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ABSTRACT
There has been an increasing demand for insights into the
quality of health care. In this paper we analyse differences in
quality of care among hospitals, using an unbalanced dataset
containing observations of patients with traumatic brain in-
jury. We discuss random effects and fixed effects models
which are traditionally used for modeling variation in perfor-
mance of hospitals. Results demonstrate that these methods
leave a lot of uncertainty about the existence of individual
differences. Findings also reveal that actual differences are
hardly distinguishable. Hence, we propose a finite mixture
approach. Our empirical results suggest that three quality
groups with hospitals are sufficient to describe the variation
in health care quality. Classifying hospitals in quality clus-
ters provides a correct alternative to current shaky hospital
rankings.
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1. INTRODUCTION
Health care is nowadays one of the most challenging is-

sues. On the one hand we see strongly increasing health
care costs. In the Netherlands the expenditures on health
care increased to 70.1 billion euro in 2010, which equals 11.9
percent of the Dutch gross domestic product (CBS, 2012).
Because of the expected ageing of the world’s population it
is plausible that the expenditures on care keep rising (Lutz
et al., 2008). On the other hand people demand only the
best care for their health problems. So hospitals have to
provide high quality care while controlling costs. Just two
decades ago only physicians had a social mandate to judge
the quality of care (Blumenthal, 1996). Today, patients re-
quire transparancy to compare hospitals and to assess the
quality of care by themselves.

There are more stakeholders interested in health care qual-
ity. First, hospitals and physicians could improve their per-
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formance by comparing different health care providers and
learn from best practices. Second, goverments try to moni-
tor hospitals to ensure a certain level of quality. The Dutch
government requires health care providers to make informa-
tion about the quality of their care accessible to patients
(Rijksoverheid, 2013). Finally, health insurance companies
are also interested in care quality, especially in the differ-
ences between hospitals. Dutch health insurers consider the
purchasing of health care on quality as main theme (ZN,
2013).

Hence, there are many institutes which require insight
into the differences in quality among hospitals. A commonly
used method to measure and publicly report quality of care
provided by hospitals is to determine performance by rank-
ing hospitals (Anderson et al., 2007). In the Netherlands
we have several of these rankings. The Ministry of Public
Health makes information publicly accessible from reports
of the inspection about quality of care. Clients could eas-
ily compare hospitals on a website operated by the govern-
ment (RIVM, 2013). Each year the newspaper ‘Algemeen
Dagblad’ publishes the ‘Hospital Top Hundred’ (AD, 2012).
Weekly magazine ‘Elsevier’ also compares all Dutch hospi-
tals each year (SIRM, 2012).

It is doubtful whether these rankings represent the quality
of the hospitals. Anderson et al. (2007) found that “consid-
erable uncertainty exists in ranking of hospitals” and sub-
sequently “calls into question the use of rank ordering as
a determinant of performance”. Also Jacobs et al. (2005)
states that great care is warranted in interpreting the rank-
ings of hospitals. According to Ranstam et al. (2008) it is
even doubtfull if a correct ranking can be achieved, due to an
insufficient number of patient observations. When patients
and insurers draw conclusions based on incorrect rankings
there are large consequences for the health care. Lilford
et al. (2004) states that it can result in capricious sanctions,
unjustified rewards and the risk of stigmatising an entire
institution.

Therefore, it is important to find a more appropriate way
to compare hospitals. Lingsma (2010) states that measur-
ing care with outcome measures such as mortality poses two
major methodological problems. First, because of differ-
ences between patient samples of hospitals, outcomes could
differ between hospitals regardless the variation in quality
of care. Therefore comparisons between hospitals need an
adjustment for each patient’s characteristics. Second, when
sample sizes are small the variation in outcome between hos-
pitals could easily lead to overinterpretation of differences
between hospitals. Taking into account individual patient
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characteristics and statistical uncertainty can improve qual-
ity of care measures.

In this paper we discuss methods to estimate individual
differences in quality of health care among hospitals. We use
an unbalanced dataset with traumatic brain injury patient
observations in different hospitals. We examine fixed effects
models and random effects models and show that differences
in quality are hardly distinguisable. Therefore we propose
a method to obtain clusters of hospitals in which hospitals
provide similar quality, while the quality of care differs across
the clusters. We estimate these clusters by means of a finite
mixture model. This approach provides an alternative to
current hospital rankings.

Previous studies have focused on the tradeoff between
fixed effects and random effects in modeling differences in
quality of care between hospitals. Lingsma (2010) calculated
fixed and random hospital effects for ten hospitals from the
Netherlands Stroke Survey 2002-2003. She stated that us-
ing fixed effects models to estimate effects for the relative
quality of hospitals with small patient populations, could
lead to exploding estimates and over-interpretation of dif-
ferences between hospitals. She found that random effects
are more conservative in estimating differences between hos-
pitals. Austin et al. (2003) used Monte Carlo simulations to
examine the ability of random effects and fixed-effects mod-
els to correctly classify hospitals according to their perfor-
mance. They showed that “the sensitivity of the random ef-
fects method was inferior to that of the fixed-effects model,
whereas under most scenarios examined, the specificity of
the random-effects model was greater than that of the fixed-
effects model”. Glance et al. (2006) investigated how robust
health outcomes report cards are to changes in the underly-
ing statistical methodology. They discussed random effects
and fixed effects models for estimating differences between
hospitals and concluded that findings vary using different
statistical methods, due to the fact that models always rest
on assumptions.

Finite mixture models are used in a variety of scientific
disciplines. Vermunt (2008) described finite mixture mod-
els for the analysis of hierarchical data sets and provided
several applications. For instance, he considered the antibi-
otics prescriptions of doctors in two Chinese counties and
used finite mixture to identify clusters of doctors with simi-
lar prescription behaviour. Galbraith and Green (1990) gave
the example of a random sample of grains from a population
in which there are three different ages and the distribution
over the ages is unknown. This is comparable to our case in
the sense that we also do not know the proportions of hos-
pitals which are assigned to different quality clusters. How-
ever, in addition to the unknown proportions, we also have
an unknown number of quality clusters. Paap et al. (2005)
used a finite mixture model with an application to cluster-
ing countries on growth rate. They proposed a model which
“allows a data-based classification of countries into clusters
such that within a cluster countries have the same average
growth rate”. We follow broadly the same approach, with
the countries replaced by hospitals.

The outline of this paper is as follows. In Section 2 we ex-
plain the dataset we use, how the dataset has been cleaned
and the variables we use in our models. In Section 3 we
discuss the methods we use to determine and evaluate dif-
ferences in quality of health care among hospitals. In Section
4 we discuss the results of the models and the implications

on modeling and interpretation of differences in quality of
health care. In the last section, Section 5, we provide a dis-
cussion on the main results, discuss some limitations of our
research and give suggestions for further research.

2. DATA
In this paper we use a dataset from Erasmus Medical Cen-

ter containing information about patients with traumatic
brain injury (TBI), a leading cause of disability and death
worldwide (Perel et al., 2008). This dataset is based on the
International Mission for Prognosis And Clinical Trial (IM-
PACT) database. In this section we discuss the content of
the dataset and how the dataset has been cleaned. Next, we
discuss the variables we use in our models.

Marmarou et al. (2007b) describe the design and content
of the IMPACT database of traumatic brain injury. The
database contains data over 11988 individual patients with
moderate and severe TBI from randomized controlled trails
and observational studies. Patients with missing outcomes,
missing age, younger than fourteen, and/or with missing
hospital indicator are excluded from the dataset. Also pa-
tients from one single-center study are excluded. In order
to estimate fixed effects models we can only include hospi-
tals in our analysis within which patient outcomes vary, as
we explain in Section 3. Hence, we drop 36 hospitals from
our data because of all positive or all negative outcomes in
addition to the cleaning of the Erasmus Medical Center. Ul-
timately, we have a dataset with 10011 individual patients
enrolled at 230 different hospitals. Each hospital has one
unique code when it participated in multiple studies in the
database.

In this paper we investigate the differences between hos-
pitals in patient outcome after traumatic brain injury. We
use the Glasgow Outcome Scale (GOS) as outcome measure.
Jennett and Bond (1975) describe this five-point scale which
we dichotomize as favourable versus unfavourable outcome,
at six months after injury. The favourable outcome includes
the categories good recovery and moderate disability. The
unfavourable outcome is composed of severe disability, veg-
etative state or death.

We use an unfavourable outcome according to GOS as
binary dependent variable in our analysis. Three main pre-
dictors of outcome in TBI are included as independent vari-
ables. These control variables for heterogeneity in patient
populations per hospital contain patient characteristics mea-
sured at admission. First, we consider the age of a patient
as continuous variable. Second, we consider the pupillary
reactivity as categorical variable. The pupil reactivity is di-
vided into three categories; both reacting, one reacting, and
neither reacting. The Glasgow Coma Scale (GCS) motor
score is our third independent categorical variable (Teasdale
and Jennett, 1974). We distinguish seven different categories
for the motor respones; makes no movements, extension to
painful stimuli, abnormal flexion to painful stimuli, flexion
or withdrawal to painful stimuli, localizes painful stimuli,
obeys comands, and untestable. The last category is in-
cluded to deal with patients sedated at admission. Because
sedation can be caused by either severe TBI or by other
injuries, we consider these patients as untestable.

Multiple studies used these three variables in prognostic
analyses in TBI (Perel et al., 2008; Murray et al., 2007;
Hukkelhoven et al., 2005; Lingsma et al., 2011). Moreover,
Marmarou et al. (2007a) found a strong association between
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the GCS motor score and pupil reactivity and 6-month GOS.
Mushkudiani et al. (2007) demonstrated that increasing age
is strongly related to poorer outcome assessed by the GOS
after TBI.

We consider 230 unique hospitals with widely varying pa-
tient numbers. Figure 1 shows the number of patiens per
hospital. The hospitals with the smallest patient popu-
lations treat only two patients and the largest population
amounts to 517 patients. The average number of patients
per hospital is 43 and the median equals 22. Of all the pa-
tients 48 percent have an unfavourable outcome. The me-
dian age equals 30 and ranges from 14 to 93. The distri-
bution of patients over the categories in pupillary reactivity
and GCS motor score are shown in Appendix A.

Figure 1: Observed Number of Patients per Hospital

3. METHODS
In this section we explain the methods that we use to de-

termine and evaluate differences in quality of health care
among hospitals. First, we provide the general model speci-
fication. Second, we explain three specific ways of estimating
quality of care per hospital, namely with fixed effects, with
random effects, or with a finite mixture approach. After
specifying the models we discuss the methods which we use
to evaluate and compare the different models.

3.1 Modeling Differences Between Hospitals
Patient characteristics and quality of care are the factors

which influence patient outcome. We take the patient char-
acteristics into account with independent variables which
indicate the condition of the patient. With respect to the
quality of care we take the differences between hospitals into
consideration. These differences could be modeled with ran-
dom or fixed effects. These models are often used in the
analysis of panel data. We also propose a finite mixture
approach. We apply these models to our case in which the
data is grouped by N different hospitals and each hospital
i has Ti different observations. One observation represents
here one unique patient. We define the dependent variable
yit as the outcome of patient t in hospital i six months after
injury, with i = 1, ..., N , t = 1, .., Ti, and T =

∑N
i=1 Ti is the

total number of patients.

yit =

{
1 if unfavourable outcome of patient t in hospital i

0 otherwise

We define xit as the vector with an intercept and K explana-
tory variables which describe the characteristics of patient t
in hospital i. Because of the binary dependent variable we
use a logit model:

Logit(P [yit = 1|xit]) = αi + x′itβ (1)

where β is the vector with parameters corresponding to xit
and αi is a hospital-specific parameter. The αi’s capture
all the effects peculiar to hospital i. Therefore we use the
estimate of αi as indicator for quality of care in hospital i.

3.1.1 Fixed Effects Specification
When we see the αi’s in (1) as N fixed unknown param-

eters we have a fixed effects logit model. We estimate the
models by means of maximum likelihood. To demonstrate
the log-likelihood function we first rewrite the logit model
of (1) and define the cumulative distribution function F (.)
of the logit model:

P [yit = 1|xit] = F (αi + x′itβ) =
eαi+x

′
itβ

1 + eαi+x
′
itβ

(2)

In the case of a fixed effects model we treat the αi’s as
fixed unknown parameters. Therefore, we can include N −
1 dummy variables for the hospitals in the standard logit
model. This gives us the following log-likelihood function:

L(β, α1, ..., αN ) =

N∑
i=1

Ti∑
t=1

(yit ln(F (αi + x′itβ))

+ (1− yit) ln(1− F (αi + x′itβ)))

(3)

Maximizing this unconditional log-likelihood function results
in consistent parameter estimates provided that the number
of patients goes to infinity. This implies that we can only es-
timate the fixed effects consistently if the number of observa-
tions for each hospital grows, which requires a large number
of patients (Verbeek, 2004). Because of superior asymptotic
properties we also consider conditional maximum likelihood.
In this case we consider the likelihood function conditional
upon the sufficient statistic

∑Ti
t=1 yit. This means that the

conditional log-likelihood function no longer depends upon
αi but still depends upon the other parameters β:

Lc(β) =

N∑
i=1

ln(f(yi1, ..., yi,Ti |
Ti∑
t=1

yit, x1t, x2t, ...)) (4)

where f(.) is the probability density function of yi1, ..., yi,Ti .
Chamberlain (1982) gives a further derivation of the condi-
tional log-likelihood function. Conditional maximum likeli-
hood makes consistent estimation possible but cannot pro-
duce any estimates of the hospital-specific parameters. There-
fore, we cannot use this estimation method to compare the
quality of care between hospitals. Katz (2001) investigated
whether the use of unconditional maximum likelihood could
be justified on the basis of finite-sample properties. He found
a negligible amount of bias in the unconditional maximum
likelihood estimates when the observations per unit, in our
case a hospital, are greater than fifteen.

In Section 2 we noted that we discard all the observa-
tions from hospitals with only positive or negative outcomes.
From the likelihood functions of the fixed effects logit model
it becomes clear that when in hospital i yit = 1 for all t
then the maximum likelihood estimate of αi is ∞ and if
yit = 0 for all t the maximum likelihood estimate of αi is
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−∞. Therefore we only include the hospitals in our analysis
within which yit varies.

3.1.2 Random Effects Specification
When the αi’s are drawings from a normal distribution

with mean zero and variance σ2
α the model in (1) is referred

to as the random effects logit model. The log-likelihood
function of the random effects logit model equals:

L(β, α1, ..., αN ) =

N∑
i=1

ln(

∫ ∞
−∞

e−α
2
i /2σ

2
α

√
2σα

× {
Ti∏
t=1

F (αi + x′itβ)} dαi)

(5)

Because we only have to estimate one distribution param-
eter instead of separate hospital effects, the random effects
estimator is more efficient than the fixed effects estimator.
However, the random effects model provides inconsistent es-
timates when the hospital-specific effects are correlated with
the independent variables. Glance et al. (2006) states that
there is reason to suspect that patient characteristics are
not independent of provider effect. For example, when older
patients are more likely to be treated by high-quality hospi-
tals, the age of the patients are correlated with the hospital-
specific effects.

3.1.3 Finite Mixture Specification
Besides distinguishing differences between individual hos-

pitals, we can also differentiate different segments with hos-
pitals. This is a good idea when we do not have enough
power to find individual differences. We use a finite mixture
logit model to group the hospitals in clusters with similar
performance. We assume that within each cluster hospitals
have the same quality of care, while quality of care is differ-
ent across the distinct clusters. The model estimates from
the data how many clusters there are and which hospitals
belong to which cluster. Paap et al. (2005) describe this
approach in detail.

We assume that each hospital-specific effect αi is equal
to one of the J different values γj with probability pj =

P (si = j) = 1, ..., J and
∑J
j=1 pj = 1. Here is si the cluster

indicator for hospital i. So the hospitals can be classified
into J clusters, where γj is the cluster-specific effect. This
gives us the following model:

P [yit = 1|xit] =

J∑
j=1

pjf(γj + x′itβ) (6)

with

f(γj + x′itβ) = F (γj + x′itβ)yit(1− F (γj + x′itβ))1−yit (7)

To estimate this finite mixture model we first define the
likelihood function of (6):

l(y;β, γ1, ..., γJ) =

N∏
i=1

(

J∑
j=1

pj(

Ti∏
t=1

f(γj + x′itβ))) (8)

When we assume that the value of s = (s1, ..., sN ) is known,
we can consider the complete data likelihood function:

l(y, s;β, γ1, ..., γJ) =

N∏
i=1

(

J∑
j=1

(pj

Ti∏
t=1

f(γj + x′itβ))I[si=j])

(9)

We estimate the parameters of our model in (6) using the
EM algorithm of Dempster et al. (1977), which provides a
maximum of the log-likelihood function. This iterative two-
step procedure consists of an expectation and a maximiza-
tion step. In the first step (E-step) we take the expectation
of the log complete data likelihood function with respect to
s|y given the current estimates of β, γ1, ..., γJ :

Es|y[L(y, s;β, γ1, ..., γJ)]

=

N∑
i=1

(

J∑
j=1

ŵij(ln pj +

Ti∑
t=1

ln f(γj + x′itβ)))
(10)

where

ŵij = P (si = j|yi1, ..., yiT , β̂, γ̂1, ..., γ̂J)

=
p̂j

∏Ti
t=1 f(γ̂j + x′itβ̂)∑J

j=1 p̂j
∏Ti
t=1 f(γ̂j + x′itβ̂)

(11)

In the second step (M-step) we maximize the expectation
of the complete data log-likelihood function with respect to
the parameters pj , β, γ1, ..., γJ . This provides a value of p̂j :

p̂j =
1

N

N∑
i=1

ŵij (12)

The first and second order conditions used in the maximiza-
tion step can be found in Appendix B.

Before we start the first iteration of the EM algorithm,
we initialize the weights ŵij and the parameters β̂, γ̂1, ..., γ̂J .
Subsequently we use the parameters to calculate new weights
in the E-step and thereafter we update the parameters using
the new weights in the maximization of the expectation of
the complete data loglikelihood function in (10). The two
steps of the EM algorithm are repeated until convergence.
When the estimates of the parameters are converged to their
final values, we can use the final weights to classify hospitals
into clusters with similar quality of care. We assign each
hospital i to cluster j for which ŵij = maxj ŵij . This results
in the following cluster model:

P [yit = 1|xit, si = j] = F (γj + x′itβ) (13)

To determine the appropriate number of clusters in this
model, we estimate the finite mixture logit model in (6) for
different values of J . We prefer the model with the lowest
Bayesian Information Criterion:

BIC = −2(L(y;β, γ1, ..., γJ)) + (K + J) ln(T ) (14)

Because we have to ensure that the parameters of our finite
mixture model are identified, we cannot estimate every num-
ber of clusters. A sufficient condition for identifiability in a
finite mixture of binomial models requires that (Follmann
and Lambert, 1991):

J ≤ 1

2
(min(Ti) + 1) (15)

This means that if we want to estimate eight clusters, we
have to discard the hospitals with less than fifteen patients
from our analysis.

3.2 Evaluating Modeling Methods
We discuss the different methods to estimate differences

in quality of care among hospitals. First, we describe the
Hausman specification test which is used to decide between
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a fixed effects model and a random effects model. We also
use this test to compare the fixed effects model with the
finite mixture model. Second, we investigate bias in condi-
tional and unconditional maximum likelihood estimates of
the fixed effects model. Finally, we determine the power of
tests on differences between quality of health care of indi-
vidual hospitals.

3.2.1 Hausman Test
To decide which model is most appropriate, we perform

the Hausman specification test (Hausman, 1978). First, we
test the random effects model against the fixed effects model.
Under the null-hypothesis of this test both estimators are
consistent but random effects is the prefered model due to
higher efficiency. Under the alternative the fixed effects
model provides still consistent estimates whereas the ran-
dom effects estimator is inconsistent. When the individual
effects per hospital are uncorrelated with the independent
variables, the fixed effects and random effects estimators
should not be statistically different. In this case we can-
not reject the null-hypothesis. The fixed effects model pro-
vides consistent estimates even when the hospital effects are
correlated with the patient characteristics. So under the al-
ternative hypothesis the fixed effects model is considered as
most appropriate. The Hausman statistic is distributed as
Chi-squared with the number of parameters in β as degrees
of freedom. The test statistic is computed as follows:

H = (β̂F − β̂R)′(V̂F − V̂R)−1(β̂F − β̂R) (16)

where β̂F is the estimated β in the fixed effects model, β̂R
is the estimated β in the random effects model, V̂F is the
estimated covariance matrix of the fixed effects model and
V̂R is the estimated covariance matrix of the random effects
model. Second, we test the finite mixture model against
the fixed effects model. Under the null-hypothesis both esti-
mators are consistent. Under the alternative only the fixed
effects model provides consistent estimates. Since the finite
mixture model only has to estimate the cluster-specific ef-
fects instead of separate hospital effects, the finite mixture
estimator is more efficient than the fixed effects estimator.
The test statistic is described in (16) with the estimated β
and covariance matrix of the random effects model replaced
by the estimated β and covariance matrix of the finite mix-
ture model. When we reject the null-hypothesis we have to
conclude that the estimates of the finite mixture model are
biased.

3.2.2 Consistency Fixed Effects Estimators
The conditional maximum likelihood estimator of the fixed

effects model provides consistent estimates but cannot es-
timate hospital-specific effects. Therefore, we have to es-
timate the fixed effects model by means of unconditional
maximum likelihood, which is only consistent if the num-
ber of patients in each hospital is large enough. To examine
whether we have a significant amount of bias in the uncondi-
tional maximum likelihood estimates of the fixed effects logit
model, we perform a Monte Carlo study on bias in both es-
timators. When we find significantly biased estimators, we
assess whether the bias of the estimators is acceptable.

In the Monte Carlo simulations, the data generating pro-
cess is the logit model in terms of latent variables (Cameron

and Trivedi, 2005):

y∗it = αi + x′itβ + εit (17)

where εit is the unobserved individual-specific effect, which
has a standard logistic distribution. The latent variable y∗it
is related to the binary dependent variable yit as follows:

yit =

{
1 if y∗it ≥ 0

0 if y∗it < 0

Before running the simulations we choose the parameter val-
ues in αi and β. We draw αi from a normal distribution with
a mean of zero and standard deviation of 0.5 and take fixed
values for β. Thereafter we run M simulations. First we
randomly divide T patients over N hospitals. The number
of patients is distributed to hospitals in the same way as in
the real dataset. So each hospital has the same number of
patients in every simulation, but the characteristics of the
patients per hospital differ in each simulation. Second, we
randomly generate εit from a standard logistic distribution
and compute yit using the data generating process in (17).
In the last step of the simulation we estimate three models
with the dependent variable yit and the three indepent vari-
ables which describe age, pupil reactivity and motor score
of the patients; a fixed effects logit model with conditional
maximum likelihood estimators, a fixed effects logit model
with unconditional maximum likelihood estimators, and a
simple logit model which does not take the fixed effects into
consideration.

After performing the simulations, we take for each model

the average of the estimates for β in each simulation
¯̂
β. We

refer to this statistic as the Monte Carlo mean which is ap-
proximately normally distributed:

¯̂
βk =

M∑
i=1

β̂k,i ≈ N (βk,
s2k
M

)

where

s2k =
1

M − 1

M∑
i=1

(β̂k,i − ¯̂
βk)2 (18)

and k = 1, ...,K with K the number of explanatory vari-
ables. When we have to reject the null-hypothesis of no
difference between the value of parameter βk and the cor-
responding estimate β̂k we conclude that this estimate is
biased.

When we find significantly biased estimators, we use four
criteria to assess whether the bias of the estimators β̂k with
k = 1, ...,K is acceptable. These criteria are described by
Boomsma and Hoogland (2001). First, we define the relative

bias of estimator β̂k for parameter βk as follows:

B(β̂k) =
¯̂
βk − βk
βk

(19)

Second, we use the mean absolute relative bias (MARB) to
compare the bias of the parameter estimators:

MARB(β̂k) =
1

k

K∑
k=1

|B(β̂k)| (20)

We also apply the above described criteria for the parameter
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estimators to the standard error estimators:

B[ŝe(β̂k)] =
ŝe(β̂k)− SD(β̂k)

SD(β̂k)
(21)

where ŝe(β̂k) is the average of the estimated standard errors

for the parameter estimate in each simulation and SD(β̂k)
is the standard deviation of the Monte Carlo mean which
equals sk in (18). The MARB of standard error estimators
is defined as follows:

MARB(ŝe(β̂k)) =
1

k

K∑
t=1

|B[ŝe(β̂k)]| (22)

3.2.3 Determining Power and Sample Size
In the fixed and random effects models we estimate the

effects αi to draw conclusions about differences in quality of
care between individual hospitals. For this aim we have to
test the significance of the differences between the hospital-
specific effects. Moreover, we are interested whether we can
find actual differences. Therefore, we determine the sta-
tistical power of this test between two hospitals at specific
sample sizes by means of a Monte Carlo simulation.

We perform the Monte Carlo simulation for several sample
sizes. For each sample size T we draw for each hospital 1000
times T random patients, with corresponding patient char-
acteristics, from our dataset. After generating the patient
populations both hospitals contain T patients. Thereafter
we calculate the patient outcome using the logit data gener-
ating process as described in (17), with i = 1, 2, α1 = 0 and
α2 equals the magnitude of the difference between quality of
care of the two hospitals we would like to test. Then we per-
form the likelihood-ratio test with under the null-hypothesis
a model without hospital-specific effects included and under
the alternative a model with hospital-specific effects:

LR = 2L(β̂, α̂1, α̂2)− 2L(β̂) (23)

We have to reject the null-hypothesis when LR is sufficiently
large. In this case the test finds the actual difference in
quality of care between the two hospitals. To find the power
of the test, we sum the number of simulations in which the
likelihood-ratio test rejects the null-hypothesis and divide it
by the total number of simulations.

4. RESULTS
In this section we discuss the results of the models and

implications on modeling and interpretation of differences
in quality of health care. First, we show that the fixed
effects model is more appropriate in modeling the patient
outcomes than the random effects model. Second, we pro-
vide the results of the Monte Carlo simulations with regard
to inconsistent estimators which indicate that the uncondi-
tional estimation method of the fixed effects model gener-
ates only a small amount of bias. Third we discuss whether
there are genuine individual differences between hospitals
and whether we can distinguish those differences. Our find-
ings call the validity of ranking hospitals on individual differ-
ences in quality in question. Finally, we discuss the results of
the finite mixture logit model. We find that three clusters
are sufficient to describe the differences in quality of care
among the hospitals.

4.1 Random Effects or Fixed Effects?
We estimate the hospital-specific effects with fixed and

random effects. Table 1 shows the conditional estimates of
the fixed effects model and the estimates of the random ef-
fects model. The signs of the estimated parameters are in
line with our expectations. The older the patient, the higher
the probability of an unfavourable outcome after traumatic
brain injury. The estimated parameters of the categorical
variable for the motor scale show that a lower motor re-
sponse corresponds to a higher likelihood of an unfavourable
outcome. The seventh category represents patients which
are untestable on motor score because of sedation at admis-
sion in the hospital. We find that the effect of this category
is around the average of the effects of the other (testable)
motor scales. Finally, we can derive that the chances of a
patient rise significantly as the pupillary reactivity increases.

Table 1: FE and RE Model Estimates

Fixed Effects Random Effects
Coef. s.e. Coef. s.e.

age 0.038 0.002 0.038 0.002
motor 2 0.615 0.098 0.655 0.095
motor 3 -0.034 0.091 -0.024 0.088
motor 4 -0.687 0.081 -0.665 0.078
motor 5 -1.322 0.083 -1.276 0.080
motor 6 -1.502 0.164 -1.466 0.162
motor 7 -0.354 0.121 -0.303 0.116
pupil 2 0.799 0.066 0.811 0.065
pupil 3 1.447 0.069 1.448 0.068

constant -1.361 0.091
σα 0.407 0.038

We use the estimates in Table 1 to perform the Haus-
man test. The Hausman test statistic H ∼ χ2(9) equals
26.18 corresponding to a p-value of 0.002. This means that
the explanatory variables are correlated with the hospital-
specific effects, which results in biased estimates of the ran-
dom effects model. Therefore we have to reject the random
effects model, irrespective of the hospital-specific effects are
stochastic or not (Greene, 2008).

Any correlation between hospital-specific effects and the
explanatory variables can imply an omitted variable. The
confounding effect of an omitted variable on estimates of ef-
fects of explanatory variables in the fixed effect model are
removed by estimating separate unit effects. Since the ran-
dom effects model does not estimate separate unit effects but
models a probability distribution for the hospital-specific ef-
fects, any correlation between the explanatory variables and
the unit effects produces biased estimates. Because our aim
is to model and examine the differences in quality of care
between hospitals, we have to avoid that we estimate dif-
ferences systematically too large or too small. Hence, the
consistency of estimators is of great importance. Therefore
we use the fixed effects model in further analysis and we
reject the random effects model for modeling differences be-
tween hospitals.

4.2 Bias in Maximum Likelihood Estimators
Since we have decided to use fixed effects, we have to

determine whether the unconditional estimation method of
this model is appropriate. Conditional maximum likelihood
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estimation provides consistent estimates of the parameters of
the explanatory variables concerning patient characteristics,
but cannot estimate the hospital-specific effects. Uncondi-
tional maximum likelihood estimation does provide these
effects, but is only consistent if the number of observations
for each hospital is large enough. The results in Table 2 and
Table 3 indicate whether this is the case.

Table 2: Results Simulations Conditional MLE

β
¯̂
β SD(β̂) ŝe(β̂) p-value

age 0.040 0.040 0.002 0.002 0.460
motor 2 0.600 0.601 0.091 0.092 0.630
motor 3 -0.030 -0.029 0.088 0.086 0.617
motor 4 -0.700 -0.698 0.076 0.077 0.436
motor 5 -1.400 -1.396 0.078 0.080 0.089
motor 6 -1.500 -1.501 0.164 0.167 0.782
motor 7 -0.400 -0.394 0.114 0.112 0.071
pupil 2 0.800 0.802 0.066 0.066 0.433
pupil 3 1.500 1.504 0.066 0.066 0.050

These tables contain the summarized results of the Monte
Carlo study of bias in the conditional and unconditional
maximum likelihood estimators of the fixed effects model.
The table with simulation results of the maximum likeli-
hood estimates of a simple logit model without fixed effects
are shown in Appendix C. The second column of the tables
shows the actual value of the parameters. The third column
shows the Monte Carlo mean of the estimated parameter
values of the variables for the patient characteristics. The
numbers in the remaining columns represent the standard
deviations of the Monte Carlo means, the average of the es-
timated standard errors for the parameter estimates in each
simulation, and the p-value of the test on equality between
the Monte Carlo mean and the actual value of the parame-
ters, respectively.

Table 3: Results Simulations Unconditional MLE

β
¯̂
β SD(β̂) ŝe(β̂) p-value

age 0.040 0.041 0.002 0.002 0.000
motor 2 0.600 0.618 0.093 0.094 0.000
motor 3 -0.030 -0.029 0.090 0.087 0.832
motor 4 -0.700 -0.716 0.078 0.078 0.000
motor 5 -1.400 -1.432 0.080 0.081 0.000
motor 6 -1.500 -1.540 0.168 0.169 0.000
motor 7 -0.400 -0.404 0.117 0.113 0.288
pupil 2 0.800 0.823 0.067 0.067 0.000
pupil 3 1.500 1.544 0.068 0.067 0.000

We find, according to the p-values, that no Monte Carlo
mean of the conditional maximum likelihood estimates is
significant different from the actual values on a significance
level of five percent. This is in accordance with the fact
that conditional maximum likelihood of the fixed effects logit
model gives consistent estimators. In contrast to the condi-
tional estimators almost all the unconditional estimates are
significant different from the real values. As expected, the
estimation method in which we can retrieve the values for
the hospital-specific effects provides biased parameter esti-
mates. Since we would like to compare differences in quality

of care among hospitals on the basis of these hospital-specific
effects, we have to examine whether the bias is acceptable.

The mean absolute relative bias is used to compare the
bias of parameter estimators. It is also a criterion for an
acceptable bias. Boomsma and Hoogland (2001) stated that
the estimators have to satisfy the following conditions to be
regarded as acceptable:

MARB(β̂) < 0.025

MARB(ŝe(β̂)) < 0.050

Table 4 shows that both the conditional as the uncondi-
tional maximum likelihood estimators meet this condition.
Although the unbiased conditional estimator has a much
lower value for the MARB(β̂), the unconditional estimator
is also comfortably within the acceptable boundaries. In
the Tables 2 and 3, both for the unconditional as the con-
ditional estimates the standard errors and the standard de-
viations seem very similar. This is consistent with the low
MARB(ŝe(β̂))’s, which are much lower than the permitted
values. The values in Table 4 which represent the perfor-
mance of the estimators of the simple logit model confirm
the importance of including hospital-specific effects in an
accurate model.

Table 4: Mean Absolute Relative Bias MLE’s

MARB(β̂) MARB(ŝe(β̂))

Conditional MLE 0.009 0.015
Unconditional MLE 0.024 0.014

No FE MLE 0.060 0.017

We find in our results a confirmation of the theory of con-
sistent estimates of conditional estimators and inconsistency
in unconditional estimators of the fixed effects model. This
implies that we can only estimate the hospital-specific ef-
fects in a proper way if the number of patients for each hos-
pital grows. Since the inconsistency remains between the
limits of acceptable bias, we argue that we satisfy this con-
dition. Therefore we consider the unconditional estimates
of the fixed effects in our research into differences between
hospitals’ quality of care.

4.3 Individual Differences between Hospitals
Estimation of the fixed effects model produces estimates

of effects for each hospital. These effects describe the de-
viation of hospitals in the probability of an unfavourable
patient outcome from other hospitals, cleaned from differ-
ent patient characteristics. Because each hospital-specific
effect is peculiar to one hospital, these deviations are caused
by the differences among care providers. Therefore we at-
tribute the variation in the fixed effects to differences be-
tween the quality of care in hospitals. When we try to draw
conclusions based on this variation we have to investigate
two things: First, we have to determine whether there are
genuine differences. Second, we should examine whether we
can distinguish those differences. Figure 2 shows the his-
togram of the distribution of the hospital-specific effects.
This histogram shows that 59 percent of the fixed effects
is located between −0.5 and 0.5. When we rank the hos-
pitals on their fixed effects, the average difference between
two consecutive hospitals equals 0.020.
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Figure 2: Distribution of the Fixed Effects

So the differences between individual hospitals in a rank-
ing are very small. Only the best and worst hospitals di-
verged significantly from each other. Moreover, hardly any
fixed effect is significant on a five percent level. The results
of the Monte Carlo simulations of the unconditional maxi-
mum likelihood estimation of the fixed effects model provide
a mean absolute relative bias of 2.369 for the fixed effects
parameters. This means that there is no less than 200 per-
cent bias in the fixed effect estimates. So we can conclude
that when we rank hospitals we are far from certain that
one hospital is better or worse than the other.

Figure 3: Power of the Test on Fixed Effect of 0.25

Furthermore, we consider the case in which there is an
actual difference between the quality of two providers. We
perform the likelihood-ratio test to find these differences. As
hospitals actually provide another quality of care, we also
want to find this distinction with our test. By way of expla-
nation, we have to reject the null-hypothesis when there is
an actual difference in quality of care. The statistical power
of the test represents the probability that the test will re-
ject the null-hypothesis when there is an actual difference.
Figure 3 shows the power of the test on differences between
two hospitals for different sizes of patient populations per
hospital. The actual difference between the hospital-specific
effects is set at 0.250. Only at a sample size of 1300 patients
in each hospital, statistical power rises above 80 percent,
which is commonly used as lower bound of adequate power.

We recall that in our dataset the hospital with the largest
patient population provides care to 517 patients, where the
median of patients per hospital equals 22. The statistical
power for a sample size of 500 patients is only 0.382. More-
over, most hospitals have much smaller differences in fixed
effects than 0.250.

When we combine our findings regarding the existence of
genuine differences and the ability to distinguish these dif-
ferences, we conclude that even assuming that there are gen-
uine differences between consecutive hospitals in rankings,
we do not have enough power to identify them. Therefore
we state that ranking hospitals on quality of care is an in-
appropriate method for distinguishing differences between
hospitals.

4.4 Clustering Hospitals on Quality of Care
Since we cannot prove individual differences, rank order-

ing is not a good idea. Because of the considerable un-
certainty in individual differences a ranking explains little
about the genuine quality relationships. Probably, there is
in fact only a rough separation in quality delivered by hos-
pitals. Clustering of hospitals allows us to investigate this.
In particular, it provides insight into how many groups of
hospitals there are with different health care quality. For ex-
ample, when the finite mixture logit model estimates from
the data that we have two clusters within hospitals have the
same quality of care, we state that we can only distinguish
two distinct levels of quality. So we do not draw any conclu-
sion about individual differences among hospitals. However,
we can conlude that the hospitals in one cluster differ from
the hospitals in other clusters. When we estimate as many
clusters as there are hospitals we end up with the same rank-
ing with which we started. Since the model estimates the
number of groups between which there is a difference, there
is a slight chance of this case.

We estimate the finite mixture logit model with a different
number of clusters. To ensure identifiability of these mod-
els, we discard hospitals with fifteen patients or less. This
results in a dataset with 9275 patients across 139 hospitals.
Figure 4 shows the Bayesian Information Criteria of a model
with only one cluster to a model with eight clusters. From
the development of the information criteria we can conclude
that three clusters are sufficient to describe the differences
in quality of care. So we distinguish three levels of health
care quality among the hospitals in the dataset.

Figure 4: Development BIC for Different Number
of Clusters
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The finite mixture model with three clusters is shown
in Table 5. We find all coefficients significant, except the
coefficient of motor3. Hence, whether a patient makes no
movements or whether a patient has an abnormal flexion to
painful stimuli, has no significant different effect on the out-
come. We notice that the signs and the order of magnitude
of the coefficients of the patient characteristics are similar
to the estimates in Table 1. For interpretation of these co-
efficients we refer to the explanation about this table.

Table 5: Finite Mixture Model Estimates

Coef. s.e. p-value

age 0.038 0.002 0.000
motor 2 0.652 0.097 0.000
motor 3 -0.032 0.089 0.722
motor 4 -0.675 0.079 0.000
motor 5 -1.288 0.080 0.000
motor 6 -1.527 0.165 0.000
motor 7 -0.308 0.117 0.009
pupil 2 0.818 0.068 0.000
pupil 3 1.454 0.067 0.000

cluster low -0.885 0.090 0.000
cluster middle -1.434 0.090 0.000

cluster high -2.186 0.116 0.000

Besides estimates of the coefficients of patient character-
istics Table 5 shows the estimates of the cluster parameters.
These coefficients are significant in contrast to the estimates
for the fixed effects parameters. So in the case of clustering
hospitals we have much more certainty about the existence
of the estimated effects. By means of these cluster effects, we
can establish a ranking of hospitals based on three groups.
The low quality group has an intercept equal to −0.885.
The constant of hospitals in the middle group adds up to
−1.434 and the high quality hospitals posses an intercept of
−2.186. Because the intercept has a positive effect on the
probability of an unfavourable patient outcome, patients in
last-mentioned hospitals have the lowest probability on an
unfavourable outcome.

We mentioned that consistent estimates are of great im-
portance in modeling differences in quality of care between
hospitals. To test whether the finite mixture estimates in
the cluster model are biased, we perform the Hausman test
on the fixed effects model estimates in Table 1 against the
finite mixture model estimates in Table 5. The Hausman
test statistic H ∼ χ2(9) equals 13.69 corresponding to a p-
value of 0.134. So we cannot reject the null-hypothesis of
both consistent estimates of the fixed effects model and the
finite mixture model on a significance level of five percent.
Hence, the finite mixture approach is not only efficient, but
also consistent.

Table 6: Distribution over the Clusters

Low Middle High

p̂j 42.52 47.34 10.14
# hospitals 47 78 14
# patients 3673 4760 842

Table 6 provides an overview of the distribution of pa-

tients and hospitals over the three clusters. The estimated
values p̂j show that each hospital has a probability of 10.1
percent to be in the cluster with the highest quality of care.
These probabilities are 47.3 and 42.5 percent for the clus-
ters with medium and low quality, respectively. According
to the estimated weights in the finite mixture logit model we
assign each hospital to a cluster. We find two large groups
of reasonable and poorly performing hospitals and a small
top class of hospitals which provides excellent services. The
number of patients is approximately in the same way divided
over the clusters as the number of hospitals. A random pa-
tient has a probability of 9.1 percent to be taken care of in
an excellent hospital after traumatic brain injury.

We can also look at the distribution of the patient charac-
teristics over the three clusters. Table 7 shows the average
value per characteristic in each cluster, weighted according
to the weights ŵij . We find the weighted average age per
cluster, which is approximately equally distributed. The
values attributed to motor score and pupil reactivity can be
interpreted as percentages. For example, 13.1 percent of the
patients of hospitals in the low quality cluster have motor
score one. We find that also motor score and pupil reactiv-
ity are approximately equally distributed. This means that
there are no large differences between the patient popula-
tions in each quality cluster. Hence, high quality hospitals
have no other population composition than less performing
hospitals.

Table 7: Weighted Averages Patient Characteristics

Low Middle High

age 35.299 34.055 34.861

motor 1 0.131 0.150 0.179
motor 2 0.128 0.130 0.109
motor 3 0.110 0.139 0.153
motor 4 0.215 0.250 0.263
motor 5 0.291 0.273 0.213
motor 6 0.031 0.030 0.013
motor 7 0.093 0.028 0.070

pupil 1 0.631 0.669 0.631
pupil 2 0.150 0.135 0.192
pupil 3 0.220 0.196 0.177

5. DISCUSSION
In this paper we discussed methods to estimate differences

in quality of health care among hospitals. We specified a
random effects model and a fixed effects model for model-
ing the hospital-specific effects. Although random effects
provide more efficient estimates, the Hausman specification
test revealed the fixed effects model as most appropriate. To
retrieve the hospital-specific effects in this model we had to
use the unconditional maximum likelihood estimator, which
is inconsistent when the number of patients per hospital is
small. A Monte Carlo simulation on bias in the estimates
proved the bias to be acceptable. We evaluated statistical
power in differentiating individual differences in quality of
care between hospitals for different sample sizes in a second
Monte Carlo study. Finally, we proposed a finite mixture
logit model as alternative method to current hospital rank-
ings.
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Our research shows that the estimates for hospital-specific
effects are highly biased and hardly significant. Ranking
hospitals according to these effects causes the problem that
we are far from certain that one hospital is better or worse
than the other, while in a ranking one hospital has to be
first and one has to be last. It is very likely that there are
no significant differences between consecutive hospitals on
rankings. However, even if there are genuine differences in
performance between individual hospitals, we find that we
do not have the power to identify them. Therefore we argue
that ranking hospitals on quality of care is an inadequate
method to distinguish individual differences. An important
conclusion from our empirical analysis is that we have to
move our attention from individual differences between hos-
pitals to differences between quality groups of hospitals.

This has resulted in a method to rank hospitals in a cor-
rect manner. First, we use a finite mixture logit model to
group hospitals on similar quality of care. Second, we avoid
problems that arise on individual differences between hos-
pitals by only ranking the clusters with hospitals. This ap-
proach to the assessment of relative differences in quality
of care offers opportunities for a more efficient policy based
on less uncertainty. For instance, connecting implications to
the listing on a ranking for all 348 hospitals in the Nether-
lands is very expensive and complicated. Policy making on
three quality groups is more effictive rather than focussing
on quality differences between individual hospitals. Further-
more, the risk of over-interpretation of differences in quality
of care between hospitals is strongly reduced. In summary,
determing performance of hospitals by rankings should be
past tense.

Several potential limitations of this study should be noted.
First, it is only possible to include hospitals with variation in
the patient outcome in our fixed effects analysis. We have to
disregard even more hospitals from our finite mixture anal-
ysis to ensure the identifiability of the models. These limi-
tations are related to the known statistical problems around
(luckily) small patient populations in hospitals.

Based on our analysis we propose recommendations for
further research. To ensure that differences between patient
samples of hospitals are not ascribed to differences in qual-
ity, more patient characteristics should be included in the
models. The addition of extra patient characteristics may
result in disappearance of the correlation between random
effects and explanatory variables, which means that random
effects become an appropriate method for modeling hospital-
specific effects. Furthermore, we recommend to investigate
whether the findings in this paper are reproducable in other
datasets.
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APPENDIX
A. DESCRIPTIVE STATISTICS PUPILLARY REACTIVITY AND GCS MOTOR SCORE

Motor GSC % patients

1 makes no movements 15
2 extension to painful stimuli 12
3 abnormal flexion to painful stimuli 13
4 flexion/withdrawal to painful stimuli 24
5 localizes painful stimuli 27
6 obeys comands 3
7 untestable 6

Pupil Reactivity

1 both reacting 65
2 one reacting 15
3 neither reacting 20

This table shows the distribution of patients over the
categories in pupillary reactivity and GCS motor score

B. FIRST AND SECOND ORDER CONDITIONS USED IN THE EM ALGORITHM
We use the EM algorithm to estimate the parameters in our finite mixture model for clustering hospitals. In the maximization

step of this algorithm we use the Newton-Rhapson method to maximize the expectation of the complete data log-likelihood.
This method requires the gradient and hessian which contain the first order conditions and the second order conditions,
respectively.

The first order conditions are given by:

∂Es|y[L(y, s;β, γ1, ..., γJ)]

∂γj
=

N∑
i=1

Ti∑
t=1

ŵij(yit − F (γj + x′itβ)) = 0 for j = 1, ..., J

∂Es|y[L(y, s;β, γ1, ..., γJ)]

∂β
=

N∑
i=1

Ti∑
t=1

xit

J∑
j=1

ŵij(yit − F (γj + x′itβ)) = 0

The second order conditions are given by:

∂2Es|y[L(y, s;β, γ1, ..., γJ)]

∂γ2
j

= −
N∑
i=1

Ti∑
t=1

ŵij
eγj+x

′
itβ

(1 + eγj+x
′
itβ)2

for j = 1, ..., J

∂2Es|y[L(y, s;β, γ1, ..., γJ)]

∂γj∂γq
= 0 for j = 1, ..., J, q = 1, ..., J and j 6= q,

∂2Es|y[L(y, s;β, γ1, ..., γJ)]

∂γj∂β
= −

N∑
i=1

Ti∑
t=1

ŵijxit
eγj+x

′
itβ

(1 + eγj+x
′
itβ)2

for j = 1, ..., J

∂2Es|y[L(y, s;β, γ1, ..., γJ)]

∂β∂βT
= −

N∑
i=1

Ti∑
t=1

xitx
T
it

J∑
j=1

ŵij
eγj+x

′
itβ

(1 + eγj+x
′
itβ)2
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C. RESULTS SIMULATIONS SIMPLE MAXIMUM LIKELIHOOD ESTIMATES

β
¯̂
β SD(β̂) ŝe(β̂) p-value

age 0.040 0.038 0.002 0.002 0.000
motor 2 0.600 0.569 0.088 0.089 0.000
motor 3 -0.030 -0.027 0.084 0.083 0.280
motor 4 -0.700 -0.659 0.073 0.073 0.000
motor 5 -1.400 -1.322 0.074 0.076 0.000
motor 6 -1.500 -1.424 0.158 0.161 0.000
motor 7 -0.400 -0.372 0.109 0.107 0.000
pupil 2 0.800 0.757 0.062 0.064 0.000
pupil 3 1.500 1.422 0.064 0.063 0.000

This table shows the actual parameter value,
the Monte Carlo mean, the Monte Carlo
standard deviation, the average standard
errors, and the p-value of the test on
equality between the estimated and real
parameter values of the maximum likelihood
estimates of the logit model without fixed
effects.
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