits of the targets, it is likely to have more late targets. Note
that the yield of a late target which is recorded after the deadline, can be either positive or negative,
like is displayed in Figure 5.1.

The penalty cost function for the first stage tour c(y, f,) is in this first case
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c fo) = pfz Guwi + doiP Vw € Q (5.3.7)

IEN

The penalty function of the second type is target dependent. In this case the penalty which is
incurred by a late target, can be different for each target. We assume that this penalty pf; is a
function of the profit of target i. The information value gathered by recording a target after its
deadline, is only a part of the profit gathered by recording within the time window. This part, a, is
fixed for each target. Consequently, pf; = a - p;, where 0 < a < 1. Note that when a = 1, the yield
of recording a late target is equal to zero and the time windows are hard in this case. However,
when a = 0, there is no penalty incurred for recording a target after its deadline. In Figure 5.2 the
second type of penalty function and the consequences of this type for the yield of target i are
displayed.

With this second type of penalty function the penalty cost function for the first stage tour is

COMf) = ) Dot + QP Vo € Q (5.38)
iEN
Penalty Function 1 Yield of target i if pf<p(i) Yield of target i if pf>p(i)
Penalty Yield Yield
p(i)
p(i)
pf

p(i)-pf 0
p(i)-pf

0 - - - 0 - - " - - -

E(i) L(i) Time E(i) L(i) Time E(i) L(i) Time

Figure 5.1: The first type of penalty function and its consequences for the yield of target i

Penalty Function 2 Yield of target i if a<1 Yield of target i if a=1

Penalty

pf(i)

p(i)-pf(i)

EG) L() Time  ° E() L() Tme  ° E() LG) Time

Figure 5.2: The second type of penalty function and its consequences for the yield of target i
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The two other types of penalty functions are smooth penalty functions, which means that the
incurred penalty increases when the late period becomes longer. In the first smooth penalty
function the costs for lateness increases linearly to the late time. In this case the penalty incurred for
a late departure from target i is a decision variable instead of a parameter, as it is the case in the
cost functions of the first two types. The nonnegative variable pf,,; represents the incurred penalty
for lateness at target i in scenario w and is defined by Constraint (5.3.9).

Pfwi = b(dyi — L) Yo €O, Vi EN (5.3.9)
where pf,,; = 0 and parameter b is the scale parameter of the penalty function.

The main advantage of a smooth penalty function is that not only the number of late targets is
minimized, but also the length of the delay at the late targets. When the value of the parameter b is
large, the total delay will be small. In Figure 5.3 the linear penalty function and the yield of target i
are displayed.

The penalty cost function in the case of a linear penalty function is equal to

COLf) = ) Pfui + GurP Vo e o (5.3.10)
iEN

The last type of penalty function is the quadratic penalty function. This means that the cost for

lateness increases quadratically with the length of the delay. The penalty incurred at target i in

scenario w, pf,,; is defined with a quadratic constraint:

Pfowi = c(dyi — L)? Vo €Q,ViEN (5.3.11)

where parameter c is the scale parameter of the penalty function. Based on the definition
mentioned earlier, q,,; = 1 if the vehicle departs too late from target i in scenario w. Consequently,
a penalty is only incurred if q,,; = 1, which means that d,; — L; = 0. Note that when d,; — L; <0,
(dy; —L;)? = 0 and a penalty is incorrectly incurred according to Constraint (5.3.11). Therefore,
instead of Constraint (5.3.11) Constraint (5.3.11’) is used to guarantee that a penalty is only incurred
when q,,; = 1.

Pfwi — c(dpi — L)? = —cF?(1 — qu1) Vw € Q,Vi €N (5.3.11)

In Constraint set (5.3.11’) F? is used instead of F, because of the quadratic term at the left side of
the constraint. This quadratic term (d,; — L;)? can be larger than F when target i is in the
beginning of the tour and the latest time of target i is large, therefore the square of F used.

This quadratic smooth penalty function and its consequences for the yield of target i are displayed in
Figure 5.4.

The cost function for the first stage tour using a quadratic smooth penalty function is the same as
the penalty cost function in the case that a linear penalty function is used.
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Figure 5.3: The linear penalty function and its consequences for the yield of target i
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Figure 5.4: The quadratic penalty function and its consequences for the yield of target i

5.3.4 Summary
In the POPTW the objective is to determine a first stage tour which maximizes the total gathered
information value and minimizes the total expected incurred penalty. The complete formulation of
the POPTW is as follows:

(P5.5)  max, Z piX; — IEf[c(y, f)] (5.3.1)

iEN
subject to Constraints (5.3.2) — (5.3.6)
q.i € {0,1} Vw € QL VieEN (5.3.12)
dwi =0 Vw €EQ,VieEN (5.3.13)
Note that when a smooth penalty function is considered,
Pfwi=0 Vw €EQ,VieN (5.3.14)

should be added to Program (P5.5). In case of a linear penalty function also Constraint (5.3.9) should
be included and in case of a quadratic penalty function Constraint (5.3.11’).
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6. Solution methods

In this chapter some solution methods for the CCP-model and the both SPR-models, the TSOPTW
and the POPTW, are presented. First, we will discuss some approaches which are specific for a model
and subsequently we will introduce a Tabu-Search Based Heuristic, based on Li et al. [32], which can
efficiently solve all presented models.

6.1 Chance-Constrained Programming model
In this section we will discuss two solution methods for the Chance-Constrained Programming
model, presented in Chapter 4.

The Mixed Integer Quadratically Constrained Problems (MIQCPs), presented in Section 4.3, are
quadratic reformulations of the Chance-Constrained Program, presented in Section 4.2. These
quadratically constrained problems, (P4.2)-(P4.4), can be solved by the optimization software
package IBM ILOG CPLEX Optimization Studio (CPLEX). This solver can solve linear programming
problems and mixed integer linear problems, but also convex and non-convex quadratic problems
and convex quadratically constrained problems. As mentioned in Subsection 4.3.4, our
reformulations of the CCP-formulation are convex quadratically constrained problems, therefore
CPLEX can solve them to optimality. However, because the OPTW is proved to be NP-hard [8], it is
unlikely that these problems can be solved in polynomial time.

The software package CPLEX has to be controlled by an external program, such as Java, C++ or
Matlab. It is also accessible through independent modeling systems such as AIMMS. This last
modeling system also provides a robust optimization add-on which can solve linear and mixed
integer programming models with uncertain parameters to optimality. In this add-on also chance
constraints are included in the functionalities. This means that the chance constraints discussed in
Section 4.2 can be directly imported into AIMMS combined with the deterministic OPTW (P4.1).
Subsequently, AIMMS makes a second order cone reformulation of the chance constrained problem,
which is solved by CPLEX. This second order cone reformulation of the problem will be very similar to
the first presented quadratically constrained reformulation (P4.2).

The main advantage of the quadratically constrained reformulations discussed in this thesis is that
when CPLEX is used by an interface as for example Java or Matlab, the chance constrained
programming formulation of the SOPTW can still be solved. Without these reformulations CPLEX
should be used with an independent modeling system which can handle chance constraints. Note
that most independent modeling systems can handle both formulations, which means that the
guadratically constrained reformulation can also be solved using for example AIMMS.

6.2  Stochastic Programming models with Recourse
In this section we will discuss a solution method for both stochastic programming models with
recourse, presented in Chapter 5.

Since we have assumed that the fuel consumption on an arc follows a continuous probability
distribution, the objective functions of both SPR-models are nonlinear. Furthermore, for
computational reasons it is impossible to take all scenarios of a continuous distribution into account.
In order to solve these problems, Sample Average Approximation (SAA) can be used. SAA is a well-
known method in literature, used to solve stochastic models with a large or infinite number of
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scenarios. It is introduced for two-stage stochastic programs with recourse by Shapiro and Homem-
de-Mello in [41]. Their work is extended by Mak et al. [42] and Kleywegt et al. [43]. In this technique
the expected value function in the objective function of a stochastic problem is approximated by the
standard sample mean estimator.

Given a random sample (1 of size |Q|of the fuel usages f the standard sample mean estimator of the
objective function of P(5.3),

max, Ez [h(y, f)] (5.2.1)
is equivalent to
= h f)
max, — \
g IQl wWEN e

Recall that decision variable y denotes that chosen arcs in the tour and parameter f represents the
fuel consumption.

Therefore, the SAA objective function of the TSOPTW becomes

1
max — E Pihei — E KW i (6.2.1)
12
wEN

iEN IEN

where p; is the profit of target i, decision variable h,; = 1, if the recording of target i falls within its
time window in scenario w and w,,;denotes the waiting time before target i in scenario w.

Note that by increasing the sample size |{}]|, the solution based on the SAA objective function will
exponentially converge to the optimal solution of the TSOPTW with a probability of one, according
to Kleywegt et al. [43].

As in the TSOPTW, we can also use SAA to solve the POPTW, because of the continuity of the
probability distributions of the fuel usages. Recall the Objective function of the first stage (5.3.1),

max, Z pix; — Ef [c(y, f)] (5.3.1)
ieEN

where IEf[c(y, f)] is the expected penalty cost in the second stage. In the previous chapter we have
introduced different penalty cost functions for the first stage tour. For fixed penalty costs, Cost
function (5.3.7) should be used. Cost function (5.3.8) should be used for target dependent penalty
costs. For smooth penalty costs, Cost function (5.3.10) should be selected.

The SAA-objective function of the POPTW is

1
max;:V piXi — ﬁ Z c(y, fu) (6.2.2)

wWEN

where c(y, f,,) is the penalty cost function corresponding to the selected type of penalty function.
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When the original objective function of the TSOPTW or the POPTW is replaced by the SAA-objective
function, both problems are linear and deterministic. Therefore, it is possible to solve these
problems with CPLEX, but only for small sets of targets. This is caused by the large number of
constraints and variables in these models. Furthermore, the SAA of the objective function is better
when a lot of scenarios are taken into account, which would entail many second-stage variables.
Therefore, we will present a Tabu-Search Based Heuristic in next section.

6.3 Tabu-Search Based Heuristic

In this section we will introduce a Tabu-Search Based Heuristic for the SOPTW (TSB), which is based
on the heuristic for the SVRPTW presented by Li et al. in [32]. As mentioned earlier, the OPTW is
proved to be NP-hard [8]. It is therefore unlikely that the CCP-model, the TSOPTW or the POPTW can
be solved in polynomial time. To construct an offline tour for the Case Study later in this thesis, a TS-
based heuristic is developed. This heuristic can efficiently approximate the CCP-model and both the
TSOPTW and the POPTW. The heuristic starts with a tour which is feasible for the given model and
contains a tabu list to prevent circling. After a general overview about tabu-search, the main
components of the heuristic are outlined and a detailed description of the algorithm is provided.

6.3.1 Tabu-Search

Tabu-Search (TS) is one of the oldest meta-heuristics, introduced by Glover in [44]. In each iteration
of the original heuristic all solutions in the neighborhood of the current solution are investigated and
the best of them is selected as the new current solution, even if this solution is worse than the
current solution. This enables the algorithm to escape from a local optimum. Visiting recently
selected solutions is forbidden by a tabu list to prevent circling. This tabu list often does not contain
forbidden solutions, but only forbidden moves. After a fixed number of iterations or after a constant
number of iterations without an improvement of the best found solution, the algorithm is finished
and the best found solution is returned.

In literature tabu-search is frequently used to solve both deterministic and stochastic routing
problems. For example, TS is applied by Gendreau et al. [45] to solve the VRP and by Braysy and
Gendreau [46] to the VRPTW. In the case of the SVRPTW, Li et al. [32] and Tas et al. [35] have
applied this technique. Also for the deterministic TOP, there are several researchers who use TS to
solve the problem. The first were Tang and Miller-Hooks in [47] and after them also Archetti et al. in
[48]. In this thesis we will apply TS to the SOPTW.

6.3.2 Main Components of the Tabu-Search Based Heuristic
In this subsection the main components of the TSB are discussed. We will describe the construction
of the initial solution, the solution evaluation, the neighborhood structure and the tabu structure.

Initial Solution

Similar to other local search algorithms, the TSB needs an initial solution to start its exploration in
the solution space. In contrast to Li et al. [32], this solution should be feasible and therefore the
deterministic solution cannot be used as initial solution like is done in the cited article. Note that the
deterministic solution could be feasible, but this cannot be guaranteed for the CCP-model. In the TBS
a feasible initial solution is created using a best neighbor strategy. This solution is constructed by
adding repeatedly from the allowed targets, the target with the highest information value-distance

ratio. This ratio is equal to p;/d;; , where d;; is the distance to target j from the previous added

j
target i. This procedure is repeated until none of the non-included targets is allowed.
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In case of the CCP-model, a target is allowed when, depending on the chosen modeling, the time
window constraint or the deadline and eventually the waiting time constraint are satisfied with a
probability of at least the given threshold . Furthermore, the overall fuel constraint should also be
fulfilled for the route including that target with a probability of at least the given threshold a.

In the TSOPTW and the POPTW all solutions are feasible, since either targets can be skipped or a
penalty is incurred for a late visit at the targets. In case of the TSOPTW, a target is allowed if it can
visited before its deadline with a probability of @ and the depot can be reached after recording this
target both in the worst case. In case of the POPTW, a target is allowed if recording this target has a
positive expected yield. In both cases, the fuel realizations are assumed to be equal to their mean in
this constructing phase.

Solution Evaluation

The solution evaluation is different for each of the three models. The score of a solution is equal to
the objective function value of that particular model. Consequently, for the CCP-model the score of a
solution is equal to the sum of the information values of the targets included in that route,
eventually minus a fraction k the total expected waiting time. For the TSOPTW and the POPTW,
sample scenario evaluation is used to determine the score of a route, which means that the
expectation of the objective function is estimated by the mean of the scores of a sample of
scenarios. When the TSOPTW should be approximate by the heuristic, for each scenario the recourse
action is applied to the given solution and the score of the route is set equal to the mean of the
realized profits over all scenarios. The score of a solution for the POPTW is determined by calculating
the penalty incurred by execution of the route for all scenarios. The total gathered profit minus the
average incurred penalty will be the score of the route. Note that for every solution evaluation of
the TSOPTW or the POPTW the same scenarios should be used for an equitable comparison between
the score of different solutions.

Neighborhood Structure

The neighborhood of a solution is defined by six different neighborhood operators. A neighbor,
which is a candidate solution, can be generated by applying one of the operators to the current
solution. The six operators we have used this TS-based heuristic are

e Reversal: the inversion of a continuous segment of targets in the tour.

e Exchange: the interchange of two targets in the tour.

e Relocation: the displacement of a target in the tour to another place in the tour.

e Replacement: the substitution of a target in the tour by a non-included target.

e Insertion: the addition of a target to the tour.

e Removal: the deletion of a target from the tour.

Note that in Li et al. [32] the SVRPTW is studied, while the SOPTW is addressed in this thesis.
Therefore, most operators used in our research differ from the operators used in the previously
mentioned article. The Reversal operator is also used in the cited article, which is called the 2-Opt
operator. The Exchange and Relocation operators are based on the operators with the same name in
the research by Li et al. [32], but adjusted to the SOPTW. The other three operators are specific for
the Orienteering Problem and therefore not based on the used article. Since in the VRP all targets
should be visited, these operators are not allowed or not possible.
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For each candidate solution an operator is randomly selected and applied to the current solution. To
decrease the number of solution evaluations required in each iteration, only a fixed number of all
candidate solutions is investigated. The probability to select a particular operator to generate a
candidate solution is the same for each operator. In contrast to Li et al. [32], all candidate solutions
should be feasible. All possible solutions are feasible for the TSOPTW and for the POPTW, but in the
CCP-models a solution is feasible if the chance constraints are satisfied.

In order to consider the problem structure with time windows and to improve the quality of the
candidate solution, the operators are not randomly applied to the current solution, like is done by Li
et al. [32]. We have divided the current solution into n equal parts. The Reversal and Exchange
operator are applied within a randomly chosen part of the current solution. The displacement of a
target in the Relocation operator is also only allowed within a randomly chosen part. However, these
operators are applied to randomly chosen targets or segment of targets within the given part. For
the application of the Replacement and Insertion operator a non-included target is randomly
selected. According to the deadline of this target, the part of substitution or insertion is determined.

Part p is selected if the deadline of the target which should be inserted, falls in the EJ -th part of the
fuel capacity F. Within this determined part the place of the inserted or substituted target is
randomly chosen. The last operator, Removal, is not affected by the dividing into parts of the current

solution and by applying this operator a randomly chosen target of the current solution is deleted.

The new current solution is the solution in the investigated neighbors with the highest score. Note
that this score can be lower than the score of the current solution. However, the solution with the
highest overall score will be stored.

Tabu Structure

To avoid circling between a subset of solutions and to explore a larger part of the solution space, a
tabu list with prohibited moves is implemented. These prohibited moves are the reverse moves of
the previous modifications in order to prevent a return to a previous visited solution. In each
iteration after a new current solution is selected, the inverse of the modification leading to this
solution is declared tabu and stored in the tabu list. We consider a random tabu structure, as is done
by Gendreau et al. in [45] and by Li et al. in [32]. This means that the number of iterations a
prohibited modification is tabu, is a random integer which is uniformly generated from [Qﬁ]. Note
that this number of iterations could be different for each prohibited modification.

We define six different tabu lists TABU; where i = 1,2, ...,6, to achieve the prohibited modifications
for the six operators. The first five tabu lists are matrices, where element TABU;(j, k) specifies the
tabu status of the modification (j, k) for operator i. If TABU;(j, k) > 0, modification (j, k) is tabu
for operator i. The sixth tabu list is a column where element TABUg(j) indicates the tabu status of
the modification (j) for the sixth operator. If TABU4(j) > 0, modification (j) is tabu for operator
Removal.

The modification (j, k) with j # k in Reversal is defined as the inversion of the part between the jt*
and k" target in the tour. Therefore, repeating modification (j, k) leads to the original solution.
Also applying modification (k,j) after modification (j, k) restores the original solution. For this
reason it is forbidden to re-inverse the segment between the jth and k" target in the tour and
consequently, the modifications (j, k) and (k, j) for operator 1 become tabu.
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In Exchange the modification (j, k) with j # k represents the interchange of the j'* and the k"
target in the tour. As in Reversal, both repeating modification (j, k) and modification (k,j) re-
establishes the original solution. Therefore, these both modifications become tabu for operator 2.
Note that Exchange modification (j, k) can also be undone by Reversal modification (j, k) or (k,j) if
the absolute difference between j and k is less than three. The opposite is true as well, applying
Exchange modification (j, k) or (k, j) after Reversal modification (j, k) restores the original solution
if |j — k| < 2. To prevent circling also these modifications has to become tabu after the respective
modification.

The displacement of the jt" target of the tour to the k' position in the tour is denoted by
Relocation modification (j,k) with j # k. Notice that the new position of the j" target is
determined in the tour without this target. This displacement can be undone by the inverse
modification (k, j), which has to become tabu to avoid a return to previous solutions. When a target
is moved only one position forward or backward, which means that |j — k| = 1, the Relocation
modification (j, k) can also be undone by repeating Relocation modification (j, k) or by executing
Exchange modifications (j, k) or (k,j) or Reversal modifications (j, k) or (k, j), since exchanging of
two consecutive targets in the tour is the same as moving one of the two targets one position
forward or backward. This means that also the Exchange modification (j,k) and Reversal
modification (j, k) can be reversed by Relocation modification (j, k) or (k,j) when |j — k| = 1.

The Replacement modification (j, k) is defined as the substitution of the jt" target in the tour by
target k, where target k has not yet been included in the tour. This modification can be reversed by
the Replacement modification (j, 1), where target [ is equal to the j¢" target of the original tour.
Note that this operator can only be applied when not all targets are included in the current solution.
Furthermore, this is also the case for the fifth operator, Insertion.

In Insertion the modification (j, k) describes the addition of the not yet included target k at position
j in the tour. Operator Removal effectuates the opposite, because the deletion of the j" target in
the tour is denoted by Removal modification (j). Therefore, Removal modification (j) after Insertion
modification (j, k) leads to the original solution and also Insertion modification (j, ) after Removal
modification (j) where target [ is equal to the j* target of the original tour restores the original
tour. Consequently, it is forbidden to reinsert target [ at position j or to remove the just inserted
target at position j.

We have implemented a tabu list with prohibited modifications instead of prohibited solutions in
order to reduce the computation time to verify a solution is tabu. However, this often results in
more than one solution being tabu. Some of these prohibited solutions could have a high score and
might not have been visited. To mitigate this problem, aspiration criteria are introduced. These
criteria allow overriding of the tabu status of a solution if they are satisfied. In this thesis we use a
commonly used aspiration criterion that a tabu solution can be overridden if it has a higher objective
value than the currently best known solution.
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6.3.1 Tabu-Search Based Heuristic for the SOPTW
In this subsection we will provide a detailed description of the Tabu-Search Based Heuristic for the
SOPTW (TSB).

The heuristic starts with constructing an initial solution in the way described in the previous
subsection, corresponding to the model which should be solved by the TSB. For this initial solution,
which is the current solution, the objective function of the investigated model is calculated. Since
this is the only solution found up to this far, it is also the currently best known solution.
Subsequently, the heuristic follows a loop for a fixed number of iterations, Ty, -

First, a constant number N,,,, of candidate solutions, which are neighbors of the current solution,
are generated using the six operators, presented in the previous subsection. The tabu status of the
modifications made by the different operators is not taken into account in this stadium of the loop
but the candidate solutions should be feasible. Each of these N,,,, candidate solutions is evaluated
and the score of the model objective function is calculated.

Secondly, for all tabu solutions in the investigated part of the neighborhood is verified whether the
aspiration criterion is satisfied. If that is not the case, the tabu solution is removed from the list of
candidate solutions, otherwise the solution is stored by the non-tabu solutions at the list of
admissible solutions.

After that the best solution, which is the solution with the highest score in the list of admissible
solutions, is determined. If the score of this best solution is higher than the score of the best solution
found so far, the currently best known solution is updated. The best solution found in this iteration is
the new current solution.

Consequently, the tabu list should be updated. The inversion of the modification made to move from
the previous current solution to the new current solution has become tabu for a random number of
iterations. The tabu status of all other modifications is reduced by one.

After the completion of the loop, the algorithm is finished and the best solution found is returned.

The stopping criterion of the TBS is also different of the TS-based heuristic of Li et al. in [32]. In our
heuristic we use only one stopping criterion which is that the heuristic is finished after a fixed
number of iterations, while in Li et al. [32] the heuristic is also finished when there is no
improvement of the best found score for a constant number of consecutive iterations.
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Part I

Adaptive Routing

In this part we will discuss some strategies to adjust the planned tour
during the flight in real-time in order to anticipate to the realized fuel
consumptions. In Chapter 7 we will introduce adaptive routing
strategies for the online part of the UAV-MPP with time windows and
stochastic fuel consumption where the initial tour constructed in the
offline part is adapted to respond to the actual circumstances. In the
other chapter of this part we will present one-step-ahead routing
strategies, where only the next location is determined. Both
deterministic strategies where the stochasticity of the fuel
consumption is not taken into account and stochastic strategies are
introduced in Chapter 8.
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7. The online problem

In this chapter we will discuss some strategies to adjust the initially constructed tour to the realized
fuel usages. The initial tour which is constructed with the methods presented in Part Il, could not be
achievable under all circumstances. For example, during the execution of an initial tour constructed
with the CCP-model, the UAV is running out of fuel with a probability of 1 — a. The TSOPTW
approach is likely to schedule a relatively high number of targets, since the TSOPTW policy allows
planned targets to be skipped. Since for running out of fuel in the POPTW only a penalty is incurred,
the initial tour constructed in the POPTW could require more fuel than the given fuel capacity of the
UAV. Therefore, two adaption strategies are proposed in this chapter. The first adaption strategy is
the recourse action we already used in the determination of the initial tour of the TSOPTW while an
alternative recourse action is used in the second adaption strategy.

7.1 Recourse Action

First, we will recall the recourse action we have defined in Section 5.2. In the second stage of the
TSOPTW we have applied the recourse action that the next target in the final route is equal to the
next target in the initial tour, except when the probability that this target can be reached before its
deadline is below a predefined level a or when the remaining fuel quantity is insufficient to fly to
this target and back to the depot in the worst case. In that case the next target of the initial tour is
skipped in the final route. This means that the next target in the final route is the first target in the
initial tour which satisfies the recourse requirements, starting from the current location. This
recourse action is applied during the second stage of the TSOPTW, which means that the initial tour
constructed with this method is optimized for this adaptive routing strategy. During the flight this
strategy can be applied to all initial tours. However, it is expected that the final tour based on the
initial tour of the TSOPTW will gather more information value than the final tours based on an initial
tour of another method. This is due to the fact that the recourse action is already taken into account
in the construction of the initial tour in the TSOPTW.

7.2  Alternative Recourse Action

In order to overcome the problem just mentioned, we will define also another recourse action which
is more based on the structure of the CCP-model and the POPTW. In contrast to the TSOPTW, the
possibility to skip targets during the execution of the initial tour does not exist in the CCP-model and
the POPTW. Therefore, in the alternative recourse action the initial tour is followed until the
remaining fuel quantity is insufficient to fly to the next target and back to the depot in the worst
case. In that case the UAV has to go back to the depot and the flight is finished. Since it is not
possible to skip a target because of the small probability to reach it before its deadline, it is
reasonable that the departure time of some targets in the flight will fall outside their time window.
The gathered profit for these targets is equal to zero. It is expected that this is often the case by the
execution of the by TSOPTW constructed initial tour, because in the construction the possibility to
skip targets is considered.
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8. One-Step-Ahead Routing

In this chapter we will discuss another approach to solve the SOPTW. The previous approach
constructs an initial tour before the flight which is adjusted to the realized fuel usages during the
flight, while in this approach the next location is determined after recording the previous. We will
introduce this approach as the One-Step-Ahead Routing (OSAR) approach. In this chapter we will
present both Deterministic and Stochastic One-Step-Ahead Routing.

In OSAR the next location is determined during the flight when the recording of a target is finished.
At that moment the realized fuel usage on the flight path just flown, as well as the realized fuel
during the recording of the current target becomes available and consequently, also the total fuel
consumption during the flight up to that point is known. Before the UAV, can continue its flight, the
next location should be determined. This means that the determination of the next target has to be
done very quickly, since it should be done in a real-time situation.

We will present two approaches for Deterministic OSAR in this chapter. Both approaches ignore the
stochasticity of the fuel consumption, which means that the probability distribution functions of the
fuel usages is not taken into account in the determination of the following location of the flight. In
order to prevent the UAV of running out of fuel, the worst case realizations of the fuel usages are
however taken into consideration. We will also present the stochastic variant of both approaches,
which do take into account the probability distribution of the fuel consumption.

8.1 Best Neighbor Approach
The first approach we will introduce is the Best Neighbor Approach (BNA). In this approach the next
location of the UAV is determined by selecting the feasible target with the highest profit-fuel ratio.
Two variants of the BNA are presented in this section, the Deterministic Best Neighbor Approach
(DBNA) and the Stochastic Best Neighbor Approach (SBNA).

8.1.1 Deterministic Best Neighbor Approach

In this deterministic approach the stochasticity of the fuel consumption is ignored, which means that
in the determination of the next location of the flight of the UAV is assumed that the fuel usage on
each arc is fixed and equal to the mean of the given probability distribution function. Therefore, a
target is feasible if it can be recorded before its deadline, taking into account the already used fuel
and the expected fuel usage on the arc from the current position to that target. Given the current
position i, the total fuel consumption up to the current location, f f; and the expected fuel usage on
the arc (i, ), 1;j, target j is feasible if

flitw; <L (8.1.1)

Note that the total fuel consumption at the departure of the depot at the beginning of the flight is
equal to zero, accordingly ff; = 0. Note that for the depot i = 1.

In order to prevent the UAV for running out of fuel, a worst case control is also provided for the
targets. A target is feasible if both the deadline condition and the worst case condition are satisfied.
The worst case control for a target is fulfilled if the remaining fuel is sufficient to fly from the current
position to that target, to record that target and to fly back to the depot, all under the worst case
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circumstances. Given the worst case fuel usage for the flight from the current position i through

target j back to the depot, W;;, the worst case condition is met for target j if

jr
ffi+Wy <F (8.1.2)

where ff; is the total fuel consumption up to the current location and F is the fuel capacity of the
UAV.

The next location in the tour of the UAV is the feasible target with the highest profit-fuel ratio, which
has not yet been visited, i.e. the maximum information value per fuel unit is selected. The profit-fuel
ratio for a target is calculated as the profit of that target divided by the fuel usage to collect this
information value. The fuel required to collect the information value of target j is the sum of the fuel
used to fly from the current location i to target j, the fuel spent on the recording of target j and if
the UAV arrives before the earliest time of target j, the fuel consumed during the waiting time
before target j. The profit-fuel ratio of target j is equal to

_b
Hij + w;j

where p; is the profit of target j and w; is the waiting time before target j.

This process is repeated until there are no feasible and unvisited targets anymore. In that case the
following location of the UAV is the depot and subsequently the flight is finished.

8.1.2 Stochastic Best Neighbor Approach

Since the stochasticity of the fuel consumption, which is ignored in the DBNA, is taken into account
in the SBNA, the feasibility conditions and the profit-fuel ratio are different than in the DBNA. The
main processes of the approach, such as the selection of the following destination of the UAV, are
still the same. Due to the stochastic fuel usages on the flight paths in the area of operations, a target
is feasible if there is a strictly positive probability that the target can be recorded before its deadline
given the total fuel consumption up to the current position of the UAV. Independent of the assumed
probability distribution function of the fuel usages on the arcs, the probability to reach a target with
a deadline smaller than the already used fuel is equal to zero, since a negative fuel usage on an arc is
meaningless. Given the total fuel consumption up to the current position i, ff;, the deadline
condition for target j is satisfied if

ffisl (8.1.3)

Besides the deadline condition, the worst case control is applied in the SBNA as well, which means
that feasible targets should also meet the worst case condition, Condition 8.1.2.

Moreover, also in the profit-fuel ratio used in the SBNA, the stochasticity of the fuel consumption is
considered. The profit-fuel ratio of a target is the expected profit of that target given the current fuel
consumption divided by the expected fuel required to collect this information value, thus the ratio is
equal to

E(Profit)
E(Fuel)
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The expected profit of a target is calculated as the probability to record that target before its
deadline multiplied by the information value of that target. For the definition of this probability for
target j, the remaining time before its deadline t; should be determined, which is equal to

ti=Li—ffi

To record target j before its deadline, the realized fuel consumption of arc (i, j) should be smaller or
equal to time t;. The probability that target j can be reached before its deadline, given the total fuel
consumption up to the current position i, is equal to

P(fij <t

where f;; is the stochastic fuel usage on the arc (i, ), which follows a given probability distribution.
Consequently, the expected profit of target j is

E(Profit) = P(fi; < t;) *p;

The expected fuel to collect this information value contains two parts. The first part is the expected
fuel usage during the flight from current location i to target j and during the recording of target j.
The expected fuel usage E(f;;)on arc (i, /) is equal to y;;. The second part is the expected waiting
time before target j. The waiting time of target j is defined as the maximum between zero and the
earliest time of target j of which the realized fuel usage on arc (i,j) and the fuel consumption
before the current position i are subtracted, accordingly

w; = max(0,E; — fi; — ff)
Consequently, the expected waiting time before target j is
E(w;) = max(0,E; — p;; — ff;)

Therefore, the profit-fuel ratio for target j in the SBNA is equal to

P(fy <t) *p;
.ul'j + maX(O,Ej —[,ll] _ffl)

where i is the current position and f f; is the total fuel consumption up to target i.

8.2 Repeated Tabu-Search Based Heuristic Approach

We will now present another method to determine the following destination in OSAR. While in the
BNA only the best neighbor of the current position is selected, also the neighborhood of the
following destination is taken into account in the Repeated Tabu-Search Based Heuristic Approach
(RTSBA). In this approach a deterministic or stochastic variant of the Tabu-Search Based Heuristic
(TSB), presented in Section 6.3, is executed to determine the next target of the flight. The output of
this heuristic is a route for the remaining part of the flight, but only the first target of this route from
the current position is considered. In the remainder of this section we will discuss two variants of the
RTSBA, the Repeated Deterministic Tabu-Search Based Heuristic Approach (RDTSBA) and the
Repeated Stochastic Tabu-Search Based Heuristic Approach (RSTSBA). In the first variant the
stochasticity of the fuel consumption is ignored, while the second variant will take this information
into account.
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8.2.1 Repeated Deterministic Tabu-Search Based Heuristic Approach
In this approach a deterministic variant of the TSB, presented in Section 6.3, is executed to
determine the next location in the flight of the UAV. Every time the UAV has arrived at a target and
the recording of that target is finished, the feasible and unvisited targets are selected. These targets
are the input of the TSB. A target is feasible if both Condition (8.1.1) and Condition (8.1.2) are
satisfied.

The main structure of the deterministic variant of the TSB is the same as the main structure of the
TSB, only a part of the main components of the heuristic are adjusted. Both the Neighborhood
Structure and the Tabu Structure remain the same. The initial solution is constructed using the DBNA
of Section 8.1.1 where is assumed that the realized fuel consumption is equal to its expectation. The
score of a route which is determined in the solution evaluation is equal to sum of the profits of the
targets in the route. Note that these solutions are routes starting at the current position.

As in the original TSB, all candidate solutions should be feasible. In this deterministic variant a route
is feasible if each target in the route can be reached before its deadline when is assumed that all fuel
realizations are equal to their expectation. Each target in the tour should also satisfied the worst
case control when is assumed that all fuel realizations before that target are equal to their
expectation. Given the current position i and the realized fuel consumption before the current
position f f;, the first condition is satisfied for solution R if

ffi+M; <L Vj €R (8.2.1)

where M; is the sum of the expectations of the fuel usages on the arcs in R before target j and

target j is after target i in solution R.

The second condition is a worst case condition, which is applied to prevent the UAV for running out
of fuel. Given the current position, the realized fuel consumption before the current position and the
targets j and k, which are consecutive targets in solution R, the worst case condition is satisfied if

ffi+ M+ Wy, <F Vj,k €R (8.2.2)

where W), is the worst case fuel usage for the flight from target j through target k back to the depot
and F is the fuel capacity of the UAV.

The output of this deterministic variant of the TSB is the best found route with the highest score
from the current position to the depot. Only the first target in this route is considered, since RDTSBA
is a One-Step-Ahead Routing Approach.

8.2.2 Repeated Stochastic Tabu-Search Based Heuristic Approach
In this section we will discuss an approach where repeatedly a stochastic variant of the TSB is
executed. Like in the RDTSBA, every time the recording of a target is finished, the set of feasible and
unvisited targets is determined. In RSTSBA targets are feasible if both Condition 8.1.3 and Condition
8.1.2 are satisfied. This set of targets is the input of the stochastic variant of the TSB.

The initial solution of the stochastic variant of the TSB is constructed using the SBNA, where we
assume that the realized fuel usages are not available and only their distribution function is known.
This results in a larger uncertainty in the departure times of the following targets. In order to
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prevent a long initial solution with a lot of targets which have a probability of zero to be reached
before their deadline, for each target in the initial solution should hold that the minimum fuel usage
during the route before that target is smaller than its deadline. Consequently, all targets in the initial
solution have a positive probability to be reached before their deadline.

Furthermore, the solution evaluation in this stochastic variant of the TSB is also different as the
evaluation of the deterministic variant, presented in Subsection 8.2.1. The score of a solution in the
stochastic TSB is equal to the expected gathered information value during the executing of the
route. The expected profit of target j in solution R, which is a route from the current location i to
the depot, is equal to

E(Profit) = P(fkj < tj) *Pj

where target k is the immediate predecessor of j and t; = L; — ff; — M. The score of solution R is
equal to the sum of the expected profits of all targets in the tour.

In this stochastic variant we assume that all solutions are feasible. By using the just presented
solution evaluation, solutions with at the beginning of the route a target which has a small
probability to be reached before its deadline, will have a low score. This is caused by the fuel
consumption during the flight to and the recording of this ‘closed’ target. Through this useless fuel
usage the following targets have a smaller probability to be recorded in time and therefore their
expected profit will be smaller. Note that the worst case control for the entire route is not
necessary, since the worst case condition, Condition 8.1.3, is satisfied for all input targets and only
the first target of the route is taken into account.

Like the deterministic variant, the output of this stochastic variant of the TSB is the best route found
with the highest score from the current position to the depot. As mentioned before, since the
RSTSBA is an OSAR approach, only the first target in the output route is considered.
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Part IV

Case Study

In this part we will evaluate a case study executed to test the
previously discussed approaches to solve the SOPTW. In Chapter 9
we will describe the data used in our case study. The model settings
and the used performance measures are discussed in Chapter 10,
while in the following chapters the results of the different
approaches are presented. In Chapter 11 the results of the hybrid
approach are presented. The One-Step-Ahead-Routing approach is
evaluated in Chapter 12.
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9. Data description

To test the in Part Il and Ill introduced approaches, models and strategies, we extend some of the
deterministic datasets used by Vansteenwegen in [9] to stochastic datasets by introducing stochastic
fuel consumption on the flight paths. From these datasets we only use the first nine datasets (c101-
c109). These sets are based on the Solomon’s datasets of vehicle routing problems with time
windows. For all of these considered datasets the deterministic optimal routes are known. In this
chapter we will give a description of the structure of these datasets and the probability distribution
of the fuel usages on the flight paths and during the recording.

9.1 Testinstances
All test instances contain the same 100 targets in an area of 100x100. As starting and ending point
of the flight a depot is situated in the middle of the area. The targets are situated in clusters of
approximately ten targets around the depot. Each of these targets has a fixed information value
which is a multiple of ten in the range of [10,50]. In figure 9.1 the area of operations of our case
study is displayed.

The area of operations
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Figure 9.1: The area of operations where the size of a target represents its information value and the
depot is displayed by a red square
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Since both the locations of the targets and depot and the information values of the targets are the
same for each of the nine test instances, the differences between the considered test instances are
in the time windows of the targets. However, the time window of the depot is equal for each
instance, which means that the fuel capacity of the vehicle, e.g. UAV, is also the same in each test
instance. We assume that the UAV has a fuel capacity F of 1236 units.

In the remaining part of this section we will discuss for each test instance some characteristics of the
assigned time windows.

The time windows of first four test instances follow a specific structure. All assigned time windows in
Test instance c101 have a length of less than 100 fuel units, which means that for each target i in the
instance L; — E; < 100. In the second instance 75 targets have a small time window, which means
that it has a length of less than 100 units, and 25 targets have a very large time window, which
means that it has a length of more than 1000 fuel units. The small time windows are the same as the
time windows in the first test instance. The percentage of very large time windows increases in the
third test instance to 50%, which means that 50 targets have a small time window and 50 targets
have a very large one, and to 75% in the fourth instance. The targets with a very large time window
in an instance are also in the part of targets with a very large time window in the consecutive test
instance. Therefore, comparing two consecutive test instances, the time windows of only 25 targets
will be different.

The other five test instances are individual cases where the time windows are different for each
instance. Test instances c105, c106 and c108 include time windows of different length. In Test
instance c105 the assigned time windows have a length of at least 75 up to 177 fuel units. The
minimum length of the time windows in Test instance c106 is 29 fuel units and the maximum length
in this test instance is 387 units, while in Test instance c108 the length of time windows ranges
between 149 and 353 fuel units.

In the Test instance c107 and c109 the length of all time windows is the same. This length is equal to
180 units for Test instance ¢107 and for Test instance c109 this length is equal to 360 fuel units.

In Table 9.1 for each test instance the average length of the time windows as well the minimum and
maximum length are displayed. Based on the characteristics of the lengths of the assigned time
windows the test instances are classified in categories. The first category contains the test instance
with small time windows. The average length of the time windows of the test instance in Category 1
is at most 160 fuel units, while the maximum length should be lower than 400 units. The average
length of the time windows of the test instances in the second category is slightly longer than of the
test instances in Category 1. Therefore, Category 2 includes three test instances with medium time
windows. The test instances with both small and very large time windows are classified in Category
3. The maximum length of the time windows of the test instances in this third category is more than
1100 fuel units, while the minimum length is less than 50. In the fourth column of Table 9.2 shows
the category classification of the test instances.
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Test instance Average Minimum Maximum Category
Length Length Length
c101 60.76 37 89 1
c102 325.69 43 1135 3
c103 588.49 43 1136 3
c104 852.94 43 1136 3
c105 121.61 75 177 1
c106 156.15 29 387 1
c107 180 180 180 2
c108 243.28 149 353 2
c109 360 360 360 2

Table 9.1: The characteristics of the assigned time windows in the test instance as well their category
classification.

9.2  Stochastic fuel consumption
The average fuel usage on the flight path of target i to target j is equal to the Euclidean distance
between target i and target j. We set the average fuel usage during the recording of target j equal
to the recording times t; that are given in the data sets. This deterministic recording time is the
same for all targets and is equal to 90 fuel units. The recording time of the depot is equal to zero.
Consequently, the mean of the probability distribution function of the fuel usage on arc (i,j) is
equal to y;; = d;j + 1, where d;; is the distance between target i and target j.

We assume that the maximum deviation s;; of this average usage on arc (i, j) consists of two parts.
The first part is related to the distance between the two locations. We assume that this part is a
fixed percentage a of the given distance. The second part is related to the time spend for recording a
target, which is assumed to be a fixed percentage ¢ of the recording time of a target. Summarizing,
the realizations of the fuel usage on arc (i,)) are in the interval [y;; — s;;, u;; + 5;;], where s;; is
equal to ad;; + cx;. In this case study we use a = 0.15 and ¢ = 0.25, consistent with the settings
used by Evers et al. [1].

In the reformulation of the Chance-Constrained Programming model it is assumed that the fuel
usage on each individual arc is normally distributed, while in the Recourse Action of the TSOPTW is
assumed that the worst case usage on each arc can be defined. Since the normal distribution ranges
from negative infinity to positive infinity, we assume that the fuel usages are truncated normally
distributed. To construct this truncated distribution we use a normal distribution with the mean
equal to u;;, which we have defined earlier. The variance of this normal distribution is based on the
triangular distribution. In contrast to the normal distribution, the triangular distribution is a
continuous probability distribution with a lower limit I, an upper limit u and a mode m. According to
Evans et al. [49], the variance of a triangular distribution is equal to

PH+u?+m?—Tu—Im—um
— 9.1)

When the limits of this triangular distribution are set equal to the limits of the interval of the fuel
usage and the mode is set equal to the mean, the variance of the normal distribution of the fuel
usage of arc (i, j) is equal to
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In figure 9.2 the probability density functions of both the triangular distribution and the normal
distribution of arc (i, j) are displayed.
Probability Density Function

— Triangular Distribution
— Normal Distribution

m(i,j) - s(i.) m(i,j) m(ij) + s(iJ)
Figure 9.2: The probability density functions of both the triangular distribution and the normal
distribution of arc (i, j).

To construct the truncated normal distribution of arc (i,j), this given normal distribution is
truncated at the limits of the interval of the fuel usage on the arc. In the scenario construction this is
done by changing all values outside the interval in a random sample of the given normal distribution
by a new random number of the given distribution, until this value falls inside the interval.

By truncating the normal distribution an error is made in the CCP-models which assume that the fuel
usages are normally distributed. Since at both sides of the normal distribution less than one percent
is truncated, this error will be small. For illustration in Figure 9.3 depicts the cumulative density
functions of the right tail of both the normal distribution and the corresponding truncated normal
distribution of arc (i, j).
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Figure 9.3: The cumulative density functions of the right tail of both the normal distribution and the

truncated normal distribution of arc (i, j).
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10. Experimental Settings

In this chapter we will discuss the model settings of the different approaches used in this case study.
In the first section the settings of both the hybrid approach and the One-Step-Ahead-Routing
approach are discussed. After that, the performance measures used in this case study are presented
in the second section.

10.1 Model Settings
In this section the parameters of hybrid approach are discussed. We will describe the parameter
settings of the TSB-heuristic as well as the parameter settings of both the different offline
approaches and online strategies. Subsequently, the parameter settings of the OSAR-approach will
be discussed.

10.1.1 Hybrid Approach
In this subsection we will discuss consecutively the parameter settings of the TBS, the offline
methods which are used to construct an initial tour and the online strategies which are used to
adjust the tour during the flight.

Tabu-Search Based Heuristic

In our case study we use the TSB-heuristic which is presented in Section 6.3 to construct an initial
tour for the hybrid approach of the SOPTW. The TSB requires some settings defining the
experimental design. In the first part of this subsection we will discuss which values for the
parameters are chosen.

For all different approaches to construct an initial tour, we fix the maximum computation time to
one minute. This results in a limitation of the total number of solution evaluations during the
construction by the TSB-heuristic. For the different approaches, the total number of solution
evaluations which can be done within one minute is displayed in the first column of Table 9.2.

Recall that in every iteration of the TSB heuristic Nmax candidate solutions are constructed and
evaluated. The total number of solution evaluations should be divided over the iterations. For
example, all solution evaluations can be done within one iteration. In that case, the number of
iterations T,,,4, is equal to one, while the number of candidate solutions N,,,, is equal to the total
number of solutions evaluations. Also, the opposite is possible where every iteration only one
candidate solution is constructed. From earlier experiments, the best division of the total number of
solution evaluations is determined and the corresponding values of T, 4, and N4, are displayed in
the second and third column of Table 9.2.

# of solution
Approach evaluations Tmax Nimax
TSOPTW 60000 2400 25
CCP-model 120000 960 125
POPTW with Penalty Function 1 300000 625 480
POPTW with Penalty Function 2 300000 1500 200
POPTW with Penalty Function 3 300000 32 9375
POPTW with Penalty Function 4 300000 250 1200

Table 9.2: Parameter settings for the TSB for the different approaches.
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Preliminary experimental testing showed that good results are obtained when the prohibited moves
remain tabu for as much as at least 10 iterations with a maximum of 15 iterations. We therefore use

# =10and A = 15, where 6 and 6 are the minimum and maximum values of the random interval of
the tabu structure. These values are the same for all different approaches.

For each test instance an initial tour is constructed using the TSB-heuristic. Since the TSB-heuristic is
dependent of random numbers, for each test instance and for some approaches, N initial tours are
individually constructed for each threshold or parameter setting as well. The selected initial tour is
the tour with the highest score in the pool of N initial tours. In our case study we use N = 20 for the
test instances of Category 1, for the test instance of Category 2 we use N = 30, while for the test
instances of Category 3 N = 50 is used.

The Offline Methods

Also the different offline methods, which are presented in Chapter 4 and 5, require some parameter
settings. Both the CCP-model and the TSOPTW are dependent of some thresholds or predefined
uncertainty levels. Since the values of these thresholds have a large influence on the initial tour and
therefore also on the final route, we use different values of uncertainty in this case study. In all
variants of the CCP-model we need to define the threshold a, which represents the probability that
the depot is reached within the available fuel capacity. This value is chosen equal to cumulative
density of the maximum limit in the assumed normal distribution of the fuel usage on arc (i, j),
which is

a = P(q;; < pj + 5ij)

where q;; ~N(1;5,0;;) , introduced in Section 9.2 and s;; is the maximum deviation of the realized

fuel usage of its average. Note that this probability is close to one.

The first variant of the CCP-model, which is the variant with the deadline and waiting time
constraint, requires also the settings of the thresholds y and §. Threshold y represents the minimum
probability that the UAV does not have to wait for a target, while the minimum probability that the
UAV departs from a target before its deadline is given by §. Since the expected waiting time is not
taken into account in this first variant, we restrict the probability to wait for a target to 0.5.
Therefore, the value of threshold y is in our case study equal to 0.5. For threshold § we use different
values to investigate the influence of this parameter on the final route. We use in our case study
6 €{0.5,0.6,0.7,0.8,0.9,1.0}.

The second variant of the CCP-model has a time window constraint, which means that the
probability that the UAV arrives at and departs from a target within its time window should be at
least as high as the fixed threshold . For this threshold we use the same values as used for
threshold & in the first variant.

The third variant of the CCP-model has only a deadline constraint, but the expected waiting time is
taken into account. For threshold &, which represents the minimum probability the UAB departs a
target before its deadline, is the same as in the first variant and therefore also the same values are
used. Parameter k is the fraction of the waiting time which is included in the objective function to
minimize the total expected waiting time. Since the realized waiting time does not affect the
realization of the objective during the execution of the case study, this parameter is chosen equal to
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zero. The time the UAV should wait for a target is already lost time. This is due to the fact that
spending fuel on waiting does not have any value for the objective function. In this third variant also
two parameters are introduced to compensate the error which is made by considering the expected
waiting time. The value of these parameters, which are 8 and 4, is in our case study equal to one.

In the TSOPTW we need to define an uncertainty level a. Note that this a represents a different
probability than the threshold a in the first variant of the CCP-model. This level of uncertainty
represents the minimum probability a target could be reached before its deadline if it should not be
skipped in the final route. For this parameter we use in our case study the same values as we use for
threshold § in the first and third variant of the CCP-model. Note that this could result in six different
initial tours, one for each value of «.

For the POPTW we have introduced four different penalty functions to determine the incurred
penalty for a late departure from a target. All these penalty functions require some parameter
settings. In our case study we assume that the time windows of the targets are hard, which means
that recording a target outside its time window yields nothing. Therefore, we use for parameter pf
in Penalty function 1 a value of 50, which results in a nonpositive yield for late recording of a target.
For parameter pf; in Penalty function 2 we use the value of 1, through this the yield of a late
recording is equal to zero. In both smooth penalty functions a scale parameter is included. For the
linear smooth penalty function we set scale parameter b equal to 5, while for the quadratic smooth
penalty function scale parameter c is chosen to be equal to 2.5.

Furthermore, in the construction of the initial tour of both the TSOPTW and the POPTW a sample set
of |(}| scenarios is required to determine the score of a solution. We use for both approaches the
same set of scenarios. In this case study during the construction of the initial tour of both recourse
models a sample set of 1000 scenarios is used, therefore [(1] = 1000.

The Online Strategies

Also two of the online strategies that were introduced in Chapter 7 require some parameter settings.
First, the recourse action is developed to prevent that the UAV departs from a lot of targets later
than the deadline of the time window, which yields no information value. The decision to skip a
target is based on a predefined uncertainty level a. We use in our case study uncertainty level
a € {0.5,0.6,0.7,0.8,0.9, 1.0}, which are the same values as for threshold § in the CCP-model and
as for the level of uncertainty in the TSOPTW.

10.1.2 One-Step-Ahead Routing
Also the Repeated Tabu-Search Based Heuristic Approach presented in Section 8.2 requires some
parameter settings. In this thesis we have executed at each step of the RTSBA a Tabu-Search Based
heuristic with a fixed number of iterations Tmax equal to 50 in which 75 candidate solutions are
constructed. Consequently, Nmax = 75. The upper and lower bound of the random interval of the

tabu structure are setto 8 = 5 and 6 = 10 in this RTSBA.
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10.2 Performance Measures
To compare the different approaches which are used to construct an initial tour and the different
adaptive routing strategies which are used to adjust the initial tour to the fuel realizations, for each
combination the constructed initial tour and the strategy are executed for S scenarios. In this case
study we use S = 10000. Based on these executions we can calculate some performance measures.

The first performance measure we use to evaluate the different approaches introduced is the
average realized profit. This value is calculated by taking the mean over the realized profits of all S
executed scenarios. This measure is an estimation of the expected realized profit for the used
approach and strategy.

The second measure is the absolute gap between the average realized profit and the sum of the
profits of the targets in the initial tour, while the third measure is the percentage gap between the
average realized profit and the planned profit in the initial tour. These two measures indicate both
how close the expected realized profit is to the planned profit.

The average number of skipped targets is the fourth performance measure. The value of this
measure is calculated by taking the mean over the differences between the number of targets in the
initial tour and the number of visited targets in the final route of all S executed scenarios. Since
skipping a target means that the initial tour has to be adjusted, it is preferred that the average
number of skipped targets during the executions of the tour is small. This performance measure is
used, because it is an indication of the endurance of the initial constructed tour. In military settings a
predictable route of the flight could be desirable.

The fifth and last performance measure we use to evaluate the different approaches is the average
percentage of the Profit by Complete Information (PCl). The PCl could be calculated for each
scenario by solving a deterministic OPTW where the fuel consumption on the flight paths f;; is equal
to the fuel realizations of that scenario. The objective value of this OPTW is the total profit which
could be gathered in this scenario if all fuel realizations were available before the flight. Therefore,
the average realized percentage of this value should be large. Note that the deterministic OPTW is
proven to be NP-hard [8]. Therefore, due to the very large calculation time this performance
measure is only determined for the test instance in Category 1.

For the One-Step-Ahead Routing approaches only the first and the fifth performance measures are
used to evaluate these approaches. In OSAR there is no initial tour planned before the flight,
therefore the difference between the planned tour and the executed tour cannot be determined.
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11. Evaluation of the Hybrid Approach

In this chapter we will present the results of the hybrid approach of the SOPTW. We will compare
the different methods to construct an initial tour. In the second part of this thesis we have
introduced 9 different methods to construct an initial tour. The first was the optimal solution of the
deterministic OPTW. Using the CCP-model three different initial tours could be constructed. Besides
these methods, also the TSOPTW could be used to construct an initial tour. Finally, based on the
different penalty functions, the last four initial tours can be constructed using the POPTW.

Preliminary experimental testing has shown that both the first variant of the CCP-model with the
deadline and waiting time constraint and the second variant with the time window constraint
provide poor performances compared to the third version of the CCP-model. The main reason for
these undesirable outcomes is that the expected waiting time is not taken into account, while the
execution of the initial tour is affected by waiting time. The third variant considers the expected
waiting time and therefore this variant outperforms the first two variants of the CCP-model. Besides
that, for some test instances of the first and second category it is not possible to construct an initial
tour which is feasible for the second variant of the CCP-model with a certain value for threshold f.
This is due to the fact that in these instances there is no target which can be reached after its earliest
time with a minimum probability larger than 0.5. Consequently, for these values of threshold S this
variant cannot be used. For these two reasons we will only present the results of the third variant of
the CCP-model in this chapter.

Furthermore, due to the parameter settings of the first penalty function of the POPTW, the yield of a
late recording of a target is zero or in some cases even negative. For the given parameter settings of
the second penalty function, the yield of a late recording is always equal to zero. This could result in
a shorter initial tour for the first penalty function, since the penalties of some targets are higher than
when Penalty function 2 is applied. Therefore, during the execution, the realized profit of the initial
tour of the second penalty function is the same or more than the realization of the first penalty
function. Except this, since we have assumed that the time windows are hard in our case study, the
yield of a late recording is always equal to zero. In Penalty function 2 this is also the case, therefore
the results of the POPTW combined with Penalty function 1 are left out in this chapter.

For the POPTW we also consider two different smooth penalty functions. By these penalty functions
the penalty costs are dependent on the late period, which means that the yield of a late recording is
not always equal to zero. Since the yield of a late recording could be positive, the time windows are
soft in this case. However, during the execution of the initial tour hard time windows are considered.
For the linear penalty function the penalty for late recording increases less rapidly than the penalty
of the quadratic penalty function. This results in a better approximation of the hard time windows
which we consider during the execution for the linear penalty function. Therefore, the results of the
POPTW combined with the quadratic smooth penalty function are also left out in this chapter.

We will combine the remaining five methods with different adaptive routing strategies. In the first
section we will evaluate the different offline methods combined with the recourse action, while in
the second section the results of the execution of the initial tours adjusted by the Alternative
Recourse Action are presented.
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11.1 Recourse Action

In this section we will present the results of the different methods combined with the recourse
action. The complete table of remaining results can be found in Table A.1 of the appendix. To discuss
the results, we will use an illustrative instance, since all test instances of all categories follow
approximately the same pattern. Table 11.1 shows the results of Test instance c107 of Category 2 for
different levels of uncertainty a: the minimum probability level to continue to the next target,
applied in the recourse action. Note that these uncertainty levels are also used in the construction of
the initial tour of both the CCP-model and the TSOPTW. For the five considered offline methods the
values of the introduced performance measures are given. In the first column the sum of the profits
of the targets in the initial tour is displayed. The profit which is realized by evaluation of this initial
tour combined with the recourse action is given in the second column. Column 3 and 4 show the gap
between the planned profit and the realized profit. The third column shows the absolute gap
between those two values, while in the fourth column the percentage gap is displayed. Column 5
contains the average number of skipped targets of the initial tour due to the recourse action.

The initial tour of the deterministic OPTW is the same for all levels of uncertainty, since this method
does not take uncertainty into account. Therefore, also the planned profit is the same for all
uncertainty levels. The average realized profit is the largest for a level of uncertainty of 0.6. Both
smaller and larger uncertainty levels provide a lower average profit during the execution. When the
level of uncertainty is equal to 1, the average realized profit is the lowest. This is caused by the fact
that at this level, the number of targets that should be skipped due to the recourse action is the
highest out of all levels of alpha. The average absolute gap is between 37 and 45 units of profit,
which corresponds to a percentage gap between 10 and 12 percent.

The constructed initial tours of the CCP-models are shorter than the optimal deterministic tour.
Therefore, the planned profit of these tours is also less than the planned profit of the deterministic
tour. Note that in the optimal deterministic tour all targets can be reached with probability 0.5, since
we have assumed that the deterministic fuel consumption is equal to the means of the truncated
normal distributions. However, due to the total fuel constraint of the CCP-model, this optimal
deterministic tour can be not feasible for the CCP-model with waiting time. Since in the CCP-model
the uncertainty of the whole tour is considered, the initial tour which is feasible for uncertainty level
1 is shorter than the other initial tours. However, the gap between the realized profit and the
planned profit is smaller for this level of uncertainty compared to both the absolute and the
percentage gap of the other uncertainty levels. The realized profit is lower for larger levels of
uncertainty caused by the larger number of targets of the initial tour that should be skipped due to
the recourse action. With respect to the realized profit, the CCP-model outperforms the
deterministic OP approach. Furthermore, both the average gap between the planned and the
realized profit and the average number of skipped targets are smaller than the gaps of the first
considered method.

For the TSOPTW the constructed initial tours are longer than all other initial tours and therefore also
the planned profit is larger. This is due to the fact that in the construction of the initial tour of the
TSOPTW the recourse action is already taken into account, which means that the possibility to skip
targets is considered. Consequently, both the average number of skipped targets and the average
gap are much larger than for the other methods. However, for all levels of uncertainty the average
realized profit for the TSOPTW is larger than the average realized profit for all other methods.
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Recourse Action

c107 Deterministic OPTW

alpha Planned Realized Absolute Percentage # of skipped
profit profit Gap Gap targets

0.5 370 332.308 37.692 10.187 0.8525

0.6 370 332.884 37.116 10.031 0.8768

0.7 370 332.840 37.160 10.043 0.9006

0.8 370 332.250 37.750 10.203 0.9308

0.9 370 330.790 39.210 10.597 0.9668

1.0 370 324.796 45.204 12.217 1.0634

CCP-model

alpha Planned Realized Absolute Percentage # of skipped
profit profit Gap Gap targets

0.5 350 347.839 2.161 0.617 0.0208

0.6 350 347.695 2.305 0.659 0.0265

0.7 350 347.345 2.655 0.759 0.0377

0.8 350 346.667 3.333 0.952 0.0560

0.9 350 344.682 5.318 1.519 0.1036

1.0 330 329.382 0.618 0.187 0.0218

TSOPTW

alpha Planned Realized  Absolute Percentage # of skipped
profit profit Gap Gap targets

0.5 380 348.700 31.300 8.237 1.8805

0.6 410 349.304 60.696 14.804 2.8834

0.7 410 349.765 60.235 14.691 2.8829

0.8 410 349.951 60.049 14.646 2.8848

0.9 410 349.406 60.594 14.779 2.8915

1.0 470 340.113 129.887 27.636 7.0113

POPTW - Fixed Penalty
Planned Realized  Absolute Percentage # of skipped

alpha . .
profit profit Gap Gap targets
0.5 350 347.839 2.161 0.617 0.0208
0.6 350 347.695 2.305 0.659 0.0265
0.7 350 347.345 2.655 0.759 0.0377
0.8 350 346.667 3.333 0.952 0.0560
0.9 350 344.682 5.318 1.519 0.1036
1.0 350 329.252 20.748 5.928 0.4214
POPTW - Smooth Penalty
alpha Planned Realized Absolute Percentage # of skipped
profit profit Gap Gap targets
0.5 350 347.812 2.188 0.625 0.0243
0.6 350 347.650 2.350 0.671 0.0301
0.7 350 347.282 2.718 0.777 0.0413
0.8 350 346.572 3.428 0.979 0.0606
0.9 350 344,537 5.463 1.561 0.1096
1.0 350 329.056 20.944 5.984 0.4280

Table 11.1: The results of Instance c107 for different methods combined with the recourse action.
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The constructed initial tours of both variants of the POPTW have a lower planned profit than the
sum of the profits of the targets in the optimal deterministic tour. This profit is the same for all levels
of uncertainty, because the values of a are not taken into consideration in the POPTW. For most of
the levels of uncertainty, the values of the performance measures of both variants of the POPTW are
comparable with the results of the CCP-model, except for the case when the uncertainty level is
equal to 1. In that case both the gap between the planned profit and the realization and the average
number of skipped targets is larger than for the CCP-model. This is due to the fact that the initial
tour of the CCP-model is adjusted to the uncertainty level, while the initial tours of the POPTW are
the same for all levels of uncertainty.

11.2 Alternative Recourse Action
The execution of the initial tours constructed using the five considered methods combined with the
alternative recourse action is evaluated in this section. Recall that the alternative recourse action
prescribes that all planned targets are visited as long as the UAV is still able to return to the depot in
worst case. Contrary to the recourse action, in none of the offline methods the alternative recourse
action is taken into account. Furthermore, during the execution the flight has to be adjusted at most
one time, since only targets at the end of the tour might be skipped.

The levels of uncertainty which are taken into consideration in the construction of the initial tours of
the CCP-model and the TSOPTW are not applied in the alternative recourse action. Therefore, we
consider for each of the five different offline methods just one of the available initial tours. For the
deterministic OPTW and both variants of POPTW only one initial tour is constructed for each test
instance. However, for the TSOPTW and the CCP-model an initial tour is available for each of the six
different levels of uncertainty. In this section we evaluate for the TSOPTW the initial tour with the
smallest average number of skipped targets due to the recourse action in Section 11.1. This selected
tour had the least adjustments during the flight. Consequently, when the possibility to skip targets
due to their time windows is left out, the realized profit of this tour will be larger than the realized
profit of the other initial TSOPTW-tours associated to other levels of alpha. For the TSOPTW the
initial tour which is constructed based on the uncertainty level equal to 0.5 has for all test instances
the smallest average number of skipped targets out of all initial tours. In the construction of the
initial tour of the CCP-model, it is assumed that the tour cannot be adjusted during the flight. Due to
the deadline constraint the tours are longer for smaller threshold. Therefore, we select for each test
instance the initial tour which is based on a threshold equal to 0.5.

In Table 11.2 the results for two illustrative test instances of the execution of the initial tours
combined with the alternative recourse action are given. The results for the other instances can be
found in Table A.2 of the appendix. The other test instances of Category 1 and 2 show similar results
as illustrative case c105 and the results of the other instances of Category 3 are similar to the results
of illustrative case c103.

For Test instance c105 of Category 1 we see that the realized profit of the TSOPTW is lower than the
realized profit of the other methods. The time windows are small in this test instance and therefore
the probability to depart from a target after its deadline is larger. This probability is increased by the
fact that the possibility to skip targets due to their time windows is considered during the
construction of the initial tour, but this possibility does not exists in the alternative recourse action.
In contrast to Test instance c105, half of the time windows of Test instance c103 are very large. The
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probability to reach a target within its deadline is therefore much larger, even when it is not possible
to skip targets during the flight. Consequently, the realized profit of the TSOPTW is the largest for
test instances with large time windows.

For both instances the deterministic optimal tour gathered on average fewer profit during the
execution than the CCP-model and both POPTW variants. This means that when the stochasticity of
the fuel consumption is taken into account, this will result in a larger realized profit. For Test
instance c103 the average gathered profit during the execution of the initial tour of the CCP-model is
larger than the realized profit of both POPTW tours, while for the small time windows of c105 the
realized profit of the CCP-model is equal to the realization of the POPTW with a fixed penalty. The
POPTW with a smooth penalty function has in both test instances a lower realized profit than the
CCP-model and the POPTW with a fixed penalty.

The gap between the planned and the realized profit of the deterministic OPTW and the TSOPTW is
much larger than the gap of the other three methods. For Test instance c105 the realized profit of
the TSOPTW is only 48% of the planned profit. For the very large time windows of Test instance c103
the gap between the realized and planned profit is the smallest for the POPTW with a fixed penalty,
while for the small time windows of Instance c105 this gap is the smallest for the POPTW with a
smooth penalty function.

Also the average number of skipped targets during the execution of the initial tour of the TSOPTW is
much larger than for the other models. For both instances the method with the smallest gap is also
the method with the lowest average number of skipped targets. Note that in Test instance c105
there is no target skipped during the execution of the initial tour of the POPTW with a smooth
penalty function, but the realized profit is not equal to the planned profit. This is due to the fact that
some targets are recorded outside their time window and therefore the yield of the recording was
equal to zero.

c103 Alternative Recourse Action
Method Planned Realized Absolute Percentage # of skipped % of the
profit profit Gap Gap targets PCI
OPTW 390 331.434 58.566 15.017 0.9428 -
CCP-model (a=0.5) 370 363.897 6.103 1.649 0.1175 -
TSOPTW (a=0.5) 430 376.521 53.479 12.437 2.5613 -
Fixed Penalty 360 359.980 0.020 0.006 0.0005 -
Smooth Penalty 360 355.338 4.662 1.295 0.1554 -
c105
Method Planned Realized Absolute Percentage # of skipped % of the
profit profit Gap Gap targets PCI
OPTW 340 291.819 48.181 14.171 0.0704 0.8671
CCP-model (a=0.5) 330 327.930 2.070 0.627 0.0045 0.9488
TSOPTW (a=0.5) 420 199.885 220.115 52.408 5.0832 0.5788
Fixed Penalty 330 327.930 2.070 0.627 0.0045 0.9488
Smooth Penalty 320 319.794 0.206 0.064 0.0000 0.9261

Table 11.2: The results of Test instances c103 and c105 for different methods combined with the
alternative recourse action.
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12. Evaluation of the One-Step-Ahead Routing Approach

In this chapter we will evaluate the different One-Step-Ahead-Routing Approaches. In Chapter 8 we
have introduced four different OSAR approaches. The first two approaches are Best-Neighbor
approaches, where the first is the Deterministic Best Neighbor Approach (DBNA) which does not
take uncertainty into account and the second is the Stochastic Best Neighbor Approach (SBNA)
which considers the stochasticity of the fuel consumption. Both these approaches do not take the
remainder of the flight into consideration in the determination of the location to visit next. The
other two approaches on the other hand, do consider the remainder of the flight in the
determination of the next location by constructing a whole route for the remainder of the flight and
selecting the first location in this route as next location. These two approaches execute repeatedly a
tabu-search based heuristic. The first Repeated Tabu-Search-Based heuristic Approach is the
Deterministic RTSBA, where uncertainty is ignored. In the constructing of a route for the remainder
of the flight, the Stochastic RTSBA considers the stochasticity of the fuel usages.

We have evaluated these four approaches for the same S scenarios as the scenarios which we used
for the evaluation of the five offline methods combined with the recourse actions. In OSAR there is
no initial tour constructed before the flight which should be adaptive during the flight. After
recording a target, the next location of the flight is determined using an OSAR approach. Therefore,
only the realized profit and the percentage of the PCl can be used as performance measures in this
case.

In Table 12.1 contains the realized profit and the percentage of the PCl for the four OSAR
approaches: DBNA, SBNA, RDTSBA and RSTSBA.

For the Best-Neighbor approaches, we see that the realized profits of the deterministic variant are
less than the realized profit of the stochastic variant for the test instances with small or medium
time windows. The realized profit of the stochastic variant of the test instances with very large time
windows is smaller than the realization of the deterministic variant. Taking into account the
stochasticity of the fuel usages is more important for small time windows, since the probability to
arrive at the target after its deadline is much larger than for large time windows. In instances with
very large time windows it is less important to take the uncertainty into account in the

DBNA SBNA RDTSBA RSTSBA

Realized % ofthe] Realized % ofthe|] Realized % ofthe] Realized % of the

Profit PCI Profit PCI Profit PCI Profit PCI

clo1 299.274 0.9273] 299.376 0.9231] 307.124 0.9492] 309.560 0.9580
c102 322.418 - 320.628 - 335.307 - 338.359 -
c103 375.994 - 374.635 - 376.648 - 376.362 -
cl04 388.160 - 387.764 - 388.094 - 389.238 -

c105 317.115 0.9353] 317.981 0.9254] 324.719 0.9472] 328.276 0.9548

cl06 315.309 0.8989] 322.225 0.9183] 320.017 0.9146] 329.760 0.9433
c107 312.755 - 317.922 - 336.721 - 335.975 -
c108 327.456 - 328.156 - 339.608 - 341.248 -
c109 343.534 - 345.773 - 354,553 - 354.029 -

Table 12.1: The results of the One-Step-Ahead Routing Approaches for all considered test instances.

77



determination of the next location. Furthermore, in the SBNA the targets which can be reached
before their deadline with a probability equal to one are overrated in the determination of next
target. In case there are a lot of targets with the same profit, which have a probability to be reached
before their deadline equal to one, the nearest of these targets is selected as the next location. This
selection could have a negative impact on the realized profit.

For the most test instances the realized profits of the repeated TSB approaches are for both variants
significant larger than the realizations of the profit of the BNA. We can see that the realized profit of
the stochastic variant is for the most instances larger than the deterministic variant. However, for a
few test instances the total average gathered profit of the stochastic variant is smaller than the
realizations of the profit for the deterministic variant, but these differences are small. The
improvement of the realized profit by considering of the stochasticity of the fuel usages is the largest
by the test instances with the smallest time windows. This is due to the fact that the probability a
small time window is reached after its deadline by higher fuel usages is much larger than when the
width of the time windows is larger. Therefore, taking into account the stochasticity of the fuel
consumption is more recommended in these test instances.

Compared to the results of the hybrid approach, presented in Chapter 11, we can see that the
realized profits of the OSAR approaches are smaller than the highest realized profits of the hybrid
approach for all test instances. These differences are the smallest for the test instances of Category
1, where adjusting the flight to the realizations of the fuel usages is the most profitable because of
the small time windows.
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PartV

Conclusions

In this part we will summarize our research done in this thesis. In
Chapter 13 an overview of advantages and disadvantages of the
presented methods and strategies is given, while a summary and a
short conclusion are provided in Chapter 14. This part will end with
some ideas for further research in Chapter 15.
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13.

Overview Solution Strategies

The diagram below contains the advantages and disadvantages of the methods and approaches.

Hybrid Approach
Offline Methods
Approach/Method | Advantages Disadvantages Section
Deterministic e “Optimal” solution can be found | ¢ Uncertainty not taken into 4.1
OPTW for most instances account
CCP-model — Maximal probability to wait fora | ¢ Not feasible for some test 43.2
Deadline and target is fixed instances
Waiting Constraint e Expected waiting time not
included
CCP-model — Time Minimal probability to reach e Not feasible for some test 43.3
Window Constraint within time window is fixed instances
e Expected waiting time not
included
CCP-model - Expected waiting time included e No exact distribution of sum 434
Waiting Time Small gap between planned and of fuel consumption and
realized profit waiting time can be
determined
TSOPTW Recourse action taken into e Large average number of 5.2
account skipped targets during the
Less specific assumptions on execution
probability distribution required | e Large gap between planned
Largest realized profit and realized profit
POPTW — fixed Less specific assumptions on e Loss in potential profit dueto | 5.3
penalty function probability distribution required disregarding possibility of
Both soft or hard time windows skipping targets
can be assumed
Small gap between planned and
realized profit
POPTW — smooth Less specific assumptions on e Assumed soft time windows 53
penalty function probability distribution required | e Loss in potential profit due to
Small gap between planned and disregarding possibility of
realized profit skipping targets
Online Strategies
Recourse Action Optimized for time windows e Less predictable first part of 7.1
the flight by skipping
intermediate targets during
the flight.
Alternative More predictable first part of ¢ Not optimized for time 7.2
Recourse Action the flight by skipping only windows
targets at the end of the flight.
OSAR approach
Best Neighbour Fast determination of next e Local focus on only the best 8.1
approach location next location
Repeated TSB Also targets close to the next e Longer determination of next | 8.2
approach location taken into account location
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14. Summary and Conclusion

In this thesis we have addressed the UAV-mission planning problem with time windows and
stochastic fuel consumption. In the area of operations, several targets are identified, which each
have their own information value (represented by a profit value in our models). Since the fuel
capacity of the UAV is fixed, during a mission only a subset of these targets can be recorded.
Furthermore, the fuel usage on the flight paths between each two targets is not fixed, but only
known a priori probabilistically. This means that before the flight only a probability distribution
function is known for the fuel usage on each flight path. Besides that, to all targets a time windows is
assigned, consisting of an earliest and a latest time. When recording takes place within the assigned
time window, information is collected and a profit is gathered. After the deadline of a target there is
no information to collect and therefore the gathered profit is equal to zero. If the UAV arrives at a
target before the earliest time, it should wait until the target is 'open'. In this thesis we have
presented methods to construct a route which maximizes the total collected information value,
taking into account the stochasticity of the fuel consumption. This route is restricted by the fuel
capacity of the UAV and the time windows of the targets.

We have detected that this problem can be modeled as a stochastic orienteering problem with time
windows, which to the best of our knowledge has not yet been investigated in the literature.
However, literature about related problems, such as the stochastic vehicle routing problem with
time windows, can be found in literature.

Based on this found literature, we have decided to focus on two different approaches to solve the
addressed problem: a hybrid approach and a One-Step-Ahead Routing approach. In the hybrid
approach an initial route is constructed before the flight, which can be adjusted during the flight to
the fuel realizations. The first method to construct an initial tour is a chance-constrained
programming model, which prescribes a minimum probability that a target in the tour should be
reached before its deadline. The minimum probability that the depot should be reached before the
fuel capacity is completely used is also set in this model. The second and the third offline methods
are both stochastic programming models with recourse, which means that a tour is constructed in
the first stage, while in the second case the recourse costs of this tour are determined. The first
recourse model is the two-stage orienteering problem with time windows. In this model a recourse
action is applied to prevent the UAV both for running out of fuel and for missing a lot of time
windows. In the second recourse model a penalty is incurred for late recordings and for a late arrival
at the depot. In this thesis we have introduced four different penalty functions.

To construct an initial tour using one of these methods, a tabu-search based heuristic is presented.
In each iteration of the heuristic a fixed number of candidate solutions are constructed by applying
one of the six different neighbor operators to the current solution. The candidate solution with the
highest score is selected as new current solution. This process is repeated until the maximum
number of iterations is reached. The solution with the best overall score is the output of the
heuristic.

To adjust the initial tour to the realizations of the fuel consumption during execution of the tour,
two recourse actions are introduced. The first recourse action is the same recourse action which is
considered in the TSOPTW, whi