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Abstract

This research focuses on the properties of weighted linear combinations of pre-

diction models, evaluated using log predictive scoring rule and new scoring rules

based on conditional and censored likelihood for assessing the predictive accuracy

of competing density forecasts over a specific region of interest, such as the left

tail in financial risk management. We apply the technique above on 20 prediction

models for forecasting the daily S&P 500 returns and analyze this framework both

ex post and ex ante. We find that the VaR and ES estimates are more accurate

through combining density forecasts using the conditional and censored likelihood

scoring rules than the log predictive scoring rule.

Key words: Forecasting, Model combination, Density forecast evaluation, Scor-

ing rules, Model Confidence Set, S&P 500 returns, Conditional likelihood, Censored

likelihood, Risk management
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1 Introduction

Managing uncertainty is of major importance for financial institutions and private

clients worldwide. In financial risk management, Value-at-Risk (VaR) and Expected

Shortfalls (ES) have become the standard measures of quantifying downside risk for in-

vestments. Hence, it is essential to develop approaches that provide accurate VaR and ES

estimates. Over the last few years, predictive densities have received increasing attention

in economics and finance. A density forecast is an estimate of the probability distribution

of a random variable conditional on the information available at the time the forecast is

made. Leading cases are in risk management as predictive density plays a central role

for modelling VaR and ES. Furthermore, a density forecast has the advantage that it

contains information on the uncertainties associated with for instance the conditional

mean forecasts while a point forecast delivers no information about the characteristics of

these uncertainties; e.g. see Granger and Pesaran [2000] and Garratt et al. [2003] as they

argue that point forecasts are therefore rarely sufficient.

In the financial industry, many practitioners have developed their own risk manage-

ment models for a wide range of applications. The growing evolution of regulation has

further intensified the reliance on models but the use of these models can carry various

types of model risk. As many risk measurement models have become increasingly com-

plex, this has led to more exposure of model uncertainties which typically involves the

possibility of incorrect business decisions or damage to the company’s reputation. Above

all, the credit crises in the recent years highlighted the significance of model risk. Thus,

relying upon a single risk measurement model is dangerous.

In many situations, there may be multiple models available. Therefore, choosing one

model and neglecting the other would lead to waste of information and it ignores the fact

that the model may be among others misspecified, inaccurate in estimates of parameters

or errors in assumptions. Combining different models we implicitly acknowledge that

more than one model could provide good forecasts and we guard against misspecication by

not putting all the weight on one single model. The intuition of optimal pooling is similar

to that of portfolio optimization allowing the possibility that all of the models under

consideration are false. Moreover, diversification gains can be achieved through optimal

pooling by assigning positive weights to several models. It appears that a prediction

model with less predictive accuracy can enter a optimal prediction pool if it outperforms
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other prediction models regularly.

A large econometric literature on forecast combinations of point forecasts can be

found. Following from Bates and Granger [1969], forecast combinations has proven to be

a highly successful forecasting strategy and has come to be viewed as a simple and effective

way to improve the forecasting performance over the standard methodology. Examples of

formal evaluations of forecast methods can be found in Stock and Watson [2004] include

focus on macroeconomic forecasting, where forecast combination has performed well.

Recent work of Rapach et al. [2010] shows combining forecasts deliver statistically and

economically significant out-of-sample gains relative to the historical average consistently

over time. Also see Timmermann [2006] for theoretical contributions on this field.

On the opposite, econometric literature on combinations of predictive density (optimal

pooling) is much limited. The combination of density forecast is up to few years ago still

an area waiting investigation. Wallis [2005] took the first steps into this unexplored

area. He proposed a weighted linear combination of the competing density predictions

resulting in a mixture distribution which provided us some key guidance in understanding

combining density forecast. Yet, a little is known in how the weights on the competing

density forecasts in the mixture should be determined. As Hall and Mitchell [2007] point

out, the weights that we assign to the different competing density forecasts depend on

how we decide to measure the accuracy of the resulting mixture predictive density. In

their work, they propose a combining methodology which can be described as follows:

Choose that set of weights to the competing density forecasts shaping the finite mixture

that minimize the Kullback-Leibler information criterion. KLIC is the distance between

the combined density forecast and the true but unknown density of the variable to be

forecast. They prove that the optimal combined density obtained from this methodology

cannot provide worst forecasts than the best individual forecast. Furthermore, KLIC is

closely related to the logarithmic scoring rules, which are loss functions depending on the

density forecasts and the true but unknown density aiming to evaluate accuracy. This nice

relationship has contributed significantly to the increasing popularity of density forecasts

and has led more works on evaluating accuracy in the scarce forecasting literature of

combining density forecasts. In the recent work by Geweke and Amisano [2011], they

have derived several interesting analytical results in the search of optimal pooling of

density forecasts using log predictive scoring rule. They have shown that linear prediction



Improving Value-at-Risk estimates by combining density forecasts 5

pools could yield more accurate predictions as evaluated by a logarithmic score function.

Among others, they have proved that how acknowledging that all the available models

are false can result in improved predictions.

Techniques of evaluating density forecasts are developed at a high speed. One way is

by comparing density forecasts relative to the data generating process which is discussed

in Diebold et al. [1998]. In practice however, a caveat of this approach is that all models

used to produce the density forecasts are ”wrong”. In fact, rejecting a model relative

to the data generating process, which is called absolute evaluation, does not provide

users enough information about the sufficiency of the model. For instance, if two models

are both rejected (misspecified) or both accepted (correctly specified), then we have not

enough evidence to prove which model should be preferred to the other. This issue

has been put forward by Amisano and Giacomini [2007] and Giacomini and Komunjer

[2005]. Another way of density forecast evaluation is by comparing competing density

forecasts given a measure of accuracy. See e.g. Amisano and Giacomini [2007] and Bao

et al. [2004] discussing the difference between the approaches and their preference of

competing models. However, in applications when the set of competing density models

are large, the search of the best single model is hardly realized because the data is

not sufficient informative. Hansen et al. [2005]’s Model Confidence Set (MCS) provides

convenient approach to this problem, which is in particular useful in applications without

an obvious benchmark.

Financial institutions apply risk management to minimize and control the probability

of certain unfortunate events causing losses. Appropriate preventing operations can be

determined if practitioners have control over the outcome of these events. Hence, for

practical reasons, we are especially interested in the probability of these events which

can be translated into a particular region of the distribution - The left tail. For

instance, Amisano and Giacomini [2007] and Bao et al. [2004] suggest likelihood ratio tests

based on KLIC-type logarithmic scoring rule aiming to evaluate and to compare density

forecast over a relevant region. However, Corradi and Swanson [2006] and Gneiting and

Ranjan [2008] correctly find that this approach is not appropriate for this task because the

resulting predictive ability tests are biased toward densities with more probability mass

in the region of interest. Diks et al. [2011] describe a possible solution to this problem

by using new scoring rules based on conditional and censored likelihood for assessing
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the predictive accuracy of competing density forecasts over the region of interest. The

underlying idea is to replace the full likelihood by the conditional likelihood, given that

the actual observation lies in the region of interest, or by the censored likelihood, with

censoring of the observations outside the region of interest.

In this paper we contribute to the literature on the comparative evaluation of com-

bining density forecasts. We continue the work of Diks et al. [2011] and Geweke and

Amisano [2011] on the class of Value-at-Risk estimation, which is in particular relevant

for Managing Uncertainty. The underlying idea of our proposal is that we aim to

improve the VaR estimates by combining density forecasts following the methods using

KLIC-based scoring rules demonstrated by Geweke and Amisano [2011], extended with

new scoring rules suggested by Diks et al. [2011] which make it possible to correctly eval-

uate accuracy in regions of interest comparing the relative performance of the competing

combining density forecasts. From one thing to another, we further investigate on the

methodology for achieving that set of weights to the competing density forecasts that

maximize the newly proposed scoring rules. Alongside with this, the idea behind com-

bining density forecasts will be motivated, used and strengthened in such a way that our

resulting VaR and ES estimates are further improved in accuracy.

In our empirical application, we consider 4 types of volatility models and each has the

choice of 5 different distributions of the innovations, allowing us to create 20 prediction

models for forecasting the daily S&P 500 stock index return. Based on this research, sev-

eral findings and future recommendations emerge: First, we show that both conditional

likelihood and censored likelihood scoring rules are convenient metrics in comparing den-

sity forecasts when interest lies in a region instead of the whole distribution. Second, a

higher score based on suitable scoring rules most likely leads to more appropriate VaR and

ES estimates. Third, the choice of conditional distribution is more important than the

choice of conditional volatility models in explaining the variability of density forecasts.

Fourth, including relatively poor performers in pools of multiple models could lead to

more accurate forecasts. We prove that our optimal pool outperforms the best individual

models in terms of higher predictive scores. Fifth, by performing several back tests on

the resulting VaR and ES estimates of the combined density forecasts, we demonstrate

that the accuracy of these estimates are considerable improved. In addition, VaR and ES

estimates are more accurate through combining density forecasts using conditional and
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censored likelihood scoring rules than logarithmic scoring rule.

This paper is organized as follows. We present the theoretical framework of combining

density forecasts using scoring rules in section 2. Section 3 outlines an empirical appli-

cation to investigate the adequacy of both individual prediction models and combined

prediction models for the daily stock index return. Empirical results are reported and

discussed in section 4. Section 5 concludes.
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2 Combining density forecasts and scoring rules

In order to understand the intuition of combining density forecasts, we first explain the

density forecast combination method proposed by Geweke and Amisano [2011] in section

2.1, based on the logarithmic scoring rule. As already mentioned, the logarithmic scoring

rule is closely related to the KLIC and likelihood ratio tests, which are known to perform

successful in many conventional statistical settings. In section 2.2 we provide alternative

scoring rules suggested by Diks et al. [2011] for evaluating and comparing density forecasts

in a specific region of interest. The main contribution of our paper is presented in 2.3,

where we propose a methodology that aims to combine density forecasts by selecting the

optimal weights based on the alternative scoring rules. In the remaining part of this

section, we present both examples illustrating the intuition behind optimal pooling and

pointing out the motivation of introducing the alternative scoring rules.

2.1 Combining densities using logarithmic scoring rule

In combining density forecasts, selecting the optimal set of weights on the competing

density forecasts is essential. Broadly speaking, the way how we decide to measure

the accuracy of the resulting mixture determines the construction of the optimal pool

consisting of predictive densities.

Consider a vector time series yt, given its history Yt−1 = {yh, ...,yt−1}, where h

denotes the starting date of the time series and h ≤ 1. A prediction model A constructs

a predictive density for yt with respect to an appropriate measure v from the history Yt−1.

The predictive density takes the form p(yt; Y
o
t−1, A), where superscript ”o” denotes the

observed value. As Gneiting and Ranjan [2008] points out, the goal of density forecasting

is to maximize the accuracy of the predictive distributions which is of major relevance in

the financial industry.

In our study, we use past data alongside with scoring rules for assessing the perfor-

mance of predictive densities. Scoring rules measure the quality of the density forecasts

by assigning a numerical score based on the predictive distribution.

The logarithmic predictive score function of a single prediction model A is

LS(Yo
T, A) =

T∑
t=1

log p(yo
t ; Yo

t−1, A) (2.1)
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to assess the prediction performance of a model A over the sample period up to time

T . This rule assigns a high score for the density forecast if the observation yt falls

within a region with high predictive density, and a low score if it falls within a region

with low predictive density. In the literature, the logarithmic scoring rule is viewed as

intuitively appealing and easy to interpret thanks to the following relationship with the

goodness-of-fit measure Kullback-Leibler Information Criterion (KLIC), which measures

the divergence of the density forecasts from the true density:

KLIC(A) = Et
(
log pt(yt; Y

o
t−1)− log pt(yt; Y

o
t−1, A)

)
(2.2)

=

∫ ∞
−∞

pt(yt; Y
o
t−1) log

(
pt(yt; Y

o
t−1)

pt(yt; Yo
t−1, A)

)
dyt (2.3)

where pt(yt; Y
o
t−1) denotes the true conditional density. Following equation (2.2), a higher

logarithmic score is equivalent to a lower value of the KLIC. In practice however, the true

conditional density is unknown. See e.g. Bao et al. [2004] where they verified a way to

evaluate the KLIC indirectly. We can use the result of (2.2) to evaluate the relative

accuracy of two competing densities by taking the difference between the KLIC(Ai) and

KLIC(Aj), where i 6= j. This way, the true conditional density term drops out from

(2.2). Moreover, the difference between the KLIC of the competing densities is equivalent

to the difference of the logarithmic scores:

dLSij = LS(Yo
T, Ai)− LS(Yo

T, Aj) (2.4)

=
T∑
t=1

log p(yo
t ; Yo

t−1, Ai)−
T∑
t=1

log p(yo
t ; Yo

t−1, Aj), for i 6= j (2.5)

Amisano and Giacomini [2007] extend this methodology by proposing a weighted

logarithmic scoring rule to focus on the performance of the density forecasts in the region

of interest. The underlying idea is to emphasize and to compare the area of interest

by applying a ’threshold’ weight function. However, this scoring rule is biased in the

sense that it gives higher scores to densities with more probability mass in the region

of interest even if these densities are incorrect. We refer to the paper of Gneiting and

Ranjan [2008] and Diks et al. [2011] where they illustrate such inconsistencies with some

striking examples. A possible solution to this issue proposed by Diks et al. [2011] will

be discussed in section 2.2. Turning to combining density forecasts, combination of

probability densities p(yt; Yt−1, Ai), where i = 1, ..., k takes the form

k∑
i=1

wip(yt; Y
o
t−1, Ai);

k∑
i=1

wi = 1, wi ≥ 0 (2.6)
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Note that the restrictions are sufficient to ensure that (2.6) is a density function. As

addressed by Geweke and Amisano [2011], this linear prediction pool is evaluated using

the log predictive score function

T∑
t=1

log

(
k∑
i=1

wip(y
o
t ; Yo

t−1, Ai)

)
(2.7)

where T is sample size and the corresponding weight for each density forecast is deter-

mined based on the past performance of the pool. In this study, an optimal prediction

pool is one with weights chosen so as to maximizes (2.7). As depicted by Hall and Mitchell

[2007], the methodology for combining density forecasts aims to obtain the most accurate

density forecast. They show that the maximization of (2.7) is a appealing way to evalu-

ate density forecasts statistically. In addition, they compare the proposed methods with

alternative evaluation methods in the literature, including probability integral transforms

(PITS). Most simply involves the application of a Kolmogorov-Smirnov test for uniformity

in many empirical studies. These alternative evaluation methods are mostly model-based

and suffer from parameter uncertainty. For comparison discussions we refer to their pa-

per. The focus of our work is in line with the methods of optimal pooling as proposed

by Hall and Mitchell [2007] and Geweke and Amisano [2011].

2.2 Conditional likelihood and censored likelihood scoring rule

We consider new scoring rules based on conditional (cl) and censored likelihood (csl)

proposed by Diks et al. [2011]. They have shown that these scoring rules are useful when

the main interest lies in comparing the accuracy of density forecasts for a specific region,

such as the left tail in financial risk management. For this purpose, the logarithmic scoring

rule as outlined in the previous section does not satisfy this task. Diks et al. [2011] show

that there can be incorrect density forecasts that receive a higher average score than the

actual conditional density using this scoring rule. As a consequence, the outcome of the

test of equal predictive accuracy could suggest incorrect density forecasts to be better

than the true density. In their study they show through Monte Carlo simulations and an

empirical application that cl and csl scoring rules have proven to be successful performers

in forecasting of the true density. Intuitively, using these scoring rules to evaluate density

forecasts’ accuracy as a part of combining densities seems to be promising. In this section,

we first describe these scoring rules.
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We denote the likelihood-based scoring rules using the conditional likelihood as LSCL

for a specific region of interest B:

LSCL(Yo
T, A) =

T∑
t=1

I(yo
t ε Bt) log

(
p(yo

t ; Yo
t−1, A)∫

Bt
p(s; Yo

t−1, A)ds

)
(2.8)

Where I(yo
t εBt) is an indicator function which takes the value 1 when the observed value

falls within the region of interest Bt, or 0 otherwise. The cl rule allows us to evaluate

the accuracy only on the specific region of interest by normalizing the density on the

region of interest through
∫
Bt
p(s; Yo

t−1, A)ds. Furthermore, this normalization enables

us to compare the competing density forecasts in terms of their relative KLIC values.

Diks et al. [2011] argued that there is one caveat of the cl rule. Due to the normalization,

it neglects the accuracy of the density forecast for the total probability of the region of

interest. When the region of interest is the left tail, the cl cannot recognize different tail

probabilities in density forecasts that have similar tail shapes. As a consequence, the cl

scoring rule assigns comparable scores to predictive densities whether or not they match

with the frequency at which tail observations actually occur. The (tail) probability is

especially relevant in many risk management application and therefore it is of interest to

includes this probability by introducing the censored likelihood (csl) scoring rule, denoted

as LSCSL

LSCSL(Yo
T, A) =

T∑
t=1

I(yo
t ε Bt) log p(yo

t ; Yo
t−1, A) + I(yo

t ε B
c
t ) log

∫
Bct

p(s; Yo
t−1, A)ds

(2.9)

Where Bc
t is the complement of Bt. The censored likelihood scoring rule takes obser-

vations outside the region of interest into account but ignores the shape of the density

outside Bt. In the similar way as before in (2.4), we can link the scoring rules and the

KLIC such that the difference between the KLIC of the competing densities is equivalent

to the difference of the scoring rules.

2.3 Combining densities using conditional likelihood and cen-

sored likelihood scoring rule

By extending the methodology discussed in the previous sections, we propose to combine

density forecasts by selecting the optimal weights based on the new scoring rules.

First, combinations of probability densities p(yt; Yt−1, Ai), where i = 1, ..., k, based
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on the conditional likelihood score LSCL can be obtained in the similar way as in (2.6),

given by

k∑
i=1

wi I(yo
t ε Bt)

(
p(yo

t ; Yo
t−1, Ai)∫

Bt
p(s; Yo

t−1, Ai)ds

)
;

k∑
i=1

wi = 1, wi ≥ 0 (2.10)

Once again, the restrictions used here are sufficient to ensure that (2.10) is a density

function. I(yo
t ε Bt) is a indicator function which takes the value 1 when the observed

value falls within the region of interest Bt, or 0 otherwise. Next, we introduce the

evaluation function for combined densities in (2.10) based on the conditional likelihood

log predictive score function, given by

T∑
t=1

log

(
k∑
i=1

wi I(yo
t ε Bt)

(
p(yo

t ; Yo
t−1, Ai)∫

Bt
p(s; Yo

t−1, Ai)ds

))
(2.11)

Which assigns a high score for the density forecast if the observation yot falls within a

region with high combined predictive density, and a low score if it falls within a region

with low combined predictive density. In the same way, we can compute the combined

probability densities based on the censored likelihood score LSCLS by

n∑
i=1

wi

(
I(yo

t ε Bt)p(y
o
t ; Yo

t−1, Ai) + I(yo
t ε B

c
t )

∫
Bct

p(s; Yo
t−1, Ai)ds

)
(2.12)

The corresponding censored likelihood log predictive score function is given by

T∑
t=1

(
log

(
k∑
i=1

wi(I(yo
t ε Bt)p(y

o
t ; Yo

t−1, Ai))

)
+ log

(
k∑
i=1

wi(I(yo
t ε B

c
t )

∫
Bct

p(s; Yo
t−1, Ai)ds)

))
(2.13)

Which enables us to evaluate the pools of densities based on the cls scoring rule.

For both cl (equation 2.11) and csl scoring rule (2.13), the weight vector is determined

based on past data of the pool, updated at each t, recursively reflecting the accuracy of

the prediction models in the pool predicting densities. Similar to log predictive scores,

the optimal pool based on conditional and censored likelihood is the one that select

that set of weights to the competing density forecasts maximizing equation 2.11 and2.13

respectively. This maximization is a convect programming problem which can be solved

by using conventional software. In our study, we consider Matlab function fmincon.

2.4 Intuition behind combining density forecasts

In this section we present two examples to illustrate the idea of combining density fore-

casts. Recall from the previous sections, the computation of optimal weights which
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minimize the KLIC distance between the combined and true densities plays a central

role in optimal pooling. Furthermore, it is possible that by including inferior forecasts we

can deliver more accurate density forecasts out of sample. In the first example, we show

that there exist a set of weights in the combined pool that can beat the best individual

predictions. Suppose we have two competitive prediction models A1 and A2 in the pool

[A1, A2]. For T = 3, The values of the predictive densities p(yt; Y
o
t−1, Ai) are

Table 1: Predictive densities

A1 A2

t = 1 0.9105 0.3240

t = 2 0.7160 0.1228

t = 3 0.0348 0.9512

The log scores are LS(Yo
T, A1) = −3.7860 and LS(Yo

T, A2) = −3.2742. The optimal

weights is w∗T = 0.6351 such that model A1 receives almost two-third of the weight despite

of having a lower log score. In addition, the log score in the optimal pool takes the value

of −2.0391 which beat the individual models.

Next, Figure 1 provides us a situation that further illustrates the intuition behind

optimal pooling. In this example, two competitive prediction models are evaluated using

the logarithmic scores with respect to the data generating process for T = 200. Clearly,

we observe that model A1 shows similar probability density function pattern (Student t

distribution) as the data source (Normal distribution), while on the other hand model

A2, a flat probability density function (Laplace distribution) pattern, is not even close.

The log score of model A1 is therefore much higher. However, a surprising result emerges

after we combine the models using optimal pooling. The combined model, denoted as

”Optimal pool”, closely tracks the data generating process. The highest log score is

achieved for weights equal to 0.7210 and 0.2790 in this example. Moreover, even though

model A2 shows a lower log score, yet it receives a positive weight in the optimal pool.

In sum, these examples suggest that by including relatively poor performers could lead

to more accurate forecasts which strongly support the intuition behind optimal pooling.
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Figure 1: Optimal pooling illustration

This figure presents an example of two competitive prediction models A1 and A2 evaluated using the logarithmic scoring

rule for T = 200. The optimal weight is 0.7210 and 0.2790. The combined prediction model based on the competitive

models is presented as ”Optimal pool”.

2.5 Motivation of introducing alternative scoring rules

In the next example, we demonstrate the problem that might occur by construction of

the logarithmic scoring rule. As we will see, this scoring rule favors density forecasts with

more probability mass in the region of interest over a less probability mass distribution,

even if the latter is the true distribution from which the data is drawn. Suppose we once

again have two competitive prediction models. This time, model A1 is the Student-t

distribution with v degrees of freedom, standardized to unit variance, with pdf

f(x|v) =
Γ(v+1

2
)

Γ(v
2
)

1√
σ2(v − 2)π

(
1 +

)2

(v − 2)

)−( v+1
2

)

(2.14)

and model A2 is the standardized Laplace distribution, with pdf

f(x) =
1√
2

exp (−
√

2|x|) (2.15)

The first plot of figure 2 shows the probability density functions for both models. In

the second plot, the relative logarithmic likelihood score LS(Yo
T, A1) − LS(Yo

T, A2) is

displayed.
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Figure 2: Logarithmic Scoring Rule

This figure presents an example of the probability density functions based on a Laplace and a Student t distribution in

Panel 1. The relative accuracy score function between the competitive models is presented in Panel 2.

As the figure shows, the relative accuracy score function between the competitive

models is negative for the region (−∞,−2) (Left tail) and (2,+∞) (Right tail) of the

domain of observed data. Moreover, it appears that whenever there are observations in

these regions the weighted logarithmic score difference is always negative. It reveals that

the Laplace distribution is preferred over the Student-t distribution simply because the

former has more probability mass in the regions of interest.
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3 Application

In this section, we apply the proposed methodology to investigate the adequacy of both

individual and combined density forecasts for the daily stock index returns. We consider

S&P 500 log-returns yt = ln(pt/pt−1), where pt is the closing price on day t, adjusted for

dividends and stock splits. The sample period runs from January 1, 1980 until March

14, 2008, giving us a total of T = 7117 observations.

Figure 3: S&P 500 log-returns

Let {yt}Tt=1 follow the stochastic process

yt = µt + εt = µt +
√
htηt (3.1)

We consider an AR(5)1 model for the conditional mean return µt, that is

µt = ρ0 +
5∑
j=1

ρjyt−j (3.2)

Next, a predictive density is based on two components: The specification of the distribu-

tion of the standardized innovations ηt and the specification of the volatility ht.

For the specification of the innovations ηt we consider five candidate distributions.

Four of them are symmetric parametric distributions: (i) Standard Gaussian normal

(ii) Student t (iii) Generalized Error Distribution, GED (iv) Laplace and one skewed

1Regarding the order selection of ”p” in the AR(p) model, we have considered Akaike information

criteria (AIC) and Schwarz information criteria(BIC). Both model selection criteria show that the choice

of p in our application has low sensitivity for the balance between goodness of fit and the number of

parameters in the model. Therefore, we regard our assumption that the model order p = 5 as appropriate.
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parametric distribution (v) Skewed Student t. The symmetric and skewed parametric

distributions are described in more detail in the next section. They can be used in

several settings, for instance the likelihood functions which we can apply in maximum

likelihood estimation. Furthermore, the inverse CDF function can give the quantile of

the standardized innovations, and the corresponding VaR of the return series.

The conditional variance ht can be specified with various volatility models. A large

literature on nonparametric, parametric and stochastic volatility models can be found.

Given the possibility of hundreds of various GARCH-family models, We select four

GARCH volatility models: (a) Symmetric normal GARCH(1,1) (b) Exponential GARCH(1,1)

(c) Threshold GARCH(1,1) (d) Component GARCH(1,1). We discuss the specification

of the volatility ht in section 3.2. Furthermore, we consider daily models because the sign

of the daily return has significant impact for future uncertainty. Returns tend to be more

volatile after negative daily returns and less volatile after positive daily returns.

We apply a rolling window scheme for parameter estimation and evaluation of the

prediction models. Let T be the total sample size and the length of the estimation

window is set to m = 2000 observations. For each of the prediction model, on every time

t + m (t starting from 1 till T −m + 1) we calculate the maximum likelihood estimator

(MLE) over historical data available at time t+m−1 and use that to obtain the predictive

density. Our evaluation of the prediction models is based on their one-step-ahead density

forecast of daily returns. The first one-step-ahead ahead forecasts are produced at time

m, using data indexed 1, . . . ,m and they are compared to ym+1. The estimation window

are then rolled forward one step and the second forecasts are obtained using observations

2, . . . ,m+1, and they are compared to ym+2. This procedure is thus iterated, and the last

forecasts are obtained using observations T −m, . . . , T −1 , and they are compared to yT .

Normally, this yields a sequence of n = T −m out-of-sample density forecasts. However,

for real time forecasting, we consider a hold-out period for model construction. Moreover,

we use the hold-out period of p observations for combining density forecasts such that

the weights w of combined pools are determined. The remaining observations can then

be used for evaluating the real time density forecasts. In this study, we set p equals to

1000, leaving us T − m − p = 4117 out-of-sample observations. Afterwards, predictive

accuracy of the proposed volatility models are evaluated based on three scoring rules:

(1) log predictive scoring rule, (2) conditional likelihood scoring rule and (3) censored
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likelihood scoring rule. For each of the scoring rules, we focus on the left tail of the

distribution by using the threshold weight function I(y 5 r̂αt ). The threshold is time-

varying and set equal to the empirical α-quantile of the return observations in the time

varying estimation window. We consider α = 0.10, 0.05, 0.01.

3.1 Specification of the distribution of the standardized inno-

vations ηt

This section discusses the candidate distributions of the standardized innovations ηt in-

cluded in this paper. The natural starting point in the literature is the standard Gaussian

normal distribution due to its simplicity. However, from the stylized facts of the market

return it has been shown that the distribution of the returns is non-normal, skewed and

has excess kurtosis. Allowing innovations to be drawn by other distributions than normal

can enhance the performance of GARCH models. A leptokurtosis distribution for exam-

ple has a higher peak and greater mass in the tails than normal distribution of the same

variance. Both leptokurtosis and negative skewness have impact on VaR. A commonly

used alternative in the literature is the Student t-distribution which was first proposed

by Bollerslev [1986], where the conditional distribution is assumed to be t-distributed.

If we set the random variable X such that

X = µ+ σT (3.3)

Then X has a generalized Student t distribution with the distribution function given by

f(x|v) =
Γ(v+1

2
)

Γ(v
2
)

1√
σ2(v − 2)π

(
1 +

(x− µ)2

σ2(v − 2)

)−( v+1
2

)

(3.4)

Where v is the degrees of freedom parameter, which is additionally estimated in the

conditional variance equation alongside with other parameters. Furthermore, the degrees

of freedom determines the excess kurtosis of the Student t distribution, which is equal

to 6/(v − 4), for v > 4. Therefore, the lower the degrees of freedom, the lower the peak

of the distribution and the fatter the tail. Followed by the distribution function 3.4, the

loglikelihood function of the Student t distribution can be derived which forms the basis

for implementing maximum likelihood estimation

LLF = T log

[
Γ(v+1

2
)√

π(v − 2)Γ(v
2
)

]
− 1

2

T∑
t=1

log σ2
t −

v + 1

2

T∑
t=1

log

[
1 +

(xt − µ)2

σ2
t (v − 2)

]
(3.5)
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Next, we introducte the Generalized Error Distribution (GED), which is a useful

alternative and has been purposely applied in many applications such as modeling the

stock market returns by financial corporations. The distribution function is given by

f(x|v) = v exp

(
−1

2

(x− µ)2

λσ2

)[
λσ22

v+1
v Γ

(
1

v

)]−1

(3.6)

Where λ =
[

Γ( 1
v

)

22/vΓ(3/v)

]
. The GED is flexible because it can be transformed through

a parameter v into a distribution with fat tails (v < 2) or even into a platykurtotic

distribution with thin tails (v > 2). When v = 2, the GED becomes a standard normal

and when v =∞, it becomes a uniform distribution.

A similar but different probability distribution to the GED is the Laplace distribution.

Sometimes it is called the double exponential distribution. This distribution has more

flexibility in the tails than a normal distribution in such a way that uncertainties of

downside returns are incorporated more realistically. The generalized Laplace distribution

function is given by

f(x) =
1

2σ
exp(−|x− µ|

σ
) (3.7)

All distributions mentioned above are categorized as symmetric distributions. Sym-

metric distribution have the common shortage that they cannot model skewness which

might result in misinterpreting the risk. Therefore we need distributions that can cap-

ture skewness properly and these type of distributions are defined as skewed parametric

distributions. The Skewed t distribution was first introduced by Hansen [1994] to model

skewness in conditional distributions of financial returns by extending the Student t with

a skew parameter. Since then, many other extensions of the Student t distributions have

been proposed. For a detailed discussion of these distributions, see the review in Aas and

Haff [2006]. In our study, we include for simplicity the Skewed t distribution in its basic

form as our last candidate distribution. The pdf of the generalized Skewed t distribution

consisting of one skewness parameter and two tail parameters is given by

f(x|α, v1, v2) =


1
σ

[
1 + 1

v1

(
x−µ

2ασK(v1)

)2
]−(v1+1)/2

, if x ≤ µ,

1
σ

[
1 + 1

v2

(
x−µ

2(1−α)σK(v2)

)2
]−(v2+1)/2

, if x > µ.

(3.8)

where α ∈ (0, 1) is the skewness parameter, v1 > 0, v2 > 0 are the left and right tail

parameters respectively, K(v) ≡ Γ((v+1)/2)√
πvΓ(v/2)

. We are aware of the fact that there are exten-

sions of the Skewed t distribution which have been proven to perform well. For instance,
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as stated in As Zhu and Galbraith [2006], those could leads to a more adequately fit in

the regions of interest such as the left tail. However, these computations are relatively

time consuming due to the complexity of some of the extensions. A possible solution

to this issue is by reducing the number of estimations through recursively determining

the parameters for a larger interval between the estimation steps. For instance monthly

instead of daily estimation. Despite the fact that choosing the most flexible distribution

is not the focus of our research, we rightly think that more attention should be paid in

the future on this area, and we acknowledge it as one of the limitations of this research.

3.2 Specification of the Volatility ht

This section provides a description to the GARCH models that are used in this paper.

The GARCH model is a generalization of the autoregressive conditional heteroscedasticity

model (ARCH) which was first introduced by Engle [1982]. In the ARCH model, ht is

defined as the function of past squared errors. Bollerslev [1986] extended the ARCH

model by including the lagged values of ht and the GARCH model was born.

The natural benchmark model of the GARCH family is the symmetric normal GARCH(1,1)

model, given by the following conditional variance equation

ht = ω + αε2
t−1 + βht−1 (3.9)

Furthermore, we have to impose parameter constraints ω > 0, α, β ≥ 0 to ensure that

the conditional variance is finite and positive. Also the constraint α+ β < 1 is needed to

achieve stationarity.

One of the strength of GARCH is that the parameters have a natural interpretation.

(i) The GARCH error parameter α for instance measures the reaction of conditional

volatility to market shocks. A large α might indicate a large sensitiveness of volatility to

market events. (ii) The GARCH lag parameter β measures the persistence in conditional

volatility. In case of a large β then volatility takes a relatively long time to vanish. (iii)

The sum α+ β is the rate of convergence of the conditional volatility which can be seen

as the long term average level. (iv) ω/(1 − α − β) determines the long term average

volatility, which is the unconditional volatility in the GARCH model.

Among the large amount of variations in the selection of GARCH-family models, we

have decided to involve the following candidates: GARCH(1,1) TGARCH(1,1), EGARCH(1,1),
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CGARCH(1,1). Each of them will be discussed next.

In practice, negative daily returns have larger impact than positive daily returns of

the same magnitude. This feature is clearly observable in equity indices as future is more

volatile after negative daily returns. Therefore, we allow this asymmetry by the GARCH

model extended with a threshold term. The TGARCH(1,1) is given by the following

equation

ht = ω + αε2
t−1I[εt−1 ≤ 0] + γε2

t−1I[εt−1 ≥ 0] + βht−1 (3.10)

where I[A] = 1 if A occurs, and 0 otherwise. In the same, parameter constrains are

required for positiveness of ht by ω > 0, α > 0, γ > 0, β ≥ 0. And (α + γ)/2 + β < 1 is

needed for covariance stationarity.

The exponential GARCH was first introduced by Nelson(1991), this model formulate

the conditional variance equation in terms of the log of the variance. It has the advantage

that modelling log volatility no restrictions need to be imposed on parameters to ensure

ht > 0. The variance will always be positive even log(ht) is negative. The EGARCH(1,1)

is given by

ln(ht) = ω + αtzt−1 + γ1(|zt−1| − E[|zt−1|]) + β1 ln(ht−1) (3.11)

where zt−1 = εt−1/
√
ht−1. In the EGARCH model, he presence of leverage effects can be

tested by the hypothesis that γ < 0. The impact is asymmetric if γ 6= 0

An alternative is the component GARCH model which was first introduced by Engle

and Lee [1999]. The volatility in the CGARCH model is decomposed into a perma-

nent or long-run and a transitory or short-run component. The transitory component is

mean-reverting towards the trend component. One of the main reason to the improved

performance is that the decomposition has led to more insight and flexibility in the ex-

planation of persistency in the stock return volatility. For instance, the leverage effect

has shown to be a short-run phenomenon and thus captured by the short-run component.

The conditional variance in the GARCH model shows mean-reversion to ω, which is

a constant for all time. By contrast, the CGARCH(1,1) model allows mean-reversion to

a varying level mt, given by

ht −mt = α(ε2
t−1 −mt−1) + β(ht−1 −mt−1) (3.12)

where mt−1 is the time-varying long-run volatility and given by

mt = ω + ρ(mt−1 − ω) + φ(ε2
t−1 − ht−1) (3.13)
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3.12 is the transitory component and converges to 0 with powers of (α + β). 3.13 is the

long-run component and converges to ω with powers of ρ in the CGARCH model. By

combining the transitory and the long-run equations we can rewrite the model by

ht = (1−α−β)(1−ρ)ω+(α+φ)ε2
t−1−(αρ+(α+β)φ)ε2

t−2+(β−φ)ht−1−(βρ−(α+β)φ)ht−2

(3.14)

In summary, we can combine the candidate distributions and the volatility models as

proposed in in section 3.1 and section 3.2 together giving us 5 ∗ 4 = 20 models in total.

Therefore, we have created a collection of 20 density forecast models for improving the

predictive accuracy through optimal pooling.
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4 Empirical Results

In this section we report the empirical results applied on the daily S&P 500 return se-

ries. We start with discussing the predictive density accuracy for the individual density

forecasts in section 4.1. We present predictive scores based on different metric of evalu-

ation: (1) log predictive scoring rule, (2) conditional likelihood scoring rule (cl) and (3)

censored likelihood scoring rule (csl) for all models and compare them first by taking the

average score differences and we obtain test statistics based on the Diebold-Mariano tests

of equal predictive accuracy (EPA). In order to compute this test, a benchmark model

should be defined where the predictive score of this model is subtracted from the scores

of alternative competing models. Unlike (EPA) type of tests, the Model Confidence Set

(MCS) procedure as proposed by Hansen et al. [2005] does not require a benchmark to

be specified, which is useful in our application of 20 prediction models where an obvi-

ous benchmark is difficult to be assigned. Also in line with the objective of this paper,

additional attention is paid to the VaR and the ES estimates for different quantiles of

the density forecasts. Afterwards, we continue with discussing the empirical results of

the combined density forecasts and their predictive accuracy in section 4.2. We obtain

the scores and the accompanying weights in the optimal pool first ex post. That is, we

determine the optimal set of weights statically by looking back at the whole evaluation

period. Despite the fact that this approach is not applicable in practice because only

past data are available for optimization, this setting is however greatly illustrative and

of importance in the sense that it offers us useful insights of how optimal pools can be

constructed. Finally, realtime methods are applied and once again the scores and weights

of the combined prediction models are reported in section 4.3. This time we determine

the optimal set of weights dynamically given the information available at time t using a

rolling window scheme. Note that for real time forecasting, we split the available data up

to time t into two parts: An initial part that is used for model specification and parameter

estimation; A second part, often termed as a hold-out period or a training period, for

model construction. In this way, we dynamically obtain weights w of the opinion pools.
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4.1 Individual prediction models

Table 2 presents the log predictive score for each model for the whole distribution evalu-

ated over the out-of-sample period October 25, 1991 - March 14, 2008 (4117 observations).

Results in this table are displayed as the sum of scores. The metric of evaluation assigns

a high score for the density forecast if the observation yt falls within a region with high

predictive density, and a low score if it falls within a region with low predictive density.

Table 2: Predictive Density Evaluation - Log predictive scores for the whole

distribution with number of out-of-sample observations n = 4117

This table presents the log predictive scores of the density forecasts which are obtained from 20 different prediction models:

GARCH(1,1) and TGARCH(1,1) EGARCH(1,1) and CGARCH(1,1) with Gaussian Normal, Student t, GED, Laplace and

Skewed t distribution, for daily S&P 500 returns over the evaluation period October 25, 1991 - March 14, 2008 (4117

observations). The scores presented in this table are the sum of scores over the evaluation period. Afterwards, the scores

are sorted such that the ranking is reported between parentheses. That is, a ranking 1 corresponds with the highest score

and ranking 20 the lowest.

GARCH - Normal GARCH - Student t GARCH - GED GARCH - Laplace GARCH - Skewed t

-5357 (18) -5235 (3) -5300 (13) -5294 (12) -5245 (6)

TGARCH - Normal TGARCH - Student t TGARCH - GED TGARCH - Laplace TGARCH - Skewed t

-5347 (17) -5220 (1) -5307 (15) -5287 (11) -5236 (4)

EGARCH - Normal EGARCH - Student t EGARCH - GED EGARCH - Laplace EGARCH - Skewed t

-5285 (10) -5268 (8) -5253 (7) -5319 (16) -5272 (9)

CGARCH - Normal CGARCH - Student t CGARCH - GED CGARCH - Laplace CGARCH - Skewed t

-5852 (20) -5231 (2) -5587 (19) -5303 (14) -5238 (5)

The highest predictive accuracy according to the log predictive score is obtained by the

TGARCH model with Student t distributed innovations, exceeding the nearest competing

model, CGARCH - Student t, by 11. The difference between the two models suggests

a slight preference of the former model. Much clearer are the differences against the

other models, yielding even greater favor of TGARCH - Student t. We also sort the

scores from highest to lowest and the ranking are reported between parentheses. In this

way, we may clarify the similarities or differences between the volatility models and the

distribution specifications. Among the various candidate distributions, there is a strong

evidence of superior predictive accuracy coming from the models that incorporate Student

t, ranked 1, 2, 3 and 8, and Skewed t, ranked 4, 5, 6 and 9, distributed innovations. In
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addition, it reveals that the prediction models with Gaussian normal innovations perform

the worst which is in line with our expectations. As the ranking displays, the performance

of a prediction model depends more on the distribution specification, suggesting that

the choice of conditional distribution is more important than the choice of conditional

volatility models.

In Table 3 we present the predictive accuracy evaluated over the region of interest,

for which α = 0.10, 0.05 and 0.01, measured by different scoring rules. At first sight,

the CGARCH family shows great dominance as the best performing predictive density

method, yielding the highest scores for almost all quantiles considered, measured by all

scoring rules. This outcome suggests that CGARCH may be seen as a flexible model

in explaining the stock return volatility, through incorporating a transitory component

which can adequately capture the short term features, such as the leverage effect. In

addition, mainly CGARCH with Student t and Skewed t as candidate distributions out-

perform other competing models in terms of absolute evaluation. It is not surprising to

observe that these candidate distributions generally perform well, not only for CGARCH,

but for all volatility models considered in our collection of models. Clearly, the outcome

of this analysis underlines the greater impact of the choice of conditional distribution

above that of the choice of volatility models.

Furthermore, some interesting findings can be discovered within the Laplace distribu-

tion. Among the prediction models with Laplace distribution as candidate distribution,

the first finding is the most obvious for CGARCH - Laplace. Reviewed by three scoring

rules, CGARCH - Laplace shows overwhelming preference according to the log predictive

scoring rule, ranked 2, 1, 1 respectively for α = 0.10, 0.05, 0.01. In contrast, CGARCH -

Laplace is only average based on the scores of both cl and csl, ranked between 9 and 11

for all region of interest which is clearly not favored over other competing models. For

understanding this contradiction, it is useful to recap the shortcoming of log predictive

scoring rule as we mentioned at the start of this study. When the main interest lies in

comparing the predictive accuracy for a specific region, using logarithmic scoring rule is

not appropriate for this task. This is because by construction, this metric tends to be

biased in predictive ability toward densities with more probability mass in the region of

interest, such as the Laplace distribution. Hence it is imaginable that the logarithmic

scoring rule favors Laplace distribution only because of the ”fat” tails contained. This
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can be further clarified as Laplace distribution is apparently even more preferred by the

logarithmic scoring rule for more extreme quantiles α = 0.05 and 0.01, implying fatter

tails in these regions. On the other hand, cl and csl scoring rules are by construction

adjusted to this issue. Therefore, as Table 3 displays, Laplace distribution is clearly not

preferred after normalizing in the region of interest (cl) and by taking density forecast

outside the region of interest into account (csl),
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Table 3: Predictive Density Evaluation - Predictive scores over the region of interest for α = 0.10, 0.05, 0.01, with number

of out-of-sample observations n = 4117

This table presents the scores based on (1) log predictive scoring rule (2) conditional likelihood scoring rule (3) censored likelihood scoring rule, over the region of interest for α = 0.10, 0.05, 0.01,

for daily S&P 500 returns over the evaluation period October 25, 1991 - March 14, 2008 (4117 observations). The scores presented in this table are the sum of scores over the evaluation

period.

Log predictive Scores Conditional Likelihood Scores Censored Likelihood Scores

α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01

1 GARCH - Normal -1191 (13) -817 (18) -330 (18) -378 (18) -235 (18) -93 (18) -1643 (17) -1044 (18) -381 (19)

2 GARCH - Student t -1178 (10) -771 (11) -257 (11) -304 (5) -166 (2) -44 (4) -1561 (6) -972 (6) -312 (3)

3 GARCH - GED -1207 (17) -788 (14) -279 (15) -319 (14) -183 (14) -55 (14) -1600 (14) -1001 (14) -335 (14)

4 GARCH - Laplace -1177 (8) -751 (4) -241 (3) -307 (10) -170 (9) -47 (10) -1568 (8) -977 (10) -315 (8)

5 GARCH - Skewed t -1164 (5) -755 (6) -250 (7) -304 (6) -167 (4) -45 (5) -1559 (5) -971 (5) -314 (7)

6 EGARCH - Normal -1178 (11) -803 (16) -315 (17) -361 (17) -224 (17) -84 (17) -1611 (16) -1015 (16) -359 (17)

7 EGARCH - Student t -1188 (12) -776 (12) -261 (12) -305 (8) -167 (5) -44 (3) -1569 (9) -976 (9) -315 (9)

8 EGARCH - GED -1200 (15) -781 (13) -274 (13) -312 (13) -179 (13) -53 (13) -1579 (13) -983 (13) -324 (13)

9 EGARCH - Laplace -1192 (14) -760 (8) -246 (5) -308 (11) -171 (11) -48 (12) -1574 (12) -981 (11) -317 (10)

10 EGARCH - Skewed t -1176 (6) -761 (9) -255 (9) -304 (7) -168 (6) -45 (6) -1569 (10) -975 (8) -317 (11)

11 TGARCH - Normal -1202 (16) -825 (19) -332 (19) -381 (19) -241 (19) -96 (19) -1644 (18) -1043 (17) -380 (18)

12 TGARCH - Student t -1177 (9) -769 (10) -256 (10) -303 (3) -168 (7) -45 (7) -1556 (3) -966 (1) -310 (1)

13 TGARCH - GED -1232 (19) -805 (17) -288 (16) -323 (15) -189 (16) -58 (16) -1607 (15) -1004 (15) -338 (15)

14 TGARCH - Laplace -1176 (7) -748 (3) -239 (2) -306 (9) -171 (12) -47 (11) -1564 (7) -973 (7) -312 (4)

15 TGARCH - Skewed t -1162 (3) -752 (5) -249 (6) -303 (4) -169 (8) -45 (8) -1554 (2) -966 (2) -312 (5)

16 CGARCH - Normal -1315 (20) -933 (20) -390 (20) -473 (20) -293 (20) -130 (20) -1809 (20) -1186 (20) -444 (20)

17 CGARCH - Student t -1162 (4) -757 (7) -250 (8) -302 (1) -165 (1) -44 (2) -1556 (4) -968 (4) -310 (2)

18 CGARCH - GED -1224 (18) -800 (15) -278 (14) -332 (16) -183 (15) -56 (15) -1678 (19) -1048 (19) -340 (16)

19 CGARCH - Laplace -1150 (2) -731 (1) -232 (1) -308 (12) -170 (10) -46 (9) -1571 (11) -981 (12) -317 (12)

20 CGARCH - Skewed t -1145 (1) -740 (2) -244 (4) -302 (2) -166 (3) -44 (1) -1553 (1) -967 (3) -312 (6)
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Note that the preceding scores here above are in terms of absolute evaluation, that

is, on evaluating the given predictive accuracy, relative to the data-generating process.

As already mentioned at the start of our study, for comparing competing models, a more

practically interest is to discuss the relative score differences between the models in the

decision making whether a model is preferred against another or not. Thus, it makes

sense to consider average score differences for each scoring rule, denoted as S∗. First, the

score difference is

d∗ij,t = S∗[p(yot ; Yt−1
o, Ai)]− S∗[p(yot ; Yt−1

o, Aj)] (4.1)

for i 6= j. Let d
∗
ij denote the sample average of the score differences, that is,

d
∗
ij = n−1

T∑
t=m

d∗t (4.2)

with n = T − m. The null hypothesis of equal scores is given by Hij : E(d
∗
ij) = 0,

for t = m,m + 1, ..., T − 1, and the alternative takes the form E(d
∗
ij) 6= 0. Naturally,

Diebold-Mariano tests of equal predictive accuracy (EPA) can be applied. In order to

compute this test, a benchmark model should be defined where the predictive score of

this model is subtracted from the scores of alternative competing models.

However, it is essential to recall that a rejection of the EPA-test only identifies one

or more models as significantly better than the benchmark. This type of tests provides

little guidance about which models are the best performers that is relevant for optimal

pooling. In addition, the choice of a certain model as benchmark is questionable in case

of a large set of competing alternatives. Hansen et al. [2005]’s MCS approach has the

advantage that a benchmark is not required. Another advantage of the MCS approach

is that it acknowledges the limitations of the data. Unlike other model selection criteria,

the MCS allows for the possibility that more than one model can be the best, in which

case MCS contains more than a single model. Next, we briefly explain the intuition and

general theory of MCS. For detailed discussion on this topic, we refer to Hansen et al.

[2005].

The objective of the MCS procedure is to determine the set of models, denoted as M∗,

that consists of the best model(s) from a collection of models given a level of confidence.

In our application, the MCS is constructed from the collection of 20 competing models,

denoted as M0. These models are evaluated in terms of loss functions, in our case the
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different predictive density scoring rules. The MCS is based on an equivalence test, δM,

where recursively models that are found to be significantly inferior to other models of M0

are eliminated. An elimination rule, eM identifies the model of M that has to be removed

from M. We define the relative performance variables dij,t and dij in a similar way as

(4.1) and (4.2), where dij measures the relative sample loss between the i-th and j-th

models. Next, the relative sample loss statistic to be used for the construction of MCS

is defined as follows

di ≡ m−1
∑
j∈M

dij (4.3)

which is the sample loss of the i-th model relative to the average across models in M.

From this statistic we construct the t-statistic

ti =
di√
v̂ar(di)

(4.4)

where v̂ar(di) denote the estimate of var(di). This t-statistic is associated with the null

hypothesis that Hi = E(di) = 0 which forms the basis of tests of the hypothesis

H0,M : E(d
∗
ij) = 0, for all i, j ∈ M (4.5)

The alternative hypothesis is denoted as HA,M : E(d
∗
ij) 6= 0. Note that we take advantages

of the equivalence between H0,M, {Hij, for all i, j ∈ M}, and {Hi, for all i ∈ M}. With

M = {ii, ..., im} the equivalence follows from

E(di1) = · · · = E(dim)⇔ E(dij) = 0 for all i, j ∈ M⇔ E(di) = 0 for all i ∈ M (4.6)

In order to test the hypothesis H0,M, we apply the following test statistic,

Tmax,M = max
i∈M

ti (4.7)

With this test statistic and the associated PH0,M
-value, the natural elimination rule is

emax,M ≡ arg maxi∈M ti. In this case, the elimination rule removes the model that con-

tributes the most to the test statistic meaning that this model has the largest standard-

ized excess loss relative to the average across all models in M. In addition, we intro-

duce the MCS p-value as prescribed by Hansen et al. [2005]. This p-value is denoted as

p̂eMj ≡ maxi≤j PH0,M
. The MCS p-value has the advantage over the PH0,M

- value because

it determines whether a model is in M∗1−α or not, for any given α.
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At last, the procedure of the MCS construction is as follows. We first set M = M0.

We test H0,M using δM at level α. If H0,M is accepted, we define the model confidence set

M∗1−α = M, which consists the surviving models without being eliminated. Otherwise,

we use eM to eliminate a model from M and repeat the steps.

Next, we compute the MCS across all individual predictive density models. We define

the MCS significance level α as 5%. Test results of the MCS are presented in Table

4. For each elimination step eMj
, models that are eliminated and the associated MCS

p-values are presented. Among the different scoring rules, only few models remain in the

MCS based on the log predictive scoring rule. For α = 0.10, after the elimination of 17

models, the MCS consists TGARCH - Skewed t, CGARCH - Laplace and CGARCH -

Skewed t. Note that the MCS p-values cannot be interpreted as the probability that one

of these models is the best model. For α = 0.05 and 0.01, CGARCH - Laplace is the only

surviving model. Turning to cl and cls, a first glance reveals that the resulting MCSs are

consisted from a lot more of models, suggesting that the sample loss of a particular model

relative to the average is smaller than using the log predictive scoring rule. Furthermore,

we observe that TGARCH - Normal and CGARCH - Normal are consistently kicked out

from the MCS based on the cl scoring rule. Another intriguing feature is that the smaller

the region of interest, the larger the MCS in case of the cls scoring rule.
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Table 4: Predictive Density Evaluation - Model Confidence Set for prediction models

In this table we present the MCS for individual prediction models given a MCS confidence level α = 5%. For each eMj
, we report the to be eliminated model with the associated MCS

p-value. Note that the following abbreviations are used for denoting the models: G = GARCH, E = EGARCH, T = TGARCH, C = CGARCH, . In each column, models above the line are

eliminated while models under the line are the surviving models in the MCS

Elimination Rule Log predictive Scores Conditional Likelihood Scores Censored Likelihood Scores

eMj
alpha = 0.10 alpha = 0.05 alpha = 0.01 alpha = 0.10 alpha = 0.05 alpha = 0.01 alpha = 0.10 alpha = 0.05 alpha = 0.01

eM1 T-GED (0.003) C-Norm (0.001) G-Norm (0.003) C-Norm (0.000) T-Norm (0.000) T-Norm (0.000) C-Norm (0.002) C-Norm (0.007) C-Norm (0.045)

eM2 C-Norm (0.003) T-Norm (0.001) T-Norm (0.003) T-Norm (0.000) C-Norm (0.043) C-Norm (0.033) G-Norm (0.002) C-GED (0.007) T-Norm (0.045)

eM3 G-GED (0.003) T-GED (0.001) E-Norm (0.003) G-Norm (0.087) G-Norm (0.061) E-Norm (0.033) C-GED (0.004) G-Norm (0.007) G-Norm (0.045)

eM4 C-GED (0.003) G-Norm (0.001) C-Norm (0.003) E-Norm (0.154) E-Norm (0.089) G-Norm (0.004) T-Norm (0.004) T-Norm (0.007) E-Norm (0.045)

eM5 E-GED (0.003) E-Stut (0.001) T-GED (0.006) C-GED (0.280) T-GED (0.164) T-GED(0.050) G-GED (0.004) E-Norm (0.009) C-GED(0.52)

eM6 E-Lap (0.003) C-GED (0.001) E-Stut (0.006) G-GED (0.485) G-GED (0.170) G-GED (0.050) E-Norm (0.004) G-GED (0.009) G-GED (0.052)

eM7 E-Stut (0.003) G-Stut (0.001) G-GED (0.006) T-GED (0.552) C-GED (0.188) E-GED (0.050) T-GED (0.016) T-GED (0.010) T-GED (0.052)

eM8 T-Norm (0.004) G-GED (0.001) G-Stut (0.006) E-Lap (0.615) E-GED (0.206) C-GED (0.050) E-Stut (0.017) E-Lap(0.010) E-GED (0.052)

eM9 G-Stut (0.004) T-Stut (0.001) C-GED (0.006) C-Lap (0.690) E-Lap (0.210) T-Lap (0.068) E-GED (0.039) E-GED (0.058) E-Lap (0.062)

eM10 T-Stut (0.004) E-Norm (0.001) T-Stut (0.006) E-GED (0.764) T-Lap (0.268) E-Lap (0.068) G-Lap (0.039) G-Lap(0.107) E-Sket (0.071)

eM11 E-Sket (0.004) E-GED (0.001) E-Sket (0.008) G-Lap (0.764) G-Lap (0.315) G-Lap (0.087) E-Sket (0.046) C-Sket (0.139) G-Lap (0.130)

eM12 G-Lap (0.005) E-Sket (0.001) E-GED (0.012) T-Lap (0.853) C-Lap (0.378) C-Lap (0.135) T-Stut (0.097) E-Sket (0.148) C-Lap (0.171)

eM13 G-Norm (0.012) E-Lap (0.001) C-Stut (0.012) E-Stut (0.875) T-Sket (0.378) T-Sket (0.141) C-Lap (0.282) E-Stut (0.221) E-Stut (0.243)

eM14 T-Lap (0.012) E-Stut (0.001) G-Sket (0.014) E-Sket (0.891) E-Sket (0.380) E-Sket (0.167) T-Lap (0.282) T-Lap (0.250) T-Lap (0.283)

eM15 G-Sket (0.012) -Sket (0.002) E-Lap (0.015) G-Stut (0.893) E-Stut (0.493) G-Sket (0.226) G-Stut (0.282) G-Stut (0.314) T-Stut (0.377)

eM16 E-Norm (0.025) G-Lap (0.004) T-Sket (0.022) G-Sket (0.902) G-Sket (0.493) T-Stut (0.273) G-Sket (0.285) G-Sket (0.314) G-Sket (0.377)

eM17 C-Stut (0.025) T-Sket (0.033) C-Sket (0.022) T-Sket (0.962) T-Stut (0.493) E-Stut (0.273) E-Stut (0.372) T-Stut (0.426) C-Stut (0.377)

eM18 T-Sket (0.091) T-Lap (0.033) G-Lap (0.022) T-Stut (0.962) G-Stut (0.504) G-Stut (0.273) T-Sket (0.712) T-Sket (0.794) T-Sket (0.377)

eM19 C-Lap (0.586) C-Sket (0.042) T-Lap (0.030) C-Sket (0.962) C-Sket (0.504) C-Sket (0.287) C-Stut (0.712) C-Stut (0.794) G-Stut (0.377)

eM20 C-Sket (1.000) C-Lap (1.000) C-Lap (1.000) C-Stut (1.000) C-Stut (1.000) C-Stut (1.000) C-Sket (1.000) C-Sket (1.000) C-Sket (1.000)



Improving Value-at-Risk estimates by combining density forecasts 32

In order to determine whether a prediction model is accurate from a practical per-

spective, we apply out-of-sample forecast evaluation on the computation of VaR and ES

estimates for each of the prediction models. When a target return is a α quantile of

the return distribution, the probability of underperforming the target is α. If we know

the CDF function of Y , then the corresponding quantile will be xt = F−1
y (α) such that

the one-day VaR is determined by P (Yt < xt) = α, where V aRt,α = −xt. Furthermore,

the expected shortfall, which is the expected loss given that the loss exceeds the VaR, is

defined by ESt,α = E(Yt|Yt ≤ V aRt,α).

Afterwards, model validation or backtesting approaches such as Christoffersen [1998]’s

tests may be applied. These backtests use an i.i.d Bernoulli process, such that an ex-

ceedance of the VaR is tracked by an indicator function, typically I(yt+1 ≤ V aRt,α) for

α = 0.1, 0.05 and 0.01, by assigning a value of 1 if the condition between parentheses

is satisfied and 0 otherwise. We consider three types: (i) Unconditional coverage test

(UC), (ii) Independence test (IND), (iii) Conditional coverage test (CC). Unconditional

coverage tests are based on the number of exceedances, denoting times that the return

yt falls below the previous day’s VaR estimate. We test the null hypothesis that the in-

dicator function has a constant probability equal to the significance level of the VaR, α.

The test statistic is a likelihood ratio statistic. Additionally, independence tests are used

to test whether VaR exceptions are around the same time, commonly termed as cluster-

ing. In other words, when exceptions are not independent, an exceedance tomorrow is

likely occur, given an exceedance today. We reject VaR models which exhibit clustered

exceptions because this may indicate that the VaR model is not sufficient in changing

market circumstances. The test statistic obtained from the independence tests is also

a likelihood ratio statistic. For the sake of completeness, conditional coverage tests are

formed by combining UC and IND into one test.

Another common used tail-related risk measure is the method developed by McNeil

and Frey [2000] for backtesting −V aRt,α and ESt,α estimates, which is based on time

series of standardized exceedance residuals, given by

εt+1 =


yt+1−ESt,α

σ̂t
, if yt+1 < −V aRt,α,

0, otherwise.
(4.8)

Here, σ̂t is the one-day forecast of the standard deviation of the daily return obtained from

the corresponding prediction model. The idea behind the test is based on the observation
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that, if the ES predictions are correct such that ESt,α is an unbiased estimate for the

expectation in the tail below the VaR, the expected value of εt+1 should behave as a

sample from an i.i.d. zero mean process. To elaborate on this, we test the null-hypothesis

that εt+1 has zero mean, against the alternative that the mean is positive(negative), such

that the ES is too low(high) implying an overestimation(underestimation) of the ES. We

consider for this purpose a two-sided t-test with a HAC variance estimator.

The results are summarized in Table 5. A glance at the backtesting results based

on the coverages for each of the quantile display that the exceedance probabilities for

most of the models are close to the empirical levels. For α = 0.10, only volatility models

with Gaussian normal innovations (model G-Norm, E-Norm, T-Norm and C-Norm) are

rejected by the UC test at the 10% significance level, again indicating issues around these

type of distribution in predictive accuracy. For α = 0.05, this problem also seems to

be the case for Laplace type of models (G-Lap, T-Lap, C-Lap), where the exceedance

probabilities are clearly much smaller than the corresponding empirical levels. This points

out that also Laplace type models might suffer from their specific distribution such that

in some circumstances it would lead to misjudgement and possibly misspecfication on

their VaR estimates. On the other hand, Student t and Skewed t type of models show

good results according to the UC tests for all three quantiles, which again underlines their

predictive strength. When we take a closer look to the outcome of IND tests, we also

observe that even the most favored models from our collection of models sporadically fails

to overcome clustering. In overall, Student t and Skewed t type models have achieved the

most reliable VaR estimates according to CC tests. The outcome of these results illustrate

the link between predictive scoring rules and accuracy of VaR estimates. Moreover,

scoring rules can be seen as indicators such that models with higher scores imply potential

in obtaining more accurate VaR estimates. Same conclusions can be drawn from the

results of the ES estimates. To elaborate this, we firstly observe more extreme average

ES estimates obtained by models with Laplace distribution. McNeil and Frey [2000]

test rejects the null hypothesis at the 5% significance level for the regions α = 0.10 and

0.01. In addition, the test statistics for this type of models are positive for α = 0.10.

Thus, this signifies that the ES estimates are too low and overestimated. On the other

hand, we observe higher ES estimates for the normal distribution. For α = 0.10, the null

hypothesis is rejected for 3 out of 4 Normal models at the 10% significance level. Since the
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corresponding test statistics are negative, the ES estimates appear to be too high which

also implies underestimation of the ES. Once again, this points out the inappropriateness

of using normal distributed innovations for modeling stock returns. Finally, Student t,

GED and Skewed t came out as more decent approaches according to McNeil and Frey

[2000] tests, where null hypothesis is accepted for most of the volatility models with these

distributions, for all three α′s. From these findings, we can confirm that models with high

predictive power based on the proposed scorings rules also demonstrate positive outcomes

in the ES predicitons. In other words, improving VaR and ES estimates can be achieved

by developing methods that result in higher predictive density scores.

In summary, we find that both cl and csl scoring rules are convenient metrics in

comparing density forecasts when interest lies in a region instead of the whole distribu-

tion. Furthermore, by applying different evaluation methods in comparing the prediction

models, we have verified that a higher score in terms of predictive power according to

cl and csl scoring rules indicates more accurate VaR and ES estimates. It is further

of importance to point out that some of the models stand out compared to others, for

instance Student t and Skewed t type models, but none of these models are consistently

better. This suggests that relying too much on a single model is questionable. Thus,

there is room for further investigation which leads us to the next stage of our research:

Combining density forecasts.
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Table 5: Predictive Density Evaluation - VaR and ES characteristics with number of out-of-sample observations n = 4117

This table summarizes the VaR and ES as risk measures with several additional backtesting approaches for each prediction models presented in columns. The rows are separated in three

blocks, where each block corresponds with a region of interest given by quantiles. We consider three quantiles, 10, 5 and 1 (α = 0.10, 0.05 and 0.01). The average VaRs reported are the

observed average 1%, 5% and 10% quantiles of the density forecasts. The coverages correspond with the observed fraction of returns below the respective VaRs. The average ES values are

equal to the conditional mean return, given a realization below the predicted VaR. Backtesting methods for VaR are labeled as UC, IND and CC. Here, we provide p-values for these tests.

The last two rows for each block report McNeil-Frey test statistics and corresponding p-values for backtesting the ES estimates. Note that the numbers in the first row correspond with the

prediction models similar to previous tables, where each model is assigned with a number.

G-Norm G-Stut G-GED G-Lap G-Sket E-Norm E-Stut E-GED E-Lap E-Sket T-Norm T-Stut T-GED T-Lap T-Sket C-Norm C-Stut C-GED C-Lap C-Sket

10

Av. VaR -0.0120 -0.0110 -0.0110 -0.0112 -0.0111 -0.0117 -0.0109 -0.0108 -0.0111 -0.0110 -0.0119 -0.0110 -0.0107 -0.0113 -0.0111 -0.0127 -0.0112 -0.0121 -0.0118 -0.0113

Coverage 0.0889 0.1049 0.1108 0.1008 0.1086 0.0896 0.1057 0.1091 0.1032 0.1076 0.0894 0.1023 0.1122 0.0979 0.1049 0.0821 0.1010 0.0923 0.0908 0.1018

UC(p) 0.0837 0.4534 0.1046 0.9024 0.1946 0.0965 0.3899 0.1708 0.6224 0.2494 0.0984 0.7302 0.0648 0.7454 0.4534 0.0048 0.8731 0.2328 0.1549 0.7865

IND(p) 0.4676 0.5133 0.5451 0.5370 0.5402 0.2440 0.0443 0.4340 0.0396 0.0565 0.2339 0.2459 0.9874 0.1046 0.1846 0.3054 0.1977 0.0806 0.1575 0.0593

CC(p) 0.1721 0.6097 0.2231 0.8203 0.3574 0.1379 0.0915 0.2882 0.1066 0.0836 0.1257 0.4807 0.1818 0.2542 0.3131 0.0111 0.4306 0.1067 0.1339 0.1629

Av. ES -0.0165 -0.0171 -0.0178 -0.0181 -0.0169 -0.0166 -0.0170 -0.0173 -0.0181 -0.0170 -0.0163 -0.0171 -0.0172 -0.0179 -0.0169 -0.0164 -0.0179 -0.0174 -0.0178 -0.0167

M-F -1.7642 0.2413 2.3925 2.9832 -0.5913 -1.3465 -0.3125 0.9513 3.0123 -0.3129 -2.3215 -0.2911 0.6321 2.5632 -0.6231 -2.0345 2.4532 1.0652 2.4432 -1.1952

M-F(p) 0.0778 0.8093 0.0168 0.0029 0.5543 0.1782 0.7546 0.3415 0.0026 0.7544 0.0203 0.7711 0.5274 0.0104 0.5332 0.0421 0.0142 0.2868 0.0146 0.2321

5

Av. VaR -0.0155 -0.0149 -0.0151 -0.0162 -0.0152 -0.0152 -0.0148 -0.0148 -0.0159 -0.0151 -0.0154 -0.0149 -0.0146 -0.0162 -0.0151 -0.0165 -0.0152 -0.0167 -0.0170 -0.0156

Coverage 0.0471 0.0539 0.0534 0.0413 0.0527 0.0491 0.0532 0.0530 0.0449 0.0551 0.0505 0.0561 0.0600 0.0410 0.0547 0.0476 0.0486 0.0481 0.0364 0.0466

UC(p) 0.5402 0.4139 0.4734 0.0587 0.5713 0.8432 0.5049 0.5375 0.2777 0.2863 0.9125 0.2061 0.0408 0.0518 0.3337 0.6112 0.7635 0.6859 0.0027 0.4734

IND(p) 0.2656 0.3039 0.3784 0.4334 0.4512 0.2607 0.0262 0.0889 0.1799 0.0288 0.2381 0.2366 0.0456 0.5798 0.1820 0.5332 0.2400 0.1518 0.0733 0.2446

CC(p) 0.4461 0.4222 0.5247 0.1232 0.6414 0.5209 0.0677 0.1945 0.2258 0.0519 0.4957 0.2233 0.0167 0.1294 0.2571 0.7237 0.4792 0.3299 0.0022 0.3930

Av. ES -0.0199 -0.0205 -0.0205 -0.0218 -0.0208 -0.0199 -0.0205 -0.0204 -0.0215 -0.0207 -0.0192 -0.0198 -0.0213 -0.0214 -0.0206 -0.0197 -0.0212 -0.0211 -0.0226 -0.0206

M-F -1.2911 -1.1268 -1.1114 -0.6315 -1.0112 -1.2843 -1.1251 -1.1595 -0.7552 -1.0584 -1.4513 -1.3196 -0.8315 -0.7921 -1.0836 -1.3457 -0.8887 -0.9312 -0.2951 -1.0951

M-F(p) 0.1967 0.2599 0.2664 0.5277 0.3119 0.1990 0.2606 0.2463 0.4502 0.2899 0.1468 0.1870 0.4057 0.4283 0.2786 0.1785 0.3739 0.3518 0.7679 0.2735

1

Av. VaR -0.0221 -0.0241 -0.0239 -0.0275 -0.0248 -0.0216 -0.0239 -0.0233 -0.0271 -0.0246 -0.0220 -0.0238 -0.0230 -0.0274 -0.0244 -0.0235 -0.0248 -0.0264 -0.0287 -0.0256

Coverage 0.0158 0.0104 0.0141 0.0053 0.0100 0.0160 0.0119 0.0138 0.0066 0.0114 0.0163 0.0104 0.0163 0.0063 0.0104 0.0197 0.0085 0.0148 0.0046 0.0080

UC(p) 0.0137 0.8385 0.0754 0.0183 0.9848 0.0104 0.3938 0.0934 0.0899 0.5225 0.0079 0.8385 0.0079 0.0680 0.8385 0.0001 0.4775 0.0379 0.0054 0.3425

IND(p) 0.5400 0.6124 1.0000 1.0000 0.5761 0.5569 0.7227 0.8702 0.3339 0.2704 0.5739 0.6124 0.2768 1.0000 0.2217 0.2455 1.0000 0.9432 1.0000 1.0000

CC(p) 0.0397 0.8615 0.2057 0.0618 0.8551 0.0317 0.6528 0.2414 0.1489 0.4441 0.0251 0.8615 0.0163 0.1890 0.4642 0.0002 0.7770 0.1157 0.0209 0.6373

Av. ES -0.0259 -0.0285 -0.0261 -0.0349 -0.0281 -0.0255 -0.0278 -0.0275 -0.0335 -0.0261 -0.0260 -0.0276 -0.0258 -0.0345 -0.0274 -0.0231 -0.0304 -0.0252 -0.0373 -0.0297

M-F -0.2013 0.5984 -0.1351 2.3042 0.4711 -0.3329 0.3715 0.2846 1.9318 -0.1208 -0.1732 0.3154 -0.2411 2.1691 0.2492 -1.1132 1.1813 -0.4531 3.0859 0.9511

M-F(p) 0.8405 0.5496 0.8925 0.0213 0.6396 0.7392 0.7103 0.7759 0.0534 0.9039 0.8625 0.7525 0.8095 0.0301 0.8032 0.2657 0.2375 0.6505 0.0021 0.3416
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4.2 Combined prediction models - Ex post

Up to this point, individual prediction models have been investigated. We have seen that

model with Student t and Skewed t distributed innovations have performed well. Our

interest lies on the question whether these models are also present in pools of multiple

prediction models and their ability to positively influence them.

The determination of weights depends on the choice of scoring rules. We consider log

predictive, cl and csl scoring rules as described in equations 2.7, 2.11, and 2.13 for the

pool optimization. Starting with the evaluation of the predictive densities for the entire

out-of-sample period ex post. We assume in this case that we have access of the entire

data up to the end of the outsample at a point of time of the sample period. Of course

this scheme could not be used in practice since only past data are available. However,

this setting is illustrative as a starting point in the large area of combining prediction

models. In this way, we verify whether there exist a set of weights in the optimal pool

which could outperform the best individual prediction models.

4.2.1 Pools of two models

Figure 4 shows a example of a pool of two models, TGARCH - Normal and CGARCH

- Skewed t. The scores on the y-axis are presented as a function of the weights in

the pool, presented on the x-axis. Recall from the previous section, the first model

in this pool is known as not accurate whereas the second is proved as one of the best

performing individual prediction model. Interesting result emerges when we combine

these two models. First, a maximum log score of -5225 is achieved for w = 0.31, denoting

the weight on TGARCH - Normal. Moreover, greater weight is given to the second model

indicating that CGARCH - Skewed t is indeed favored in the optimal pool. The same

holds true for cl where w = 0.22 with a score equals to -301, and for csl where w = 0.18

with a score equals to -1552. Second, even though we acknowledge that TGARCH -

Normal has not shown sufficient predicting performance as a individual model, still the

maximum log score obtained outperforms CGARCH - Skewed t’s individual log score, as

reported in 2, by 13. In addition, the highest individual cl and csl scores presented in 3

are both improved by 1 and 2 respectively.

We next generalize this methodology by combining the entire collection of 20 predic-

tion models for pools of two models, giving us a total of 190 combined pools. Table 6



Improving Value-at-Risk estimates by combining density forecasts 37

Figure 4: Predictive scores as a function of model weight

Scores are as a function ex post of the weights. Note that the x-axis is associated with the weight of the first mentioned

model in the pool. For cl and csl, the scores correspond with the region of interest for α=0.10

reports the optimal log scores evaluated over the whole distribution and the correspond-

ing weights for each of the combinations that can be created, table 7 and 8 present cl and

csl scores for a pre defined region of interest α = 0.01. Results for other regions, α = 0.10

and 0.05 are reported in the Appendix. Each table consists a 20 by 20 matrix. Entries

above the diagonal report the optimal scores achieved based on T observations. Entries

below the diagonal correspond with the weight for models in the row of the table. Recall

from the previous example, the optimal score for TGARCH - Normal with CGARCH -

Skewed t pool is reported in cell row 11 and column 20, and the corresponding weight is

reported in cell row 20 and column 11.

As demonstrated in Table 6, 33 out of 190 possible two model pools yield higher log

predictive score in the optimum than the best individual model TGARCH - Student t,

this may indeed give rise to possible improvement in forecasting by combining prediction

models. Note that TGARCH - Student t itself is the most combined individual model for

pools of two models. Moreover, this model shows great dominance in the optimal pools

with other models as shown by the weights. However, the highest log predictive score of

-5202 is achieved by combining the density forecasts of EGARCH - Normal and CGARCH

- Skewed t, which outperforms TGARCH - Student t’s log score by 18. Beforehand, it

is imaginable that a Student t type model is included, but pointing EGARCH - Normal

(only ranked 10 according to Table 2) as the other part in the best performing two model



Improving Value-at-Risk estimates by combining density forecasts 38

pool is not expected. This suggests that even individual models with poor performance

could provide useful contribution in a pool of multiple model.

The same strategy can be applied on more convenient evaluation methods to verify

combining models that could improve the scoring rules based on cl or csl on the region

of interest, for instance the left tail. Table 7 reports combining cl scores for α = 0.01.

We observe 21 pools of two models yield higher score than the target score. These

improvements are however small, due to the fact that for α = 0.10 only 1/100 of the total

observations are in this region. The number of evaluations by cl rule is therefore small,

such that improvements are small. The best performer is the pool consisting CGARCH

- Normal and CGARCH - Student t which outperforms the target score by 1.

From Table 8, we also observe that combining csl leads to more accurate density

forecasts. Recall from the previous section, the target score csl score for α = 0.01 equals

to -310 obtained from TGARCH - Student t. Even though this model has proved to

provide reliable predictions, still 41 combined models are able to beat this score. Once

again EGARCH - Normal and CGARCH - Laplace is the most accurate out of 190 possible

pools with a score equals to -304. Both models individually provide average or even poor

predictions but together they form one of the most accurate combined model.
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Table 6: Predictive Density Evaluation for combined models - Ex post optimal log predictive scores

In this table we presents the log predictive scores of the density forecasts for pools of two models. The scores presented in this table are the sum of scores over the evaluation period for

the whole distribution evaluated over the out-of-sample period October 25, 1991 - March 14, 2008 (4117 observations). Entries above the diagonal are log scores of optimal pools. The

corresponding weights of the pool for the model in that row are presented in entries below the diagonal. Note that the numbers in the first row and column correspond with the prediction

models similar to previous tables, where each model is assigned with a number. The ”target score” is equal to -5220, referring to the best individual performance achieved by TGARCH -

Student t. This target score is surpassed by 33 combinations of two models, as highlighted in grey. The best performing pool of two models consists EGARCH - Normal and CGARCH -

Skewed t, which has achieved a score equals to -5202

G-Norm G-Stut G-GED G-Lap G-Sket E-Norm E-Stut E-GED E-Lap E-Sket T-Norm T-Stut T-GED T-Lap T-Sket C-Norm C-Stut C-GED C-Lap C-Sket

G-Norm -5235 -5282 -5248 -5242 -5278 -5254 -5237 -5254 -5252 -5336 -5220 -5276 -5242 -5231 -5340 -5230 -5312 -5248 -5233

G-Stut 0.95 -5235 -5234 -5233 -5207 -5235 -5213 -5235 -5234 -5229 -5219 -5231 -5231 -5223 -5234 -5228 -5234 -5232 -5227

G-GED 0.61 0.04 -5272 -5240 -5233 -5254 -5251 -5276 -5250 -5267 -5219 -5293 -5265 -5228 -5278 -5230 -5283 -5268 -5231

G-Lap 0.50 0.08 0.38 -5239 -5203 -5254 -5231 -5294 -5249 -5235 -5218 -5262 -5286 -5226 -5289 -5230 -5294 -5291 -5231

G-Sket 0.82 0.29 0.76 0.77 -5207 -5241 -5212 -5241 -5245 -5233 -5218 -5232 -5234 -5234 -5243 -5227 -5243 -5235 -5236

E-Norm 0.88 0.51 0.65 0.67 0.54 -5221 -5225 -5213 -5218 -5284 -5207 -5239 -5206 -5210 -5268 -5203 -5250 -5206 -5202

E-Stut 0.69 0.00 0.64 0.68 0.29 0.41 -5227 -5266 -5263 -5245 -5220 -5247 -5248 -5231 -5265 -5231 -5265 -5255 -5236

E-GED 0.72 0.50 0.90 0.81 0.55 0.51 0.64 -5237 -5222 -5238 -5210 -5253 -5233 -5211 -5232 -5211 -5237 -5230 -5208

E-Lap 0.45 0.04 0.29 0.00 0.17 0.31 0.14 0.13 -5264 -5243 -5219 -5268 -5287 -5230 -5308 -5231 -5317 -5301 -5236

E-Sket 0.65 0.16 0.58 0.62 0.03 0.41 0.41 0.37 0.74 -5243 -5219 -5243 -5244 -5236 -5268 -5230 -5269 -5251 -5237

T-Norm 0.65 0.24 0.47 0.54 0.31 0.04 0.39 0.31 0.58 0.42 -5220 -5274 -5238 -5232 -5326 -5223 -5300 -5234 -5225

T-Stut 0.96 0.84 0.92 0.90 0.79 0.60 1.00 0.63 0.94 0.89 0.99 -5220 -5218 -5219 -5217 -5215 -5217 -5214 -5213

T-GED 0.59 0.24 0.49 0.62 0.35 0.36 0.42 0.00 0.69 0.46 0.54 0.05 -5262 -5229 -5271 -5225 -5279 -5256 -5224

T-Lap 0.51 0.18 0.43 0.83 0.29 0.35 0.37 0.19 1.00 0.41 0.48 0.07 0.42 -5227 -5282 -5227 -5287 -5283 -5227

T-Sket 0.80 0.49 0.72 0.75 0.68 0.51 0.71 0.51 0.81 0.91 0.78 0.21 0.72 0.75 -5233 -5218 -5234 -5222 -5228

C-Norm 0.02 0.01 0.10 0.12 0.02 0.03 0.03 0.08 0.17 0.05 0.04 0.01 0.13 0.12 0.02 -5231 -5492 -5299 -5237

C-Stut 0.88 0.66 0.87 0.89 0.70 0.50 1.00 0.52 0.99 0.89 0.74 0.33 0.74 0.82 0.54 0.99 -5231 -5231 -5228

C-GED 0.13 0.01 0.06 0.00 0.01 0.10 0.03 0.05 0.07 0.05 0.14 0.01 0.10 0.00 0.02 0.62 0.01 -5303 -5237

C-Lap 0.46 0.14 0.35 0.40 0.25 0.31 0.30 0.18 0.77 0.36 0.43 0.14 0.36 0.32 0.26 0.88 0.06 0.97 -5234

C-Sket 0.80 0.48 0.75 0.78 0.76 0.48 0.82 0.48 0.88 1.00 0.69 0.33 0.66 0.73 0.47 0.99 0.37 0.99 0.83
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Table 7: Predictive Density Evaluation for combined models - Ex post optimal conditional likelihood predictive scores for

α = 0.01

In this table we presents the conditional likelihood predictive scores of the density forecasts for pools of two models. The scores presented in this table are the sum of scores over the evaluation

period for the regional distribution α = 0.01, evaluated over the out-of-sample period October 25, 1991 - March 14, 2008 (4117 observations). Entries above the diagonal are log scores of

optimal pools. The corresponding weights of the pool for the model in that row are presented in entries below the diagonal. Note that the numbers in the first row and column correspond

with the prediction models similar to previous tables, where each model is assigned with a number. The ”target score” is equal to -44, referring to the best individual performance achieved

by CGARCH - Skewed t. This target score is surpassed by 21 combinations of two models, as highlighted in grey. The best performing pool of two models consists CGARCH - Normal and

CGARCH - Student t, which has achieved a score equals to -43

G-Norm G-Stut G-GED G-Lap G-Sket E-Norm E-Stut E-GED E-Lap E-Sket T-Norm T-Stut T-GED T-Lap T-Sket C-Norm C-Stut C-GED C-Lap C-Sket

G-Norm -44 -55 -47 -45 -83 -44 -53 -47 -45 -91 -45 -58 -47 -45 -88 -43 -56 -45 -44

G-Stut 1.00 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44 -43 -44 -44 -44

G-GED 1.00 0.00 -47 -45 -55 -44 -53 -47 -45 -55 -45 -55 -47 -45 -53 -43 -52 -46 -44

G-Lap 0.81 0.00 0.73 -45 -47 -44 -46 -47 -45 -47 -45 -47 -47 -45 -46 -43 -46 -46 -44

G-Sket 1.00 0.00 1.00 1.00 -45 -44 -45 -45 -45 -45 -45 -45 -45 -45 -44 -43 -44 -45 -44

E-Norm 0.76 0.00 0.00 0.22 0.00 -44 -53 -47 -45 -84 -45 -58 -47 -45 -79 -43 -56 -45 -44

E-Stut 1.00 0.00 1.00 1.00 1.00 1.00 -44 -44 -44 -44 -44 -44 -44 -44 -44 -43 -44 -44 -44

E-GED 1.00 0.00 0.78 0.37 0.00 1.00 0.00 -47 -45 -53 -45 -53 -47 -45 -52 -43 -51 -45 -44

E-Lap 0.82 0.00 0.73 0.00 0.00 0.81 0.00 0.62 -45 -47 -45 -47 -47 -45 -47 -43 -46 -46 -44

E-Sket 1.00 0.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 -45 -45 -45 -45 -45 -45 -43 -45 -45 -44

T-Norm 0.38 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.12 0.00 -45 -58 -47 -45 -88 -43 -56 -46 -44

T-Stut 1.00 0.00 1.00 1.00 0.45 1.00 0.20 1.00 1.00 0.89 1.00 -45 -45 -45 -45 -43 -45 -45 -44

T-GED 1.00 0.00 0.01 0.31 0.00 1.00 0.00 0.00 0.31 0.00 1.00 0.00 -47 -45 -54 -43 -53 -46 -44

T-Lap 0.77 0.00 0.67 0.00 0.00 0.76 0.00 0.62 0.52 0.00 0.83 0.00 0.67 -45 -46 -43 -46 -46 -44

T-Sket 1.00 0.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 0.04 1.00 0.00 1.00 1.00 -45 -43 -45 -45 -44

C-Norm 0.34 0.06 0.16 0.26 0.11 0.30 0.07 0.15 0.25 0.10 0.37 0.09 0.16 0.29 0.14 -43 -56 -45 -44

C-Stut 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 -43 -43 -43

C-GED 1.00 0.06 0.45 0.42 0.17 1.00 0.08 0.26 0.42 0.18 1.00 0.12 0.43 0.43 0.22 1.00 0.10 -45 -44

C-Lap 0.77 0.00 0.71 1.00 0.00 0.75 0.00 0.63 1.00 0.00 0.81 0.00 0.68 1.00 0.09 0.71 0.00 0.58 -44

C-Sket 0.99 0.49 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.00 0.81 1.00
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Table 8: Predictive Density Evaluation for combined models - Ex post optimal censored likelihood predictive scores for

α = 0.01

In this table we presents the censored likelihood predictive scores of the density forecasts for pools of two models. The scores presented in this table are the sum of scores over the evaluation

period for the regional distribution α = 0.01, evaluated over the out-of-sample period October 25, 1991 - March 14, 2008 (4117 observations). Entries above the diagonal are log scores of

optimal pools. The corresponding weights of the pool for the model in that row are presented in entries below the diagonal. Note that the numbers in the first row and column correspond

with the prediction models similar to previous tables, where each model is assigned with a number. The ”target score” is equal to -310, referring to the best individual performance achieved

by CGARCH - Student t. This target score is surpassed by 41 combinations of two models, as highlighted in grey. The best performing pool of two models consists EGARCH - Normal and

CGARCH - Laplace, which has achieved a score equals to -304

G-Norm G-Stut G-GED G-Lap G-Sket E-Norm E-Stut E-GED E-Lap E-Sket T-Norm T-Stut T-GED T-Lap T-Sket C-Norm C-Stut C-GED C-Lap C-Sket

G-Norm -312 -335 -313 -314 -356 -315 -324 -315 -316 -373 -310 -338 -310 -312 -359 -310 -331 -310 -312

G-Stut 1.00 -312 -311 -312 -309 -312 -309 -311 -312 -312 -309 -312 -309 -310 -308 -310 -309 -309 -311

G-GED 1.00 0.00 -314 -314 -330 -315 -324 -315 -316 -334 -310 -333 -311 -312 -318 -310 -319 -312 -312

G-Lap 0.63 0.20 0.62 -312 -307 -312 -308 -315 -314 -311 -308 -311 -312 -309 -311 -310 -313 -314 -312

G-Sket 1.00 0.00 1.00 0.73 -310 -313 -309 -313 -314 -313 -310 -312 -311 -311 -309 -310 -310 -311 -312

E-Norm 0.82 0.42 0.54 0.60 0.49 -311 -324 -309 -312 -359 -309 -333 -307 -311 -339 -307 -325 -304 -307

E-Stut 0.89 0.00 0.95 0.59 0.31 0.54 -311 -314 -315 -314 -310 -314 -310 -311 -311 -310 -312 -311 -312

E-GED 1.00 0.52 0.87 0.72 0.60 0.90 0.62 -309 -311 -324 -309 -324 -308 -310 -310 -308 -312 -306 -308

E-Lap 0.60 0.13 0.51 0.00 0.17 0.40 0.23 0.25 -316 -312 -308 -312 -312 -310 -313 -310 -316 -316 -312

E-Sket 0.81 0.00 0.75 0.45 0.00 0.48 0.00 0.33 0.68 -315 -310 -314 -311 -312 -312 -310 -313 -313 -312

T-Norm 0.59 0.15 0.30 0.47 0.25 0.00 0.28 0.04 0.48 0.34 -310 -337 -310 -312 -354 -309 -330 -308 -310

T-Stut 1.00 0.78 1.00 0.84 0.89 0.82 0.93 0.78 0.87 1.00 1.00 -310 -307 -310 -304 -308 -305 -306 -309

T-GED 0.99 0.23 0.55 0.60 0.42 0.60 0.43 0.00 0.64 0.53 0.82 0.00 -310 -312 -317 -309 -318 -309 -310

T-Lap 0.68 0.37 0.71 1.00 0.51 0.46 0.54 0.38 1.00 0.73 0.61 0.20 0.53 -309 -308 -309 -311 -312 -311

T-Sket 1.00 0.51 1.00 0.79 0.74 0.67 0.70 0.58 0.83 0.89 1.00 0.00 0.92 0.73 -306 -309 -307 -308 -310

C-Norm 0.23 0.15 0.17 0.36 0.20 0.19 0.19 0.14 0.37 0.23 0.25 0.13 0.14 0.33 0.18 -306 -333 -310 -308

C-Stut 0.96 1.00 1.00 0.91 1.00 0.55 1.00 0.49 1.00 1.00 0.74 0.40 0.75 0.71 0.59 0.81 -308 -309 -310

C-GED 0.41 0.08 0.12 0.18 0.11 0.32 0.10 0.07 0.21 0.13 0.43 0.07 0.09 0.13 0.10 0.60 0.08 -315 -310

C-Lap 0.44 0.21 0.39 0.16 0.23 0.32 0.30 0.23 0.44 0.34 0.40 0.17 0.30 0.10 0.20 0.49 0.10 0.61 -311

C-Sket 0.80 0.43 0.93 0.85 0.83 0.47 0.81 0.39 1.00 1.00 0.64 0.26 0.55 0.54 0.39 0.74 0.00 0.88 0.88
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4.2.2 Pools of multiple models

Next, we discuss the combining technique as described above to be applied on pools of

multiple pools. It is well understood that the number of possibilities from combining 20

individual models is enormous. It would not make sense to report all of them. Instead,

we consider segmentation of the individual models which will be demonstrated next.

At the end of this section, we report the results for combining the whole collection of

individual prediction models. Table 9 demonstrates optimal pooling using past data

by combining all candidate distributions for each of the volatility model, giving us 4

new pools of models: 5-GARCH pool (including GARCH - Normal, GARCH - Student

t, GARCH - GED, GARCH - Laplace and GARCH - Skewed t), 5-EGARCH pool, 5

TGARCH pool, 5-CGARCH pool. At the first sight, we observe small differences in

scores between these pools, indicating that the resulting predictive accuracy between the

volatility models are small given the same set of candidate distributions for combining.

In addition, we can combine all volatility models for each of the candidate distributions.

This time, allowing us to create 5 new pools of models: 4-Normal pool (including GARCH

- Normal, EGARCH - Normal, TGARCH - Normal, CGARCH - Normal), 4-Student t

pool, 4-GED pool, 4-Laplace pool, 4-Skewed t pool. We observe bigger range of the scores

between the pools of models, which signifies the influence of candidate distributions.

As the results in table 9 display, the improvement in scores is present but small for cl

and csl scoring rules compared to the individual and pools of two prediction models. This

is due to the fact that our newly created pools are too restrictive such that neglecting

other models would lead to waste of information. Therefore, it makes more sense to

consider all models at the same time (20 in our case). In order to outperform the best

individual models, we need to take a closer look into the construction of the pools of

models.
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Table 9: Predictive Density Evaluation - Ex Post - Pools of multiple models,

with number of out-of-sample observations n = 4117

This table presents the scores of combined multiple models based on (1) log predictive scoring rule, over the whole dis-

tribution and (2) conditional likelihood scoring rule (3) censored likelihood scoring rule, over the region of interest for

α = 0.10, 0.05, 0.01, evaluated over October 25, 1991 - March 14, 2008 (4117 observations). The scores presented in this

table are the sum of scores.

Log predictive Scores Conditional Likelihood Scores Censored Likelihood Scores

Whole distribution α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01

5 GARCH Models -5238 -302 -166 -44 -1558 -970 -311

5 EGARCH Models -5205 -298 -167 -44 -1552 -960 -308

5 TGARCH Models -5217 -299 -167 -45 -1552 -963 -307

5 CGARCH Models -5227 -301 -164 -43 -1552 -966 -306

4 Normal Models -5264 -345 -208 -79 -1590 -996 -339

4 Student t Models -5215 -301 -165 -43 -1552 -963 -308

4 GED Models -5236 -302 -171 -51 -1565 -970 -311

4 Laplace Models -5283 -306 -170 -46 -1563 -972 -312

4 Skewed t Models -5228 -301 -166 -44 -1550 -963 -310

Table 10 confirms this phenomenon by reporting the average weights based on past

data only for each of the individual models in the combined pools. Clearly, individual

models that are found to be inferior according to our evaluation measures such as the

MCS employ positive weights signifying substantial participation strength in the pools.

In addition, Table 10 also provides insights about the amount of contributions from each

individual models. Take EGARCH - Normal for example, this model shows the highest

weight in the combined pool consisting only EGARCH models according to the csl scoring

criteria for α = 0.10, as well as the highest contribution in the combined pool consisting

only Normal models. In other words, EGARCH - Normal can be seen as the biggest

contributor, both in the EGARCH pool and the Normal pool of combined models. Based

on this finding, we can conclude that this model might play an important role in the

optimal pool. This strategy can be applied for all columns, such that it provides us some

initial ideas about the combining power of each individual models before combining them

all at once.
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Table 10: Predictive Density Evaluation - Ex Post - Model weights -

This table presents the ex post optimal model. Rows in each block display the individual models forming that pool

reported in Table 9 of combined models. Note that some model weights are highlighted, meaning that these models are

both dominant in their volatility model family and distribution family.

Log predictive Scores Conditional Likelihood Scores Censored Likelihood Scores

Whole distribution α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01

5 GARCH Models

GARCH - Normal 0.13 0.00 0.00 0.00 0.00 0.12 0.00

GARCH - Student t 0.00 0.30 0.90 1.00 0.00 0.23 0.80

GARCH - GED 0.20 0.40 0.00 0.00 0.00 0.00 0.00

GARCH - Laplace 0.02 0.30 0.10 0.00 0.15 0.19 0.20

GARCH - Skewed t 0.66 0.00 0.00 0.00 0.85 0.46 0.00

5 EGARCH Models

EGARCH - Normal 0.45 0.06 0.00 0.00 0.47 0.51 0.37

EGARCH - Student t 0.00 0.00 0.51 1.00 0.00 0.00 0.00

EGARCH - GED 0.32 0.66 0.39 0.00 0.21 0.25 0.37

EGARCH - Laplace 0.07 0.28 0.11 0.00 0.24 0.22 0.27

EGARCH - Skewed t 0.16 0.00 0.00 0.00 0.08 0.03 0.00

5 TGARCH Models

TGARCH - Normal 0.03 0.00 0.00 0.00 0.00 0.02 0.00

TGARCH - Student t 0.64 0.17 0.81 1.00 0.13 0.42 0.80

TGARCH - GED 0.03 0.49 0.00 0.00 0.00 0.00 0.00

TGARCH - Laplace 0.08 0.34 0.19 0.00 0.16 0.14 0.20

TGARCH - Skewed t 0.22 0.00 0.00 0.00 0.71 0.42 0.00

5 CGARCH Models

CGARCH - Normal 0.01 0.00 0.23 0.10 0.05 0.05 0.19

CGARCH - Student t 0.60 0.77 0.50 0.90 0.00 0.63 0.81

CGARCH - GED 0.00 0.13 0.08 0.00 0.00 0.00 0.00

CGARCH - Laplace 0.03 0.10 0.19 0.00 0.00 0.00 0.00

CGARCH - Skewed t 0.36 0.00 0.00 0.00 0.95 0.32 0.00

4 Normal Models

GARCH - Normal 0.10 0.18 0.13 0.06 0.09 0.13 0.00

EGARCH - Normal 0.88 0.71 0.61 0.67 0.83 0.81 0.81

TGARCH - Normal 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CGARCH - Normal 0.02 0.11 0.26 0.28 0.08 0.06 0.19

4 Student t Models

GARCH - Student t 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EGARCH - Student t 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TGARCH - Student t 0.67 0.49 0.00 0.00 0.55 0.64 0.60

CGARCH - Student t 0.33 0.51 1.00 1.00 0.45 0.36 0.40

4 GED Models

GARCH - GED 0.06 0.16 0.23 0.25 0.07 0.08 0.14

EGARCH - GED 0.89 0.75 0.58 0.47 0.87 0.88 0.80

TGARCH - GED 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CGARCH - GED 0.05 0.09 0.19 0.28 0.06 0.04 0.06

4 Laplace Models

GARCH - Laplace 0.00 0.00 0.32 0.00 0.00 0.00 0.00

EGARCH - Laplace 0.00 0.11 0.00 0.00 0.00 0.00 0.00

TGARCH - Laplace 0.68 0.68 0.00 0.00 0.76 0.84 0.90

CGARCH - Laplace 0.32 0.21 0.68 1.00 0.24 0.16 0.10

4 Skewed t Models

GARCH - Skewed t 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EGARCH - Skewed t 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TGARCH - Skewed t 0.53 0.50 0.00 0.00 0.52 0.65 0.61

CGARCH - Skewed t 0.47 0.50 1.00 1.00 0.48 0.35 0.39
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At last, we discuss the results of combining the whole collection of individual predic-

tion models. Table 11 reports scores and the weights in the optimal pool based on the

scoring criteria for all three regions of interest. We observe that our optimal pool outper-

forms the best individual models as reported in table 2and table 3 For the log predictive

score of the whole distribution, the score of the ex post optimal pool is -5194 against the

best individual score -5220 obtained from Student t. The cl scores here are -295, -163, 43

against the best individual cl scores -302, -165, -44 for α = 0.10, 0.05, 0.01 respectively.

The csl scores here are -1544, -954, -303 against the best individual csl scores -1553, -966,

-310. We recognize that the score differences decreases for smaller α’s due to the number

of observations within these areas. It is well understood that the smaller the number of

to be combined predictive density forecasts, the smaller the improvement in the predic-

tive density scores. Furthermore, The set of weights in the optimal pools presented here

also confirms the strategy of determining the most influential models as proposed earlier.

Moreover, the highlighted models in table 10 are indeed the biggest contributors in the

optimal pool of 20 models.

In summary, the impact of combining is clearly present for log predictive score, but

less observable for cl and csl scores. We have verified that there is a set of weights

in the combined pool which can beat the best individual predictions. Furthermore, the

results suggest that the inclusion of poor performers could lead to more accurate forecasts,

which underlies the crucial intuition behind combining. From this, we can conclude that

combining density forecasts not only provide us leads in terms of improvements to be

achieved, but also surprising performances from individual ”out of consideration” models.
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Table 11: Predictive Density Evaluation - Ex Post - Model Weights - Pool of full collection of models, with number of

out-of-sample observations n = 4117

Log predictive Scores Conditional Likelihood Scores Censored Likelihood Scores

Whole distribution α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01

GARCH - Normal 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GARCH - Student t 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GARCH - GED 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GARCH - Laplace 0.03 0.00 0.00 0.00 0.00 0.00 0.00

GARCH - Skewed t 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EGARCH - Normal 0.37 0.18 0.00 0.00 0.40 0.59 0.38

EGARCH - Student t 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EGARCH - GED 0.25 0.53 0.25 0.00 0.01 0.02 0.14

EGARCH - Laplace 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EGARCH - Skewed t 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TGARCH - Normal 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TGARCH - Student t 0.07 0.00 0.00 0.00 0.00 0.00 0.20

TGARCH - GED 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TGARCH - Laplace 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TGARCH - Skewed t 0.03 0.00 0.00 0.00 0.27 0.15 0.00

CGARCH - Normal 0.01 0.00 0.23 0.10 0.03 0.01 0.10

CGARCH - Student t 0.00 0.00 0.24 0.90 0.00 0.00 0.00

CGARCH - GED 0.00 0.00 0.02 0.00 0.00 0.00 0.00

CGARCH - Laplace 0.02 0.29 0.26 0.00 0.14 0.23 0.18

CGARCH - Skewed t 0.22 0.00 0.00 0.00 0.16 0.00 0.00

Score -5194 -295 -163 -43 -1544 -954 -303
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4.3 Combined prediction models - Real time

The optimal pooling procedure implemented in this section uses only the data available

on each date, such that the weights in a optimal pool are continuously updated. For real

time forecasting, we split the available data up to time t into an initial part that is used for

model specification and parameter estimation, and a second part for model construction.

Moreover, we make use of a hold-out period of p observations for combining density

forecasts such that the weights w of combined pools are determined. The remaining

observations are used for evaluaton. In our example, we define p = 1000. By letting

the period length of 2000 observations for parameter estimation unchanged, this gives us

4117 observations for evaluation.

Real time forecasting results are summarized in Table 12, including predictive scores

for pools of multiple models. Among others, we have evaluated pools of 4, 5 and 20

models similar to that in section 4.2. This time, optimal weights have been dynamically

determined at each date for each combined pool. Next to this, we have also investigated

the predictive accuracy of the equally weighted combined pool of 20 models. Note that

this is similar to the ”1/N” portfolio strategy in portfolio optimization which is commonly

used as benchmark in forecasting. For comparison purposes, we have included one of the

best individual model, CGARCH - Skewed t, based on our different evaluation criteria as

reported in section 4.1. In addition, the inclusion of EGARCH - Normal and CGARCH

- Laplace for comparison is obvious, as these candidate models together form the best

performing combination among optimal pools of two models. According to the different

scoring rules, our combined pool of 20 models is the most accurate. Diebold-Mariano

test of equal predictive accuracy shows that the outperformance is only evidential in case

of log predictive scores for whole distribution, whereas for smaller regions the differences

are less clear. Furthermore, it is questionable whether combining all candidate models

could lead to considerable improvement as in some cases pools of only two models show

comparable predictive accuracy.

Once again, we can take a closer look into the construction of the optimal pools

by analyzing individual model weights. Obviously, average weights over the evaluation

period can be regarded as the most natural indicator to be used in order to measure

the contribution of each individual model. In Appendix Table 19 and 20, the average

model weights of combined pool consisting 4, 5 and 20 models are presented. First,
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Table 12: Predictive Density Evaluation - Real Time - Pools of multiple models,

with number of out-of-sample observations n = 4117

This table presents the scores based on (1) log predictive scoring rule, over the whole distribution and (2) conditional

likelihood scoring rule (3) censored likelihood scoring rule, over the region of interest for α = 0.10, 0.05, 0.01. We consider

daily S&P 500 from January 1, 1980 until March 14, 2008, giving us a total of T = 7117 as sample period. For combined

models, on each time t, weights of the pooling are determined dynamically through a rolling window scheme on past data

using 1000 hold-out observations, after 2000 observations used for parameter estimation. The scores presented in this table

are the sum of scores over the evaluation period with 4117 observations.

Log predictive Scores Conditional Likelihood Scores Censored Likelihood Scores

Whole distribution α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01

CGARCH - Skewed t -5238 -302 -166 -44 -1553 -967 -312

EGARCH - Normal -5285 -361 -224 -84 -1611 -1015 -359

CGARCH - Laplace t -5303 -308 -170 -46 -1571 -981 -317

E-Norm * C-Lap -5206 -297 -165 -45 -1546 -955 -304

5 GARCH Models -5227 -312 -177 -54 -1569 -978 -328

5 EGARCH Models -5197 -302 -168 -51 -1555 -968 -316

5 TGARCH Models -5213 -311 -167 -56 -1557 -976 -327

5 CGARCH Models -5231 -305 -165 -45 -1557 -971 -315

4 Normal Models -5283 -359 -215 -85 -1608 -1017 -352

4 Student t Models -5219 -299 -166 -42 -1554 -978 -311

4 GED Models -5237 -313 -176 -55 -1571 -989 -323

4 Laplace Models -5285 -307 -171 -47 -1566 -975 -313

4 Skewed t Models -5233 -300 -166 -44 -1552 -966 -313

20 Equally Weighted -5228 -300 -166 45 -1555 -964 -307

20 Dynamically Weighted -5184 -298 -163 -42 -1546 -961 -301

we have noticed that the differences in weights between table 19, 20 and 10, 11 are

small, suggesting that both dynamic and ex post weighting approach lead to similar

optimal pools. Not surprisingly, our predictive scores as presented in table 12 by real

time forecasting is close to that of table 9.

Furthermore, table 20 shows how the predictive performance of our total combined

pool is realized. A notable observation is that a large part of our collection of individual

models, around 80%, does not contribute in the optimal pool. These models are domi-

nated by the other 20% of models, indicating that our collection of models are not fully

utilized. This might explain the small improvement as diversification effect is not clearly

present.
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Figure 5: Optimal prediction pool weights for 5 EGARCH models, csl rule, α =

0.10

This figure presents the daily updated weights for the combined pool which consists 5 EGARCH Models. Weights are

determined by using the csl scoring rule for α = 0.10. For each model, the average weight over the out-of-sample period

(October 25, 1991 - March 14, 2008) are: EGARCH(1,1) - Normal, 0.34. EGARCH(1,1) - Student t, 0.08. EGARCH(1,1)

- GED, 0.22. EGARCH(1,1) - Laplace, 0.20. EGARCH(1,1) - Skewed t, 0.16.

Instead of taking the average, we can directly investigate the evolution of model

weights over time. As these change over time, we acknowledge that some models have

more impact in certain periods. Figure 5 shows the optimal pool weights for combined

5 EGARCH models. From the start of our evaluation period up to around 1997, both

EGARCH - Student t and EGARCH - Skewed t models dominate the optimal pool.

This suggests that these models perform well in relatively less volatile periods of the

financial market. Between 1997 and 2004, the world has faced several financial crises.

Most prominent are the Asian financial crisis around 1998, the recession around 2000

and the bursting of the internet bubble. These events have led to a high volatile state

of world. From 5, we observe that EGARCH - Normal, EGARCH - GED and EGARCH

- Laplace have become more influential in the optimal pool during this relatively high

volatile period. Among these models, the line representing the model weight for EGARCH

- GED is the most notable. We can explain the evolution by analyzing the estimated

shape parameter of the GED distribution. Between 1998 and 2002, the average value of

this shape parameter v is 1.4, which theoretically represents a fat tail. After 2002, the

shape parameter v is close to 2, which is closely to that of a normal distribution.

In the remaining part of this section, we evaluate the accuracy of our combined pools

for each scoring rule in terms of VaR and ES estimates. Based on the daily updated
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weights of the optimal prediction pool, we can derive the predictive density function for

the combined models subsequently compute the VaR and ES forecasts. Back testing on

the resulting VaR and ES estimates are applied to compare the accuracy between the

different scoring rules. Table 13 and 14 summarize the VaR and ES as risk measures

with backtesting results for each combined prediction pools derived from logarithmic,

cl and csl scores for 5 and 1 quantiles. Moreover, the derivation of the VaR and ES

estimates for combined pools are based on the model weights as obtained from the optimal

pooling methodology for each of the scoring rule. Therefore, different estimates result

from different scoring for combined pools as different weights have been considered. Note

that this is naturally not the case for equally weighted model and individual predictive

models where we have only one unique VaR and ES estimate irrespective of the scoring

rule. Furthermore, backtesting methods for VaR are labeled as UC, IND and CC recall

from the previous sections with associated p-values for these tests. The last two rows

report McNeil-Frey test statistics and the corresponding p-values for backtesting the ES

estimates. The results show that empirical VaR exceedance probabilities are very close

to the nominal levels for cl and csl scoring rules. Furthermore, both cl and csl are

favored by the CUC test. Finally, McNeil-Frey test does not reject the cl and csl rules

in approximately 90% of all cases. For all three quantiles, combined pool of 20 models

shows the most reliable VaR and ES estimates resulting from combining through csl

scores as suggested by the high p-values for UC and McNeil-Frey tests. In summary, the

outcome of this analysis shows that the VaR and ES estimates are more accurate through

combining density models using conditional and censored likelihood scoring rules than

logarithmic scoring rule.
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Table 13: Predictive Density Evaluation - Real Time - VaR and ES characteristics - Alpha = 0.05

This table summarizes the VaR and ES as risk measures with several additional backtesting approaches for each prediction model presented in columns. The rows are separated in three

blocks, where each block corresponds with a region of interest given by quantiles. We consider three quantiles, 10, 5 and 1 (α = 0.10, 0.05 and 0.01). The average VaRs reported here are

the observed average 5% quantiles of the density forecasts. The coverages correspond with the observed fraction of returns below the respective VaRs. The average ES values are equal to

the conditional mean return, given a realization below the predicted VaR. Backtesting methods for VaR are labeled as UC, IND and CC. Here, we provide p-values for these tests. The last

two rows for each block report McNeil-Frey test statistics and corresponding p-values for backtesting the ES estimates.

C-Sket E-Norm C-Lap E-Norm * C-Lap 5-GARCH 5-EGARCH 5-TGARCH 5-CGARCH 4-Normal 4-Student t 4-GED 4-Laplace 4-Skewed t Equal 20Full

CON

Av. VaR -0.0156 -0.0152 -0.017 -0.0154 -0.0155 -0.0153 -0.0153 -0.0168 -0.0155 -0.0149 -0.015 -0.0164 -0.0153 -0.0156 -0.0162

Coverage 0.0466 0.0491 0.0364 0.0476 0.0471 0.0486 0.0496 0.0374 0.0471 0.0537 0.0547 0.0406 0.0513 0.0447 0.0391

UC(p) 0.473 0.843 0.003 0.611 0.540 0.763 0.924 0.006 0.540 0.443 0.334 0.031 0.793 0.255 0.055

IND(p) 0.245 0.261 0.073 0.202 0.125 0.113 0.138 0.092 0.266 0.030 0.128 0.228 0.269 0.113 0.411

CC(p) 0.393 0.5209 0.0022 0.389 0.255 0.272 0.332 0.005 0.446 0.071 0.197 0.0486 0.525 0.149 0.113

Av. ES -0.0206 -0.0199 -0.0226 -0.0208 -0.0215 -0.0211 -0.0209 -0.0232 -0.0212 -0.0224 -0.0204 -0.0219 -0.02 -0.0221 -0.0224

M-F -1.0951 -1.2843 -0.2961 -1.0311 -0.7468 -0.8976 -0.9948 -0.1358 -0.8582 -0.4008 -1.1732 -0.6097 -1.2877 -0.5286 -0.4018

M-F(p) 0.2735 0.199 0.7679 0.3025 0.4552 0.3694 0.3199 0.8920 0.3908 0.6886 0.2408 0.5421 0.1979 0.5971 0.6878

CEN

Av. VaR -0.0156 -0.0152 -0.017 -0.0154 -0.0153 -0.0151 -0.0151 -0.0168 -0.0154 -0.015 -0.015 -0.0164 -0.0153 -0.0156 -0.0156

Coverage 0.0466 0.0491 0.0364 0.0471 0.0496 0.051 0.0522 0.0386 0.0474 0.0539 0.0542 0.0406 0.0522 0.0447 0.0454

UC(p) 0.473 0.843 0.003 0.540 0.924 0.832 0.642 0.013 0.575 0.414 0.386 0.04 0.642 0.255 0.43

IND(p) 0.245 0.261 0.073 0.266 0.138 0.085 0.075 0.191 0.384 0.032 0.232 0.269 0.229 0.113 0.383

CC(p) 0.393 0.521 0.002 0.446 0.332 0.223 0.184 0.019 0.585 0.072 0.336 0.066 0.435 0.149 0.500

Av. ES -0.0206 -0.0199 -0.0226 -0.0208 -0.0208 -0.0206 -0.0203 -0.0229 -0.021 -0.0224 -0.0205 -0.0216 -0.0197 -0.0221 -0.021

M-F -1.0951 -1.2843 -0.2961 -1.0285 -1.0235 -1.0954 -1.2033 -0.2018 -0.9384 -0.4056 -1.1388 -0.7158 -1.3589 -0.5286 -0.9418

M-F(p) 0.2735 0.199 0.7679 0.3038 0.3061 0.2734 0.2289 0.8401 0.3481 0.6851 0.2548 0.4935 0.1742 0.5971 0.3463
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Table 14: Predictive Density Evaluation - Real Time - VaR and ES characteristics - Alpha = 0.01

This table summarizes the VaR and ES as risk measures with several additional backtesting approaches for each prediction model presented in columns. The rows are separated in three

blocks, where each block corresponds with a region of interest given by quantiles. We consider three quantiles, 10, 5 and 1 (α = 0.10, 0.05 and 0.01). The average VaRs reported here are

the observed average 1% quantiles of the density forecasts. The coverages correspond with the observed fraction of returns below the respective VaRs. The average ES values are equal to

the conditional mean return, given a realization below the predicted VaR. Backtesting methods for VaR are labeled as UC, IND and CC. Here, we provide p-values for these tests. The last

two rows for each block report McNeil-Frey test statistics and corresponding p-values for backtesting the ES estimates.

C-Sket E-Norm C-Lap E-Norm * C-Lap 5-GARCH 5-EGARCH 5-TGARCH 5-CGARCH 4-Normal 4-Student t 4-GED 4-Laplace 4-Skewed t Equal 20Full

CON

Av. VaR -0.0256 -0.0216 -0.0287 -0.0247 -0.0249 -0.0247 -0.0246 -0.0274 -0.0239 -0.0243 -0.0241 -0.0276 -0.0248 -0.0252 -0.0256

Coverage 0.0080 0.0160 0.0046 0.0104 0.0092 0.01 0.0097 0.0063 0.0143 0.0105 0.0112 0.005 0.0095 0.0075 0.0085

UC(p) 0.343 0.010 0.005 0.839 0.719 0.985 0.896 0.068 0.06 0.985 0.595 0.012 0.806 0.233 0.567

IND(p) 1.000 0.557 1.000 0.612 0.522 0.576 0.558 0.318 0.442 0.576 1.000 1.000 1.000 1.000 1.000

CC(p) 0.637 0.032 0.021 0.861 0.764 0.855 0.835 0.115 0.128 0.855 0.868 0.044 0.97 0.491 0.849

Av. ES -0.0297 -0.0255 -0.0373 -0.0277 -0.0293 -0.0285 -0.0284 -0.0331 -0.0278 -0.0342 -0.0300 -0.0353 -0.0282 -0.0324 -0.0321

M-F 0.9611 -0.3329 3.0859 -0.3482 -0.8413 -0.5963 -0.5671 -1.7341 -0.3708 -2.0785 -1.0762 -2.4038 -0.4973 -1.5528 -1.4951

M-F(p) 0.3416 0.7392 0.0021 0.7277 0.4002 0.5510 0.5707 0.0829 0.7108 0.0377 0.2819 0.0163 0.6190 0.1205 0.1349

CEN

Av. VaR -0.0256 -0.0216 -0.0287 -0.0239 -0.0248 -0.0246 -0.0245 -0.0276 -0.222 -0.0244 -0.0236 -0.0277 -0.0248 -0.0252 -0.0238

Coverage 0.0080 0.0160 0.0046 0.0121 0.0095 0.0095 0.0102 0.0058 0.0151 0.0106 0.0138 0.0053 0.0097 0.0075 0.0104

UC(p) 0.343 0.010 0.005 0.338 0.806 0.806 0.926 0.037 0.03 0.985 0.093 0.018 0.895 0.233 0.869

IND(p) 1.000 0.557 1.000 0.310 0.540 1.000 0.594 1.000 0.49 0.576 1.000 1.000 0.558 1.000 0.318

CC(p) 0.637 0.032 0.021 0.337 0.804 0.97 0.864 0.113 0.074 0.855 0.245 0.062 0.835 0.491 0.600

Av. ES -0.0297 -0.0255 -0.0373 -0.0262 -0.0288 -0.0283 -0.0279 -0.0352 -0.0262 -0.0341 -0.0273 -0.0344 -0.0277 -0.0324 -0.0289

M-F 0.9611 -0.3329 3.0859 0.1132 -0.6899 -0.5289 -0.4018 -2.3791 0.1085 -2.0417 -0.2103 -2.1321 -0.3315 -1.5528 -0.7155

M-F(p) 0.3416 0.7392 0.0021 0.9099 0.4903 0.5969 0.6878 0.0174 0.9136 0.0412 0.8334 0.0330 0.7403 0.1205 0.4743
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Figure 6: VaR forecasts

This figure presents the S&P500 log-returns for the period Oktober 25, 1991 - March 14, 2008 and out-of-sample 95% and

99% VaR forecasts derived from the combined pool of 20 models using logarithmic, cl and csl scoring rules.
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5 Conclusion

Managing uncertainty in financial decision making and financial risk management is an

important concern in many applications. During the last decades, much relevance is

imposed on this topic where predictive densities have received increasing attention in

economics and finance because a density forecast provides information on the uncer-

tainties associated with the forecast. In the financial industry, many practitioners have

developed their own risk management system and they obtain VaR estimates for their as-

set portfolios commonly from a single (predictive density) model. However, relying upon

a single model for VaR estimation is dangerous. This leads us to consider combinations

of predictive density similar to that of portfolio optimization allowing the possibility that

all of the models under consideration are false. In combining predictive densities, the way

how we decide to measure the accuracy of the resulting mixture is essential in determining

the construction of the optimal pool. We have shown that both conditional likelihood

and censored likelihood scoring rules are convenient metrics in comparing density fore-

casts when interest lies in a region instead of the whole distribution. The underlying

idea behind cl and csl scoring rules is that they replace the full likelihood by the condi-

tional likelihood, given that the actual observation lies in the region of interest, or by the

censored likelihood, with censoring of the observations outside the region of interest.

In our study, we have proposed a methodology that aims to combine density forecasts

by selecting the optimal weights based on these scoring rules. Furthermore, we have

applied methods from different perspectives in comparing the prediction models and we

have confirmed the link between these methods. For instance, a higher score based on

suitable scoring rules indicates more accurate VaR and ES estimates. In our study, we

aim to improve VaR and ES estimates by developing approaches that result in higher

predictive density scores. We have considered 4 types of volatility models and each has

the choice of 5 different distributions of the innovations, allowing us to create 20 prediction

models and compared them by different scoring criteria. It is essential to mention that

we are aware of the fact that there the models included in our collection are far from

being complete. Many distributions that have been proven in the literature are not

discussed. From the results of the individual prediction models, we have observed that

none of the individual models such as Student t and Skewed t type models outperform

others consistently in terms of predictive power according to cl and csl scoring rules,
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signifying the danger of putting all the weights on one single model. Furthermore, we

have confirmed that in density forecast the choice of conditional distribution is more

important than the choice of conditional volatility models.

The outcome of several analysis of the individual predictive models suggested that

there is room for improvement in predictive density accuracy. We have applied the

combining methodology proposed in his study first ex post. Moreover, we first assume

that we have access of the entire data up to the end of the outsample at a point of time

of the sample period. This scheme could not be used in practice since only past data

are available. However, this setting is illustrative as a starting point in the large area of

combining density models before we consider real time combining. Based on this strategy,

we have found evidence that there indeed exists a optimal combination of models that is

capable in outperforming even the best individual models. One of the most important

finding from combining densities is that including relatively poor performers in pools

of multiple models could lead to more accurate forecasts which underlines the crucial

intuition behind combining.

A great issue in combining is that the number of combining possibilities increases

greatly when the number of models included increases. It is time consuming to consider

all combinations. Therefore, we have developed a strategy that could ”guess” the most

influential models in the optimal pool without checking all combinations. We have no-

ticed that a certain model can be assigned as a big contributor in the optimal pool when

this model is both dominant in its volatility model family and its distribution family.

The result of the optimal pool consisting all models confirmed this strategy. We have

also observed that our optimal pool outperforms the best individual models. The score

differences however decrease for smaller regions of interests due to the smaller number of

observations within these areas. Furthermore, we advocate for combining using different

models because of diversification as even relatively poor performers in pools of multiple

models could lead to more accurate forecasts. Finally, by performing several back tests

on the resulting VaR and ES estimates of the combined density models, we have demon-

strated that the accuracy of these estimates are considerable improved. A comparison

in accuracy between the applied scoring rules for computing the density forecasts shows

that VaR and ES estimates are more accurate through combining density models using

conditional and censored likelihood scoring rules than logarithmic scoring rule. From the
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outcome of this research, it seems to us that this is a lesson that should be extended in

the future of financial decision making. It is an avenue open for further investigation to

develop even more advanced combining techniques in predictive densities.

Acknowledgements

I would like to thank my supervisor Prof. dr. Dick van Dijk for his continues support,

for his detailed and concerned attitude towards the evaluation and feedback of my thesis.

I am especially grateful for his knowledge which has helped me from the initial to the

final level to develop an understanding of the subject.

I would also like to acknowledge dr. Erik Kole as the second reader of this thesis, and

I am gratefully indebted to him for his very valuable comments on this thesis.



Im
p
r
o
v
in
g

V
a
l
u
e
-a
t
-R

isk
e
st

im
a
t
e
s
b
y
c
o
m
b
in
in
g

d
e
n
sit

y
f
o
r
e
c
a
st

s
57

A Other figures and tables



Im
p
r
o
v
in
g

V
a
l
u
e
-a
t
-R

isk
e
st

im
a
t
e
s
b
y
c
o
m
b
in
in
g

d
e
n
sit

y
f
o
r
e
c
a
st

s
58

Table 15: Predictive Density Evaluation for combined models - Ex post optimal conditional likelihood predictive scores

for α = 0.10

In this table we presents the conditional likelihood predictive scores of the density forecasts for pools of two models. The scores presented in this table are the sum of scores over the evaluation

period for the regional distribution α = 0.10, evaluated over the out-of-sample period October 25, 1991 - March 14, 2008 (4117 observations). Entries above the diagonal are log scores of

optimal pools. The corresponding weights of the pool for the model in that row are presented in entries below the diagonal. Note that the numbers in the first row and column correspond

with the prediction models similar to previous tables, where each model is assigned with a number. The ”target score” is equal to -302, referring to the best individual performance achieved

by CGARCH - Student t. This target score is surpassed by 42 combinations of two models, as highlighted in grey. The best performing pool of two models consists EGARCH - Normal and

CGARCH - Laplace, which has achieved a score equals to -297

G-Norm G-Stut G-GED G-Lap G-Sket E-Norm E-Stut E-GED E-Lap E-Sket T-Norm T-Stut T-GED T-Lap T-Sket C-Norm C-Stut C-GED C-Lap C-Sket

G-Norm -304 -319 -304 -304 -357 -305 -312 -305 -304 -372 -303 -323 -303 -303 -362 -302 -323 -301 -302

G-Stut 1.00 -303 -303 -303 -302 -304 -299 -303 -303 -304 -302 -302 -302 -302 -303 -302 -302 -302 -302

G-GED 1.00 0.23 -302 -303 -318 -304 -311 -303 -303 -319 -303 -318 -302 -302 -309 -302 -308 -301 -301

G-Lap 0.63 0.27 0.42 -303 -300 -303 -297 -307 -303 -302 -301 -299 -306 -302 -306 -302 -305 -307 -302

G-Sket 1.00 0.51 0.67 0.83 -302 -303 -299 -304 -303 -303 -302 -301 -303 -302 -303 -302 -303 -303 -302

E-Norm 0.74 0.27 0.24 0.49 0.32 -303 -312 -301 -302 -361 -303 -322 -300 -302 -346 -300 -319 -297 -300

E-Stut 1.00 0.24 0.67 0.66 0.35 0.74 -300 -304 -304 -304 -302 -302 -302 -302 -304 -302 -303 -302 -302

E-GED 1.00 0.61 0.85 0.72 0.63 1.00 0.63 -298 -299 -312 -301 -312 -298 -300 -303 -298 -302 -296 -298

E-Lap 0.65 0.23 0.41 0.30 0.13 0.54 0.26 0.27 -304 -304 -301 -300 -306 -302 -307 -302 -306 -307 -302

E-Sket 0.96 0.35 0.62 0.72 0.32 0.70 0.70 0.36 0.86 -304 -302 -301 -303 -302 -304 -302 -303 -303 -302

T-Norm 0.45 0.05 0.01 0.39 0.13 0.00 0.09 0.00 0.37 0.14 -303 -323 -303 -303 -361 -302 -323 -300 -301

T-Stut 1.00 0.68 0.87 0.74 0.66 0.90 0.71 0.51 0.77 0.69 1.00 -302 -301 -303 -301 -301 -300 -299 -301

T-GED 1.00 0.46 0.42 0.62 0.50 0.80 0.49 0.00 0.62 0.51 1.00 0.24 -300 -302 -309 -300 -308 -297 -299

T-Lap 0.64 0.32 0.43 0.75 0.28 0.53 0.38 0.31 0.73 0.35 0.63 0.26 0.40 -302 -305 -301 -305 -306 -302

T-Sket 1.00 0.64 0.76 0.78 0.66 0.80 0.68 0.46 0.80 0.68 1.00 0.43 0.64 0.78 -302 -301 -301 -301 -301

C-Norm 0.14 0.05 0.08 0.19 0.05 0.16 0.05 0.07 0.16 0.04 0.21 0.07 0.09 0.19 0.08 -302 -328 -306 -302

C-Stut 0.95 1.00 0.75 0.86 1.00 0.69 1.00 0.40 0.94 1.00 0.84 0.51 0.55 0.77 0.57 0.94 -301 -301 -302

C-GED 0.54 0.14 0.15 0.30 0.15 0.47 0.16 0.09 0.29 0.16 0.56 0.13 0.15 0.28 0.15 0.76 0.02 -305 -302

C-Lap 0.54 0.29 0.36 0.21 0.25 0.46 0.33 0.27 0.38 0.30 0.53 0.28 0.35 0.25 0.26 0.72 0.07 0.95 -302

C-Sket 0.86 0.71 0.65 1.00 0.94 0.64 0.77 0.38 1.00 0.93 0.78 0.46 0.51 0.84 0.50 0.94 0.31 0.86 0.91
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Table 16: Predictive Density Evaluation for combined models - Ex post optimal censored likelihood predictive scores for

α = 0.10

In this table we presents the censored likelihood predictive scores of the density forecasts for pools of two models. The scores presented in this table are the sum of scores over the evaluation

period for the regional distribution α = 0.10, evaluated over the out-of-sample period October 25, 1991 - March 14, 2008 (4117 observations). Entries above the diagonal are log scores of

optimal pools. The corresponding weights of the pool for the model in that row are presented in entries below the diagonal. Note that the numbers in the first row and column correspond

with the prediction models similar to previous tables, where each model is assigned with a number. The ”target score” is equal to -1553, referring to the best individual performance achieved

by CGARCH - Skewed t. This target score is surpassed by 29 combinations of two models, as highlighted in grey. The best performing pool of two models consists EGARCH - Normal and

CGARCH - Laplace, which has achieved a score equals to -1546

G-Norm G-Stut G-GED G-Lap G-Sket E-Norm E-Stut E-GED E-Lap E-Sket T-Norm T-Stut T-GED T-Lap T-Sket C-Norm C-Stut C-GED C-Lap C-Sket

G-Norm -1561 -1596 -1563 -1559 -1606 -1567 -1577 -1566 -1566 -1634 -1556 -1598 -1560 -1554 -1623 -1556 -1596 -1561 -1554

G-Stut 1.00 -1561 -1560 -1559 -1552 -1561 -1556 -1560 -1561 -1560 -1555 -1561 -1557 -1554 -1558 -1556 -1559 -1557 -1554

G-GED 0.65 0.00 -1567 -1559 -1577 -1568 -1579 -1571 -1567 -1590 -1556 -1598 -1563 -1554 -1580 -1556 -1583 -1567 -1554

G-Lap 0.67 0.19 0.82 -1558 -1549 -1563 -1557 -1568 -1562 -1560 -1553 -1565 -1564 -1552 -1567 -1555 -1568 -1567 -1554

G-Sket 1.00 1.00 1.00 0.85 -1551 -1559 -1554 -1559 -1559 -1558 -1554 -1559 -1556 -1554 -1556 -1555 -1557 -1556 -1554

E-Norm 0.83 0.46 0.65 0.59 0.45 -1556 -1573 -1553 -1556 -1611 -1552 -1582 -1550 -1551 -1591 -1548 -1575 -1546 -1547

E-Stut 0.78 0.00 0.82 0.54 0.00 0.49 -1560 -1568 -1569 -1564 -1555 -1566 -1560 -1554 -1565 -1556 -1566 -1561 -1554

E-GED 0.80 0.42 0.91 0.63 0.41 0.55 0.54 -1560 -1559 -1577 -1554 -1579 -1557 -1553 -1561 -1553 -1565 -1555 -1551

E-Lap 0.61 0.12 0.65 0.00 0.10 0.40 0.25 0.32 -1567 -1563 -1554 -1568 -1564 -1553 -1572 -1556 -1573 -1569 -1554

E-Sket 0.77 0.15 0.77 0.54 0.00 0.49 0.56 0.46 0.73 -1564 -1555 -1565 -1559 -1554 -1564 -1556 -1565 -1561 -1554

T-Norm 0.54 0.17 0.44 0.41 0.15 0.02 0.30 0.21 0.44 0.31 -1556 -1598 -1560 -1554 -1618 -1554 -1594 -1556 -1552

T-Stut 1.00 0.79 1.00 0.83 0.71 0.68 0.91 0.79 0.88 0.88 1.00 -1556 -1553 -1554 -1551 -1552 -1552 -1550 -1551

T-GED 0.60 0.07 0.41 0.36 0.11 0.36 0.28 0.00 0.44 0.30 0.56 0.00 -1563 -1554 -1578 -1555 -1582 -1563 -1553

T-Lap 0.69 0.34 0.82 0.87 0.31 0.45 0.53 0.44 1.00 0.53 0.66 0.16 0.77 -1552 -1563 -1554 -1564 -1563 -1553

T-Sket 1.00 0.75 1.00 0.82 0.74 0.68 0.87 0.74 0.86 0.90 1.00 0.77 1.00 0.84 -1550 -1550 -1551 -1549 -1550

C-Norm 0.09 0.05 0.14 0.07 0.05 0.10 0.08 0.12 0.11 0.09 0.14 0.06 0.16 0.08 0.06 -1553 -1634 -1570 -1552

C-Stut 0.98 1.00 1.00 0.94 0.78 0.56 1.00 0.65 1.00 1.00 0.81 0.45 0.96 0.77 0.45 0.95 -1554 -1555 -1554

C-GED 0.21 0.03 0.09 0.00 0.03 0.17 0.06 0.07 0.03 0.08 0.23 0.03 0.12 0.00 0.04 0.54 0.03 -1571 -1552

C-Lap 0.53 0.24 0.59 0.27 0.22 0.35 0.38 0.32 0.56 0.39 0.48 0.21 0.50 0.24 0.22 0.87 0.08 1.00 -1553

C-Sket 0.99 1.00 1.00 0.96 1.00 0.57 1.00 0.65 1.00 1.00 0.83 0.50 0.91 0.80 0.48 0.95 1.00 0.97 0.94
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Table 17: Predictive Density Evaluation for combined models - Ex post optimal conditional likelihood predictive scores

for α = 0.05

In this table we presents the conditional likelihood predictive scores of the density forecasts for pools of two models. The scores presented in this table are the sum of scores over the evaluation

period for the regional distribution α = 0.05, evaluated over the out-of-sample period October 25, 1991 - March 14, 2008 (4117 observations). Entries above the diagonal are log scores of

optimal pools. The corresponding weights of the pool for the model in that row are presented in entries below the diagonal. Note that the numbers in the first row and column correspond

with the prediction models similar to previous tables, where each model is assigned with a number. The ”target score” is equal to -165, referring to the best individual performance achieved

by CGARCH - Student t. This target score is surpassed by 2 combinations of two models, as highlighted in grey. The best performing pool of two models consists CGARCH - Normal and

CGARCH - Student t, which has achieved a score equals to -164

G-Norm G-Stut G-GED G-Lap G-Sket E-Norm E-Stut E-GED E-Lap E-Sket T-Norm T-Stut T-GED T-Lap T-Sket C-Norm C-Stut C-GED C-Lap C-Sket

G-Norm -166 -183 -168 -167 -221 -167 -179 -170 -168 -232 -168 -189 -169 -169 -220 -165 -183 -166 -166

G-Stut 1.00 -166 -166 -166 -166 -166 -166 -166 -166 -166 -166 -166 -166 -166 -165 -165 -165 -166 -166

G-GED 1.00 0.00 -168 -167 -183 -167 -178 -169 -168 -183 -168 -183 -169 -169 -174 -165 -173 -167 -166

G-Lap 0.68 0.06 0.52 -167 -167 -167 -167 -170 -168 -169 -167 -168 -170 -168 -166 -165 -167 -170 -166

G-Sket 1.00 0.00 1.00 1.00 -167 -167 -166 -167 -167 -167 -167 -167 -167 -167 -165 -165 -166 -167 -166

E-Norm 0.69 0.05 0.05 0.38 0.14 -167 -179 -169 -168 -224 -168 -189 -168 -169 -208 -165 -182 -165 -166

E-Stut 1.00 0.00 1.00 0.79 0.30 0.93 -167 -167 -167 -167 -167 -167 -167 -167 -166 -165 -166 -166 -166

E-GED 1.00 0.27 0.79 0.61 0.38 1.00 0.35 -167 -167 -179 -168 -179 -167 -168 -171 -165 -171 -165 -165

E-Lap 0.70 0.00 0.51 0.00 0.00 0.64 0.03 0.38 -168 -170 -167 -169 -171 -168 -167 -165 -168 -170 -166

E-Sket 0.98 0.00 0.92 0.82 0.00 0.85 0.00 0.57 1.00 -168 -167 -168 -168 -168 -166 -165 -167 -167 -166

T-Norm 0.34 0.00 0.00 0.28 0.00 0.00 0.00 0.00 0.26 0.00 -168 -189 -170 -169 -221 -165 -183 -167 -166

T-Stut 1.00 0.00 1.00 0.75 0.31 1.00 0.40 0.82 0.81 0.56 1.00 -168 -167 -168 -166 -165 -166 -166 -166

T-GED 1.00 0.00 0.12 0.49 0.13 0.88 0.06 0.00 0.50 0.21 1.00 0.00 -169 -169 -176 -165 -175 -166 -166

T-Lap 0.65 0.08 0.47 0.00 0.00 0.61 0.19 0.39 0.42 0.16 0.70 0.19 0.49 -168 -167 -165 -168 -170 -166

T-Sket 0.97 0.00 0.89 0.73 0.00 0.89 0.19 0.64 0.80 0.32 1.00 0.00 0.91 0.83 -166 -165 -167 -167 -166

C-Norm 0.30 0.19 0.20 0.35 0.22 0.30 0.20 0.19 0.34 0.22 0.37 0.22 0.20 0.37 0.25 -164 -182 -164 -164

C-Stut 1.00 1.00 1.00 1.00 1.00 0.87 1.00 0.74 1.00 1.00 1.00 1.00 0.98 1.00 1.00 0.78 -165 -165 -165

C-GED 0.80 0.22 0.31 0.47 0.27 0.74 0.24 0.19 0.46 0.28 0.87 0.25 0.32 0.48 0.31 0.78 0.23 -166 -165

C-Lap 0.61 0.22 0.48 0.68 0.21 0.57 0.31 0.38 0.81 0.31 0.65 0.32 0.48 0.83 0.36 0.61 0.07 0.51 -166

C-Sket 0.89 0.53 0.94 1.00 1.00 0.79 0.86 0.62 1.00 1.00 0.92 0.75 0.81 1.00 1.00 0.75 0.00 0.73 1.00
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Table 18: Predictive Density Evaluation for combined models - Ex post optimal censored likelihood predictive scores for

α = 0.05

In this table we presents the censored likelihood predictive scores of the density forecasts for pools of two models. The scores presented in this table are the sum of scores over the evaluation

period for the regional distribution α = 0.05, evaluated over the out-of-sample period October 25, 1991 - March 14, 2008 (4117 observations). Entries above the diagonal are log scores of

optimal pools. The corresponding weights of the pool for the model in that row are presented in entries below the diagonal. Note that the numbers in the first row and column correspond

with the prediction models similar to previous tables, where each model is assigned with a number. The ”target score” is equal to -966, referring to the best individual performance achieved

by TGARCH - Skewed t. This target score is surpassed by 35 combinations of two models, as highlighted in grey. The best performing pool of two models consists EGARCH - Normal and

CGARCH - Laplace, which has achieved a score equals to -955

G-Norm G-Stut G-GED G-Lap G-Sket E-Norm E-Stut E-GED E-Lap E-Sket T-Norm T-Stut T-GED T-Lap T-Sket C-Norm C-Stut C-GED C-Lap C-Sket

G-Norm -972 -999 -972 -971 -1011 -974 -982 -974 -974 -1034 -966 -1000 -969 -966 -1025 -967 -996 -969 -967

G-Stut 0.94 -972 -971 -971 -962 -972 -966 -971 -972 -969 -966 -971 -968 -965 -969 -968 -969 -969 -968

G-GED 0.69 0.00 -976 -971 -982 -975 -983 -977 -974 -993 -966 -997 -972 -965 -984 -968 -986 -975 -968

G-Lap 0.58 0.18 0.67 -970 -959 -972 -965 -977 -972 -967 -964 -971 -973 -963 -976 -968 -977 -976 -968

G-Sket 0.96 0.74 0.98 0.84 -962 -971 -965 -971 -971 -969 -965 -969 -968 -965 -969 -968 -969 -968 -968

E-Norm 0.82 0.53 0.66 0.65 0.54 -965 -979 -962 -965 -1015 -962 -987 -959 -962 -997 -958 -980 -955 -958

E-Stut 0.78 0.11 0.81 0.63 0.17 0.46 -967 -975 -975 -971 -966 -972 -969 -965 -973 -968 -973 -971 -968

E-GED 0.85 0.54 0.92 0.72 0.54 0.57 0.59 -967 -966 -982 -964 -983 -965 -963 -969 -963 -971 -963 -962

E-Lap 0.56 0.13 0.57 0.01 0.12 0.36 0.18 0.26 -975 -969 -964 -973 -973 -964 -979 -968 -980 -978 -968

E-Sket 0.78 0.20 0.76 0.63 0.11 0.44 0.61 0.40 0.84 -971 -966 -971 -970 -965 -973 -968 -973 -971 -968

T-Norm 0.59 0.31 0.47 0.51 0.31 0.03 0.36 0.22 0.52 0.37 -966 -998 -967 -966 -1019 -964 -993 -963 -964

T-Stut 1.00 0.87 1.00 0.86 0.83 0.61 0.90 0.71 0.88 0.89 1.00 -966 -964 -965 -962 -963 -962 -961 -963

T-GED 0.68 0.25 0.56 0.54 0.30 0.39 0.38 0.00 0.57 0.40 0.59 0.00 -970 -965 -981 -967 -983 -969 -966

T-Lap 0.63 0.38 0.74 1.00 0.37 0.39 0.50 0.36 1.00 0.52 0.56 0.15 0.60 -964 -972 -966 -973 -972 -967

T-Sket 1.00 0.80 0.96 0.85 0.84 0.60 0.83 0.65 0.87 0.89 1.00 0.58 0.94 0.85 -962 -963 -962 -961 -963

C-Norm 0.08 0.05 0.11 0.08 0.05 0.09 0.06 0.08 0.10 0.05 0.13 0.05 0.12 0.07 0.05 -966 -1022 -979 -966

C-Stut 0.87 1.00 1.00 0.95 0.86 0.47 1.00 0.51 1.00 1.00 0.66 0.37 0.78 0.73 0.40 0.95 -966 -967 -967

C-GED 0.23 0.04 0.06 0.02 0.04 0.19 0.05 0.04 0.04 0.06 0.25 0.04 0.08 0.01 0.04 0.58 0.03 -981 -967

C-Lap 0.44 0.22 0.44 0.19 0.21 0.30 0.30 0.24 0.42 0.30 0.39 0.19 0.36 0.16 0.19 0.81 0.08 0.98 -968

C-Sket 0.84 0.80 0.97 0.96 0.89 0.45 0.98 0.48 1.00 1.00 0.64 0.35 0.69 0.72 0.35 0.95 0.42 0.96 0.93
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Table 19: Predictive Density Evaluation - Real Time - Average weights -

This table presents the average weight through recursively updating of optimal pool using only the data available on each

date. Rows in each block display the individual models forming that pool reported in Table 12 of combined models. Note

that some model weights are highlighted, meaning that these models are both dominant in their volatility model family

and distribution family.

Log predictive Scores Conditional Likelihood Scores Censored Likelihood Scores

Whole distribution α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01

5 GARCH Models

GARCH - Normal 0.24 0.16 0.24 0.15 0.22 0.16 0.24

GARCH - Student t 0.25 0.24 0.25 0.47 0.07 0.24 0.40

GARCH - GED 0.12 0.18 0.12 0.02 0.11 0.16 0.12

GARCH - Laplace 0.12 0.40 0.12 0.12 0.34 0.38 0.24

GARCH - Skewed t 0.27 0.03 0.27 0.24 0.26 0.05 0.00

5 EGARCH Models

EGARCH - Normal 0.41 0.29 0.17 0.10 0.34 0.36 0.37

EGARCH - Student t 0.13 0.15 0.30 0.41 0.08 0.19 0.19

EGARCH - GED 0.22 0.23 0.14 0.15 0.22 0.29 0.31

EGARCH - Laplace 0.12 0.27 0.33 0.10 0.20 0.16 0.13

EGARCH - Skewed t 0.11 0.07 0.06 0.25 0.16 0.00 0.00

5 TGARCH Models

TGARCH - Normal 0.28 0.14 0.08 0.08 0.24 0.17 0.24

TGARCH - Student t 0.25 0.22 0.41 0.46 0.06 0.19 0.32

TGARCH - GED 0.10 0.22 0.14 0.14 0.10 0.15 0.12

TGARCH - Laplace 0.10 0.40 0.36 0.15 0.33 0.35 0.30

TGARCH - Skewed t 0.26 0.01 0.01 0.17 0.27 0.13 0.01

5 CGARCH Models

CGARCH - Normal 0.07 0.12 0.23 0.19 0.12 0.12 0.26

CGARCH - Student t 0.45 0.53 0.36 0.41 0.29 0.58 0.61

CGARCH - GED 0.00 0.03 0.07 0.10 0.00 0.00 0.00

CGARCH - Laplace 0.11 0.29 0.32 0.21 0.16 0.15 0.11

CGARCH - Skewed t 0.37 0.03 0.02 0.09 0.42 0.15 0.00

4 Normal Models

GARCH - Normal 0.09 0.24 0.25 0.13 0.10 0.15 0.11

EGARCH - Normal 0.71 0.50 0.47 0.46 0.64 0.59 0.57

TGARCH - Normal 0.02 0.15 0.01 0.02 0.03 0.06 0.05

CGARCH - Normal 0.19 0.11 0.26 0.19 0.23 0.19 0.26

4 Student t Models

GARCH - Student t 0.06 0.06 0.10 0.09 0.08 0.06 0.00

EGARCH - Student t 0.04 0.09 0.14 0.12 0.00 0.01 0.23

TGARCH - Student t 0.46 0.47 0.20 0.12 0.44 0.53 0.53

CGARCH - Student t 0.44 0.39 0.57 0.67 0.48 0.40 0.24

4 GED Models

GARCH - GED 0.09 0.12 0.20 0.17 0.07 0.07 0.17

EGARCH - GED 0.84 0.48 0.50 0.43 0.81 0.66 0.55

TGARCH - GED 0.07 0.32 0.04 0.03 0.11 0.25 0.20

CGARCH - GED 0.01 0.09 0.27 0.36 0.09 0.01 0.08

4 Laplace Models

GARCH - Laplace 0.17 0.02 0.12 0.03 0.23 0.15 0.04

EGARCH - Laplace 0.09 0.19 0.29 0.20 0.09 0.11 0.23

TGARCH - Laplace 0.41 0.31 0.12 0.10 0.43 0.51 0.48

CGARCH - Laplace 0.34 0.48 0.47 0.66 0.24 0.24 0.26

4 Skewed t Models

GARCH - Skewed t 0.09 0.04 0.12 0.03 0.10 0.06 0.01

EGARCH - Skewed t 0.03 0.09 0.15 0.22 0.00 0.02 0.23

TGARCH - Skewed t 0.40 0.48 0.16 0.08 0.44 0.54 0.55

CGARCH - Skewed t 0.48 0.38 0.57 0.66 0.46 0.39 0.21
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Table 20: Predictive Density Evaluation - Real Time - Average weights - Pool of full collection of models

Log predictive Scores Conditional Likelihood Scores Censored Likelihood Scores

Whole distribution α = 0.10 α = 0.05 α = 0.01 α = 0.10 α = 0.05 α = 0.01

GARCH - Normal 0.00 0.00 0.00 0.00 0.00 0.00 0.05

GARCH - Student t 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GARCH - GED 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GARCH - Laplace 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GARCH - Skewed t 0.05 0.00 0.00 0.00 0.00 0.00 0.00

EGARCH - Normal 0.43 0.25 0.11 0.00 0.35 0.40 0.30

EGARCH - Student t 0.00 0.00 0.00 0.00 0.00 0.00 0.00

EGARCH - GED 0.13 0.10 0.10 0.10 0.14 0.10 0.17

EGARCH - Laplace 0.00 0.00 0.15 0.00 0.00 0.00 0.05

EGARCH - Skewed t 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TGARCH - Normal 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TGARCH - Student t 0.00 0.15 0.00 0.00 0.00 0.12 0.00

TGARCH - GED 0.00 0.15 0.00 0.00 0.07 0.12 0.05

TGARCH - Laplace 0.00 0.00 0.00 0.00 0.00 0.00 0.00

TGARCH - Skewed t 0.00 0.00 0.00 0.00 0.05 0.00 0.00

CGARCH - Normal 0.00 0.00 0.13 0.15 0.00 0.00 0.10

CGARCH - Student t 0.17 0.00 0.22 0.38 0.05 0.10 0.10

CGARCH - GED 0.00 0.00 0.06 0.07 0.00 0.00 0.00

CGARCH - Laplace 0.07 0.34 0.20 0.19 0.12 0.16 0.17

CGARCH - Skewed t 0.15 0.00 0.02 0.10 0.22 0.00 0.00

Score -5184 -298 -163 -42 -1546 -961 -301
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Table 21: Predictive Density Evaluation - Real Time - VaR and ES characteristics - Alpha = 0.10

This table summarizes the VaR and ES as risk measures with several additional backtesting approaches for each prediction model presented in columns. The rows are separated in three

blocks, where each block corresponds with a region of interest given by quantiles. We consider three quantiles, 10, 5 and 1 (α = 0.10, 0.05 and 0.01). The average VaRs reported here are

the observed average 10% quantiles of the density forecasts. The coverages correspond with the observed fraction of returns below the respective VaRs. The average ES values are equal to

the conditional mean return, given a realization below the predicted VaR. Backtesting methods for VaR are labeled as UC, IND and CC. Here, we provide p-values for these tests. The last

two rows for each block report McNeil-Frey test statistics and corresponding p-values for backtesting the ES estimates.

C-Sket E-Norm C-Lap E-Norm * C-Lap 5-GARCH 5-EGARCH 5-TGARCH 5-CGARCH 4-Normal 4-Student t 4-GED 4-Laplace 4-Skewed t Equal 20Full

CON

Av. VaR -0.0113 -0.0117 -0.0118 -0.0115 -0.0113 -0.0114 -0.0121 -0.0122 -0.0119 -0.0109 -0.0109 -0.0114 -0.0111 -0.0134 -0.0116

Coverage 0.1018 0.0896 0.0908 0.0964 0.0993 0.0998 0.1001 0.0889 0.0925 0.0989 0.1064 0.0984 0.1066 0.0974 0.0959

UC(p) 0.787 0.097 0.155 0.582 0.920 0.979 0.991 0.084 0.248 0.861 0.332 0.803 0.314 0.689 0.614

IND(p) 0.059 0.244 0.158 0.153 0.376 0.157 0.246 0.171 0.542 0.129 0.341 0.072 0.057 0.185 0.360

CC(p) 0.163 0.138 0.134 0.310 0.672 0.367 0.510 0.088 0.426 0.310 0.397 0.192 0.098 0.384 0.579

Av. ES -0.0167 -0.0166 -0.0178 -0.0174 -0.0175 0.01768 -0.0174 -0.0185 -0.0177 -0.0183 0.0171 -0.0174 -0.0164 -0.0178 -0.0176

M-F -1.1952 -1.3465 2.4432 1.2351 1.5315 2.1133 1.0944 4.2183 2.1038 3.6132 0.2137 1.0763 -2.1057 2.4212 1.8136

M-F(p) 0.2321 0.1782 0.0146 0.2169 0.1257 0.0346 0.2738 0.0000 0.0354 0.0003 0.8308 0.2818 0.035 0.0155 0.0698

CEN

Av. VaR -0.0113 -0.0117 -0.0118 -0.0115 -0.0107 -0.0109 -0.011 -0.0121 -0.0119 -0.011 -0.0109 -0.0114 -0.0111 -0.0134 -0.0113

Coverage 0.1018 0.0896 0.0908 0.0969 0.1025 0.1042 0.1013 0.0887 0.093 0.0989 0.1076 0.0959 0.1074 0.0974 0.1003

UC(p) 0.787 0.097 0.155 0.635 0.703 0.522 0.844 0.077 0.281 0.861 0.249 0.532 0.265 0.689 0.969

IND(p) 0.059 0.244 0.158 0.135 0.576 0.285 0.207 0.077 0.349 0.129 0.547 0.067 0.107 0.185 0.227

CC(p) 0.163 0.138 0.134 0.293 0.795 0.460 0.442 0.044 0.360 0.310 0.430 0.154 0.146 0.384 0.482

Av. ES -0.0167 -0.0166 -0.0178 -0.0173 -0.0172 -0.0172 -0.0171 -0.0184 -0.0176 -0.0183 -0.0169 -0.0175 -0.0164 -0.0178 -0.0171

M-F -1.1952 -1.3465 2.4432 0.9465 0.6514 0.6471 0.2315 3.9111 1.8018 3.5483 -0.5511 1.4982 -2.1133 2.4212 0.2046

M-F(p) 0.2321 0.1782 0.0146 0.3439 0.5148 0.5176 0.8169 0.0000 0.0716 0.0003 0.5816 0.1341 0.0346 0.0155 0.8379
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