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1. INTRODUCTION 
hen transporting goods from A to B, roads play an important role. Not only enable 

maintained roads a relative fast way for goods to be transported but they also allow for 

relative safe transportation. Inadequate maintained road severely affect the costs and 

speed of transportation (Mackie, Nellthorp and Laird, 2005).  

Maintaining roads can be quite expensive (Rietveld, Bruinsma, & Koetse, 2007) and it is therefore 

important to find a cost efficient way to make sure roads are kept to a certain minimum quality. 

When considering the problem as a whole, finding a maintenance policy can be difficult. As a first 

step we will look in this thesis at a sub-problem considering small segment of road undergoing Road 

Deterioration (RD). Road inspection is assumed to take place periodically but is not taken into 

account  when constructing the maintenance policy. 

The purpose of this paper is to the investigate the use of a Markov Decision Process (MDP) for 

determining an optimal maintenance policy. The road deterioration process itself shall not be 

investigated in this paper, instead methods and data concerning road deterioration are used from 

Plasmeijer, (1999). 

The Markov decision process eventually has to produce an optimal maintenance policy answering 

the following question: which maintenance action should be chosen when the road segment has 

reached a certain age and condition? Of course because of safety regulations the condition of the 

road must be kept at a reasonable condition. The optimal policy can be found by solving a linear 

program (Dekker, Nicolai, Kallenberg, 2007).  

The results of the optimal policy are compared to another policy found by using the Equivalent 

Annual Cost Method (EAC) used by the Road and Hydraulic Engineering Division (DWW). This will give 

an indication of the reduction in expected average costs, using an MDP to find the optimal policy. 

The methods themselves are also compared to each other, discussing the computation time and 

easiness of finding the policies.  

The paper is structured as follows: first a short literature overview on the subject is given in section 

2. Then some aspects concerning road deterioration and maintenance will be discussed in section 3. 

The fourth section contains the road deterioration processes as is estimated in Plasmeijer, 1999. 

After introducing the road deterioration processes and the maintenance actions the Markov Decision 

Process can be solved using linear programming. Then another policy is constructed via the 

Equivalent Annual Cost method, of which the resulting policy and method are compared to the 

optimal policy and its process of finding it. Finally a conclusion can be given on the effectiveness of 

using the Markov decision processes for road maintenance.   

2. LITERATURE OVERVIEW 
This section surveys the road maintenance problem. There are roughly two approaches to formulate 

a model  for this problem (Golabi, Kulkarni, and Way, 1982). One could use a model that gives least 

cost maintenance policies under the condition that the road is maintained at minimum standards, or  

develop a model that gives the best possible road conditions under budget constraints. In either case 

the road deteriorates over time and needs to be predicted. Both models can be based on formulating 

the problem as a constrained Markov decision process, and linear programming can be used to find 

W 
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the optimal solution (Dekker, Nicolai, and Kallenberg, 2007). Below these subject will further be 

discussed. 

2.1  Road Deterioration Process 
The first problem when dealing with road maintenance is determining a way to estimate the road 

deterioration (RD) processes. In the paper of Martin and Kadar, 2012 a description is given how to 

estimate these RD processes. They mention four probabilistic approaches to RD modelling: survivor 

curves; Markov and semi-Markov approaches; continuous probability function and other 

probabilistic approaches.  The advantage of probabilistic RD models over deterministic ones is that 

they can assign various probabilities to the future conditions of a pavement, unlike the deterministic 

models who provide an average estimate to a future condition which is not likely to be achieved.  

2.1.1  Survivor Curves 

Most survivor curves are based on historical records, location, condition and maintenance strategies 

of the road. These curves are easily computed but they do require reliable data in order to give 

proper predictions. 

 

Figure 2.1: Survivor Curve 

2.1.2  Markov Probabilistic Approach 

The Markov probabilistic approach assumes that the future condition of the road only depends on its 

present condition. The advantage that this brings is that no prior information about the road 

condition is needed, especially useful when no historical records are available. 

The determination of the probability when changing from state (transition probability)  can be done 

by expert opinion or based on analysis like the earlier mentioned survivor curve, and thus do not 

directly relate to other variables , such as environment, traffic load, etc.  

All the transition probabilities can be stored in a transition probability matrixes (TPM), which are 

different for different maintenance actions. An example of such a TPM is showed below where state 

0 is ‘new condition’ and the transition probabilities are represented by      .  
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Table 2.1: Transition probability matrix 

 

 

 

 

Each row of the TPM should add up to 1: ∑       , and when dealing with a pure road 

deterioration process, so no maintenance is done, the road cannot improve on its own:       for 

all       

One could choose for more condition states, be this is not advisable when little or no performance 

data is available. Via a weighted average of observations of a particular deterioration,   , the 

condition states can be estimated as follows: 

      
∑      
 
   

∑   
 
   

   

where   is the current pavement section,   the number of pavement sections,    the length of 

section  ,    deterioration on section   for given year, and       the weighted average deterioration 

  . 

It is best to avoid to use TPM’s to predict road condition when the variables are used out of their 

range of observation. TPM’s are constructed by expert groups or survivor curves, so they predict 

performance without any explanatory power. The Markov probabilistic approach assumes 

independence of time when changing from road conditions. This can be dealt with using a Semi-

Markov Probabilistic Approach. Here time between observations of the system is not fixed but also a 

random variable, with a distribution which depends on the state and action chosen.  

2.1.3  Continuous Probabilistic Approach 

The continuous probabilistic approach forecasts the future failure probabilities based on an 

continuous failure probability, usually derived for Bayesian models constructed with the help of 

observed data and expert groups using Bayesian regression techniques.  They were originally  used 

when only small quantities of poor quality observed data were available.  

One could also use Markov chain Mote Carlo simulation to estimate the parameter distributions. This 

is done by using existing information and information from the performance data.  Logit models 

could also be used to estimate various deterioration processes.  The logit model used for estimating 

the probability of surface crack initiation would have a general form as follows: 

 (   )  
 

       {(   )         (   )}
  

where,  (   ) is the probability of a road segment being cracked,   vector containing logistical 

regression  coefficients,   vector containing independent variables for surface age, traffic load, 

surface thickness and pavement/subgrade strength or other variables,  and     are constants when 

their either is crack initiation or not. 

Condition 
state 

0 1 2 3 

0                 
1                 
2                 
3                 
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2.2  Markov decision process 
There are already a lot of publication regarding Markov Decision Processes (MDP’s).  One particularly 

interesting is Dekker, Nicolai and Kallenberg, 2007. In this paper a detailed explanation is given about 

MDP’s . The main assumption of a Markov chain is that the present state includes all the information 

needed for future predictions, meaning  that information from previous is not required. Because of 

this the transition probabilities     can be defined as follows: 

     (      |                  )   (      |    )    

If the transition probabilities do not depend on  , then the Markov chain is stationary, but according 

to Plasmeijer, 1999 most of the road deterioration process are not stationary over time.  To model 

road deterioration as a Markov chain one has to take into account that this will most likely result in a 

non-stationary process.  

The Markov Decision Chain is an Markov chain that can be altered by actions, and where the optimal 

actions can be found. The chain is defined by       and  , where   denotes the state space,  ( ) 

the action set in state    ,  (   ),       the transition probabilities and   ( )        ( ), the 

immediate costs in state   when choosing action  . 

By a policy   we mean a sequence of decision rules (  ( )    ( )    ) where   ( ) can be 

interpreted as the probability that action    ( ) is chosen when in state    . A policy is 

deterministic if all the decision rules are nonrandomized. 

A criterion to find the best action   can be done by either optimizing the long-run expected average 

rewards (equation 1) or by finding the lowest expected total  -discounted cost (equation 2) by 

solving a set of equations.  

  ( )         
   

 

   
∑  

 

   

∑   
 ( )  ( 

   )

   

                       (   ) 

                ( )   ∑    ( ) (    )                                      (   )

 

   

 

Here   is a decision rule,  ( ) the matrix with    ( ( )) as the  -th element,  ( ) vector with 

  ( ( )) as  -th element.   ( )   (  )  (  ) and   ( )   , the identity matrix. If for 

equation 1 the state-space is finite then there is an average optimal policy, and in the case of 

equation 2 their exists an unique solution if    . A detailed procedure how to optimize can be 

found Dekker, Nicolai and Kallenberg, 2007. 

2.2.1  Solution methods 

There are three solution methods for finding optimal policy: policy improvement, value iteration and 

linear programming. the idea of policy improvement is to start with an initial policy and finds with 

each step for each state an improving action.  

Value iteration repeatedly evaluates the optimality equation in order to find the solution. This 

algorithm is considered to be faster than the policy improvement method when the transition matrix 

is sparse and only few transitions are possible.  
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Linear programming requires you to formulate a LP for the optimal criterion. The advantage of this 

method is that standard LP solver can be used and one can easily set restrictions on the limiting 

probabilities of certain states. 

2.2.2  Example  

An example of practical use of Markov decision models is done in Golabi, Kulkarni, and Way, 1982. 

They developed a Network Optimisation System (NOS) for the State of Arizona , that finds optimal 

maintenance policies considering minimal road quality conditions, via linear programming. This NOS 

exists of a long term optimisation model, minimizing the yearly long run average maintenance cost 

and a short term model that minimises the total expected maintenance cost of a period of years. 

They considered four variables important for evaluating pavement performance: ravelling, present 

cracking, last-year change in cracking, and index tot the first crack. They claimed that in the first year 

14 million dollars were saved and forecasted another 101 million in savings for the next four years. 

However Wang, and Zaniewski,  1996 reported that the steady state condition was never reached 

due to fluctuation in budgeting, pavement behaviour and transition probabilities.  

2.2.3  Concerns Regarding MDP’s 

One of the main problems when dealing with Markov decision Models is that the state-space tends 

to be large, which consequently leads to high solving times . In the case of Dekker, Plasmeijer and 

Swart, 1998 for example, there are multiple deterioration processes affecting the road, causing the 

state space to be multi-dimensional. One way to deal with the high solving times is to use 

approximate dynamic Programming. van Roy, 2002 has given a good overview of Neuro-Dynamic 

Programming (NDP). The NDP algorithms are used to overcome the curse of dimensionality through 

use of parameterized function approximators that approximate the value function in a way similar to 

regression.  

For an approximation of the value function to work two thing are necessary. First the 

parameterization that gives a good approximation needs to be chosen. Usually some experience or 

analysis that provides information about the shape of the function is required. Secondly, algorithms 

for computing parameter values are needed.  

In the paper of Marbach and Tstisklis, 2001 a simulation-based algorithm for optimizing the average 

reward in a finite-state Markov decision process is discussed. To overcome the curse of 

dimensionality parametric representations are used. A class of policies is described in terms of a 

parameter vector  . To estimate the gradient of the performance metric with respect to  , is 

estimated using simulation, and the policy is improved by updating   is a gradient direction. The 

authors in this paper claim the algorithm developed in their paper works very well, although they 

recommend it is tested further.  

2.3 Road Maintenance with Deterministic Deterioration   
The paper of Karabakal, Bean and Jack, 1994 shows us that one does not have to use a Markov 

decision process and probabilistic deterioration to schedule pavement maintenance. They formulate 

the problem of scheduling pavement maintenance over time to minimize cost under budget 

constraints as an integer program. The assumption is made that the pavement deterioration is 

known with certainty once the condition and maintenance action are known. The integer problem is 

solved via a heuristic: first they solve the problem without budget constraints after which the budget  

violation are minimized. The advantage of working with budget constraints is that governments work 
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  road-sector     

road-sector   lane -sector 

   way-sector road-sector   

way-sector road-sector 

with annual budgets. Markov decision models rarely work with budget constraints, and the outcome 

usually causes the expenditures to fluctuate widely over time. The disadvantage of using budget 

constraints is the option of solving each street segment’s maintenance problem independently is 

lost, and the problem requires simultaneous consideration of all maintenance decisions in each time 

period. The authors claim that their heuristic works very well when with low budget violations.  

3. ROAD ASPACTS 
This section contains details on processes involving road deterioration and maintenance. The first 

section will shortly explain the road segment involved and which type of asphalt that road segment is 

assumed to be. Then a short introduction is given to the four main deterioration processes  and there 

is briefly discussed when the road condition is acceptable, almost unacceptable and unacceptable. 

The last section is about the maintenance action that can be executed in order to preserve road 

quality. 

3.1  Road Segment Features 
The maintenance policy discussed in this paper focuses only on a segment of the road, so not on an 

entire road. A segment (lane-sector) is a part of a lane of 100 meters length as is shown in figure 3.1.  

figure 3.1: configuration of a 2x2-lane road 

 

  

  

  

 

The segment discussed in this paper is assumed to be a porous asphalt road with a permeable 

concrete structure. Although dense asphalt is also still used, porous asphalts are more and more 

used because of their less noisy nature, and reduction in splash and spray effects. The downside of 

this type of asphalt is that it is more expensive to maintain and is very susceptible to ravelling (Hagos, 

2009).  

                Figure 3.2: Growth of porous asphalt surfaces on the main roads in the Netherlands 
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3.2  Deterioration of Roads 
The road deterioration process involves four main damage features that will be discussed. First there 

is cracking, which covers all types of cracking that can take place on roads. The seriousness of 

cracking is measured as a percentage of the road length that is covered by cracks. The second 

damage feature is ravelling. This is the crumbling up of the asphalt layer as a result of the 

dislodgement of aggregate particles. The seriousness of ravelling is just like cracking measured as a 

percentage of the road suffering from ravelling. The third and fourth main damage features are 

longitudinal- and transversal unevenness. Longitudinal unevenness describes every unevenness along 

the length of the road while transversal unevenness describes the unevenness along the width of the 

road, mainly concerning rutting. The international roughness index (IRI) is used for measuring 

longitudinal unevenness, unlike transversal unevenness, that has no specific index, which is 

measured in terms of the average number of millimetres difference in height.   

For simplification lets classify the seriousness of the damage in three categories: Acceptable, Almost 

Unacceptable, Unacceptable. Only when the seriousness of the damage is unacceptable is it 

obligated to repair the damage, but repairing the road in the other two categories is also allowed. 

The only state of interest is the Unacceptable state since the objective is to avoid reaching this state. 

The line between Acceptable and Almost Unacceptable is called the warning level, and the line 

between Almost Unacceptable and Unacceptable is the failure limit as is shown in Figure 3.3. Table 

3.1 specifies the warning level and failure limit for each damage feature. 

 

Table 3.1: warning level and failure limit per damage feature 

Damage feature Acceptable Almost Unacceptable Unacceptable 

Cracking                  

Ravelling                  

Longitudinal unevenness     IRI       IRI      IRI 

Transversal unevenness     MM       MM     MM 

Source: Van der Horst, et al. 1991 

Each type of damage has its own deterioration process, which shall be discussed in section 4. For 

simplification let us assume that there is no correlation between the different processes, and that 

figure 3.3: classification of the damage 
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there is also no correlation between the deterioration of adjacent segments. This seems like a harsh 

assumption but it keeps the problem simple for now. The following tables give a better picture of the 

deterioration process, the data was assembled by Plasmeijer, 1999 from road experts of the Road 

and Hydraulic Engineering Division (DWW). 

Table 3.2 shows the failure probabilities of porous asphalt after 5, 10, 15 and 20 for the four main 

damage features. Table 3.3 shows how the process of deterioration of the four main damage 

features develops in the course of time. Table 3.4 outlines the minimal, mean and maximal duration 

before the damage reaches the failure limit if the road is in perfect condition.  

Table 3.2: porous asphalt failure probabilities  

Damage feature 5 10 15 20 

Cracking 0.00 0.00 0.10 0.50 
Ravelling 0.00 0.40 0.90 1.00 
Longitudinal unevenness 0.00 0.10 0.20 0.30 
Transversal unevenness 0.00 0.00 0.25 0.70 

 

Table 3.3: porous asphalt speed of deterioration  

Damage feature Speed 

Cracking Increasing 
Ravelling Increasing 
Longitudinal unevenness Constant 
Transversal unevenness First decreasing, then increasing 

 

Table 3.4: porous asphalt estimated lifetimes  

Damage feature min mean max 

Cracking 15 >15 >15 
Ravelling 8   12 >15 
Longitudinal unevenness 7 >15 >15 

Transversal unevenness 12 >15 >15 

 

The data speak mostly for themselves with the only remarkable things being the susceptibility of 

porous asphalt to ravelling, and that the transversal unevenness speed deterioration changes over 

time.  

2.3  Maintenance Actions 
When facing road deterioration several action can be taken to repair the road. The possible actions 

that can be taken are listed below with the exception of conservation because of safety issues. 

 Regeneration:  pavement or remix of the toplayer 

 Replacement:  milling and inlay of the toplayer 

 Overlaying:  addition of a new layer of asphalt 

 Rut filling:  addition of emulsion-concrete to eliminate the ruts 
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 Profile correction: adjustment of the road profile by milling and levelling 

Table 3.5 gives an overview of which action can be chosen to repair a certain damage feature, and 

table 3.6 shows the impact on the life expectancy of the road per damage feature, when a certain 

maintenance package is chosen. The latter originated from the Dutch Directorate General of Public 

Works and Water Management (RWS), which is supported by the Road and Hydraulic Engineering 

Division (DWW). 

Table 3.5: types of maintenance actions and their impact on the road 

Damage feature Regeneration Replacement Overlay Rut filling Profile 
correction 

Cracking x x x   
Ravelling x x x   
Longitudinal unevenness   x  x 
Transversal unevenness x x x x  

 

Table 3.6: possible maintenance packages and their effects on the remaining lifetime 

Package Cracking Ravelling Longitudinal 
unevenness 

Transversal 
unevenness 

1. 50u/i(100%) 17 t t 18 
2. 40u/i(5%)+50STA+PAC 17 t+4 t+3 16 
3. 60u/i(75%)+50STA+PAC 17 11 t+3 20 
4. Milling and levelling+PAC t t 18 16 
5. Milling+100STA+PAC 17 t+8 18 20 
6. 150u/i(100%) 17 t+5 t 20 

Source: DWW-RWS, Delft; PAC =  porous asphalt concrete, STA = gravel asphalt; t = expected residual 

lifetime before maintenance was taken place ;   u/i (  )  milling and inlay of   MM asphalt layer with    

new asphalt. 

Table 3.6 has two types of road quality improvement, nominal effects and relative effects. We 

assume that maintenance actions only affect the state of the road segment not the age, meaning 

that if maintenance has taken place the road will be in an better condition but will still follow the 

deterioration process at the time were it left off.   

The maintenance policy only applies for an area of        (           road segment). No 

additional cost are taken into account (road blocks, etc.), and every maintenance package is assumed 

to be executable on a road segment. Off course this is not realistic as some packages can only be 

executed on a whole carriage way, not just a single segment, but again it keeps the problem simple.  

The cost are calculated as suggested by Plasmeijer, 1999 (formula 3.1) with unit prices from the 

DWW-RWS. As for the discount coefficient a percentage of 10% is taken what will have a surcharge 

effect for the relative small area we are maintaining. The results are presented in table 3.7. An 

important thing to notice is that the costs are assumed state independent, meaning the condition of 

the road does not play are role when determining the maintenance costs. 
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Table 3.7: cost per maintenance package 

Package € /    

1. 4125 
2. 15345 
3. 23570 
4. 17780 
5. 21660 
6. 9420 

Source: DWW-RWS, Delft; august 1996 

       (                 )       (                      (  
             

    
))     (   ) 

4. ROAD DETERIORATION PROCESS 
This paper uses a probabilistic modelling approach to predict the road deterioration process.  

Deterministic road deterioration models often underestimate or overestimate the road deterioration 

process (Chua, et al. 1993), mainly because they use an average condition of the road to predict the 

road behaviour in the future while a probabilistic approach can assign different probabilities to each 

state in the future.   

4.1  General Deterioration Models 
The deterioration process for cracking, ravelling and longitudinal unevenness are modelled by the 

following Brownian motion, as is done in Plasmeijer, 1999 : 

                                                      
   √                                           (   ) 

where    is the damage after   years, with    = 0,   must be larger than 0 and represents the shape 

parameter of the deterioration process. If   is 1 then the process is stationary, else the deterioration 

speed is either increasing (   ) or decreasing (   ) over time. The parameter   represents the 

trend parameter and   is the volatility parameter. Then not only    is normally distributed with 

mean     and variance     but also           ,    , is normally distributed with mean 

 (     ) and variance   (   ), as a result the transition probabilities can recursively be 

calculated using function 4.2. 

         (
     (     )

 √   
)                              (   ) 

4.2  Time-Varying Shape Parameter 
As is shown in table 3.3, transversal unevenness follows a different deterioration speed pattern after 

a certain time period. To coop with this a time-varying shape-parameter is used. The model then 

becomes: 

                                                      
 (   )   √                                           (   ) 

where 
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  (    (

 
 
)
 
 
 
  )

 

                                         (   ) 

Here   is the failure rate and from     onwards the damage speed decreases overtime till 

   
 

 
 (

 

 
)

 

 
, after which the deterioration speed increases over time. Again the deterioration 

process    for transversal unevenness is normally distributed with mean    (   ) and variance     

and function 4.2 can be reused by only substituting   for  (   ). Clearly this process is non-

stationary. 

4.3  Function Parameters and Transition Probability Matrices 
The used parameters for the deterioration functions    are displayed in table 4.1.  

Table 4.1: parameters 

Damage feature    q   

Cracking 0.75 7/6 0.75 
Ravelling 1.5 7/6 2.1 
Longitudinal unevenness 0.175 1 0.42 
Transversal unevenness 6.66 1/3 0.9 

Source: Plasmeijer,  1999. 

As is shown in  table 4.3 most deterioration processes are non-stationary meaning that the policy is 

state and time dependent. The non-stationarity also results in having for each time   a different 

transition probability matrix.  

To construct the transition probability matrices a few choices were made. To translate the 

deterioration curve into different states the deterioration curve has to be divided into intervals with 

same length. The difficult part here, is to choose ‘good’ intervals: choose the intervals too small and 

one will end up with a very large state-space, choose the intervals too large and there are simply too 

few states for any practical use. In this paper there are three different state descriptions used. This 

will help see the impact on expected average reward and computation time when the state-space 

changes. We have chosen for interval lengths of   (       ) years which represent one state. For 

the state descriptions see table A.1-A.3 in the appendix. As an example the deterioration curve of the 

Ravelling process is shown in figure 4.1. 

Figure 4.1: Ravelling process (deterministic part) 
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That leaves us with two more problems. First the possibility of the road quality to improve is 

removed by adding all the probabilities of previous states to the state at time  , so a diagonal matrix 

will appear. With Brownian process it is possible just like stocks to fluctuate, and that is not desirable 

when modelling road deterioration therefore any ‘improvement’ of the road is seen as ‘not 

deteriorating’. The second problem concerns determining the final state. Not very much information 

is available about states beyond the failure limit and it is therefore difficult to predict the 

deterioration behaviour of these states. So the last state includes all states beyond the failure limit as 

if the road after the failure rate was not operational any more. An example of a transition probability 

matrices for the ravelling process is show in table 4.2. 

Table 4.2: Transition Probability Matrix for the Ravelling Process at time t = 1 

state 0 1 2 3 4 5 6 7 8 

0 0.1869 0.5756 0.2341 0.0034 0 0 0 0 0 
1 0 0.1869 0.6790 0.1336 0.0005 0 0 0 0 
2 0 0 0.1869 0.7143 0.0986 0.0002 0 0 0 
3 0 0 0 0.1869 0.7345 0.0785 0.0001 0 0 
4 0 0 0 0 0.1869 0.7481 0.0650 0 0 
5 0 0 0 0 0 0.1869 0.7578 0.0553 0 
6 0 0 0 0 0 0 0.1869 0.7653 0.0478 
7 0 0 0 0 0 0 0 0.1869 0.8131 
8 0 0 0 0 0 0 0 0 1 

5. MARKOV DECISION PROCESS 
As mentioned earlier in this paper the problem consists of finding an optimal maintenance policy for 

a road segment. The policy must try to minimize both the time an road is in an unacceptable state  

and  the costs involved. In order to make a decision which maintenance action is suited best 

considering the future condition of the road must been know. The future state of the road can be 

predicted with the road deterioration process explained in section 4. The idea is to use a Markov 

decision model that find a policy describing which maintenance action should be taken  given the 

current state of the road. 

5.1  Problem formulation 
Consider the four deterioration processes Cracking, Ravelling, Longitudinal Unevenness and 

Transversal Unevenness that are observed at discrete time points to be in any one of        and    

possible states respectively, which are numbered by        ,   {         }. Then the road 

segment can be in any of the   possible states that are defined as (       ) with            

                           The total number of states,  , can be calculated by        

  . For ease of notation let us give each state (       )  an unique number        . Let   be the 

set of states when at least one of the four main damage features reaches an unacceptable state 

according to table 3.1. After road inspection at time   the state of the process is observed, and a 

maintenance action is chosen from the set    The set   contains all maintenance packages displayed 

in table 3.6 with addition of an action where no maintenance takes place.  

If the process is in state   and action   is chosen then the next state of the system is determined 

according to the transition probabilities     ( ). The transition probabilities can extracted from the 
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transition probability matrices discussed in section 4.3. If we let    denote the state of the process at 

time   and    the action chosen at time  , then     ( ) becomes: 

 {     (       )|    (       )     }

  {      |         }   {      |         }

  {       |          }   {       |          }            (   ) 

where  {      |         },  {      |         },  {       |          } 

and  {       |          } are the transition probabilities for respectively Cracking, 

Ravelling, Longitudinal Unevenness and Transversal Unevenness.  

The objective is to use the Markov decision model in order  to find a policy    that minimises the long 

run expected cost per unit time, under the restriction that the road should never reach an 

unacceptable state. The policy is a rule for choosing a maintenance action at a certain state. 

5.2  Linear Programming 
According to Ross, 2010 the linear program needed to solve for acquiring the optimal policy is as 

follows: 

    
   (   ) 

 ∑∑    (   )

  

 

subject to: 

∑ 

 

∑   
 

    

∑   
 

 ∑ 

 

∑   
 

   ( )                 

  ∑  

   

∑   
 

   

                                                                             (   ) 

Here     is the limiting (or steady-state) probability, and  (   ) the cost when the process will be in 

state   and action   will be executed if policy   is chosen.   {  ( )            } is a 

randomized policy which is defined by: 

  ( )  
   

∑      
        ∑    

 

    

where    ( ) can be interpreted as the probability that maintenance action   is chosen in state  . 

When the sum over all limiting probabilities of a certain state is equal to zero the maintenance policy 

for that state is undefined.  However it can also be shown that there is a      minimizing the 

objective function, that is zero for all     except one, meaning the policy is non-randomized.  

The advantage of linear programming is that one can easily ad restrictions on the fraction of time the 

process spends in certain states. This is already done with the linear program (5.2) where the last 
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equation represents the time spent in  , (the set bad states), must be equal to zero. It is also 

possible to add inequality constraints to regulate road-quality. One could simply add constraints 

similar to following: 

∑  

    

∑   
 

       

where    is the set of states you wish to regulate, and   the maximum fraction of time you are 

willing to spent in these states. Of course when adding these constraints the optimal policy will most 

likely choose multiple actions  , for some states  . This because the added restrictions prevents the 

optimal policy from fully choosing the cheaper maintenance action, and instead mixes the cheaper 

maintenance action with more expensive action to satisfy the constraints. So when using inequality 

constraints most of the time it will not be possible to convert the optimal policy into a non-

randomized policy unless an increase in average-cost is accepted.  

This linear program can be solved by the simplex method, but because the number of states   can 

become large very fast we first try to rewrite the linear program (5.2). Clearly the last equation of the 

linear program can be rewritten as       for all        , as every        Now these 

variables are fixed and can be left out of the picture when solving the linear program. Also the 

maintenance costs are state independent so  (   )   ( ). Define    as the complement of all the 

bad states (the set of all Acceptable and Almost Unacceptable states) the linear program can be 

defined as follows: 

    
   (   ) 

 ∑ ∑    ( )

     

 

subject to: 

∑  

    

∑   
 

    

∑   
 

 ∑  

    

∑   
 

   ( )                 

                                                     
                           (   ) 

5.3  Results 
There are three policies  (                ) presented, one for each state-space 

determined in section 4.3 and time is assumed to be constant at     for all policies. First the policy 

with the smallest state-space is determined. With the information obtained from that policy the 

computation time of the other policies can be reduced.  

For the first state-space the deterioration curve was split into intervals of four years. This meant that 

the number of states for the four main deterioration processes Cracking, Ravelling, Longitudinal 

Unevenness and Transversal Unevenness became respectively 7, 5, 7 and 7. The total amount of 

states for the multidimensional problem quickly becomes very large, in this case consisting of 

          . The amount of unacceptable states sum up to                states total. 

There are seven possible maintenance actions that can be chosen, this includes the maintenance 
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actions displayed in table 2.6 plus the possibility of executing no maintenance action. To solve the 

linear program Cplex, 2012 was used on a Windows 7 64-bit computer, 3.60 GHz CPU, 16 GB RAM, 

and was solved within a reasonable computation time of under 10 seconds. Policy      contains 

too many results to display in this paper and only a diagram of the fractions of time spent choosing 

the maintenance actions is shown in figure 5.1. 

Figure 5.1: distribution of maintenance actions for policy       

  

The yearly expected average costs of policy      are   8891.09. The first thing we immediately 

notice is that the fraction of time spent executing no maintenance action is over 50%. This is a good 

thing, meaning that most of the time there are no cost incurred. The second largest fraction of time 

is spent executing maintenance action 5. Despite its high cost maintenance action 5 is clearly 

favourite, probably because it repairs all four damage features. The most remarkable observation is 

that maintenance action 2 is not chosen at all for any of the recurrent states. Apparently there is 

always another maintenance action that is either cheaper and/or more efficient than maintenance 

action 2. Another remark that cannot be seen from figure 5.1 is that maintenance actions 1-6 are 

only chosen in a state where a transition probability (tp) > 0 to an unacceptable state exists, called 

action states. Intuitively this is not very remarkable since the target is to avoid the unacceptable 

states, but one could also think conversely: in states with tp’s to all unacceptable states equal to 

zero, one should not execute any maintenance action, called non-action states. With prior 

knowledge of these patterns one could considerably reduce the amount variables when solving the 

linear program, at the cost of a slightly increase in the expected average costs.  

Next a larger state-space is used to obtain policy       . The four main deterioration processes 

Cracking, Ravelling, Longitudinal Unevenness and Transversal Unevenness,  have respectively 10, 7, 

10 and 10 states. The size of the state space consists of            . The amount of 

unacceptable states sum up to                  states total. Initially there were seven 

possible maintenance actions that could be chosen, but the policy of       suggested that 

maintenance action 2 might not be ‘optimal to use’. So to save computation time, this maintenance 

action is left out when formulating the linear program. Let us also process the idea of action states, 

and non-action states in the linear program, so one could only choose a maintenance action in the 
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action states. This results in a substantial variable reduction for the linear program. At first there 

were (state-space size)   (maintenance actions)                    variables. When rewriting LP 

formulation 4.2 to 4.3 the Unacceptable States were removed from the LP reducing the amount of 

variables to (           )          . Now with the removal of maintenance action 2 this 

becomes (           )          , and with the introduction of action and non-action states 

the number of variables further reduces to (non-action states   maintenace action) + (action states-

Unacceptable states)   maintenance actions        (           )          . The 

variables are now reduced with approximately 62%, also reducing computation time to solve the LP 

considerably to only 58 seconds. Of course it is very unlikely that the optimal policy is found but the 

policy found is most likely to be near optimal. Just like policy     , this policy has also too many 

results to display and instead a diagram is shown in figure 5.2. 

Figure 5.2: distribution of maintenance actions for policy         

 

The expected average costs of policy        are  6962.27, considerably less than that of policy 

    . This probably has to do with the shift in time spent executing the two most expensive 

maintenance actions (3 and 5) to cheaper actions. Maintenance action 3 even became obsolete. The 

previous made assumed assumptions however, could have enabled this.    

The final state space used has respectively 12, 8, 12, 12 states for the four main damage processes. 

This results into 13,824 states total of which 2,064 are non-action states, and thus 11,760 action 

states where 4,507 of them are Unacceptable states. Similar assumptions are made as with 

policy       , only this time also excluding maintenance action 3. This would most certainly lead to 

an even further deviation from the optimal policy, but hopefully not by too much. By doing so the 

amount of variables is reduced from 96,768 to a stunning 31,076, roughly one-third of the initial 

amount. As expected the computation time has still increased significantly to 627 seconds, although 

still reasonable.  

The diagram of policy      , displayed in figure 5.3, is not surprisingly very similar to that of 

policy       , with only a slight decrease in time spent executing maintenance action 5 causing the 

fraction of time spent executing no maintenance action to increase, therewith explaining the 

decrease in yearly expected average costs to  5965.17. 
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Figure 5.3 distribution of maintenance actions for policy       

 

5.4  Pros and Cons 
First let us start with the most obvious flaw when using a Markov decision process to find an 

maintenance policy. Clearly when the state-space becomes large the computation time goes up. 

Since we deal with a multidimensional state space, it can become very large very fast causing 

computation time to be unreasonable. There are three ways to deal with the large state-space of 

which we already saw two. One could, like is done for policy     , limit the state-space per 

deterioration process in order to reduce the multidimensional state-space. The advantage of this 

method is that one would still end up with an optimal policy, but as we clearly saw, when using 

smaller state-spaces the expected average costs tend to be much higher than when using larger 

state-spaces. Another method is to reduce the variables involved when solving the LP. This was done 

for policies       and       . The policies obtained are unlikely to be optimal anymore and there 

are not really any rules for reducing variables other than using intuition and common sense. The final 

method used to find the maintenance policy is by using approximate dynamic programming. This 

mainly includes Neuro Dynamic Programming or Reinforcement Learning. However we do not go into 

this subject, and instead recommend reading Bertsekas and Tsitsiklis, 1996 for more information on 

this matter. 

Less troublesome problems are the undefined states, which are defined as states where ∑      

  for    . These states are expected never to be reached (unacceptable states and some almost 

unacceptable states) or passed by only once (early states, states were most deterioration process 

have done little damage yet). This leaves room open for discussion what to do when one finds 

himself in these states. For the latter category it is quite simple: one should execute no maintenance 

action. For the first category it is somewhat more complicated but since the long term expected 

average cost are not affected when such an event occurs the only concern is to ‘get back on track’ as 

soon as possible. One way to accomplish this is to use the EAC method (explained in section 6).  

The advantages of using a Markov decision process are also quite obvious, as when the linear 

program is solved, one ends up with an ‘optimal’ policy. Also it is fairly easy to control road condition 
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as this is done by simply adding constraints to LP. For the smaller problems the LP can be solved 

using standard LP solving software.  

6. COST-EFFECTIVE MAINTENANCE 
Now (near) optimal maintenance policies have been found a comparison can be made with a more 

simple approach used by the DWW. First a short introduction on how to find a policy using this 

approach is given, after which results are given and a comparison is made. 

6.1 Equivalent Annual Cost Method 
A more simple an intuitively logic way to determine a maintenance policy is to repair the road when 

it has reached an Almost Unacceptable or Unacceptable state and choose the maintenance action 

that results in the lowest cost for one expected residual life year.  

One of the advantages of this method is that policies for each state can be calculated individually, 

fixing computation time. The impact of this is that state-space does not play a role any more for 

computation time, allowing the state space to be very large, so large even that states are not defined 

by intervals but by their exact damage value. Of course this is only useful when road inspections can 

give these exact damage values. The down side of this method is that one cannot control the fraction 

of time spent in certain states, causing to road to possibly end up in Unacceptable states for a period 

of time.  

The Acceptable states are defined as states where the damage values of all the four deterioration 

process are below their warning level. All the Acceptable states have the same maintenance policy 

and that is to execute ‘no maintenance action’. For the other states where at least one of the 

deterioration processes has exceeded the warning level maintenance policy     is chosen for 

which  

    ( )  
                                       

                                                  
                    (   ) 

is minimised, where the expected gain in years of action a when in state   is the difference between 

the expected residual lifetime right after execution of action a, and the expected residual lifetime 

right before execution of action a.  

This method is clearly a greedy algorithm for finding a maintenance policy, and therefore it is unlike 

to find an optimal solution. It makes a locally optimal choice at each decision point by selecting the 

maintenance action that gives the ‘best bang for the buck’ not taking into account anything else.  

5.2 Results 
Instead of defining the Almost Unacceptable states as is done in section 3.2, they are defined as 

states in which a transition probability > 0 exists to an unacceptable state, the so-called action-states. 

Although this complicates the EAC method by involving a Markov process, it should not differ too 

much since these states overlap the Almost Unacceptable states and ensures a more equal 

comparison with the linear program.  
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For the comparison that is done later with the Markov decision process there are also three policies, 

                   constructed, instead of just one. The computation time for all the policies is 

per state constant and neglectable, when the action-states are predetermined.   

For equal comparison we shall also compute the yearly expected average cost and the fraction of 

time spent in Unacceptable states. This is done by constructing transition probability matrices for the 

three maintenance policies according to the Markov process, after which the limiting probabilities 

could be calculated. 

The distribution of maintenance actions for policy      is displayed in figure 6.1. The figure clearly 

shows that this policy prefers the use of cheap maintenance actions at the cost of a relative small 

fraction of time spent executing no maintenance action. Unlike policy       who prefers a high 

fraction of time spent executing no maintenance action at the expense of the using more expensive 

maintenance actions. Despite the fact that the fraction of time spent executing maintenance action 3 

is zero, does not mean it is not chosen in any of the states. On the contrary maintenance action 3 is 

chosen only in transient states, but they do not play a role in the yearly expected average costs.  For 

this policy these costs are          , only slightly higher than that of policy     . If we look at the 

fraction time spent in unacceptable states we see that this adds up to       , not that very high, but 

what does strikes is that only the longitudinal unevenness process exceeds its failure limit. It is also in 

states where  this damage process in combination with other deterioration processes reaches serious 

damage levels that the policy      deviates from policy     , choosing maintenance actions that 

only deal with the other damage processes and not the longitudinal unevenness. Policy      also 

prefers maintenance action 6 over 3 when dealing with serious damage levels of cracking, ravelling 

and transversal unevenness, in contrary to policy     . If it was not for these factors the two 

policies would almost look identical.  

Figure 6.1: distribution of maintenance actions of policy      

  

As was expected the yearly expected average costs of policy         have dropped substantially to  

        . An explanation might lie in figure 6.2. Here we see a significant drop in fraction of time 

spent executing maintenance action 6, and an increase in fraction of time spent doing nothing and 

executing the cheaper maintenance action 1. The fraction of time spent in unacceptable states has 
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also dropped to       , and again only the longitudinal unevenness process exceeds its failure limit. 

When compared to policy        we see the same problem with the longitudinal unevenness we 

saw earlier when comparing policy      with     . Further comparisons are hard to make since 

policy        has left out maintenance action 2, but they do share that maintenance action 3 is not 

executed in any of the recurrent states.  

Figure 6.2: distribution of maintenance actions of policy        

 

The final policy      has yearly expected average costs of           , again a reduction in cost 

when compared to policy       . This is caused by a slight reduction of fraction of time spent 

executing maintenance actions 5 and 6, as is shown in figure 6.3. However when comparing these 

costs with those of policy      they are not as close anymore as was the case with policies       

and     , and        and       . Policy      is approximately 10% more expensive than its 

counterpart policy     .  

Figure 6.2: distribution of maintenance actions of policy        
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The real issues of the      is that the policy does not deal efficiently when multiple deterioration 

processes have reached advanced damage levels and do not share the same residual life times. For 

example when reaching state (3,1,6,7) the EAC method only focuses on the last deterioration process 

(transversal unevenness) because it can be dealt with either maintenance action 1 or 2 instead of 

using a more expensive maintenance action 4 which tackles both deterioration processes. Only to 

find out later that one of these more expensive maintenance action is necessary to coop with the 

longitudinal unevenness.  This especially applies when longitudinal unevenness reaches critical levels 

together with other deterioration processes, as we saw earlier with the two other     policies. The 

method seems to forget the longitudinal unevenness and resorts to one of the cheapest 

maintenance actions to get only one or two years of residual life time. This eventually leads to a 

fraction of time spent in Unacceptable states of       . 

5.3 Comparison 
When we look at the yearly expected average cost the     policies are only slightly cheaper than 

    policies, with the exception of policy     . It is when the largest of the three state spaces is 

used that the reduction in yearly expected average costs is noticeable when compared with the EAC 

method. 

Clearly the     policies have the advantage over   C policies when it comes to yearly expected 

average cost, but not so much when it comes to computation times. For the     policies these are 

constant, since one does not need to know all the policies for all the states at a certain point in time. 

One only needs the know the policy of the current state. For the     policies computation time is a 

serious issue. We earlier saw computation time increasing severely when larger state-spaces were 

used, from 10 second to 10 minutes. So when considering even larger state-spaces the computation 

time will become problematic. That brings us back to the expected average costs. We already 

established a negative relation between the size of the state-space and the expected average cost, 

meaning it would be cheaper to choose a larger state-space when possible. For the      policies 

that relation is extended with computation time, and thus eventually limiting the size of the state-

space, unlike     policies where the state-space can be infinitely large and thus costs can be 

brought further down.  

There is one thing however the EAC policies do not account for and that is the restriction on fraction 

of time spent in unacceptable states. For the     policy that fraction is equals zero but for the     

policies these fractions are respectively 0.0107, 0.0003, 0.0005. Although not equal to zero these 

fractions are very small.  

7. CONCLUSION 
To sum it up: first this paper showed how a Markov Decision Process was formulated and solved via 

linear programming. The results were then compared to the Equivalent Annual cost method,  used by 

the DWW, to see if solving the MDP via linear programming had any practical use.  

Solving the linear program following for the MDP certainly gives either an optimal, or near optimal 

policy and it is easy to regulate road condition via restrictions, but these advantages come at a price, 

for multiple deterioration processes causes the state-space to be multi-dimensional. One way to deal 

with this, is to limit the state-space per deterioration processes and thus the keeping the multi-
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dimensional state-space small, but this will eventually lead to higher expected average costs. The 

other way to deal with the curse of dimensionality is to use Neuro-dynamic Programming explained 

by Bertsekas and Tsitsiklis, 1996. This however is not investigated in this paper and will only lead to a 

near optimal policy.  

The method currently used by the DWW has the advantage of being a very simple method, requiring 

not much data and has very low computation times since one only needs to calculate the policy for 

the desired state. The downside of this method however is that one cannot regulate road condition 

as well as the with the MDP. Because the EAC-method is not limited by the size of the state-space 

one could take an infinitely large state-space, suffering no increased yearly expected average costs.  

As the comparison in section 6.3 showed us, the     policies trump     policies on both expected 

average costs and the fraction of time spent in the unacceptable states, but it also saw that an 

increase in state-space causes expected average costs decline for the EAC-method making this 

method possibly cheaper when using a larger state-space, with trade-off a very low fraction of time 

spent in the unacceptable states.   
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APPENDIX 
Table A.1: state description for the four main damage features with one state representing four years 

States / 
Damage Feature 

Cracking in (%) Ravelling (in %) Longitudinal 
Unevenness  (in 
IRI) 

Transversal 
Unevenness  (in 
MM) 

0 < 0 < 0 < 0 < 0 
1 0 - 3.78 0 - 7.56 0 - 0.70 0 - 9.31 
2 3.78 - 8.49 7.56 - 16.97 0.70 - 1.40 9.31 - 10.22 
3 8.49 - 13.62 16.97 - 27.24 1.40 - 2.10 10.22 - 11.14 
4 13.62 - 19.05 > 27.24 2.10 - 2.80 11.14 -13.14   
5 19.05 - 24.71  2.80 - 3.50 13.14 - 18.57 
6 > 24.71  > 3.50 > 18.57 

 

Table A.2 state description for the four main damage features with one state representing two and a half years 

States / 
Damage Feature 

Cracking in (%) Ravelling (in %) Longitudinal 
Unevenness  (in 
IRI) 

Transversal 
Unevenness  (in 
MM) 

0 < 0 < 0 < 0 < 0 
1 0 - 2.18 0 - 4.37 0 - 0.44 0 - 8.52 
2 2.18 - 4.90 4.37 - 9.81 0.44 - 0.88 8.52 - 9.62 
3 4.90 - 7.87 9.81 - 15.74 0.88 - 1.31 9.62 - 10.13 
4 7.87 - 11.01 15.74 - 22.02 1.31 - 1.75 10.13 - 10.61 
5 11.01 - 14.28 22.02 - 28.56 1.75 - 2.19 10.61 - 11.30 
6 14.28 - 17.67 > 28.56 2.19 - 2.63 11.30 - 12.46 
7 17.67 - 21.15  2.63 - 3.06 12.46 - 14.53 
8 21.15 - 24.71  3.06 - 3.50 14.53 - 18.57 
9 > 24.71  > 3.50 > 18.57 

 

Table A.3: state description for the four main damage features with one state representing two years 

States / 
Damage Feature 

Cracking in (%) Ravelling (in %) Longitudinal 
Unevenness  (in 
IRI) 

Transversal 
Unevenness  (in 
MM) 

0 < 0 < 0 < 0 < 0 
1 0 - 1.68 0 - 3.37 0 - 0.35 0 - 8.07 
2 1.68 - 3.78 3.37 - 7.56 0.35 - 0.70 8.07 - 9.31 
3 3.78 - 6.07 7.56 - 12.13 0.70 - 1.05 9.31 - 9.85 
4 6.07 - 8.49 12.13 - 16.97 1.05 - 1.40 9.85 - 10.22 
5 8.49 - 11.01 16.97 - 22.03 1.40 - 1.75 10.22 - 10.61 
6 11.01 - 13.62 22.03 - 27.24 1.75 - 2.10 10.61 - 11.14 
7 13.62 - 16.30 27.24 - 32.60 2.10 - 2.45 11.14 - 11.92 
8 16.30 - 19.05 > 32.60 2.45 - 2.80 11.92 - 13.14 
9 19.05 - 21.85  2.80 - 3.15 13.14 - 15.13 

10 21.85 - 24.71  3.15 - 3.50 15.13 - 18.57 
11 > 24.71  > 3.50 >  18.57 
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