
Computing the Highest Density Region using

Voronoi and Delaunay techniques

Bachelor thesis
Econometrics and Operational Research

Joeri Admiraal, 342478 ∗

Erasmus University Rotterdam

June 30, 2013

Abstract

Highest density regions have a great use as prediction regions. There
are some methods to compute a highest density region, but they need
information about the probability density function or are only suited for
certain cases. In this paper we show a new method to approximate the
highest density region using Voronoi and Delaunay techniques. First we
use these techniques to create a graph, after which we compute the highest
density region using two different graph algorithms: one that is faster and
one that is more accurate. Compared to the symmetric prediction region,
these algorithms perform very well and also for non-convex contour shaped
densities both algorithms work as expected.

∗Supervised by Dr. Wilco van den Heuvel

Contents

1 Introduction 2

2 Methods 3
2.1 Voronoi and Delaunay techniques 3

2.1.1 Definition Voronoi diagram 3
2.1.2 Relation to Delaunay triangulation 3
2.1.3 Algorithms . 4
2.1.4 Data structure . 4
2.1.5 Creating the Voronoi diagram 5

2.2 Graph theory . 7
2.2.1 Data structure . 8
2.2.2 Top-down algorithm . 8
2.2.3 Bottom-up algorithm . 10

3 Experimental results 11
3.1 Independent bivariate normal distribution 11

3.1.1 Theoretical symmetric prediction region 11
3.1.2 Heuristics . 11

3.2 Dependent bivariate normal distribution 14

4 Conclusion 16

5 Discussion 16

Appendix A Detailed pseudocode 18
A.1 Main procedure . 18
A.2 Delaunay triangulation . 18
A.3 Voronoi diagram . 19
A.4 Graph heuristics . 20

A.4.1 Top-down algorithm . 20
A.4.2 Bottom-up algorithm . 20
A.4.3 Check connected subgraphs 21

1

1 Introduction

For many statistical methods it is essential to get a summary of a given probabil-
ity distribution in the form of a region in which an observation will be located
with a certain probability. This is a so called prediction region (or forecast
region in some literature). For example, a 95% prediction region contains ap-
proximately 95% of the observations. These prediction regions are of great use
for testing the accuracy of a model.

Often a prediction region is calculated with the mean and standard deviation
or with quantiles. These symmetric prediction regions are acceptable when
prediction densities are normal. But when a model is non-linear or non-normal,
prediction densities are often not normal and lead to asymmetric or possibly
multimodal prediction regions [1, 2, 3]. Therefore another method to compute
the prediction region is recommended, but there are many ways to construct
one.

The most intuitive prediction region is the highest density region (HDR). In
Bayesian analysis this is called the Highest Posterior Density Region (HPD) or
Bayesian confidence set. We define the HDR with the following criteria, which
are equal to the criteria in the definition by Box and Tiao [4]:

1. The surface of the region is minimized.

2. Every observation inside the region has a probability at least as large as
every observation outside the region.

A more precise definition by Hyndman [6] is as follows: let f(x) be the density
function of a random variable X. Then the 100(1 − α)% HDR is the subset
R(fα) of the sample space of X such that R(fα) = {x : f(x) ≥ fα}, where fα
is the largest constant such that Pr(X ∈ R(fα) ≥ 1− α).

For normal densities and any other unimodal symmetric distribution the HDR
will lead to the same prediction region as the symmetric prediction region. For
non-normal densities other prediction regions will fail, whereas the HDR will
provide better results [5].

There are only few articles about HDRs. Hyndman [6] showed a method to
approximate the HDR with a density quantile approach, using a kernel density
estimator. However, the probability density function must be known for this
method or should be approximated. Fadallah [7] provided another algorithm
where no information about the probability distribution is needed, but works
only for problems with convex contour shapes.

In this research we examine the possibility of a new algorithm for computing a
HDR using Voronoi techniques that works not only for convex contour shaped
probability distributions, but also for non-convex ones and does not need any
information about the probability density function. In Section 2 we investigate
the methods for creating a Voronoi diagram and using this to compute the HDR
with graph theory. In Section 3 we test our methods, after which we can answer
our research question.

2

2 Methods

The algorithms we propose work in two steps. First we divide the surface up
into different cells using Voronoi techniques. Afterwards, we construct a HDR
using graph theory.

2.1 Voronoi and Delaunay techniques

2.1.1 Definition Voronoi diagram

A Voronoi diagram is a way to split a surface up into different cells. This is
done in a way that each Voronoi cell contains exactly one vertex. Furthermore,
each point in the surface is located in the region of its closest vertex. Formal
definition of a Voronoi cell: Rk = {x ∈ X|d(x, Pk) ≤ d(x, Pj) for all j 6= k},
where x ∈ X are all points in space, Rk is Voronoi cell k, Pk is vertex k in
Voronoi cell k and d(i,j) is the distance between points i and j.

2.1.2 Relation to Delaunay triangulation

It is also noteworthy that the Voronoi diagram is the dual graph of the Delau-
nay triangulation [8]. A triangulation is made by subdividing a surface up into
triangles and is a Delaunay triangulation if there are no other vertices inside
the circumcircle of every triangle. When one obtains a Delaunay triangulation,
one can easily transform it into a Voronoi diagram (or the other way around).
Transforming a Delaunay triangulation into a Voronoi diagram is done by con-
necting the circumcenters of two triangles with a joint edge, for all edges (see
Figure 1). In this research, this is very convenient as the Delaunay triangulation
shows which Voronoi cells are connected to each other and can be used to create
a graph.

Figure 1: Duality between Voronoi diagram (in gray) and Delaunay Triangula-
tion (in black)

3

2.1.3 Algorithms

There are several categories of algorithms to create a Voronoi diagram or De-
launay triangulation. First the only widely known Voronoi algorithm is given.
Furthermore two Delaunay triangulation techniques are given, in which most of
the popular Delaunay triangulation algorithms will fall.

Sweepline Voronoi algorithm This algorithm proposed by Fortune [9] cre-
ates a Voronoi diagram using a sweepline technique and works only for two
dimensions. A line sweeps from one side of the surface to the other side, slowly
including all vertices into the Voronoi diagram.

Divide and conquer Delaunay algorithms These algorithms split the sur-
face recursively up into different regions and compute the Delaunay triangula-
tion for each region. Later on these regions are merged. The first version of this
algorithm was implemented by Lee and Schachter [10], was then improved by
Guibas and Stolfi [11] and later by Dwyer [12].

Incremental Delaunay algorithms This is a method that adds one ob-
servation at a time and computes the Delaunay triangulation repeatedly for
each step. The Bowyer-Watson algorithm [13, 14] is a very popular incremental
algorithm. Lawson [15] has also created a widely used algorithm.

All algorithms run in O(n log n) time for non-uniform distributed observations
[16]. Because the incremental algorithms are the easiest ones, we use one of
these. At first, both mentioned algorithms are quite easy to understand. How-
ever, it is slightly more difficult to implement them. After some investigation
the Bowyer-Watson algorithm seems to be somewhat easier to implement, so
this is the algorithm we use. Both Delaunay triangulation methods can be im-
plemented for higher dimensions than two, but in this research we focus on the
two dimensional bivariate case.

2.1.4 Data structure

Almost all algorithms, including the Bowyer-Watson algorithm, use a quad-edge
data structure, first proposed by Guibas and Stolfi [11]. This array-based data
structure is in practice considerably faster than a pointer-based data structure
[16] and is constructed with duality in mind, so it is easy to determine the
Voronoi diagram afterwards. The quad-edge data structure has classes for ver-
tices, edges and triangles, with emphasis on edges.

Vertices A vertex is the most essential data type, as edges and triangles
depend on vertices. A vertex has two coordinates representing its horizontal
and vertical position. We also give each vertex an id (unique number) and
maintain a list of id’s of edges the vertex is connected to.

4

Triangles Triangles have three vertices and also contain a list of id’s of its
three edges. Triangles also have a circumcircle: a circumcenter and a radius.
Now we can check whether a given vertex is located in the circumcircle of this
triangle. Triangles also have a list of id’s of edges it contains.

Edges Edges contain two vertices, between which the edge is located. An
edge also contains two triangles, one for each side of the edge. Edges also have
an id: an unique number that can be used to store an edge in vertices and
triangles.

2.1.5 Creating the Voronoi diagram

With the techniques mentioned above we can start constructing a graph. First
we run our main procedure. For a given data set, all observations are trans-
formed into vertices, with an x and y coordinate. Then we sort the vertices on
x-coordinates. This could speed up the triangulation, as we could locate the
vertex somewhat faster. For a detailed description of the main procedure, see
Appendix A.1. Now we create a Delaunay triangulation and use that to obtain
the Voronoi diagram.

Delaunay triangulation First we use the Bowyer-Watson algorithm and
quad-edge data structure to create a Delaunay triangulation. A short pseu-
docode for the triangulation can be found in Algorithm 1. For a more detailed
description, see Appendix A.2.

Algorithm 1 Bowyer-Watson Delaunay triangulation

create super triangle (enclosing all vertices)
for all vertices v do . insert vertices one by one

find triangles for which v is located in its circumcircle
delete these triangles to get insertion polygon
triangulate insertion polygon by creating edges from its vertices to v

end for
remove super triangle

Figure 2: Creating the super triangle

5

First we create a super triangle, as illustrated in Figure 2. This is done by creat-
ing an enclosing rectangle and then creating a triangle enclosing this rectangle.
The rectangle is easily made by calculating the minimum and maximum x- and
y-coordinates. We now create a triangle as large as possible within this rectan-
gle and duplicate this triangle three times to create a super triangle, inspired
by the Sierpinski triangle.

Figure 3: Finding faulty triangles and triangulate insertion polygon

Afterwards we insert the vertices one by one into the current triangulation, as
illustrated in Figure 3. First we need to find all faulty triangles: triangles for
which the inserted vertex is located in its circumcircle. It would be very time
consuming to check this for every triangle, so we use another technique. First
we locate the one faulty triangle, where we start with the last created triangles.
Because we sorted the triangles beforehand, the inserted vertex is likely to be
located near the last inserted vertices. Now we can find the remaining faulty
triangles by checking adjacent triangles of all known faulty triangles, until there
are no triangles left to check. We get the insertion polygon as a result of merging
all faulty triangles. Then we can triangulate this insertion polygon by adding
edges from its vertices to the inserted vertex.

Voronoi diagram We use this Delaunay triangulation to obtain the Voronoi
diagram with Algorithm 2. For a more detailed pseudocode, see Appendix
A.3.

Algorithm 2 Transformation Delaunay to Voronoi

Require: Delaunay triangulation
for all vertices v in Delaunay triangulation do

for all edges e connected to v do
create edge between circumcenters of adjacent triangles of e

end for
calculate area of this Voronoi cell

end for

As we used a quad-edge data structure in the construction of the Delaunay
triangulation, it is quite easy to obtain the Voronoi diagram. To create a Voronoi
cell around a vertex, one connects all circumcenters of the adjacent triangles
(or adjacent triangles to adjacent edges). With this information it is easy to
calculate the area of all Voronoi cells.

One problem however is how to determine the area of all boundary Voronoi
cells: the cells that are on the edge of the Voronoi diagram. These cells are not

6

bounded with edges in all directions and theoretically they have an unlimited
area. As it is most unlikely these cells are to be included in a HDR, we set the
area to infinity so our algorithms also do not include them in the HDR.

2.2 Graph theory

With the Voronoi diagram and Delaunay triangulation, we can finally construct
the HDR. We want to create a region with 100(1 − α)% of the vertices, which
have a weight equal to the area of its Voronoi cell. We now create a graph with
the Delaunay triangulation and the Voronoi diagram. This graph G = (V,E)
consists of the vertices V from the observations and edges E from the Delaunay
triangulation. Each vertex v has a weight f(v), representing the area of its
Voronoi cell.

Our goal is to obtain a subgraph with only 100(1 − α)% of the vertices, with
the smallest sum of areas. So we seek a subgraph H = (W,E′) with W ⊆ V

and |W | ≥ (1−α)|V |, minimizing
∑|W |
i=1 f(wi). This subgraph is easy to obtain

by adding only the (1 − α)|V | vertices with the lowest weight to H. In Figure
4 one can see an example outcome of this smallest subgraph, which might not
be exactly what we want.

Figure 4: Smallest subgraph

First of all, there are gaps in the computed HDR. This is not reasonable for
most probability distributions, so we might want to avoid this. We can add a
restriction to our minimization problem in order to avoid these gaps. We start
with graph G and end with subgraph H as HDR and another subgraph I =
(U,E”) with U = V −W and E” = E −E′. If this subgraph I with all vertices
not in the HDR is a connected graph, then H does not contain gaps. Connected
means that there exists a path u1, u2, ..., uk between each combination u1, uk in
I (one might use a dummy vertex connected to all boundary vertices). In
most cases it would be wise to add this restriction, but when stumbling upon

7

a multimodal probability distribution where gaps are expected, this could be
relaxed.

Secondly, our computed HDR consists of multiple regions. Apart from the large
central region, there are some cells not connected to this region. As this is
also not a very logical result for most probability distributions, we want to pre-
vent this from happening too. This can be done by ensuring that subgraph
H is a connected graph. This means that there exists a path w1, w2, ..., wk
between each combination w1, wk in H. This is preferable for unimodal proba-
bility distributions, but for multimodal probability distributions this might be
relaxed.

In this research we will focus on the most common case: an unimodal probability
distribution where we assume gaps are not present and the HDR is connected.
First we will explain the data structure, then we will give two different algo-
rithms: a top-down algorithm and a bottom-up algorithm.

2.2.1 Data structure

Before we can use one of our algorithms we have to create the data structure.
Because the vertices hold most of the information, these vertices are the most
important part of the graph. The vertices already exist after the Delaunay
triangulation and have a weight equal to the area of its Voronoi cell. We added
a list of id’s of vertices this vertex is connected to. Now we can quickly find the
adjacent vertices of each vertex, without relying on the edges from the Delaunay
triangulation.

2.2.2 Top-down algorithm

The top-down algorithm begins with a full graph and removes the vertices with
the highest weight one by one. This Algorithm 3 ensures the graph remains
connected and without gaps. See Appendix A.4.1 for a more detailed pseu-
docode.

First we sort the vertices on weight from high to low and then calculate the
number of vertices to be removed. For each removal, we search for the vertex
with the highest weight that does not result in a disconnected subgraph H or
I. The simplest way of checking whether a subgraph is connected is as follows.
We start with one vertex of the subgraph and add it to a list. Now we add
all adjacent vertices of this vertex to the list and continue with their adjacent
vertices that are not already in this list. This goes on till we cannot find any new
adjacent vertices. If this list now contains all vertices from our initial subgraph,
this subgraph is connected. While this method is very straightforward, it might
take some time when the subgraph contains a high number of vertices. Therefore
we decided to use another method.

Checking whether H remains connected is done by looking at the neighboring
vertices of the to be removed vertex. We count the amount of groups of neigh-
boring vertices. If two adjacent neighbors are both in H or both in I, they
are in the same group. When there are more than two groups, this means the

8

Algorithm 3 Top-down algorithm

Require: G = (V,E)
sort V on f(v)
create subgraph H = (W,E′), initially with W = V and E′ = E
create subgraph I = (U,E”), initially empty
for α× |V | do . remove α % of the vertices

set found as false
while found is false do

try next not already tried w ∈W with highest f(w)
remove w from H and add to I
if H or I is not connected anymore then

revert last step
else

set found as true
end if

end while
end for

to be removed vertex is the only connection between two regions of vertices
and removal results in a disconnected subgraph H. Checking whether I is still
connected can be done in almost the same way. Again we count the number of
different groups the to be removed vertex has. When there is only one group
of neighbors, this means that this vertex is fully surrounded by vertices in H
and removal results in a gap. Detailed pseudocode can be found in Appendix
A.4.3.

Figure 5: Ensuring connected graphs

For an example, see Figure 5. We can see vertex A has two different groups
of neighbors, separated by the thick lines, and removal is approved. Vertex B
has only one group of neighbors, so removal results in a disconnected graph
I. Removing vertex C on the other hand, results in a disconnected graph H,
because of the four different groups of neighbors.

9

The only exceptions are the boundary vertices, otherwise our algorithm would
not run as all vertices have only one group of neighbors. So altogether, we
only remove boundary vertices and vertices with two different groups of neigh-
bors.

2.2.3 Bottom-up algorithm

This algorithm is the opposite from the top-down algorithm, where we start
with the full graph and slowly remove vertices with a high weight. Here we
start with an empty HDR subgraph H and add vertices with a low weight one
by one. This is explained in Algorithm 4 and elaborated in more detail in
Appendix A.4.2.

Algorithm 4 Bottom-up algorithm

Require: G = (V,E)
sort V on f(v)
create subgraph H = (W,E′), initially empty
create subgraph I = (U,E”), initially with U = V and E” = E
for (1− α)× |V | do . add α % of the vertices

set found as false
while found is false do

try next not already tried u ∈ U with lowest f(u)
remove u from I and add to H
if H or I is not connected anymore then

revert last step
else

set found as true
end if

end while
end for

First we start with the vertex with the lowest weight. Then we add one by one
the vertex with the lowest weight that does not result in a gap or a disconnected
H. To check this we use the same method described in the top-down algorithm,
but in this case we do not have to concern about the boundary vertices as
exceptions.

10

3 Experimental results

We now test the aforementioned algorithms with a few experiments. First we
examine the methods on an independent bivariate normal distribution, because
these results can be compared with a symmetric prediction region. Afterwards
we also test our algorithms on an unimodal bivariate non-convex contour shaped
distribution.

We want to be sure the vertices on the edge of the graph are removed by our
algorithm. As we set the weight of these vertices to infinity, they are the least
likely to be included in the HDR. But for this to work, the number vertices to
be excluded from the HDR must be sufficiently high. This depends not only on
the amount of vertices and the percentage of vertices to be excluded (α), but
also on the probability distribution of the vertices. The lower α is, the more
vertices are needed. The kurtosis of the distribution also plays a role: the more
vertices are located in the tails of the distribution, the more boundary vertices
there are and the more vertices are required to compute the HDR (for a certain
α). Otherwise, there is a chance some boundary vertices are included in the
HDR, which results in an infinite area.

All testing is done on a computer with an i5-520M processor, using only one
core at 2.40 GHz.

3.1 Independent bivariate normal distribution

The independent bivariate normal distribution consists of two independent uni-
variate normal distributions. We can now generate two independent normal
variables which can represent the x- and y-coordinate of a vertex i, with xi ∼
N (µ1, σ1) and yi ∼ N (µ2, σ2).

3.1.1 Theoretical symmetric prediction region

We use the formulas from Chew [17] to obtain a theoretical symmetric prediction
region. The 100(1 − α)%-prediction region for a multivariate normal distribu-
tion is an ellipse with the equation (x−µ)′Σ−1(x−µ) ≤ c2 = χ2(α, p). For the
bivariate normal distribution, the chi-squared distribution can be simplified to
an exponential distribution, which results in c2 = −2 ln(α). As the two dimen-
sions are independent, the covariance matrix is a diagonal matrix. The resulting
ellipse has its center at (µ1, µ2), has a width of 2σ1c and a height of 2σ2c. So
now the area of this region can easily be calculated with −2 ln(α)πσ1σ2.

3.1.2 Heuristics

Now we are going to test the top-down algorithm and bottom-up algorithm. We
compare these to each other and to the theoretical prediction region. For this
example we generated 10000 vertices with two independent standard normal
variables, xi ∼ N (0, 2) and yi ∼ N (0, 1). Our chosen α is 0.1.

11

Figure 6: Top-down algorithm (convex experiment)

We can see in Figure 6 the top-down algorithm does a pretty good job, but has
a downside. Slightly visible in picture, but becomes more clear when removing a
higher percentage of the vertices, is that the HDR gets large so-called tentacles
at the edges of the HDR. The reason is vertex with a low weight located at the
end of the tentacle that does not get removed. Because of the algorithm, all
other vertices in the tentacle cannot be removed too, as this causes the HDR to
be disconnected.

Figure 7: Bottom-up algorithm (convex experiment)

It is clear by Figure 7 that the bottom-up algorithm has this problem too, but
to a lesser extent. This is now caused by vertices with a high weight near the
center of the HDR. The difference is that the probability that a vertex with a
low weight is located far from the mode of our probability distribution is higher
than the probability that a vertex with a high weight is located close to the
mode. This is because there are far more vertices near the mode and therefore
will decrease the chance that weights greatly deviate from their theoretically
expected weight.

12

Algorithm Top-down Bottom-up

Voronoi time (ms) 1355 1355
Theoretical area 28.94 28.94
Graph time (ms) 267 8233

HDR area 27.48 27.42
Similarity HDR and theory (%) 97.52 98.21

Table 1: Results with |V | = 10000 and α = 0.1

In Table 1 we can compare the results of both algorithms in more detail. The
areas of the HDRs computed by both algorithms are almost the same, with a
small advantage for the bottom-up algorithm. More important is that the HDR
computed by the bottom-up algorithm is more similar to the theoretical sym-
metric prediction region. This means that more vertices from the HDR are also
in the symmetric region and could be a good indicator for the accuracy of the
algorithms. This difference in similarity is present because the top-down algo-
rithm has longer tentacles, which causes more vertices to be located outside the
symmetric region. However, this slight advantage for the bottom-up algorithm
comes at a cost: the top-down algorithm is much faster than the bottom-up
algorithm.

|V | 100 1000 10000 100000
Voronoi time (ms) 81 408 1355 57561
Theoretical area 28.94 28.94 28.94 28.94
Graph time (ms) Top-down 4 20 267 28741

Bottom-up 14 202 8233 2342964
HDR area Top-down 43.10 28.37 27.48 28.10

Bottom-up 43.10 28.31 27.42 27.75
Similarity with Top-down 96.67 97.89 97.52 97.32
theoretical (%) Bottom-up 96.67 98.00 98.21 98.41

Table 2: Results with α = 0.1 and variable |V |

In Table 2 we can see that increasing |V | does not greatly improve the similarity
of both algorithms (they are quite high anyway). And while the computation
time for both algorithms greatly increases, the area also remains roughly the
same. The only exception is the case with the smallest number of vertices.
Because of the few vertices, all Voronoi cells have a quite large area. While
many vertices are inside the theoretical area, their Voronoi cell is also partly
outside of it.

As one can see in table 3, the difference between both algorithms changes as
α varies. As α decreases, the top-down algorithm gets faster. The bottom-
up algorithm should theoretically become slower when decreasing α, but that
cannot be concluded from the table. What can be seen is that the similarity,
and probably the accuracy too, decreases as α gets smaller. This has a smaller
influence on the bottom-up algorithm and is again caused by the tentacles both
algorithms produces.

13

α 0.01 0.05 0.1 0.25 0.5
Voronoi time (ms) 1355 1355 1355 1355 1355
Theoretical area 57.87 37.65 28.94 17.42 8.71
Graph time (ms) Top-down 97 226 267 803 5004

Bottom-up 10267 11107 8233 8725 7095
HDR area Top-down 58.07 36.18 27.49 16.20 7.98

Bottom-up 58.22 36.21 27.42 16.08 7.38
Similarity with Top-down 99.75 99.07 97.52 92.37 75.70
theoretical (%) Bottom-up 99.74 99.15 98.22 95.93 87.40

Table 3: Results with |V | = 10000 and variable α

3.2 Dependent bivariate normal distribution

To show how the algorithms perform on a distribution where the HDR is not
a convex region, we test our algorithm on a bivariate distribution where xi ∼
N (0, 2) and yi ∼ N (|xi|, 1).

Figure 8: Top-down algorithm (non-convex experiment)

We can see in Figure 8 and 9 that both algorithms work as expected. Again
does the top-down algorithm produce long tentacles, something the bottom-up
algorithm does not encounter that much.

According to Table 4, also in this case does the bottom-up algorithm produce
a HDR with a slightly smaller area, but again it takes more time than the
top-down algorithm.

14

Figure 9: Bottom-up algorithm (non-convex experiment)

Algorithm Top-down Bottom-up

Voronoi time (ms) 1547 1547
Graph time (ms) 306 1808

HDR area 27.57 27.32

Table 4: Results with |V | = 10000 and α = 0.1

15

4 Conclusion

In this paper we provided two algorithms to compute a HDR, which is es-
sential to provide a decent prediction area for probability distributions with a
non-normal density. Both algorithms use Voronoi and Delaunay techniques to
compute a graph with weighted vertices, but differ in the graph algorithm. We
tested these algorithms on two cases with unimodal bivariate probability distri-
butions, one with a convex contour shape and one with a non-convex contour
shape. In the convex case we could test these algorithms against the theoret-
ical symmetric prediction region, where both algorithms performed quite well.
Also for the non-convex contour shaped distribution the algorithms seem to
work fine. Most of the time the top-down algorithm is much faster, while the
bottom-up algorithm produces a slightly better HDR. As both algorithms are
quite accurate, we recommend using the top-down algorithm unless α is high or
extra accuracy is needed.

5 Discussion

In this paper we showed some possibilities to compute a HDR using Voronoi,
Delaunay and graph techniques. However, there are some ways to improve these
algorithms.

First of all, the Delaunay triangulation could be much faster with some opti-
mization. By comparing processor speed with results in [16], one could speed up
the Delaunay algorithm with a factor 100. To begin with, they use some kind of
bucketing scheme which sorts the vertices in a way the algorithm is much faster
in finding the faulty triangles upon insertion.

Furthermore, our algorithms have a problem with boundary vertices. We have
to make sure that no boundary vertices are included in the HDR, because their
area is set to infinity. This could be a problem when there are not enough
vertices or when the α is very low. In our findings we see that the percentage of
boundary vertices decreases when the number of vertices increases. This would
require some kind of proof, but this means that increasing the number of vertices
solves the problem.

Finally, as stated earlier, this is paper shows only some possibilities. In this
research we focused solely on the unimodal bivariate case. But as Voronoi
and Delaunay techniques can theoretically be used in all number of dimensions
higher than one, these techniques could also be used to compute a HDR for
multivariate density functions. Computing a HDR for multimodal density func-
tions would require some adjusted graph algorithms, as the HDR might exists
out of multiple regions.

16

References

[1] MS Al-Qassam and JA Lane. Forecasting exponential autoregressive mod-
els of order 1. Journal of Time Series Analysis, 10(2):95–113, 1989.

[2] R Moeanaddin and Howell Tong. Numerical evaluation of distributions
in non-linear autoregression. Journal of time series analysis, 11(1):33–48,
1990.

[3] Howell Tong. Non-linear time series: a dynamical system approach. Oxford
University Press, 1990.

[4] George EP Box and George C Tiao. Bayesian inference in statistical anal-
ysis. Wiley-Interscience, 1973.

[5] Rob J Hyndman. Highest-density forecast regions for nonlinear and non-
normal time series models. Journal of Forecasting, 14(5):431–441, 1995.

[6] Rob J Hyndman. Computing and graphing highest density regions. The
American Statistician, 50(2):120–126, 1996.

[7] Ahmed Fadallah. Highest density regions. Bachelor Thesis, July 2011.

[8] Henrik Zimmer. Voronoi and delaunay techniques. Proceedings of Lecture
Notes, Computer Sciences, 8, 2005.

[9] Steven Fortune. A sweepline algorithm for voronoi diagrams. Algorithmica,
2(1-4):153–174, 1987.

[10] Der-Tsai Lee and Bruce J Schachter. Two algorithms for constructing a
delaunay triangulation. International Journal of Computer & Information
Sciences, 9(3):219–242, 1980.

[11] Leo J Guibas and Jorge Stolfi. Primitives for the manipulation of general
subdivisions and the computation of voronoi diagrams. In Proceedings of
the fifteenth annual ACM symposium on Theory of computing, pages 221–
234. ACM, 1983.

[12] Rex A Dwyer. A faster divide-and-conquer algorithm for constructing de-
launay triangulations. Algorithmica, 2(1-4):137–151, 1987.

[13] Adrian Bowyer. Computing dirichlet tessellations. The Computer Journal,
24(2):162–166, 1981.

[14] David F Watson. Computing the n-dimensional delaunay tessellation with
application to voronoi polytopes. The computer journal, 24(2):167–172,
1981.

[15] C. L. Lawson. Triangulation of plane point sets. Jet Propulsion Laboratory
Space Programs Summary, IV(37-35):24–25, 1965.

[16] Peter Su and Robert L Scot Drysdale. A comparison of sequential delaunay
triangulation algorithms. Computational Geometry, 7(5):361–385, 1997.

[17] Victor Chew. Confidence, prediction, and tolerance regions for the multi-
variate normal distribution. Journal of the American Statistical Associa-
tion, 61(315):605–617, 1966.

17

Appendices

Appendix A Detailed pseudocode

See github.com/JoeriA/HDR for the actual Java code.

A.1 Main procedure

procedure main
generate observations or read from file
triangulation = delaunay(observations)
voronoi(triangulation)
createHDR(triangulation)

end procedure

A.2 Delaunay triangulation

procedure Triangulate(observations)
initialize lists of vertices, edges and triangles in triangulation
for all observations do

initialize empty bounding rectangle
if combination x- and y-coordinate does not exist then

create new vertex
if vertex is outside bounding rectangle then

enlarge bounding rectangle
end if

else
merge with existing vertex (increase nrDuplicates)

end if
end for
createSuperTriangle(bounding rectangle)
sort vertices on x-coordinate . speeds up next step
for all vertices do

insert(vertex)
end for
remove superTriangle

end procedure

function createSuperTriangle(bounding rectangle)
calculate width and height of rectangle
first vertex is 1/2 width left of bottom left corner of rectangle
second vertex is 1/2 width right of bottom right corner of rectangle
third vertex is 1 height above middle of top edge of rectangle
create edges of triangle and superTriangle itself
return superTriangle

end function

18

procedure insert(vertex v)
select last created triangle . higher chance it is located near v
while toCheck is empty do

if v is located in circumcircle of selected triangle then
add triangle to toCheck

else
select next triangle

end if
end while
while toCheck is not empty do

select next triangle t from toCheck
if v is in circumcirle of t then

add adjacent triangles of t to toCheck
remove t from toCheck
add t to faultyTriangles
add edges of t to faultyEdges

else
add t to okTriangles

end if
end while
remove triangles in faultyTriangles from triangulation
remove edges from triangulation that are twice in faultyEdges
for all edges e once in faultyEdges do . insertion polygon

for all vertices of e do
if edge exists between this vertex and v then

get edge
else

create edge from this vertex to v
end if

end for
create triangle with edges and e

end for
end procedure

A.3 Voronoi diagram

procedure Voronoi(triangulation)
for all vertices v in triangulation do

for all edge e connected to v do
if e has two adjacent triangles then

add circumcenters as Voronoi vertices to v
else

set v as boundary Voronoi cell
add circumcenter as Voronoi vertex to v

end if
end for
calculateArea(v)

end for
end procedure

19

procedure calculateArea(v)
if v contains less than three Voronoi vertices then

add vertex v itself to Voronoi vertices
end if
sort Voronoi vertices in clockwise order
calculate area of the Voronoi cell
divide area with (1 + nrDuplicates) . harder to remove from HDR
set this as weight of v

end procedure

A.4 Graph heuristics

A.4.1 Top-down algorithm

.

function TopDown(G = (V,E), nrToRemove)
sort V on f(v)
create subgraph H = (W,E′), initially with W = V and E′ = E
create subgraph I = (U,E”), initially empty
while nrToRemove > 0 do

set found to false
while found is false do

try next not already tried w ∈W with highest f(w)
if w.nrDuplicates < nrToRemove then

if w is bound then
set found to true
remove w from H and add to I

else if checkSwitches(w) is true then
set found to true
remove w from H and add to I

end if
end if

end while
nrToRemove = nrToRemove− (1 + w.nrDuplicates)

end while
return H

end function

A.4.2 Bottom-up algorithm

function BottomUp(G = (V,E), nrToAdd)
sort V on f(v)
create subgraph H = (W,E′), initially empty
create subgraph I = (U,E”), initially with U = V and E” = E
while nrToAdd > 0 do

set found as false
while found is false do

20

try next not already tried u ∈ U with lowest f(u)
if w.nrDuplicates < nrToRemove then

if |W | is zero then
set found to true
remove u from I and add to H

else if checkSwitches(u) is true then
set found to true
remove u from I and add to H

end if
end if
nrToAdd = nrToAdd− (1 + w.nrDuplicates)

end while
end while
return H

end function

A.4.3 Check connected subgraphs

function checkSwitches(vertex v)
sort neighbors of v in clockwise order
initialize switches is zero
for all neighbors do

if next neighbor is not in same state then . state: in/outside HDR
increase switches with 1

end if
end for
if switches is 2 then

return true
else

return false
end if

end function

21

