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Abstract 
Every day, all over the world, some people get delays when they travel by train. A delay of a few minutes 

is often no problem, but big delays are really annoying. A big delay can be caused when passengers 

change trains and miss a connecting train, because of a small delay of the feeder train. The connecting 

train could wait for the delayed train and give the passengers the opportunity to change trains as 

planned. However, the connecting train now also has a delay. The problem we are dealing with here is 

called delay management. In this thesis we will check whether off-line delay management might be 

useful in real life. We will use a simulation of a real life timetable and generate delays. We make the 

‘waiting’ decisions with an off-line delay management model for the next hour of the timetable each 

time a delay occurs. Finally, we evaluate the total delay passengers have. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

CONTENTS 
1 Introduction ...................................................................................................................................3 

2 Problem description ......................................................................................................................4 

2.1 The problem ...........................................................................................................................4 

2.2 The objective ..........................................................................................................................4 

3 Simulation ......................................................................................................................................5 

3.1 Terms ......................................................................................................................................5 

3.2 Assumptions ...........................................................................................................................5 

3.3 Generating delays ...................................................................................................................6 

3.4 Input .......................................................................................................................................7 

3.5 Output ....................................................................................................................................7 

3.6 Steps of the simulation ...........................................................................................................7 

3.7 Example of the simulation ......................................................................................................9 

4 Optimization model .................................................................................................................... 11 

4.1 Defining the sets .................................................................................................................. 11 

4.2 Defining the parameters...................................................................................................... 11 

4.3 Defining the variables .......................................................................................................... 11 

4.4 The model ............................................................................................................................ 12 

5 Evaluation of the solutions ......................................................................................................... 13 

5.1 Method ................................................................................................................................ 13 

5.1.1 The nodes ..................................................................................................................... 13 

5.1.2 The arcs ......................................................................................................................... 13 

5.2 An example .......................................................................................................................... 14 

5.3 The evaluation ..................................................................................................................... 14 

6 Results ........................................................................................................................................ 15 

6.1 Data ..................................................................................................................................... 15 

6.1.1 The data in more detail ................................................................................................ 15 

6.1.2 The small dataset .......................................................................................................... 15 

6.1.2 The big dataset ............................................................................................................. 15 

6.2 Implementation ................................................................................................................... 15 

6.3 Results small dataset ........................................................................................................... 16 



 

 

2 

6.3.1 The generated delays ................................................................................................... 16 

6.3.2 The optimization model ............................................................................................... 16 

6.3.3 The decision made by the model ................................................................................. 19 

6.3.4 The total overall delay .................................................................................................. 19 

6.3.5 The 100 simulation runs compared to the 10 simulation runs .................................... 20 

6.4 Results of the big dataset .................................................................................................... 21 

6.4.1 The generated delays ................................................................................................... 22 

6.4.2 The optimization model ............................................................................................... 22 

6.4.3 The decisions made by the model ................................................................................ 24 

6.4.4 The total overall delay .................................................................................................. 25 

6.4.5 The big dataset run compared to the small dataset run .............................................. 26 

6.5 Sensitivity Analysis ............................................................................................................... 27 

7 Conclusion .................................................................................................................................. 29 

8 Future research .......................................................................................................................... 31 

Appendix ........................................................................................................................................ 32 

References ..................................................................................................................................... 33 

 

  



 

 

3 

1 Introduction  
 

Every day, all over the world, millions of people take the train instead of driving a car. People 

mainly choose to take the train because of the traffic jams one tends to get stuck in, when they 

take the car in the early morning and at five or six o’clock when everybody is going back home. 

However, the trains are not always on time due to, for example, an accident or at rush hours. 

Most of the times the delays are very minor and trains only depart with a delay of a few minutes. 

But inevitably there might be major delays every day. Thus, it can occur that one travels about 

as long by train, as by car when stuck in a traffic jam. This can be very frustrating and keeping 

the passengers satisfied is an important task for the railway company. When they have bad 

service, less people will take the train and in turn this will result in big losses. 

Some passengers also have to change trains when they travel to reach their destination. When 

the feeder train has a delay, there is a chance that they miss the connecting train. They often 

have to wait a long time for the next train. To keep the passengers on the delayed train satisfied 

we should let the connecting train wait. However, this might also cause other passengers to miss 

their connection. We will check how we can minimize the total delay of all passengers. The 

major delays are irrelevant for our thesis as with major delays passengers can often take the 

next connecting train in the same direction.  Therefore, we will consider small delays up to 18 

minutes. 

These situations also occur in the Netherlands. Here approximately 1.2 million people travel by 

train. About 25% of the passengers have to change at a certain point to reach their destination. 

When a train has a delay, some passengers might miss their connection. We have some data of 

the main railway operator of the Netherlands, called Nederlandse Spoorwegen, or shortly NS. 

The data are from the Randstad, which is considered the busiest part of the network.  

In this thesis we try to minimize the delay passengers have by applying optimal off-line delay 

management decisions in an on-line setting. This means we minimize the delay of the 

passengers at a short time interval. This thesis is divided in the following chapters:  in chapter 2 

we look at the problem in more detail. In chapter 3 we discuss the simulation which will 

generate the delays to get a real life situation. Within the simulation the wait and depart 

decisions of delayed trains will be optimized with the model discussed in chapter 4. Next we 

evaluate the solutions. This will be done with a shortest path algorithm described in chapter 5. 

We discuss the results in chapter 6 and we give a conclusion in chapter 7. Finally, we give some 

advice for future research in chapter 8. 
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2 Problem description 
 

In this chapter we discuss the problem we are going to deal with. First we describe the problem, 

and then we are setting the objective. 

2.1 The problem 
The problem is the fact that if a feeder train has a delay of as small as even 5 minutes, a 

connecting train can be missed because of this delay. The passengers that missed the 

connecting train will not be pleased with this, because they might have to wait for half an hour 

for the next train. If there is a great number of passengers that missed the connecting train, 

there will be a lot of complaints and thus the service will be considered bad.  

To solve this problem, we could let the connecting train wait, so the passengers will not miss 

their train. But this could result in other passengers missing their connection on the next train 

and of course the passengers in the connecting train will have an ‘unnecessary’ delay. So we 

have to decide whether to let the connecting train wait or let it depart as scheduled. This 

problem is called delay management.  

2.2 The objective 
The objective is to minimize the total delay of all passengers. There is a lot of research on off-

line delay management, see Dollevoet et al. (2011), Dollevoet et al. (2012a), Dollevoet et al. 

(2012b) and Dollevoet et al. (2012c), among others. Off-line delay management means we look 

at the delay problem on, for example a whole day. This is of course very unlikely in reality. We 

simply do not know the delays beforehand. Normally we know the delays when they occur. So 

we will simulate an on-line setting and solve a sequence of off-line delay management problems. 

The simulation generates delays randomly and therefore the delays will not be the same every 

run. We use an off-line integer programming model to calculate the minimal overall delay every 

time a delay occurs. This model will decide which connecting trains should wait. After that, we 

evaluate how much delay the passengers had. We will use a shortest path algorithm for that, 

with the new timetable in which some trains wait for connecting trains. This is the timetable 

that is executed. We then can compare these arrival times to the arrival times of the original 

timetable. This way we can compute the overall delay. For more details of the methods see 

chapter 3 for the simulation, chapter 4 for the integer programming model and chapter 5 for the 

evaluation. 
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3 Simulation 
 

In this chapter we will discuss the structure of the simulation. A simulation is an approximation 

of the reality and therefore we hope to realize results that can be used in real life. We will 

simulate the given timetable of the trains with delays and decide whether trains should wait for 

the delayed trains or not. This is decided by the optimization model discussed in chapter 4. 

When the timetable is done, we evaluate the decisions made and check the combined delay of 

all passengers. This will be done with a shortest path algorithm discussed in chapter 5. First of all, 

we will define the terms used in this thesis. Then we will discuss the assumptions that have to 

be made in order to validate the methods. Next we will discuss how we generate delays. Then 

we will discuss the input of the simulation and the output of the simulation. After that, we will 

discuss the steps of the simulation. Finally, we will give a small example of how the simulation 

works. 

3.1 Terms 
First we will define the terms we will use in this thesis and will recur often. We define: 

 An event. An event is a departure or arrival of a train at a station at a certain time. Thus, 

every arrival and departure of every train is considered as a different event. 

 An activity. An activity is a link between events. It can be a train that drives from a 

station to another, a train that waits or passengers that change trains at a station.  

3.2 Assumptions 
To validate the simulation we need to make some assumptions. We assume that: 

 The number of delays that occur in the timetable is always about 5% of the events. This 

is of course in reality not the case but we wanted to take a general day. NS confirmed 

that 5% of the trains have a delay. Thus, taking an average of 5% is a good 

approximation of the reality. 

 A generated delay can only be from 6 to 18 minutes. This is of course not the case in 

reality, but we only consider small delays and the delays of 1 to 5 minutes will be too 

small to make a difference. The slack times, which are the time that can be spared by 

doing an activity as fast as possible, will shorten the delays to 0 really fast. For example, 

when a train has 4 minutes of delay and arriving at the station has a slack time of 2 

minutes, it will only have 2 minutes of delay after arrival. In addition, arriving at the next 

station with also 2 minutes of slack time will result in a delay of 0 minutes. This will 

probably not let the optimization model in chapter 4 take any actions and thus the delay 

would be useless for our research. The average slack time is about 1 minute and has a 

corresponding standard deviation of 1 minute. 

Furthermore, a bigger delay will not be within the range of our problem, because after a 

too big delay the passengers can simply take the next train in the same direction. A lot 

of trains drive every 15 minutes or every 30 minutes. Thus, by taking 18 minutes as a 
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maximum is to make sure the connecting trains that drive every 30 minutes can have 

some considerable delay, without the passengers being able to take the next connecting 

train. Also we do not want trains that drive every 15 minutes to take too much delay 

such that the passengers can take even one of the next two trains in the same direction. 

Therefore, we think that delays of 6 to 18 minutes will be a good assumption for our 

research. 

 We know the number of passengers who will travel during the whole timetable and 

their routes. We need this assumption because one of the parameters for the model is 

the number of passengers that change trains and one is the number of passengers that 

finish their travel at a particular event. For more details on this see the model in chapter 

4. 

 Passengers take their fastest routes when a delay occurs. In the simulation we use the 

shortest path algorithm after all the delays have occurred. This means that the 

passengers actually know which trains will have delays and plan accordingly. This is of 

course a bad assumption but it makes the problem a bit easier. 

 In the next period all vehicles run on time. This is not a good assumption as in reality 

most of the times the next train on the same route has also a delay although it is smaller 

than the previous one. 

 The passengers who change trains can change immediately. In reality when a lot of 

passengers change it will take a few minutes before all passengers have changed.  

 Connecting trains that wait for the passengers who change trains, cannot cause 

problems within the station and the order of the trains that drive on a track. A train that 

waits can block another train that arrives at a station or he can block a another train 

when it drives with a delay as some trains, the intercities,  only stop at the big stations 

and some trains stop at all stations. For research on delay management that considers 

capacities of stations, we refer to Dollevoet et al. (2012c) 

 

3.3 Generating delays 
From past data, NS confirmed that about 5% of the trains have a delay. Therefore, we simulate 

delays for about 5% of the events. If a departure event has a delay, it means that the train got a 

delay when it waited at a station. If an arrival event has a delay, it means that the train got a 

delay when it drove from a station to a station. To simulate whether an event has a delay, we 

draw a pseudorandom value from the standard uniform distribution on the open interval (0,1). 

When this value is greater than 0.95 that event has a delay. In other words, the event has a 

delay if the drawn number is within 5%. When an event has a delay we will randomly pick an 

integer number from the discrete uniform distribution on the interval [6,18] and take that as the 

number of minutes the train is delayed.  

With the setup of generating delays like this it is possible that two consecutive events will both 

have a delay. Of course the probability is very small, but when this occurs a train could get 36 
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minutes of delay or even more when there are move consecutive events with delays. As this 

could happen in reality we will not try to avoid this. 

3.4 Input 
The inputs we need for the simulation are as follows: 

 A timetable for the trains. 

 The slack times of all activities 

 The number of passengers that end their journey at all the arriving events 

 The number of passenger that change at all the changing activities 

3.5 Output 
We will discuss what we want as output from the simulation. We want: 

 The executed timetable for the trains. 

 The decisions made in each optimization. 

 The number of events in the hours that were optimized. 

 The values of the objective function of each optimization. 

 The number of passengers that has a delay. 

 The number of passengers that will not have a connection anymore (this occurs when 

the delay causes passengers to miss the last connecting train). 

 The total delay of all passengers. 

3.6 Steps of the simulation 
We use a discrete event simulation, which means that we order the events on time of 

occurrence and we begin at the first event of the timetable. Next we go to step 1 which is 

described as follows: 

Step 1: check whether this event will have a delay and generate one if it has, as described in the 

section 3.3. If a delay occurs,  go to step 2. If no delay occurs, go to step 4.  

Step 2: Define and set    to the time of the event that has a delay. We optimize the model which 

will decide whether trains should wait for the delayed trains or not. We will use the data of the 

upcoming hour. This will be enough because the delays are at most 18 minutes. In other words, 

we take the events that occur between    to     +60. The parameters for the whole timetable are 

given as input, so we can take the parameters of the needed hour for the optimization. After the 

optimization, we will have new departures for the trains in that hour as we let some trains wait 

or they simply have a delay. Next we go to step 3. 

Step 3:  Because we have used only an hour for the optimization, only the events of that hour 

will change. Thus, we store the new times of those events. We also store the number of events 

in the hour that was optimized and the optimal value of the objective function. Next we can also 

compute and store the number of trains waiting and number of trains not waiting. The train 
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waits if the actual departure time is greater than the delay it has and of course the train does 

not wait if the delay is equal to the actual departure time. Next go to step 4. 

Step 4: If there is a next event. Go to that event and return to step 1. 

 If there is no next event, we have run through the whole timetable. Now we can compare the 

fastest routes computed with the executed timetable to the ones computed with the original 

timetable. By doing this we can get the number of passengers that have a delay and thus, the 

overall total delay of all passengers. We will use a shortest path algorithm to get the fastest 

route from origin to destination for each passenger. For more details see chapter 5. This 

algorithm also allows us to get the number of passengers that cannot get to their destinations 

anymore because of the delays.  

Going trough steps 1-4 will give us one run of the simulation. Therefore, if we want more runs 

we will have to go the first event again and start with step 1. The pseudo code of the simulation 

can be seen in Figure 1 which will clarify the simulation.  

Sort the events 

Go to the first event 

Step1:  

If a delay occurs (i.e. if U > 0.95 with U drawn from a standard  

      uniform distribution on the open interval (0,1)) 

 

 get a delay(get a random integer from the discrete  

      uniform distribution on the interval [6,18] 

Step2: Set te to time of the event at which delay occurs 

 optimize the optimization model by taking the 

 parameters needed from the events between te and    

 te+60  

Step3: compute and store the nr of trains waiting and 

not waiting. Store the number of events in this hour 

and the output of the model for the events between te 

and te+60 

Endif 

if there is a next event 

 go to next event and go to step 1 

endif 
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Step4: Compute fastest routes with shortest path algorithm 

 compute the passengers delayed, passengers that can not    

       arrive at destination and total delay of all passengers 

 

 

3.7 Example of the simulation 
We will give a small example of how the simulation works. An illustration is given in figure 2. 

This timetable contains only seven events and the time goes from 0 to 120 minutes. First, we 

start at event 1 and go to step 1 and check whether there is a delay. There is no delay so we 

proceed to step 4. As there is a next event, we go to event 2. The second event also occurs 

without delay, so we proceed to the third event. It follows from step 1 that there is a delay. 

Therefore, we generate a delay and set     to 15. Then we go to step 2, where we optimize the 

model with the events that occur between t = 15 and t = 75. These are events 3, 4 and 5. Thus, 

this optimization has three events in the hour that is optimized. In step 3 we compute and store 

the output as described above. We proceed to step 4 and therefore the next event. At step 1 

there is a delay again. Thus, we generate a delay and set    to 40. Next we optimize the model 

with the events from t = 40 and t = 100 as described in step 2. This optimization takes events 4, 

5 and 6 as input. Thus, this optimization has also three events in the hour that is optimized. Then 

we compute and store the output as described in step 3. After that, at step 4 we see that there 

is a next event. From this point on, we follow the same steps as at the first and second events 

until we reach step 4 at event 7. At this point there is no next event. So, we compute the fastest 

routes with the shortest path algorithm of the original and the executed timetable. Next we 

compare them to get the total delay of all passengers, the number of passengers with a delay 

and the number of passengers that cannot get home anymore. Note that the decisions made at 

event 3 can be overwritten. At event 4 we will have new information and thus it could be 

optimal to let, for example the train of event 5 not wait anymore. 

Figure 1: pseudo code of the simulation. 
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Figure 2: Illustration of the time interval of a timetable in the simulation.  
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4 Optimization model 
 

In this chapter we discuss the classic off-line delay management model which is mentioned in 

section 3.2 of Dollevoet et al. (2011) and originated from Schöbel (2007). We use this model to 

minimize the delay of all the passengers for the upcoming hour every time a delay occurs. The 

model will decide whether trains should wait for a connecting train or not. Actually, the model 

of Schöbel (2007) looks at the paths of the passengers and the model of Dollevoet et al. (2011) 

looks at the connections. However, the optimization is the same, since both models aim to 

minimize the delay. In this thesis we use a combination of both models. We use the slack times 

in the constraints as in the model of Schöbel (2007) and we use the connections formulation of 

Dollevoet et al. (2011). First we define the sets and the parameters. Next we define the variables 

and finally we discuss the model.  

4.1 Defining the sets 
First we define the set of events as    =      U      . An event is defined in section 3.1.      and 

     denote the set of all events where a train departs and arrives at a station, respectively. 

Next we define the set of activities as   =         U        U       . An activity is also defined in 

section 3.1.        denotes the set of activities where a train drives,       the set of activities 

where the train waits and         the set of activities where passengers change trains. 

4.2 Defining the parameters 
Now we have the sets we can define the parameters needed. We define: 

  = the cycle time of the trains. This is the cost parameter and this value is the number of 

minutes the passengers wait when they miss a connection. 

  = delay of event e 

  = slack time of activity a 

    = the number of passengers that plan to end their journey with event e 

   = the number of passenger that plan to use changing activity a 

4.3 Defining the variables 
The model of course also has some variables. We define the following variables: 

    = actual delay of event e (it can be that the train waits for a connecting train) 

   =  
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4.4 The model 
Now we define the model we used as follows: 

                    
                       

                                                                  (1) 

 

     

                                                                                (2) 

                                                                                       U         (3) 

                                                                          (4) 

                                                                                                 (5) 

                                                                                          (6) 

The objective function is given by (1) where the total delay is minimized. We assume that if a 

passenger misses his or her connection that he or she has to wait 20 minutes. Thus, T has a 

value equal to 20 in our model. In the original model T is equal to the cycle time, but because 

not every train has the same cycle time we use a value that probably will give us the minimum 

delay. Dollevoet et al. (2011) varied the value of T from 0 to 60 with a slightly different model. 

The value that gave the minimum objective function was 20. Therefore, we choose 20 as we 

think this will also give us the minimum delay. In section 6.5 we provide a little sensitivity 

analysis on the value of T. Next we make sure that the actual delay is always greater than the 

delay the event has with constraint (2). With constraint (3) we make sure the delays are 

becoming smaller with the slack times.  In constraint (4) we check whether connections that 

passenger take are being maintained. If the connection is not maintained    will be 1, so M will 

make sure the constraint is still valid. If the constraint would not be valid the model would not 

have a solution. M has to be sufficiently large. We just take M as a really large number, like 

10000. This number is big enough as the variables will not be equal to 10000 as a train will not 

have that much of a delay. Lastly (5) and (6) define that     is a natural number and that    is 

binary respectively. 
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5 Evaluation of the solutions 
 

In this chapter we will discuss the methods that evaluate the solutions of the model discussed in 

chapter 4. After the timetable is all run through, we have decided whether we let trains wait or 

we let them depart as soon as possible. To evaluate whether the decisions are good or not, we 

have to check the overall delay of all passengers. In other words, we are going to compare the 

fastest routes of the passengers without any delays with the new fastest routes with the 

delayed trains. After that we will have the difference between the arrival times of the two 

situations and thus we can calculate the overall delay of all the passengers. First we will discuss 

the method. Then we will give a small example. Finally we discuss how to evaluate the decisions. 

5.1 Method 
To compute fastest routes we use a shortest path algorithm. We use the one of Bellman-Ford 

but any shortest path algorithm will do. To use the algorithm we will have to define a graph on 

which the algorithm operates.  

5.1.1 The nodes 

First we define two types of nodes. The first type of nodes contains information about the 

origin-destination-time pairs. An origin-destination-time pair, or ODT-pair for short, is a pair of 

stations which are, as the name says, the origin and the destination of a passenger with a 

starting time. These nodes are the starting and ending nodes for the algorithm. So actually, we 

want the shortest route from a starting ODT-pair to the same ending ODT-pair. The second type 

of nodes is defined as an event. So the node has a train, a station, a time and is a departure or 

an arrival of a train.  

An example of the graph is given in figure 3. We have drawn the first type of nodes as hexagonal 

nodes and the second type of nodes is drawn as a circle.  

5.1.2 The arcs 

Next we define the arcs as the possibility to go from a node to another. We define the weight of 

the arcs as the time that is needed to go from one node to the other. A starting node has an arc 

to all the nodes with the same station label and a time label that is greater than or equal to the 

time label of the ODT-pair. An ending node has only incoming arcs and will have an arc coming 

from every node that has the same station label and a time label greater than the ODT-pair time 

label. The time needed to go from a node to the ending node will have a time of 0.  

For the other nodes, an arc is possible if the time label of the node from which the arc departs 

plus the weight of the arc is smaller or equal to the time label of the node in which the arc 

arrives. Also an arc is only possible, if there is a connection between the station labels of the 

nodes given in the timetable or the station labels are the same. To get a better view of how the 

graph should look like see figure 3. 
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5.2 An example 
In figure 3 we can see that the starting and ending nodes are drawn as hexagonal nodes. We see 

the shortest path from ODT-pair, ams-zl 21.00, is to go with train 1 which departs at 21.00 from 

Amsterdam. Next it will stop in Utrecht for 3 minutes and finally it will arrive in Zwolle at 21.30. 

Notice that there is a path that takes train 2 from the same ODT-pair starting node. This is 

actually also a possible path, although it is not the optimal one. This path is actually the same as 

taking a train later, as all the arrivals and departure of the train are exactly half an hour later. 

We can see that the shortest path for ODT-pair, ams-rtd 21.30, is to change trains in Utrecht. 

The path for this ODT-pair is: take train 2 which departs at 21.30 from Amsterdam. When it 

arrives in Utrecht at 21.45, change to train 3 which departs at 21.50. This train will go to 

Rotterdam directly and the destination of this ODT-pair is reached at 22.10. 

5.3 The evaluation 
With this method we compute the shortest route of both the original timetable and the 

executed timetable. After computing the routes we will have the time of arrival and we can 

check how much they differ. We can now compute the number of passengers that have a delay 

and the total delay all the passengers have combined. Unfortunately, because of delays at the 

end of the timetable some passengers will miss their connection and will not be able to get to 

their destination. We can also compute the number of passengers that have this problem.  

  

Figure 3: Small example of the graph representation of the timetable 
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6 Results 
In this chapter the results will be discussed. Before we do that, we start by discussing the data. 

Next we will discuss the implementation of the simulation. And after that we discuss results of 

the simulations of the small dataset. Next we discuss the results of the big dataset. Finally we 

will do a little sensitivity analysis. 

6.1 Data 
We have data of the Randstad of the Netherlands, which is considered one of the busiest parts 

of the Dutch railways. The data of the trains starts from 20.30 and end about 01.00 for the small 

dataset. The trains in the big dataset do not end until 02.00. We have a dataset of only 

intercities and one with all the trains. We use the smaller dataset of intercities to check whether 

the methods are useful for a smaller dataset with only intercities and to check whether the 

program works properly. It is easier to check with a small dataset and it has a smaller running 

time. We then use the bigger dataset with all the trains to check whether the methods are 

useful for real life data.   

6.1.1 The data in more detail 

The given data have the routes of several trains, these routes include a train number, a 

departure time and arrival time and the corresponding stations.  It also has the slack time of the 

activities. Further, the activities are defined as ‘DRIVE’ which is a drive from station to station or 

as ‘DWELL’ which is waiting at a station. 

Further we have a list of ODT- pairs which are origin-destination-time pairs.  These pairs contain 

an origin station, a destination station and a time at which a passenger wants to travel from 

origin to destination. It also has the number of passengers who want to travel from the same 

origin to the same destination at the same time. 

6.1.2 The small dataset 

The small dataset contains 457 activities of which 288 are ‘DRIVE’ and 169 are ‘DWELL’. It 

contains 576 events. Furthermore, it contains 119 different trains. The 4288 passengers that will 

travel during the timetable, have 700 different ODT-pairs. 

6.1.2 The big dataset 

The big dataset contains 3741 activities of which 2066 are ‘DRIVE’ and 1675 are ‘DWELL’. This 

dataset contains 4132 events. This timetable contains 391 different trains. The 9822 passengers 

that will travel during the timetable, have 3849 different ODT-pairs. So the big dataset is much 

bigger than the small dataset. 

6.2 Implementation 
We used Matlab 2010a to program the simulation in. We chose Matlab as it supports vector and 

matrix calculations very well and we have large data. But Matlab has not a great build in 

optimization function to calculate the model for us. Thus, we connected Gurobi with Matlab. 

Gurobi is one of the fastest optimization solvers, so it solves the model in no time.  
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The data did not have all the input needed for the simulation. We had to compute the number 

of passengers that end their journey at all the events, the number of passengers that change at 

an activity and thus also the changing activities themselves and the slack times. We could 

compute these with the same shortest path algorithm in chapter 5 using the original timetable. 

The computer we used is a laptop with 3 GB RAM and a AMD Athlon(tm) II P340 Dual-Core 

Processor with 2.20 GHz. All the runs are done with this computer.  

6.3 Results small dataset  
Now we will discuss the results of the small dataset with 10 simulation runs. The whole duration 

of the program was about 2 and half hours. We start by discussing the delays. Next we discuss 

the value of the objective function of the optimization model and the number of events in the 

hour it optimized. Then we will discuss the decisions made by the model followed by the total 

delays, the total passengers with delays and the total of passengers that cannot get home 

anymore. Finally, we will show the average results of 100 simulation runs, which lasted 12 and 

half hours, and compare them with the results of the 10 runs. 

6.3.1 The generated delays 

The delays we generated in the simulation are shown in the appendix in Table a.1. The average 

number of delays per run is 27, which is to be expected as we have a total of 576 events which 

can have a delay and 5% of that number is 28.8. Thus, we have an about average number of 

delays.  

We made a scatter plot of the time of occurrence of the generated delays, in order to see 

whether the delays were spread out evenly or if they were all fairly close to each other. If delays 

occur very fast after each other they can build up to very big delays and thus the overall delay 

will be worse than when the delays are more spread out. The plot can be seen in figure 4.  

On the x-axis, we can see the time of occurrence in minutes. The data we used goes from 1290 

to 1526 minutes after midnight. On the y-axis, we see the number of the simulation run and 

thus the dots on that height correspond to that run. We can see that runs 1 and 2 generated a 

lot of delays that occurred really fast after each other. We also see that runs 6, 7, 8 and 10 have 

a good spread of the delays.  

Because we generate delays per event we have more chance of delay in the early and middle 

parts of the timetable. This is because most trains ride within these parts of the timetable. The 

last part is in the middle of the night. Therefore, there are less trains driving at that part. We 

conclude that these runs are about average. 

6.3.2 The optimization model 

In the simulation the optimization model is called and we want to know if the model had good 

results. We can see the average maximum and minimum of the value of the objective function 

of the 10 runs in table 1. The overall average value is thus 237.5, the maximum is 1372 and the 

minimum is 4 minutes. Thus, the value of the objective function had pretty diverse values. Of 

course, it all depends on the number of events there were in the hour the model optimized. The 

number of events that were in the hours the model optimized is given in table 2. 
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Objective function Average value Max value Min value 

Run    
1 292.86 836 54 
2 190.92 546 11 
3 188.6 443 10 
4 195.38 481 18 
5 311.08 916 10 
6 288.10 1372 4 
7 183.40 636 14 
8 235.88 1236 7 
9 172.92 663 8 
10 315.90 1172 63 
Average/maximum/ 
minimum of all runs: 

237.50 1372 4 

Figure 4: The time of occurrence of the generated delays per run. 

Table 1: Table of the average, maximum and minimum value of the objective function of 

the optimization model of the simulation of 10 runs with the small dataset. 
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We can see that the overall average of events in the hours is 167.6 which is a lot. The total 

number of events is 576, thus the events in the hour the model optimizes is about 29% of all the 

events. This means a lot of events occur at about the same time as we discussed in section 6.3.1. 

The overall maximum is 224. We can see in the table that the maximum is about the same, so it 

does not change much per run. The minimum deviates a lot with an overall minimum of 4. This, 

of course, is mostly the case when there are not many events in an hour, like at the end of the 

timetable. 

Events in the 
optimized hour 

Average number Max  number Min  number 

Run    
1 150.33 222 12 
2 162.96 220 24 
3 173.57 222 32 
4 174.00 220 22 
5 170.69 224 10 
6 150.28 224 6 
7 162.69 222 4 
8 160.25 222 4 
9 181.69 224 38 
10 189.64 224 28 
Average/maximum/ 
minimum of all runs: 

167.61 224 4 

Trains waiting Average number Max  number Min  number 

Run    
1 1.93 5 1 
2 2.38 5 1 
3 2.50 6 1 
4 2.14 4 1 
5 2.04 6 1 
6 1.70 4 1 
7 2.00 4 1 
8 2.04 4 1 
9 2.20 5 1 
10 2.41 5 1 
Average/maximum/ 
minimum of all runs: 2.13 6 1 

Table 2: Table of the average, maximum and minimum number of events in the hour the 

optimization model optimized in the simulation of 10 runs with the small dataset. 

Table 3: Table of the average, maximum and minimum number of times trains wait on a 

connecting train in the simulation of 10 runs with the small dataset. 
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6.3.3 The decision made by the model 

Of all the events that were used by the model, the train at that event could wait if there is a 

train that wants to connect or just depart as soon as possible, because there is no connecting 

train or because it was the best option to minimize the overall delay. The average, maximum 

and minimum of trains waiting and departing as scheduled are given in tables 3 and 4 

respectively. We can see the average number of trains waiting is about 2.1. The maximum and 

minimum numbers are 6 and 1 respectively. The average number of trains not waiting is about 

166.1 and is at max 222 and at lowest 3.  

The number of trains that do not wait is always a big number. This is not surprising as one train 

will wait if there is a delay, so the rest can depart as scheduled. It cannot be that there are more 

trains waiting than departing as scheduled, as this will cause too much overall delay. 

 

6.3.4 The total overall delay 

After running the shortest path algorithm with both the original and the executed timetable, we 

could compute the total delay, the number of passengers that have a delay and the number of 

passengers that cannot get home anymore. The results of the 10 runs are given in table 5. We 

can see that the average total delay is 5257 minutes, which is the sum of delays of about an 

average of 361.2 passengers. Thus, the average delay per passenger is about 14 and half 

minutes. This is a good result, as when a delay occurs it is inevitable that the passengers in that 

train get a delay. Unfortunately, the results also state that an average of 17.1 passengers could 

not get home because of the delayed trains as they missed their connection. This can occur if 

there is just too much delay and the connecting train decides not to wait. The reason for this 

result is that the optimization model assumes the passenger waits 20 minutes for the next train. 

But in reality when these passengers miss their train there will be no next train to take. 

 

Trains not waiting Average number Max  number Min  number 

Run    
1 149.21 221 12 
2 161.44 220 24 
3 171.83 221 32 
4 172.27 218 21 
5 169.09 221 10 
6 149.10 222 6 
7 161.24 220 4 
8 158.66 222 3 
9 180.00 221 38 
10 187.77 221 28 
Average/maximum/ 
minimum of all runs: 166.06 222 3 

Table 4: Table of the average, maximum and minimum number of times trains not waiting 

in the simulation of 10 runs with the small dataset. 
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6.3.5 The 100 simulation runs compared to the 10 simulation runs 

We can see in table 6 that the average results of the 100 runs and of the 10 runs. First, we give 

the results of the 100 runs briefly. The average value of the objective function is 207.213 

minutes and has a maximum and minimum of 2362 and 4 respectively. The average number of 

events in the hour that was optimized with the model, is 162.91 and have a maximum and 

minimum of respectively 224 and 4. The average, maximum and minimum number of waiting 

trains are 2.01, 8 and 1, respectively. The average numbers of trains not waiting is 161.45 and 

the maximum and minimum are respectively 222 and 2. The average total delay is 5093.7 

minutes. The average number of passengers with a delay is 348.21 and the average number of 

passengers not getting home is 27.32. 

We then compare the results of both runs. We see that the values are fairly the same. Most 

values differ only a little bit. The 100 runs had a bit lower results than the 10 runs except for the 

maximum value of the objective function, the average total delay, the average number of 

passengers with a delay and the average number of passengers not getting home. These 

average value of the objective function of the 100 runs is fairly the same as the 10 runs, thus the 

maximum value was just a one bad run.  The average total delay and the average number of 

passengers with a delay are a bit lower for the 100 runs. But if we compute the average delay 

per passengers, it is about 14 and a half minutes for both runs. Therefore, the average total 

delay and the average number of passengers with a delay are relatively similar. One run just had 

a bit more luck. The 100 runs has a bigger average number of passengers not getting home 

because of bad luck. The maximum number of passengers not getting home was more often a 

big number in comparison to the 10 runs. Therefore the average is also higher.   

Overall we can say that the two runs are not very different from each other as the average 

values all are fairly the same. We conclude that a run of 10 is about the same as a run of 100. So 

taking 10 runs of the simulation is sufficient. 

 Total Delay Nr of passengers with 
delay 

Nr of passenger that 
cannot get home 

Run    
1 2161 230 0 
2 7267 388 34 
3 5355 271 0 
4 4016 403 9 
5 5617 414 54 
6 5327 315 26 
7 5611 391 15 
8 6045 530 0 
9 5168 260 19 
10 6003 410 14 
Average of all runs: 5257 361.2 17.1 

Table 5: Table of the total delay, number of passengers with a delay and the number of passengers 

that cannot get home anymore of the simulation of 10 runs with the small dataset. 
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 Results of the small dataset with 100 runs 10 runs 

Average value of the objective function 207.213 237.5 

Maximum value of the objective function 2362 1372 

Minimum value of the objective function 4 4 

Average waiting trains 2.01 2.1 

Maximum waiting trains 8 6 

Minimum waiting trains 1 1 

Average not waiting trains 161.45 166 

Maximum not waiting trains 222 222 

Minimum not waiting trains 2 3 

Average number of events in the hour the optimization 
model optimized  

162.91 167.6 

Maximum number of events in the hour the 
optimization model optimized 

224 224 

Minimum number of events in the hour the 
optimization model optimized 

4 4 

Average total delay 5093.7 5257 

Average number of passengers with delay 348.21 361.2 

Average number of passengers not getting home 27.32 17.1 

 

 

 

 

6.4 Results of the big dataset  
Now we discuss the results of the big dataset. We just saw in section 6.3.5 that 10 runs is about 

the same as 100 runs, so we will only take 10 runs for the big dataset. This is a good thing as one 

run of the simulation takes about 14 hours. This is caused by the Bellman-Ford algorithm which 

has to compute the shortest route for all ODT-pairs and while computing the route it has to go 

through all the arcs in the data. First we discuss the delays shortly. Next we discuss the value of 

the objective function of the optimization model and the number of events it had has input. 

After that we discuss the decisions made by the model followed by the total delays, the total 

passengers with delays and the total of passengers that cannot get home anymore. Finally, we 

compare the results shortly with the results from the simulation of 10 runs with the small 

dataset. 

 

Table 6: Table of the average, maximum and minimum results of the simulation of 100 runs and of 10 runs with the small dataset. 

It contains the value of the objective function of the model, the number of waiting trains, the number of trains not waiting, the 

number of events in the hour the optimization model optimized, the total delay of all passengers, the number of passengers with a 

delay and the number of passengers that do not get home anymore. 
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6.4.1 The generated delays 

The number of delays, average minutes of delays generated and the average time of occurrence 

of the 10 runs of the simulation can be seen in Table 7. The average number of delays per run is 

about 204.5. We have a total of 4132 events which can have a delay and 5% of that number is 

206.6. Thus, the number of delays is about average. We cannot show all the delays as that 

would be too many. Also a scatter plot will not be very useful as the dots overlap each other too 

much. Thus, we give the average minutes of delay generated and the average time at which the 

delay occurs. The average delay is about 12.13. This is to be expected, as the expected outcome 

of a random integer number from the discrete uniform distribution on the interval [6, 18] is 12. 

Furthermore, the average time at which the delay occurs is 1389 minutes past midnight, which 

is about 23.00. The average time of the events from the data is 1389. Thus, we can say the 

delays are spread out pretty evenly.  

6.4.2 The optimization model 

We can see in table 8 that we have very diverse average and maximum values of the objective 

functions for the optimization model. The minimum is almost the same for all of the runs. One 

run had a minimum of 4 and the rest had 5 or 6. So the overall minimum is 4. The average value 

of the runs goes from 71.75 to 131.27, which is very diverse. The overall average is 96.45. The 

maximum value also deviates a lot. It goes from 408 to 1829 and the overall maximum is, thus 

1829. The values also deviate for the small data, thus it does not say very much as the model has 

different input every time. 

 

 

 

 

Run Number of delays Average minutes of 
delay generated  

Average time of 
occurrence 

1 202 12.11 1389.8 
2 192 12.11 1394.6 
3 192 12.11 1387.7 
4 205 12.37 1384.3 
5 205 12.37 1390.9 
6 232 12.08 1389.6 
7 232 12.08 1383.7 
8 195 12.01 1385.4 
9 195 12.01 1393.0 
10 195 12.01 1392.3 
Average of all runs: 204.5 12.13 1389.0 

Table 7: Table of the number of delays, average minutes of delay generated and average time of occurrence in minutes of the 

delays generated during the simulation of 10 runs with the big dataset. 
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The number of events in the hour the optimization model optimized is given in table 9. The 

average and maximum of the number of events in the hour optimized is steady. The overall 

average and maximum of the runs have values of 1036.12 and 1364, respectively. The minimum 

however deviates from 4 to 22. This all depends on the time when the delay is generated. A 

delay at the end of the timetable, will give a few events for the model as there are no events 

anymore. The overall minimum is 4.  

 

Objective function Average value Max value Min value 

Run    
1 73.47 900 6 
2 71.75 408 6 
3 129.76 836 6 
4 89.44 500 6 
5 131.27 747 4 
6 87.14 1078 6 
7 104.84 1052 5 
8 92.66 924 5 
9 75.01 1829 5 
10 86.13 569 6 
Average/maximum/ 
minimum of all runs: 96.45 1829 4 

Events in the 
optimized hour  

Average number Max  number Min  number 

Run    
1 1017.20 1364 18 
2 1006.55 1364 22 
3 1065.91 1364 6 
4 1067.60 1364 8 
5 1016.33 1364 12 
6 1035.60 1358 4 
7 1071.42 1364 12 
8 1038.21 1358 8 
9 994.83 1358 4 
10 1028.50 1358 4 
Average/maximum/ 
minimum of all runs: 1036.12 1364 4 

Table 8: Table of the average, maximum and minimum value of the objective function of 

the optimization model of the simulation of 10 runs with the big dataset. 

Table 9: Table of the average, maximum and minimum number of events in the hour the 

optimization model optimized in the simulation of 10 runs with the big dataset. 
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6.4.3 The decisions made by the model 

Of all the events taken as input in the model, the decision to wait for a feeder train or not has 

been made. The average, maximum and minimum number of decisions to wait is very constant 

and the overall average, maximum and minimum of these are 6.77, 17 and 1, respectively. The 

average and maximum number of decisions to not wait is also fairly the same for all runs.  

 

 

Trains waiting Average number Max  number Min  number 

Run    
1 6.49 15 1 
2 6.33 15 1 
3 7.07 17 1 
4 6.85 16 1 
5 6.86 16 1 
6 6.92 17 1 
7 7.00 17 1 
8 7.10 17 1 
9 6.33 15 1 
10 6.49 14 1 
Average/maximum/ 
minimum of all runs: 6.77 17 1 

Trains not waiting Average number Max  number Min  number 

Run    
1 1011.10 1361 17 
2 1000,56 1359 22 
3 1059.09 1361 5 
4 1061,16 1359 8 
5 1009.78 1359 11 
6 1029.09 1352 4 
7 1064.75 1361 11 
8 1031.67 1352 8 
9 988.85 1352 4 
10 1022.31 1351 4 
Average/maximum/ 
minimum of all runs: 1029.70 1361 4 

Table 10: Table of the average, maximum and minimum number of times trains wait on a 

connecting train in the simulation of 10 runs with the big dataset. 

Table 11: Table of the average, maximum and minimum number of times trains not 

waiting in the simulation of 10 runs with the big dataset. 
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The average number deviates a little, but are all close to the overall average of 1029.70. The 

maximum deviates a little with an overall maximum of 1361. The minimum deviates a lot. It goes 

from 4 to 22 and thus, has an overall minimum of 4.  

6.4.4 The total overall delay 

With the shortest path algorithm, we could compute the total delay, the number of passengers 

that have a delay and the number of passengers that cannot get home anymore using the 

original and the executed timetable. We can see in Table 12, that the total delay deviates a bit. It 

goes from 17262 to 25090 and gives an overall average of 19991 minutes. The number of 

passengers that had delay also deviates and goes from 931 to 1595 with an average of 1244 

passengers. Thus, the average delay per passengers is about 16 minutes. The average number of 

passengers not getting home anymore is 78.9, but the number deviates from 19 to 128. This is 

caused by the delays generated. If a lot of delays are generated at the end of the timetable, it 

causes many passengers to miss their connection. Thus, the number of passengers not getting 

home anymore is high if it happens a lot and low if it not.  

Overall a result of an average of 16 minutes of delay per passengers is very good but 

unfortunately the average of 78.9 passengers not getting home is quit big. This is probably 

because there are more events in the end of the timetable. Thus, there is more chance of a 

delay at the end of the timetable. 

 

 

 

 Total Delay Number of passengers 
with delay 

Number of passenger 
that cannot get home 

Run    
1 25090 1317 128 
2 20785 1184 67 
3 22747 1595 19 
4 18785 1147 60 
5 19247 1275 44 
6 18265 1233 66 
7 19269 1364 112 
8 20066 1303 77 
9 17262 931 124 
10 18394 1091 92 
Average of all runs: 19991 1244 78.9 

Table 12: Table of the total delay, number of passengers with a delay and the number of 

passengers that cannot get home anymore of the simulation of 10 runs with the big dataset. 
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6.4.5 The big dataset run compared to the small dataset run 

In this section we are going to compare the runs with the big dataset with the runs with the 

small dataset. The average results of both datasets are given in table 13. We see that the 

average value of the objective function with the big dataset is smaller than with the small 

dataset. The value for the small dataset is 237.50 and for the big dataset 96.45. This is probably 

caused by the number of events in the big dataset. The big dataset has more events. Therefore, 

getting multiple delays after each other, will affect the average value of the objective function 

less as the model optimizes more often. This can also be seen from the maximum value. The 

maximum value for the big dataset is a lot bigger with a value of 1829 compared to the small 

one with a value of 1372. Thus, having a maximum value that big, does not affect the average 

value much, when we run the bigger dataset. The minimum is the same for both datasets. 

The number of trains waiting is also greater for the big dataset. This also is not surprising as 

there are more decisions that have to be taken in the big dataset. The average, maximum and 

minimum of the number of trains waiting in the big dataset are 6.77, 17 and 1, respectively. The 

 Results of the  Small dataset Big dataset 

Average  value of the objective function 237.50 96.45 

Maximum  value of the objective function 1372 1829 

Minimum  value of the objective function 4 4 

Average waiting trains 2.10 6.77 

Maximum waiting trains 6 17 

Minimum waiting trains 1 1 

Average not waiting trains 166.0 1029.7 

Maximum not waiting trains 222 1361 

Minimum not waiting trains 3 4 

Average number of  events in the hour the optimization 
model optimized 

167.60 1036.12 

Maximum number of  events in the hour the 
optimization model optimized 

224 1364 

Minimum number of  events in the hour the 
optimization model optimized 

4 4 

Average total delay 5257 19991 

Average number of passengers with delay 361.2 1244.0 

Average number of passengers not getting home 17.1 78.9 

Table 13: Table of the average, maximum and minimum results of the simulation of the 10 runs with the big dataset and the small 

dataset. It contains the value of the objective function of the model, the number of waiting trains, the number of trains not 

waiting, the number of events in the hour the optimization model optimized, the total delay of all passengers, the number of 

passengers with a delay and the number of passengers that do not get home anymore. 
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average, maximum and minimum of the small dataset are 2.10, 6 and 1 respectively. Thus, the 

minimum waiting trains is the same for both datasets. We also see that the average, maximum 

and minimum number of trains not waiting and number of events in the hour the optimization 

model optimizes are both much greater for the big dataset. The reason is, of course, that the big 

dataset has more trains within an hour and thus also more events. The average, maximum and 

minimum number of trains not waiting in the big dataset are 1029.7, 1361 and 4, respectively. 

The average, maximum and minimum for the small dataset are 166.0, 222 and 3, respectively. 

Thus, the minimum is again not very different. The average, maximum and minimum number of 

events in the hour of the optimization for the big dataset are 1036.12, 1364 and 4 respectively. 

The average, maximum and minimum number of events of the small dataset are 167.60, 224 

and 4 respectively. If we compare them we see that the minimum number of events is the same. 

This probably happened when the model optimized at the end of the timetable as there are not 

many events at the end for either datasets. 

The average total delay is of course also bigger for the big dataset compared to the small 

dataset, as there are more delays generated and there are more passengers. The average total 

delay of the big dataset is 19991 and of the small dataset 5257. These average total delays are 

divided among an average of 1244 passengers for the big dataset and 361.2 passengers for the 

small dataset. Thus, the average delay per passenger for the big dataset is about 16 minutes and 

for the small dataset 14 and half minutes. Thus, the average delay per passenger is not that 

different. It only differs 1 and a half minute. Unfortunately the number of passengers not getting 

home for the big dataset is a lot bigger than for the small dataset. The numbers are 78.9 and 

17.1 respectively. The percentage of the passengers that did not get home is given by dividing 

the number of passenger not getting home by the total number of passengers. This gives us 0.8% 

of the passengers did not get home with the big dataset and 0.4% with the small dataset. Thus, 

overall there are more passengers not getting home in the big dataset than in the small dataset. 

This is probably because there are more events at the end of the timetable of the big dataset. So 

there is a higher probability that a delay occurs at the end of the timetable.  

We conclude that the average delay per passengers is about the same for both datasets. The big 

dataset has an average delay of 16 minutes per passenger and the small dataset 14 and half 

minutes. Unfortunately with the big data set about 0.8% of the passengers could not get home 

anymore and with the small data set about 0.4%. Thus, the big dataset has a higher percentage 

of passengers not getting home anymore. This is probably because the big dataset has more 

events at the end of the timetable. Thus, the probability of getting a delay at the end of the 

timetable is higher.  

6.5 Sensitivity Analysis 
From the results, we saw that making the assumption that passengers wait 20 minutes might 

not be the best choice. We think a lot of passengers do not get home anymore, because of the 

assumption. We think a bigger value of T might get better results. Therefore, we varied the T 

from the optimization model in section 4.4. We generated the delays as normally in the 

simulation and optimized the model with three different values for T. Thus, we had the same 

delays for every value of T. We take the values 20, 25 and 30 for T and run the simulation 10 
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times with the small dataset. The results are given in table 14. Taking T bigger will automatically 

result in a greater than or equal value of the objective function, as the T is a cost parameter. 

Thus, an average value of the objective function that is increasing when T increases is not 

surprising. The minimum and maximum value has remained the same for all values of T. The 

average number of trains waiting and trains not waiting does change a little bit. The difference is 

0.01 which is too small to make a difference. The minimum and maximum number of trains 

waiting and number of trains not waiting do not change as T changes. We see that the total 

delay, the number of passengers with a delay and the passengers not getting home also do not 

change as T changes. So, we conclude that changing T does not influence the number of 

passengers not getting home and also not the total delay and the number of passengers with a 

delay. 

 

 

 

 

 

 

 
 

 

 

 

  

 Model with T = 20 T =25 T = 30  

Average  value of the objective 
function 

195.07 196.23 197.31  

Maximum  value of the 
objective function 

1163 1163 1163  

Minimum value of the 
objective function 

6 6 6  

Average waiting trains 2.04 2.04 2.05  

Maximum waiting trains 6 6 6  

Minimum waiting trains 1 1 1  

Average not waiting trains 162.91 162.91 162.90  

Maximum not waiting trains 222 222 222  

Minimum not waiting trains 3 3 3  

Average total delay 4319 4319 4319  

Average number of passengers 
with delay 

294.4 294.4 294.4  

Average number of passengers 
not getting home 

23 23 23  

Table 14: Table of the results from 10 runs of the simulation with the small dataset for T = 20, T = 25 and T = 30 with the same 

delays. It shows the average, maximum and minimum value of the objective function, number of trains waiting, number of trains 

not waiting, the average total delay, the number of passengers with a delay and the number of passengers not getting home 

anymore.  
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7 Conclusion  
 

We made a simulation of the real world with a given timetable from NS. Of course a simulation 

which is really the same as the real world is not possible. Therefore, we made some assumptions. 

In the simulation we used an off-line delay management method to try and minimize the overall 

delay of all passengers. For this we used an optimization model that decides whether the trains 

should wait for a delayed train or they just depart as scheduled. After all the decisions are made, 

we have the executed timetable which we can compare to the original one. We used a shortest 

path algorithm to compute the arrival times of the passengers. With these arrival times we can 

now compute the overall delay passengers had, the number of passengers with delays and the 

number of passengers that could not get home. Finally, we checked whether changing the T 

from the optimization model in 4.4 would give better results.  

From the results of the simulation of 10 runs with the small dataset, we can see that every 

optimization from the model results in about two trains waiting for a feeder train and the rest 

will depart as scheduled. This is not a very surprising result as when there are too much trains 

waiting, the delay will just be bigger. The total delay all passengers had was 5257 minutes. This 

was divided among about 361 passengers and that is about 14 and half minute of average delay 

which is not a bad result. Unfortunately, about 17 passengers could not get home. This is 

because the optimization model thinks these passengers just wait for 20 minutes. When we 

compare these results with the results of the 100 runs they did not differ that much. So, we can 

conclude that simulating with 10 runs is not different from 100 runs. Therefore, simulating with 

10 runs is sufficient. 

From the results of the simulation of 10 runs with the big dataset, we see that the every 

optimization results in about seven trains waiting for a feeder train and the rest does not wait. 

Again this is not very surprising, as when there are too much trains waiting the delay will just be 

bigger. The total delay the passengers had was 19991 minutes. This was divided among 1244 

passengers. Thus, the average delay of a passenger is about 16 minutes which is a good result. 

Unfortunately, about 78.9 passengers could not get home anymore. Again this is because the 

optimization model thinks these passengers just wait for 20 minutes. If we compare the results 

of the two datasets we conclude that the average delay per passengers is about the same. The 

big dataset has an average delay of 16 minutes per passenger and the small dataset 14 and a 

half minute. Unfortunately, the number of passengers not getting home anymore is a lot more 

for the big dataset than for the small dataset. The numbers of passengers not getting home are 

78.9 and 17.1, respectively. The big dataset has a lot more events. This might cause that more 

passengers cannot get home anymore. We generate delays per event. Therefore, the big dataset 

has a higher probability of getting delays at the end of the timetable.  

Because we think that giving T the value of 20 in the optimization model from section 4.4 might 

be a bad assumption, we did a little sensitivity analysis. We varied the value of T to 25 and 30 

and checked whether this would give us different results than with a value of 20. For these runs 

we used the same delays. The results were the almost the same for all values of T. Thus, we 

conclude that changing the value of T will not change the overall results.  
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Overall we think an average of 16 minutes of delay per passenger is a good result as we used 

real life data. Unfortunately about 78.9 passengers could not get home anymore. But maybe if 

we use a better optimization model or running the simulation with a daytime schedule, so the 

passengers that cannot get home will have a next train, we could use these methods in practice 

to minimize delay. 
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8 Future research 
 

Given the results and conclusion, we could probably use the methods with a bigger dataset. The 

computation times will of course be a lot greater. Also taking a much greater number of runs for 

the simulation will get a better result as randomness will be smaller. 

We made some assumptions to validate our methods as described in section 3.2. We could 

probably get better view of the reality, if we would know the chance of getting a delay in more 

detail and how long a delay will be. With this the delays are more like in real life and thus the 

results will give a better idea for practical uses.  

A change of trains takes a few minutes when the platforms of the change are not next to each 

other. Therefore, this could be implemented in the model which might give a slight better view 

of the reality, but it is hard to approximate the number of minutes to take for the change. A too 

large number will let passengers wait for no reason and a too small a number will let some 

passengers miss their train. 

Also the trains that wait could cause problems within a station. But there are other models that 

keep this in account. Thus, using another optimization model, like the one in Dollevoet et al. 

(2012c) will solve this problem. Of course the model will be a lot harder to implement. 

Actually any delay minimization model could replace the one we used. Thus, by taking a model 

that does not need the assumptions we made, will result in a better approximation of reality.   
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Appendix 
 

Run 1 2 3 4 5 6 7 8 9 10 

Delay nr           
1 9 6 10 14 9 16 14 16 12 18 
2 13 18 18 13 11 13 14 7 18 11 
3 8 9 17 10 11 16 17 6 17 16 
4 11 14 11 16 15 11 6 10 11 13 
5 6 15 16 18 12 6 14 9 14 16 
6 13 16 6 10 18 17 8 13 10 18 
7 18 17 14 11 6 16 12 17 14 18 
8 11 18 7 16 7 11 12 16 12 13 
9 8 13 16 11 17 7 7 9 6 8 
10 10 14 12 6 11 10 16 8 10 18 
11 11 7 13 16 17 17 13 6 12 11 
12 11 12 17 12 16 8 10 9 6 14 
13 6 9 15 13 10 14 13 13 18 14 
14 11 11 16 18 7 10 18 17 6 10 
15 7 16 6 9 14 7 9 14 18 13 
16 13 8 18 12 14 13 13 8 9 18 
17 10 16 10 18 17 17 17 13 13 18 
18 11 9 12 7 16 7 18 12 7 18 
19 11 16 14 11 12 13 16 9 15 14 
20 15 13 7 13 7 10 6 16 7 6 
21 7 14 8 9 15 16 16 12 11 18 
22 13 15 13 14 13 11 16 6 17 12 
23 10 7 9 9 12 12 18 14 18 7 
24 14 13  9 11 11 11 18 10  
25  11  17 13 12 10 6 14  
26    10 7 10 16 11 6  
27     14 15 9 9   
28     15 18 17 18   
29     14 14 16 7   
30     8 9  16   
31     13   18   
32     18   18   
Average 
delay 

10.71 12.68 12.39 12.38 12.50 12.23 13.17 11.91 11.96 14.00 

Total nr 
of delays 

24 25 23 26 32 30 29 32 26 23 

  

  
Table a.1: Table of all the generated delays in the simulation of 10 runs with the 

small dataset. It also contains the average delay and total number of delays. 
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