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Abstract

This paper compares RiskMetrics and several multivariate GARCH models that are used to

forecast Value-at-Risk. We consider a data set that includes the benchmarks that SAMCo

uses, the data consists of both fixed income and equity indices. We evaluate the forecasting

power of the Value-at-Risk of these models by using the backtesting test and the Compara-

tive Predictive Ability test (CPA). Also the economic significance of time-varying, predictable

volatility is examined by using both the minimum-variance and the mean-variance asset al-

location rules. We find that incorporating the asymmetry in the correlation between assets

in the models to forecast Value-at-Risk bears fruit, as they have a better performance for the

statistical tests. In general, assigning a Student-t distribution to the error terms leads to an

improvement of the model according to the CPA-test. Finally, we find that it is unlikely that

the gains to volatility-timing are due to chance.
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Chapter 1

Introduction

Managing portfolio risk is of paramount importance to portfolio managers due to the finan-

cial regulations imposed by the Basel Accords. Risk managers have to come up with models

that can take into account all kinds of risk and they use several risk measures to manage the

risk. Value-at-Risk is one of the widely used risk measures to control and manage market

risks, which are risks to a financial portfolio from movements in market prices such as equity

prices, FX rates and interest rates. Value-at-Risk is the maximum loss that could occur over

a given holding period or the minimum return that could occur over a given holding period

with a specified confidence level under adverse market conditions. Until now no agreement

has been reached on which procedure provides the most accurate VaR estimates. Inaccurate

VaR-estimates can lead to disastrous consequences: Underestimating the VaR means that the

investor is not aware of the maximum loss that could be made when investing on a specific

manner. On the other side, overestimating VaR means that the investor will lose opportunity

costs, because setting money aside to absorb losses can reduce the money they have to make

bets.

A potential problem with estimating the VaR of a portfolio lies in inadequate covariance

matrix estimation. Specifically if we assume constant correlations between asset prices. The

goal of this paper is to compare the performance of the RiskMetrics model with multivari-

ate GARCH models that can incorporate the dynamic changes in the correlations between

asset prices and the asymmetry in the correlations between asset prices when implemented

to forecast Value-at-Risk. The findings of this paper will have several important implications

from practitioner points of view. The Value-at-Risk that is calculated by a RiskMetrics model

could lead to an underestimation in the risk of a portfolio, this can have tremendous effects

for financial institutions. Furthermore, assuming conditional correlations to be time-varying

(rather than constant) and allowing for assymetric effects can lead to VaR forecast improve-

ments. In this paper we will investigate whether this believes hold for our portfolio, which

will be explained in detail in the latter of this section and in the Data section of this research.
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Past research has shown that assuming constant correlations between asset classes is not

a realistic assumption. Especially in some contexts, which are listed below, it is shown that

correlations vary over time, hence it is of great importance to model the correlations dy-

namically: First, in crisis periods asset prices move more closely together, which is usually

called contagion. Negative returns move more together than positive returns, especially in

equity markets. This asymmetric dependence has been reported by many previous studies

including Erb et al. (1994), Longin and Solnik (2001), Ang and Bekaert (2002, Ang and Chen

(2002), Das and Uppal (2003) and Patton (2004). Second, in a stock-bond setting correlations

have been shown to change over time (Connolly et al. (2005)). Finally, in studies related to

global equity market integration it is proven that correlations between markets change over

time. The dependence between international stock markets can change because of increasing

economic and financial integration (Bekaert and Harvey (1995), Longin and Solnik (1995),

Goetzmann et al. (2005), Cappiello et al. (2006), Patton (2006b), Bekaert et al. (2009), for

example.), macroeconomic conditions (Bracker and Koch (1999)) and market liquidity (Baela

et al. (2009)). Christoffersen et al. (2010) show that correlations have been significantly

trending upward for both developed markets and emerging markets. Hence it seems like it

is plausible that models that can incorporate the dynamics and/or the asymmetry in the

correlation between assets produce more accurate Value-at-Risk forecasts.

This research is performed for Shell Asset Management Company (SAMCo). SAMCo is

an asset management company established in 2006 to provide investment advice and asset

management services to pension funds associated with Shell worldwide. Total assets under

management are in the order of 35 billion EUR at mid 2010. It is SAMCO’s aim to be a

relatively small, internationally oriented and dynamic organisation. Continuous innovation

in financial products, changes in industry supervisory regulations and client needs make it a

professionaly challenging and dynamic environment.

The data used in this research include the benchmarks that SAMCo uses. The SSPS fund,

which is the largest fund that SAMCo uses, consists of Financial Investments and Treasury.

The Financial Investments consist of Liability Hedge and Return Seeking Assets. The Return

Seeking Assets can be split into Cash, Equity, Fixed Income, Hedge Funds, Other, Private

Equity and Real Estate. In our research we will focus on the benchmarks of equity and

fixed income. The dataset consists of six equity indices (MSCI World, MSCI World Small

Cap, MSCI Emerging Markets, MSCI North America, MSCI Europe and MSCI Japan) and

seven fixed income indices (Merrill EMU Direct Governments, iBoxx Euro Financials, iBoxx

Euro Non-Financials, iBoxx USD Treasuries Total Return Index, Merrill Euro High Yield,

Merrill US High Yield and Merrill Emerging Market Governments). We use weekly data for

the period starting at May 7th, 1999 and ending at May 18th, 2012, which results in 681
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observations.

Currently, SAMCo uses the RiskMetrics approach, hence we will use this model as a nat-

ural benchmark. The Dynamic Conditional Correlation models are used to construct the

covariance forecasts in order to compare their performance with the performance of the Risk-

Metrics Model. We also consider multivariate models with asymmetric time-varying correla-

tions, alternative distributions for the innovations and we use multivariate DCC models with

different specifications for the univariate volatilities, such as GARCH and the Threshold-

GARCH model. The forecasts are evaluated by using the backtesting tests based on cover-

age/independence criteria proposed by Christoffersen (1998). Also the comparative predictive

ability (CPA) test, which is a statistical test designed to evaluate the comparative predictive

performance among candidate models is used to enhance the backtesting analysis. Besides

using statistical tests to compare the different models with each other we will also look at their

economic significance. More specifically, we examine the economic value of volatility timing.

This will be done by investigating the ex-post portfolio returns, Sharpe Ratios and the Manip-

ulation Proof Performance Measure (MPPM) that emerge from the minimum-variance and

mean-variance asset allocation rules. Some of our dynamic models are used to produce the

covariance forecasts. Finally, we investigate the statistical significance of the volatility timing

results by conducting simulations. For this analysis we use a simple portfolio that consists of

a stock, bond and a risk-free rate.

We find that the ADCC-GARCH-t and ADCC-TGARCH-t models pass the conditional cov-

erage test of Christoffersen (1998). These models take the asymmetry between asset classes

into account. Obviously, incorporating this asymmetry bears fruit as the statistical tests

indicate that the ADCC-GARCH-t and ADCC-TGARCH-t are the best performing models.

Furthermore, RiskMetrics is outperformed by eight other models according to the CPA-test.

In general, assigning a Student-t distribution to the error terms leads to an improvement of

the model according to the CPA-test. For the economic significance results we find that it is

unlikely that the gains to volatility timing are due to chance, because the frequency (in %)

with which the simulation beat the portfolio according to the Sharpe Ratio lie between 2.6%

and 8.7% and according to the MPPM between 3.5% and 8.9% . For the minimum-variance

analysis RiskMetrics performs best, because the ex-post portfolio volatility is the lowest.

However, for the mean-variance analysis the ADCC-TGARCH-t model performs best, ac-

cording to the the frequency with which the portfolio outperformed the simulation based on

the Sharpe Ratio and the MPPM.

The remainder of this paper is organized as follows. Section 2 describes the literature re-

view and Section 3 describes the data set used in this research. In section 4 we elaborate on

the methodology. Section 5 brings the results and discussion. Finally, Section 6 concludes,
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gives specific insights for SAMCo and brings suggestions for further research. Appendix A.1

shows the time series of the returns. Appendix A.2 shows the scatter plots of the return

series. Appendix A.3. shows the table of the covariance matrix of the return series, Appendix

A.4. presents the derivation of the variance-covariance matrix Ω that is a necessary input

for the test developed by Hong, Tu and Zhou (2007) and Appendix A.5. shows the empirical

autocorrelation functions of the return series.
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Chapter 2

Literature Review

Understanding and predicting the dependence between asset returns is important for many

issues in finance. Over the past few years there has been done a lot of research about this

topic, because it opens the door to better decision tools in various areas, such as asset pricing,

risk management and portfolio management. Engle (1982) introduced the Generalized Au-

toregressive Conditional Heteroskedasticity model (GARCH), which is a powerful model that

is able to capture volatility clustering. This model is now widely used to describe and fore-

cast changes in the volatility of financial time series. However, it still has several limitations;

the parameters of the model are constrained by non-negativity to ensure that the volatili-

ties remain larger than zero at all times and it is unable to account for different regimes in

volatility. For this purpose, several extensions have been made in order to incorporate these

limitations, for example the Threshold-GARCH model (T-GARCH), the Non-Linear GARCH

model (N-GARCH), the exponential GARCH model (E-GARCH) and the quadratic GARCH

model (Q-GARCH).

Engle (2002) proposes a new class of multivariate models called dynamic conditional cor-

relation models. These have the flexibility of univariate GARCH models coupled with parsi-

monious parametric models for the correlations. It has three advantages over other estimation

methods. First, the DCC-model estimates correlation coefficients of the standardized residu-

als and thus accounts for heteroskedasticity separately. Second, the model allows to include

additional explanatory variables in the mean equation to ensure that the model is well spec-

ified. Third, the multivariate GARCH model can be used to examine multiple asset returns

without adding too many parameters.1. However, the DCC model has been criticized because

the DCC-model is an assumed rather than derived model, because it models the conditional

covariances of the standardized residuals and hence does not yield conditional correlations

between asset prices.

1The full vec and the BEKK model (Enle and Kroner, 1995) would become computationally very intensive
if expanded to three asset returns
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Santos, Nogales and Ruiz (2013) compare multivariate and univariate GARCH models to

forecast portfolio Value-at-Risk. They find that even in large systems, it could be worth to

predict the VaR of a portfolio by fitting multivariate modes. Our research is in line with their

research but goes beyond statistical evaluations and does not focus on the comparison be-

tween multivariate and univariate GARCH models solely. Furthermore, Santos et al. (2013)

include the Constant Conditional Correlation model (CCC) in their investigation, we only

focus on the Dynamic Conditional Correlation model (DCC). Our goal is to investigate if

RiskMetrics can be outperformed by other models that can incorporate the dynamic changes

in the correlation and the asymmetry in the correlation between asset prices.

As in line with Santos et al. (2013) we use the backtesting test developed by Christoffersen

(1998) and the CPA-test developed by Giacomini and White (2006) to assess our Value-at-

Risk forecasts. To extend the comparison we also compare the economic significance of our

models as in line with Fleming, Kirby and Ostdiek (2001). We examine if our models have

economic value by using the minimum-variance and mean-variance asset allocation rules for

a simple stock, bond and cash portfolio. Fleming et al. (2001) estimate the Conditional Co-

variance Matrix by using rolling estimators that are constructed in an asymptotically manner

as in line with Foster and Nelson (1996). We use the RiskMetrics approach and the best

performing DCC-model to estimate the covariance matrix, which is then used to construct

the optimal portfolio.

Besides the symmetric DCC-model we also use the asymmetric DCC model to forecast VaR.

In the past couple of years researchers have developed various extensions on the DCC-model:

Hafner and Franses (2003) introduce a model that allows for asset-specific correlation sensi-

tivities, which is useful in particular if one aims to summarize a large number of asset returns.

Billio and Caporin (2006) introduce a block structure in parameter matrices that allows for

interdependence with a reduced number of parameters. Their model nests the Flexible DCC-

model of Billio et al. (2006) and is named Quadratic Flexible DCC Multivariate GARCH.

Bauwens et al. (2006) present an overview of the literature on multivariate GARCH models.
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Chapter 3

Data

3.1 Data description

The data set used in this research covers several types of stock and bond indices. The data

set presented in Table 3.1, includes the benchmarks that SAMCo uses and are weekly end-of-

week prices (total return indices, hence including dividend and coupon payments) expressed

in USD. The SSPF fund, which is the largest fund that SAMCo uses consists of Financial

Investments and Treasury. The Financial Investments consist of Liability Hedge and Return

Seeking Assets. The Return Seeking Assets can be split into Cash, Equity, Fixed Income,

Hedge Funds, Other, Private Equity and Real Estate. In our research we will focus on the

equity and fixed income benchmarks. The data were downloaded from Bloomberg and cover

the range May 7th, 1999 - May 18th, 2012 at the weekly frequence. Hence, we have 681

observations.

In a first step the price data has been converted into historical week-to-week excess return

data given by equation 3.1:

Returnt = log(
Pricet
Pricet−1

) (3.1)

The time series of the returns are presented in Figure A.1.1, A.1.2 and A.1.3. All indices

behave more or less the same during the crisis period, with return values that can decrease

down to 22% for the MSCI Europe index. The time series pattern of some series are similar

so that we can expect correlations to be high. It is obvious that equities have a much more

negative return value during the crisis and are more volatile than the fixed income indices.

The largest negative value for the fixed income index is -8.2% for the Merrill US High Yield

index.
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Table 3.1: Description of the data set

Equity Fixed Income

World Indexes (Large and Small cap) Governments
MSCI World (MW) Merrill EMU Direct Governments (MDG)
The MSCI World index is a free-float weighted
equity index. It includes developed markets
and does not include emerging markets

MDG tracks the performance of EUR denom-
inated sovereign debt publicly issued by Euro
member countries in either the eurobond mar-
ket or the issuer’s own domestic market.

MSCI World Small Cap (MSC) Merrill Emerging Market Governments
(MEMG)

MSC captures small cap representation across
24 developed markets. With 4272 con-
stituents, the index covers 14% of the free
float-adjusted market capitalization in each
country.

MEMG contains all securities in The BofA
Merrill Lynch Emerging Markets Corporate
Plus Index that are rated investment grade
based on an average of Moody’s, S&P and
Fitch. Index constituents are capitalization-
weighted, based on their current amount out-
standing.

Developed Markets Corporates (Financial and Non-
Financial)

MSCI North America (MNA) iBoxx Euro Financials (IBF)
MNA is designed to measure the performance
of the large and mid cap segments of the US
and Canada markets. With 701 constituents,
the index covers 85% of the free float-adjusted
market capitalization in the US and Canada.

Bonds secured by a floating charge over some
or all assets of the issuer are considered cor-
porate bonds. Corporate bonds are further
classified into Financials and Non-Financials.
Financials focus on the following market sec-
tors: Banks, Life/Nonlife insurance, Finan-
cial Services (also Real Estate) and Insurance-
Wrapped.

MSCI Europe (ME) iBoxx Euro Non-Financials (IBNF)
ME captures large and mid cap representation
across 16 developed markets countries in Eu-
rope. With 436 constituents, the index covers
85% of the free float-adjusted market capital-
ization across the European Developed Mar-
kets equity universe.

Non-Financials focus on Oil & Gas, Ba-
sic Materials, Industrials, Consumer Goods,
Health Care, Consumer Services, Telecommu-
nications, Utilities and Technology.

MSCI Japan (MJ) Merrill Euro High Yield (MHY)
MJ is designed to measure the performance of
the large and mid cap segments of the Japan
market. With 317 constituents, the index cov-
ers 85% of the free float-adjusted market cap-
italization in Japan.

MHY contains all non-financial securities in
the BofA Merrill Lynch Euro High Yield In-
dex that are rated BB1 through BB3, based on
an average of Moody’s, S&P and Fitch. Index
constituents are capitalization-weighted, based
on their current amount outstanding.
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Merrill US High Yield (MUHY)
MHY contains all non-financial securities in
the BofA Merrill Lynch US High Yield Index
that are rated BB1 through BB3, based on an
average of Moody’s, S&P and Fitch. Index
constituents are capitalization-weighted, based
on their current amount outstanding.

Emerging Markets Treasuries
MSCI Emerging Markets (MEM) iBoxx USD Treasuries Total Return Index

(IBT)
MEM captures large and mid cap representa-
tion across 21 Emerging Markets countries.
With 821 constituents, the index covers 85%
of the free float-adjusted market capitalization
in each country.

IBT represents the investment grade fixed in-
come market for USD denominated bonds.

This table shows the composition of the equity and fixed income indices with their abbreviations in

brackets used in this research

3.2 Descriptive Statistics and Stylized Facts

In this section we will further analyze the data set and we will do this by investigating the

descriptive statistics of the return series and the stylized facts which are the properties that

many asset returns have. This section will focus on the univariate characteristics, whereas

the next sections will focus on multivariate characteristics such as the correlations between

the assets.

Empirical research has shown that many asset returns have the same properties. Taylor

(2005) proposes that these properties can be summarized by the stylized facts, which are as

follows:

� Distribution of returns is not normal.

� No significant autocorrelations in returns.

� Small, but slowly declining autocorrelations in squared and absolute returns.

In the remainder of this section we will investigate if these stylized facts also hold for the

equity and fixed income benchmarks that SAMCo uses. Table 3.2 presents the summary

statistics of the return series. The first stylized fact is that the distribution of returns is not

normal. From Table 3.2 we can see that all returns show excess kurtosis and are negatively

skewed. The excess kurtosis is due to some large shocks on the data inducing fat tails. MUHY

has the highest kurtosis value (29.605) and MDG has the lowest kurtosis value (3.458). None

of the return series satisfy or even come close to normality as the p-value of the Jarque-Bera
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test statistic for all return series are almost equal to zero. The average returns do not deviate

much from each other, whereas the standard deviations do deviate from each other.

The second stylized fact implies that there are no significant autocorrelations in the returns.

This is in line with the returns used in this research. A graphical representation of the empir-

ical autocorrelation function can be found in Figure A.3.1, A.3.2 and A.3.3 of the Appendix.

The third stylized fact is that the autocorrelations in squared and absolute returns are slowly

declining. Most of the returns exhibit this feature. However, for some of the returns this is

less obvious, for example for the IBF and IBNF indices. The presence of the third stylized

fact means that most returns suffer from volatility clustering.

Table 3.2: Descriptive Statistics for international equity and fixed income indices.

Mean St.Dev Min Max Skewness Excess Kurtosis P-value

MW -0.007 2.647 -0.224 0.116 -1.149 8.881 0.001
MSC 0.109 2.806 -0.198 0.118 -1.067 5.683 0.001

MEM 0.120 3.372 -0.226 0.185 -0.763 5.994 0.001
MNA -0.002 2.763 -0.206 0.120 -0.793 6.296 0.001

ME -0.041 2.864 -0.244 0.124 -1.055 9.106 0.001
MJ -0.100 2.867 -0.223 0.096 -0.896 5.302 0.001

MDG 0.109 1.619 -0.061 0.06 -0.134 0.458 0.038
IBF 0.079 0.600 -0.051 0.019 -1.464 9.164 0.001

IBNF 0.091 0.470 -0.021 0.018 -0.487 1.311 0.001
IBT 0.111 0.646 -0.030 0.024 -0.405 0.965 0.001

MHY 0.131 0.937 -0.080 0.052 -1.506 14.423 0.001
MUHY 0.135 0.8 -0.086 0.051 -2.395 26.605 0.001
MEMG 0.153 0.698 -0.066 0.034 -2.201 18.781 0.001

This table presents the descriptive statistics for the return indices. Returns are weekly, denominated

in USD, include dividends and are excess returns. The sample period is May 7th, 1999 - May 18th,

2012. The P-value evolves out of the Jarque-Bera test, which is a test for normality based on the

skewness and kurtosis.

Table 3.3 shows the correlation matrix for the return series for the whole sample period. In

this table we find positive and in some cases very high correlations between the equity assets,

which means that there is an opportunity in incorporating correlations. The equity and the

fixed income assets are in some cases negatively correlated with magnitudes up to 0.51. The

fixed income assets are in most cases postively correlated with each other with magnitudes

up to 0.78. In order to check the presence of perfect correlation between the MSCI Equity

indexes and the MSCI world index, we add up MNA, ME and MJ up and check its corre-

lation with the rest. It follows that the last mentioned series is almost perfectly correlated

with MW with a correlation value of 0.95. Furthermore, this return series is highly correlated
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with the rest of the equity indices. On the contrary, it does not correlate a lot with the fixed

income indices. We have to take these findings into account when we start modelling the

asset returns. Table A.2.1 in the Appendix shows the covariance matrix with the variances

of the indices on the diagonal.

Table 3.3: Correlation Matrix

MW MSC MEM MNA ME MJ MDG IBF IBNF IBT MHY MUHY MEMG MNA+ME+MJ

MW 1 0.93 0.81 0.96 0.90 0.66 0.20 0.12 -0.03 -0.31 0.41 0.47 0.15 0.95
MSC - 1 0.84 0.87 0.81 0.68 0.23 0.13 -0.03 -0.32 0.46 0.53 0.19 0.89

MEM - - 1 0.72 0.73 0.65 0.23 0.13 0.03 -0.27 0.44 0.51 0.26 0.80
MNA - - - 1 0.84 0.55 0.06 0.07 -0.06 -0.32 0.37 0.41 0.07 0.90

ME - - - - 1 0.59 -0.08 0.06 -0.09 -0.38 0.39 0.41 0.01 0.92
MJ - - - - - 1 0.03 0.10 -0.04 -0.25 0.35 0.39 0.12 0.81

MDG - - - - - - 1 0.38 0.35 0.33 0.08 0.20 0.55 0.00
IBF - - - - - - - 1 0.78 0.43 0.40 0.47 0.59 0.09

IBNF - - - - - - - - 1 0.59 0.35 0.42 0.59 -0.07
IBT - - - - - - - - - 1 -0.13 0.06 0.53 -0.36

MHY - - - - - - - - - - 1 0.77 0.41 0.42
MUHY - - - - - - - - - - - 1 0.57 0.46
MEMG - - - - - - - - - - - - 1 0.07

MNA+ME+MJ - - - - - - - - - - - - - 1

This table presents the Correlation Matrix of the indices we use in our research. In the last column

we count up MNA, ME and MJ to investigate if they are perfectly correlated with MW. The

correlation between MNA+ME+MJ and MW is large but the series are not perfectly correlated with

each other.

3.3 Rolling Variance and Correlation

As already mentioned, in many realisting applications we have to deal with multiple assets.

Then, in addition to their volatilities, we also have to consider their correlations. It is not

reasonable to assume that correlations and variances are constant over time, for this reason

we illustrate the historical variances and correlations based on a 52-week moving window,

which boils down to a computation of the variance and correlation on yearly basis.

Figure A.5.1 shows a graphical representation of the time-varying variance of the equity and

fixed income indices. We can immediately see that the variances considerably increase during

the global financial crisis between 2008 and 2010. As there is a large deviation in the variance,

we can conclude that heteroskedasticity is present both for the equity and the fixed income

return series. Figures A.5.3 and A.5.4 show the time-varying historical correlations based on

a 52-week moving window. For both equity and fixed income we see a lot of fluctuations in

the time-varying correlation. Hence, it seems plausible that a model that incorporates this

time-variability of the correlation will perform better in comparison with a model that does

not take it into account. It is obvious that correlations increase during the global financial

crisis in 2008. This evidences the finding that negative returns are more dependent than

positive returns and that correlations are higher during a bear market than during a bull

market. Concluding, this graphical analysis shows that correlations are not stable over time

and, more interestingly that correlations show similar patterns between return series.
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To investigate the effect of the moving window length, we will perform the same analysis

but now on quarterly basis which is a 12-week moving window. The reason that we do not

perform this analysis on a more frequent basis is because the figures will be too unclear due to

the large amount of fluctuations. Figures A.5.5 and A.5.6 show the time-varying correlations

corresponding to a moving window of 12 weeks. We can immediately see that in these figures

there are even more fluctuations and the correlations are more time-varying. However, this

is a logical consequence of using a smaller window. When using a smaller window we observe

that the variances during the financial crisis are larger than the variances during the financial

crisis that are obtained with a larger moving window. Figure A.5.2 shows the time-varying

variance based on a 12-week moving window. Here again we can see that there are more

fluctuations in comparison with the 52-week moving window variance.

3.4 Asymmetry in the Correlations

Besides the existence of time-varying correlations, we also investigate if there is asymmetry

in the correlation. In other words, does correlation increase (decrease) when we have negative

(positive) returns? In order to show this we present the threshold correlations computed

on returns. Examining asymmetric correlations is very important: the first reason is that

hedging relies on the correlations between the assets hedged and the financial instruments

used. The second reason is that the value of portfolio diversification might be questionable

if all assets tend to fall as the market falls. The threshold correlations computed on returns

which are standardized by their unconditional means and variances are calculated as follows:

ρ̃γ(zi, zj) =

{
Corr(zi, zj |zi ≤ γ, zj ≤ γ) if γ ≤ 0

Corr(zi, zj |zi > γ, zj > γ) if γ > 0
(3.2)

where zi are error terms for index i and γ denotes a vector with grid points from -1 till 1. The

returns are standardized to have zero mean and unit variance so that the mean and variance

do not appear explicitly in the right-hand side of the definition, making both the computation

and statistical analysis easy.

For the sake of convenience we only present the threshold correlation between the following

indices: MW - MSC, MW - MDG, MW - IBF, MW - IBNF, IBF - IBNF and MEM-MNA.

We choose for these pairs because they are economically interesting as some of them are each

others opposite as regards the asset class, such as MEM-MNA (developed market vs. emerg-

ing market), IBF-IBNF (financial vs. non-financial), MW-MDG (equity vs. fixed income).

Furthermore it is useful to investigate the correlations within an asset-class such as MW-

MSC (equity vs. equity) and IBF-IBNF (fixed income vs. fixed income). First we present

the threshold correlations from May 1999 till May 2012 in Figure 3.1. Then in Figure 3.2
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we present the threshold correlations during the crisis period 2008 till 2011 to explore if the

lower tail dependence during the crisis period is larger than the lower tail dependence for the

whole sample.

At one glance we can see that there are indeed asymmetric correlations between the dif-

ferent benchmarks. Especially for the following pairs: MW-MSC, MW-IBNF and MW-IBF.

Another remarkable result is that there is not much difference between the lower tail de-

pendence and upper tail dependence for the correlation between IBF and IBNF. A possible

explanation for this result is that these two indices are not very different from each other. In

Table 3.3 we can observe that the correlation between these two indices is 0.78, which is quite

large as a priori expected.

When looking at the differences between the upper and the lower tail dependences in Figure

3.1 and in Figure 3.2 we can conclude that there are not extremely large differences between

the lower/upper tail dependences. However, to be able to make a final conclusion about the

latter we have to perfom statistical tests to evaluate the difference between upper and lower

tail dependences, this is done in the end of this section. An interesting fact that emerges from

Figure 3.2 is that the upper tail dependence between MW and IBNF suddenly increases from

0.9 onwards. Obviously, these two indices move together for extremely large positive returns.

This is interesting because usually very negative returns move more closely.

As mentioned before, we have to test formally if there is a difference between the lower and the

upper tail dependence. We will use the test developed by Hong, Tu and Zhou (2007), which

has the advantage of being a model-free test. The null hypothesis of symmetric correlation is

H0 : ρ+(γ) = ρ−(γ) for all γ ≥ 0 (3.3)

where ρ+(γ) is the upper tail dependence and ρ−(γ) is the lower tail dependence. The formula

above tests if the correlation between the positive returns of the two assets is the same as

that between their negative returns. The alternative hypothesis is

HA : ρ+(γ) 6= ρ−(γ) for some γ ≥ 0 (3.4)

If the null hypothesis is true, the following m× 1 vector

ρ̂+ − ρ̂− = [ρ̂+(γ1)− ρ̂−(γ1), ..., ρ̂
+(γm)− ρ̂−(γm)]′ (3.5)

must be close to zero. The statistic for testing the null hypothesis can be presented as follows:

Jp = T (ρ̂+ − ρ̂−)′Ω̂−1(ρ̂+ − ρ̂−) (3.6)
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where T is the number of observations and Ω̂ is a positive definite variance-covariance ma-

trix for all possible true distributions of the data satisfying some regularity conditions. The

derivation of Ω̂ can be found in Appendix A.4.

Table 3.4 presents the results of this test. The pairs which are investigated are presented

in the rows. The test is performed for a threshold value 0 and for a set of threshold values

varying from 0 up to 1.5. The table presents both the p-values of the test for every pair and

for every set of threshold values. Furthermore, the difference between the threshold correla-

tions ρ̂+(γ)-ρ̂−(γ) is presented for every threshold value and for every pair.

Full sample

We observe that in none of the cases we can reject the null hypothesis, hence according to this

test there are no significant differences between the lower and the upper tail dependences.

However the differences of the threshold correlations are negative in almost all cases. This

means that the lower tail dependence is larger than the upper tail dependences. Hence, we

can conclude that although the figures present an asymmetric difference between the thresh-

old correlations, the differences are not significant for these pairs.

Crisis period

The results are more or less similar as the previous results as opposed to our expectations.

We observe that we are still not able to reject our null hypothesis of equality. However,

some values for the differences between the upper and the lower tail dependence become even

larger. The reason is the fact that we now use the crisis period, in which correlations between

asset returns usually increase. Some values are missing as the sample does not contain asset

returns that are larger than 1.0 or 1.5.

Note that the asymmetry in the correlations of few pairs are investigated, there could be

pairs for which the difference between the upper and the lower tail dependence is significant.

For this reason, we still include asymmetric terms in our models.
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Figure 3.1: Empirical Threshold Correlations. The figures report pairwise threshold correlations
computed on returns for different benchmarks that SAMCo uses for the period May 14,1999 to May
18, 2012. The left line denotes the lower tail dependence. The right line denotes the upper tail
dependence. The Treshold Correlations are computed as in equation 3.2

(a) MW-MSC (b) MW-MDG

(c) MW-IBF (d) MW-IBNF

(e) IBF-IBNF (f) MEM-MNA
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Figure 3.2: Empirical Threshold Correlations. The figures report pairwise threshold correlations
computed on returns for different benchmarks that SAMCo uses for the period January 2008 to
December 2011. The left line denotes the lower tail dependence. The right line denotes the upper tail
dependence. The Treshold Correlations are computed as in equation 3.2.

(a) MW-MSC (b) MW-MDG

(c) MW-IBF (d) MW-IBNF

(e) IBF-IBNF (f) MEM-MNA
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Table 3.4: Exceedance Test

γ=0 γ=[0,0.5,1.0,1.5]
P-value ρ̂+(γ)-ρ̂−(γ) P-value ρ̂+(γ)-ρ̂−(γ)

γ = 0 γ = 0 γ = 0.5 γ = 1.0 γ = 1.5

Full Sample
MW-MSC 0.89 -0.045 1.0 -0.045 -0.044 -0.044 -0.098
MW-MDG 0.27 -0.162 0.47 -0.162 -0.024 -0.036 0.320

MW-IBF 0.31 -0.222 0.59 -0.222 -0.280 -0.133 -0.371
MW-IBNF 0.21 -0.379 0.59 -0.379 -0.640 -0.627
IBF-IBNF 0.82 -0.040 0.60 -0.040 -0.055 -0.265 -0.486

MEM-MNA 0.80 -0.067 0.95 -0.067 -0.072 0.025 -0.048

Crisis Period
MW-MSC 0.98 -0.009 1.0 -0.009 0.004 0.014 0.027
MW-MDG 0.37 -0.158 0.66 -0.158 -0.176 -0.140

MW-IBF 0.17 -0.350 0.41 -0.350 -0.226 -0.403
MW-IBNF 0.24 -0.570 0.43 -0.567 -0.878
IBF-IBNF 0.38 -0.258 0.14 -0.258 -0.236 -0.567

MEM-MNA 0.83 -0.086 0.84 -0.086 -0.082 -0.187 -0.354

This table presents the P-values of the exceedance test developed by Hong, Tu and Zhou (2007) and
the differences between the upper and the lower tail dependence for the full sample and for the crisis
period. The test is performed for a threshold value 0 and for a set of threshold values varying from 0
up to 1.5. For the sake of convenience we only present the threshold correlation between some pairs.
We choose for these pairs because they are economically interesting as some of them are each others
opposite as regards the asset class, such as MEM-MNA (developed market vs. emerging market) or
they are within the same asset-class such as MW-MSC (equity vs. equity). The crisis period starts in
January 2008 and ends in December 2011.
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Chapter 4

Methodology

In this chapter we elaborate on the methodology used in this research. We provide an ex-

planation of the Riskmetrics and the DCC-model. For each model the definition, estimation

procedure and the forecasting procedure is presented. Subsequently, we elaborate on the eval-

uation techniques used to assess our results. First, we explain the backtesting test developed

by Christoffersen (1998) in section 4.3.1, then we explain the comparative predictive ability

(CPA) test developed by Giacomini and White (2006) in section 4.3.2. In the last section of

this chapter we will elaborate on the methodology of the economic value of volatility timing.

In other words, this chapter explains all the methods and techniques that are used in the rest

of this research. It can be quite technical in comparison with the rest of the chapters, though

it provides a necessary theoretical foundation to understand the results of the research.

4.1 RiskMetrics Approach

4.1.1 Definition

RiskMetrics is a widely used model in forecasting volatilities and in calculating the Value-

at-Risk. It was first introduced by J.P. Morgan in 1995. This model is currently used by

SAMCo to obtain Value-at-Risk. For this reason we will use the RiskMetrics approach as a

natural benchmark. The time varying covariance matrix is used as the dependence measure

between the different assets. We can define the RiskMetrics covariance marix between two

assets at time t, as follows:

Σt = λΣt−1 + (1− λ)(rt−1r
′
t−1) (4.1)

where Σt is the covariance matrix with dimension N ×N (N is the number of assets in the

portfolio) at time t, λ is a predefined decay factor that lies between 0 and 1. SAMCo uses

0.99 for the decay factor. Furthermore, rt is a vector of the returns at time t. The index i

defines asset i at time t.
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4.1.2 Estimation

The only parameter that the RiskMetrics model uses, is the decay factor λ. In the standard

RiskMetrics approach the decay factor λ is fixed at 0.94. However, SAMCo uses 0.99 for the

decay factor, hence we will not put effort in estimating this parameter and we will keep it

fixed through the research. The value of the decay factor is usually related to the frequence

of the returns. SAMCo uses returns at the weekly frequence, hence for this reason they use

0.99.

4.1.3 Forecasting Procedure

This section will explain the algorithm that forecasts the covariance matrix with the Risk-

Metrics model. Before we start with the forecasting procedure we have to define the size of

the window, given by the following parameter: windowSize, the decay factor λ, and the total

sample length T . The length of the window should be large enough to avoid strange features

and parameter instability. This is especially relevant for DCC-models. For these reasons we

choose a window length that contains 200 observations.

Start at time t = windowSize

1. We calculate the forecasted RiskMetrics covariance matrix Ĥt over the sample τ −
windowSize+ 1 until τ = t.

2. The t+K forecast of the covariance is given by the following equation:

h1,2,t+K|t = Kh1,2,t+1|t (4.2)

here, 1 and 2 denote the row-index and the column-index, respectively of the covariance ma-

trix Ĥt+K|t.

3. Move to t = t+ 1 and repeat this procedure until time t = T .

4.2 Dynamic Conditional Correlation Model

4.2.1 Definition

As already mentioned in the Literature Review, Engle (2002) introduced a new class of mul-

tivariate GARCH estimators that can be viewed as a generalization of the Bollerslev (1990)

Constant Conditional Correlation (CCC) estimator. In Bollerslev’s model the covariance
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matrix Ht at time t is denoted as follows:

Ht = DtRDt (4.3)

where here again just as the RiskMetrics model Dt = diag(
√
hi,t), where hi,t is the volatility

estimated with an univariate volatility model, diag(.) is the operator that transforms a N ×1

vector into a N × N diagonal matrix. The volatilities can be estimated with any type of a

volatility model, which makes the DCC-model very flexible. R is a symmetric positive definite

conditional correlation matrix with elements ρij,t, where ρii,t = 1, we can directly see that R

contains the conditional correlations by rewriting equation 4.3 as:

Et−1(εtε
′
t) = D−1t HtD

−1
t = R (4.4)

since εt = D−1t rt, which are standardized disturbances that have mean zero and variance one

for each series.

The dynamic conditional correlation model differs only in allowing R to be time varying:

Ht = DtRtDt (4.5)

We consider two different specifications for Rt: the Dynamic Conditional Correlation (DCC)

model of Engle (2002) and the Asymmetric DCC (ADCC) model of Cappiello et al. (2006).

In the DCC model, Rt remains the correlation matrix, except for the fact that it is now a

time-varying N ×N correlation matrix with diagonal elements equal to 1. Rt is now defined

as follows:

Rt = diag(Q
−1/2
t )Qtdiag(Q

−1/2
t ) (4.6)

where diag(Qt) is a diagonal matrix containing the diagonal elements of the N ×N positive

definite matrix Qt given by:

Qt = (1− α− β)Q+ α(εt−1ε
′
t−1) + βQt−1 (4.7)

where Q is the N × N unconditional covariance matrix of εt and α and β are non-negative

scalar parameters. The model is covariance-stationary if α+ β < 1. Moreover, Qt is guaran-

teed to be positive definite if (1− α− β)Q and Q0 are themselves positive definite.

Finally, the ADCC model incorporates the leverage effect into the conditional correlations.

The leverage effect refers to the phenomenon that volatility increases when stock price falls.

The ADCC model is given by:

Qt = (1− α− β)Q− δΓ + α(εt−1ε
′
t−1) + βQt−1 + δnt−1n

′
t−1 (4.8)
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where nt = I(εt < 0)◦εt (◦ is the Hadamard product: elementwise matrix multiplication) and

Γ = E[ntn
′
t]. A necessary condition for Qt to be covariance-stationary and positive definite

is that (1 − α − β)Q − δΓ and Q0 are positive definite and α + β + λδ < 1, where λ is the

maximum eigenvalue of Q
−1/2

ΓQ
−1/2

.

The multivariate models are implemented using alternative specifications for the univariate

conditional variances. To model the conditional variances, we use the GARCH-model and the

TGARCH-model. Furthermore we assume two different types of error distributions, on the

one hand the Normal distribution and on the other hand the Student-t distribution. Hence, we

have 8 different kind of specifications, to facilitate the presentation of the results, the mod-

els are denoted by the following abbreviations: DCC-GARCH, DCC-GARCH-t (Student-t

distribution for the error terms), DCC-TGARCH (Threshold-GARCH), DCC-TGARCH-t,

ADCC-GARCH, ADCC-GARCH-t, ADDC-TGARCH and finally ADCC-TGARCH-t.

4.2.2 Estimation

In the first step of the DCC-model the univariate conditional volatilities for each return series

are constructed. Consequently, in the second step these conditional volatilities are used to

construct the covariance matrix. As already mentioned in the previous section, we use two

specifications for the univariate conditional volatility model: the GARCH and the Threshold-

GARCH (TGARCH) model. In this section, we will clarify the estimation procedure during

the first and the second step of the DCC-model.

First we will start with clarifying the first step in the estimation procedure. The intuitive

idea of the GARCH model is that the volatility changes only gradually over time such that ht

will be ”close(ly related)” to ht−1. Also, the squared (unexpected) return (rt−1−µ)2 is an ’ex

post’ measure of volatility during period t− 1 (given that ht−1 = E[ε2t−1|It−2]). So, this may

give useful information on how volatility is changing. The GARCH(1,1) model (Bollerslev,

1986) is given by:

ht = ω + αε2t−1 + βht−1 (4.9)

where, ε2t−1 is a series of squared residuals of the returns, ht−1 is the one period lagged con-

ditional variance. To guarantee that ht ≥ 0 for all t, ω should be larger than 0 and α and

β should be larger than or equal to zero. The model is covariance stationary if α + β < 1.

Then E[ε2t ] = σ2 = ω
1−α−β . 1

The GARCH model is symmetric in the sense that positive and negative values of εt−1 have

the same effect on ht. In practice, period of high volatility often start with large negative

1Note that setting ω = 0 and 1 − α = β = λ gives RiskMetrics.
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returns. The Threshold GARCH model allows for such asymmetry:

ht = ω + αε2t−1I[εt−1 ≤] + γε2t−1I[εt−1 > 0] + βht−1 (4.10)

where I[A] = 1 if A occurs and 0 otherwise. ω > 0, α > 0, γ > 0 and β ≥ 0 are required for

ht ≥ 0 for all t. (α+ γ)/2 + β < 1 is required for covariance stationarity.

When the parameters θ = (ω, α, β)′ or θ = (ω, α, β, γ)′ of the GARCH model 4.9 or 4.10

are estimated by Maximum Likelihood estimation and the standardized residuals zt = D−1t εt

are constructed, we use these to estimate Dt = diag(
√
hi,t). The parameters φ = (α, β, (δ)) of

the DCC models in equations 4.3 and 4.8 are estimated by Maximum Likelihood estimation.

Q is replaced by the unconditional correlation matrix of ẑt: Q = 1
T

∑T
t=1 ẑtẑ

′
t. This is called

correlation targeting, in this manner we have N(N − 2) less parameters to estimate.

The quasi-loglikelihood function that is maximized by numerical optimization (fmincon in

Matlab) 2 to find the parameters in vector φ is defined as follows:

log(L(φ; θ̂, rt)) = −1

2

T∑
t=1

(nlog(2π)+2log|Dt|+r
′
tD
−1
t D−1t rt−ε

′
tεt+log|Rt|+ε

′
tR
−1
t εt) (4.11)

The above formula denotes a Gaussian loglikelihood function. For models where we use a

Student-t distribution for the error terms, we use a different loglikelihood function. Now φ

consists of φ = (α, β, (δ), v), as the degrees of freedom v also need to be estimated. The

loglikelihood function to estimate the parameters of models with a t-distribution is presented

as follows:

log(L(φ; θ̂, rt)) =
T∑
t=1

(log[Γ(
v + n

2
)]−log[Γ(

v

2
)]−n

2
log[π(v−2)]−1

2
log[|Rt]−

v + n

v
log[1+

ε
′
tR
−1
t εt

v − 2
])

(4.12)

The estimated parameters are used to calculate the correlation matrix Qt. Then this is used

to obtain Rt. Once we have Rt and Dt (which is obtained by an univariate volatility model),

we can calculate Ht.

4.2.3 Forecasting Procedure

First, we should define the length of the moving window before we start with making K-step

ahead forecasts. Let’s call the length of the moving window windowSize and the total sample

length T .

2The symmetric DCC models are estimated by quasi maximum likelihood (QML) using the UCSD GARCH
Matlab toolbox developed by Kevin Sheppard: http://www.kevinsheppard.com/wiki/UCSDGARCH.
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Start at time t = windowSize+ 1

1. Estimate the parameters θ = (ω, α, β, (γ)) of the univariate volatility model over the

sample t− windowSize until t for every asset.

2. When we have these parameters we can forecast every assets volatility
√
hi,t+K and

we can construct Di,t+K

3. Now we can calculate the conditional correlation matrix Qt+K|t as defined in equation

4.7 or in the case of the Asymmetric DCC-model as in equation 4.8.

4. Construct Rt+K|t as in equation 4.6.

5. Finally, construct the K-step (t+K forecast) ahead covariance matrix as follows: Ĥt+K =

Dt+KRt+KDt+K|t.

6. Move to t+ 1 and repeat this procedure until T .

4.3 Forecast Evaluation

In order to evaluate the performance of our models we use the following two main criteria, that

are explained in this section. The first one is the backtesting test developed by Christoffersen

(1998) and the second evaluation criterion is the CPA-test developed by Giacomini & White

(2006).

4.3.1 Value-at-Risk

Financial risk model evaluation or backtesting is a key part of the internal models approach to

market risk management as laid out by the Basel Commitee on Banking Supervision (1996).

As risk exposures are typically quantified in terms of a Value-at-Risk (VaR) estimate, we will

forecast the Value-at-Risk for different models and assess and quantify the accuracy of these

estimates. The results obtained from this evaluation criteria have implications for SAMCo

that wishes to assess the accuracy of their internal risk measurement model. Before we start

with clarifying the testing procedure, we will explain the concept of Value-at-Risk.

VaR is the maximum loss that could occur over a given holding period or the minimum

return that could occur over a given holding period with a specified confidence level q. For

any 0 < q < 1, the VaR at 100 × (1 − q)% is the return that is expected to be exceeded

with probability 1 − q. Furthermore, V aRt+1(1 − q) is the q-th quantile of the conditional
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distribution of the return rt+1:

P [rt+1 ≤ V aRt+1(1− q)|It] = Ft+1|t(V aRt+1(1− q)) = q (4.13)

where Ft+1|t(.) is the cumulative distribution function of rt+1 conditional on It.

If we have a GARCH(1,1) model for instance as defined in 4.9 then the V aRt+1(1 − q)

will be equal to V aRt+1(1− q) = µ+ zq
√
ht+1, where zq is the q-th quantile of the standard

normal distribution when using a model with Gaussian distributions. If we assume an uni-

variate volatility model with Student-t distributed error terms, zq denotes the q-th quantile

of the Student-t distribution. ht+1 is the volatility that is forecasted with the help of the

univariate GARCH(1,1) model. For our multivariate RiskMetrics and GARCH-models we

have a different specification for Value-at-Risk:

V aRt+k,(1−q) = w′µk + zq
√
w′Hk,tw (4.14)

where w denotes the portfolio weights, we assume an equally weighted portfolio with weights

w = 1/N . Furthermore, w′µk is the portfolio mean, zq denotes the q-th quantile of the stan-

dard normal distribution when using a model with Gaussian distributions. If we assume an

univariate volatility model with Student-t distributed error terms, zq denotes the q-th quan-

tile of the Student-t distribution. Finally, w′Hk,tw is the portfolio variance and Hk,t is the

covariance matrix with dimension N ×N of the k-day asset returns.

In general, (100 × q)% interval forecast for rt+1 are of the form (Lt+1|t(q), Ut+1|t(q)), where

Lt+1|t(q) is the lower bound and Ut+1|t(q) is the upper bound. (Lt+1|t(q), Ut+1|t(q)) is con-

structed in such a way that:

P [Lt+1|t(q) ≤ rt+1 ≤ Ut+1|tq|It] = q (4.15)

VaR is obtained by setting Lt+1|t(q) = −∞ and Ut+1|t(q) = V aRt+1(1− q). We will make use

of techniques developed for evaluating interval forecasts to evaluate VaR estimates which is

explained in the remainder of this section.

Given the VaR estimates (V aRt+1(1− q))T−1t=0 , how should we determine whether these VaR

estimates are ”good” or ”accurate”? A ”good” interval forecast suffices the following points:

1. Fraction of observations inside the interval should be equal to the nominal coverage prob-

ability. This is called correct unconditional coverage, which means that the fraction of VaR

violations should be equal to the nominal coverage probability. This test is introduced by

Christoffersen (1998). We will elaborate on this point as follows:
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Define the indicator function It+1 as:

It+1 =

{
1 : rt+1 ∈ (Lt+1|t(q), Ut+1|t(q))

0 : rt+1 /∈ (Lt+1|t(q), Ut+1|t(q))
(4.16)

Recall that the VaR context is retrieved by setting Lt+1|t(q) = −∞ and Ut+1|t(q) = V aRt+1(1−
q) such that the indicator function It+1 would be defined as:

It+1 =

{
1 : rt+1 < V aRt+1(1− q)
0 : rt+1 > V aRt+1(1− q)

(4.17)

Hence, It+1 indicates ”violations” of the VaR. Testing correct unconditional coverage boils

down to testing the following null hypothesis:

H0 : E[It+1] = q (4.18)

(the number of expected VaR violations is equal to the nominal coverage probability), given

that It+1, It, ... are independent. This null hypothesis may be tested using a Likelihood

Ratio test. Given independence, the likelihood function for interval forecasts with coverage

probability π = P [It+1 = 1] is given by:

L(π; IT , IT−1, ..., I1) = P [IT = iT , IT−1 = iT−1, ..., I1 = i1] (4.19)

= P [IT = iT ]P [IT−1 = iT−1]...P [I1 = i1] (4.20)

= (1− π)T0πT1 (4.21)

where, T1 =
∑T

t=1 it, T0 = T − T1, T0 is the number of returns that lie within the interval of

VaR and T1 is the number of returns that exceed the VaR.

The Likelihood Ratio test compares the likelihood under the null with the likelihood under

the alternative. Under the null hypothesis of correct unconditional coverage we have the

following likelihood function:

L(πexp; IT , IT−1, ..., I1) = (1− πexp)T0πT1
exp (4.22)

where πexp is the expected proportion of returns that lie within the prescribed interval of

the distribution, which is equal to the normal coverage probability q. Under the alternative

hypothesis, we have the following likelihood function:

L(πobs; IT , IT−1, ..., I1) = (1− πobs)T0πT1
obs (4.23)
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where πobs is the observed proportion of returns that are within the prescribed interval of the

distribution. The maximum likelihood estimate of πobs is equal to:

π̂obs = P̂ [It+1 = 1] =
T1

T0 + T1
(4.24)

Finally, the likelihood ratio test of correct unconditional coverage is then computed as:

LRuc = −2log(
L(πexp)

L(πobs)
) ∼ χ2(1) (4.25)

where χ2(1) is the χ2-distribution with 1 degree of freedom.

Furthermore, a ”good ”VaR-forecast should also satisfy the following point:

2. Occurrences of observations outside the interval should be spread out over the sample

and not come in clusters, this is called independence and it is especially relevant in the pres-

ence of time-dependent heteroskedasticity, such as ”volatility clustering”. This will be tested

with the Likelihood Ratio Test of independence. Independence will be tested against an ex-

plicit first-order Markov alternative. Consider a binary first-order Markov Chain, (It), with

transition probability matrix

Π1 =

[
1− π01 π01

1− π11 π11

]
(4.26)

where πij = P (It+1 = j|It = i), the transition probability from state i to state j. Both i, j ∈
(0, 1). Here 0 denotes a non-exceedance, whereas 1 denotes an exceedance. The approximate

likelihood function for this process is

L(Π1; I1, I2, ..., IT ) = (1− π01)n00πn01
01 (1− π11)n10πn11

11 (4.27)

where nij is the number of observations with value i followed by j. As is standard, we

condition on the first observation everywhere. It is then easy to maximize the log-likelihood

function and solve for the parameters, which are simply ratios of the counts of the appropriate

cells:

Π̂1 =

[
n00

n00+n01

n01
n00+n01

n10
n10+n11

n11
n10+n11

]
(4.28)

Consider now the output sequence, It, from an interval model. We estimate a first-order

Markov chain model on the sequence, and test the hypothesis that the sequence is independent
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by noting that

Π2 =

[
1− π2 π2

1− π2 π2

]
(4.29)

corresponds to independence. The likelihood under the null hypothesis then becomes

L(Π2; I1, I2, ..., IT ) = (1− π2)(n00+n10)π
(n01+n11)
2 (4.30)

the Maximum Likelihood estimate is Π̂2 = π̂2 = n01+n11
n00+n10+n01+n11

. The Likelihood Ratio test

of independence is asymptotically distributed as a χ2 distribution with (s − 1)2 degrees of

freedom, as we are working with a binary sequence (so s = 2), that is,

LRind = −2log
L(Π̂2)

L(Π̂1)
∼ χ2(1) (4.31)

Note that this test does not depend on the true coverage p, hence it only tests the indepen-

dence part of the hypothesis.

Taken together, 1. and 2. can be called correct conditional coverage. A ”good” interval

forecast should perform well in both the independence test and the unconditional coverage

test, which can be tested simultaneously with the correct conditional coverage test. Hence, we

can combine the above tests for unconditional coverage and independence to form a complete

test of conditional coverage. In this case, the null hypothesis of the unconditional coverage

test will be tested against the alternative of the independence test. We have now the following

Likelihood Ratio test:

LRcc = −2log
L(πexp)

L(Π̂1)
∼ χ2(s(s− 1)) = χ2(2) (4.32)

As we are forecasting 4-step ahead VaR estimates, we modify the above procedure a lit-

tle bit to account for the fact that optimal forecasts at horizon K are characterized by

autocorrelations of order K − 1. We have to do this because the indicator variables used

to construct the χ2 statistics will also exhibit autocorrelation of order K − 1 when the

forecasts are optimal. We use the procedure based on Bonferroni bounds suggested by

Diebold et al. (1998) to overcome this problem. This procedure divides the indicator

variable series into K sub-groups that are dependent under the null hypothesis. The sub-

groups will look as follows: (It+K|t, It+2K|t+K , . . . ), (It+1+K|t+1, It+1+2K|t+1+K , . . . ), . . . ,

(It+(K−1)+K|t+(K−1), It+(K−1)+2K|t+(K−1)+K , . . . ). AsK equals four, we have four sub-groups.

We then apply the conditional coverage, independence and the conditional coverage test to

each of the K subgroups and reject the relevant null hypothesis for a given sub-group at the

significance level of α
K . Furthermore, we choose to stick to the ’normal’ backtesting approach
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in the sense that we base inferences on the asymptotic distributions of the ’normal’ back-

testing test statistics. Some researchers prefer to follow Wallis (2003) and calculate exact

p-values based on the observed and expected outcomes. This is an advantage if the number

of out-of-sample forecasts is not large, this is the case if the forecast horizon is large. As our

forecast horizon is not very large (K = 4) we will use the ’normal’ backtesting test.

4.3.2 CPA test

Eventhough the backtesting tests based on coverage/independence criteria explained in the

previous section are appropriate to evaluate the accuracy of a single model, it can provide an

ambiguous decision for ranking alternative estimates of the VaR; As in line with Santos, No-

gales and Ruiz (2013) we use a statistical test designed to evaluate the comparative predictive

performance among candidate models. The comparative predictive ability test proposed by

Giacomini and White (2006) is a good alternative for this purpose. In the realistic situation,

models are possibly misspecified, due to unmodeled dynamics, unmodeled heterogeneity, in-

correct functional form or any combination of these. Specifically, the error terms (the realized

value minus the forecasted value) are usually generated from parametric models that have

to be recursively estimated over time. This means that the error terms will be polluted by

errors caused by estimation uncertainty concerning the parameters of the underlyig models.

In relation to our study, our models might have an incorrect functional form or omission of

lags.

Giacomini and White derive their tests in an environment where the finite sample properties

of the estimators on which the forecasts may depend are preserved asymptotically. This test

has several advantages: it captures the effect of estimation uncertainty on relative forecast

performance, it can handle forecasts based on both nested and nonnested models, it allows

the forecasts to be produced by general estimation methods and they are easy to compute.

The null hypothesis of the test claims that both models have equal predictive ability. In

formula, we can present this as follows:

H0 : E[Lζ1(et,1)− L
ζ
2(et,2)] = 0 (4.33)

where Lζ(et) is the asymmetric linear loss function described below. et,1 and et,2 denote the

difference between the portfolio return and forecasted VaR obtained by model 1 and 2, re-

spectively, in formula this will look as follows: et = yp,t − V aRζt .
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The test is performed using the following asymmetric linear loss function 3 of order ζ :

Lζ(et) = (ζ − I(et < 0))et (4.34)

Furthermore, finding the model that minimizes 4.34 is an intuitive and appealing criterion to

compare predictive ability. A Wald-type test is performed as follows:

CPAζ = T (T−1
T−1∑
t=1

ItLD
ζ
t+1)

′Ω̂−1(T−1
T−1∑
t=1

ItLD
ζ
t+1) (4.35)

where T is the sample size, LDζ
t is the loss difference between the two models. As was done

by Giacomini and White (2006), we set It = (1, LDζ
t ) and Ω̂ is a covariance matrix that

consistently estimates the variance of ItLD
ζ
t+1, Ω̂ has dimensions 2× 2. The null hypothesis

of equal predictive ability is rejected for a size ξ when CPAζ > χ2
2,1−ξ.

4.4 The Economic Value of Volatility Timing

Past literature has proven that volatility models deliver reasonably accurate volatility/covariance

forecasts. For instance, Andersen and Bollerslev (1998) show that volatility models produce

strikingly accurate interdaily forecasts. They find that GARCH models explain approximately

50 percent of the variation in their performance meansure of ex post volatility. The question

of economic significance however remains unanswered. Besides the statistical evaluation of

the volatility/covariance models, we also assess the economic significance of time-varying, pre-

dictable volatilities in order to examine the economic value of volatility timing to investors.

By doing this, we will not only obtain further insights in the economic significance but we will

also evaluate our portfolio VaRs with a different point of view. We will do this by evaluating

the impact of predictable changes in the covariance/volatility on the performance of short-

horizon asset-allocation strategies. The framework for our analysis is the minimum-variance

asset allocation rule and the mean-variance asset allocation rule, that are explained in the

next sections.

4.4.1 Minimum-Variance

In this section we will elaborate on the minimum-variance asset allocation rule, that we

use to obtain the portfolio weights. We consider an investor who uses a minimum-variance

optimization rule to allocate funds across three asset classes: an equity index, a bond index

3We will clarify the loss function with a simple example: The portfolio return at time t is -4% and the
two VaR forecasts obtained by the two different models at time t, calculated at time t − 1 are -2% and -4%,
respectively. The first model has a VaR violation, the second model does not have a VaR violation. The value
of the loss function for the first VaR model is: (0.01-1)(-2)∼=2, for the second VaR model it is (0.01-0)(2)=0.02.
A model is more penalized when a VaR violation is observed. The greater the magnitude of the violation, the
greater the penalization.

31



and cash. The minimum-variance optimization rule facilitates several aspects of our analysis.

First, we avoid the estimation of the conditional expected returns, as these will probably

have estimation errors. Second, the input parameter that is necessary for this strategy is

the covariance matrix, which can be estimated with greater precision (Merton (1980)). We

will use the RiskMetrics approach, and the best performing multivariate GARCH model for

the estimation of the covariance matrix. The objective function of the minimum-variance

optimization rule is as follows:

min
xt

= x′tΣtxt (4.36)

The function above minimizes the portfolio covariance matrix for each date t, xt denotes a

N × 1 (N = number of assets) vector of portfolio weights and Σt is the forecasted covariance

matrix at time t. We also include transaction costs in this analysis as transaction costs are a

source of concern for portfolio managers and ignoring transaction costs can result in inefficient

portfolios. Let xIi,t be the amount by which a proportion in the i-th security is increased and

xDi,t be the amount by which a proportion in the i-th security is decreased at time t, then we

have:

xt = xt−1 − xDt + xIt (4.37)

xDt ≥ 0 (4.38)

xIt ≥ 0 (4.39)

here xDt = (xD1,t, x
D
2,t, x

D
3,t, . . . , x

D
n,t)
′ and xIt = (xI1,t, x

I
2,t, x

I
3,t, . . . , x

I
n,t)
′, where N denotes the

number of assets. The transaction cost at time t, ci,t of security i is assumed to be a V-shaped

function of a difference between a given existing portfolio xt−1 and a new portoflio xt and

formulated explicitly into the portfolio return:

ci,t = ki(d
+
i,t + d−i,t),∀i (4.40)

where ki is a constant cost per change in a proportion of the i-th security which is assumed to

be 1% per change in proportion of a security. By doing this we keep the analysis simple but

still incorporate transaction costs. Note that the goal of this research is not optimizing the

asset allocation. However to investigate whether volatility timing makes sense. Furthermore

ct = (c1,t, c2,t, c3,t, . . . , cn,t) and

xi,t − xi,t−1 = d+i,t − d
−
i,t,∀i (4.41)

d+i,td
−
i,t = 0, ∀i (4.42)

d+i,t, d
−
i,t ≥ 0,∀i (4.43)
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If the difference xi,t−xi,t−1 is positive (negative), d−i,t(d
+
i,t) becomes zero and d−i,t(d

+
i,t) becomes

the difference. Because of Equation 4.42, both of d’s cannot be positive at the same time. We

also include the restriction x′tι = 1, on the assets at time t, where ι is a vector of ones. The

restriction makes sure that the weights sum up to one. Furthermore we have the restriction

xt ≥ 0, which prohibits short sales and borrowings. Summarizing, we have the following

restrictions:

ci,t = ki(d
+
i,t + d−i,t),∀i

xi,t − xi,t−1 = d+i,t − d
−
i,t,∀i

d+i,td
−
i,t = 0, ∀i

d+i,t, d
−
i,t ≥ 0,∀i

x′tι = 1

xt ≥ 0

4.4.2 Mean-Variance

Mean variance optimization is a rather straightforward way to come to an ”optimal” return

portfolio, i.e. portfolio that gives the largest Sharpe Ratio. Central in this is the Markowitz

theory. Here again we use the same restrictions as in the last section. However, now we have

the following objective function:

max
x

U(E(rc), V ar(rc)) = max
x

[rf + x
′
tµ
e
t − c

′
tι−

x
′
tΣtxt

2
] (4.44)

Where rf is the risk free return, xt contains the weights at time t, Σt is the forecasted

covariance matrix at time t, ct contains the transaction costs at time t and µe is the vec-

tor containing the excess returns over the risk free rate. The function above maximizes an

investors mean-variance utility function subject to the restrictions

ci,t = ki(d
+
i,t + d−i,t),∀i

xi,t − xi,t−1 = d+i,t − d
−
i,t,∀i

d+i,td
−
i,t = 0, ∀i

d+i,t, d
−
i,t ≥ 0,∀i

x′tι = 1

xt ≥ 0

the purpose of the formulas and the explanation of the symbols are presented in the previous

section.
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4.4.3 Performance Measures

To evaluate the performance of the volatility timing results we have to use performance mea-

sures, which are explained in this section.

Sharpe Ratio

The Sharpe Ratio is a benchmark that measures the ratio between returns and volatility.

As quadratic utility functions are based on the first and second moments of the returns, the

Sharpe Ratio is an adequate performance measure for this type of utility.

Manipulation Proof Performance Measure (MPPM)

The Sharpe Ratio is not an adequate performance measure as it is not able to take higher

moments such as skewness and kurtosis into account. It is only an adequate measure of

performance evaluation when investors believe that risk can be properly measured by stan-

dard deviation or in a world where returns are normally distributed. Eling and Schuhmacher

(2007) analyze and compare 13 different performance measures for a data set of hedge fund

returns and conclude that all these performance measures produce similar rankings. They

used the following measures: Sharpe Ratio, Treynor, Jensens Alfa, Omega Ratio, Sortino

Ratio, Kappa 3, the upside potential ratio, the Calmer Ratio, the Sterling Ratio, the Burke

Ratio, the excess return on Value at Risk, the conditional Sharpe Ratio and the modified

Sharpe Ratio. They showed that it seems like the Sharpe Ratio does not perform better

than other measures they have included in their research. However, they did not include the

Manipulation Proof Performance Measure (MPPM). For these reasons we use this perfor-

mance measure that goes beyond the mean-variance world. The MPPM has been developed

by Goetzmann et al. (2007). Their article describes three general strategies for manipulat-

ing a performance measure. The first is the manipulation of the underlying distribution to

influence the measure. The second is the dynamic manipulation that induces time variation

into the return distribution in order to influence measures that assume stationarity. The

third type encompasses dynamic manipulation strategies that focus on inducing estimation

error. Furthermore their article defines a MPPM as one that has four properties: i) produce

a single valued score with which to rank each subject; ii) score’s value should not depend

on portfolio’s size; iii) an uninformed investor cannot expect to enhance his estimated score

by deviating from the benchmark and at the same time informed investors should be able to

produce higher scoring portfolios by using arbitrage; and iv) measure should be consistent

with standard financial market equilibrium conditions. It turns out that these four require-

ments are enough to uniquely identify a manipulation-proof measure. Another advantage is

that the MPPM is easy to calculate. The MPPM they derive looks as follows:

Θ̂ =
1

(1− ρ)∆t
ln(

1

T

T∑
t=1

[(1 + rt)/(1 + rft)]
1−p) (4.45)
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where Θ̂ is an estimate of the portfolio’s premium return after adjusting for risk. That is,

the portfolio has the same score as does a risk-free asset whose continuously-compounded

return exceeds the interest-rate by Θ̂. It can be interpreted as the annualized continuously

compounded excess return certainty equivalent of the portfolio. Hence, a risk-free portfolio

earning exp[ln(1+rft)+Θ̂∆t] each period would have a measured performance of Θ̂. Further-

more T is the total number of observations and ∆t is the length of time between observations,

as we have quarterly returns for this analysis the latter is equal to 1/4. These two variables

serve to annualize the measure. The portfolio’s (un-annualized) rate of return at time t is rt

and the risk-free rate is rft. The coefficient ρ is a function of the relative risk aversion of the

investor, which we set equal to 2 as is usually done in many empirical exercises.
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Chapter 5

Results

Since the methodology is extensively explained in the previous chapter, we present our ob-

tained results. We will start by giving the in-sample parameter estimates to obtain a certain

sense of how the models/model parameters look like. In order to obtain an insight in the

behaviour of the covariances that are forecasted by the different models, we present graphs

that provide the evolution of the forecasted covariances through time. Subsequently, the fore-

casted covariances are used to obtain the forecasted 99% Value-at-Risk. We only consider

99% Value-at-Risk forecasts, as SAMCo is obligated to use 99% VaR. We compare these fore-

casted VaRs by using different testing procedures, that are all explained in the methodology

section. We start with the backtesting test developed by Christoffersen (1998) to explore if

the forecasted Value-at-Risks inside the interval are equal to the nominal coverage proba-

bility and if they are spread out over the sample. Then we use the pairwise (CPA) test in

an environment where the finite sample properties of the estimators on which the forecasts

may depend are preserved asymptotically. Obviously, we also want to explore the robustness

of our results. This is done by performing the backtesting test for different samples. A ro-

bust estimator should be consistent and will approximately give the same results for different

samples/subsamples. We also assess the economic value of our models, hence we show these

results in the last section of this chapter.

5.1 In-Sample Parameter Estimates

This section presents the estimated parameters of the models we use. Table 5.1 contains all

estimated parameters with their corresponding p-values in parenthesis. The parameters are

estimated based on the whole in-sample and based on the restrictions to satisfy the positivity

and the covariance-stationarity conditions. 1.

1Note that the positivity condition is (1−α−β)Q > 0 and Q0 > 0 for the DCC-model and (1−α−β)Q−δΓ >
0 and Q0 > 0 for the Asymmetric DCC-model. The covariance-stationarity condition is α + β < 1 for the
DCC-model and α+ β + λδ < 1 for the Asymmetric DCC-model.
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Full sample:

We observe that the news parameter α is significant for all models, both for the Gaussian

distribution and the Student-t distribution. The parameter δ, which includes an asymmetric

effect in the DCC-model, is significant and positive which means (according to equation 4.8)

that negative returns have a positive effect on the correlation, whereas Γ = E[ntn
′
t] has a

negative effect on the correlation.

We perform the same analysis for the first half of the sample and the second half of the

sample to investigate if the parameters remain significant.

First half of the sample:

The news parameter α of the DCC-GARCH, DCC-TGARCH and ADCC-GARCH is no longer

significant. We observe that the asymmetric term δ remains significant and positive for the

Asymmetric-DCC models.

Second half of the sample:

We observe that the news parameter α of DCC-GARCH, DCC-TGARCH and ADCC-GARCH

is not significant. This is the same result as we obtained from the first half of the sample.

The parameter β is not significant for ADCC-GARCH and ADCC-TGARCH. The asymmet-

ric term δ is no longer significant for the ADCC-GARCH and the ADCC-TGARCH model.
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Table 5.1: Estimated parameters

ω α β δ

Full sample
DCC-GARCH 0.017 0.968

(0.001)* (0.009)*
DCC-GARCH-t 0.019 0.965

(0.003)* (0.007)*
DCC-TGARCH 0.019 0.964

(0.003)* (0.012)*
DCC-TGARCH-t 0.019 0.961

(0.000)* (0.000)*
ADCC-GARCH 0.003 0.963 0.033

(0.004)* (0.003)* (0.000)*
ADCC-GARCH-t 0.045 0.890 0.021

(0.001)* (0.008)* (0.000)*
ADCC- TGARCH 0.025 0.910 0.051

(0.001)* (0.007)* (0.002)*
ADCC-TGARCH-t 0.043 0.897 0.042

(0.010)* (0.001)* (0.003)*

This table presents the estimated parameters for each model with corresponding p-values in

parenthesis, the full sample is used for this purpose. * Denotes significance at the 1% level. **

Denotes significance at the 5% level.
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Table 5.2: Estimated parameters

ω α β δ

First half of the sample
DCC-GARCH 0.014 0.951

(0.062) (0.017)**
DCC-GARCH-t 0.019 0.938

(0.002)* (0.043)**
DCC-TGARCH 0.016 0.947

(0.063) (0.007)*
DCC-TGARCH-t 0.031 0.952

(0.041)* (0.039)*
ADCC-GARCH 0.014 0.951 0.000

(0.061) (0.047)** (0.001)*
ADCC-GARCH-t 0.071 0.891 0.093

(0.031)** (0.027)** (0.038)**
ADCC- TGARCH 0.015 0.947 0.003

(0.003)* (0.042)** (0.020)**
ADCC-TGARCH-t 0.073 0.839 0.031

(0.020)** (0.007)* (0.004)*

Second half of the sample
DCC-GARCH 0.003 0.977

(0.051) (0.042)**
DCC-GARCH-t 0.041 0.910

(0.035)** (0.009)*
DCC-TGARCH 0.005 0.971

(0.071) (0.008)*
DCC-TGARCH-t 0.081 0.914

(0.008)* (0.047)**
ADCC-GARCH 0.003 0.977 0.000

(0.074) (0.102) (0.083)
ADCC-GARCH-t 0.061 0.894 0.031

(0.046)** (0.006)* (0.004)*
ADCC- TGARCH 0.005 0.971 0.000

(0.039)** (0.077) (0.064)
ADCC-TGARCH-t 0.071 0.910 0.032

(0.021)** (0.004)* (0.033)**

This table presents the estimated parameters for each model with corresponding p-values in

parenthesis, the first half of the sample (14/05/1999 -11/11/2005) and the second half of the sample

(18/11/2005 - 18/05/2012) are used for this purpose. * Denotes significance at the 1% level. **

Denotes significance at the 5% level.
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5.2 Forecasts of the Covariances

In order to evaluate the evolution of the forecasted covariances through time, we present

the covariance in Figure 5.1. Figure 5.1a shows the 4-week ahead forecasted covariance be-

tween MSC and MEM that are obtained by both the RiskMetrics approach and the DCC

models with different specifications for the volatility. Figure 5.1b presents the 4-week ahead

forecasted covariance between MSC and MEM, obtained again by the RiskMetrics approach

and the Asymmetric DCC models together with all different specifications for the univariate

volatility. A window with 200 observations is used for this purpose. Using a rolling window

that estimates the parameters every week and then forecasts the VaRs takes a lot of time.

Since the DCC-models we use are computationally quite intensive, this would even take more

time when using a rolling window that estimates the parameters every week. For this reason

we make us of a different strategy, that uses a certain fixed window to estimate the parame-

ters of the models and then re-estimates the parameters once a quarter of a year. The main

advantage of this procedure is that it entails less computational effort since all parameters

are estimated less frequently.

In general, the magnitudes of the covariances are not very informative, as they depend on the

scale. Besides, it is not clear whether the differences in the covariances is due to differences in

the volatility or differences in the correlations between the assets. For this reason, we will also

discuss the results in terms of volatilities/correlations. Note that a large covariance means a

large correlation between two assets and/or low individual volatilities of two assets.

Our first observation is that both the DCC and ADCC models with the TGARCH-specification

for the univariate volatilities give the largest covariance in comparison with the rest of the

covariances. This is due to the fact that the asymmetric term in the TGARCH model has a

large positive value, which causes a large fluctuation in the covariance during the crisis period

as the covariance depends on the correlation and the individual volatilities of the two indices.

Furthermore, we can observe that the DCC model with the TGARCH specification pro-

duces a very large covariance between MSC and MEM. The covariances for the rest of the

models have magnitudes up to 100, while the DCC-TGARCH model produces a covariance

of approximately 120. Hence, MSC and MEM are possibly highly correlated. We can verify

this by looking at Table 3.3 which shows us that MSC and MEM have a correlation value

that is equal to 0.84.

If we take a look at fluctuations other than the fluctuation during the crisis, we can ob-

serve again that covariances of models with the TGARCH specification make larger jumps

and react more extremely.
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The forecasted covariance that is calculated with the help of the RiskMetrics approach is

in comparison with the other forecasted covariances quite low. This can be explained by the

decay factor that is used for the RiskMetrics approach, which is fixed at 0.99.
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Figure 5.1: Covariance forecasts

(a) DCC

(b) ADCC

These figures present four-step ahead out-of-sample forecasts of the covariance between MSC and

MEM obtained by RiskMetrics, all DCC-models and ADCC-models based on a fixed window of 200

observations. The parameters of the DCC-models are estimated once a quarter of a year to reduce

computational effort.
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5.3 Comparison of the Performances

5.3.1 Value-at-Risk

After estimating the in-sample parameter estimates, we obtain out-of-sample forecasts of the

VaR. Table 5.3 presents the results of the backtesting test of Christoffersen (1998) based on

out-of-sample 99%-VaR estimates. The table reports the p-values of the unconditional cov-

erage, independence and conditional coverage test for each of the sub-groups.

We can observe that the null hypothesis of correct unconditional coverage is rejected for all

models, except for the ADCC-GARCH-t and ADCC-TGARCH-t model at the α
K = 0.10

4 =

0.025 significance level. Obviously the forementioned models produce a VaR violation that

is not significantly different from the nominal coverage probability, whereas the other models

are not able to reproduce this. The models that do not perform well according to the correct

unconditional coverage test might underestimate risk during a period of stress that lies ahead,

resulting in an increase in the number of VaR violations. When looking at the independence

test, we can observe another interesting fact. The null hypothesis can not be rejected for

all models, meaning that the VaR forecasts (of all models) outside the interval are spread

out over the sample and do not come in clusters. A model should perform well both for the

correct unconditional coverage test and the independence test. Taken these two criteria into

account we can perform a correct conditional coverage test. Only the ADCC-GARCH-t and

the ADCC-TGARCH-t models are able to perform well when taking the two criteria into

account.

To summarize, only the ADCC-GARCH-t and ADCC-TGARCH-t are able to pass the cor-

rect unconditional coverage test meaning that the VaR violations that these models have is

not significantly different from the nominal coverage probability. Clearly, the RiskMetrics

model has VaR violations which are significantly different from the nominal coverage prob-

ability. All models pass the independence test. Apparently, all models are able to capture

heteroskedasticity. Finally, only the ADCC-GARCH-t and the ADCC-TGARCH-t perform

well for the conditional coverage test.

We can observe the forecasted VaRs through time for all models in Figure 5.2. The RiskMet-

rics model is not able to quickly respond to periods of stress and its pattern is very similar to

the pattern of the GARCH(1,1) VaR forecasts. The reason is very simple: RiskMetrics is a

restricted GARCH(1,1) model. We can also observe that the RiskMetrics VaR forecasts are

quite large in comparison with the rest. Hence RiskMetrics might underestimate risk. The

model that has the lowest peaks is the GARCH-t model, as this model gives the highest line

in the graph in comparison with the rest. The DCC-TGARCH and the ADCC-TGARCH

models produce the highest peak in the VaR forecasts. It might be the case that these models
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overestimate the risk. Both the DCC and the ADCC models move in a similar way and show

the same pattern. Compared to the RiskMetrics model they are able to respond to periods

of stress and do not underestimate the risk.

To be able to easily compare the DCC and the Asymmetric DCC models with each other we

also present them in Figure 5.3. From Figure 5.3a we can observe that the models have the

same pattern and are different in their lags. The DCC-GARCH-t model has the lowest VaR

values, while the ADCC-GARCH model has the largest VaR values. Figure 5.3b shows that

the ADCC-TGARCH and ADCC-TGARCH-t models have more fluctuations in comparison

with the other models. This can be explained by the asymmetric terms of these models that

take the leverage effect into account and therefore reacts more extreme in periods where the

returns are negative.
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Figure 5.2: Four-step ahead 99% Value-at-Risk forecasts obtained by all models based on a
window of 200 observations. The parameters are re-estimated once a quarter of a year. The
portfolio returns are based on an equally weighted portfolio.

(a) DCC

(b) ADCC
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Figure 5.3: Four-step ahead 99% Value-at-Risk forecasts of the (A)DCC models based on a
window of 200 observations. The parameters are re-estimated once a quarter of a year. The
portfolio returns are based on an equally weighted portfolio.

(a) (A)DCC with GARCH-(t) specifications

(b) (A)DCC with TGARCH-(t) specifications
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Table 5.3: Value-at-Risk

K = 4 α
K = 0.10

4 = 0.025
Model LRcuc LRind LRcc

RiskMetrics [0.00], [0.00], [0.10], [0.13], [0.00], [0.00],
[0.00], [0.00] [0.10], [0.10] [0.00], [0.00]

GARCH(1,1) [0.00], [0.00], [0.27], [0.09], [0.00], [0.00],
[0.00], [0.00] [0.27], [0.15] [0.00], [0.00]

GARCH(1,1)-t [0.00], [0.00], [0.43], [0.36], [0.00], [0.00],
[0.00], [0.00] [0.36], [0.40] [0.00], [0.00]

DCC-GARCH [0.00], [0.00] [0.46], [0.40], [0.00], [0.00],
[0.00], [0.00] [0.46], [0.42] [0.00], [0.00]

DCC-GARCH-t [0.00], [0.00], [0.05], [0.05], [0.02], [0.02]
[0.00], [0.00] [0.06], [0.05] [0.02], [0.02]

DCC-TGARCH [0.00], [0.00], [0.09], [0.15], [0.00], [0.00],
[0.00], [0.00] [0.09], [0.12] [0.00],[0.00]

DCC-TGARCH-t [0.00],[0.00] [0.52], [0.68], [0.00],[0.00],
[0.00],[0.00], [0.48], [0.55] [0.00],[0.00]

ADCC-GARCH [0.00],[0.00], [0.08], [0.09] [0.00],[0.00],
[0.00],[0.00], [0.08], [0.07] [0.00],[0.00]

ADCC-GARCH-t [0.09], [0.09] [0.21], [0.19] [0.12], [0.12]
[0.11], [0.09] [0.21], [0.19] [0.12], [0.12]

ADCC- TGARCH [0.00],[0.00], [0.46], [0.50], [0.00],[0.00],
[0.00],[0.00], [0.48], [0.51] [0.00],[0.00]

ADCC-TGARCH-t [0.08], [0.08] [0.72], [0.72] [0.20], [0.20]
[0.09], [0.08] [0.66], [0.70] [0.20], [0.20]

This table presents four-step ahead out-of-sample backtesting p-values for each of the four

sub-groups. The likelihood ratio test statistics of correct unconditional coverage (LRcuc),

independence (LRind) and correct conditional coverage (LRcc) are presented. Bold statistic indicate

significance at the 0.10/K level. A coverage probability q of 0.01 and a window of 200 observations

are used to obtain the Value-at-Risk forecasts and the p-values.
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5.3.2 The Comparative Predictive Ability (CPA) test

Another method to evaluate the accuracy of the VaR forecast is by using the CPA-test devel-

oped by Giacomini & White (2006). It is a pairwise test, hence it compares the VaR forecasts

of two models with each other. A model is more penalized when a VaR violation is observed.

The greater the magnitude of the violation, the greater the penalization.

Table 5.5 presents the test-statistics, the p-values denoted in parenthesis, an upper arrow

and a left arrow. An upper arrow means that the model in the column outperforms the

model on the row. A left arrow means that the model in the row outperforms the model in

the column.

RiskMetrics model is outperformed by eight models and it is only able to outperform the

DCC-GARCH and the ADCC-GARCH model. If we compare the GARCH models with the

multivariate models, we observe that the GARCH model outperforms the multivariate models

four out of eight times. The GARCH-t model also outperfoms its multivariate counterparts

four out of eight times. However, it is important to mention that a GARCH model is not

very interesting for a long-term investor. A long-term investor does not care about sudden

fluctuations in the volatility and volatility clustering, especially if he or she assumes the pres-

ence of mean reversion. However, it is of great importance for short-term investors.

In general, assigning a Student-t distribution to the error terms leads to an improvement

of the model, as most models that have t-distributed error terms perform better. Table 5.5

shows that the ADCC-TGARCH-t model outperforms all other models. This is in line with

the backtesting test in the previous section, where we found that the ADCC-TGARCH-t

model was able to pass all tests. Furthermore, it is important to note that the results are

mixed when estimating models with Gaussian errors. This result corroborates the evidence

of the research of Santos et al. (2013). Table 5.4 presents the ranking of all models based on

the CPA test. The larger the number of models that a specific model outperforms, the higher

the ranking. We observe that indeed the ADCC-TGARCH-t model is able to outperform all

other models based on the CPA test, that ADCC-GARCH-t is the second best performing

model and that RiskMetrics is one of the worst performing models. Obviously, RiskMetrics

produces many VaR violations in the VaR forecasts compared with other models. Here again

we can clearly see that models with a Student-t distribution are performing better than the

same model with a Normal distribution for the error terms.

To summarize the results of this section, assigning a Student-t distribution to the error terms

leads to an improvement of the model. The RiskMetrics Approach is outperformed by eight

other models. Finally, the ADCC-TGARCH-t model performs best based on the CPA-test
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as this model is able to outperform all other models.

Table 5.4: Comparative Predictive Ability

Model Ranking Model Ranking

ADCC-TGARCH-t 1 (10) ADCC-GARCH 5 (4)
ADCC-GARCH-t 2 (8) ADCC-TGARCH 6 (3)
DCC-TGARCH-t 2 (8) DCC-GARCH-t 7 (2)
ADCC-TGARCH 3 (6) RiskMetrics 7 (2)

GARCH-t 3 (6) DCC-GARCH 8 (1)
GARCH 4 (5)

This table presents the Comparative Predictive Ability-test ranking from best performing model till

worst performing model based on the number of outperformed models. The number in parenthesis

denotes the number of models that are outperformed by the model on the row.
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5.3.3 Robustness

A ’good’ model is also able to perform well and is consistent for all different subsamples,

crisis periods and less turbulent periods. We evaluate the robustness of our results by fore-

casting the VaRs for all models on different subsamples. The first one is the pre-crisis period

that starts at May 14th, 1999 and ends at June 27th, 2008. The crisis period starts at July

4th, 2008 and ends at December 25th, 2009. Finally the post-crisis period that starts at

January 1st, 2010 and ends at May 18th, 2012. Here again, we evaluate the VaR forecasts

with the backtesting test, by performing an unconditional coverage test, independence test

and conditional coverage test. Table 5.6 presents the number of rejections of the tests of

correct unconditional coverage, independence and correct conditional coverage using the 5%

significance level for all different sub-samples. We choose for this presentation to prevent an

inconvenient table with many numbers.

Earlier, we found that only the ADCC-GARCH-t and the ADCC-TGARCH-t models are

able to pass the correct unconditional coverage test, that all models pass the independence

test and that only the ADCC-GARCH-t and the ADCC-TGARCH-t perform well for the

conditional coverage test. We will investigate whether these findings remain the same for the

different subsamples.

We start with the pre-crisis period. Here again, we see that it is hard for most models

to pass the correct unconditional coverage test. If we make use of a 5% significance level, only

the ADCC-GARCH-t and ADCC-TGARCH-t model pass this test. Also for this subsample

we can conclude that all models pass the independence test. The ADCC-GARCH-t and the

ADCC-TGARCH-t model are only able to pass the conditional coverage test at the 5% sig-

nificance level.

When looking at the crisis period we see different results. None of the models are able to pass

the unconditional coverage test. The performance for the independence test is similar, none

of the models are able to pass this test. Hence all models are rejected for the conditional

coverage test.

The results of the post-crisis period are similar to the results of the pre-crisis period. Obvi-

ously, the ADCC-GARCH-t and the ADCC-TGARCH-t model are quite consistent as they

have similar results for different subsamples. For our third subsample, they can again pass

the unconditional coverage test, the independence test and the correct conditional coverage

test at the 5% significance level. The other models are not able to pass the unconditional

coverage test, they are able to pass the independence test and finally they are not able to

pass the conditional coverage test. We can conclude that the results are quite consistent
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especially for the pre-crisis and post-crisis period. These results corrobarate the findings of

the backtesting test results earlier in this research. Obviously, the ADCC-GARCH-t and the

ADCC-TGARCH-t are able to produce a VaR violation that is significantly not different from

the nominal coverage probability and the VaR forecasts (of these two models) outside the in-

terval are spread out over the sample and do not come in clusters for different subsamples

(except for the crisis period).
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Table 5.6: Robustness results for the backtesting test

q=0.01 LRcuc LRind LRcc

Before the crisis:
RiskMetrics 4 0 4

GARCH(1,1) 4 0 4
GARCH(1,1)-t 4 0 4
DCC-GARCH 4 0 4

DCC-GARCH-t 4 0 4
DCC-TGARCH 4 0 4

DCC-TGARCH-t 4 0 4
ADCC-GARCH 4 0 4

ADCC-GARCH-t 0 0 0
ADCC- TGARCH 4 0 4

ADCC-TGARCH-t 0 0 0

During the crisis:
RiskMetrics 4 3 4

GARCH(1,1) 4 3 4
GARCH(1,1)-t 4 3 4
DCC-GARCH 4 3 4

DCC-GARCH-t 4 3 4
DCC-TGARCH 4 3 4

DCC-TGARCH-t 4 3 4
ADCC-GARCH 4 3 4

ADCC-GARCH-t 4 3 4
ADCC- TGARCH 4 3 4

ADCC-TGARCH-t 4 3 4

After the crisis:
RiskMetrics 4 0 4

GARCH(1,1) 4 0 4
GARCH(1,1)-t 4 0 4
DCC-GARCH 4 0 4

DCC-GARCH-t 4 0 4
DCC-TGARCH 4 0 4

DCC-TGARCH-t 4 0 4
ADCC-GARCH 4 0 4

ADCC-GARCH-t 0 0 0
ADCC- TGARCH 4 0 4

ADCC-TGARCH-t 0 0 0

The values denote the number of rejections of the tests of correct unconditional coverage (LRcuc),

independence (LRind) and correct conditional coverage (LRcc) using the 5% significance level. A

coverage probability q of 0.01 is used to obtain the Value-at-Risk forecasts and the test statistics.

The pre-crisis period starts at May 14th, 1999 and ends at June 27th, 2008. The crisis period starts

at July 4th, 2008 and ends at December 25th, 2009. Finally the post-crisis period that starts at

January 1st, 2010 and ends at May 18th, 2012.
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5.4 The Economic Value of Volatility Timing

This section will elaborate on the economic significance of volatility timing. In the previous

sections we presented the results of the statistical tests. As discussed in the methodology, in

this chapter we will evaluate the economic value of volatility timing for short-horizon asset-

allocation strategies. We use the minimum-variance and the mean-variance asset-allocation

rules to calculate the portfolio weights. Constructing the optimal portfolios requires estimates

of the conditional covariance matrix. We use three different methods to forecast the Covari-

ance matrix, which we then use as an input in the minimum-variance and the mean-variance

asset allocation rules. The portfolio weights are used to calculate the ex-post portfolio returns.

Consequently, the portfolio returns are used to calculate the Sharpe Ratio and the MPPM.

To be able to assess the statistical significance of the volatility timing results we conduct a

simulation exercise which is explained in the results section. We use a stock index, a bond

index and a risk-free rate for this analysis. The first part of this section explains the data

used in this section. Consequently, we will present the results.

5.4.1 Data

Our data is in line with Goyal & Welch (2008) and Rapach, Strauss and Zhou (2010). We

use their data, because their data consists of a simple stock index, a risk free rate and a gov-

ernment bond return. This makes the portfolio very simple, straightforward and diversified.

Furthermore their data is often used in portfolio management and entails less computational

effort as the dimension of the portfolio is reduced. It is also SAMCo’s preference to use a

simple portfolio for this analysis. The data consist of 332 quarterly observations of 3 assets

from 1926 to 2008. Below all types are discussed in detail.

Real risk-free rate: The risk-free rate is the Treasury bill rate. We model the real risk-free

rate as ln(1+Rf )− ln(1+ INFL), where Rf is the risk-free rate and INFL is the Consumer

Price Index from the Bureau of Labor Statistics.

Excess stock return: We use S&P 500 index returns from the Center for Research in Secu-

rity Press (CRSP) month end values. As Goyal and Welch (2008) mention, the stock returns

are the continuously compounded returns on the S&P 500 index including dividends. The

excess stock return is modeled as ln(1 +Rs)− ln(1 +Rf ), where Rs is the stock return and

Rf is the risk-free rate.

Excess bond return: We use long-term government bond returns Rb to model the excess

bond return as ln(1 +Rb)− ln(1 +Rf ).

Table 5.7 presents the descriptive statistics of these three assets and the correlations be-

tween them. As a priori expected, the stock has the largest mean return and the highest

volatility. All assets show excess kurtosis and are non-normally distributed. The correlations
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between the assets are not very large. The largest correlation is between the risk-free rate and

the long-term government bond. The risk-free rate and the stock are negatively correlated

with each other, however the magnitude of this correlation is not very large.

Figure 5.4 presents the time series of the three returns. The stock index is quite volatile

whereas the real risk-free rate is stable through time. The bond becomes more volatile after

the end of the 70’s with a lot of fluctuations.

Table 5.7: Descriptive Statistics

Risk-free rate Stock Bond

Mean 0.002 0.013 0.005
Median 0.003 0.029 0.003
Std.Dev 0.013 0.108 0.042

Min -0.088 -0.499 -0.186
Max 0.045 0.640 0.185

Skewness -1.049 0.218 0.349
Excess kurtosis 7.056 8.302 3.758

P-value 0.001 0.001 0.001

Correlation
Risk-free rate 1 -0.056 0.214

Stock - 1 0.076
Bond - - 1

This table presents the descriptive statistics of the assets in the simple portfolio we use and the

correlation between the assets. Returns are quarterly, denominated in USD, include dividends and

are NOT excess returns. The sample period is 1926Q1 - 2008Q4. The P-value evolves out of the

Jarque-Bera test, which is a test for normality based on the skewness and kurtosis.
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Figure 5.4: Time series of the excess stock return, excess bond return and the real risk-free
rate. The first four numbers of the values on the x-axis denote the year, and the last number
denotes the quarter. The returns on the y-axis are in percentage (%).

5.4.2 Results

The variation in the covariance matrix, which is proved in section 5.2 suggests that there

is a (possible) role for volatility timing in asset-allocation decisions. In this section we will

elaborate on the latter. We will do this by examining the mean portfolio return, the Sharpe

Ratio’s, the Sample Volatilities and the simulation results. To estimate the conditional co-

variance matrix we use different methodologies:

1. The RiskMetrics approach.

2. The DCC-GARCH model

3. The ADCC-TGARCH-t model.

The conditional covariance matrix is used to compute the optimal portfolio weights. Then

we apply these portfolio weights to the actual returns to calculate the ex post portfolio return.

As already mentioned in the methodology, the portfolio weights are constructed using the

minimum-variance and the mean-variance asset allocation rules along with the one-step-ahead

estimates of the conditional covariance matrix. To perform the optimization we use fmincon

in Matlab. Furthermore, we use 100 observations for the in-sample. This means that we have

231 observations for the out-of-sample. An expanding window is used to obtain the out-of-

sample volatility and covariance estimates. In this section we demonstrate the ex-post mean

portfolio return which is calculated by multiplying the portfolio weights with the observed

next-day returns on stock, bond and cash. We also show the sample portfolio volatility and

the estimated Sharpe Ratio.

We are aware of the fact that the objective of every asset allocation strategy is different
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and that in portfolio managament this would usually cause problems for the comparability.

However note that the goal of this analysis is not comparing different asset allocation rules

with each other, however we would like to investigate whether volatility timing makes sense.

Using different asset allocation rules will serve as some kind of robustness analysis as we

obtain insights for different asset allocation strategies.

Table 5.8 shows a number of results. It shows the mean quarterly portfolio return, sam-

Table 5.8: Economic Significance results

Mean QR SV SR Freq SVport > SVsim (%) Freq SRsim > SRport (%) Freq Θsim > Θport (%)

Minimum-Variance
RiskMetrics 1.92% 2.58% 0.74
Simulation 0.59% 1.44% 0.41 5.1% 7.3% 7.9%

DCC-GARCH 2.14% 2.58% 0.83
Simulation 1.43% 3.05% 0.47 7.4% 8.7% 8.9%

ADCC-TGARCH-t 2.52% 3.01% 0.84
Simulation 1.87% 3.08% 0.61 8.1% 6.9% 6.2%

Mean-Variance
RiskMetrics 2.05% 2.80% 0.74
Simulation 1.41% 2.65% 0.39 7.4% 5.4% 5.9%

DCC-GARCH 2.88% 3.42% 0.84
Simulation 2.34% 4.18% 0.56 9.3% 3.9% 4.3%

ADCC-TGARCH-t 2.95% 3.22% 0.92
Simulation 2.49% 3.60% 0.69 8.4% 2.6% 3.5%

This table presents the Mean Quarterly Return (Mean QR), Sample Volatility (SV) and the Sharpe

Ratio (SR) of the portfolio that consists of a simple stock, bond and risk free rate. RiskMetrics,

DCC-GARCH and ADCC-TGARCH are used to calculate the time-varying volatilties. The

simulation is conducted by randomly rearranging the returns and applying the actual weights to the

randomly rearranged return series to compute portfolio returns. We use 10.000 trials for the

simulations. The frequencies with which the simulation beat the portfolio according to the Sharpe

Ratio and the MPPM are reported in %. Also the frequencies with which the portfolio beat the

simulation according to the Sample Volatiliy is reported in %. The results are presented for the

mean-variance rule and the minimum-variance rule. The MPPM is calculated as follows:

Θ̂ = 1
(1−ρ)∆t ln( 1

T

∑T
t=1[(1 + rt)/(1 + rft)]

1−p) (see equation 4.45).

ple volatility and the estimated Sharpe Ratio that are obtained using the minimum-variance

and mean-variance asset allocation rules by using three different methodologies to estimate

the conditional covariance matrix. Furthermore, to be able to assess the statistical signifi-

cance of the volatility timing results, we also conduct simulations where the asset returns are

generated independently of the portfolio weights as in line with Fleming, Kirby and Ostdiek

(2001). First the actual return series are rearranged randomly and then we apply the actual

weights to the randomly rearranged return series to compute portfolio returns. We use 10.000

trials for the simulations. If volatility-timing makes sense then we expect that the strategies

should perform better using the actual data than in the simulations. The following facts

emerge from Table 5.8:
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Minimum-Variance results

Using the ADCC-TGARCH-t method to construct the covariance matrix yields the largest

Mean Portfolio Return (2.52%), whereas using the RiskMetrics approach yields the lowest

Mean Portfolio Return (1.92%). Using the ADCC-TGARCH-t model to construct the co-

variance matrix yields the largest Sharpe Ratio (0.84%), using RiskMetrics yields the lowest

Sharpe Ratio (0.74%). Although we use the minimum-variance asset allocation rule, it is nog

completely ’fair’ to use the Sharpe Ratio as a performance measure, because the objective of

the minimum-variance asset allocation rule is to minimize risk not to maximize the Sharpe

Ratio. However it is interesting to show these results as we are wondering if the simulation

exercise yields larger Sharpe Ratio’s. As mentioned before, the objective of the minimum-

variance asset allocation rule is minimizing risk. If we look at the volatilities then we observe

that although Riskmetrics gives the lowest Sharpe Ratio, it is able to give the lowest volatil-

ity compared with the Sharpe Ratio that evolve out of other covariance-constructing models.

Hence, for this performance measure it does a better job than DCC-GARCH and ADCC-

TGARCH-t. Also the frequencies with which the portfolio beat the simulation according

to the Sample Volatility is most favourable for the Riskmetrics approach. All simulations

perform worse than the actual data as the sample volatilities for the actual data are only

in a few cases larger than the sample volatility of the simulations. For all methodologies a

very low percentage of the total number of trials (10.000) yield a higher Sharpe Ratio and a

higher MPPM. For example for the RiskMetrics, only 7.3% of the trials yield a higher Sharpe

Ratio and 7.9% of the trials yield a higher MPPM. Hence, we can conclude that these find-

ings indicate that the volatility-gains are significant and that it is unlikely that the gains to

volatility-timing are due to chance. We observe that ADCC-GARCH-t provides the lowest

frequency with which the simulation beats the portfolio according to the MPPM and the

Sharpe Ratio. Hence, we can conclude that ADCC-TGARCH-t is the best performing model

when looking at the Sharpe Ratio and the MPPM.

Mean-Variance results

The results are quite consistent as here again using the ADCC-TGARH-t model gives the

largest Mean Portfolio Return and the RiskMetrics approach provides the lowest Mean Port-

folio Return. If we look at the volatility then the RiskMetrics approach is able to provide

the lowest portfolio volatility in comparison with the other covariance-constructing methods.

DCC-GARCH gives the largest portfolio volatility. As we are observing the Mean-Variance

results, it is now more ’fair’ to use the Sharpe Ratio as a performance measure. We ob-

serve that ADCC-TGARCH-t gives the largest Sharpe Ratio and the RiskMetrics the lowest

Sharpe Ratio. Here again, the volatility timing gains are definitely not due to chance. Now

only 5.4% of the 10.000 trials yield a higher Sharpe Ratio for the RiskMetrics approach, 3.9%

of the trials yield a higher Sharpe Ratio for the DCC-GARCH approach and finally only

2.6% of the trials yield a higher Sharpe Ratio for the ADCC-TGARCH-t model. In general,
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the frequencies with which the simulation beat the portfolio according to the MPPM are

larger than the frequencies based on the Sharpe Ratio. However, we can still observe that

ADCC-GARCH-t provides the lowest frequency with which the simulation beats the portfolio

according to the MPPM and the Sharpe Ratio. Based on these results, we can conclude that

ADCC-TGARCH-t is the best performing model when looking at the Sharpe Ratio and the

MPPM.

5.5 Summary of the Results

Now that we have performed all statistical tests and now that we have evaluated the economic

significance of the covariance-constructing methods we will give an overview of the results we

have found in this research.

Table 5.9 presents the summary of the results. In this research we have performed both

statistical tests and economic significance tests to choose the best performing covariance-

constructing model. The statistical tests test the accuracy of the VaR forecasts and hence

solely focuses on the Value-at-Risk estimates. According to both tests the best perform-

ing model is the ADCC-TGARCH-t model. This model takes the asymmetry between asset

classes into account. Obviously, incorporating this asymmetry bears fruit as the statistical

tests indicate that the ADCC-TGARCH-t is the best performing model.

When looking at the volatility timing results, we first wanted to know whether it makes

sense at all to use covariance-constructing models in the world of portfolio management. This

is done by conducting simulations and comparing them with the actual data. The conclusion

is that it is highly unlikely that gains from volatility timing are due to chance, because the

percentages higher Sharpe Ratio that evolve out of the simulations lie between 2.6% and

8.7% and the percentages higher MPPM lie between 3.5% and 8.9%. As the objective of the

minimum-variance asset allocation rule is to minimize risk, we have used the Sample Volatil-

ity and the frequency with which the actual data beats the simulation exercise according

to the Sample Volatility as a performance measure to evaluate the covariance-constructing

models. We observe that RiskMetrics is able to give the lowest sample volatility and ADCC-

TGARCH-t gives the largest Sample Volatility. Furthermore, based on the frequency here

again RiskMetrics performs best. We have also used the mean-variance asset allocation rule

to obtain insights in the economic significance. Here again we have looked what the objective

of mean-variance is. As its objective is maximizing the Sharpe Ratio, we will use the latter

and the frequency with which the simulation beat the portfolio based on the Sharpe Ratio

and the MPPM as evaluation criteria. In this case, the ADCC-TGARCH-t is able to give the

largest Sharpe Ratio. Besides, the frequency with which the simulations beat the actual data

based on the Sharpe Ratio and the MPPM is lowest for the ADCC-GARCH-t model. Hence
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ADCC-TGARCH-t is the best performing model according to this criteria.

Table 5.9: Summary of the Results

Performance Measure Best Performing Model

Statistical Tests
Backtesting Test ADCC-GARCH-t & ADCC-TGARCH-t

CPA-test ADCC-TGARCH-t

Volatility Timing (Economic Significance)
Minimum Variance RiskMetrics

Mean Variance ADCC-TGARCH-t

This table presents the best performing model for all evaluation criteria we have used in this reserach:
the backtesting test, the comparative predictive ability test and the volatility timing results.
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Chapter 6

Conclusion, Recommendation &

Further Research

This paper investigates the forecasting power for the Value-at-Risk of several covariance con-

structing models. On the one hand we use the RiskMetrics approach. On the other hand we

use multivariate GARCH models, such as the DCC and the Asymmetric-DCC model. We

compare these models in the context of a portfolio that is used as a benchmark for the Return

Seeking Assets of the SSPF fund that SAMCo uses. The models are compared by using the

backtesting test developed by Christoffersen (1998) and the Comparative Predictive Ability

test developed by Giacomini and White (2006). The results of the backtesting test obtained

in this paper indicate that only the ADCC-GARCH-t and the ADCC-TGARCH-t models

are able to pass the correct conditional coverage test. Hence, the VaR violations that these

models have is significantly not different from the nominal coverage probability. Furthermore,

their VaR forecasts outside the interval are spread out over the sample and do not come in

clusters. This result is robust as the same result is obtained when using different samples,

except for the crisis period where none of the models were able to pass the correct condi-

tional coverage test. In this research we have performed the same test for the sample before

the global financial crisis, during the global financial crisis and after the global financial crisis.

The results of the comparative predictive ability test (CPA) in this paper indicate that the

RiskMetrics model is outperformed by eight other models and outperforms the DCC-GARCH

and the ADCC-GARCH model. Furthermore, we now know that assigning a Student-t distri-

bution to the error terms leads to an improvement of the model. According to the CPA-test

the ADCC-TGARCH-t model is able to outperform all other models.

Past literature has proven that volatility models deliver reasonably accurate volatility/covariance

forecasts. Besides the statistical evaluation of the covariance models, we also assess the eco-

nomic significance of time-varying, predictable volatilities/covariances. We perform this anal-
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ysis on a dataset that consists of three assets: A risk-free rate, excess stock return and excess

bond return. The minimum-variance and the mean-variance asset-allocation strategies are

used to obtain the portfolio weights, ex-post returns, the Sharpe Ratio and the MPPM for

three covariance constructing models: RiskMetrics, DCC-GARCH model and the ADCC-

TGARCH-t model. Furthermore to assess the statistical significance of the volatility timing

results, we also conduct simulations where the asset returns are generated independently of

the portfolio weights as in line with Fleming et al. (2001). The results of this simulation

exercise indicate that it is unlikely that the gains to volatility-timing are due to chance.

Our main recommendation for SAMCo will be to take the advantages of other multivariate

Value-at-Risk forecasting models into account. RiskMetrics is not able to take the asym-

metry in the correlations between the asset returns into account. In this research we have

seen that RiskMetrics is outperformed in most cases both for statistical tests and for eco-

nomic significance tests. The RiskMetrics was only able to perform better when using the

minimum-variance asset allocation rule, as the volatility was the lowest. Which we already

expected, as we have seen that RiskMetrics underestimates risk in this research. We are

aware of the fact that models that perform better than RiskMetrics in this research can be

computationally quite intensive, but the benefits are very large. If VaR is forecasted with

RiskMetrics, it is likely that the VaR will be underestimated, especially during high volatility

periods. This can have tremendous effects for SAMCo, as they will be not aware of the losses

they are faced to. They could choose to reestimate the parameters in the models once in a

while, as is done in this research. In this way it will not be computationally intensive but the

downside is that estimation errors will be increased.

Our work suggests a number of possible directions for future research. For further research

we suggest to update the parameters of the DCC-models more often. We have done this on

a quarterly basis but this might produce estimation errors and parameter uncertainty. The

performance of the DCC models could be better when updating the parameters more often.

Hence, the effect of the number of times the parameters are estimated on the results can be

investigated for future research. In this research we have used a constant cost per change in a

proportion of a security for the economic significance analysis. Another line of research could

attempt to consider a variable cost per change of a security. For the volatility timing analysis

we have used the minimum-variance and the mean-variance analysis as our framework. For

further research we suggest to also use asset allocation rules that take higher moments into

consideration by plugging in the skewness and the kurtosis in the objective directly and using

a higher order Taylor series approximation. The approach of Guidolin & Timmermann (2006)

could be used for this purpose.
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Appendix A

Appendix

A.1 Time series of the returns

Figure A.1.1: The time series for the returns of the indices.

(a) MSCI World (b) MSCI World Small Capp

(c) MSCI Emerging Markets
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Figure A.1.2: The time series for the returns of the indices.

(a) MSCI North America (b) MSCI Europe

(c) MSCI Japan (d) Merrill EMU Direct Governments

(e) iBoxx IG Euro Financials (f) iBoxx IG Euro Non-Financials
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Figure A.1.3: The time series for the returns of the indices.

(a) iBoxx USD Treasuries Total Return Index (b) Merill EUR High Yield

(c) Merrill US High Yield (d) Merill Emerging Market Corporate
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A.2 Table of the Covariance Matrix of the Return Series
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A.3 Empirical autocorrelation functions of the return series

Figure A.3.1: The autocorrelations of the returns, the absolute returns and the squared
returns.

(a) MSCI World (b) MSCI World Small Capp

(c) MSCI Emerging Markets (d) MSCI World Minimum Volatility Index
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Figure A.3.2: The autocorrelations of the returns, the absolute returns and the squared
returns.

(a) MSCI North America (b) MSCI Europe

(c) MSCI Japan (d) Merrill EMU Direct Governments

(e) iBoxx IG Euro Financials (f) iBoxx IG Euro Non-Financials
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Figure A.3.3: The autocorrelations of the returns, the absolute returns and the squared
returns.

(a) iBoxx USD Treasuries Total Return Index (b) Merill EUR High Yield

(c) Merrill US High Yield (d) Merill Emerging Market Corporate
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A.4 Derivation of Ω̂

To construct a feasible test statistic to test symmetry in the correlations we have to estimate

the positive-definite variance-covariance matrix Ω for all possible true distributions of the data

satisfying some regularity conditions. The sample means and variances of the two conditional

threshold correlation series are computed as follows:

µ̂+1 (γ) =
1

T+
c

T∑
t=1

R1t(R1t > γ,R2t > γ), (A.1)

µ̂+2 (γ) =
1

T+
c

T∑
t=1

R2t(R2t > γ,R2t > γ), (A.2)

σ̂+1 (γ)2 =
1

T+
c − 1

T∑
t=1

[R1t − µ̂+1 (γ)]21(R1t > γ,R2t > γ) (A.3)

σ̂+2 (γ)2 =
1

T+
c − 1

T∑
t=1

[R2t − µ̂+2 (γ)]21(R1t > γ,R2t > γ) (A.4)

where 1(.) is the indicator function. The sample conditional correlation ρ̂+(γ) can be ex-

pressed as follows:

ρ̂+(γ) =
1

T+
c − 1

T∑
t=1

X̂+
1t(γ)− X̂+

2t(γ)1(R1t > γ,R2t > γ) (A.5)

where

X̂+
1t(γ) =

R1t − µ̂+1 (γ)

σ̂+1 (γ)
(A.6)

and

X̂+
2t(γ) =

R2t − µ̂+2 (γ)

σ̂+2 (γ)
(A.7)

we have a similar expression for ρ̂−(γ). A consistent estimator of Ω is given by the following

almost positive definite matrix:

Ω̂ =

T−1∑
l=1−T

k(l/p)γ̂l (A.8)
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where γ̂l is an N ×N matrix with (i, j)-th element

γ̂l(γi, γj) =
1

T

T∑
t=|l|+1

ξ̂t(γi)ξ̂t−|l|(γj) (A.9)

and

ξ̂t(γ) =
T

T+
c

[X̂+
1t(γ)X̂+

2t(γ)−ρ̂+(γ)]1(R1t > γ,R2t > γ)− T

T−c
[X̂−1t(γ)X̂−2t(γ)−ρ̂−(γ)]1(R1t < −γ,R2t < −γ)

(A.10)

where k(.) is a kernel function that assigns a suitable weight to each lag of order l and p is

the smoothing parameter or lag truncation order. We will use the Bartlett kernel:

k(z) = (1− |z|)1(|z| < 1) (A.11)

With these formulas we can define the test statistic as follows:

Jp = T (ρ̂+ − ρ̂−)′Ω̂−1(ρ̂+ − ρ̂−) (A.12)
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A.5 Time-varying Variance and Correlations

Figure A.5.1: Time-varying variances of the Equity and Fixed Income return series based on
a 52-week moving window.

(a) Equity (b) Fixed Income

Figure A.5.2: Time-varying variances of the Equity and Fixed Income return series based on
a 12-week moving window.

(a) Equity (b) Fixed Income
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Figure A.5.3: Time-varying correlation of the Equity return series based on a 52-week moving
window.

(a) Correlation between MW and the rest of the Equity
series

(b) Correlation between MSC and the rest of the Equity
series

(c) Correlation between MNA and the rest of the Equity
series

(d) Correlation between ME and the rest of the Equity
series

(e) Correlation between MJ and the rest of the Equity
series (f) Correlation MEM and the rest of the Equity series
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Figure A.5.4: Time-varying correlation of the Fixed Income return series based on a 52-week
moving window.

(a) Correlation between MDG and the rest of the Fixed
Income series

(b) Correlation between MEMG and the rest of the
Fixed Income series

(c) Correlation between IBF and the rest of the Fixed
Income series

(d) Correlation between IBNF and the rest of the Fixed
Income series

(e) Correlation between MHY and the rest of the Fixed
Income series

(f) Correlation MUHY and the rest of the Fixed Income
series
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Figure A.5.5: Time-varying correlations of the Equity Series based on a 12-week moving
window (quarterly)

79



Figure A.5.6: Time-varying correlations of the Fixed Income Series based on a 12-week moving
window (quarterly)
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