
Genetic Algorithms on Technical Trading Rules

Silke Hofman (348261),

Abstract

In this paper, well know technical trading rules are used in different genetic
algorithms to increase the performance on the S&P 500 exchange traded fund traded
on the NASDAQ. Moving average rules, support and resistance rules, filter rules,
momentum in price rules and channel breakout rules are combined to create one
optimal rule to use on this data. The genetic algorithm creates an initial population
of random rules and updates his population untill a population with this best rule
is reached. The updating is of the same principle as Darwin’s survival of the fittest.
In this way, less performing will not survive through the next generation and better
performing rules are. With Genetic Programming, an extension of the GA developed
by Koza (1992), another type of optimal rules will be created. We will check whether
this method creates better trading rules than our previous work and will compare
several different ways to create these rules, when we end with a best rule for our
data.

1 Introduction

In technical analysis, many methods and strategies are being used to attempt to fore-
cast the direction of the market. These methods and strategies can be constructed by
using past prices or other observable market statistics. Although technical analysis has
been used and researched for years, there still is the discussion whether it is useful or
not. In early studies, tests determining the performance of trading rules often indicated
these rules consistently did not make any profits. Other studies, such as the studies of
Lukac and Brorsen (1990) found that “several systems did generate returns significantly
above the transaction costs.” The problem is that when evaluating historically successful
trading rules using historical data, researchers might be data-snooping. In this paper,
genetic algorithms will be used for generating optimal technical trading rules on the
S&P 500. Advantages of the genetic algorithm are that we can find ex ante optimal
trading rules from certain primitive arithmetic operators. Because of this the biases we
face when applying technical trading rules can be avoided.

This paper is an extension on Chung et al. (2013). In this paper, many different trading
rules were performed on the same S&P 500 index as will be used in this paper. This
paper will extend Chung et al. (2013), in a way that it will combine these rules to try
to get more better results and to avoid data-snooping. The combining of this rules will
be done by the genetic algorithm, an algorithm based on the Darwinian principle of

1

evolution. In this algorithm, trading rules will be computed when, after this, an initial
population of (combined) trading rules will be created. For the creation of new genera-
tions we will use the fitness function, based on the Sharpe Ratio. Based on the fitness of
this population, a new population will be created, by recombination, reproduction and
mutation. This will be done untill the stopcriteria are reached, than the program will
be terminated and the results will be evaluated.
Important results in this paper are the evaluation of the new trading rules, generated
by the genetic algorithm. We will see that indeed, they will. The combined results do
perform better than our benchmark models, especially in the test period, but there will
also be a difference in the performance of the algorithms, mutually.

There have already been several different papers on genetic algorithm in combination
with trading rules. For example, Roberts (2005) created optimal trading rules with
genetic programming on 24 commodities. Also Neely et al. (1997) performed genetic
programming, but they did that on technical trading rules on different currencies.

This research is divided into six sections. In the next section the data, used in this
research will be discussed. Section 3 describes the genetic algorithm and the use of its
methods. This section also contains the trading rules on which the genetic algorithm
will be applied. In Section 4, results of the results will be represented, followed by the
conclusion in Section 5. Section 6 will be used to describe some possible extensions of
this research.

2 Data

The dataset used in this research is the same as in our previous research, Chung et al.
(2013). The dataset contained a sample running from the 1st of April 2009 up to the
30th of June this same year. In this sample, daily NASDAQ data feed files were included.
The data in this files contains order level data as well as trade messages, administrative
messages and the five best current bid and ask quotations. Different orders are messages
to add an order of type A and messages to modify existing orders (types C, D, E, U and
X).

Table 1: Descriptive statistics of the midquote, subsequent high and low, and rett, used
in the genetic algorithms.

mean σ median skewness kurtosis

SPY
midquote 89.3828 3.7968 90.1950 -0.4379 2.2061

ssh 89.4466 3.7910 90.2500 -0.4368 2.2053
ssl 89.3186 3.8048 90.1400 -0.4387 2.2070
ret 0.0000 0.0013 0.0000 0.0458 40.7342

Table 1 provides some descriptive statistics of our data used, which is based on the

2

Figure 1: Histogram of rett

dataset used in Chung et al. (2013). The real dataset has already been discussed in our
previous work, so for further information we refer to that paper. In this paper we will
work with four sets of data, obtained from this dataset. First, we will use the midquote,
represented by mt =

pbid,t−pask,t
2 . Also the subsequent high (ssh) and subsequent low (ssl)

are used. The ssl and ssh are max(mt1 . . .mt−1) and min(mt1 . . .mt−1), respectively.
At last, we will use ret(xt) = xt−xt−1

xt−1
. All these four sets have already been used in

Chung et al. (2013) and further discussed in that paper. In our algorithm, these four wil
be represented by X1, X2, X3 and X4, in the same order as they are discussed before. In
Table 1 we see that statistics are quite similar for the first three sets of data, but really
different from the last set. This because all three sets are based on the same sample, in a
same way and the last set in another way, by taking the first difference of the midquote
and dividing it by the previous midquote. A Jarque-Bera test rejects normality in all
four cases. The big value for the kurtosis combined with the relatively small skewness
for the rett suggest really fat tails. Looking at Figure 1 this, indeed, is the case. While
there are lots of observations around zero, there are few that are greater in absolute
value. Figure 2 represents the midquote over time in days. Here, we see that in the first
50 days the midquote shows an upwarding trend, while in the last 13 days we see the
midquote slightly declining.

3

Figure 2: Midquote over time

3 Methods

The goal of this research is to generate optimal trading rules using a genetic algorithm,
originally developed by Holland (1992). There are different kinds of genetic algorithms.
In this paper we will use the conventional genetic algorithm, followed by the extended
version ‘genetic programming’, based on Koza (1992). In this chapter, we will introduce
the genetic algorithm in our trading-rule context, followed by some examples and a brief
explanation of the algorithm. Then, we will get to genetic programming, based on Koza
(1992) and explain why this is a good general apporach for this research.

3.1 Genetic algorithm

A genetic algorithm is an algorithm based on an early and well-known theory of Charles
Darwin: evolutionary theory. The main idea of this theory is that in an initial pop-
ulation, there are ‘losers’ and ‘winners’. The winners in a population are the fittest
individuals, who are likely to survive and adapt to the current circumstances. Losers are
the least fit individuals, who are likely to be extinct by these circumstances. Because our
‘winners’ are more likely to survive, they are also more likely to have children that will
survive in these circumstances too. The whole idea of the genetic algorithm is exactly the
same: We will start with an initial population, in our case this is a population consisting
of trading rules. To create the next generation we are going to measure their fitness
according to some fitness-function. With this fitness we will check whether individuals
in the initial population will be reproduced, which means they will be copied into the
next generation without any transformation, whether they will perform recombination,
as in creating children, or whether they will be extinct.
Figure 11 in the Appendix shows a flowchart of the genetic algorithm. Figure 3 gives

4

an example of the representation of the trading rules in tree form. The first figure rep-
resents a simple moving average rule, while the second figure represents a filter rule.
The moving average rule in the figure, creates a buy signal when the price exceeds the
average of the 50 previous intervals. The filter rule creates the same signal when the
price exceeds the minimum of the ten previous intervals multiplied with 1.01, so with
a band of 0.01. In Figure 4, the recombination method is explained. Here, you see the
two parents and one of the two children, called ’offspring’. The recombination method
randomly searches through the rule part, when it finds a connector part, which is the
part where two rules will be connected, it creates a head and a tail part from both of
the parents. After this, the head part of the first parent, will be connected with the tail
part of the second parents, and vice versa for the other child. This method will be used
for a fraction of the total population. Another important method for creating a new
generation is mutation. Mutation is an operation that aims at diversity in a population
by applying random modifications to individual structures. Mutations will be performed
only on the operators.

Figure 3: Trading Rules, the first rule is a simple 50-interval moving average rule and
the second rule is a representation of the filter rule.

In the conventional genetic algorithm we are going to use, the individuals in a popula-
tion will be represented by fixed-length strings with logicals. Let’s say we have two trad-
ing rules, an individual in the population can be represented in the following way: 0 01
1 11. In this representation the first four logicals represent the indicator/connector/rule
part, while the last two represent the structure part. The structure part tells you which
rules are active within this individual. The first part creates the rule, where the second
and third bits are the connector part, which connect the first indicator to the other with
the following representation: 01 represents ’or’, 00 represents ’and’, and 10 represents
’xor’. So in this example, if in the first trading rule the signal is neutral or in the second
rule the signal is ’buy’, the combined trading signal is a ’one’. To get a more visual idea
of how the trading rules are represented, we will explain it with a figure. In Figure 4,
both parents consist of a combination of two rules. Let’s say, these four rules are the
only rules in the population and are indicated as rule A through B. Rule A of parent
one is the first rule, rule B is the second. Now, in our genetic algorithm, parent 1 will be
represented by the following combination of logicals: 1 00 1 ** 0 ** 0 1100, where the
last four logicals represent the active rules in this individual: Only the first two rules are

5

included, represented with a ‘1’ on the first and second place, and a ‘0’ at the other two
places. The ** are irrelevant, as the two other rules are not included in this individual
and we will not create offspring out of these parts. Parent 2 is represented as follows: 0
** 0 ** 1 01 1 0011, in the same way.

Figure 4: An example of a recombination, only one offspring is showed.

When we have finally created a whole generation of this logical strings, or individuals,
we can calculate their fitness measure, which is based on the functions used in Chung
et al. (2013):

rbuy,t1,t2 =
pbid,t2 − pask,t1,imp

pask,t1,imp
(1)

rsell,t1,t2 = −1 ×
pask,t2,imp − pbid,t1

pbid,t1,imp
(2)

6

with pbid,t,imp (pask,t,imp) the price-impact bid (ask) price at time t. With this measure
as a return we will calculate the Sharpe Ratio and our final goal is to maximize this
Sharpe Ratio.

3.2 Genetic Programming

As was already mentioned, genetic programming is an extension of the genetic algorithm,
mainly created by Koza (1992). The most important difference with the conventional
genetic algorithm is the output of the algorithm. Where in the conventional algorithm
the population was represented by a set of logicals, the output in genetic programming
is a program itself. In this way, there are less limitations for the program to compute,
what will probably lead to more strange rules, instead of a simple known Moving Average
Rule.
There are lots of settings in genetic programming. We will run a maximum of 200
generations and there will be an initial population of 2000 individuals, just as in the
genetic algorithm. We will start with a maximum depth of 10, which will avoid bloat.
There are two different types to construct a tree, the first one is the Full Method.
The Full Method is the standard procedure, where the tree receives new non terminal
nodes until the maximum tree depth is reached. There is also the Growth Method,
where terminal nodes and non-terminal nodes are chosen randomly, which leads to very
unbalancing trees. We will start with the Full method.
For creating a tree we need some functions and terminals. A terminal does not have any
subnodes and is the last node of a tree, mostly represented by a real constant. In this
research terminal nodes are the midquote, subsequent high, subsequent low and ret, given
by the function: ret(xt) = xt−xt−1

xt−1
. Functions in this research are divided into certain

groups, according to Potvin et al. (2004). There are arithmetic operators (+,÷,−,×),
boolean operators (and, or, xor1, nand), relational operators (<, >), boolean functions
(if-then-else) and real functions, represented by the average of one of the terminals over
n days, the maximum of one of the terminals over n days and the minimum of one
of the terminals over n days. Because we want to create a vector of zeros and ones,
representing a buy or a sell signal, we cannot have every operator on each place as is
the case in the normal genetic program. We have to add some restrictions for getting
the correct output. The root can contain only boolean functions or operators and its
descendants may only exist of boolean functions and operators or relational operators.
As is the case for the genetic algorithm, we will construct new generations with crossover,
reproduction and mutation. Each with fraction 0.6, 0.3667 and 0.0333 respectively as
was found as the ‘ideal fractions’ by Papadamou and Stephanides (2007). We have also
tried some other fractions, but their fractions performed better in all cases. Also the
fitness function remains the same.We will measure our individuals with the Sharpe Ratio
and the function in the previous subsection. Also selection of the individuals to perform
crossover, mutation or reproduction on, happens in the same way.

1xor, or ‘exclusive or’, is true if exactly one, so not both, of towo conditions is true.

7

3.3 Rules and settings

For the genetic algorithm we are going to use five different sets of rules. These sets of
rules consist of the same type of rules for each set, only with different settings, so that
there are many rules to work with. Also the settings in for the genetic program are based
on these rules. The five types chosen are the Moving Average (MA), the Momentum in
Price (MP), the Filter (FI), the Support and Resistance (SR) and the Channel break-out
(CBO) strategies.
The Moving Average rule is represented as follows:

MAt =


1 if mat(s,m) > (1 + b) ·mat(l,m)

−1 if mat(s,m) < (1 − b) ·mat(l,m)

0 otherwise

(3)

Where s represents the length of the shorter lookback period and l the length of the
longer lookback period. Both the s and the l variables, as the b will be the same as
in Scholtus and Van Dijk (2012). The Momentum in Price rule looks like the Moving
Average rule, with one difference that not the moving average of the midquote will be
taken, but the moving average of ret(xt) = xt−xt−1

xt−1
. So mart(l, x) = mat(l, ret(x)). The

MP rule will be represented by the following function:

MPt =


1 if mart(s,m) > (1 + b) ·mart(l,m)

−1 if mart(s,m) < (1 − b) ·mart(l,m)

0 otherwise

(4)

The next rule we will use is the Support and Resistance (SR) rule. For this rule we
will need a maximum and a minimum midquote value over a lookback period of l intervals
while we will account for intra-interval maxima and minima. The maximum (minimum)
during an interval will be denoted as mmax

t (mmin
t), while the maximum (minimum) over

a lookback period will be defined as lbmaxt(l,m) = max(mmax
t−1 m

max
t−2 . . .m

max
t−l).

The Support and Resistance rule generates a sell signal when the price penetrates
the local minumum (support level) and a buy signal when the price penetrates the local
maximum (resistance level). For these local maximum and minimum there are several
different lookback periods, which can be found in the Appendix. There are also different
bands implemented here. The SR rule will be given with the following formula:

SRt =


1 if mt > (1 + b) · lbmaxt(l,m)

−1 if mt < (1 − b) · lbmint(l,m)

0 otherwise

(5)

The fourth type of rule will be the Filter Rule (FI). This rule does not only use the
midquote, but also the subsequent high and subsequent low, ssh and ssl respectively. A
buy signal will be given when rett > x, while a signal of the opposite sign will be given
when rett < −x. When none of these options is the case, we will look at FIt−1. When

8

the previous signal is a buy signal and mt−ssh
ssh < −(x · y) or the previous signal is a sell

signal and mt−ssl
ssl > (x · y), FIt will give a neutral signal, otherwise FIt will be equal to

the previous signal given.

FIt =



1 if mt−mt−1

mt−1
> x

−1 if mt−mt−1

mt−1
< −x

0 if FIt−1 = 1 and mt−ssh
ssh < −(x · y) or

if FIt−1 = −1 and mt−ssl
ssl > (x · y)

FIt−1 otherwise

(6)

The last rule to be constructed are the Channel Break-Out rules (CBO). This type
of rule will use a channel to indicator to check whether there will be a signal at all.
This channel, ICH(t), takes value 1 if there exist a channel and 0 otherwise. At time t
a channel does exist if lbmint(l,m) > y · lbmaxt(l,m), where y < 1. A buy (sell) signal
will be provided when the midquote at time t exceeds (falls below) the upper (lower)
bound of the channel.

CBt =


1 if ICH(t) = 1 and mt > (1 + b) · lbmax(l,m)

−1 if ICH(t) = 1 and mt > (1 + b) · lbmin(l,m)

CBt otherwise

(7)

The settings for this rules, who are exactly the same as in Scholtus and Van Dijk
(2012) can be found in the Appendix. For the genetic algorithm, each rule is constrained
to 50 nodes as in Roberts (2005). In the data section, we stated there are 63 trading days
we have available to perform our research on. We will use the first 25 days to perform
the genetic algorithm on. The last 38 days will be used to evaluate the best trading
rule, obtained by the algorithm. The percentages are based on the work of Potvin et al.
(2004). The best trading rule will exist of multiple trading rules, represented by the
set of logicals as was discussed in the previous part of the methods section. This best
trading rule will be applied on the last 60 percent and returns and the Sharpe Ratio will
be obtained here. In this way, we can perform an out-of-sample test, to check whether
the best rule, obtained by an earlier data set, will actually work on the next set of data.

For our genetic programming algorithm, we will use different operator functions which
are presented in the Appendix.

4 Results

In this section, results from the genetic algorithm and the genetic program on technical
trading rules in the previous chapter will be discussed. This section is divided in four
subsections, Section 4.1 discusses the Sharpe Ratio and some statistical results from the
three obtained ‘best rules’ and compares them to our benchmark model. Section 4.2
discusses the more detailed results on the rules itself, whereas Section 4.3 compares the

9

results of the different genetic algorithms. In Section 4.4, we will look if the a rolling
window will outperform our previpous results.
As was already mentioned in the previous chapter, 25 days of our total data were used
to perform our genetic algorithm and our genetic program on. Both algorithms are
thus performed on 25 trading days, which means the remainder 38 days were used to
evaluate the trading rules. We will use two benchmark models. Our first benchmark
model, ‘WECO’, will be represented by the rule with the best Sharpe Ratio in the 5-
minute interval in our previous paper Chung et al. (2013). The model that performed
best in this paper was one of the Moving Average rules. Our second benchmark model,
‘benchmark’, will be based on a buy-and-hold strategy: at the beginning of the day,
when our trading hours start, we will have a buy signal, when at the end we will sell.
For each day. We will evaluate our results with the Sharpe Ratio, based on the same
function as in Chung et al. (2013) for consistent evaluation. In the Appendix an initial
rule is represented. In the trees shown in this section X1 represents the midquote, X2
and X3 represent the subsequent high and subsequent low, respectively. X4 will be the
ret(mt) already discussed in the previous section.

4.1 Performance

In this subsection, the basic performance of the rules is being discussed. The Sharpe
Ratio, mean, standard deviation and total returns will be represented in Table 2.
In this table, r represents the returns based on Equation 1 and 2. Based on the Sharpe

Ratio, the worst performing rule in the test period is the best WECO rule, with a Sharpe
Ratio of 0.1772. The best performing rule in the test period is the best GP rule with
the growth method for creating trees. Followed by the GP rule with the full method and
the GA rule. This was expected, because the GP rule that uses the growth method has
the least restrictions for creating such a rule. Here, the depth can vary over subtrees,
which leads to less balanced trees, but also a greater variation in a population. The GP
rule that uses the growth method has some more restrictions, as it has the restriction to
create a tree where every subtree has the same depth. After these two, we have the GA
rule, which is a combination out of existing rules and, thus, has even more restrictions,
namely the restrictions of the rules itself. The best WECO rule only has one way to
create the rule, because it is only one rule. Based on restrictions, results point out in
the direction of our expectations.
When we look at the evaluation period, results do not seem to follow the same pattern
as in the test period. Here, the best WECO rule is the best rule, based on the Sharpe
Ratio, and the best rule in the test period seems to be the worst performing rule in the
evaluation period. This can be the cause of the rules in the GP being only based on
the data in the test period, while the WECO rule is based on the whole period, as it
was the best performing rule over the whole period in Chung et al. (2013). The cause
of the GA rule now performing better than both GP rules can be that the GA rule is
based on already existing technical trading rules, which are used and examined in other
papers for years. The GP only creates a best rule based on the test period, which may
have caused the rule to perform not that good in the evaluation period. What we have

10

Table 2: In and out of sample returns of the GA technical trading rules.

µr σr
∑
r SH

benchmark
test period 0.0051 0.0116 0.1286 0.4525

evaluation period 0.0004 0.0098 0.0166 0.0453

Best WECO rule
test period 0.0007 0.0033 0.0164 0.2041

evaluation period 0.0003 0.0017 0.0108 0.1644

Best GA rule
test period 0.0049 0.0147 0.1213 0.3379

evaluation period 0.0013 0.0118 0.0508 0.1146

Best GP full rule
test period 0.0052 0.0081 0.1310 0.6626

evaluation period 0.0007 0.0138 0.0269 0.0520

Best GP growth rule
test period 0.0067 0.0092 0.1685 0.7459

evaluation period -0.0014 0.0140 -0.0545 -0.1037

This table shows the average daily return r, the standard deviation of the returns, σ, the total return at
the end of the period and the Sharpe Ratio. Here, the benchmark is based on the buy-and-hold strategy
and the best WECO rule is the Moving Average rule, that performed best in Chung et al. (2013). The
GA rule is the best rule based on the Genetic Algorithm, which is based on combinations of different
existing technical trading rules. The GP full rule is the best GP rule, where a tree has to exist out of
subtrees with each the same depth and the GP growth rule does not have this restriction.

also already seen it that the test period shows a much steeper slope on average than
the evaluation period, which may have caused this huge decline in performance for the
GP rules, compared to the performance in the test period. The standard deviations
of the returns are very close in the cases of the GA and both GP rules, while the
standard deviation of the WECO rule shows a smaller standard deviation. This means
the deviations in returns in our created rules are bigger than our constant, standard rule.
When we compare our rules with our other benchmark rule, we see that both GP rules
outperform the benchmark in the test period. The GA rule does not outperform our
benchmark rule in the test period, but exceeds the performance of the benchmark in the
evaluation period. The GP rule that uses the full method outperforms our benchmark
in both periods, but the GP rule that uses the growth method does not outperform the
benchmark in the evaluation period.
In the next subsection we will have closer look at the differences in performance and
trading of our different rules.

11

4.2 Performance in detail

In this subsection, the best trading rules of the GA and GP’s and the benchmark rule
are evaluated more in detail. We will take a deaper look into the trading rules itself and
will focus on a possible difference between the rules. Table 3 presents the more detailed
results. The first column represents the fraction of time in the period the returns are
greater than 0 and the last two columns give the number of buy and sell signals, each
for the testing period and the evaluation period.

Table 3: In and out of sample returns of the GA technical trading rules.

% r>0 # Long # Short

benchmark
test period 0.7143 25 0

evaluation period 0.5263 38 0

Best WECO rule
test period 0.0005 1 0

evaluation period 0.0005 1 0

Best GA rule
test period 0.6800 223 212

evaluation period 0.4737 381 309

Best GP full rule
test period 0.7200 82 79

evaluation period 0.5526 112 83

Best GP growth rule
test period 0.7600 69 56

evaluation period 0.5263 103 71

This table shows the average daily return r, the standard deviation of the returns, σ, the percentage of
times the returns are greater than zero (r>0), and the percentage of long and short position are taken.

As we saw in the previous section, the total returns of the WECO rule performs
worst for the test period. In Table 3 we see that there is only one trade in this period,
a buy. Therefore, we are not surprised the fraction of times the rule generates returns
above zero is very small (it is either one positive return or zero). For the rest of the
rules, the fraction of times the returns are positive are also divided in the same way as
the total returns in the previous section. So, the GP growth rule has the highest fraction
of returns above zero, followed by the GP full rule and the benchmark. Finally, the GA
rule and WECO rule follow.
Looking at the amount of buys and sells, we see that both the WECO rule only has one,
while for the benchmark rule every day one buy signal is given. For both GP rules, the
number of long and short positions are close together, but the GA rule has over twice
as much as the GP rule. This could be the cause of the GA rule combining different
rules, where the best rule is a combination of a couple of ‘good buys and sells’. With

12

75 intervals per day, the amount of total buy and sell signals are not much more than 10%.

When we take a look at the evaluation period, based on the results in the previous
chapter and the patterns in the test period, we would expect the fraction of returns
greater than zero for the best GA rule to be the greatest (for the WECO rule, there is
only one trade, so one positive return). This, in fact, is not the case. These fractions
of all the rules, except the WECO rule are really close together. The reason for the
GP growth generating negative results, therefore can be the cause of three events. The
negative returns of the GP growth rule are more negative than the other rules, the pos-
itive returns are not as high as the other rules, or a combination of the two. In Figure
5, a graphical representation of the cumulative positive returns are presented. Figure 6
represents the cumulative absolute negative returns. In Figure 5 we see that both GP

Figure 5: Graphical representation of the cumulative positive returns, respectively

rules show the same patterns in returns for the first 25 days in the evaluation period.
In this period, the growth rule clearly performs better than the full rule. As we have
already seen in the Section 2, after this day, the midquote is declining. In Figure 7 and
8 the rules are represented in tree-form. Here, we see that the growth rule generates a
buy signal when the maximum of the ssh of the last 55 intervals of 5 minutes exceeds
the average of the ssl the last eight intervals. Because prices are declining, a signal based
on the last 55 days does not give an accurate image of the current prices. The rule now,
gives a lot of buy signals, but when the position at the end of the day is closed, prices
are still declining which leads to losses. This will go on until the end of the evaluation
period, which results in a decline in the returns of the growth rule.
When we look at the full rule, this rule generates a buy signal when the minimum of the
last 15 interval’s maximum of the last 40 interval’s of the midquote exceeds the midquote
at that point in time. Clearly, this is a much more accurate image of the prices as it is
based on only 15 interval’s, instead of the 55 in the growth rule.

13

In Figure 6 again, we see similar patterns for the negative returns. Because the growth

Figure 6: Graphical representation of the cumulative positive returns, respectively

Figure 7: The best growth rule represented in tree-form

rule is less accurate than the full rule, more negative returns are generated, which also
results in the total low returns in the evaluation period.

14

Figure 8: The best full rule represented in tree-form

4.3 Genetic Algorithm vs. Genetic Programming

In this subsection we will have a last look at the differences of the performance of the
Genetic Algorithm with the performance of the Genetic Programming methods. We will
look at the rules in a tree-form and will repeat our main observations. At last, we will
have a look at the return patterns through time.

The best GA rule uses two MP rules, two MA rules, a FI and a SR. As was already
mentioned, the growth rule is based on the last 55 intervals, which leads to a less accurate
image of the prices at that moment. This could be the reason for the difference in
performance at the end of the evaluation period. In the test period, the Genetic Program
creates rules that perform best on that dataset. Because the market fluctuates a lot, the
rules that first worked very well, now can become less performing rules. The Genetic
Algorithm combines existing, and well researched technical trading rules into one rule,
which can make the rules in general better substantiated.

The figures below represent the cumulative returns in the evaluation period. Here,
both GP’s show similar patterns, although the rules are clearly different. The best GA
rule does not show such a pattern. This is because this rule is based on already existing
rules and is created in another way than the GP rules, which have less restrictions in
creating a tree.

15

Figure 9: Cumulative returns evaluation period

4.4 Rolling window approach

In this section we are going to observe whether a rolling window will improve our previous
results for the full method. The reason why we are only performing a rolling window on
the full method, is because this method has least computational speed.
We use the rolling window only to create a best rule for the evaluation period, so, we
begin at the 26th day. For day 26, with the genetic program, we create a best rule out of
the previous 25 days, so day 1, 2, ... , 25. For day 27 we do the same, so here, we create
a best rule out of day 2 through 26. We do this for all 38 days, and based on these best
rules for each day, we create signals for each day. With these signals we can calculate
the fitness in the same way as in the previous sections. We use 25 days so that we can
compare the results, obtained with the rolling window, with our previous results.

In Table 4, results for the GP full method with the rolling window are presented.

Table 4: In and out of sample returns of the GA technical trading rules.

µr σr
∑
r SH % r>0 # Long # Short

GP full, rolling window
evaluation period 0.0008 0.0125 0.0318 0.0680 0.6053 110 48

This table shows performance for the rolling window approach for 25 days for the GP
using the full method.

Comparing these results with our previous results of the full method, we see that the
rolling window outperforms our results without the rolling window. Although, results

16

do not outperform the GA and the WECO rule, we see that the fraction of times the
daily return is positive is greater for the full method with the rolling window. Here,
because of the rolling window, for day 63 we do not include the first 37 days, which
leads to more accurate trading signals. Hence, in these last days, we do not include the,
on average, increasing midquote in the first 25 days, which could have been the cause
of the greater amount of positive returns. Also the standard deviation of the returns
is less than for the full method without the rolling window, we now have less negative
returns, which lead to less deviations in returns and, thus, a smaller standard deviation.
The amount of buys is approximately equal to the amount without the rolling window,
while the amount of short selling is less than before.
With the rolling window, we obtained better results than without the rolling window
for the same method. As we have seen, our midquote in the first 25 days is, on average,
increasing, while after these days its increase declines. By using the rolling window
approach, a best rule for the last days is not obtained including these observations,
which leads to better trading signals and, thus, results. Although, use of this method
does not generate better trading rules compared to our other, better rules in the previous
subsection, it does outperform the full rule without the rolling window. Maybe if we
applied the rolling window to the other methods, we may have outperformed the WECO
rule with our genetic algorithms.

5 Possible extensions

In this article, we used different kinds of genetic algorithms to obtain better technical
trading rules than in our previour work on technical trading. With the rolling window
approach for the full method, we found better results than for the full method without
the rolling window. Due to time issues and a long computational speed (about one week
for the rolling window on the full method), we were not able to extend our research by
applying the rolling window on the other methods. A possible extension on this paper,
thus, would be to apply the rolling window on all methods and then compare these
results with our benchmark models and our former results.
Another way to extend this paper, is to add some more operators and functions, for
example the first difference, or other functions, for more better results.

6 Conclusion

This research was an extension on the paper Chung et al. (2013). This paper extended
the other paper in the way that it used the dataset of the paper and the technical trading
rules described in it. The idea behind the GA and GP is the theory of Darwin, where
the fittest individuals survive, reproduce and create offspring. The GP updated their
trees, the outputs, in two ways. The first way was the growth method and the second
way the full method. The Sharpe Ratio was used as the rules’ fitness, where a higher
Sharpe Ratio represented a better individual.With the Genetic Algorithm these rules

17

were combined to a population of combined rules, where the algorithm was searching
for an optimal rule. In another way, the Genetic Programming method, an extended
version of the Genetic Algorithm by Koza (1992), tried to create an optimal trading rule
for this dataset. The difference with the GA was that the GP output was a function,
in the form of a tree, where the GA gave a fixed output of zeros and ones, representing
the combination of different, existing trading rules. The input of the GP were simply
operators and terminals, where the algorithm created a random initial population and
tried to create a better population. We measured their performance and compared them
with the best rule in ourpervioud paper and added another benchmark model, based on
the buy-and-hold method.
We saw that in the test period, the GP’s performed the best in all cases, the GA and
benchmark followed, and the worst performance was given by the rule from WECO. In
the evaluation period, things change. The WECO rule now was the best performing
rule, followed by the GA rule and the GP full rule. The GP growth rule performed
worst, with a total negative return and Sharpe Ratio. The reason for the GP growth
rule performing this bad, was that this rule is based on the previous 55 5-minute inter-
vals, while there is a decline in the prices after 25 days in the evaluation period. The
growth rule was not able to adapt this decline and produced ‘bad buy signals’, which led
to a decline in positive returns and an incline in negative returns for this period. The
cause of the WECO rule and GA rule performing this good may lie in their roots: both
rules are existing rules, that have been used for any years in technical trading. The rules
are already based on such a dataset as ours, while the GP rules found a best rule out of
functions and operators for only the test period. Because of the decline of our dataset
only in the evaluation period, the GP rules could not adapt that well, as they did in the
test period. Our benchmark rule performed worse, because this rule is not based on any
properties of the dataset itself. It is just buying at the beginning of the day and selling
at the end of that same day. Again, because of the decline in price, buying is a less good
idea, which leads to less positive returns.
As an extension, we also used a rolling window of 25 days on the full method. Here,
results seemed to be a little better than the full method without the rolling window and
also there were more positive returns than in all the other rules in the evaluation period.

We have learned a lot on the Genetic Algorithm and Genetic Programming, we saw
that for the test period, they could lead to better trading rules than our already existing
rules. Unfortunately, in the evaluation period they were not able to outperform our first
benchmark rule, the WECO rule. The GA rule did outperform the other benchmark
model in the evaluation period, because this rule was based on real technical trading
rules, while the second benchmark model was not. The advantage of the algorithms were
the fact that there is data-snooping, which we did find in our previous paper. Unfortu-
nately, due to time issues, we were not able to extend our paper in the other ways, but
when further research will be done, also these extension will be examined.

18

Acknowledgments

The authors of this paper would like to thank their instructor Martin Scholtus for pro-
viding very helpful and quick feedback throughout the drafting of this paper.

References

Chung, H. L., Appels, L., Huang, I. and Hofman, S. (2013), ‘Technical trading’.

Holland, J. H. (1992), Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control and artificial intelligence, MIT press.

Koza, J. R. (1992), ‘Genetic programming: on the programming of computers by means
of natural selection’.

Lukac, L. P. and Brorsen, B. W. (1990), ‘A comprehensive test of futures market dise-
quilibrium’, Financial Review 25(4), 593–622.

Neely, C., Weller, P. and Dittmar, R. (1997), Is technical analysis in the foreign exchange
market profitable? A genetic programming approach, Cambridge Univ Press.

Papadamou, S. and Stephanides, G. (2007), ‘Improving technical trading systems by
using a new matlab-based genetic algorithm procedure’, Mathematical and computer
modelling 46(1), 189–197.

Potvin, J.-Y., Soriano, P. and Vallée, M. (2004), ‘Generating trading rules on the stock
markets with genetic programming’, Computers & Operations Research 31(7), 1033–
1047.

Roberts, M. C. (2005), ‘Technical analysis and genetic programming: Constructing and
testing a commodity portfolio’, Journal of Futures Markets 25(7), 643–660.
URL: http://dx.doi.org/10.1002/fut.20161

Scholtus, M. and Van Dijk, D. (2012), ‘High-frequency technical trading: The impor-
tance of speed’.

19

Appendix A Visuals

Figure 10: Basic idea genetic algorithm

20

Figure 11: Random tree in the initial population

21

Appendix B Choice of parameters for constructing rules

Settings for the MA and MP rules, with l the long period, s the short period and b the
used bands

l: 4,5,6,7,8,9,10,11,12
s: 2,3,4,5,6,7,8
b: 0,0.00025,0.0005,0.00075,0.001,0.0025

For the best WECO rule, the bold numbers are the setting for the Moving Aver-
age equation.

Settings for Support and Resistance

l : 3,5,10,15,20,25,30,35,40,45,50,55,60
b: 0,0.00025,. . . ,0.001,0.0015,. . . ,0.0035,0.00375

Filter settings

x: 0.00025,0.0005,. . .,0.007
y: 1,0.75,0.5,0.25

Settings for the CBO rules

l : 5,10,15,20,25,30,35,40,45,60
y: 0.01,0.02,. . . ,0.1
b: 0,0.0001,0.00025,0.0005,0.001,0.00125,0.0015

22

Appendix C Operators in the genetic programming algo-
rithm

Here, a short description of some operators and functions is given.

gt: greater than
lt: less than
myif: if-then-else function. When if holds, we choose the ‘then’ input,

otherwise we use ‘else’.
myavg2 t/m myavg12: moving averages from 2 intervals until 12 intervals, respectively.
mymax‘no.’: the maximum of the last ‘no.’ of intervals.
mymin‘no.’: the minimum of thelast ‘no.’ of intervals.
mydivide: the quotient of two inputs.

23

	Introduction
	Data
	Methods
	Genetic algorithm
	Genetic Programming
	Rules and settings

	Results
	Performance
	Performance in detail
	Genetic Algorithm vs. Genetic Programming
	Rolling window approach

	Possible extensions
	Conclusion
	References
	Visuals
	Choice of parameters for constructing rules
	Operators in the genetic programming algorithm

