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Abstract

The empirical method is one of the best-performing demand forecasting methods
in inventory decision making for products with intermittent demands. However,
this method has difficulties obtaining high fill rates since the used corresponding
empirical distribution cannot handle extreme values that has not been observed.
To improve the empirical method on this issue, this thesis first briefly intro-
duces the extreme value theory (EVT) which provides a solid theoretical basis
and framework for tail estimation and extrapolation, and then proposes three
extrapolation methods. Verified by simulation studies, the extrapolation method
applying EVT works the best among the proposed methods and successfully ex-
trapolates the empirical distribution in the tail area.
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Chapter 1

Introduction

A fundamental aspect of inventory management is accurate demand forecasting.
Without an estimate of the future customer demand it is impossible to plan the
levels of inventories that will be required to offer customers a good level of service.

Inventory control for parts with infrequent demands requires a separate disci-
pline since their demand is often characterized as being intermittent or irregular
with a large proportion of zero and sudden high values. Such items include service
(spare) parts and high-priced capital goods, e.g. heavy machinery, and are often
described as ‘slow-moving’. For the companies making, using, or maintaining this
kind of items, it is essential to determine the right amount of stocks in order to
avoid high inventory costs and penalties in case of availability.

Quite some methods have been developed to forecast the demand and improve
inventory control for spare parts. Basten et al. (2012) is one of the few studies
which compared several spare part demand forecasting methods using real data
from three companies. One of the best-performing forecasting method appears to
be the empirical method introduced by (Porras and Dekker, 2008). This method
samples the lead time demand (LTD) from the daily demands using a moving
window and makes use of the corresponding empirical distribution to determine
the important inventory control parameter, the re-order point.

Let (X1, . . . , Xn) be an obtained sample LTD of size n, the corresponding
empirical distribution Fn is defined as the following,

Fn(x) =
1

n

n∑
i=1

1{Xi≤x}.

To determine a re-order point s for a specified service level of fill rate β, one
chooses the smallest s satisfying:

β ≤ 1− ES(s)

Q
,

where Q is a pre-determined lot size, and ES(s) is the expected units short for a
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given re-order point s, which is defined as follows:

ES(s) = E
[
(X − s) 1{X>s}

]
=

∫ ∞
s

(x− s) dF (x).1

As Basten et al. (2012) points out, using the empirical distribution Fn to
determine re-order points has difficulties obtaining high fill rates, since it cannot
take care of values greater than the sample maximum, in other words, it fails to
evaluate ES(s) for s > Xn,n.

To tackle this issue we need to extrapolate the empirical distribution in the
tail area.

This bachelor-thesis therefore investigates how the empirical distribution can
be extrapolated in the tail area in order to improve the empirical method?

Methodology of our research consists mainly of two parts. In the first part, we
propose and discuss extrapolation methods by applying the extreme value the-
ory (EVT), since EVT provides a solid theoretical basis and framework for tail
estimation and extrapolation. Moreover, the concerned quantity, expected short-
age ES(s), is similar to the expected shortfall E(X|X > VaRq) in financial risk
management, where VaRq is the q-th quantile of the distribution. To accurately
estimate the expected shortfall for large VaRq’s, one often applies EVT in finance.
Obviously, we can also apply EVT in our context to estimate the expected short-
age. The second part of our methodology is to use simulation studies to assess
the performance of the extrapolation methods. Based on the simulation results,
we wish to determine an extrapolation method that effectively captures the tail
behavior of the lead time demands and successfully extrapolates the empirical
distribution. The best performing extrapolation method can be used to improve
the empirical method.

The set-up of this thesis is as follows. Chapter 2 introduces EVT briefly and
discusses some useful application of the theory. Using the idea of EVT, we pro-
pose in Chapter 3 several tail extrapolation methods to model the tail of LTD
distributions. In Chapter 4 we conduct the simulation study where the perfor-
mance of these extrapolation methods will be assessed and discussed. Finally,
conclusions and limitations are given in Chapter 5.

1In this thesis, unless otherwise mentioned, all the integrals are Lebesgue-Stieltjes integra-
tion. In this way, we do not need to distinguish discrete and continuous distributions.
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Chapter 2

Extreme Value Theory (EVT)

Extreme value theory (EVT) provides a framework to formalize the study of
behavior in the tail of a distribution. EVT allows us to use extreme observations
to measure the density in the tail. This measure can be extrapolated to parts of
the distribution that are yet to be observed in the empirical data.

EVT was pioneered by Fréchet (1927) and Fisher and Tippett (1928). They
have developed the one-dimensional probabilistic EVT. The asymptotic theory
was then unified and extended by Gnedenko (1943). The statistical theory was
initiated by Pickands (1975). Since the 1980s the contours of the relevant statis-
tical theory started taking shape. And nowadays, EVT has already been applied
in various fields, from finance to flood-control.

The approach to EVT in this thesis follows most closely de Haan and Ferreira
(2006) because of its accessibility, thoroughness and self-containedness. All the
theorems and results used in this chapter are stated and proved in this book.

This chapter first briefly introduces EVT in a way such that we will just have
enough theoretic background to apply it. Then we will discuss two important
applications of EVT and the relevant estimators. In the end of this chapter, two
examples will be considered to demonstrate the power of EVT.

2.1 General Theory

The idea of EVT is basically to restrict the behavior of the distribution function
in the tail to resemble a limited class of functions that can be fitted to the tail of
the distribution.

Consider first the Generalized Pareto distribution (GPD). The cumulative
distribution function of GPD is defined by

Gγ(x) =

{
1− (1 + γx)−1/γ for γ 6= 0,

1− e−x for γ = 0,

where the support is x ≥ 0 when γ ≥ 0 and 0 ≤ x ≤ −1/γ when γ < 0.
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This distribution is generalized in the sense tht it subsumes certain other dis-
tributions under a common parametric form. γ is the important shape parameter
of the distribution. If γ > 0, Gγ is a reparametrized version of the ordinary
Pareto distribution; γ = 0 corresponds to the exponential distribution and γ < 0
is known as Pareto type II distribution.

The following limit theorem is one of the key results in EVT and explains the
importance of the GPD.

Theorem 1. (de Haan and Ferreira, 2006, Theorem 1.2.1) The distribution func-
tion F is in the domain of attraction of the extreme value distribution GPD if
and only if there exists some positive function f such that

lim
s ↑x∗

1− F (s+ xf(s))

1− F (s)
= 1−Gγ(x) (2.1)

for all x for which with 1 + γx > 0, where x∗ := sup{x : F (x) < 1}. γ is called
the extreme value index. For γ > 0, x∗ is infinite; for γ < 0, x∗ is finite; for
γ = 0, x∗ can be finite or infinite.

For this thesis it is sufficient to know that all the common distributions of
statistics belong to the domain of attraction of GPD (e.g. normal, lognormal,
uniform, beta, exponential etc.). In fact, it is not easy to find distribution func-
tions that do not belong to this domain of attraction. In practice, this condition
cannot be checked since we do not know the tail. But this is a common feature
in statistics, e.g., for estimating the mean one has to assume it exists and for
assessing the accuracy one usually assumes the existence of the second moment.

There is an alternative formulation of this theorem in terms of a function U
which is the left-continuous inverse of 1/(1− F ), i.e.,

U(t) := inf {y : 1/(1− F (y)) ≥ t} = inf{y : F (y) ≥ 1− 1/t}. (2.2)

This function plays a vital role in extreme value theory which will become clear
in the next section. The following theorem assures the reformulation of (2.1) in
terms of U .

Theorem 2. (de Haan and Ferreira, 2006, Theorem 1.1.6)
For γ ∈ R, the following statement is equivalent to (2.1):
There is a positive function α such that for x > 0,

lim
s→∞

U(sx)− U(s)

α(s)
=
xγ − 1

γ
. (2.3)

where for γ = 0 the right-hand side is interpreted as log(x).
Moreover, this equivalence also holds with

f(s) = α

(
1

1− F (s)

)
. (2.4)
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2.2 Applications of EVT

This section discusses the two most important applications of EVT.
Let X be a random variable with distribution function F which belongs to the

domain of attraction of GPD. Theorem 1 implies loosely speaking that from some
high threshold s onward (i.e. X > s) the distribution function can be written
approximately as

1− F (x) ≈ (1− F (s))

{
1−Gγ

(
x− s
f(s)

)}
, x > s.

which is a parametric family of distribution tails. One can expect this approxi-
mation to hold for intermediate and extreme order statistics.

Let X1, X2, . . . be i.i.d. random variables with distribution function F , and
Fn the corresponding empirical distribution function. Let us apply the last ap-
proximation with s := Xn−k,n, where we choose k = k(n) → ∞, k/n → 0, as
n→∞. Then

1− F (x) ≈ (1− F (Xn−k,n))

{
1−Gγ

(
x−Xn−k,k

f(Xn−k,n)

)}
and, since 1−F (Xn−k,n) ≈ 1−Fn(Xn−k,n) = k/n, and by relation (2.4) f(Xn−k,n) =
α(1/(1− F (Xn−k,n))) ≈ α(n/k), we have

1− F (x) ≈ k

n

{
1−Gγ

(
x−Xn−k,k

α(n
k
)

)}
. (2.5)

This approximation is valid for any x larger than Xn−k,n and can be used even
for x > Xn,n, which is outside the range of the observation. This is in fact the
basis for applications of extreme value theory.

Next we consider the second application of EVT applying Theorem 2. Relation
(2.3) leads to the following approximation:

U(x) ≈ U(s) + α(s)
(x
s
)γ − 1

γ
, x > s.

This approximation in useful when one wants to estimate a quantile F←(1−p) =
U(1/p) with p very small, since this quantile is then related to a much lower
quantile U(s) = F←(1 − 1/s), which can be estimated by an intermediate order
statistic. Hence we choose s := n/k with k = k(n) → ∞, k/n → 0, n → ∞.
Then for small p,

U

(
1

p

)
≈ U

(n
k

)
+ α

(n
k

) ( k
np

)γ − 1

γ
. (2.6)
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According to (2.2), the quantity U(n/k) can be estimated by the intermediate
order statisticXn−k,n. Again this approximation will be used not only for 1/p < n,
but also for extrapolation outside the sample.

An immediate result of relation (2.6) is to approximate the endpoint x∗. If
the underlying distribution F belongs to the domain of attraction of GPD for
some negative γ, the endpoint x∗ is by Theorem 1 finite. An estimator of x∗ can
be motivated from relation (2.6). Recall x∗ := inf{x : F (x) < 1}, let p → 0 in
(2.6), we obtain

U(∞) ≈ U
(n
k

)
−
α(n

k
)

γ
.

Hence the following estimator for the endpoint is proposed

x̂∗ := Xn−k,n −
α(n

k
)

γ
. (2.7)

In order to make approximation (2.5) and (2.6) applicable, we need to estimate
γ, the function α at point n/k which will be discussed in the next section.

2.3 The moment estimators

Various estimators for the extreme value index γ have been introduced and de-
veloped in the field of EVT. The most commonly used estimators are discussed in
de Haan and Ferreira (2006), such as the Hill (1975), Pickands (1975), Maximum-
Likelihood (MLE), moment, probability weighted moment (PWM) (Hosking and
Wallis, 1987) and negative Hill (Falk, 1995).

The Hill estimator is consistent only for positive values of γ, the MLE is de-
fined for γ > −1/2, the PWM is consistent for γ < 1, and the negative Hill for
γ < −1/2. Only the Pickands and moment estimators are defined and consistent
for all real values of γ. However, for a large range of values of γ, the Pickands
estimator has larger asymptotic variance than the others. Moreover, the imple-
mentation of the moment estimator is quite convenient comparing with the other
estimators. Therefore, we will only consider the moment estimators for the rest
of this thesis.

For j = 1, 2, define

M (j)
n :=

1

k

k−1∑
i=0

(logXn−i,n − logXn−k,n)j .

The moment estimator for γ is defined as follows

γ̂ := M (1)
n + 1− 1

2

1−

(
M

(1)
n

)2
M

(2)
n


−1

.
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Related to this moment estimator, we introduce an estimator for the scale
function α.

Define

γ̂− := 1− 1

2

1−

(
M

(1)
n

)2
M

(2)
n


−1

.

The estimator for the scale function is define as

α̂
(n
k

)
:= Xn−k,nM

(1)
n (1− γ̂−) .

This estimator has been proved to be consistent and asymptotically normally
distributed.

There is still one issue left to be considered, i.e., the choice of k. It is theoret-
ically proved for k(n)→∞, and k(n)/n→ 0 as n→∞, we have consistency of
the estimators γ̂ and α̂. However, it remains a complex problem to choose the k
with respect to the sample size n optimally. There is trade-off between choosing
k too small or too large. On the one hand, if k is too small, there are few ob-
servations which will result in large variance. On the other hand, if k is chosen
too large, we involve “non-extreme” observations, which will impose bias in the
estimators. A practical solution is to choose the k using a diagram of estimates,
which means that we compute and plot γ̂ for k = 1, . . . , n − 1, and the choose
the k at which the values of γ̂ is stabilized. For example, Figure 2.1 exhibits
the diagram of estimates for a sample with size 50 of folded Slash distributed
random variables. (How to generate folded Slash distributed random variables is
explained in Appendix B.) In this case, we will choose k = 25.

Figure 2.1: Diagram of the estimates of γ with respect to the choice of k

Using these estimators, relations (2.5), (2.6) and (2.7) can be henceforth ap-
plied to estimate tail probabilities, quantiles and endpoints respectively.
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2.4 Examples

This section contains two examples of applications of EVT.
The first example demonstrates how EVT can be applied to estimate the tail

probability. Let X ∼Weibull(θ, λ). The tail probability can be easily calculated
by using the corresponding CDF F . For a large c, we have

P(X > c) = 1− F (x; θ, λ) = exp

(
−
( c
λ

)θ)
.

However, in practice, we do not know the underlying distribution most of the
times, but only have a sample of random variables from the distribution. Instead
of using any other advanced statistical techniques, simply applying relation (2.5)
already provides a good estimator of the tail probability.

To illustrate the accuracy of this estimator, we perform simulation for the
Weibull distribution with different parameters k and λ, and difference sample
sizes. The simulation is conducted as follows:

1. draw a sample of size n = 50 from the Weibull distribution with θ = 5 and
λ = 1/2;

2. estimate γ̂ and α̂(n
k
) for different k, and choose the optimal k by means of

diagram of estimates of γ;

3. apply relation (2.5) to approximate P(X > c) for different values of c.

4. Repeat step 1-3 for a large number of times and take the average of the tail
probability estimates.

5. Repeat step 1-4 for different pairs of (θ, λ) and sample size n.

Table 2.1 exhibits the simulation results of the estimation. Obviously, the larger
the sample, the more accurate the tail probability estimates become. Moreover,
the further the point locates in the tail area, the more accurate the estimation be-
come. Although EVT is a asymptotic theory, the estimates appear to be already
close to the theoretical value with a small sample of size 50.

The second example shows how EVT can be used as the quantile function of
a distribution. Let Y ∼ Uniform(a, b), we try to estimate the value xp for which
P(X ≤ xp) = 1− p. Theoretically we determine xp for a given p as follows:

xp = F←(1− p; a, b) = a+ (1− p)(a− b)1[0,1](p).

In addition, as the uniform distributions have finite endpoints, the estimates of
the endpoints will be computed as well. Using relation (2.6), we perform the same
procedure as the first example to estimate the quantiles for different samples sizes,
different parameters and different values of p.
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P(X > c)
Approximation by (2.5)

n = 50 n = 500 n = 5000

θ = 5,
λ = 1/2

c = 25 0.1069 0.1363 0.1104 0.1103

c = 35 0.0710 0.0750 0.0729 0.0705

c = 50 0.0423 0.0511 0.0423 0.0423

θ = 8,
λ = 1/3

c = 25 0.2318 0.1881 0.1832 0.1989

c = 35 0.1948 0.2133 0.2021 0.2004

c = 50 0.1585 0.1649 0.1564 0.1579

c = 80 0.1160 0.0992 0.1082 0.1160

c = 100 0.0982 0.0856 0.0945 0.0985

θ = 10,
λ = 1/4

c = 25 0.2844 0.2668 0.2833 0.2873

c = 35 0.2547 0.2401 0.2462 0.2520

c = 50 0.2242 0.1982 0.2243 0.2242

c = 80 0.1860 0.1582 0.1854 0.1859

c = 500 0.07 0.0675 0.0688 0.685

c = 800 0.0503 0.0540 0.467 0.485

Table 2.1: Simulation results of tail probability estimations

F←(1− p; a, b) Approximation by (2.6)

n = 50 n = 500 n = 5000

a = 10,
b = 50

p = 0.01 49.6 48.0507 49.4834 49.5165

p = 0.05 48 46.5003 47.9105 47.8995

p = 0.10 46 44.5153 45.8139 46.0432

p = 0.2 42 41.1714 42.0302 42.0086

x∗ 50 49.2922 49.9657 49.9789

a = 75,
b = 100

p = 0.01 99.75 99.3899 99.7482 99.7493

p = 0.05 98.75 98.3312 98.7284 98.7398

p = 0.10 97.5 97.4532 97.4897 97.4880

p = 0.2 95 94.8104 94.9464 95.0110

x∗ 100 99.9968 100.0102 99.9991

Table 2.2: Simulation results of quantile estimations
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The results are shown in Table 2.2.
Similar conclusions can be drawn for this example. The more observations

there are available, the better the EVT quantile (and endpoints) estimates be-
come. Nevertheless, EVT already provides reasonably accurate estimates with a
small sample (with 50 observations).
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Chapter 3

Tail Extrapolation for Empirical
distribution

This chapter explains three tail extrapolation methods that are meant to improve
the empirical method proposed by Porras and Dekker (2008).

Recall that in inventory decision making, one needs to determine inventory
control parameters, such as the re-order points. The empirical method is used to
estimate the distribution of LTD and consequently determine the re-order points.
This method samples the LTD from the daily demands using a moving window
and makes use of the corresponding empirical distribution.

Let (X1, . . . , Xn) be an obtained sample of LTD of size n. From the corre-
sponding empirical distribution Fn, we can determine the probability mass func-
tion f̂(x),

f̂(x) = dFn(x) =
1

n

n∑
i=1

1{Xi=x}. (3.1)

The re-order point s for a specified fill rate β is chosen to be the smallest s
satisfying:

β ≤ 1− ES(s)

Q
, (3.2)

where Q is a pre-determined lot size and ES(s) is evaluated as follows:

ES(s) =
∑
x|x>s

(x− s)f̂(x).

As Basten et al. (2012) points out, this method has difficulties obtaining high
fill rates, since it fails to evaluate ES(s) for s > Xn,n. To tackle this issue, we
propose the following three tail extrapolation methods.
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3.1 Tail extrapolation using EVT

The first tail extrapolation method applies a few important results of EVT assum-
ing that the underlying distribution of LTD belongs to the domain of attraction
of GPD.

We first use the estimators discussed in section 2.3 to estimate all the param-
eters needed to apply the theorems, such as the shape parameter γ and the scale
function α(n

k
). Note that the choice of a proper k can be determined by means

of a diagram of estimates.
Then Relation (2.5) suggests that

P(X < Xn,n) = F (Xn,n) ≈ 1− k

n
·Gγ̂

(
Xn,n −Xn−k,n

α̂(n
k
)

)
:= F̂ (Xn,n). (3.3)

If F̂ (Xn,n) = 1, we will just continue using the empirical method. F̂ (Xn,n) < 1
means that there may be greater values than the sample maximum Xn,n and
extrapolation is necessary.

The extrapolation starts with scaling down the probability mass function f̂(x)

with the value F̂ (Xn,n), i.e., ∀x ≤ Xn,n,

f̂(x) =
F̂ (Xn,n)

n

n∑
i=1

1{Xi=x}. (3.4)

Then we can evaluate the expected shortage ES(s) as follows:

ÊS(s) =
∑

x|s<x<Xn−k,n

(x− s)f̂(x) + ÊStail (max(s,Xn−k,n)) , (3.5)

where

ÊStail(s) =



k
n
· α̂(

n
k
)

1−γ̂

(
1 + γ̂

(
s−Xn−k,n
α̂(n

k
)

))1−1/γ̂
0 < γ̂ < 1,

k
n
· α̂
(
n
k

)
exp

(
−s+Xn−k,n

α̂(n
k
)

)
γ̂ = 0,

k
n
· α̂(

n
k
)

1−γ̂

{(
1 + γ̂

(
s−Xn−k,n
α̂(n

k
)

))1−1/γ̂
−
(

1 + γ̂
(
x̂∗−Xn−k,n

α̂(n
k
)

))1−1/γ̂}
γ̂ < 0.

(3.6)

The derivation of ÊStail is presented in Appendix A.1.
Note if γ̂ < 0, the endpoint x∗ is supposed to be finite and should be estimated
using (2.7). However, for γ̂ ≥ 1, the expected shortage goes to infinity, and we
would just use the original empirical method.
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Furthermore, one of the nice features of the empirical distribution is to capture
all the special characteristics of the sample, e.g., a sample of LTD exclusively
contains values that are multiples of 2. To retain this feature during extrapolation,
we choose the step size of extrapolation ε as the smallest positive difference
between the sample values, i.e.,

ε := min{Xi+1,n −Xi,n > 0 : 1 ≤ i ≤ n− 1}. (3.7)

Hence, for a target fill rate β, the re-order point s will be chosen to be the
smallest s, such that (3.2) holds, where ES(s) is evaluated by (3.5) and (3.6).
Starting from an initial value of s, we will keep increasing s with step size ε until
(3.2) holds.

3.2 Tail extrapolation using exponential distri-

bution

The second tail extrapolation method makes use of the tail of exponential dis-
tributions. The exponential distribution has a heavier tail than the normal dis-
tribution, but a lighter tail than the heavy-tailed distributions like the Cauchy
distribution. However, many of the common distributions belong to the class
of distributions with simple exponential tails (Jones, 2008), for example the
Gamma distribution and Weibull distributions. Therefore we decide to propose
this method using the tail of exponential distributions.

The extrapolation procedure is similar to the first one.
Assuming that the LTD is exponentially distributed, a Maximum-Likelihood

estimators of the mean µ̂ will be estimated based on the sample. The estimator µ̂
is used for the following estimator to estimate the tail probability P(X < Xn,n):

F̂ (Xn,n) := 1− exp

(
−x
µ̂

)
. (3.8)

Note that we will always have F̂ (Xn,n) < 1 due to the Maximum-Likelihood

estimators µ̂. The probability mass function f̂ will therefore always be scaled
down with the value F̂ (Xn,n) using (3.4).

The expected shortage ES(s) in (3.2) will be evaluated as follows:

ÊS(s) =
∑

x|s<x<Xn,n

(x− s)f̂(x) + ÊStail (max(s,Xn,n)) , (3.9)

where

ÊStail(s) = µ̂ exp

(
− s
µ̂

)
. (3.10)
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The derivation of (3.10) is presented in Appendix A.2.

Furthermore, this method also makes use of the step size ε determined by
(3.7), in order to capture the special characteristics of the sample.

Hence, to determine re-order points given a target fill rate, we begin with an
initial value of s, say X1,n. We keep increasing s each time by step size ε, until
(3.2) holds.

3.3 Tail extrapolation using normal distribution

The third tail extrapolation method makes use of the tail of normal distributions,
since normal distributions are very popular in statistics, and are often used to
fit real-valued random variables whose distributions are not known (Casella and
Berger, 2001).

The extrapolation procedure is very similar to the other methods.
Given the sample of LTD, we first determine the Maximum-Likelihood esti-

mators µ̂ and σ̂ assuming that the LTD is normally distributed. Then we can
use the following estimator to estimate the tail probability P(X < Xn,n):

F̂ (Xn,n) := Φ

(
Xn,n − µ̂

σ̂

)
. (3.11)

Due the Maximum-Likelihood estimators, F̂ (Xn,n) will always be less than 1.

Hence the probability mass function f̂ will always be scaled down with the value
F̂ (Xn,n) using (3.4).

Then we can evaluate the expected shortage ES(s) as follows:

ÊS(s) =
∑

x|s<x<Xn,n

(x− s)f̂(x) + ÊStail (max(s,Xn,n)) , (3.12)

where

ÊStail(s) =
σ̂√
2π

exp

(
−(s− µ̂)2

2σ̂2

)
+ (µ̂− s)

(
1− Φ

(
s− µ̂
σ̂

))
. (3.13)

The derivation of (3.13) is presented in Appendix A.3.
Last but not the least, this extrapolation method also makes use of the step

size ε determined by (3.7), when determining the re-order point. An initial value
of s will be increased with this step size until (3.2) holds, where ES(s) is of course
evaluated by (3.12) and (3.13).

3.4 General algorithm

It is noteworthy that the three extrapolation methods discussed above follow a
very similar procedure which can be summarized by Algorithm 1.
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Algorithm 1 Tail Extrapolation for Empirical distribution

Require: X : the sample of lead time demands
β : the target fill rate

Output: s : reorder point satisfying condition (3.2)

1: construct the empirical mass function f̂ of the sample X, see (3.1)

2: estimate all the parameters needed to apply the extrapolation method

3: estimate P(X ≤ Xn,n) using estimator F̂ (Xn,n) (3.3), (3.8) or (3.11)

4: if F̂ (Xn,n) < 1 then

5: scale f̂ down with F̂ (Xn,n) by (3.4)

6: determine the step size ε by (3.7)

7: define ÊS(s) by (3.5), (3.9) or (3.12)

8: initialize S e.g. set s = X1,n

9: while 1− ÊS(s)/X < β do

10: s = s+ ε

11: end while

12: else

13: use the original empirical method

14: end if
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3.5 Simulations

In this section, we perform a simulation study in order to assess the performance
of these discussed tail extrapolation methods.

Let X denote the LTD. For different target fill rate β and various distributions
of X, we first determine the theoretic re-order point s∗ by solving the following
equation for s numerically:

1−
∫∞
s

(x− s) dF (x)

Q
= β,

where F is the distribution function of X and Q is chosen to be 1.
Then we repeat the following steps for a large number of times:

1. generate a sample of X with size N according to the specified distribution;

2. determine the re-order points by means of the empirical distribution and
the three discussed tail extrapolation methods respectively.

Calculate the average of the re-order points for different methods.
This simulation is performed for folded normal distribution with location pa-

rameter 6 and scale parameter 5 and folded non-standard t distribution with
2 degrees of freedom and location parameter 6. We make use of folded distri-
bution because of the non-negative product demands in inventory management.
Note this folded t distribution has a much heavier tail than the folded normal
distribution. The density functions and sample simulation of these two folded
distributions are presented in Appendix B.

By these two distributions, we can show how the extrapolation methods per-
form with respect to the empirical distribution on light-tailed as well as heavy-
tailed distributions.

The results of this simulation are shown in Table 3.1 and 3.2.
In the case of the light-tailed folded normal distribution, EVT extrapolation

method can yield re-order points which quickly converge from above to the opti-
mal s∗. Even with a small sample size of 10, the re-orders are already very close
to s∗. Extrapolation methods using exponential and normal tails appear to be
overestimating overall, which will result in redundant high inventory costs. With
small sample sizes (< 50), the empirical distribution yields re-order points that
are significantly lower than s∗ and therefore will have the difficulty to achieve the
fill rate targets, especially for high fill rates.

In the case of the heavy-tailed folded t distribution, although none of the
method works well with small sample sizes, EVT extrapolation still outperforms
the other methods. The re-order points determined by EVT method converge to
s∗ much faster than the empirical distribution. The tails of exponential and nor-
mal distributions seem to be too light to fit the heavy tails like this t distribution.
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tfr(β) s∗ sample
size

s determined by means of

EVT tail EXP tail Normal tail Empirical

0.90 14.3158

N = 10 15.3830 28.4430 20.5430 13.3430

N = 20 15.0843 27.5843 20.1843 14.0804

N = 50 15.1419 28.3219 21.0219 15.4178

N = 100 14.4888 27.7088 20.6688 14.8173

0.95 15.6921

N = 10 16.1324 32.1324 21.3924 13.4475

N = 20 16.0324 32.4004 21.4204 14.4089

N = 50 16.0056 32.1056 22.5856 16.5912

N = 100 15.9391 32.7991 22.7791 16.5673

0.99 18.5034

N = 10 18.2137 38.6537 24.4937 13.3124

N = 20 19.0852 41.2652 25.9252 15.5480

N = 50 18.7996 42.8596 25.8396 17.3837

N = 100 18.7902 43.2702 26.5102 18.0480

Table 3.1: Simulation results of X is folded normally distributed with location
parameter 6 and scale parameter 5.

In conclusion, EVT extrapolation method performs as expected better than
the other two extrapolation methods and the empirical distribution. To verify
whether EVT extrapolation method indeed improves the empirical method for
inventory control, we will present an extensive simulation study of an inventory
control system in the next chapter.
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tfr(β) s∗ sample
size

s determined by means of

EVT tail EXP tail Normal tail Empirical

0.95 21.6333

N = 10 16.1324 32.1324 21.3924 13.4475

N = 20 17.6820 28.9220 13.6420 11.6678

N = 50 20.8853 30.9653 15.7253 15.3164

N = 100 21.6984 30.8584 15.6984 16.7761

0.97 34.3646

N = 10 17.0450 28.9450 14.3050 10.7901

N = 20 21.9048 31.5448 15.4848 13.5296

N = 50 25.2633 34.7633 16.9033 15.5948

N = 100 29.2727 35.9727 19.6727 19.9879

N = 500 35.0703 40.01403 28.53403 30.4852

0.99 100.3537

N = 10 15.0976 28.3376 13.8376 9.5258

N = 20 18.9780 32.0180 15.4380 11.7195

N = 50 32.7535 37.3335 17.9535 16.4519

N = 100 68.4903 49.2703 30.3103 29.7746

N = 500 81.9582 57.1382 46.1782 49.1690

N = 1000 101.9768 62.3368 56.09680 62.3753

Table 3.2: Simulation results of X is folded non-standard t distributed with 2
degree of freedom and location parameter 6.
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Chapter 4

Simulation study

To compare the performance of the tail extrapolation methods in the context of
our original inventory problem, we perform an extensive simulation study of an
inventory control system. This chapter consists of two parts. In the first part,
the simulation set-up will be explained. In the second part, the simulation results
will be shown and discussed.

4.1 Simulation set-up

We apply an (s, nQ) inventory control policy with a daily review period and
backordering, where the duration of replenishment lead time L is assumed to be
constant. This policy means that if the inventory position IP drops to s or below,
where

IP = stock on hand + outstanding orders - back orders, (4.1)

an order is placed of size nQ where

n = min{n ∈ N : IP + nQ > s}, (4.2)

and Q ∈ N is the minimum order quantity (MOQ). Simulation of this inventory
system is performed for two types of demands, frequent demand and intermittent
demand.

4.1.1 Type I: frequent demand

For the first type of frequent product demands, a non-negative random number
will be generated as the daily demand according to a specified probability dis-
tribution in the beginning of each day. If this daily demand exceeds the current
stock level, the excess amount will be regarded as back orders, and the total back
orders will be updated with this amount.

To obtain a sample of LTD for further analysis, we apply the empirical method
proposed by Porras and Dekker (2008). Let D be the vector containing all the
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daily demands up to this day. A window of size L will be placed over D, which
means that the demand on day 1 to day L is summed up to obtain the first lead
time demand. The window moves one period (day) at a time until the end of the
vector D is reached. For example, if the vector D has 100 elements, the sample
of the lead time demands will have a size of 100 − L + 1. This sample of LTD
will then be used to determine the re-order points s for a given target fill rate β,
where we apply the methods described in Chapter 3. Recall the re-order point s
is chosen to be the smallest s satisfying:

β ≤ 1− ES(s)

Q
.

In this simulation study, Q, or the MOQ, is chosen to be the maximum of 1 and
the smallest positive difference between the sample values of LTD, in other words,
the step size ε in (3.7). That is,

Q := max(1, ε).

The re-order point is updated at the beginning of each review period, thus each
day. Then the total inventory holding costs will be updated which is the sum of
the current total holding costs and the current stock level. If there is an order
arriving, the stock level will be updated and the back orders will be delivered.
At the end of each day, an order will be placed if the inventory position drops at
s or below.

Each simulation run considers a period of N days. After a warm-up period of
10 +L days, the starting stock is set at s+Q. In the end of each simulation run,
statistics like the total inventory holding costs and achieved fill rate are collected
for further analysis. The procedure of one simulation run can be summarized by
Algorithm 2.

4.1.2 Type II: intermittent demand

For the second type of intermittent demand, we only adapt some slight change
in the simulation model of Type I demand.

To take the intermittent feature of demand into account, we first generate
Poisson distributed random numbers which indicate the number of days between
each two consecutive non-zero demands and these demands will be generated
according to the specified probability distribution. The rest of the procedures
remains the same.

4.1.3 Set-up

For both types of demand, we have performed the simulation with a constant
lead time of 10 days and a simulation period of 70 days. Such a short simulation
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Algorithm 2 Simulation inventory control

Require: L : the lead time
Q : the minimum order quantity
N : the number of simulation runs
β : the target fill rate

Output: H : total inventory holding cost
FR : the achieved fill rate

1: for t = 1→ 10 + L do

2: generate a daily demand Dt according to a specified distribution

3: end for

4: determine the reorder point s using all the past demands D . use Chapter 3

5: set current inventory level x to s+Q

6: for t = 10 + L+ 1→ N do

7: update H = H + x

8: if order arrival on day t = true then

9: update inventory level

10: fulfill and update back orders (if there is any)

11: end if

12: generate a daily demand Dt according to a specified distribution

13: update inventory level x

14: if stockout occurs then

15: update back orders

16: update total back orders

17: end if

18: calculate IP by (4.1)

19: if new order should be placed then

20: determine n to place an order of quantity nQ (4.2)

21: update order lists

22: end if

23: update the re-order point s using all the past demand up to t . use

Chapter 3

24: end for

return FR = 1− total back orders/total demands
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period is chosen since the lack of data is a typical problem in practice when one
deals with products having intermittent demands. We want stay with the practice
as far as possible. Moreover, the simulation has been replicated for 5000 times
for each method and different daily demand distributions. The considered daily
demand distributions are:

1. Folded Normal distribution with location parameter 2 and scale parameter
1.

2. Folded t distribution with 2 degrees of freedom and location parameter 2

3. Folded Slash distributed with location parameter 2 and scale parameter 1.

The choice of folded distributions is again because of the non-negative product
demands.

Furthermore, it is worth to mention how we choose the parameter k when
applying the tail extrapolation using EVT. Due to the large number of replicates
of the simulation, manually choosing the parameter k by means of a diagram
of estimates each time when we determine the re-order point is not realistic.
Therefore, we have pre-specified to choose k as follows:

sample size N

≤ 15 16− 20 21− 25 26− 30 31− 40 41− 50 51− 60

k : d0.8Ne d0.75Ne d0.7Ne d0.65Ne d0.6Ne d0.5Ne d0.4Ne

It is important to keep this in mind since it implies that we are not applying EVT
optimally.

4.2 Results

In all cases, we compare the performance of the extrapolation methods by estab-
lishing trade-off curves between inventory holding costs and achieved fill rates,
and the achieved fill rates against target fill rates. Sub-figures (a) show the the
average total holding costs as a function of the achieved fill rate, while sub-figures
(b) show the the achieved fill rates as a function of the target fill rate. This gives
better insights than comparing the holding costs for each achieved fill rate. Be-
sides, it is very hard to get exactly the same achieved fill rate for all methods.
Note that we have only considered high target fill rates, since our purpose is to
tackle the issue that the empirical method has difficulties obtaining high fill rates.

Figure 4.1 and 4.2 show the simulation results for the folded normally dis-
tributed daily demands for both types demands respectively. Figure 4.3 and 4.4
show the results for the folded t distribution, and Figure 4.5 and 4.6 exhibit the
results for the folded Slash distribution. It is noteworthy that the performance
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of the methods does not significantly differ between Type I and Type II demands
in the sense that if a method does not perform well for one of the type demands,
it does not work for the other Type demands either.

The empirical distribution has indeed difficulties obtaining high fill rates in
all cases, even for the light-tailed folded normal distribution, not to mention the
other two distributions with heavier tails.

The extrapolation method using exponential tails appear to overestimate for
the folded normal distribution as well as the folded t distribution. The fitted
exponential distributions have probably too heavy tails. However, the tails of the
fitted exponential distributions seem to be too light for the heavy-tailed folded
Slash distribution.

The extrapolation method using normal tails does not perform well either.
In the cases of folded normal and t distribution, this method yields achieved fill
rates that are much higher than the target fill rates for relatively low targets
(≤ 0.92). However, for really high targets (> 0.96), the achieved fill rates are far
below the target. In the cases of the heavy-tailed folded Slash distribution, the
fitted normal distribution is also too light to obtain high fill rates.

In all cases, the extrapolation method applying EVT outperforms the other
two extrapolation methods and performs much better than the empirical distri-
bution. For the folded normal and t distribution, this method yields achieved fill
rates that are very close to the target fill rates: for relatively low targets (≤ 0.93),
the achieved target fill rates are only slightly higher than the their target; for high
targets (≥ 0.95), the achieved target fill rates are just below their target. In the
cases of the heavy-tailed folded Slash distribution, although the EVT extrapo-
lation method works better than the other methods, it also has difficulties to
obtain high fill rates. This can be explained by the fact that it is unrealistic to
capture the tail behavior of heavy-tailed distributions with such few data. After
the warm-up period in each simulation run, we start only with a sample of size
11 to predict the LTD. One cannot expect an accurate demand forecast with this
sample size if the demand follows a heavy-tailed distribution. Even if the method
starts to work better as the sample size increases, the overall achieved fill rate
remains low. Besides, recall that we are not applying this method optimally due
to the pre-specified parameter k.

In summary, the simulation results have demonstrated that the extrapolation
method applying EVT performs the best among the proposed methods and indeed
can improve the empirical method in inventory decision making for products with
both frequent and intermittent demands.
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(a)

(b)

Figure 4.1: Type I Simulation results for folded normally distributed daily de-
mands with location parameter 2 and scale parameter 1.
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(a)

(b)

Figure 4.2: Type II Simulation results for folded normally distributed daily de-
mands with location parameter 2 and scale parameter 1.
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(a)

(b)

Figure 4.3: Type I Simulation results for folded t distributed daily demands with
2 degrees of freedom and location parameter 2.
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(a)

(b)

Figure 4.4: Type II Simulation results for folded t distributed daily demands with
2 degrees of freedom and location parameter 2.
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(a)

(b)

Figure 4.5: Type I Simulation results for folded Slash distributed daily demands
with location parameter 2 and scale parameter 1.
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(a)

(b)

Figure 4.6: Type II Simulation results for folded Slash distributed daily demands
with location parameter 2 and scale parameter 1.
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Chapter 5

Conclusions and limitations

In this thesis, we have introduced and applied the extreme value theory (EVT) to
present a tail extrapolation method which can be used to improve the empirical
method that is proposed by Porras and Dekker (2008) in the inventory manage-
ment for products with intermittent demands. This tail extrapolation method
is compared with two alternative extrapolation methods based on exponential
distribution and normal distribution tails.

The performance of these tail extrapolations methods are assessed by re-order
points simulations in Section 3.5 and the extensive inventory control system sim-
ulations in Chapter 4. All the simulation results have demonstrated that the
EVT tail extrapolation method outperforms the other two methods and success-
fully extrapolates the empirical distribution. The results of the inventory control
system simulations showed.

It is also noteworthy that although EVT is an asymptotic theory, our extrap-
olation method applying EVT still performs well in almost all the cases, even for
a very small sample of LTD (with a sample size of 10). This is a good news for
us, since the lack of data is a typical problem in practice when one deals with
products having intermittent demands. If the EVT extrapolation method is ap-
plied in practice, it will yield better results than the current empirical method
with only few data. With the lapse of time, more data can be collected, this
extrapolation method will certainly perform even better.

In conclusion, the extrapolation method applying EVT successfully extrapo-
lates the empirical distribution and therefore can be used to improve the empirical
method for inventory control of products with intermittent demands.

There are a few limitations in our research. The simulation study in Chap-
ter 4 has not demonstrated the optimal performance of the EVT extrapolation
method due to the choice of k. In practice, one should determine k manually by
means of the diagram of estimates. In addition, it would be more convincing if
one can assess the performance of the proposed extrapolation methods by means
of real industry data. Moreover, the proposed extrapolation methods assume
that the LTD follows a particular probability distribution and neglect other pos-
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sibilities, e.g. the LTD may follow a stochastic process. Last but not least, this
thesis only considers a constant lead time while in practice the lead time is of-
ten stochastic. One should consider bootstrapping methods to handle stochastic
lead times. Nevertheless, the extrapolation method applying EVT can contribute
to the bootstrapping methods. Note that we can condition the LTD on the lead
times, and for each fixed lead time, we can use the empirical distribution applying
the EVT extrapolation method.
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Appendix A

Derivation section 2

A.1 Tail extrapolation using EVT

To calculate the expected shortage given the threshold s, we first rewrite ES(s)
as

ES(s) = E
[
(X − s)1{X>s}

]
=

∫ x∗

s

(x− s) dF (x)

=

∫ x∗

s

∫ x

s

du dF (x)

(Fubini)
=

∫ x∗

s

∫ x∗

u

dF (x) du

=

∫ x∗

s

(1− F (u)) du, (A.1)

where F is the distribution function of X and x∗ := sup{x : F (x) < 1}.
Relation (2.5) suggests that we can approximate (A.1) by

k

n

∫ x∗

s

{
1−Gγ

(
x−Xn−k,n

α(n
k
)

)}
dx, ∀ s ≥ Xn−k,n. (A.2)
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For 0 < γ < 1, x∗ =∞ by Theorem 1 and (A.2) equals to

k

n

∫ ∞
s

{
1 + γ

(
x−Xn−k,n

α(n
k
)

)}−1/γ
dx

=
k

n
·
α(n

k
)

1− γ

{
1 + γ

(
x−Xn−k,n

α(n
k
)

)}1−1/γ
∣∣∣∣∣
∞

s

=
k

n
·
α(n

k
)

1− γ

(
1 + γ

(
s−Xn−k,n

α(n
k
)

))1−1/γ

.

For γ = 0 and assuming x∗ =∞, (A.2) equals to

k

n

∫ ∞
s

exp

(
−x+Xn−k,n

α(n
k
)

)
dx

=
k

n
·
(
−α
(n
k

))
exp

(
−x+Xn−k,n

α(n
k
)

)∣∣∣∣∞
s

=
k

n
· α
(n
k

)
exp

(
−s+Xn−k,n

α(n
k
)

)
.

For γ < 0, x∗ is finite by Theorem 1 and (A.2) equals to

k

n

∫ x∗

s

{
1 + γ

(
x−Xn−k,n

α(n
k
)

)}−1/γ
dx

=
k

n
·
α(n

k
)

1− γ

{
1 + γ

(
x−Xn−k,n

α(n
k
)

)}1−1/γ
∣∣∣∣∣
x∗

s

=
k

n
·
α(n

k
)

1− γ

{(
1 + γ

(
s−Xn−k,n

α(n
k
)

))1−1/γ

−
(

1 + γ

(
x∗ −Xn−k,n

α(n
k
)

))1−1/γ
}
.

For γ ≥ 1, it is clearly that (A.2) goes to infinite.
In summary, with suitable estimators γ̂, x̂∗ and α̂(n

k
), we can estimate the
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expected shortage for all s ≥ Xn−k,n as

ÊStail(s) =



k
n
· α̂(

n
k
)

1−γ̂

(
1 + γ̂

(
s−Xn−k,n
α̂(n

k
)

))1−1/γ̂
0 < γ̂ < 1,

k
n
· α̂
(
n
k

)
exp

(
−s+Xn−k,n

α̂(n
k
)

)
γ̂ = 0,

k
n
· α̂(

n
k
)

1−γ̂

{(
1 + γ̂

(
s−Xn−k,n
α̂(n

k
)

))1−1/γ̂
−
(

1 + γ̂
(
x̂∗−Xn−k,n

α̂(n
k
)

))1−1/γ̂}
γ̂ < 0.

A.2 Tail fitting by exponential distribution

Suppose X ∼ EXP(µ), we have∫ ∞
s

(x− s)f(x) dx
(A.1)
=

∫ ∞
s

(1− F (x)) dx

=

∫ ∞
s

e−
x
µ dx

= −µe−
x
µ

∣∣∣∞
s

= µe−
s
µ .

Using the Maximum-Likelihood estimator µ̂, we can estimate the expected short-
age as

ÊStail(s) = µ̂ exp

(
− s
µ̂

)
.

A.3 Tail fitting by normal distribution

Suppose X ∼ N (µ, σ), we have∫ ∞
s

(x− s)f(x) dx =

∫ ∞
s

(x− µ)f(x) dx+

∫ ∞
s

(µ− s)f(x) dx

=

∫ ∞
s

(x− µ)
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
dx+ (µ− s)P(X > s)

(t=x−µ)
=

∫ ∞
s−µ

t
1√

2πσ2
exp

(
− t2

2σ2

)
dt+ (µ− s)P

(
Z >

s− µ
σ

)
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=
σ√
2π

exp

(
− t2

2σ2

)∣∣∣∣∞
s−µ

+ (µ− s)
(

1− Φ

(
s− µ
σ

))
=

σ√
2π

exp

(
−(s− µ)2

2σ2

)
+ (µ− s)

(
1− Φ

(
s− µ
σ

))
.

Using the Maximum-Likelihood estimators µ̂ and σ̂ of the sample, we can estimate
the expected shortage as

ÊStail(s) =
σ̂√
2π

exp

(
−(s− µ̂)2

2σ̂2

)
+ (µ̂− s)

(
1− Φ

(
s− µ̂
σ̂

))
.
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Appendix B

Folded distributions

The folded distributions are often used when the measurement system produces
only non-negative measurements. In this Appendix, we present the density func-
tion and the random number generation of some folded distributions.

B.1 Folded normal distribution

The folded normal distribution is proposed by Leone et al. (1961).
Let X ∼ N (µ, σ), then its absolute value Y = |X| will have the following

density function

fY (y) =
1√
2πσ

{
exp

(
−(y − µ)2

2σ2

)
+ exp

(
−(−y − µ)2

2σ2

)}
, ∀ y ≥ 0.

The random variable Y is said to have location parameter µ and scale parameter
σ.

It is very easy to generate a folded normal distributed random variable with
location parameter µ and scale parameter σ, that is just taking the absolute value
of a generated normally distributed random variable with parameters µ and σ.

B.2 Folded non-standard t distribution

The folded non-standard t distribution is first thoroughly studied by Psarakis
and Panaretos (1990).

Let T be a random variable having the non-standard t distribution with ν
degrees of freedom and location parameter µ as defined by the density function

fT (x) =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
πν

(
1 +

(x− µ)2

ν

)− ν+1
2

, ∀ ν ∈ N, x ∈ R.
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Let W be the folded random variable of T , i.e. W = |T |. The density function
of W is given by

fW (w) = fT (w) + fT (−w), ∀w ≥ 0.

To generate a folded non-standard t distributed random variable with ν de-
grees of freedom and location parameter µ, we follow the following steps:

1. Generate a standard t distributed random number with ν degrees of free-
dom, say T1. This can be done by using for example the built-in MATLAB
function trnd with input ν.

2. Calculate T2 = T1 + µ.

3. Taking the absolute value of T2, we get the desired random variable.

B.3 Folded Slash distribution

The Slash distribution was introduced by Rogers and Tukey (1972). It is a less
famous probability distribution, which can be obtained by a standard normal
variate divided by an independent standard uniform variate. In other words,
if the random variable Z has a normal distribution with zero mean and unit
variance, the random variable U has a uniform distribution on [0, 1] and Z and
U are statistically independent, then the random variable X = Z/U has a slash
distribution. The slash distribution is hence an example of a ratio distribution.
Another example of a ratio distribution is the Cauchy distribution.

The tail of the Slash distribution is heavier than the tail of the normal and
exponential distribution, but lighter than the tail of the Cauchy distribution. It
is typically known to have a long tail.

A Slash distributed Y with location parameter µ and scale parameter σ can
be obtained by the ratio

Y =
X

U
,

where X has a folded normal distribution with location parameter µ and scale
parameter σ and U has a uniform distribution on [0, 1], and X and U are inde-
pendent.

We also use this relation to generate Slash distributed random variables.
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