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Abstract 

This paper provides an overview of conventional and recent models used to forecast inflation. The 

evaluated models include autoregressive, leading indicator, heterogeneous autoregressive, Phillips 

Curve, factor and several threshold factor models. Forecasts of 1, 6, 12 and 24 month horizons by 

these models using up to 126 different macroeconomic predictors are evaluated over the period of 

1990 until 2009. The forecasts by the different models are combined by constraint least squares 

regression to evaluate the possibility of a superior combined forecast. Conclusions include superior 

forecasting by factor models, especially by stage-wise regression using a least angle regression and 

by including an autoregressive term. Combining forecasts does not improve forecast quality because 

of individual model superiority. 

 

 

 

 

 

 

 



1. Introduction 

 

Recent advances in macro-economic data collection and storage technologies have opened new 

frontiers for forecasting. Traditional time series models incorporate only a few out of the hundreds 

of possible predictors in their forecasting models, such as autoregressive or vector autoregressive 

models. In recent research conducted by Stock and Watson (2002), another approach was sought 

which incorporated more variables in a concentrated manner using diffusion indexes. A model was 

formed with a certain number of factors computed by principle component analysis, on which an h-

step ahead target variable was regressed. In this way, the most important information out of all 

these different time series could be used for forecasting. Convincing results were achieved, with 

factor model forecasts outperforming benchmark autoregressive (AR) models significantly for most 

macro-economic target variables. 

There was only one exception: the pure factor models did not perform as convincingly when 

forecasting inflation (measured in the form of CPI). Stock and Watson (2002) acknowledged the 

forecasting power of the AR model for this highly auto-correlated variable, and added an 

autoregressive term to their factor model. The new model performed better than the benchmark 

models for inflation, but when comparing it to Phillips Curve derived forecasts, they were unable to 

find conclusive results. The potency of the Phillips Curve, which rests on real economic activity, was 

already re-acknowledged by Fuhrer (1995), and recent research by Stock & Watson (2002) has been 

unable to discredit it. Another benchmark model Stock & Watson (2002) use is a leading indicator 

model, which uses least squares regression of the target variable on a number of driving 

macroeconomic variables.  

The Phillips Curve is the oldest of the models, being an inverse statistical relationship between 

unemployment and inflation, named after its reported discoverer A. W. Phillips (1958). The Phillips 

Curve was later attacked by several Nobel Prize winners, amongst whom Friedman (1968) and 

Phelps (1968). They contested the long term relationship between unemployment and inflation that 

the original Phillips Curve suggests, because this characteristic is inconsistent with the theory of 

rational expectations. They suggest an expectations-augmented Phillips curve which only depends 

on a short term relationship between unemployment and inflation. Throughout recent research, this 

new form of the Phillips Curve has remained empirically feasible. Moreover, it has been found to be 

a reliable method for forecasting inflation in the past (Gordon 1982; Fuhrer 1995; Gordon 1997; 

Staiger et al. 1997; Tootel 1994). 



Stock and Watson (2002) provide a comparative analysis of AR, vector auto regression (VAR), leading 

indicator and factor models based on a large (>200) amount of macroeconomic time series.  They 

find that factor models outperform the uni- and multivariate benchmarks for all their forecasted 

time series. In the case of inflation, it should be noted that adding an autoregressive term was found 

necessary to produce efficient results. They conclude that only a few of the factors of this model 

account for a large portion of the variance in the data. The question of how many factors were to be 

selected in the model was theoretically answered by Bai and Ng (2002), but their criterion is shown 

not to perform well in practice by Van Dongen et al. (2013). A simple solution that works well in 

practice for both Stock and Watson (2002) and Van Dongen et al. (2013) is using a Bayesian 

Information Criterion (BIC) that contains both the number of predictors and the number of 

observations in the penalty term.  

Bai and Ng (2007) have used similar data and present a more sophisticated form of the factor 

models suggested by Stock and Watson. As a number of the variables used by Stock and Watson 

(2002) are highly correlated, some may very well be irrelevant in constructing a factor model. They 

use partial regressions on each of their predictor variables and compute t-statistics for each of them 

in their ‘hard thresholding’ approach. On the basis of a significance level, the variables can then be 

selected. In their ‘soft thresholding approach’, the correlation between predictor variables is taken 

into account, as this approach selects variables in groups to ensure complementary information and 

avoid multicollinearity. They use small partial samples and find that within these samples, they 

outperform the traditional factor models used by Stock and Watson (2002).  

The techniques that are discussed in this section for forecasting claim different optimal methods. A 

plausible explanation for these conclusions is that the researchers forecasted in different samples. 

Inflation forecasting has been shown by D'Agostino (2006) and Stock and Watson (2007) to produce 

different results for different periods in time. In tumultuous periods the more refined models, such 

as the Phillips Curve and targeted factor models, are clearly superior to univariate benchmarks. From 

approximately 1980 onwards however, D’Agostino et al. (2006) identify a period they lable ‘the 

Great Moderation’, making comparative success against a benchmark harder than in earlier periods. 

Part of the reason for the start of the moderation period is the fiscal policy of governments to keep 

inflation around two percent. 

This paper will provide an overview of the most successful techniques that have been used in the 

past to forecast inflation. Different uni- and multivariate benchmarks will be used to evaluate the 

performance of the more sophisticated methods, such as targeted principle components and the 



Phillips Curve. Then, as Van Dongen et al. (2013) tried with different macroeconomic time series, a 

combination of these forecasts will be constructed by constraint least squares regression. 

Besides providing an overview of the different methods, this research will also focus on using 

forecast averaging techniques. Stock and Watson (2004) have already found that averaging (or 

pooling) of factor model forecasts outperform single factor models. Timmermann (2005) provides a 

large amount of possible averaging techniques. Van Dongen et al. (2013) evaluate the most 

promising of these techniques and have found that using constraint least squares is most successful. 

This has as of yet been unsuccessful when forecasting inflation using different factor models. 

However, this research suggests combining forecasts that might have a smaller correlation with each 

other. The suggestion is to combine the different models that are described in the methods section 

using constraint least squares. This research is therefore different from Van Dongen et al. (2013) in 

the sense that it does not average different factor model forecasts, but altogether different model 

forecasts. This paper will attempt to answer the following main question; can forecast combination 

outperform individual model forecasts for inflation, or is there a superior single model? 

Hypotheses include that the factor model with an autoregressive term will outperform the standard 

factor model, consistent with Van Dongen et al. (2013). Besides, the Phillips Curve’s performance is 

expected to be close to the standard factor model, as Stock and Watson (2002) found. Moreover, 

least angle regression is also expected to outperform a standard factor model, as Bai and Ng (2002) 

found. Lastly, whether the combination of forecasts will be more efficient than any single model 

depends on how correlated they are. 

 

2. Data 

 

Similar data will be used as in Stock & Watson (2002). This provides a large (126) number of variables 

over a time span of 44 usable years. The period from 1960 to 1989 will be used to compute the 

original principle components and estimate the parameters in the model. Using approximately 60% 

of the data to calibrate the model follows other authors in the literature. Therefore, data from 1990 

to 2009 will be used for forecasting. The data will be transformed according to expert opinion and 

statistical (unit root) tests. The transformations will include first and second (logarithmic) 

differences. Lastly, the data will be standardized and outliers exceeding 10 times the interquantile 

range will be removed. The target variable will be the consumer price index (CPI). This time series 



will be transformed differently; it will be annualized and h-step ahead second differences will be 

taken, as the variable contains a second unit root. This transformation allows for easy reverse 

transformation after forecasting, and can be seen in equation 1.  
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3. Method 

 

3.1 Benchmarks 

The autoregressive models will be used with an amount of lags of    based on the Bayesian 

information criterion (BIC) as well as the simplest AR model containing only a single lag. Leading 

indicator models will be ordinary least square (OLS) models with lags of a few important 

macroeconomic variables as well as lags of   . These variables have been shown to perform well in 

the literature by Stock & Watson (2002). The form of the leading indicator model can be seen in 

equation 2. 
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The selected variables included in    are the total unemployment rate, real manufacturing and 

trade sales, housing starts, the interest rate spread between 1-year U.S. treasury bonds and the 

federal funds rate, the nominal M1 money supply and the federal funds overnight interest rate. The 

selection of the number of lags of    will be based on the BIC. The index i counts up to m, the 

number of variables in   , and the index j counts up to p, the number of lags of     

 

3.2 Heterogeneous Autoregressive Model 

The heterogeneous autoregressive (HAR) model was introduced by Corsi (2009) to model the 

realized volatility of foreign exchange indexes. The model uses averages over different periods of 

time to have a rather large memory without losing the parsimonious property, which would have 

been the case if all the separate lags were included. For example, a HAR model could contain the 

average change in a variable over the last month, the last year and the last decade in three 



regressors. Since inflation has been shown to follow a clear trend in the forecast period (2% a year) 

including a model that can easily catch this trend and amend for recent changes could hold strong 

forecasting potential. A requirement of using a HAR model is a slowly decaying autocorrelation. This 

requirement is met since the autocorrelation of the CPI is still approximately 0.8 for 30 lags.  It can 

capture a large time span using few variables, which is a quality not found in any of the other 

models. The model is described by equations 3 and 4. 
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As can be seen in equation 4, the model that will be used here has an intercept, one standard lag, 

the average over the last 6 months and the average over the last 30 months. 

 

3.3 Phillips Curve 

The method of the Phillips curve that will be used in forecasting is based on lags of short-term 

unemployment and of     . The Phillips curve inflation forecasts considered here have the form that 

is described in equation 5. 
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   consists of the unemployment rate and the index i sums over m - 1 of its lags.    is the relative 

price of food and energy (current and one lagged value only). Lags m and p are chosen sequentially 

by the BIC with 1 ≤ m ≤ 6 and 0 ≤ p ≤ 6, as the correlogram is a declining function still measuring >0.8 

at 24 month lags. When comparing the leading indicator model and the Phillips Curve, many 

similarities can be observed. Both include lags of   , unemployment and an intercept. The 

differences are only that the leading indicator model includes other variables besides lags of    and 

   whereas the Phillips Curve allows for more unemployment lags. 

 

3.4 Factor Models 

For factor models the method and forecasts structure proposed by Stock & Watson (2002) will be 

followed. Let      be the forecasted variable at time t+h and    the set of predictors at time t. The 

assumption is made that both      and    can be described by a limited amount of p factors. As in 



previous research by Stock & Watson (2002), two more assumptions are made. The first assumes a 

finite number of lag polynomials of factors when describing both      and   , which allows 

formulating equations 6 and 7 in their present form.    is a 126 by 126 square matrix of factors. 
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The factors in equations 6 and 7 can now be estimated using principal components, as the 

relationship is assumed linear. The costs of this limitation are possibly larger prediction errors, as 

limitations have been imposed on the model configuration. The second assumption is the use of 

direct forecasting. Another possibility would be iterative updates of the set    using a vector 

autoregressive approach. The upside of the indirect method is the possibility of a non-linear 

relationship. The downside is the large number of parameters that have to be estimated. Like Stock 

& Watson (2002), the direct approach is preferred here, which will be applied as shown in equation 

8. The number of factors used in the factor model will be three, which is based on the BIC results in 

Van Dongen et al. (2013). 
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3.5 Targeted Principle Components 

3.5.1 Hard Thresholding 

The use of targeted principle components is an extension on the aforementioned factor models. In 

this method the use of all variables in constructing the factors is questioned as some may contain 

irrelevant information for the target variable. Hard thresholding is one of the methods used by Bai 

and Ng (2007) to select the variables that do contain enough relevant information to warrant their 

use in the factor model. This method uses t-values from a regression of the target variable on each 

of the individual 126 predictors, since the assumption is made that principle components can be 

applied to both time series. The regression equation can be found in equation 9.  

    
                    (9) 

In equation 9, Wt contains a constant and lags of   .   and Γ are parameters that are estimated using 

OLS. From this regression we obtain the t-statistic of Γ. This allows forming a ranking of the 

predictive power of Xit. The variable Xit is included in the set of targeted predictors if |ti| exceeds a 



threshold significance level of alpha, which is pre-set. When the relevant variables are isolated from 

the complete data set, principle components can be used to construct a model as was described in 

equation 6 and 7. Forecasts will be produced using equation 10, which is similar to equation 8 with 

the exception that different factors were computed using a subset of the variables used. As a results, 

the parameters in the regression are different as well. 
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3.5.1 Soft Thresholding 

Hard thresholding has several drawbacks. Because of the rigidness of the decision rule the method 

can be sensitive to small changes in the data. Besides, hard thresholding can select overly correlated 

predictors that do well in the partial regression, but are too similar to complement each other in 

applying principle components. The idea of soft thresholding is that only the top predictors are kept. 

In order to achieve such an optimal set of predictors, the methods of soft thresholding select subsets 

of data and performs shrinkage simultaneously. There are multiple selection methods that are 

possible. Bai and Ng (2007) use a least absolute shrinkage and selection operator (LASSO), an elastic 

net (EN) and general least angle regression (LARS). Efron et al. (2004) have shown that LASSO and EN 

are special cases of least angle regression (LARS), and can therefore be seen as extensions with extra 

restrictions. Bai and Ng (2007) find that LARS in combination with principle components almost 

universally performs best. Since the results of Bai and Ng (2007) have already shown that LARS is 

superior over both LASSO and EN, only the former will be included in this paper’s overview. It must 

be noted that the elastic net extension of LARS can still be improved over Bai and Ng’s (2007) 

application by a better setting of the shrinkage parameter lambda, but this is beyond the scope of 

this paper.  LARS is a stage wise selection where predictors are selected by the highest correlation 

with the residual vector of the model with the previously selected predictors. As a result, the 

variable that has the most unknown information always has the algorithm’s preference. This way of 

selection has the advantage of being less aggressive than forward regressions that tend to be too 

aggressive in eliminating correlated predictors. Let   be the estimate of y with k predictors and let ĉ 

= X’(y -   ). Define K then as the set of indices corresponding to the variables with the highest 

absolute correlation.  
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Let        (  ) and define the active matrix corresponding to K as 
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Let           and          
     where    is a vector of K ones. A unit equiangular vector with 

columns of the active set matrix     can be defined as 

           with     and         
      and              (13) 

So that       =     . LARS then updates   as 

                  (14) 

Where            
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LARS has several advantages over hard thresholding. It gives a ranking of the predictors taking into 

account the influence of other predictors. Moreover, the algorithm implicitly avoids selecting 

(overly) correlated predictors, as selecting a single predictor from a group of correlated predictors 

will ensure that the residue will have a low correlation with the rest of the variables out of that 

group. Although LARS is computationally as fast as OLS, it will still require quite some computing 

power to evaluate all variables, especially when the number of predictors is set high. Following Bai 

and Ng (2007), the number of predictors is set at 30. Subsequently a factor model will be 

constructed following equations 6,7 and 10, after which the amount of factors will be selected using 

BIC. 

 

3.6 Constraint Least Squares Averaging 

To combine the forecasts discussed in this section the method of constraint least squares (CLS) 

regression will be utilized. The CLS-weights are based on the suggestions by Timmermann (2004) and 

contain the following restrictions. A convexity constraint is included to ensure that the combined 

forecast does not leave the range of individual ones. An intercept is included to allow the regression 

to deal with possible bias in the individual forecasts. The weights will be computed using both 

moving and expanding windows and will include (initial) window sizes of 10,30 and 60 months. The 

weights will naturally be updated after every step in time. The regression equation can be found in 

equation 16. 
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Here     
  is the weight of forecast r on time T. Index l sums over the amount of forecasts r. 

4. Results 

 

4.1 Model Configuration 

Using the Bayesian information criterion, the amount of lags of CPI and unemployment that are 

included in the AR, leading indicator and Phillips curve models are shown in table 1. The associated 

BIC scores can be found in the Appendix. The imposed maximum of six lags follows Stock & Watson 

(2002). The results for unemployment lag selection support the monetarist claim of Friedman 

(1968); the inverse relationship between inflation and unemployment is indeed short term, as the 

amount of lags is low for every forecast horizon. The CPI lag selection shows more lags for smaller 

forecasts horizons and less for larger horizons. These results were to be expected, as the correlation 

of a sixth lag with a 1 month ahead forecast will most probably be higher than for a 24 month ahead 

forecast. 

 

BIC outcomes h = 1 h = 6 h = 12 h = 24 

CPI lags 6 6 2 3 

Unemployment lags 1 2 1 1 

Table 1 contains the number of lags of CPI and Unemployment that should be included based on the 

BIC. 

 

4.2 Uni- and Multivariate Results 

Table 2 displays the results for all uni- and multivariate models discussed in the method section. 

These include two AR models, one based on the BIC and one with just a single lag, as simple models 

have been shown to produce superior forecasts over larger ones (Stock and Watson 2002). The LI 

model and HAR model are also included. Lastly, there are two Phillips Curve (PC) models, one based 

on the BIC and one simple (1,1) version. The values in the table are relative forecast mean squared 



errors with the AR(BIC) model as a benchmark.  All results in the following section are computed by 

equation 17. The actual AR(BIC) FMSE’s are included in the Appendix for reproducibility. 
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RFMSE Horizon AR (BIC) AR(1) LI HAR PC(BIC) PC(1,1) 

        

 

h = 1 1.00 1.08 1.05 1.10 1.10 1.03 

CPI-U h = 6 1.00 0.98 0.98 0.97 0.95 0.94 

 

h = 12 1.00 0.99 1.02 1.06 1.01 0.99 

 

h = 24 1.00 1.01 1.20 1.00 1.00 1.02 

Table 2 contains the relative forecast means squared errors for all uni- and multivariate models. The 

results are relative to a benchmark of an autoregressive model with a BIC suggested amount of lags. 

The difference between the AR model with a single lag or the BIC version is small. The BIC values for 

the different lags – which can be found in the Appendix  – did not vary much. These criterion values 

explain that the amount of lags does not really affect the forecasting performance. The same 

argument can be made for the negligible difference between the forecasting performances of the 

two Phillips Curves.  

The results for the leading indicator model are inferior to those of the AR benchmark for most 

forecasting horizons. The extra variables included in this model apparently do not help, but rather 

hurt the model’s forecasting performance. In this case the parsimony of the AR model is superior to 

the better fit created by the LI model. The HAR model that possesses a long memory does not 

outperform the AR model either. Although the CPI clearly follows a trend, the average over 30 

months does not help forecasting performance. Moreover, the 6 month average information in the 

HAR model is already included in a more detailed manner in the AR(BIC) model where necessary, as 

for the 1 and 6 month horizons six lags are included. The Phillips Curves perform slightly worse for 

the 1 month forecast, slightly better on the 6 month forecasts and similar to the AR model on the 12 

and 24 month forecasts. The classical economist’s argument that there cannot be a long-term 

variant of the short-term relationship between inflation and unemployment could explain these 

results. A six month horizon could convincingly be categorized as short term, whereas the further 

horizons cannot. As such, an improvement on the 6 month horizon due to the unemployment lag(s) 

can be rationalized. On the longer horizons the advantage over the AR model is no longer there, and 

the Phillips Curve is similar to an AR model. 

 



4.3 Factor Model Results 

Table 3 contains the results of the different factor models that were discussed in the methods 

section. These include a 3 factor model and a 3 factor model with an AR term. Also, two different 

hard thresholding models are included, one with a significance level of 0.05 and one with 0.10. 

Lastly, a least angle regression model with 30 predictors was evaluated. 

RFMSE Horizon 3 Factors 3 Factors AR Hard(0.05) Hard(0.10) LARS(30) LARS(30) AR 

        

 
h = 1 1.16 2.36 1.19 1.19 1.16 2.44 

Cpi-U h = 6 0.86 0.79 0.87 0.88 0.82 0.75 

 
h = 12 0.81 0.83 0.79 0.81 0.82 0.79 

 
h = 24 0.78 0.74 0.84 0.90 0.76 0.76 

 Table 3 contains the relative forecast means squared errors for a 3 factor model, a 3 factor model 

with an AR term, two hard thresholding models with different alphas, a LARS model and a LARS 

model with an AR term. The results are relative to a benchmark of an autoregressive model with a 

BIC suggested amount of lags. 

Although none of the factor models perform better than the AR(BIC) model on the 1 month 

forecasting horizon, all factor models outperform the autoregressive models on the other horizons. 

As the 1 month horizon is the least hard to forecast, conclusively, factor models are superior for this 

forecasting period over the uni- and multivariate models. 

The 3 factor model’s forecast performance improves when an AR term is added. CPI is highly 

autocorrelated - which partly explains its relatively strong results in the previous section – and this 

stylized fact is the reason why the 3 factor AR model outperforms the 3 factor model on most of the 

relevant horizons. The hard thresholding does overall not improve on the standard 3 factor model. 

This may be because it does not take correlation between selected variables into account, which 

shows in the selection of variables. It selects all partial CPI’s, which hardly complement each other’s 

set of information. Setting the selection level alpha to 0.10 does only hurt the forecast performance, 

because too many predictors are included with harm the forecast performance with its extra noise. 

It should be noted that the hard thresholding model with an alpha of 0.05 performs best on the 12 

months horizon. The LARS model performs quite strongly, overall beating the regular 3 factor model. 

The LARS model does not outperform the 3 factor AR model, but comes quite close.  

The initial decision of not including an AR term in the original LARS model gave a ceteris paribus 

comparison to the original factor model. However, it can be concluded that both LARS and adding an 

AR term improve forecasting performance. Therefore, it is interesting to see whether a LARS model 



with an AR term does indeed provide a superior forecast. In the last column of table 3 the RFMSE by 

the LARS AR model shows that it does indeed outperform both the original LARS model as the 3 

factor AR model. 

 

4.4 Averaging Results 

Table 4 contains expanding and moving window combinations of all models in this section computed 

using constraint-least squares. FaEXP and FaMov models are included, which are similarly computed 

combinations using only the factor models, which were most successful in forecasting. 

From the results in table 4 it becomes apparent that the expanding window outperforms the moving 

windows for every forecasting horizon and for every (initial) window size. To a large extent this is 

because the exponential window is more successful in selecting the superior factor models every 

time, which is almost always the better choice. There is some variance in the weights, but in the 

more successful methods the weights of LARS and the 3 factor model with an AR term almost 

without exception sum up to a value near 1. On first glance, it would seem odd that the performance 

of the expanding window deteriorates rapidly as the initial window is larger. The results of 

D’Agostino et al. (2006) and Bai and Ng (2007) give a plausible explanation. As the initial window size 

increases, the amount of out-of-sample observations that are used to evaluate forecasting 

Table 4 contains the relative forecast means squared errors of constraint least squares combinations of 

forecasts produced by all the models in the method section except the LARS AR model. The table contains 

moving (MOV) and expanding (EXP) windows with an (initial) size of (…). In the case of a moving window 

the weights are estimated using       
    ̂ 
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     where   ̂     

   and   ̂     
     are 

column vectors of length (...). In the case of an expanding window  ̂     
   and   ̂     

     are column 

vectors initially of length (…) which increase with t.The FaEXP() models are combinations with only factor 

models included, for which the same equation and vector lengths apply. The results are relative to a 

benchmark of an autoregressive model with a BIC suggested amount of lags. 

RFMSE Horizon EXP(10) EXP(30) EXP(60) MOV(10) MOV(30) MOV(60) FaEXP(10) FaMOV(10) 

          

 

h = 1 1.07 1.16 1.33 1.11 1.22 1.35 1.20 1.28 

CPI-U h = 6 0.83 0.91 1.06 0.94 0.91 1.06 0.83 0.90 

 

h = 12 0.85 0.92 1.08 0.99 0.94 1.10 0.85 0.99 

 

h = 24 0.82 0.90 1.07 0.87 0.95 1.17 0.82 0.86 



decreases. The difference between the 60 and 10 initial windows is that the years 1990 until begin 

1995 are not included in the forecast evaluation for the larger window model. Bai and Ng (2007) 

estimate the parameters of their models separately for different periods, and the relevant period is 

one of those. This first period is not at all volatile, which is therefore easy to forecast for all models. 

If this period is therefore taken into account when calculating the RFMSE, this value will be inclined 

to be lower than when the first years are excluded. Another argument for small (initial) windows is 

that in the HAR model results it already became clear that a long memory is unnecessary for 

forecasting CPI. A large window to estimate forecast weights will similarly not be expected to 

function optimally. 

The FaEXP(10) model performs better than the FaMOV(10) model, which is consistent with the 

previously discussed results. The FaEXP(10) model does not perform better than the EXP(10) model.  

As becomes apparent from the weights in the EXP(10) model, the factor models are already selected 

almost exclusively in the distribution of forecast weights by the constraint least squares regression. 

More interesting however, is that the combination of forecasts is not better than the 3 factor model 

with an AR term or LARS. The intercept is quite low, but it might still deteriorate forecast quality. 

More importantly, the selection of other models than the 3 factor AR or LARS model is hardly ever 

efficient because these models are almost exclusively superior, as can be deduced from the 

individual RFMSE’s of these models. Allowing for that possibility therefore can only hurt forecast 

performance. It can be concluded that if a superior model can be found, averaging forecast is not a 

viable idea.  

 

5. Conclusion 

 

In forecasting CPI using uni- and multivariate models it is of little consequence whether a large or a 

small number of autoregressive lags are selected. Adding leading indicator variables has not been 

shown to improve forecasting performance in the evaluated sample. Adding a large memory by 

adding 6 and 30 month averages does not improve forecast performance either. The Phillips Curve, 

which rests on the relationship between inflation and unemployment, does improve forecasts 

marginally in the short run (6 months ahead point forecast), but not for any of the other horizons. In 

comparison to the factor models, the Phillips Curve performed considerably worse, which rejects the 

initial hypothesis based on Stock and Watson (2002). A possible reason for the disappointing results 



of the Phillips Curve may be the absence of Gordon’s (1982) variable that controls for the imposition 

and removal of the Nixon wage and price controls, which is beyond the scope of this paper. 

Except on the 1 month horizon, factor models conclusively outperform all the uni- and multivariate 

models which is in accordance with the hypotheses. Using hard thresholding to select only the 

variables that have a statistically significant influence on the target variable does not improve 

forecasting results over the complete factor model. A more sophisticated approach, using LARS and 

thus taking into account the correlation between predictors, does provide a significant improvement 

over the complete 3 factor model. Besides the LARS succes, adding an AR term to the complete 3 

factor model led to better forecasts performance as well. 

Averaging or combining forecasts made by different models is only a viable idea if the forecast 

contain complementary information. Another implicit assumption must be that there is not a single 

superior model. If there is, any combination containing inferior forecasts can only compromise 

forecast quality. 

The conclusions of this paper concerning thresholding support those found by Bai and Ng (2007) in a 

general sense. Both papers conclude that LARS forecasting results are superior over those of factor 

models based on all available predictors. A reason for any discrepancies can be the fact that Bai and 

Ng (2007) divided their forecast sample into 5 subsamples and estimated new parameters for each 

period, as they suspect structural breaks. This paper builds on the more general period deductions 

by D’Agostino (2006), which classifies the period after 1984 as a single period of moderation. 

Finally, concerning forecasting CPI, the overview this paper presents provides a clear-cut conclusion. 

Considering that both using least angle regression as well as adding an autoregressive term improve 

forecast performance, the most potent model is a LARS 3 factor model with a single autoregressive 

term. 
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7. Appendix  

 

The values of the BIC for different amounts of lags in an AR(X) are shown in the first table. The values 

of the BIC for different amount of unemployment lags in the Phillips Curve given the amount of lags 

of CPI are given in the second table. The optimal values are printed in bold. 

BIC AR(X) h = 1 h = 6 h = 12 h = 24 

X = 1 1713 1600 1530 1444 

X = 2 1714 1597 1529 1444 

X = 3 1714 1586 1530 1441 

X = 4 1710 1587 1532 1443 

X = 5 1709 1586 1534 1443 

X = 6 1709 1583 1535 1445 

 

 BIC Phillips h = 1 h = 6 h = 12 h = 24 

m = 1 750 698 687 708 

m = 2 755 690 690 712 

m = 3 758 694 695 717 

m = 4 758 699 699 719 

m = 5 762 701 703 723 

m = 6 763 705 707 728 

 

FMSE Horizon AR (BIC) 

   

 
h = 1 0.30 

CPI-U h = 6 13.31 

 
h = 12 34.72 

 
h = 24 107.80 

 


