Genetic Algorithms on Technical Trading Rules

Silke Hofman (348261),

Abstract

In this paper, well know technical trading rules are used in different genetic
algorithms to increase the performance on the S&P 500 exchange traded fund traded
on the NASDAQ. Moving average rules, support and resistance rules, filter rules,
momentum in price rules and channel breakout rules are combined to create one
optimal rule to use on this data. The genetic algorithm creates an initial population
of random rules and updates his population untill a population with this best rule
is reached. The updating is of the same principle as Darwin’s survival of the fittest.
In this way, less performing will not survive through the next generation and better
performing rules are. With Genetic Programming, an extension of the GA developed
by [Koza, (1992), another type of optimal rules will be created. We will check whether
this method creates better trading rules than our previous work and will compare
several different ways to create these rules, when we end with a best rule for our
data.

1 Introduction

In technical analysis, many methods and strategies are being used to attempt to fore-
cast the direction of the market. These methods and strategies can be constructed by
using past prices or other observable market statistics. Although technical analysis has
been used and researched for years, there still is the discussion whether it is useful or
not. In early studies, tests determining the performance of trading rules often indicated
these rules consistently did not make any profits. Other studies, such as the studies of
Lukac and Brorsen| (1990) found that “several systems did generate returns significantly
above the transaction costs.” The problem is that when evaluating historically successful
trading rules using historical data, researchers might be data-snooping. In this paper,
genetic algorithms will be used for generating optimal technical trading rules on the
S&P 500. Advantages of the genetic algorithm are that we can find ex ante optimal
trading rules from certain primitive arithmetic operators. Because of this the biases we
face when applying technical trading rules can be avoided.

This paper is an extension on (Chung et al.| (2013)). In this paper, many different trading
rules were performed on the same S&P 500 index as will be used in this paper. This
paper will extend Chung et al|(2013), in a way that it will combine these rules to try
to get more better results and to avoid data-snooping. The combining of this rules will
be done by the genetic algorithm, an algorithm based on the Darwinian principle of

evolution. In this algorithm, trading rules will be computed when, after this, an initial
population of (combined) trading rules will be created. For the creation of new genera-
tions we will use the fitness function, based on the Sharpe Ratio. Based on the fitness of
this population, a new population will be created, by recombination, reproduction and
mutation. This will be done untill the stopcriteria are reached, than the program will
be terminated and the results will be evaluated.

Important results in this paper are the evaluation of the new trading rules, generated
by the genetic algorithm. We will see that indeed, they will. The combined results do
perform better than our benchmark models, especially in the test period, but there will
also be a difference in the performance of the algorithms, mutually.

There have already been several different papers on genetic algorithm in combination
with trading rules. For example, Roberts (2005 created optimal trading rules with
genetic programming on 24 commodities. Also Neely et al.| (1997) performed genetic
programming, but they did that on technical trading rules on different currencies.

This research is divided into six sections. In the next section the data, used in this
research will be discussed. Section 3 describes the genetic algorithm and the use of its
methods. This section also contains the trading rules on which the genetic algorithm
will be applied. In Section 4, results of the results will be represented, followed by the
conclusion in Section 5. Section 6 will be used to describe some possible extensions of
this research.

2 Data

The dataset used in this research is the same as in our previous research, |Chung et al.
(2013)). The dataset contained a sample running from the 1%¢ of April 2009 up to the
30" of June this same year. In this sample, daily NASDAQ data feed files were included.
The data in this files contains order level data as well as trade messages, administrative
messages and the five best current bid and ask quotations. Different orders are messages
to add an order of type A and messages to modify existing orders (types C, D, E, U and
X).

Table 1: Descriptive statistics of the midquote, subsequent high and low, and ret;, used
in the genetic algorithms.

mean o median skewness kurtosis

SPY
midquote 89.3828 3.7968 90.1950 -0.4379 2.2061
ssh 89.4466 3.7910 90.2500 -0.4368 2.2053
ssl 89.3186 3.8048 90.1400 -0.4387 2.2070
ret 0.0000 0.0013 0.0000 0.0458 40.7342

Table [1| provides some descriptive statistics of our data used, which is based on the

3000 T T T T T T

2600 —

2000 —

1500 —

1000 —

500 —

0
-0.025 -0.02 -0ms -0m -0.008 a 0.005 0.01 0.015

Figure 1: Histogram of ret;

dataset used in |Chung et al. (2013]). The real dataset has already been discussed in our
previous work, so for further information we refer to that paper. In this paper we will
work with four sets of data, obtained from this dataset. First, we will use the midquote,
represented by m; = 224tPeskt - Algo the subsequent high (ssh) and subsequent low (ssl)
are used. The ssl and ssh are max(my, ... my—1) and min(my, ...my_1), respectively.
At last, we will use ret(z;) = #==t. All these four sets have already been used in
Chung et al.|(2013) and further discussed in that paper. In our algorithm, these four wil
be represented by X1, X2, X3 and X4, in the same order as they are discussed before. In
Table [1) we see that statistics are quite similar for the first three sets of data, but really
different from the last set. This because all three sets are based on the same sample, in a
same way and the last set in another way, by taking the first difference of the midquote
and dividing it by the previous midquote. A Jarque-Bera test rejects normality in all
four cases. The big value for the kurtosis combined with the relatively small skewness
for the ret; suggest really fat tails. Looking at Figure [1] this, indeed, is the case. While
there are lots of observations around zero, there are few that are greater in absolute
value. Figure [2 represents the midquote over time in days. Here, we see that in the first
50 days the midquote shows an upwarding trend, while in the last 13 days we see the

midquote slightly declining.

0.0z

Midquote in time
* T T T

midquste

days

Figure 2: Midquote over time

3 Methods

The goal of this research is to generate optimal trading rules using a genetic algorithm,
originally developed by [Holland| (1992). There are different kinds of genetic algorithms.
In this paper we will use the conventional genetic algorithm, followed by the extended
version ‘genetic programming’, based on Koza (1992)). In this chapter, we will introduce
the genetic algorithm in our trading-rule context, followed by some examples and a brief
explanation of the algorithm. Then, we will get to genetic programming, based on [Koza
(1992) and explain why this is a good general apporach for this research.

3.1 Genetic algorithm

A genetic algorithm is an algorithm based on an early and well-known theory of Charles
Darwin: evolutionary theory. The main idea of this theory is that in an initial pop-
ulation, there are ‘losers’ and ‘winners’. The winners in a population are the fittest
individuals, who are likely to survive and adapt to the current circumstances. Losers are
the least fit individuals, who are likely to be extinct by these circumstances. Because our
‘winners’ are more likely to survive, they are also more likely to have children that will
survive in these circumstances too. The whole idea of the genetic algorithm is exactly the
same: We will start with an initial population, in our case this is a population consisting
of trading rules. To create the next generation we are going to measure their fitness
according to some fitness-function. With this fitness we will check whether individuals
in the initial population will be reproduced, which means they will be copied into the
next generation without any transformation, whether they will perform recombination,
as in creating children, or whether they will be extinct.

Figure in the Appendix shows a flowchart of the genetic algorithm. Figure 3| gives

an example of the representation of the trading rules in tree form. The first figure rep-
resents a simple moving average rule, while the second figure represents a filter rule.
The moving average rule in the figure, creates a buy signal when the price exceeds the
average of the 50 previous intervals. The filter rule creates the same signal when the
price exceeds the minimum of the ten previous intervals multiplied with 1.01, so with
a band of 0.01. In Figure [the recombination method is explained. Here, you see the
two parents and one of the two children, called ’offspring’. The recombination method
randomly searches through the rule part, when it finds a connector part, which is the
part where two rules will be connected, it creates a head and a tail part from both of
the parents. After this, the head part of the first parent, will be connected with the tail
part of the second parents, and vice versa for the other child. This method will be used
for a fraction of the total population. Another important method for creating a new
generation is mutation. Mutation is an operation that aims at diversity in a population
by applying random modifications to individual structures. Mutations will be performed
only on the operators.

average J[price] [i H .]

(o)]

—

Figure 3: Trading Rules, the first rule is a simple 50-interval moving average rule and
the second rule is a representation of the filter rule.

In the conventional genetic algorithm we are going to use, the individuals in a popula-
tion will be represented by fixed-length strings with logicals. Let’s say we have two trad-
ing rules, an individual in the population can be represented in the following way: 0 01
1 11. In this representation the first four logicals represent the indicator/connector/rule
part, while the last two represent the structure part. The structure part tells you which
rules are active within this individual. The first part creates the rule, where the second
and third bits are the connector part, which connect the first indicator to the other with
the following representation: 01 represents ’or’, 00 represents ’and’, and 10 represents
'xor’. So in this example, if in the first trading rule the signal is neutral or in the second
rule the signal is ’buy’, the combined trading signal is a 'one’. To get a more visual idea
of how the trading rules are represented, we will explain it with a figure. In Figure [4]
both parents consist of a combination of two rules. Let’s say, these four rules are the
only rules in the population and are indicated as rule A through B. Rule A of parent
one is the first rule, rule B is the second. Now, in our genetic algorithm, parent 1 will be
represented by the following combination of logicals: 1 00 1 ** 0 ** 0 1100, where the
last four logicals represent the active rules in this individual: Only the first two rules are

included, represented with a ‘1’ on the first and second place, and a ‘0’ at the other two
places. The ** are irrelevant, as the two other rules are not included in this individual
and we will not create offspring out of these parts. Parent 2 is represented as follows: 0
%0 % 10110011, in the same way.

parent 1

(oweze) (ovenee) (e J [~)

I—[15 J I—[250 J 1.01

minimum

parent 2

(o) Comme) (o) (o)
=/]

offspring 1

I
G

Figure 4: An example of a recombination, only one offspring is showed.

When we have finally created a whole generation of this logical strings, or individuals,
we can calculate their fitness measure, which is based on the functions used in

ot 1] (2013):

DPbidt2 — Pask,t1,imp
Thuy,t1,t2 = (1)
Pask t1,imp

% Pask,t2,imp — Pbid,t1

Tsell,t1,t2 = -1 p
bid,t1,imp

With puid.t.imp (Pask,t,imp) the price-impact bid (ask) price at time ¢. With this measure
as a return we will calculate the Sharpe Ratio and our final goal is to maximize this
Sharpe Ratio.

3.2 Genetic Programming

As was already mentioned, genetic programming is an extension of the genetic algorithm,
mainly created by [Kozal (1992). The most important difference with the conventional
genetic algorithm is the output of the algorithm. Where in the conventional algorithm
the population was represented by a set of logicals, the output in genetic programming
is a program itself. In this way, there are less limitations for the program to compute,
what will probably lead to more strange rules, instead of a simple known Moving Average
Rule.

There are lots of settings in genetic programming. We will run a maximum of 200
generations and there will be an initial population of 2000 individuals, just as in the
genetic algorithm. We will start with a maximum depth of 10, which will avoid bloat.
There are two different types to construct a tree, the first one is the Full Method.
The Full Method is the standard procedure, where the tree receives new non terminal
nodes until the maximum tree depth is reached. There is also the Growth Method,
where terminal nodes and non-terminal nodes are chosen randomly, which leads to very
unbalancing trees. We will start with the Full method.

For creating a tree we need some functions and terminals. A terminal does not have any
subnodes and is the last node of a tree, mostly represented by a real constant. In this
research terminal nodes are the midquote, subsequent high, subsequent low and ret, given
by the function: ret(z;) = *-*=t. Functions in this research are divided into certain
groups, according to |Potvin et al.| (2004). There are arithmetic operators (+, +, —, X),
boolean operators (and, or, XOIEL nand), relational operators (<, >), boolean functions
(if-then-else) and real functions, represented by the average of one of the terminals over
n days, the maximum of one of the terminals over n days and the minimum of one
of the terminals over n days. Because we want to create a vector of zeros and ones,
representing a buy or a sell signal, we cannot have every operator on each place as is
the case in the normal genetic program. We have to add some restrictions for getting
the correct output. The root can contain only boolean functions or operators and its
descendants may only exist of boolean functions and operators or relational operators.
As is the case for the genetic algorithm, we will construct new generations with crossover,
reproduction and mutation. Each with fraction 0.6, 0.3667 and 0.0333 respectively as
was found as the ‘ideal fractions’ by [Papadamou and Stephanides| (2007). We have also
tried some other fractions, but their fractions performed better in all cases. Also the
fitness function remains the same.We will measure our individuals with the Sharpe Ratio
and the function in the previous subsection. Also selection of the individuals to perform
crossover, mutation or reproduction on, happens in the same way.

Lxor, or ‘exclusive or’, is true if exactly one, so not both, of towo conditions is true.

3.3 Rules and settings

For the genetic algorithm we are going to use five different sets of rules. These sets of
rules consist of the same type of rules for each set, only with different settings, so that
there are many rules to work with. Also the settings in for the genetic program are based
on these rules. The five types chosen are the Moving Average (MA), the Momentum in
Price (MP), the Filter (FI), the Support and Resistance (SR) and the Channel break-out
(CBO) strategies.

The Moving Average rule is represented as follows:

1 if may(s,m) > (1 +b)-ma(l,m)
MA; =< =1 if may(s,m) < (1—0) -may(l,m) (3)

0 otherwise

Where s represents the length of the shorter lookback period and [the length of the
longer lookback period. Both the s and the [variables, as the b will be the same as
in Scholtus and Van Dijk (2012). The Momentum in Price rule looks like the Moving
Average rule, with one difference that not the moving average of the midquote will be
taken, but the moving average of ret(x;) = “—"=L. So mar(l,z) = mas(l,ret(x)). The

Tt—1

MP rule will be represented by the following function:

1 if mar(s,m) > (14 0b) - mari(l,m)
MP;, = ¢ —1 if mari(s,m) < (1 —b) - mar(l,m) (4)

0 otherwise

The next rule we will use is the Support and Resistance (SR) rule. For this rule we
will need a maximum and a minimum midquote value over a lookback period of [intervals
while we will account for intra-interval maxima and minima. The maximum (minimum)
during an interval will be denoted as m/™*® (m}™"), while the maximum (minimum) over
a lookback period will be defined as lbmax(l,m) = max(m*4" m" 4 ... m™5").

The Support and Resistance rule generates a sell signal when the price penetrates
the local minumum (support level) and a buy signal when the price penetrates the local
maximum (resistance level). For these local maximum and minimum there are several
different lookback periods, which can be found in the Appendix. There are also different

bands implemented here. The SR rule will be given with the following formula:

1 ifmg > (1+0) - lbmaxy(l,m)
SR, =< —1 ifmy < (1—0b)- lbminy(l, m) (5)

0 otherwise

The fourth type of rule will be the Filter Rule (FI). This rule does not only use the
midquote, but also the subsequent high and subsequent low, ssh and ssl respectively. A
buy signal will be given when ret; > x, while a signal of the opposite sign will be given
when ret; < —xr. When none of these options is the case, we will look at F'I;_;. When

the previous signal is a buy signal and %ffh < —(x - y) or the previous signal is a sell
signal and mt#l“l > (x-y), FI; will give a neutral signal, otherwise F'I; will be equal to

the previous signal given.

(e Me—Mi—1
1 if ———=1
P >

cp ME—Myi_1
-1 1fﬁ<—x
FI;, =<0 ifFIt_lzland%fLSh<—(x-y) or (6)
if FI,_; = —1 and =25 > (7. y)

\ F'I;_1 otherwise

The last rule to be constructed are the Channel Break-Out rules (CBO). This type
of rule will use a channel to indicator to check whether there will be a signal at all.
This channel, Icy(t), takes value 1 if there exist a channel and 0 otherwise. At time ¢
a channel does exist if lbming(l,m) > y - lbmaz(I,m), where y < 1. A buy (sell) signal
will be provided when the midquote at time ¢ exceeds (falls below) the upper (lower)
bound of the channel.

1 if Icg(t) =1 and my > (1 +b) - lbmaz(l,m)
OBy =4 -1 if Icg(t) =1and m; > (1+0b) - lbmin(l,m) (7)
CB; otherwise

The settings for this rules, who are exactly the same as in [Scholtus and Van Dijk
(2012) can be found in the Appendix. For the genetic algorithm, each rule is constrained
to 50 nodes as in [Roberts (2005)). In the data section, we stated there are 63 trading days
we have available to perform our research on. We will use the first 25 days to perform
the genetic algorithm on. The last 38 days will be used to evaluate the best trading
rule, obtained by the algorithm. The percentages are based on the work of [Potvin et al.
(2004)). The best trading rule will exist of multiple trading rules, represented by the
set of logicals as was discussed in the previous part of the methods section. This best
trading rule will be applied on the last 60 percent and returns and the Sharpe Ratio will
be obtained here. In this way, we can perform an out-of-sample test, to check whether
the best rule, obtained by an earlier data set, will actually work on the next set of data.

For our genetic programming algorithm, we will use different operator functions which
are presented in the Appendix.

4 Results

In this section, results from the genetic algorithm and the genetic program on technical
trading rules in the previous chapter will be discussed. This section is divided in four
subsections, Section 4.1 discusses the Sharpe Ratio and some statistical results from the
three obtained ‘best rules’ and compares them to our benchmark model. Section 4.2
discusses the more detailed results on the rules itself, whereas Section 4.3 compares the

results of the different genetic algorithms. In Section 4.4, we will look if the a rolling
window will outperform our previpous results.

As was already mentioned in the previous chapter, 25 days of our total data were used
to perform our genetic algorithm and our genetic program on. Both algorithms are
thus performed on 25 trading days, which means the remainder 38 days were used to
evaluate the trading rules. We will use two benchmark models. Our first benchmark
model, ‘WECQ’, will be represented by the rule with the best Sharpe Ratio in the 5-
minute interval in our previous paper |[Chung et al. (2013)). The model that performed
best in this paper was one of the Moving Average rules. Our second benchmark model,
‘benchmark’, will be based on a buy-and-hold strategy: at the beginning of the day,
when our trading hours start, we will have a buy signal, when at the end we will sell.
For each day. We will evaluate our results with the Sharpe Ratio, based on the same
function as in |Chung et al.| (2013) for consistent evaluation. In the Appendix an initial
rule is represented. In the trees shown in this section X1 represents the midquote, X2
and X3 represent the subsequent high and subsequent low, respectively. X4 will be the
ret(my) already discussed in the previous section.

4.1 Performance

In this subsection, the basic performance of the rules is being discussed. The Sharpe
Ratio, mean, standard deviation and total returns will be represented in Table

In this table, r represents the returns based on Equation [I]and 2] Based on the Sharpe
Ratio, the worst performing rule in the test period is the best WECO rule, with a Sharpe
Ratio of 0.1772. The best performing rule in the test period is the best GP rule with
the growth method for creating trees. Followed by the GP rule with the full method and
the GA rule. This was expected, because the GP rule that uses the growth method has
the least restrictions for creating such a rule. Here, the depth can vary over subtrees,
which leads to less balanced trees, but also a greater variation in a population. The GP
rule that uses the growth method has some more restrictions, as it has the restriction to
create a tree where every subtree has the same depth. After these two, we have the GA
rule, which is a combination out of existing rules and, thus, has even more restrictions,
namely the restrictions of the rules itself. The best WECO rule only has one way to
create the rule, because it is only one rule. Based on restrictions, results point out in
the direction of our expectations.
When we look at the evaluation period, results do not seem to follow the same pattern
as in the test period. Here, the best WECO rule is the best rule, based on the Sharpe
Ratio, and the best rule in the test period seems to be the worst performing rule in the
evaluation period. This can be the cause of the rules in the GP being only based on
the data in the test period, while the WECO rule is based on the whole period, as it
was the best performing rule over the whole period in |Chung et al.| (2013). The cause
of the GA rule now performing better than both GP rules can be that the GA rule is
based on already existing technical trading rules, which are used and examined in other
papers for years. The GP only creates a best rule based on the test period, which may
have caused the rule to perform not that good in the evaluation period. What we have

10

Table 2: In and out of sample returns of the GA technical trading rules.

Hr O Z r SH

benchmark

test period 0.0051 0.0116 0.1286 0.4525
evaluation period 0.0004 0.0098 0.0166 0.0453
Best WECO rule

test period 0.0007 0.0033 0.0164 0.2041
evaluation period 0.0003 0.0017 0.0108 0.1644

Best GA rule

test period 0.0049 0.0147 0.1213 0.3379
evaluation period 0.0013 0.0118 0.0508 0.1146
Best GP full rule

test period 0.0052 0.0081 0.1310 0.6626
evaluation period 0.0007 0.0138 0.0269 0.0520

Best GP growth rule

test period 0.0067 0.0092 0.1685 0.7459

evaluation period -0.0014 0.0140 -0.0545 -0.1037

This table shows the average daily return r, the standard deviation of the returns, o, the total return at
the end of the period and the Sharpe Ratio. Here, the benchmark is based on the buy-and-hold strategy
and the best WECO rule is the Moving Average rule, that performed best in |(Chung et al.| (2013]). The
GA rule is the best rule based on the Genetic Algorithm, which is based on combinations of different
existing technical trading rules. The GP full rule is the best GP rule, where a tree has to exist out of
subtrees with each the same depth and the GP growth rule does not have this restriction.

also already seen it that the test period shows a much steeper slope on average than
the evaluation period, which may have caused this huge decline in performance for the
GP rules, compared to the performance in the test period. The standard deviations
of the returns are very close in the cases of the GA and both GP rules, while the
standard deviation of the WECO rule shows a smaller standard deviation. This means
the deviations in returns in our created rules are bigger than our constant, standard rule.
When we compare our rules with our other benchmark rule, we see that both GP rules
outperform the benchmark in the test period. The GA rule does not outperform our
benchmark rule in the test period, but exceeds the performance of the benchmark in the
evaluation period. The GP rule that uses the full method outperforms our benchmark
in both periods, but the GP rule that uses the growth method does not outperform the
benchmark in the evaluation period.

In the next subsection we will have closer look at the differences in performance and
trading of our different rules.

11

4.2 Performance in detail

In this subsection, the best trading rules of the GA and GP’s and the benchmark rule
are evaluated more in detail. We will take a deaper look into the trading rules itself and
will focus on a possible difference between the rules. Table [3| presents the more detailed
results. The first column represents the fraction of time in the period the returns are
greater than 0 and the last two columns give the number of buy and sell signals, each
for the testing period and the evaluation period.

Table 3: In and out of sample returns of the GA technical trading rules.

% r>0 4 Long +# Short

benchmark

test period 0.7143 25 0
evaluation period 0.5263 38 0
Best WECO rule

test period 0.0005 1 0
evaluation period 0.0005 1 0

Best GA rule

test period 0.6800 223 212
evaluation period 0.4737 381 309
Best GP full rule

test period 0.7200 82 79
evaluation period 0.5526 112 83

Best GP growth rule

test period 0.7600 69 56

evaluation period 0.5263 103 71

This table shows the average daily return r, the standard deviation of the returns, o, the percentage of
times the returns are greater than zero (r>0), and the percentage of long and short position are taken.

As we saw in the previous section, the total returns of the WECO rule performs
worst for the test period. In Table |3| we see that there is only one trade in this period,
a buy. Therefore, we are not surprised the fraction of times the rule generates returns
above zero is very small (it is either one positive return or zero). For the rest of the
rules, the fraction of times the returns are positive are also divided in the same way as
the total returns in the previous section. So, the GP growth rule has the highest fraction
of returns above zero, followed by the GP full rule and the benchmark. Finally, the GA
rule and WECO rule follow.

Looking at the amount of buys and sells, we see that both the WECO rule only has one,
while for the benchmark rule every day one buy signal is given. For both GP rules, the
number of long and short positions are close together, but the GA rule has over twice
as much as the GP rule. This could be the cause of the GA rule combining different
rules, where the best rule is a combination of a couple of ‘good buys and sells’. With

12

75 intervals per day, the amount of total buy and sell signals are not much more than 10%.

When we take a look at the evaluation period, based on the results in the previous
chapter and the patterns in the test period, we would expect the fraction of returns
greater than zero for the best GA rule to be the greatest (for the WECO rule, there is
only one trade, so one positive return). This, in fact, is not the case. These fractions
of all the rules, except the WECO rule are really close together. The reason for the
GP growth generating negative results, therefore can be the cause of three events. The
negative returns of the GP growth rule are more negative than the other rules, the pos-
itive returns are not as high as the other rules, or a combination of the two. In Figure
a graphical representation of the cumulative positive returns are presented. Figure [0]
represents the cumulative absolute negative returns. In Figure |5| we see that both GP

Cumulative positive returns evaluation period
025 T T T T T

—— =GP ful
- GP growth
—GA

02

015

returns

01

Figure 5: Graphical representation of the cumulative positive returns, respectively

rules show the same patterns in returns for the first 25 days in the evaluation period.
In this period, the growth rule clearly performs better than the full rule. As we have
already seen in the Section 2, after this day, the midquote is declining. In Figure [7] and
the rules are represented in tree-form. Here, we see that the growth rule generates a
buy signal when the maximum of the ssh of the last 55 intervals of 5 minutes exceeds
the average of the ssl the last eight intervals. Because prices are declining, a signal based
on the last 55 days does not give an accurate image of the current prices. The rule now,
gives a lot of buy signals, but when the position at the end of the day is closed, prices
are still declining which leads to losses. This will go on until the end of the evaluation
period, which results in a decline in the returns of the growth rule.

When we look at the full rule, this rule generates a buy signal when the minimum of the
last 15 interval’s maximum of the last 40 interval’s of the midquote exceeds the midquote
at that point in time. Clearly, this is a much more accurate image of the prices as it is
based on only 15 interval’s, instead of the 55 in the growth rule.

13

In Figure [6] again, we see similar patterns for the negative returns. Because the growth

Cumulative absolute negative returns evaluation period
T T T T T

v ot G

021

018

returns.

Figure 6: Graphical representation of the cumulative positive returns, respectively

Tyavgs maxss

Figure 7: The best growth rule represented in tree-form

rule is less accurate than the full rule, more negative returns are generated, which also
results in the total low returns in the evaluation period.

14

£Eninla

Hmaxd0

Figure 8: The best full rule represented in tree-form

4.3 Genetic Algorithm vs. Genetic Programming

In this subsection we will have a last look at the differences of the performance of the
Genetic Algorithm with the performance of the Genetic Programming methods. We will
look at the rules in a tree-form and will repeat our main observations. At last, we will
have a look at the return patterns through time.

The best GA rule uses two MP rules, two MA rules, a FI and a SR. As was already
mentioned, the growth rule is based on the last 55 intervals, which leads to a less accurate
image of the prices at that moment. This could be the reason for the difference in
performance at the end of the evaluation period. In the test period, the Genetic Program
creates rules that perform best on that dataset. Because the market fluctuates a lot, the
rules that first worked very well, now can become less performing rules. The Genetic
Algorithm combines existing, and well researched technical trading rules into one rule,
which can make the rules in g