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Abstract

Research has shown that for the economic lot-sizing problem, the on-line heuristics PPA and
H* are amongst the best performing heuristics on the test bed by Berry (1972). Both of these
heuristics have a worst-case ratio of 2, which is the lowest value possible for heuristics in the
class of on-line heuristics. This might raise the presumption that the possession of a worst-case
ratio of 2 is a good property for an on-line heuristic to have. We shall do this by modifying
some well-known existing heuristics in a way that gives them a worst-case ratio of 2, and then
comparing their performance against the performance of the original heuristics using the test
bed by Simpson (2009).

∗Studentnumber: 342750 E-mail: fpgmaas@gmail.com



Contents

1 Introduction 1

2 Algorithms and Heuristics 2

2.1 Wagner-Within . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Static Wagner-Within algorithm . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Constrained Wagner-Within . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Dynamic Wagner-Within . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Part-Period Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Least Total Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Least Period Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Least Unit Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.5 H* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.6 Modi�ed heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Analysis 9

3.1 Performance of the modi�ed heuristics . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 In�uence of the test bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 K/h-ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.2 Coe�cient of variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Skewness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Conclusion 15



1 Introduction

The Economic Order Quantity (EOQ) model deals with determining the size and frequency
of replenishments which minimize the inventory-related costs, such as the order costs and the
holding costs. In the EOQmodel, there is a �xed order costK incurred for every order placed, and
a holding cost h associated with holding one item in inventory for one unit of time. Furthermore,
there is a deterministic demand rate D, which is assumed to be constant over time. With this
information one can calculate the optimal order quantity:

Q∗ =

√
2KD

h

A well-known property of the EOQ is that the order costs and the holding costs are perfectly
balanced in the optimal solution (Silver et al., 1998).
However, the assumption of the demand being constant over time does certainly not hold in all
inventory-related environments. Relaxing this assumption allows us to deal with a much greater
variety of practical situations. The problem which deals with minimizing the inventory-related
costs with a demand rate that is allowed to vary over time is called the Economic Lot-Sizing
(ELS) problem. Since the demand is now no longer equal in every period, we can no longer
assume that it is optimal to always use the same replenishment quantity or interval, as was the
case with the EOQ model. A method for �nding the optimal solution to this problem was given
by Wagner and Within (1958), however this approach has a few drawbacks (Silver et al., 1998):

• The relatively complex nature of the algorithm makes it more di�cult for the practitioner
to understand than other approaches.

• There is a possible need for a well-de�ned ending point for the demand pattern.

• When one operates on a rolling schedule, replenishment quantities from the past should not
be altered when new information becomes available. This is called the insulation property
by Baker (1989). Unfortunately, the Wagner-Within algorithm does not have this property.

• While heuristics can usually be easily modi�ed to allow for continuous opportunities to
replenish, the computational complexity of the Wagner-Within algorithm goes up rapidly
when modi�ed for this purpose.

For this reasons, a large quantity of heuristics has been developed ever since. In this thesis
we will consider the class of heuristics as described in Van den Heuvel and Wagelmans (2010),
the on-line lot sizing heuristics. The on-line lot sizing heuristics are de�ned as follows:

De�nition On-line lot-sizing heuristics make setup decisions period by period (so previously
made decisions are �xed and cannot be changed) and setup decisions do not depend on future
demand.

Clearly, all heuristics in this class satisfy the earlier mentioned desirable insulation property.
Before announcing exactly which heuristics will be considered in this paper, it is important to
notice that there is a lot of ambiguity in the naming of algorithms in the literature on this topic.
For example, Silver et al. (1998) use the PPA results of Baker (1989) as PPB results in table
6.10, while they should have used the results from LTC. For the sake of clarity we shall use the
same names for the algorithms as Baker (1989) whenever possible.
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Heuristic H* LPC LTC LUC PPA
Worst-case ratio 2 ∞ 3 ∞ 2

Average percentual deviation 0.664 0.943 10.274 9.303 1.339

Table 1: Heuristics with their worst-case ratios and their performance on the test bed by Berry
(1972)

There are two ways of assessing the performance of heuristics. The �rst method consists of
empirical research, which is mainly done by running the algorithms on a (simulated) data set,
see for example Simpson (2009) and Baker (1989). The second method consists of performing
analytical research, which can be divided into probabilistic and worst-case analysis, see Axsäter
(1982), Van den Heuvel and Wagelmans (2010), and Bitran et al. (1984). Probabilistic analysis
mainly focuses on the average performance of heuristics, while worst-case analysis aims to �nd
upper bounds on the worst-case performance of the heuristics.
Amongst others, Van den Heuvel and Wagelmans (2010) and Axsäter (1982) have performed
worst-case analysis on various heuristics. Some heuristics along with their worst-case ratios and
their performance on the test bed by Berry (1972) are shown in Table 1 . It is notable that the
heuristics which have a worst-case ratio of exactly two are amongst the best performing heuristics
in this test bed, while the performance of the heuristics which have a worst-case ratio which is
strictly higher than two ranges from very bad to very good. Of course no conclusions can be
drawn from this, but this does raise the presumption that the possession of a low worst-case ratio
is a good property for a heuristic to have. Since Van den Heuvel and Wagelmans (2010) have
already shown that all the heuristics in the class of on-line heuristics have a worst-case ratio of
at least two, this is the same as stating that having a worst-case ratio of two is a good property
for an on-line heuristic to have. In this thesis, we shall test whether this is indeed the case. In
Section 2 we shall explain and illustrate the various algorithms and heuristics, and modify some
existing heuristics on which we shall base our research. We shall than evaluate the performance
of these modi�ed heuristics and compare it with the performance of the existing heuristics in
Section 3, in which we shall also evaluate the in�uence of certain factors of the test bed on the
performance of the heuristics. In Section 4 we shall draw our conclusions based on the results of
the foregoing analysis.

2 Algorithms and Heuristics

We shall now present the various implementations of the Wagner-Within algorithms, along with
descriptions of the heuristics used. Since we will use Simpson (2009) to evaluate the performance
of the heuristics in Section 3, we shall use the algorithms in a dynamic fashion. When one uses
the algorithms statically, all information up until the end of the planning horizon is known, and
all this information can be used for placing the �rst order. However, this is not very realistic
in practice, since one often does not know the demand for a period which lies far in the future,
or the demand for that period is at least a lot more uncertain. So in the dynamic problem, the
algorithms only have information for a certain horizon length which they can use for planning the
�rst order. When this order is placed, the horizon is rolled forward to the �rst period for which
the demand is not yet satis�ed, and now the heuristic can use the information of the horizon
from this point for planning the next order. This is done until demand for all periods is satis�ed.

All solution approaches are based on the same set of assumptions, as described by Silver et al.
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(1998). The assumptions are as follows:

• The demand rate is given in the form of dj to be satis�ed in period j (j = 1, 2, ..., N) where
the planning horizon is at the end of period N . Of course, the demand rate may vary from
one period to the next, but it is assumed known.

• The entire requirements of each period must be available at the beginning of that period.
Therefore, a replenishment arriving part-way through a period cannot be used to satisfy
that period's requirements; it is cheaper, in terms of reduced carrying costs, to delay its
arrival until the start of the next period. Thus, replenishments are constrained to arrive
at the beginnings of periods.

• The unit variable cost does not depend on the replenishment quantity; in particular, there
are no discounts in either the unit purchase cost or the unit transportation cost.

• The cost factors do not change appreciably with time; in particular, in�ation is at a negli-
gibly low level.

• The item is treated entirely independently of other items. That is, bene�ts from joint
review or replenishment do not exist or are ignored.

• The replenishment lead time is known with certainty (a special case being zero duration)
so that delivery can be timed to occur right at the beginning of a period.

• No shortages are allowed.

• The entire order quantity is delivered at the same time.

• For simplicity it is assumed that the carrying cost is only applicable to inventory that is
carried over from one period to the next. It should be emphasized that all three approaches
can easily handle the situation where carrying charges are included on the material during
the period in which it is used to satisfy the demand requirements but, for practical purposes,
this is an unnecessary complication.

To clarify the algorithms, we shall use the test case as presented in Table 2, where the holding
cost (h) is $1/unit/month, and the �xed order cost (K) is equal to $320 for every order placed.

Period 1 2 3 4 5 6 7 8 9 10 11 12
Demand 80 100 125 100 50 50 100 125 125 100 50 100

Table 2: The test case

2.1 Wagner-Within

In this section three versions of the Wagner-Within algorithm shall be presented. First, the stan-
dard Wagner-Within algorithm shall be elaborated, which treats the entire data set as one static
problem. Of course, no single heuristic can recreate this optimal solution under a constrained
planning horizon if some orders are further apart than the planning horizon in the optimal
solution. Therefore, the constrained Wagner-Within algorithm is introduced. Also, the Wagner-
Within algorithm can be used as a heuristic by using the static Wagner-Within algorithm in a
dynamic environment.
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2.1.1 Static Wagner-Within algorithm

The Wagner-Within algorithm was developed by Wagner and Within (1958). The functioning of
this dynamic algorithm shall be brie�y described here. Suppose we know dj for periods 1, ..., N ,
and let F (t) denote the total costs belonging to the best replenishment strategy for the periods
1, ..., t. We shall use the test case from Table 2 to illustrate how the algorithm continues. Clearly,
F (1) is equal to the order cost, since the only and thus the best way of satisfying the demand
for period 1 is simply to order the quantity demanded. However, for determining F (2), we now
have two options. We can either cover from the beginning to the end of period 1 in the best way
we can, and than place an order at the start of period 2 to ful�ll its' demand (option1), or we
can order the quantity demanded for both periods 1 and 2 at once and carry the required 100
items for period 2 from the �rst period (option 2). The associated costs are:

Costs of option 1 = F (1) +K = F (1) + $320

= $320 + $320

= $640

Costs of option 2 = K + h× d2
= $320 + $1× $100

= $420

We see that the best way to cover the demand of the �rst two periods is option 1, and therefore
F (2) = $420

Now for determining F (3), we have a total of three options. We can use the best strategy to
ful�ll the demand for the �rst two periods, and place a new order for the requirements of period
3 (option 1). Another option is to ful�ll the demand for the �rst period in the best way we can,
and place one order for the demand requirements of periods 2 and 3 at the beginning of period
2 (option 2). The third option is to place one order at the beginning of period 1 to ful�ll the
demand requirements for periods 1 to 3 (option 3). Again, one can calculate the corresponding
costs and set F (3) to be the minimum of these numbers. One can determine the optimal costs
by continuing in this fashion until F (N) is reached.

A useful representation for implementing this method is given by (Simpson, 2009), which is
as follows: De�ne Zkt as the total costs of placing an order in period k that replenishes periods
k through t, which can be calculated by the following expression:

Zkt = K +

t∑
j=k+1

(j − k)hdj

One can then determine the costs corresponding of satisfying the demand up until period t
as follows:

F (t) = min{Zkt + F (k − 1)|k = 1, ..., t}

The optimal schedule can be found through backward induction. Start by �nding mink(ZkN ).
The k for which this expression was minimal is the time in which the order should be made
ful�lling the demand for periods k through N . Now set k∗ = k − 1, and �nd mink(Zkk∗). Now,
the k for which the minimum has been attained is the period in which an order should be placed
ful�lling the demand for periods k through k∗. Continuing in this fashion until the �rst period
is reached results in the optimal replenishment schedule.
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1 2 3 4 5 6 7 8 9 10 11 12
Demand 80 100 125 100 50 50 100 125 125 100 50 100

Replenishments 180 0 325 0 0 0 225 0 375 0 0 0
Ending inventory 100 0 200 100 50 0 125 0 250 150 0 100

Total costs: $2355

Table 3: Results of applying the Wagner-Within algorithm on the test case

2.1.2 Constrained Wagner-Within

The static Wagner-Within algorithm might not have a clear interpretation in a rolling-window
environment when the planning horizon for the heuristics is smaller than the expected order cycle
length. This is because in contrast to the static Wagner-Within algorithm the heuristics can not
place orders which include the demand for too many periods ahead, while doing so would be
optimal. The constrained Wagner-Within algorithm can provide a benchmark solution that does
have meaning. In the constrained Wagner-Within algorithm, no order that ful�lls demand for a
number of periods longer than the planning horizon is allowed. This can be forced by modifying
the earlier used expression for the Wagner-Within algorithm as follows:

F (t) = min{Zkt + F (k − 1)|k = Φ, ..., t}

where, given a rolling window length of n, Φ = 1 if t ≤ n and Φ = t−n+ 1 otherwise. Obtaining
the optimal schedule is done in the same way as with the static Wagner-Within algorithm.

1 2 3 4 5 6 7 8 9 10 11 12
Demand 80 100 125 100 50 50 100 125 125 100 50 100

Replenishments 180 0 275 0 0 150 0 250 0 250 0 0
Ending inventory 100 0 150 50 0 100 0 125 0 150 100 0

Total costs: $2375

Table 4: Results of applying the constrained Wagner-Within algorithm on the test case

2.1.3 Dynamic Wagner-Within

In a rolling-window environment, the Wagner-Within algorithm can also be used as a heuristic.
This can be done by using only the information available for the length of the horizon, and
applying the static Wagner-Within algorithm on this set of data.

2.2 Heuristics

We shall now explain and illustrate the working of various heuristics that will be used. The
heuristics all work in a similar fashion. At a point t they consider the �xed costs K and the total
holding costs Ht, which are de�ned as follows:

Ht = h

t∑
i=2

(i− 1)di

The heuristics then apply their decision criterion based on these costs, and decide wether to
start a new order in period 1 of size Dt, the accumulated demand over periods 1 to t:
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Dt =

t∑
i=1

di

2.2.1 Part-Period Algorithm

The Part-Period Algorithm (PPA) is based on the earlier mentioned well-known property of the
perfect balance between holding and ordering costs in the optimal solution of the EOQ. Although
this property does not hold in general for the ELS problem, PPA tries to balance the holding
costs and the ordering costs by placing an order whenever the holding costs are equal to or exceed
the ordering costs. Thus, we set Q1 = Dt whenever

Ht ≤ K < Ht+1

In our example, we see that

H2 = $100 < $320

and that

H3 = $100 + 2× $125 = $350 > $320

Therefore, the �rst order size will be D2, covering the demand for the �rst two periods. Baker
(1989) argues that modifying the stopping rule to place an order only when the holding costs
exceed the ordering costs can alter the performance of this heuristic. However, the chances of
exact equality are practically negligible in our data sets, so this shall not be considered.

1 2 3 4 5 6 7 8 9 10 11 12
Demand 80 100 125 100 50 50 100 125 125 100 50 100

Replenishments 180 0 275 0 0 150 0 250 0 250 0 0
Ending inventory 100 0 150 50 0 100 0 125 0 150 100 0

Total costs: $2375

Table 5: Results of applying PPA on the test case

2.2.2 Least Total Cost

Another heuristic that tries to use the balance of the holding costs and the ordering costs in the
EOQ to create a good solution for the ELS problem is Least Total Cost (LTC). It does this in a
slightly more sophisticated way than PPA. Just like PPA, the heuristic searches for the �rst time
that the holding costs exceed the ordering costs, and then determines the next order quantity as
follows:

Q1 = Dt if K −Ht < Ht+1 −K
Q1 = Dt+1 if K −Ht ≥ Ht+1 −K

That is, while PPA places an order as soon as the holding costs become equal to or larger
than the �xed order costs, LTC also looks at the next periods' holding costs to get the holding
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costs and the order costs in the solution as close as possible. The di�erence that this alteration
can make already becomes visible in the �rst order of our example. We have already seen that
H2 = $100 and that H3 = $350. Where PPA would now set Q1 = D2, LTC �nds that H3 is
closer to K than H2 (or in terms of the notation above: K − Ht ≥ Ht+1 − K), and therefore
chooses Q1 = D3 = 305.

1 2 3 4 5 6 7 8 9 10 11 12
Demand 80 100 125 100 50 50 100 125 125 100 50 100

Replenishments 305 0 0 300 0 0 0 350 0 0 150 0
Ending inventory 225 125 0 200 150 100 0 225 100 0 100 0

Total costs: $2505

Table 6: Results of applying LTC on the test case

2.2.3 Least Period Cost

Where PPA and LTC tried to exploit the EOQ's property of balanced holding and order costs
in the optimal solution, Leat Period Cost (LPC) uses the property that "the total relevant costs
per unit time for the duration of the replenishment quantity are minimized" (Silver et al., 1998).
LPC is often referred to as the the Silver-Meal heuristic, for it were Silver and Meal (1973) who
�rst proposed this algorithm. Since in our case the relevant costs are the ordering costs and the
holding costs, the criterion becomes

K +Ht

t

and LPC places the �rst order up to the period where this �rst reaches a minimum, that is
when

K +Ht+1

t+ 1
>
K +Ht

t

In our example, the ratio for period 1 becomes

K +H1

1
=

$320 + 0

1
= $320

The ratio for period 2 becomes

K +H2

2
=

$320 + $100

2
= $210

Since this is lower than $320, we continue to calculate the ratio for period 3:

K +H3

3
=

$320 + $350

3
= $223

1

3

The ratio has a minimum at period 2, and therefore the heuristic chooses Q1 = D2. The
results of the application on the test case can be found in Table 7. Note that this need not be
the global minimum, but this might also be a local minimum. However, since in most real cases
the chance of the ratio decreasing is small, we do not calculate the rest of the ratios after a local
minimum has been found.
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1 2 3 4 5 6 7 8 9 10 11 12
Demand 80 100 125 100 50 50 100 125 125 100 50 100

Replenishments 180 0 325 0 0 0 225 0 275 0 0 100
Ending inventory 100 0 200 100 50 0 125 0 150 50 0 0

Total costs: $2375

Table 7: Results of applying LPC on the test case

2.2.4 Least Unit Cost

Least Unit Cost (LUC) is a heuristic very similar to LPC, but instead of minimizing the costs per
period, LUC uses minimization of the costs per unit as its goal. The criterion therefore becomes
to set Q1 = Dt when

K +Ht+1

Dt+1
>
K +Ht

Dt

The outcome of using the LUC-algorithm on the test case can be found in Table 8.

1 2 3 4 5 6 7 8 9 10 11 12
Demand 80 100 125 100 50 50 100 125 125 100 50 100

Replenishments 305 0 0 200 0 0 225 0 225 0 150 0
Ending inventory 225 125 0 100 50 0 125 0 100 0 100 0

Total costs: $2425

Table 8: Results of applying LUC on the test case

2.2.5 H*

All the heuristics mentioned before were heuristics that have widely been used and discussed
in textbooks and articles. The H* heuristic however, is a fairly new and unknown one. The
H* heuristic was developed as a byproduct during research in the relation between the holding
costs and the ordering costs in an optimal solution of the ELS model by Van den Heuvel and
Wagelmans (2009). The reason that this heuristic is so distinguishable from most others, as
mentioned earlier, is that the H* heuristic has a worst-case ratio of exactly 2. The H* heuristic
tries to make the time between orders as long as possible, such that it is not possible to add an
order which can result in a decrease in costs. In other words, the heuristic starts a new order in
period t if there exists a p ∈ {1, ..., t− 1} so that

2K + h

p−1∑
i=2

(i− 1)di + h

t∑
i=p+1

(p− 1)di ≤ K + h

t∑
i=2

(i− 1)di

which can be simpli�ed to

K ≤ (p− 1)h

t∑
i=p

di

where the right hand side can be interpreted as the holding cost savings by starting a new
order in period p. So a new order should be set up if the savings in the holding costs exceed the
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increase in ordering costs for placing a second order in the interval. For example, when we take
t = 4 en p = 3 in the test case, the savings in holding costs are 2× ($100 + $125), which exceeds
the �xed order costs of $320. Therefore, a new order is placed at the fourth period. From Table 9
it becomes clear that the H* heuristic indeed tends to create few orders.

1 2 3 4 5 6 7 8 9 10 11 12
Demand 80 100 125 100 50 50 100 125 125 100 50 100

Replenishments 305 0 0 300 0 0 0 400 0 0 0 100
Ending inventory 225 125 0 200 150 100 0 275 150 50 0 0

Total costs: $2555

Table 9: Results of applying H* on the test case

2.2.6 Modi�ed heuristics

We can investigate our hypothesis by altering the heuristics in such a way that they obtain a
worst-case ratio of two, and then compare the performance of these modi�ed heuristics to the
original ones. Van den Heuvel (2011) has found that any on-line heuristic that places their order
at the same time or later than PPA and at the same time or earlier than H* has a worst-case
ratio of exactly two. Thus we now have a way to alter any on-line heuristic so that it obtains
a worst-case ratio of two. Let t denote the time at which the on-line heuristic would place the
next order, and let tPPA and tH

∗
be the times at which PPA and H* would place the next order.

Then t∗, the time at which the next order will be placed can be de�ned as follows.

t∗ =


tPPA, if t < tPPA.

t, tPPA ≤ t ≤ tH∗
.

tH
∗
, if t > tH∗.

(1)

Modifying the on-line heuristics in this way will result in heuristics with a worst-case ratio
of exactly two. The performance of these new heuristics can then be compared with the original
heuristics on the simulated data set of Simpson (2009). If our presumption is correct, the modi�ed
heuristics should perform better since they now have a worst-case ratio of two. We shall call
these modi�ed heuristics LPC modi�ed, LTC modi�ed and LUC modi�ed.

3 Analysis

Before drawing any conclusions, it might be wise to verify that the heuristics have been im-
plemented correctly. To assert the correctness of the implementation of the heuristics, we can
run the heuristics on the test beds by Berry (1972) and Simpson (2009), and then compare our
results with theirs. Our performance results can be found in Figure 1 and Table 10, where Y is
the number of problems in which the procedure �nds a suboptimal solution and Z is the average

H* PPA LPC LTC LUC
Y 3 4 6 15 12
Z 0.664 1.339 0.943 10.274 9.303

Table 10: Performance of the heuristics on Berry's test bed
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percent by which the costs corresponding to the heuristics' solution exceed the costs of the opti-
mal solution. We see that our results do indeed match the results of the aforementioned articles.
For the H* heuristic, the results match those as shown in Van den Heuvel and Wagelmans (2009).

3.1 Performance of the modi�ed heuristics

The results of running the modi�ed heuristics on the data set by Simpson (2009) can also be
found in Figure 1. First of all, it is notable that LUC performs signi�cantly better after the
modi�cation. The average cost gap between the optimal solution and LUC's solution was 13.1%
at a horizon of 20 periods, while it is 6.3% when a worst-case ratio of 2 is forced upon it.
LTC has improved as well, albeit a less impressive improvement than LUC has experienced; the
average cost gap went down from 9.0% to 7.6%. LPC, already the best heuristic considered
in this research, saw its performance deteriorate, although this was not a signi�cant di�erence.
The average cost gap of LPC went up from 4.1% to 4.4% at a horizon of 20 periods. Taken all
together, it does seem to be the case that having a worst-case ratio of 2 has positive consequences
for the performance of the heuristic.

Figure 1: Performance of the heuristics on the test bed by Simpson (2009)

3.2 In�uence of the test bed

The results above have been obtained by using the same test bed and the same type of analysis as
Simpson (2009). It might however be the case that the results obtained above are very dependent
on various aspects of this used test bed. In my opinion, there are a few shortcomings to this test
bed, although it has to be said that constructing a representative test bed for the ELS problem
is very di�cult. In the following part, we shall look into the possible shortcomings of this test
bed.
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3.2.1 K/h-ratio

First of all, the expected cycle length in the used test bed ranges from 3 to 8, but the choice
for this range is not elucidated and therefore the choice for this range seems a bit arbitrary.
Also, all average cost gaps are aggregated over the di�erent values for the expected cycle length.
Of course, aggregating over some of the variables is necessary for the results to remain clear
and interpretable, but sometimes important information is overlooked this way. For example,
it might be the case that certain heuristics perform very well on test beds with low expected
cycle lengths, and perform worse on test beds with higher values for the expected cycle length.
It should be noted that using di�erent expected cycle lengths corresponds to choosing di�erent
K/h-ratios, since the K/h-ratio in Simpsons test bed is:

K/h-ratio =

T 2Dih

2
h

=
T 2Di

2

Where T represents the expected cycle length and Di is the average demand over the entire
planning horizon. It is known that the K/h-ratio can greatly in�uence the performance of
heuristics. For example, Baker (1989) states that "the IOQ is a very e�ective procedure" but
also that "the IOQ procedure is systematically �awed by a tendency to create suboptimal lot
sizes when the ratio K/h is quite large."

We can test the in�uence of theK/h-ratio on the performance of the heuristics by aggregating
over the rolling horizon length instead of aggregating over the expected cycle lengths in Simpsons
test bed. The results of this can be found in Figure 2. Since the behavior for expected cycle
lengths longer than 8 might also be interesting, we vary the expected cycle length from 3 to 12. It
becomes immediately clear that the K/h-ratio used has consequences for the performance of the
heuristics. When the K/h-ratio is low, the heuristics average cost gap is scattered between 1%
and 13%. However, when the K/h-ratio is relatively high, the average cost gap of all heuristics
seems to focus at a very small interval. Perhaps the most interesting fact is that the on-line
heuristic with the best performance for small K/h-ratios, LPC, has by far the worst performance
when that ratio is high, so LPC modi�ed performs better for high values of the expected cycle
length. Furthermore, LTC modi�ed performs better than LTC up until an expected cycle length
of 5, and has equal performance from there onwards. Our data show that when the expected
cycle length increases, LTC modi�ed reschedules less orders (i.e. plan an order earlier or later
than LTC would plan it because of our modi�cation rule); about 13.3% for a cycle length of 3
against 0.4% for cycle lengths of 8.

11



Figure 2: Performance of the heuristics over di�erent cycle lengths on the test bed by Simpson
(2009)

3.2.2 Coe�cient of variation

But the results for this test bed were not only aggregated over the expected cycle length, they
were also aggregated over the three di�erent parts of the test bed. The three di�erent parts
all had di�erent coe�cients of variation, and therefore di�erent amounts of periods with zero
demand. Again, important information may be overlooked by doing so. We can test the in�uence
of the variability of the demand in a similar fashion as we did for investigating the in�uence of
the K/h-ratio. Since Simpsons test bed only contains three di�erent values for the coe�cient
of variation however, we shall create a new test bed. The new test bed consists of ten parts
and is constructed in the same way as Simpsons original test bed, with a standard deviation of
1,000 and means varying from 1,000 to 10,000, so the squared coe�cient takes values from 0.1
to 1.0. We can then apply the heuristics to this test bed, aggregating over the horizon lengths
and expected cycle lengths as before.

The performance of the heuristics on test beds with di�erent coe�cients of variation can be
found in Figure 3. Although it becomes clear that the H* heuristic is the most robust against
di�erent coe�cients of variation in the data, its performance is very bad on test beds with low
amounts of variation in comparison with the other heuristics. If we ignore the H* heuristic,
we see a similar pattern as with the expected cycle lengths before; for low values of variation,
the heuristics all perform similarly well, but the performance becomes more diverse for high
coe�cients of variation. As before, LUC modi�ed performs better than LUC, but LTC modi�ed

only performs signi�cantly better than LTC for high coe�cients of variation. LPC modi�ed

performs worse than LPC for all coe�cients of variation.
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Figure 3: Performance of the heuristics on test beds with di�erent coe�cients of variation

3.2.3 Skewness

The previous investigation into the shortcomings of the used test bed should be su�cient to give
a conclusion regarding our hypothesis and to evaluate the reliability of this conclusion. However,
there are more aspects to the test bed which can a�ect the performance of heuristics and which
are therefore interesting to look into. One of those are properties of the used distribution, in this
case the normal distribution. While the normal distribution is symmetric, it is also interesting
to examine the behavior of the heuristics under demand patterns which come from a skewed
distribution. To investigate this, we shall create a new test bed with demand patterns sampled
from the Gamma distribution with a standard deviation of 1,000 and with di�erent values for
the skewness. However, when the skewness of a distribution changes, so do the variance and
the mean, which in�uences the coe�cient of variation which then in�uences the performance
of the heuristics, as seen before. It is therefore important that we can link the skewness of the
distribution to the coe�cient of variation, so we can �lter out the e�ects of the changed coe�cient
of variation on the performance on the heuristics. For the Gamma distribution, we know the
following; when X ∼ GAM(θ, k)

• E(X) = kθ

• V ar(X) = kθ2

• Skewness = E

[(
X − µ
σ

)3
]

=
2√
k

For a given value of skewness, γ and a given mean µ, we can then express the distribution pa-
rameters k and θ;

k =

(
2

γ

)2
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θ =
µ

k
=

µ(
2
γ

)2
Which we can then use this to express the coe�cient of variation in terms of the skewness as
follows;

cv =
σ

µ
=

√
kθ2

kθ
=

√
kθ

kθ
=

1√
k

=
γ

2

Thus, theoretically the skewness is precisely twice the coe�cient of variation, which is a very
nice property for our research. If we take values of 0.2 to 2.0 with steps of 0.2 for the value of
the skewness, the coe�cient of variation automatically takes values from 0.1 to 1.0 with steps
of 0.1. The e�ect of this factor on the performance of the heuristics was already found in the
previous section, and thus we can �lter out the e�ects of the varying coe�cient of variation on
performance when we want to �nd the e�ect of the varying skewness.

Figure 4: Performance of the heuristics on test beds with di�erent skewness values

The results of applying the heuristics on the new test bed are displayed in Figure 4. Note
that one could also choose to place the coe�cient of variation on the horizontal axis with values
from 0.1 to 1. It seems that varying the skewness has a very similar e�ect as just varying the
coe�cient of variation, which is no surprise as increasing the skewness corresponds with increasing
the coe�cient of variation, as mentioned before. However, the performance of the heuristics
seems to deteriorate a bit more when one skews the distribution instead of just increasing the
coe�cient of variation of the distribution. This becomes more clear when we take the di�erence
between the performance of the heuristics in Figure 4 and Figure 3, which is shown in Figure 5.
Since all factors between Figure 4 and Figure 3 are equal, except for the way in which the
coe�cient of variation is increased, Figure 5 represents the increase in the average cost gap when
the distribution is skewed. It is clear that the skewed distribution has a negative e�ect on the
performance of the heuristics, although not every heuristics' performance deteriorates equally
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fast with an increase of the skewness. However, LUC modi�ed and LTC modi�ed perform better
than LUC and LTC when the distribution is skewed.

However, we used Gamma distributions for simulating the skewed test bed, while we used
normal distributions for the original test beds. While the mean and variance were kept equal for
every part between the original and the skewed test beds, it might be the case that the change
in performance was caused by some other property of the distributions that has changed besides
the skewness. One other attribute that always di�ers between the normal and the Gamma
distribution is the excess kurtosis, which is 0 for the normal distribution and 6/k for the Gamma
distribution. However, this increase of kurtosis is caused by the skewness of the distribution,
so any in�uence this has on the change in performance can also be allocated to the change in
skewness. To my knowledge, there is no other important factor left that can have caused the
deterioration of the performance of the heuristics. More research into this might be useful to
strengthen the conclusion.

Figure 5: The di�erence between skewed and symmetric distributions on performance

4 Conclusion

In this thesis, we have tried to determine whether the property of having a worst-case ratio of
2 is a good property for an on-line heuristic to have. We have done so by using PPA and H*
to modify LPC, LTC and LUC in a way that forces a worst-case ratio of 2 upon them, and
then comparing the performance of the modi�ed heuristics with the performance of the original
ones. It is very di�cult to provide a straightforward and unambiguous conclusion. From the �rst
analysis, which was done similarly to Simpson (2009), one would say that having a worst-case
ratio of 2 is indeed a good property for an on-line heuristic to have, since LUC modi�ed and
LTC modi�ed both performed signi�cantly better than their unmodi�ed counterparts.

However, the test bed used seems to be of in�uence on the results. For low expected cycle
lengths, LTC improved performs better than LTC, and LPC modi�ed performs worse than LPC,
while for high expected cycle lengths all heuristics but LPC perform equally well, and LPC
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performs worse. The coe�cient of variation also plays a role in drawing our conclusions. For low
coe�cients of variation, all heuristics perform very well, with the exception of H*, which performs
very badly. For higher coe�cients of variation, the performance of the heuristics diverges, but
again LPC modi�ed always performs worse than LPC.

In general, LUC and LTC seem to bene�t from the worst-case ratio of 2, while this property
seems to impair the performance of LPC. Therefore, one cannot state that the possession of a
worst-case ratio of 2 is a good property for an on-line heuristic to have in general.

While we were primarily interested in the performance of heuristics with worst-case ratios of
2, we also found a nice result regarding the performance of the original heuristics. When one
is concerned with solving dynamic economic lot-sizing problems with the use of the heuristics
described in this paper, the best results are almost always obtained by using LPC. LPC's per-
formance is more robust against changes in the K/h-ratio, in the coe�cient of variation and in
the skewness than the other heuristics. The only situation in which one should consider the use
of another heuristic is when the expected cycle length takes on high values.
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