
Erasmus University Rotterdam

Bachelor Thesis

Resource Optimisation at
Maritime Oil Terminals

Author:
John Brouwer

Supervisor:
Dr. Adriana Gabor

June 25, 2013



Abstract

The problem we consider in this thesis is the discrete dynamic berth allocation
problem with integrated pipeline assignment planning. In this problem process-
ing speed of oil batches depend on the chosen set of pipeline segments to the
goal tank as pipeline segments may have different maximum pumping speeds.
Cleaning time can also be taken into account if this is needed when sequentially
processing different oil products through the same pipeline segment.

We successfully come up with a linear mixed integer programming formu-
lation to describe the considered problem. We show that for cases of realistic
sizes CPLEX may not be able to solve the problem to optimality. Selecting the
strong branching variable selection technique results in lower upper bounds if
the problem cannot be solved to optimality. Strong branching mostly results in
optimality faster too.

The heuristics that we implement are the benchmark first-come, first-served
(FCFS) heuristic and squeaky wheel optimisation to further improve on the
initial FCFS solution. A comparison of the heuristics and the exact method
with seven test cases shows that CPLEX with strong branching results in better
upper bounds but sometimes also needs more than an hour to solve to optimality.
The heuristics on the other hand run in negligible time.



Contents

1 Introduction 1
1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Exact method 5
2.1 Basic formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Maintenance tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Simultaneous intersection usage . . . . . . . . . . . . . . . . . . . 10
2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Heuristic methods 15
3.1 Description of methods . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 First-come, first-served heuristic . . . . . . . . . . . . . . 15
3.1.2 Squeaky wheel optimisation . . . . . . . . . . . . . . . . . 16

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Comparison of heuristics and exact method . . . . . . . . . . . . 19

4 Conclusion 21
4.1 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

I



Chapter 1

Introduction

Maritime oil terminals have to cope with difficult planning decisions. Not only
do they need to assign all vessels to a compatible berth and a set of pipeline
segments such that the vessel can unload all the batches into the specified tanks,
but ideally a schedule also minimises the total amount of time vessels lay in the
harbour, either waiting or being handled. The reason for this is that the owner
of a vessel can charge very high costs for the time it has to spend in the harbour
and cannot do other shipping tasks.

Berth and pipeline assignment at maritime oil terminals is until now mostly
done by hand. This means that a big decrease in costs may be achieved by
planning optimally or close to optimal. Therefore our research consists of finding
an exact formulation to optimise resources and developing heuristics for when
running times of the exact method are too high.

1.1 Problem definition

For a certain time period in the future a set of arriving vessels is given. Of each
vessel we know the arrival time, with which berthing places it is compatible,
the batches with type of oil, amount, and what tank to pump it into, and the
maximum pumping speed the vessel allows. The batches have to be processed in
the given sequence and processing of two batches of the same vessel may not be
done simultaneously. To the berthing places a system of pipelines is connected
of which we know for each segment what the maximum pumping speed is.

Every berthing place can only handle one vessel at a time. The same holds for
a pipeline segment. The speed with which a batch is pumped to the right tank
is the minimum of the maximum pumping speed of every used pipeline segment
and the maximum pumping speed of the vessel. Cleaning time of pipeline seg-
ments has to be taken into account when certain products are pumped through
a pipeline segment which had another type of product pumped through it be-
fore. The combinations of products that would require cleaning in between are
given.

1



The decision that has to be made is which vessel to assign to which com-
patible berthing place, what series of pipeline segments to use for processing
the batches, and when the batches should start being processed. The goal is to
minimise the total delay time (waiting plus handling time) of all vessels.

1.2 Literature review

When solving problems like stated above we speak of the berth allocation prob-
lem (BAP). This problem has intensively been studied for container terminals,
as nicely summarized in Bierwirth and Meisel (2010), but not for bulk and oil
terminals. At bulk ports the handling time of a vessel is dependent on the as-
signed berth as opposed to container terminals, where in most formulations a
sufficient number of quay cranes is ensured but decreasing handing times with
even more quay cranes is not modelled. Therefore a slightly different formula-
tion is used for bulk ports.

There are different types of BAPs. The main division lies in the arrival
process of vessels:

• SBAP: In the static variant it is assumed that all vessels have arrived at
the beginning of the planning period and therefore arrival times do not
have to be taken into account.

• DBAP: In the dynamic variant the vessels arrive throughout the planning
period and a vessel cannot be assigned to a berth before it has arrived.

The division of the quay also makes a difference:

• Discrete BAP: Here the quay consists of a set of completely separate
berths. Any berth can only be used by one vessel at a time.

• Continuous BAP: We speak of a continuous BAP when a vessel can berth
at any position along the quay that is not already in use.

• Hybrid BAP: In the hybrid BAP the quay consists of sections that may
have multiple vessels at a time assigned to them. Also, a vessel can occupy
multiple sections at a time. The advantage of the hybrid BAP is that
restrictions on for example the draft of the vessel and height of the quay
can be imposed.

Because we are interested in the discrete DBAP formulations we take a closer
look at literature that discusses those. Buhrkal et al. (2011) compares three
models to solve the discrete DBAP. The first one comes from Imai et al. (2001),
the second one from Cordeau et al. (2005), and the last one from Christensen
and Holst (2008).

The method described in Christensen and Holst (2008) is a generalized
set-partitioning problem with time intervals. The optimisation model of this
method is very easy because feasible assignments are created beforehand. Such
an assignment shows what vessel is considered and to what ‘berth-time interval’

2



combinations it is assigned in the specific feasible assignment. The advantage
of this method is that the matrix with all feasible assignments is split up in
such a way that one set of constraints acts as a set of generalized upper bound
constraints. Such constraints result in a feasible region of which all extreme
points are integers and therefore decreases running times dramatically.

Imai et al. (2001) and Cordeau et al. (2005) both control the assignment
of vessels to berths as well as the order in which vessels are assigned to a cer-
tain berth. The main difference between the formulations is that Imai et al.
(2001) ensures that handling of vessels on the same berth does not overlap
through constraints defined in the model. Cordeau et al. (2005) on the other
hand views the problem as a multi-depot vehicle routing problem with time
windows (MDVRPTW), where berths are vehicles and vessels are customers.
Therefore, ensuring that handling of vessels on the same berth does not overlap
has to be done through the decision of whether or not to create certain edges
in the routing graph. Buhrkal et al. (2011) slightly improves both of the formu-
lations discussed in this paragraph in order to simplify and decrease running
times without losing functionality.

Continuous and hybrid DBAP formulations are discussed by Umang et al.
(2012) for example. It can easily be seen that the discrete DBAP is just a special
case of the hybrid DBAP and therefore using the hybrid DBAP formulation for
a discrete problem is perfectly possible.

We decide to also look at formulations for container terminals where the
quay crane assignment problem is integrated with the berth allocation problem.
This may give us ideas on how to integrate our pipeline assignment problem
into the berth allocation problem. After inspecting Bierwirth and Meisel (2010)
we decide to look at Imai et al. (2008). This article proposes a formulation for
simultaneous berth and quay crane assignment.

With respect to the development of heuristics a very straightforward first-
come, first-served heuristic is proposed in Buhrkal et al. (2011). A slightly
more complex heuristic is discussed in Umang et al. (2012). Squeaky wheel
optimisation (SWO) is used to try and improve on the initial first-come, first-
served solution. This is done by analysing the contribution of every vessel
to the goal value and basing a new prioritisation on that, which means that
the vessel with the highest sum of waiting and handling time in the initial
solution gets assigned first in the second iteration and the vessel with the lowest
sum of waiting and handling time gets assigned last. This procedure should
iteratively decrease the goal value and Umang et al. (2012) claims that this
method gives much better solutions (closer to optimal) than the first-come, first-
served solution within a minute running time. For fundamental information on
SWO we refer to Joslin and Clements (1999).

3



1.3 Methodology

Because handling times are dependent on our choices it seems natural to create
a formulation like the ones for bulk ports. The situation we analyse is even
slightly different from a normal bulk port though, because the handling times
do not necessarily depend on the assigned berth but on the assigned pipelines.
Therefore, we look at both formulations for bulk ports and container terminals
and decide in which the pipeline assignment is easiest integrated.

Despite the short running times of and compact optimisation model behind
the method proposed in Christensen and Holst (2008) we cannot use this method
because in our case there is a restriction involving the subsequent pumping of
different products through the same pipeline segment. This means that the
feasibility of an assignment of one vessel depends on the chosen assignment of
another vessel. Such constraints are very hard to model with this formulation
because this formulation can only ensure that all vessels are assigned once and
in each time interval a berth does not have multiple assigned vessels.

Both the formulations from Imai et al. (2001) and Cordeau et al. (2005) can
easily be rewritten to fit the BAP subproblem of our problem. One thing that
for example would have to be added is the restriction that some vessels may
not be able to berth everywhere, another that one vessel may contain multiple
batches and that the handling time of the vessel is the ending time of processing
of the last batch minus the starting time of handling of the vessel. Still, we do
not prefer to use those formulations because some sets of constraints become
non-linear when the handling times are decision variables. This is true for our
problem as the handling times depend on the pipeline assignment decisions.
Unfortunately, the same is true for the formulation of Imai et al. (2008), so we
also prefer not to use that formulation.

The only DBAP formulation that we have looked at in the literature review
that does not give sets of non-linear constraints when the handling times be-
come decision variables is the hybrid DBAP formulation proposed by Umang
et al. (2012). For that reason we transform the hybrid DBAP formulation into
a discrete DBAP formulation and integrate the pipeline assignment problem in
chapter 2. In that chapter we also run seven test cases to assess the perfor-
mance of the exact method with different settings. All tests are run on a 64-bit
Intel R© CoreTM i3-330M with 4GB of RAM.

We implement both the first-come, first-served heuristic and the squeaky
wheel optimisation in chapter 3. In our case we do not have to take into account
different berth opening times and therefore the first-come, first-served heuristic
would come down to prioritising vessels on their arrival times. Allocation can
then be based on waiting and handling times of compatible berths. At the
end of chapter 3 we compare the developed heuristics with each other and the
results from the exact method. This will again be done by means of the seven
test cases.

4



Chapter 2

Exact method

In this chapter we will model the discussed problem as a mixed integer program.
The basic formulation will be discussed in section 2.1. In section 2.2 we expand
the formulation to also cover maintenance tasks to berths. Section 2.3 covers
a slightly different problem from the one presented above, where also pipeline
intersections cannot be used for simultaneously processing different batches. In
section 2.4 we go into the details of the implementation of this model and results
and discussion of testing are shown in section 2.5.

2.1 Basic formulation

The basis of the way we model the pipeline system is a set of pipeline inter-
sections. Pipeline intersections are connected to other intersections through
pipeline segments. This means that berthing places and tanks are also inter-
sections because they are connected to the rest of the pipeline network. One
pipeline intersection could be connected to multiple other pipeline intersections.
One can compare pipeline intersections with traffic junctions connecting roads
to form a road network. For the exact formulation of this problem we use the
following sets:

B Set of berths.
K Set of pipeline intersections (where B ⊂ K).
Lf Set of pipeline intersections to which can be pumped from inter-

section f , for all f ∈ K.
T Set of cargo types.
V Set of vessels.
Wi Set of batches on board vessel i : {1, 2, . . . , Ni}, for all i ∈ V .

5



We also make use of the following parameters:

ai Arrival time of vessel i, for all i ∈ V .
bij Binary parameter of value 1 if vessel i can berth at berth j and 0

otherwise, for all (i, j) ∈ V ×B.
dt1t2 Binary parameter of value 1 if cleaning time is needed when cargo

type t2 is pumped through a pipeline segment right after cargo
type t1 has been pumped through the same segment and 0 other-
wise, for all (t1, t2) ∈ T 2.

M A very large number.
giw Pipeline intersection at which the tank is located to which batch

w of vessel i should be pumped, for all (i, w) ∈ V ×Wi.
qiw Quantity of batch w of vessel i, for all (i, w) ∈ V ×Wi.
tiw Cargo type of batch w of vessel i, for all (i, w) ∈ V ×Wi.
vi Maximum pumping speed of vessel i (in units of time per units of

volume), for all i ∈ V .
vfg Maximum pumping speed of pipeline segment between intersec-

tions f and g (in units of time per untis of volume), for all
(f, g) ∈ K × Lf .

Next to that we use the following decision variables:

si Starting time of handling of vessel i, for all i ∈ V .
ci Total handling time of vessel i, for all i ∈ V .
xij Binary variable of value 1 if vessel i is assigned to berth j and 0

otherwise, for all (i, j) ∈ V ×B.
φii′ Binary variable of value 1 if vessel i′ is handled after vessel i has

been handled and 0 otherwise, for all (i, i′) ∈ V 2 where i 6= i′.
siw Starting time of handling of batch w of vessel i, for all (i, w) ∈

V ×Wi.
ciw Handling time of batch w of vessel i, for all (i, w) ∈ V ×Wi.
yiwfg Binary variable of value 1 if the pipeline segment between in-

tersections f and g is used for processing of batch w of ves-
sel i in the direction of intersection g and 0 otherwise, for all
(i, w, f, g) ∈ V ×Wi ×K × Lf .

δiwi′w′ Binary variable of value 1 if handling of batch w′ of vessel i′ starts
after batch w of vessel i has been handled and 0 otherwise, for all
(i, i′, w, w′) ∈ V 2 ×Wi ×Wi′ where (i, w) 6= (i′, w′).

piw Pumping speed of batch w of vessel i (in units of time per units
of volume), for all (i, w) ∈ V ×Wi.

6



The formulation is as follows:

min
∑
i∈V

(si − ai + ci), (2.1)

s.t.
∑
j∈B

bijxij = 1, ∀ i ∈ V, (2.2)

si′ +M(1− φii′) ≥ si + ci, ∀ (i, i′) ∈ V 2, i 6= i′, (2.3)

2− xij − xi′j + φii′ + φi′i ≥ 1, ∀ (i, i′, j) ∈ V 2 ×B, i′ < i, (2.4)

siw ≥ siw−1 + ciw−1, ∀ (i, w) ∈ V ×Wi, w > 1, (2.5)∑
f∈Lj

yiwjf = xij , ∀ (i, w, j) ∈ V ×Wi ×B, (2.6)

∑
g∈Lf

yiwfg −
∑

g:f∈Lg

yiwgf = 0, (2.7)

∀ (i, w, f) ∈ V ×Wi × (K \ {B, giw}),∑
g∈Lf

yiwfg ≤ 1, ∀ (i, w, f) ∈ V ×Wi × (K \B), (2.8)

∑
f :giw∈Lf

yiwfgiw = 1, ∀ (i, w) ∈ V ×Wi, (2.9)

si′w′ +M(1− δiwi′w′) ≥ siw + ciw + 2dtiwti′w′ , (2.10)

∀ (i, i′, w, w′) ∈ V 2 ×Wi ×Wi′ , (i, w) 6= (i′, w′),

2− yiwfg − yi′w′fg + δiwi′w′ + δi′w′iw ≥ 1, (2.11)

∀ (i, i′, w, w′, f, g) ∈ V 2 ×Wi ×Wi′ ×K × Lf , (i
′, w′) < (i, w),

when f /∈ Lg

2− yiwfg − yiwgf − yi′w′fg − yi′w′gf + δiwi′w′ + δi′w′iw ≥ 1, (2.12)

∀ (i, i′, w, w′, f, g) ∈ V 2 ×Wi ×Wi′ ×K × Lf , (i
′, w′) < (i, w),

when f ∈ Lg

piw ≥ vi, ∀ (i, w) ∈ V ×Wi, (2.13)

piw ≥ vfgyiwfg, ∀ (i, w, f, g) ∈ V ×Wi ×K × Lf , (2.14)

ciw ≥ piwqiw, ∀ (i, w) ∈ V ×Wi, (2.15)

si ≥ ai, ∀ i ∈ V, (2.16)

si1 ≥ si, ∀ i ∈ V, (2.17)

si + ci ≥ siNi + ciNi , ∀ i ∈ V, (2.18)

xij ∈ {0, 1}, ∀ (i, j) ∈ V ×B, (2.19)

φii′ ∈ {0, 1}, ∀ (i, i′) ∈ V 2, i 6= i′, (2.20)

yiwfg ∈ {0, 1}, ∀ (i, w, f, g) ∈ V ×Wi ×K × Lf , (2.21)

δiwi′w′ ∈ {0, 1}, (2.22)

∀ (i, i′, w, w′) ∈ V 2 ×Wi ×Wi′ , (i, w) 6= (i′, w′),

7



The objective function (2.1) that we minimise represents the waiting and
handling time of all vessels together. Constraints (2.2)–(2.4) and (2.16) take
care of the berth allocation problem. Constraints (2.5) ensure that processing
of batches of the same vessel cannot be done simultaneously and should be done
in the given order. Constraints (2.6)–(2.9) are flow conservation constraints
of pipeline allocation. Constraint sets (2.10)–(2.12) ensure that processing of
batches over the same pipeline segment is not done simultaneously. Constraints
(2.13)–(2.15) make sure the pumping speed and handling time of every batch
are defined such that unloading the batch is possible with the chosen berth
and pipeline segments. Constraints (2.17)–(2.18) connect the vessel level of this
problem to the batch level.

In more detail, constraints (2.2) ensure that every vessel is assigned to exactly
one berth that is compatible with that vessel. Constraints (2.3) control the
definition of φii′ , which is further used in set (2.4). Constraint set (2.4) ensures
that two different vessels are processed at different berths or after the other has
finished or both, because when at least one of a pair of vessels is not assigned to
a berth the constraint is immediately satisfied. When both of a pair of vessels
are assigned to the same berth one vessel has to start handling after the other
has finished to satisfy the constraint. Constraint set (2.16) makes sure that the
starting time of the handling of a vessel is not before it has arrived.

Constraint set (2.5) makes sure that batches of a given vessel are processed
in the specified sequence. This also ensures for batches of the same vessel that
they are not processed simultaneously.

Constraints (2.6) ensure that the total flow coming from a berth to unload
a batch of a given vessel is equal to 1 if that vessel is berthed there and 0
otherwise. Note that we have defined the sets Lf (for all f ∈ K) in such a way
that, assuming pumping towards a berth is not possible, we do not have to look
at the y-variables of pipeline segments going to berths as they are not defined.
Constraints (2.7) make sure that no flow is lost and constraints (2.8) ensure
that there are no cycles in the pipeline allocation as this would mean pumping
through the same pipeline segment twice for one batch. Constraint set (2.9)
makes sure that the total flow going to the goal tank of a batch is equal to 1.
Here we have also made use of the fact that y-variables of pipeline intersections
to which tanks are connected are only defined towards the tank and not back.

Constraint set (2.10) controls the definition of δiwi′w′ , which is further used in
constraint sets (2.11) and (2.12). Sets (2.11) and (2.12) ensure for every pipeline
segment that it is not used for two batches at the same time. Constraints (2.11)
do so for pipeline segments that are not reversible, so do not allow processing
in two directions. When a segment is used for both of a pair of batches one
batch must start handling after the other has finished (including 2 units of
cleaning time in between if necessary). Constraints (2.12) prevent simultaneous
processing over a reversible pipeline segment by taking into account both flow
directions. One batch will never have flow in two directions over the same
pipeline segment and therefore if one pipeline segment is used by both of a
pair of batches, either in the same direction or opposing directions, a solution
is still feasible if one batch starts handling after the other has finished. Note

8



that cleaning time is always counted even though a batch may be processed
in between the two batches at which is being looked. This may theoretically
result in infeasible solutions that should be feasible. Therefore we assume that
if cleaning time is needed between two products it is not possible that the need
to clean can be undone by processing a different product in between.

Constraint set (2.13) ensures that the pumping speed of a certain batch,
in units of time per units of volume, is at least the speed the vessel allows and
constraints (2.14) do the same for all used pipeline segments. Constraints (2.15)
make sure that the handling time of a batch is high enough to unload everything
at maximum speed. Note that multiplying by the speed instead of dividing by,
which would render the constraints non-linear, is possible because we always
defined the speed in units of time per units of volume. This is the inverse of
what would normally be called the speed.

Constraints (2.17) make sure that the starting time of handling of the first
batch of a given vessel is not earlier than the starting time of handling of the
given vessel. Constraint set (2.18) ensures that the total handling time of a
vessel is at least the time between the starting time of handling of the vessel
and the ending time of handling of the last batch.

2.2 Maintenance tasks

It is possible that one also wants to take into account maintenance of berths.
In such case the berthing place cannot be used by any vessels for a given period
of time. To add this to the model we need the additional set R which holds all
the maintenance tasks. We declare the following parameters:

lrj Binary parameter of value 1 if maintenance task is performed on
berth j and 0 otherwise, for all (r, j) ∈ R×B.

nr Starting time of maintenance task r, for all r ∈ R.
or Ending time of maintenance task r, for all r ∈ R.

We also need the following additional decision variables:

βir Binary variable of value 1 if handling of vessel i starts after main-
tenance task r has finished and 0 otherwise, for all (i, r) ∈ V ×R.

βri Binary variable of value 1 if maintenance task r starts after vessel
i has been handled and 0 otherwise, for all (r, i) ∈ R× V .

To successfully integrate maintenance tasks we now add the following sets of
constraints to the model presented in section 2.1:

si +M(1− βir) ≥ or, ∀ (i, r) ∈ V ×R, (2.23)

nr +M(1− βri) ≥ si + ci, ∀ (r, i) ∈ R× V, (2.24)

2− lrj − xij + βir + βri ≥ 1, ∀ (i, j, r) ∈ V ×B ×R, (2.25)

9



As shown above we have now ensured that if a vessel is assigned to a berth
on which a maintenance task is performed the vessel must be handled before or
after the maintenance task is scheduled.

2.3 Simultaneous intersection usage

In this thesis we also want to provide a formulation for a problem closely related
to the problem that we already talked about. Until now we allowed processing
of multiple batches over the same intersection simultaneously as long as they
did not use the same pipeline segments. In some applications though there may
not lie restrictions only on simultaneous usage of pipeline segments but also of
pipeline intersections. Our assumption is that this means that cleaning time
also depends on the used pipeline intersections. To transform the problem for
such cases a couple of changes have to be made.

Firstly, an additional set of binary decision variables ziwf will have to be
introduced. Such binary variable is 1 if batch w of vessel i is processed through
pipeline intersection f and 0 otherwise, for all (i, w, f) ∈ V ×Wi ×K.

Second, the restriction ziwf ≥ yiwgf will have to be introduced for all
(i, w, f, g) ∈ V ×Wi × K × (g : f ∈ Lg). Furthermore, restriction sets (2.11)
and (2.12) should be replaced by 2− ziwf − zi′w′f + δiwi′w′ + δi′w′iw ≥ 1 for all
(i, i′, w, w′, f) ∈ V 2 ×Wi ×Wi′ ×K, (i′, w′) < (i, w). All z-variables also have
to be restricted to binary values.

As can be seen from the set above now one intersection cannot be used for
processing of two batches at the same time while taking into account cleaning
time.

It is also possible that one only wants to impose restrictions on simultaneous
intersection usage for a subset of intersections. One practical example would be
that some tanks are connected to multiple segments and simultaneously pump-
ing batches of different vessels into the same tank is not allowed. In such case
the restrictions presented in this section would give the right results when only
imposed for all f in the set of tank intersections. When only restricting simulta-
neous intersection usage for a subset of intersections restriction sets (2.11) and
(2.12) should not be replaced unlike stated before.

Because in our problem definition we have no restrictions on simultaneous
pipeline intersection usage we will not implement this. We will however now
implement the basic formulation with the maintenance tasks expansion.

2.4 Implementation

We implement the model from sections 2.1 and 2.2 in Java using the Callable
Library of CPLEX. While most things are straightforward a couple of things
are important to note.

First of all we have a couple of sets of constraints which use the so-called
big-M . While in the formulation this is the best way to keep the model linear it

10



may give computational problems. To start with, the chosen value of M has a
certain lower bound under which the constraint will not have the desired effect.
On the other hand, very large values of M create two disadvantages as well.
Firstly, upper bounds on the problem will be very loose with large values of M .
This significantly increases computational times. Secondly, and most important,
because of the way numbers are represented on a computer infeasible solutions
may be seen as feasible solutions. This is often called trickle flow.

In CPLEX there are workarounds to the big-M formulations while keeping
the constraints linear. One of these is to use indicator constraints like if-then
statements. This way the control over a binary variable can be determined by
whether a different expression is true or not, and the other way around. Apart
from indicator constraints to represent big-M formulations, logical constraints
can also be used. If we would have formulated the constraint b+M(1−x) ≥ a,
where a and b can be any type of decision variable and x a binary decision
variable, the logical constraint would be x <= (b >= a). This way x must be
zero if b is lower than a and can take any binary value otherwise. Although such
constraints are not linear by themselves CPLEX automatically turns them into
linear ones if no quadratic terms appear in the arguments of the expressions.
CPLEX does this by creating additional variables and constraints.

Apart from computational tricks some practical tricks may also be needed
to use this formulation. One assumption that is made, for example, is that the
time between two vessels being assigned to the same berth can be zero. This
is practically impossible as unmooring of one ship and mooring of another will
take some time. Things like these, either on the vessel level or batch level, are
very easily implemented. On the vessel level one can add a fixed number of units
of time to the right-hand side of constraint set (2.3) to make sure that amount
of time will always be between any two vessels being assigned to the same berth.
On the batch level the same holds for constraints (2.5). It is even possible to
make sure there is time between the starting time of handling of the vessel and
the starting time of handling of its first batch. This can be done applying by
the same trick as explained above to set (2.17). To add extra handling time
after handling of the last batch the trick can be applied to set (2.18).

2.5 Results

We create seven test cases with which we can assess the performance of the exact
method. The description of these cases are given in table 2.2. We run CPLEX
with standard settings but also try strong branching as alternative variable
selection method. Strong branching performs more in-depth exploration and
therefore builds up the tree size slower.

The results of the performance tests are shown in table 2.3. Note that we
run the optimisation until a maximum runtime of one hour. If the solution has
not been proved to be optimal but the reported runtime is under one hour it
means that optimisation terminates due to an out-of-memory status of CPLEX.

11



Case Description
1 The pipeline system is a grid of two segments long and two

segments wide. There are four berths, which are all compatible
with all vessels, and three tanks, evenly distributed as goal
tanks over the batches. All vessels and segments have pumping
speed 1 and there is one maintenance task on the third berth
from time 4 until 6. There are 8 vessels with arrival time 0 for
vessel 1, 1 for vessel 2, 2 for vessel 3, and so forth.

2 The same as case 1 except for the arrival times. The ar-
rival times are drawn from a uniform distribution with bounds
[0,10]. The ordered vessel arrival times are 0.3, 2.6, 4.1, 6.3,
7.7, 7.9, 7.9, and 9.1.

3 The same as case 1 except for the arrival times. The ar-
rival times are drawn from a uniform distribution with bounds
[0,10]. The ordered vessel arrival times are 0.1, 3.9, 5.3, 5.6,
5.7, 6.2, 8.4, and 9.5.

4 The same as case 2 except batches of vessel 6 (with arrival time
7.9) are of size 4 and batches of vessel 7 (with arrival time 7.9)
of size 7.

5 The same as case 2 except vessel 6 (with arrival time 7.9)
pumps twice as slow as the other vessels and vessel 5 (with
arrival time 7.7) four times as slow as the other vessels.

6 The same as case 3 except batches of vessel 4 (with arrival time
5.6) are of size 10 and batches of vessel 5 (with arrival time
5.7) of size 5.

7 The same as case 3 except vessel 4 (with arrival time 5.6)
pumps five times as slow as the other vessels and vessel 5 (with
arrival time 5.7) ten times as slow as the other vessels.

Table 2.2: Description of seven test cases.

Case Standard variable selection Strong branching
no. UB LB Runtime (sec) UB LB Runtime (sec)
1 56.0 39.0 1958 54.0 54.0 171
2 52.3 41.5 2643 50.1 50.1 1575
3 59.7 35.6 1537 58.1 53.3 3600
4 69.5 59.3 3600 69.5 69.5 203
5 71.5 64.9 3600 71.5 71.5 92
6 85.1 65.7 3229 85.1 85.1 477
7 128.0 123.9 3600 128.0 128.0 54

Table 2.3: Results of exact method on seven test cases.

12



With standard settings four out of seven test cases (57%) result in an out-of-
memory error. The three other cases run for at least an hour so we do not know
if they could be solved eventually. With strong branching no case results in an
out-of-memory status (0%) and we only terminated solving of case 3 because it
took longer than one hour. From this we can conclude that setting the variable
selection method to strong branching decreases the chance of termination due
to an out-of-memory status.

Of the three cases that did not result in an out-of-memory error within
one hour with standard variable selection (case 4, 5, and 7) it was case 4 that
took longest to solve with strong branching. Strong branching only needed 203
seconds though, which is under 6% of the runtime with standard settings. This
means that strong branching clearly needs less time than the standard variable
selection method to solve to optimality.

Although the amount of cases is not high enough to perform statistical tests,
we can see two main influences on running times by looking at the running times
of the different test cases.

• Inter-arrival times: The first influence is how close together the vessels
arrive. This is logical because if there is a long time between two arriving
vessels the choice of what vessel to serve first is much easier. This is clearly
illustrated by the difference in running time between case 1 and cases 2
and 3.

• Heterogeneity of vessel properties: The second influence is what we call the
heterogeneity of vessels. When the inter-arrival time between two vessels
is very small and the vessels have the same properties it takes a long time
to decide on what vessel to handle first. When one vessel has very different
properties the choice is much easier. These properties can either be the
size of the batches, as shown by the differences in running times between
cases 2 and 4 and between cases 3 and 6, or the maximum pumping speed
of the vessels, supported by the differences in running times between cases
2 and 5 and between cases 3 and 7.

Despite the fact, due to limited time, that we have not been able to support
this with test cases, we can also logically derive that the size of the pipeline
system influences running times. A very small pipeline system mainly results
in short running times because the amount of choices is small. As the pipeline
system increases running times increase. We can illustrate this with a thought
experiment by comparing one of the cases from table 2.2 with one just like that
except for the pipeline system being just one pipeline segment connecting the
segments from the various berths to the segments to the various tanks. In the
latter case the only thing we can try to optimise is the handling order of vessels
as there is no possibility to choose a different set of pipeline segments. Very large
pipeline systems allow for more simultaneous processing and therefore cases with
such systems are solved quicker again. In this case they will be solved quicker
because a low upper bound is more easily found.

13



Finally, and also trivial, if additional vessels are included in a planning as-
signment running times will never decrease as no decisions of the former planning
assignment will be easier when another vessel is included.

Because some discussed cases are not solved to optimality using the exact
formulation we will focus on heuristic methods in the next chapter.

14



Chapter 3

Heuristic methods

In this chapter we propose two heuristic methods: first-come, first-served and
squeaky wheel optimisation. The first method will serve as a benchmark for
the other one and may be valuable as a benchmark in later research too. In
section 3.1 we describe the heuristics in further detail and in section 3.2 we
show insight in the implementation. We compare the results of the two heuristic
methods with the ones of the exact formulation in section 3.3.

3.1 Description of methods

3.1.1 First-come, first-served heuristic

The most basic heuristic that we implement is the first-come, first-served heuris-
tic. In this heuristic the priorities of vessels are based on arrival times. This
is basically what a human would also first try if getting the task of making a
planning. If two vessels arrive at the same time prioritisation could be based on
for example the amount of batches a vessel has or the total quantity of oil on
board of a vessel. Which prioritisation is best is impossible to say because for
each rule an example can be found where it is not beneficial. We assign a vessel
to the berth that will be able to minimise the total delay of the vessel (waiting
plus handling time).

Batches of a vessel are assigned in the given sequence. Pipeline segments
are assigned greedy from the list of available pipeline segments. This means
that the batch will be assigned to the path, which is a sequence of pipeline
segments that connect the berth to the tank, that could minimise the ending
time of processing of the batch (starting plus handling time). In case taking
into account cleaning time for different types of cargo is too difficult one could
simplify this part of the algorithm by taking into account cleaning time between
every batch. That this leads to a higher upper bound on the objective value is
trivial. For this reason we will only count cleaning time when needed.

15



3.1.2 Squeaky wheel optimisation

In the squeaky wheel optimisation (SWO) we work according to a construct-
analyse-prioritise cycle. The initial planning that we construct is made by the
first-come, first-served heuristic. After doing this we analyse for every vessel how
large its contribution is to the total waiting and handling time of all vessels. The
prioritisation of vessels in the next iteration is then based on that contribution
to the objective value. Vessels that contributed a lot to the total waiting and
handling time will have a higher priority in the next iteration than vessels that
contributed less. This process of analysing the solution of the iteration before
and then reconstructing a solution with prioritisation based on that analysis is
repeated a specified number of times. To avoid getting trapped in a loop of
already evaluated priority lists we randomly switch around places of a pair of
neighbouring vessels in the priority list if that list has already been evaluated.
After a specified number of iterations we choose the planning that had the best
objective value. For this reason SWO will never perform worse than the FCFS
heuristic.

A better method than the method that we have proposed to avoid looping
over already evaluated priority lists might be to consider all priority lists that
can be found by taking a random vessel and placing it somewhere else, and
choosing the priority list that yields the best objective value. In that case if we
have |V | vessels the amount of candidate priority lists that we have to consider
is |V |(|V | − 1) and we already know the next planning as it is one of the cases
that we considered. If one of the candidate priority lists is already evaluated
we may choose to leave it out and choose the best from all other candidates. It
may occur though that all candidate priority lists have already been evaluated
and to avoid getting trapped in a loop we would still have to come up with
an alternative way out. Also in defence of random switching, disturbing the
priority list by randomly switching a pair of neighbouring vessels is not a big
problem as the mechanism behind SWO will undo any harm that has been done
by the disturbance.

3.2 Implementation

Before running any of the heuristics an initialization procedure must be run
to create all possible paths for every berth-tank combination. We choose this
method because that procedure only has to be run once when running the
heuristic. Creating these paths is easily done when using a recursion over the
intersections and the segments connected to them.

For the FCFS heuristic we use the algorithm as shown in algorithm 1 (on
page 17) and SWO is implemented as the pseudocode describes in algorithm 2
(on page 18). The prioritisation rule that we choose for FCFS in case vessels
arrive at the same time is the hash code, an integer representation defined by
Java, of the name of the vessel. We do this for now because we are not interested
in observing how other prioritisation rules affect the objective value, and because

16



the hash code is unique as we have no vessels with equal names.
Unavailability of berths due to maintenance tasks, like we also considered

in the exact formulation, is very easily implemented in these heuristics. Main-
tenance tasks can be considered by seeing them as a vessel with given starting
and handling times and assigning them to the right berth before the planning
is being made. In SWO it is important that the maintenance task is not put in
the priority list but considered in every iteration.

1 for all vessels do
2 determine the priority it should have by counting how many other

vessels should have a higher priority
3 save the priority of this vessel in the priority list

4 end
5 for all priorities on the priority list (increasing) do
6 determine which vessel has this priority
7 for all berths compatible with current vessel do
8 determine when this berth comes available from vessel arrival

onwards
9 for all batches of current vessel do

10 if current batch is first batch then
11 earliest batch starting time ← time when berth comes

available from vessel arrival onwards
12 else
13 earliest batch starting time ← time when former batch

finishes processing
14 end
15 for all paths from this berth to goal tank of given batch do
16 determine when this path comes available from earliest

batch starting time onwards
17 end

18 end
19 save earliest time when this berth can end service of current vessel

20 end
21 choose berth and paths that are capable of ending service for current

vessel earliest
22 end

Algorithm 1: First come, first served heuristic

17



1 get the initial priority list by the prioritisation rules of the FCFS
algorithm

2 add this priority list to the set of evaluated priority lists
3 current priority list ← initial priority list
4 current best objective value ← infinity
5 current best performing berth and pipeline assignment ← empty
6 while maximum number of iterations not exceeded do
7 get the current berth and pipeline assignment based on the current

priority list by means of algorithm 3 (page 19)
8 if the objective value of the current berth and pipeline assignment is

lower than the current best objective value then
9 current best objective value ← objective value of the current

berth and pipeline assignment
10 current best performing berth and pipeline assignment ← current

berth and pipeline assignment
11 end
12 for all vessels do
13 determine the total waiting and handling time of this vessel
14 end
15 sort the vessels in decreasing order of total waiting and handling time

and base the new priority list on this
16 current priority list ← new priority list
17 while the current priority list is in the set of evaluated priority lists

do
18 switch a random pair of consecutive vessels in the priority list

around
19 current priority list ← reordered priority list

20 end
21 add the current priority list to the set of evaluated priority lists

22 end

Algorithm 2: Squeaky wheel optimisation (SWO)

18



1 for all priorities on the priority list (increasing) do
2 determine which vessel has this priority
3 for all berths compatible with current vessel do
4 starting time of current vessel ← vessel arrival time
5 indicator of found gap ← false
6 counter of explored gaps in berth’s planning ← 0
7 while big enough gap for current vessel not found and not all gaps

in berth’s planning explored do
8 next vessel ← first vessel that starts handling after starting

time of current vessel
9 determine for current vessel the quickest processing time after

starting time
10 if processing of current vessel ends before next vessel is

planned to start then
11 indicator of found gap ← true
12 else
13 starting time of current vessel ← time when next vessel

finishes handling
14 end

15 end
16 save earliest time when this berth can end service for current

vessel
17 end
18 choose berth and paths that are capable of ending service for current

vessel earliest
19 end

Algorithm 3: Assignment planning procedure during SWO

3.3 Comparison of heuristics and exact method

The test cases that we will use in this section are the same as in section 2.4. For
a description of the cases we refer back to table 2.2 on page 12. We run both
the FCFS heuristic and SWO for all 7 cases. We run SWO 2 times with 1500
iterations. FCFS solutions are always found within a second and two SWO runs
take about 10 seconds.

The reason for running SWO multiple times is that SWO does not always
give the same result. This is caused by the slight randomness due to randomly
switching a pair of consecutive vessels if a priority list has already been eval-
uated. Because running times of SWO are negligible one could overcome the
problem sketched above by setting the amount of iterations much higher. One
should always remember though that the amount of iterations must never be
larger than the amount of possible orderings of vessels (in case of |V | vessels
this is |V |!). Furthermore, setting the amount of iterations close to the amount
of possible orderings of vessels may heavily increase running times because the

19



last few unevaluated priority lists may take long to find by randomly switching
consecutive pairs of vessels.

Case FCFS SWO Exact
1 15% 4% 0%
2 25% 16% 0%
3 20% 19% 9%
4 32% 11% 0%
5 49% 13% 0%
6 48% 20% 0%
7 84% 11% 0%

Table 3.1: Optimality gaps of heuristic methods and exact method (strong
branching) based on best lower bound found by the exact method in section 2.5.

The results of the FCFS heuristic and SWO are given in table 3.1, where
they are compared with the best upper bounds found by the exact method with
strong branching. We compare these three optimisation methods with the best
lower bound found by the exact method with strong branching by means of the
optimality gap. This means that if we report 0% it is proved that the optimal
solution has been found.

We see that in all test cases SWO was able to improve on the FCFS solution.
The amount by which SWO is able to decrease the goal value with respect to
FCFS differs a lot. From the reported results it seems that SWO is able improve
on the FCFS solution more if vessel properties differ more. This seems logical
as different prioritisations make more difference then. Because both heuristic
methods require only a couple of seconds runtime we would always recommend
using SWO instead of FCFS.

From the results in table 3.1 we can also conclude that SWO is never able to
get really close to the best upper bound found by the exact method. Therefore
there is a trade-off between speed and efficiency, where SWO solves within 10
seconds but the exact method has always given better results within an hour.

20



Chapter 4

Conclusion

In this chapter we present the main findings of our research. We also look at
what future research in this field might focus at.

4.1 Main findings

In chapter 2 we came up with an exact formulation to describe the discrete berth
allocation problem with integrated pipeline assignment planning. Furthermore,
we have shown possible additions to the formulation like the ability to integrate
maintenance tasks or prevent intersection usage by batches simultaneously. The
formulation is linear but does contain a couple of constraint sets with big-M
formulations. This is computationally not a big problem when using logical
or indicator constraints in CPLEX. We saw that selecting strong branching as
variable selection method is better in all cases we looked at. Strong branching
resulted in optimality faster and gave lower upper bounds if it was not able to
solve to optimality. Furthermore, we also discovered that how close together
vessels arrive and how different their properties are can have a large influence
on running times. When vessels arrive closer together running times increase.
Especially if their properties, like batch sizes and maximum pumping speed, are
very much alike this can cause problems in solving to optimality.

The heuristics that we implemented in chapter 3 are the first-come, first-
served (FCFS) heuristic, which serves as a benchmark, and squeaky wheel opti-
misation (SWO). When one just looks at the best upper bound found we have
to conclude that using the exact method with strong branching has always given
the best results in our test cases. The added value of SWO with respect to the
FCFS heuristic was always clearly present. When one also looks at the running
times we see that the heuristics that we developed, SWO especially, may be
preferable as running times are negligible.

21



4.2 Future research

The heuristics that we developed in this thesis only assign vessels to the berth
that is able to minimise its waiting and handling time and do this in different
order to try and improve the solution. On the other hand, there may also
be ways to split the problem into a berth allocation problem and a pipeline
assignment problem to come to good solutions quickly. Future research could
focus on the development of such heuristics.

Furthermore, in this thesis we have assumed deterministic arrival times.
Some articles in the field of berth and quay crane allocation have already come
up with formulations to cover stochastic arrival times. It is important to see
how ideas from those articles can be used in maritime oil terminals to create
more robust berth and pipeline allocations. While the stochastic arrival times
are probably easily integrated in our exact formulation using stochastic pro-
gramming the running times would probably increase even further. Therefore
this research would mainly focus on heuristics covering stochastic arrival times.

Finally, in the field of the economic lot-sizing problem research is being done
on heuristics that provide better performance and more stable solutions for a
rolling horizon. While heuristics developed for the economic lot-sizing problem
may be unable to be converted to the berth and pipeline assignment problem it
would be good if research is done on berth and pipeline assignment for a rolling
horizon.

22



Bibliography

C. Bierwirth and F. Meisel. A survey of berth allocation and quay crane schedul-
ing problems in container terminals. European Journal of Operational Re-
search, 202:615–627, 2010.

K. Buhrkal, S. Zuglian, S. Ropke, J. Larsen, and R. Lusby. Models for the dis-
crete berth allocation problem: A computational comparison. Transportation
Research Part E, 47(4):461–473, 2011.

C.G. Christensen and C.T. Holst. Berth Allocation in Container Terminals.
Master’s thesis, Department of Informatics and Mathematical Modelling,
Technical University of Denmark, 2008. in Danish.

J.-F. Cordeau, G. Laporte, P. Legato, and L. Moccia. Models and Tabu Search
Heuristics for the Berth-Allocation Problem. Tranportation Science, 39(4):
526–538, 2005.

A. Imai, E. Nishimura, and S. Papadimitriou. The dynamic berth allocation
problem for a container port. Transportation Research Part B, 35:401–417,
2001.

A. Imai, H.C. Chen, E. Nishimura, and S. Papadimitriou. The simulataneous
berth and quay crane allocation problem. Transportation Research Part E,
44:900–920, 2008.

D.E. Joslin and D.P. Clements. “Squeaky Wheel” Optimization. Journal of
Artificial Intelligence Research, 10:353–373, 1999.

N. Umang, M. Bierlaire, and I. Vacca. Exact and heuristic methods to solve
the berth allocation problem in bulk ports. Technical report, Transport and
Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2012.

23


