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Abstract

Respondents may give different answers to survey questions although they have the
same underlying opinion. When data is collected among respondents with different
response styles, interpretations of models based on this data could be wrong. In this
project we describe shortly the idea of response styles. We will study, in the case of two
ordinal variables, the extent to which the bivariate ordinal probit model is affected by
the presence of response styles. First we explain the model and derive the log-likelihood
function, we then show how this log-likelihood function can be maximized. We will
apply this model to empirical data. Furthermore, we will simulate ordinal data and
scale a part of this data with response style curves. The parameter estimates of the
models based on the partly scaled and non-scaled data are compared to measure the
robustness of this model to the presence of response styles. When (dis)acquiescence
is present, the correlation coefficient is overestimated, the absolute value of the β
coefficients decreases and the threshold values are shifted. This problem can be solved
by adding a dummy-variable that indicates which respondents have this response style.
The presence of midpoint responding and extreme responding leads to a change in the
dispersion of the threshold values.
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1 Introduction to response styles

There are different types of questions that are asked in surveys. One possible type is ask-
ing the respondents to map their opinions onto a Likert scale. For example, there are five
ordered answer options, in a range from strongly disagree to strongly agree. We assume
that the respondents have an underlying latent preference and subsequently transform their
preference to one of the possible answer options. It is possible that respondents that have
the same preference choose for different answer options. In other words, respondents could
have different response styles. Some respondents would avoid the lowest and highest answer
options; however other respondents tend toward often using the extreme answer options.
Van de Velden (2007) defines a response style as a possibly non-linear mapping of the un-
derlying latent preferences to a rating scale, that is common among a group of individuals.
For example, response styles may differ across cultures, nationalities, education level, age,
etc. The underlying latent preferences are unobservable, therefore it is difficult to detect a
response style. Schoonees, van de Velden & Groenen (2013) have distinquished four different
main response styles, which are visualized in Figure 1:

• Acquiescence: the upper part of the rating scale is used often
• Disacquiescence: the lower part of the rating scale is used often
• Midpoint responding: the middle categories are chosen often
• Extreme responding: the endpoints of the rating scale are chosen often

Response styles can induce spurious correlations. Most often the data is analyzed without
taking response styles into account. Therefore spurious correlations will be mistakenly in-
terpreted as being meaningful. One model for ordinal multivariate data which accounts for
correlations is the multivariate ordered probit model. In this project we will study, in the
case of two ordinal variables, the extent to which the bivariate ordinal probit model is af-
fected by the presence of response styles. Firstly, we implement the bivariate ordinal probit
model in R [10]. Thereafter we investigate the robustness of this model to the presence of
different response styles through a simulation study.

Figure 1: Different types of response styles
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2 Bivariate ordinal probit model

In this section we explain the bivariate ordered probit model and derive the log-likelihood
function and its first- and second-order derivatives. Furthermore, we explain how we could
use the Newton-Raphson algorithm to estimate this model.

2.1 Motivation

To describe the data obtained by Likert-scale questions in surveys, we prefer a model that
takes into account the ordering of the answer options. Therefore we don’t use a multinomial
probit model. When there are multiple dependent variables, often multiple univariate ordered
probit models are used. However, there might be correlation between those variables. When
we take the correlation into account, we expect a better model performance. The bivariate
ordinal probit model meets this requirements for two dependent variables. Ashford & Sowden
(1970) and Lesaffre & Molenberghs (1991) describe the multivariate probit model, however
they do not pay much attention to ordered variables. In this section, the bivariate ordered
probit model is explained and the log-likelihood function of this model is derived.

2.2 Notation

We define the ordinal variables Yi1 and Yi2 for j = 1, 2, . . . , J and l = 1, 2, . . . , L as

Yi1 = j iff αj−1,1 < Y ∗i1 ≤ αj,1
Yi2 = l iff αl−1,2 < Y ∗i2 ≤ αl,2

(1)

where α0,1 < α1,1 < · · · < αJ,1 and α0,2 < α1,2 < · · · < αL,2 are unobserved threshold values
and Y ∗ik is a latent variable that represents the preference of respondent i for item k. Note
that J is not necessarily equal to L. There are no upper and lower bounds to the latent
variable, therefore we set α0,1 = α0,2 = −∞ and αJ,1 = αL,2 = +∞.

We describe Y ∗ik with a bivariate regression model without intercepts{
Y ∗i1 = β1xi + εi1
Y ∗i2 = β2xi + εi2

(2)

in the case of only one explanatory variable xi, where Y ∗i1 and Y ∗i2 are latent variables and εi1
and εi2 are continuous random variables. Note that there might be correlation between εi1
and εi2. We impose without loss of generality that Var(ε1) = Var(ε2) = 1. We assume that
εi1 and εi2 are bivariate normally distributed with mean zero and correlation ρ.
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When there are more explanatory variables, we can write this model in matrix notation
as

Y ∗ = Xβ + ε (3)

where Y ∗ and ε are N × 2 matrices, X is a N × V matrix and β is a V × 2 matrix, where
V is the number of explanatory variables.

2.3 Maximum likelihood estimation

The likelihood function is given by

L(θ) =
N∏
i=1

J∏
j=1

L∏
l=1

P [Yi1 = j, Yi2 = l|Xi]
I(Yi1=j,Yi2=l) (4)

where θ is a summary of the parameters α1 = (α0,1, α1,1, . . . , αJ,1)
′,

α2 = (α0,2, α1,2, . . . , αL,2)
′, β1 = (β1,1, β2,1, . . . , βV,1)

′,β2 = (β1,2, β2,2, . . . , βV,2)
′ and ρ.

The log-likelihood function is given by

l(θ) =
N∑
i=1

J∑
j=1

L∑
l=1

I(Yi1 = j, Yi2 = l) log(P [Yi1 = j, Yi2 = l|Xi]) (5)

where we can use that

P [Yi1 = j, Yi2 = l|Xi]
= P [αj−1,1 < Y ∗i1 ≤ αj,1, αl−1,2 < Y ∗i2 ≤ αl,2]
= P [αj−1,1 < x′iβ1 + εi1 ≤ αj,1, αl−1,2 < x′iβ2 + εi2 ≤ αl,2]
= P [αj−1,1 − x′iβ1 < εi1 ≤ αj,1 − x′iβ1, αl−1,2 − x′iβ2 < εi2 ≤ αl,2 − x′iβ2]

=

∫ αj,1−x′iβ1

αj−1,1−x′iβ1

∫ αl,2−x′iβ2

αl−1,2−x′iβ2

φ2(εi1, εi2, ρ) dεi1dεi2

(6)

Here φ2 is the bivariate normal density function with mean 0, variance 1 and correlation
ρ.
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2.4 Newton-Raphson algorithm

We can maximize the log-likelihood function using an iterative algorithm and implement
this using the open-source statistical software R. According to Schwrorer & Hovey (2004),
algorithms that can be used to maximize log-likelihood functions numerically are the Newton-
Raphson method and the Fisher Scoring algorithm. In this project we will use the Newton-
Raphson algorithm.

The maximum of the log-likelihood function can be found by applying

θh+1 = θh −H(θh)
−1G(θh) (7)

until convergence is reached, where G(θh) is the gradient evaluated in θh and H(θh) is
the Hessian matrix evaluated in θh. This means that starting values θ0 are needed. In the
following subsections the first- and second-order derivatives of the log-likelihood with respect
to θ are derived.

According to Efron & Hinkley (1978), to compute the standard errors of the parameter
estimates we could use the observed information matrix, i.e. minus the second-order deriva-
tive of the log-likelihood function. The parameter estimates are asymptotic normally dis-
tributed:

θ̂ML ∼ N (θ0, H
−1) (8)

To have a warm start for finding the global maximum of the log-likelihood function, we
first estimate two univariate ordered probit models using the polr function in the R-package
MASS, written by Venables & Ripley (2002). We use the parameter estimates of these
models as starting values for the Newton-Raphson algorithm. Using these starting values,
convergence is reached quite fast. The algorithm is said to have converged when the log-
likelihood changes by a less than a small constant ε > 0. The convergence of the model
described in section 4 is shown in Figure 2. In 18 iterations there is an increase in the
log-likelihood less than 10−5.

Figure 2: Example of convergence using the Newton-Raphson algorithm

We compute the multivariate integrals using the R-package mvtnorm. [7] The computational
method of this package is described by Genz & Bretz (2009).
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2.5 First-order derivatives of the log-likelihood function

The first-order derivatives of the log-likelihood function are given by

∂l(θ)

∂θ
=

N∑
i=1

J∑
j=1

L∑
l=1

I(Yi1 = j, Yi2 = l)

P [Yi1 = j, Yi2 = l|Xi]

∂P [Yi1 = j, Yi2 = l|Xi]

∂θ
(9)

To obtain these derivatives, we describe (6) in terms of the cumulative distribution function
of ε, where ε ∼ N (0,Σ). We denote this cumulative distribution function by F . For
convenience, we write the last expression in (6) as P [Lj < εi1 ≤ Uj, Ll < εi2 ≤ Ul]. We
compute this probability by first computing F (Uj, Ul). This is equal to the probability that
εi1 is below Uj and εi2 is below Ul.

Then we need to substract three disjoint probabilities:

1. εi1 is below Lj and εi2 is between Ll and Ul: F (Lj, Ul)− F (Lj, Ll)
2. εi2 is below Ll and εi1 is between Lj and Uj: F (Uj, Ll)− F (Lj, Ll)
3. εi1 is below Lj and εi2 is below Ll: F (Lj, Ll)

If we combine this, we can make the following substitution in (9)

P [Yi1 = j, Yi2 = l|Xi] = F (Uj, Ul)− F (Lj, Ul)− F (Uj, Ll) + F (Lj, Ll) (10)

To compute partial derivatives of the log-likelihood function with respect to Lj, Ll, Uj and
Ul, we can use Lemma 1.

Lemma 1
Let F (A,B) be a bivariate cumulative distribution function where A and B are standard
normal random variables with correlation ρ. Bertsekas & Tsitsiklis (2002) describe that the
conditional probability density function of B given A = a is the normal density function with
mean ρA and variance

√
1− ρ2

∂F (A,B)

∂A
=

∂

∂A

∫ A

−∞

∫ B

−∞
φ2(s, t, ρ)dsdt =

∫ B

−∞
φ2(A, t, ρ)dt = φ(A)F

(
B − ρA√

1− ρ2

)
. (11)

The derivative with respect to ρ is particularly simple:

Lemma 2
Plackett (1954) derived the formula for the partial derivative of the bivariate normal cumu-
lative distribution function with respect to the correlation coefficient ρ

∂F (A,B)

∂ρ
=

1

2π
√

1− ρ2
exp

(
−A

2 +B2 − 2ρAB

2(1− ρ2)

)
= φ2(A,B, ρ). (12)
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Using (10), the chain rule and Lemma 1 we can easily derive the first-order derivatives of the
log-likelihood function with respect to α1,α2,β1 and β2. To impose the monotone order of
the threshold values, we estimate instead a transformation of these values

δ1,k = α1,k

δj,k = log(αj,k − αj−1,k) ∀j > 1
(13)

Instead of estimating ρ using Lemma 2, we estimate the additional parameter r = arctanh(ρ).
We use this Fisher transformation to obtain ρ on the interval [-1,1]. The derivatives of the
bivariate normal distribution function with respect to δj,k and r are given by

∂F (A,B)

∂δj,k
=

∂F (A,B)

∂αj,k

∂αj,k
∂δj,k

∂F (A,B)

∂r
=

∂F (A,B)

∂ρ

∂ρ

∂r

(14)

where we use that
∂(αj,k − x′iβk)

∂αj,k
= 1

∂(αj,k − x′iβk)

∂βk
= −xi

∂α1,k

∂δ1,k
= 1

∂αj,k
∂δj,k

= exp(δj,k)

∂ρ

∂r
= 4 exp(2r)

(1+exp(2r))2

(15)
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2.6 Second-order derivatives of the log-likelihood function

The second-order derivatives of the log-likelihood function are given by

∂2l(θ1,θ2)

∂θ1θ2

=
N∑
i=1

J∑
j=1

L∑
l=1

(
I(Yi1 = j, Yi2 = l)

P [Yi1 = j, Yi2 = l|Xi]

∂2P [Yi1 = j, Yi2 = l|Xi]

∂θ1∂θ2

−

1

P [Yi1 = j, Yi2 = l|Xi]2
∂P [Yi1 = j, Yi2 = l|Xi]

∂θ1

∂P [Yi1 = j, Yi2 = l|Xi]

∂θ2

)
.

(16)

We derive the partial second-order derivatives of the bivariate normal cumulative distribution
function using Clairaut’s theorem, the chain rule, equation 10, Lemma 1 and Lemma 2

∂2F (A,B)

∂A2
= −Aφ(A)F

(
B − ρA√

1− ρ2

)
− ρφ2(A,B, ρ)

∂2F (A,B)

∂A∂ρ
=

ρB − A
1− ρ2

φ2(A,B, ρ)

∂2F (A,B)

∂ρ2
=

AB + ρ+ ρ(A2+B2−2ρAB)
1−ρ2

1− ρ2
φ2(A,B, ρ)

∂2F (A,B)

∂A∂B
= φ2(A,B, ρ)

(17)

The second-order derivatives of the log-likelihood function with respect to δ2jk,k and r2 are
given by

∂2F (A,B)

∂δ2j,k
=

∂2F (A,B)

∂α2
j,k

(
∂αj,k
∂δj,k

)2

+
∂F (A,B)

∂αj,k

∂2αj,k
∂δ2j,k

∂2F (A,B)

∂r2
=

∂2F (A,B)

∂ρ2

(
∂ρ

∂r

)2

+
∂F (A,B)

∂ρ

∂2ρ

∂r2

(18)

where we use that
∂2αj,k
∂δ2j,k

= exp(δj,k)

∂2ρ

∂r2
=

8 exp(2r)− 8 exp(4r)

(1 + exp(2r))3

(19)
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3 Implementation

In this section we explain how we have implemented the bivariate ordered probit model
in R and show some examples. We have created separate functions for computing the
likelihood, the first-order derivatives and the second-order derivatives of the log-likelihood
function. These are called by a function that gives an update of the parameters, which is
called by a function that runs the Newton-Raphson algorithm. The implemented Newton-
Raphson algorithm doesn’t always provide a higher log-likelihood after each iteration before
convergence is reached. Theoretically this should not happen and hence this behaviour is
an artefact of the implementation (possibly due to numerical issues). It is also possible that
the algorithm doesn’t converge at all, then different starting values could be used to obtain
the maximum of the log-likelihood function.

We have simulated data to see whether the model is able to recover the actual parameters
we have used to simulate the data. We have used the following data generating process
(DGP)

y1 = x1 + x2 + ε1
y2 = 3

2
x2 + ε2

(20)

where x1 and x2 are both standard uniformly distributed and ε1 and ε2 are joint standard
normally distributed with correlation 0.5. In Table 1, we see that the parameter estimates
are close to the actual parameter values.

parameter actual value estimate standard deviation
ρ 0.5 0.52 0.08
β1,1 1 1.08 0.11
β2,1 1 1.05 0.10
β1,2 0 0.02 0.08
β2,2 1.5 1.50 0.12
α1,1 -1.4 -1.43 0.14
α2,1 -0.4 -0.45 0.10
α3,1 0.6 0.49 0.09
α4,1 1.5 1.32 0.12
α1,2 -1.4 -1.49 0.14
α2,2 -0.5 -0.41 0.10
α3,2 0.2 0.44 0.08
α4,2 1 0.97 0.09

Table 1: Recovering actual parameters (n = 200)

When we set the actual correlation to 0, we can compare the coefficients of the bivariate
ordered probit model and two univariate ordered probit models. The parameter estimates
should be the same and in Table 6 in Appendix A we see they almost are. When we increase
the number of respondents, the parameter estimates are more close to one another.
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4 Application

4.1 Watching TV coverage of the war in Iraq

In this section we will show a simple application of the bivariate ordered probit model.
Suppose we are interested in how Americans were feeling when they viewed coverage of the
war in Iraq on TV in 2003. We would like to know whether age and gender are influencing
the sadness and fear of the people. We use data from the Pew Internet and American Life
Project, which is collected by Princeton Survey Research Associates (2003).

The response variables are sadness (I feel sad when watching TV coverage of the war); and
fear (It’s frightening to watch TV coverage of the war). The possible answers to the response
variables are strongly agree; agree; disagree; strongly disagree; and don’t know/refused. The
explanatory variables are age (18, 19, . . . , 97, don’t know, refused); and gender (0: male, 1:
female).

We filter out the respondents that have answered Don’t know/Refused to the response vari-
ables or to their age. There is data from 1390 respondents left. The response variables are
ordered and it’s likely that there is correlation between the two response variables, therefore
we estimate the bivariate ordered probit model.

4.2 Parameter estimates and model interpretation

The parameter estimations of the latent variables are
Sadness∗i = −0.004 (0.001) Agei − 0.732 (0.056) Genderi + εi1

Fear∗i = −0.003 (0.001) Agei − 0.707 (0.053) Genderi + εi2
cor(εi1, εi2) = 0.552 (0.017)

(21)

where the standard deviations are in the brackets.

The estimated threshold values are

Sadness = Strongly agree iff Sadness∗i ≤ −1.546 (0.047)
Sadness = Agree iff −1.546 (0.047) < Sadness∗i ≤ −0.260 (0.037)
Sadness = Disagree iff −0.260 (0.037) < Sadness∗i ≤ 0.881 (0.044)
Sadness = Strongly disagree iff Sadness∗i > 0.881 (0.044)

Fear = Strongly agree iff Fear∗i ≤ −1.686 (0.047)
Fear = Agree iff −1.686 (0.047) < Fear∗i ≤ −0.492 (0.037)
Fear = Disagree iff −0.492 (0.037) < Fear∗i ≤ 0.804 (0.043)
Fear = Strongly disagree iff Fear∗i > 0.804 (0.043)

(22)
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Both coefficients for Age are negative, which means that older people feel more sad when
they watch TV coverage of the war and are more frightened than younger people. Both
coefficients for Gender are also negative. According to this model, men feel less sad and
are less frightened than women when watching TV coverage of the war in Iraq. Note that
this could be due to the response styles of men who might not want to admit that they are
frightened or feel sad, because they think men shouldn’t be.

Suppose we would like to predict the response of an American given his/her gender and age.
The predicted response values are shown in Table 2.

Gender Age Sadness Fear
Men ≤ 63 Disagree Disagree
Men > 63 Agree Disagree

Women all Agree Agree

Table 2: Predicted response values

The forecasting performance of this model can be found in Table 3. The hit rate for sadness
is (367 + 259)/1390 = 0.45 and the hit rate for fear is (292 + 358)/1390 = 0.47.

Sadness Predicted values
Response values Agree Disagree
Strongly agree 182 55

Agree 367 231
Disagree 168 259

Strongly disagree 45 83

Fear Predicted values
Response values Agree Disagree
Strongly agree 129 45

Agree 292 212
Disagree 195 358

Strongly disagree 36 123

Table 3: Forecasting performance

Note that the predictive power of this model isn’t very high. The model is not able to
predict the possible answers Strongly agree and Strongly disagree. This also happens when
we estimate univariate models based on this data. This does not mean this model is bad,
since we only have used gender and age as explanatory variables. There could be a lot of
more factors that have influence on sadness and fear of the respondents. When taking that
variables into account, a better forecasting performance could be achieved.
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5 Robustness to response styles

To measure the robustness of the bivariate ordinal probit model to response styles, we
simulate ordinal data and scale a part (50%) of this data with the response style curves
in Figure 3. We will estimate models based on the partly scaled data and compare these
with models based on the non-scaled data as benchmark. We can compare the coefficients
of the models. Furthermore, we can compare the mean squared errors and hitrates of both
models.

5.1 Simulation of response styles

We have transformed the range of the simulated data Ŷ to the range [0,1]. Then we have
scaled this data with the following response style curves, which corresponds with the response
style curves in Figure 3:

No response style Y ∗ = Ŷ

Acquiescence Y ∗ = Ŷ
2
3

Disacquiescence Y ∗ = Ŷ
3
2

Midpoint responding Y ∗ = IŶ (0.5, 0.5)
Extreme responding Y ∗ = IŶ (2, 2)

(23)

where IŶ (θ1, θ2) is the regularized incomplete beta function, which is given by

IŶ (θ1, θ2) =

∫ Ŷ
0
tθ1−1(1− t)θ2−1dt∫ 1

0
tθ1−1(1− t)θ2−1dt

. (24)

Thereafter we have transformed Y ∗ back to the original range. For each response style, we
have estimated a bivariate ordered probit model with 3 covariates (the first of those is a
dummy-variable) and 5 possible response values corresponding with a Likert scale. We have
simulated data for 200 respondents and have applied the response styles to 100 randomly
selected respondents.

Figure 3: Response style curves
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5.2 Effects of response styles on parameter estimates

First we have estimated the model where all 200 respondents don’t have a response style. We
compare the parameter estimates with two models where two opposite response styles are
present: acquiescence (yea-saying) and disacquiescence (nay-saying). For each response style,
the parameters of the model are estimated 100 times. The average parameter estimates and
the estimated standard deviations of the parameter estimates can be found in Table 4.

parameter actual no response style acquiescence disacquiescence
value estimate estimate estimate

ρ 0.5 0.51 (0.08) 0.73 (0.06) 0.73 (0.06)
β1,1 1 1.04 (0.17) 0.75 (0.14) 0.77 (0.14)
β2,1 1 1.02 (0.12) 0.75 (0.11) 0.78 (0.11)
β3,1 -2 -2.05 (0.17) -1.48 (0.15) -1.52 (0.16)
β1,2 0 0.03 (0.20) -0.02 (0.14) 0.03 (0.13)
β2,2 2 2.04 (0.17) 1.45 (0.14) 1.46 (0.16)
β3,2 1.5 1.54 (0.13) 1.10 (0.12) 1.10 (0.12)
α1,1 -1.5 -1.54 (0.19) -1.82 (0.16) -0.38 (0.17)
α2,1 0 0.01 (0.15) -0.72 (0.14) 0.71 (0.14)
α3,1 1 1.02 (0.15) 0.03 (0.16) 1.40 (0.16)
α4,1 2.5 2.58 (0.24) 1.24 (0.24) 2.48 (0.20)
α1,2 -2 -2.03 (0.22) -2.21 (0.21) -0.65 (0.15)
α2,2 -0.5 -0.48 (0.17) -1.14 (0.16) 0.36 (0.14)
α3,2 0.5 0.53 (0.14) 0.38 (0.14) 1.03 (0.14)
α4,2 2 2.06 (0.19) 0.81 (0.19) 2.07 (0.19)

Table 4: (Dis)acquiescence simulation study (n = 200)

We see that:

• The correlation parameter estimate increases when a part of the population has a
(dis)acquiescence response style.
• The β coefficients are multiplied with about 3

4
.

• The threshold value estimates are shifted down when acquiescence occurs, because
the respondents tend to answer with higher ratings. When there is a disacquiescence
response style present, the opposite holds: the threshold values are shifted upwards.
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The parameter estimates of the midpoint responding and the extreme responding response
styles, and the estimated standard deviations, can be found in Table 5.

parameter actual no response style midpoint responding extreme responding
value estimate estimate estimate

ρ 0.5 0.51 (0.08) 0.44 (0.09) 0.47 (0.10)
β1,1 1 1.04 (0.17) 0.97 (0.19) 1.00 (0.16)
β2,1 1 1.02 (0.12) 0.97 (0.10) 0.99 (0.12)
β3,1 -2 -2.05 (0.17) -1.94 (0.19) -1.98 (0.17)
β1,2 0 0.03 (0.20) -0.03 (0.19) 0.03 (0.20)
β2,2 2 2.04 (0.17) 1.89 (0.16) 1.98 (0.17)
β3,2 1.5 1.54 (0.13) 1.43 (0.14) 1.50 (0.15)
α1,1 -1.5 -1.54 (0.19) -1.92 (0.25) -1.17 (0.21)
α2,1 0 0.01 (0.15) -0.14 (0.25) 0.10 (0.16)
α3,1 1 1.02 (0.15) 1.12 (0.31) 0.92 (0.16)
α4,1 2.5 2.58 (0.24) 2.88 (0.30) 2.18 (0.22)
α1,2 -2 -2.03 (0.22) -2.37 (0.30) -1.66 (0.23)
α2,2 -0.5 -0.48 (0.17) -0.62 (0.27) -0.42 (0.21)
α3,2 0.5 0.53 (0.14) 0.61 (0.26) 0.42 (0.18)
α4,2 2 2.06 (0.19) 2.36 (0.23) 1.66 (0.23)

Table 5: Midpoint responding and extreme responding simulation study (n = 200)

Here we conclude that:

• The correlation parameter estimate is close to the actual parameter value.
• The β coefficients are also estimated well.
• The threshold values estimates are more spread out when a part of the respondents

tend to respond often with the midpart of the Likert scale. When there is a lot of
extreme responding, the threshold values are less spread out.
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We have computed smooth kernel density curves of the parameter estimates using the R
package sm, written by Bowman & Azzalini (2013). In Figure 4, the density plot of the
parameter estimates of ρ is shown. We can clearly see that when (dis)acquiescence is present,
the correlation coefficient is estimated too high. The density plots of the other parameter
estimates can be found in Appendix B.

Figure 4: Density plot of parameter estimates of ρ (actual value = 0.5)

We also have applied the acquiescence and disacquiescence response styles to “a known
part” of the respondents. The covariate x1 is a dummy-variable that indicates whether a
respondent belong to this group. The average parameter estimates and standard deviations
can be found in Appendix C. Now we have different results:

• The correlation parameter estimate is estimated very well.
• The corresponding coefficients β1,1 and β1,2 are shifted downwards when acquiescence

is present and shifted upwards when disacquiescence is present.
• The other β estimates are close to the actual parameter values.
• The threshold values are shifted down/up due to a change in the β1,1 and β1,2 estimates.

When we apply the midpoint responding and extreme responding response styles to a known
part of the respondents, the results are the same as when we apply the response styles
randomly. This is because there is a difference between the (dis)acquiescence response styles
and the midpoint/extreme responding response styles: the first ones changes the skewness
of the distribution of the simulated data, the last ones don’t.
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6 Conclusion

Surveys are often used by companies to measure consumer mindset metrics, for example
brand associations, purchase intention and customer satisfaction. A problem with modelling
survey data is that there could be bias due to the presence of response styles. When we
analyze the bivariate ordered probit model while (dis)acquiescence is present, the correlation
coefficient is estimated too high, the absolute value of the β coefficients decreases and the
threshold values are shifted. This problem can be solved by adding a dummy-variable that
indicates which respondents have this response style. Then the correlation coefficient and
the β coefficients (except those who correspond with the dummy-variable) are estimated
close to the actual values. The threshold values are still shifted. The presence of midpoint
responding leads to an increase in the dispersion of the threshold values, extreme responding
leads to a decrease.
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7 Discussion

In this project, we have explored the robustness of the bivariate ordered probit model to the
presence of response styles. These results are useful to take into account when response styles
are present; however we didn’t explore how one could detect response styles. That doesn’t
fall within the scope of this project, but is a really interesting topic for further research.

There are some limitations to the software implementation in this project:

• The Newton-Raphson algorithm doesn’t always converge. When convergence is
reached, the log-likelihood doesn’t always increase monotonically. An example is shown
in Figure 5.
• We use the parameter estimates of two univariate ordered probit models as “warm

starts” for the Newton-Raphson algorithm. Using multiple random starting values
may improve the chance of finding the global maximum of the log-likelihood function.
• In expression (10), we take differences of four integrals. These integrals are approxi-

mated. Instead of approximating four different integrals, one could approximate the
total expression at once, for example using Leibniz’s integral rule. This could lead to
better approximations.
• The number of respondents (200) and the number of simulations per response style

(100) could be higher. We didn’t do this because the computations cost a lot of time.
Vectorizing the code will decrease the computation time.

Figure 5: Example of non-monotone convergence
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Appendix

A Recovering univariate ordered probit parameter estimates

We compare the coefficients of the bivariate ordered probit model and two univariate ordered
probit models. The parameter estimates should be the same and we see they almost are.
When we increase the number of respondents, the parameter estimates are closer to one
another.

parameter actual bivariate model univariate model
value estimate estimate

ρ 0 0.11 -
β1,1 1 1.09 1.09
β2,1 1 1.09 1.09
β1,2 0 0.04 0.03
β2,2 1.5 1.48 1.48
α1,1 -1.4 -1.35 -1.35
α2,1 -0.4 -0.64 -0.64
α3,1 0.6 0.55 0.56
α4,1 1.5 1.38 1.39
α1,2 -1.4 -1.48 -1.48
α2,2 -0.5 -0.44 -0.43
α3,2 0.2 0.44 0.45
α4,2 1 1.05 1.06

Table 6: Comparison with univariate ordered probit models (ρ = 0, n = 200)
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B Smooth density plots of simulation parameter estimates

For each response style, the parameter estimates of the model are estimated 100 times.
The density curves are computed by the R package sm, written by Bowman & Azzalini
(2013).

Figure 6: Density plot of parameter estimates of β1,1 (actual value = 1)

Figure 7: Density plot of parameter estimates of β1,2 (actual value = 0)
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Figure 8: Density plot of parameter estimates of β2,1 (actual value = 1)

Figure 9: Density plot of parameter estimates of β2,2 (actual value = 2)
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Figure 10: Density plot of parameter estimates of β3,1 (actual value = -2)

Figure 11: Density plot of parameter estimates of β3,2 (actual value = 1.5)
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Figure 12: Density plot of parameter estimates of α1,1 (actual value = -1.5)

Figure 13: Density plot of parameter estimates of α1,2 (actual value = -2)
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Figure 14: Density plot of parameter estimates of α2,1 (actual value = 0)

Figure 15: Density plot of parameter estimates of α2,2 (actual value = -0.5)
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Figure 16: Density plot of parameter estimates of α3,1 (actual value = 1)

Figure 17: Density plot of parameter estimates of α3,2 (actual value = 0.5)
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Figure 18: Density plot of parameter estimates of α4,1 (actual value = 2.5)

Figure 19: Density plot of parameter estimates of α4,2 (actual value = 2)
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C Applying (dis)acquiescence to a known group

We have applied the acquiescence and disacquiescence response styles to “a known part” of
the respondents. The covariate x1 is a dummy-variable that indicates whether a respondent
belong to this group.

parameter actual no response style acquiescence disacquiescence
value estimate estimate estimate

ρ 0.5 0.51 (0.08) 0.49 (0.10) 0.50 (0.09)
β1,1 1 1.04 (0.17) -0.89 (0.28) 2.89 (0.36)
β2,1 1 1.02 (0.12) 1.01 (0.11) 1.04 (0.12)
β3,1 -2 -2.05 (0.17) -2.06 (0.15) -2.06 (0.19)
β1,2 0 0.03 (0.20) -2.07 (0.34) 1.98 (0.33)
β2,2 2 2.04 (0.17) 2.04 (0.21) 2.05 (0.18)
β3,2 1.5 1.54 (0.13) 1.54 (0.15) 1.55 (0.15)
α1,1 -1.5 -1.54 (0.19) -3.50 (0.37) 0.46 (0.27)
α2,1 0 0.01 (0.15) -2.00 (0.29) 1.90 (0.32)
α3,1 1 1.02 (0.15) -0.93 (0.26) 2.85 (0.35)
α4,1 2.5 2.58 (0.24) 0.74 (0.29) 4.37 (0.47)
α1,2 -2 -2.03 (0.22) -4.13 (0.46) 0.04 (0.26)
α2,2 -0.5 -0.48 (0.17) -2.65 (0.39) 1.51 (0.31)
α3,2 0.5 0.53 (0.14) -1.59 (0.32) 2.46 (0.33)
α4,2 2 2.06 (0.19) 0.09 (0.27) 3.87 (0.38)

Table 7: Applying (dis)acquiescence to “a known part” of the respondents (n = 200)
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