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Abstract

In this paper the issue of price discovery (i.e. the incorporation of new information

in the security price) in the stock market on the one hand and the option market on the

other hand is analysed. First, call-option values are converted to implied stock prices

by using an inverted Black and Scholes (1973) model. Second, the stock-prices are com-

pared to the option implied stock-prices. For this the modified measures of Chakravarty

et al. (2004), based on the measures of Harris et al. (2002) and Hasbrouck (1995), are

used. These methods are complemented with the measures from Putnins (2013), to avoid

temporary noise effects. Finally, we investigate in time-series determinants of the level

of price discovery and we analyse the explicability and predictability of the information

shares, following Mizrach and Neely (2008).

Our dataset consists of Apple stock and option bid-/askquotes from March till June 2012.

I Problem description

Nowadays securities of most prominent companies trade not only in the stock exchanges, but

also in derivative markets. This research investigates the role of the option market in the

incorporation of new information in the price of the asset (i.e. price discovery). If informed

traders do trade in the option market, then we will see some adjustment of the stock price

due to information available from the option market.

To make a proper analysis on this, we apply the widely used Hasbrouck (1995) method.

Although, we modify it slightly to not compare different stock markets with each other, like

Hasbrouck (1995) does, but to compare the stock market on the one hand with the option

market on the other hand. Second, we inspect the relation between price discovery and

variables like spread and volatility. Furthermore we use the adjustment of Putnins (2013)

and we analyse the results with regressions proposed by Mizrach and Neely (2008).
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II Motivation

Quite some research has been done on price discovery in stock markets. The most prominent

research has been done by Hasbrouck (1995). He used common factor models, explained later

in this paper, to determine which market is leading in price discovery.

However, the comparison of stock and option markets is an under-analysed research topic (see

also Literature).

To prevent from the adverse selection risk, it’s relevant for option market makers to know

whether the option market is an informative channel. Moreover option market makers may

try to hedge via the stock market makers, for who again the informational role of the option

market is relevant to know to identify informed trading of the option market makers. Exam-

ples from informed trading in the option market can be found in Mayhew, Sarin and Shastri

(1995). Pan and Pothesman (2003) give some evidence that trading volume in the option

market predicts stock volume.

The given ”signals” make us suspect an informational role for the option market, although

existing literature is not very unambiguous, sometimes even conflicting, on this role (see Rel-

evance).

To get a more clear insight in the leading / lagging role of the stock / option market, we

follow the most prominent paper in this area: it is the one of Chakravarty et al. (2004). With

their generalized version of Hasbroucks (1995) methodology, we calculate the percentage of

price discovery across stock and option markets. However, Chakravarty et al. (2004) uses data

from 1988 to 1992. Nowadays financial markets have changed in several aspects. Due to, for

example, automatic trading and higher internet speed, we now have higher frequency trading

possibilities. Therefore in this paper we will review whether the conclusions of Chakravarty

et al. (2004) are also valid on the Apple stock and option data from 2012.

A problem arising when comparing financial markets, is the temporary noise, coming to-

gether with permanent price changes. For this issue, we invest in the elegant solution of

Putnins (2013), who uses the method of Harris et al. (2002) in combination with Hasbroucks

(1995) method to obtain a robust price discovery measurement.

III Relevance

As stated by Chakravarty et al. (2004), there are two relevant contributions of this research.

First, some papers conclude that informed trading does not take place in the option markets.

These papers try to find which market leads or lags. In some papers the stock market seems to

play a leading role when it comes to the impounding of new information in the price, in some

papers it doesn’t. Conversely, in all relevant papers the authors find no significant leading
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role for the option markets. By using Granger lead-lag regressions and similar techniques,

some research (e.g. Manaster and Rendleman (1982) and Stephan and Whaley (1990)) tries

to detect which market leads or lags when it comes to the impounding of information into

prices. On the other hand, more recent research (by Cao et al. (2005), Easley et al. (1998)

and Pan and Poteshman (2006)) reveals options trades could contain information about future

stock price movements. This suggests that informed traders do trade in option markets. This

paper tries to clarify the informational role of option markets in price discovery.

Second, it’s interesting to have a look at the different option contracts in terms of leverage,

moneyness (spot price divided by strike price) and liquidity, volatility. Which contract has

the largest information shares and thus signals best? The goal of this part is, to gain a better

understanding of which factors drive the price discovery process for options.

IV Literature

As mentioned, Hasbrouck (1995) suggests an econometric approach based on an implicit

unobservable efficient price common to all markets. The information share measures the

contribution of the innovations of market j to the innovation in the common efficient price.

A lot of studies apply the techniques from Hasbrouck (1995). For example, Baillie (2002)

shows that the model of Hasbrouck (1995) and Gonzalo and Granger (1995), who focus on

the components of the common factor and the error correction process, yield (nearly) the

same results, if residuals are uncorrelated between markets. However, if the residuals are

correlated, the upper and lower bounds from Hasbrouck (1995) will diverge further from each

other, when correlation is higher. Therefore, the average between upper and lower bound is

used as approximation of the markets contribution to the impounding of new information in

the efficient price.

Also, in Cuperus et al. (2013) Hasbrouck (1995) is used together with the methods of De Jong

and Schotman (2010) to analyse the price discovery process in the initial public offering of

Facebook stocks on different exchanges. Harris et al. (2002) suggests an alternative measure

based on Gonzalo and Granger (1995). They use these techniques to analyse the common

factor weight which is attributable to three informationally-linked exchanges. The changes

can be interpreted as the limits of the changes in the price with respect to the elements of

the shock vector, as the time horizon goes to infinity, according to Mizrach and Neely (2008),

who compare both standard methods.

As our research focuses on the application of Hasbroucks (1995) techniques on both the

stock and the option market, we also mention some relevant papers on this topic. First of all

Chakravarty et al. (2004) extensively describes how to transform the methods from Hasbrouck

(1995) in such a way that these are applicable to our case (see Methodology). Based on five

years of stock and options data for 60 firms, they find the option market’s contribution to price

discovery to be 17% on average. Moreover, they find that option market price discovery is
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related to trading volume, spread in both markets and stock volatility. Price discovery among

different strike prices of an option turns out to be related with leverage, trading volume and

spreads. According to the authors, these results suggest an important role for options when

it comes to information signalling in price discovery. Another interesting paper is from Chen

and Gau (2009), which is an application of Chakravarty et al. (2004). They find out that,

when analysing price discovery among stock index, index futures and index options in Taiwan

with a minimum tick size, the bid-ask spreads of the component stocks of the stock index and

the Taiwan Top 50 Tracker Fund get lower, and the contribution of the spot market to price

discovery increases.

V Data description

For our research we use Apple data, measured as high frequency tick data, sampled on 1-

second frequency. The dataset consist of the stock and options traded on the NASDAQ

exchange. This choice is made to avoid noise from using different exchanges and because it

follows Chakravarty et al. (2004). Moreover, the NASDAQ is by far the biggest index when

it comes to Apple data1 , so that we won’t delete much information. Also, Hasbrouck (1995)

already concludes only a very small level of price discovery takes place at regional exchanges.

Of course, one could extend the research by comparing more stock markets, although taking

a too high number of markets will probably lead to vague results and diffused information

shares.

From both the stock and option data, we have available the bid- and ask price and the traded

volume. The stock bid-/askprices are from the WRDS database, the call-option value are

obtained from the Bloomberg Terminal.

We use a sample from 12 March 2012 up to and including 1 June 20122 .

VI Data filtering

We filter our data by first deleting all zero bid- and/or ask-quotes and quotes where bid >

ask. On the stock bid-/askquotes we run a third filter: we remove quotes when the difference

between bid- and ask-quote is bigger than 0.30 USD. Moreover, we delete outliers. We define

outliers as bid-/askquotes 4 times the daily standard deviation away from the previous and

following bid-/askquotes.

Strictly speaking, applying the third and fourth filter to the implied stock bid-/askquotes

would be best. Due to the large compilation time taken by the algorithm to calculate the

implied bid-/askquotes, we chose to run the algorithm directly on the midquotes of the call-

option prices, to directly obtain midquote stock prices. From empirical research on a small

1From the total Apple tradevolume, 60% takes place on the NASDAQ. About 55% of the total number of
trades takes place on the NASDAQ.

2Due to technical problems data from 16 up to and including 19 April 2012 are not available. This isn’t a
problem, as the information shares are calculated daily. See Methodology section for details.
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piece of the dataset, differences between both methods was very small. This is the main

reason for choosing for the faster procedure on midquotes.

Before analyzing the stock and implied option prices, we make sure we only use prices

which are non-stationary (i.e. they have a unit root). For this, we use the Augmented Dickey-

Fuller (ADF) Test on a 5% significance level, on both the stock and implied option prices

(after calculation, see Methodology for calculating implied option prices).

Moreover, we only use stock and implied option prices, which are cointegrated (see Method-

ology). For this, we apply the Johansen Cointegration Test (1991) on a 5% significance level.

VII Methodology

Hasbrouck (1995) provides a method, based on the co-integration of prices across different

stock markets, to calculate each markets information share (IS). The share of market j is

defined as the contribution of the variance of market j to the total variance.

Another widely used method is the one from Harris et al. (2002), in which the permanent-

transitory decomposition framework is adopted. The component share (CS) represents a

market’s contribution in forming the efficient price innovation.

In our case, we work with a stock and an option market, instead of some stock markets,

like Hasbrouck (1995). According to Chakravarty et al. (2004), the stock and option market

are linked by arbitrage, but there doesn’t exist a constant cointegration factor, for the stock

and option prices. It is well known, hedge ratios change over time, as a reaction to a changing

stock price. On the other hand, we may use an option model to convert option prices into

implied stock prices like Manaster and Rendleman (1982) and Stephan and Whaley (1990).

Suppose St is the observed value of the stock index. Then, this value can be decomposed in

Vt, the implicit, efficient value of the stock index at time t, and an error-term. This error-term

is a zero-mean covariance-stationary process:

St = Vt + es,t. (1)

We can use Black and Scholes (1973) to get an estimate of the call-option price, Ct. Inputs

are the risk-free interest rate, maturity of the option, strike and spot price, time till expiration

and volatility. For simplicity, only σ, a vector of parameters governing the volatility of the

underlying asset. The Black and Scholes formula is denoted by function f :

Ct = f(Vt, σ). (2)

Note that we use the (original) Black and Scholes formula (BS), while dealing with Amer-

ican options. At first sight, this might seem incorrect, because American options have the

privilege to be exercised at every point in time till the date of maturity (not just at the date of
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maturity, like European options), making them having a higher value than European options.

However, for American options on non-dividend paying stocks this isn’t the case, as there is

no reason to exercise the option early, as argued by Geske and Roll (1984)). In fact, Apple

pays dividend, but the last cash dividend was paid in 1995 and the the most recent stock-split

(stock dividend) took place in 2005 (Apple (2013)). Therefore, using BS on our data sample

is justified.

From (2) we can calculate the (needed) implied stock price, It:

It = f−1v (Ct, σ). (3)

The problem which arises is all about the unobservable σ. When replacing the constant

volatility by the implied time-varying volatility, σt, we obtain this volatility by calculating:

σ̂t = f−1σ (Vt, Ct). (4)

However, this doesn’t solve the problem, as Vt is unknown; only St is observed. A possible

solution is to calculate the implied volatility σ̂t by using lagged values of the index option

price and stock index. A drawback of this solution is the fact that the errors over time can

be correlated. For that reason, we use a lag of half an hour, as in Chakravarty et al. (2004).

This should be short enough for the implied volatility to be meaningful, but at the same time

long enough to get rid of correlation, although Stephan and Whaley (1990)use volatility of

the previous day. We don’t choose for this alternative, because volatility may not be constant

during the day.

Now we can calculate It by using the inverse function of the option pricing formula, with

respect to the underlying asset price (k represents the lagging):

It = f−1v (Ct, σ̂t−k) = f−1v (Ct, f
−1
σ (St−k, Ct−k)) (5)

Now we can introduce the modified method of Hasbrouck (1995). As mentioned, Has-

brouck’s (1995) information share represents the relative contribution of a market to price

discovery. This can be measured by calculating the contribution of a market to the total

variance of the common random-walk component (i.e. the assumed efficient price).

pt =

[
St

It

]
=

[
Vt + es,t

Vt + eI,t

]
. (6)

In which we assume Vt to follow a random-walk process, with white noise error terms ut:

Vt = Vt−1 + ut (7)
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We then may rewrite this to a Vector Error Correction Model (VECM) of order M:

∆pt = A1∆pt−1 +A2∆pt−1 + ...AM∆pt−1 + γ(zt−1 − µ) + εt, (8)

with pt a 2 x 1 vector of prices, Ai a 2 x 2 matrix with the autoregressive coefficients for

lag i and error-term (zt−1 − µ) in which zt−1 = p1,t−1 − p2,t−1 and µ = E(zt).

We can rewrite the VECM to a VMA (Vector Moving Average) model:

∆pt = εt + ψ1εt−1 + ψ2εt−2 + ..., (9)

in which ε is a 2 x 1 vector containing the price innovations. This vector has mean zero

and variance matrix Ω.

Now, the sum of all moving average coefficients (I is the 2 x 2 identity matrix),

ψ(1) = I + ψ1 + ψ2 + ..., (10)

has identical rows. As ψ reflect the impact of innovations on the permanent price change

component (rather than on transient price changes components), we can calculate the total

variance of implicit efficient price changes as ψΩψ′. As from Hasbrouck (1995), the informa-

tion share is the markets proportion in this total variance. If we may assume the Ω matrix

to be diagonal (so that the markets innovations are uncorrelated between markets), we can

calculate the information share as:

Sj =
ψ2
jΩjj

ψΩψ′
. (11)

In this expression ψj indicates the jth element of ψ and Ωjj represents the (j, j)th element

of Ω. As, in practice, markets often are correlated, we can only give upper and lower bounds

of the informations shares. Correlation appears when the time interval is so long, that price

changes and reactions thereon are not measured correctly and are undeserved qualified as

contemporaneous. Therefore we should use a 1-second interval. According to Chakravarty et

al. (2004) we use VAR lags up to 300 seconds.

Of course, there will always rest some correlation. That why Hasbrouck (1995) introduces

the Cholesky factorizations (Ω = MM ′) to prevent from this correlation. The factorization

implies a hierarchy that gives a higher information share for the first price and a lower infor-

mation share for the last price, in most cases. By performing both the Cholesky factorization

and by trying alternative rotations (only 2 in our case), we can get upper and lower bounds.

Because the upper and lower bound of the Hasbrouck (1995) information share estimated

from the above model can differ quite a lot, we will use a more in detail defined model for

the bivariate case (i.e. comparing the stock to one option). For this purpose, it is easiest to
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slightly rewrite the VEC model:

∆Yt = αβ′Yt−1 +

j=300∑
j=1

Aj∆Yt−j + et. (12)

In this expression from Baillie (2002) alpha is the error correction vector and et is a zero-

mean vector of serially uncorrelated innovations with covariance matrix Ω. This first term

of (12) can be interpreted as long-run dynamics between the two timeseries of prices. The

second term, indicates the short-term effect caused by market imperfections.

The difference between IS and CS is this specification of the common efficient price.

Hasbrouck defines Yt = ft + Gt, with ft the common factor and Gt a component with just

a temporary effect on Yt. On the other side, Gonzalo and Granger (1995), on which CS is

based, use ft = ΓYt, in which Γ is the common efficient price coefficient vector. Gonzalo and

Granger (1995) show that α⊥ = (γ1, γ2)
′. Also, it turns out β = (1,−1)′.

These two results are crucial in rewriting the IS expression for the bivariate case, because
ψ1

ψ2
= γ1

γ2
. So, we can write:

§j =
γ2j σ

2
j

γ21σ
2
1 + γ22σ

2
2

(13)

However, this equation only holds when there is no significant correlation between the two

market’s error terms. So, just like in the model described earlier, we use the Cholesky

factorization; Ω = MM ′. Now one can derive the final expressions for our IS estimates:

S1 =
(γ1m11 + γ2m12)

2

(γ1m11 + γ2m12)2 + (γ2m22)2
(14)

and

S2 =
(γ2m22)

2

(γ1m11 + γ2m12)2 + (γ2m22)2
(15)

The CS measures are simply computed as: CS1 = γ1 = α2
α2−α1

and CS2 = γ2 = α1
α1−α2

.

Another way of looking at bivariate markets is presented in Putnins (2013). They conclude

that the ”conventional” measures like Harris-McInish-Wood (CS) and Hasbrouck (IS) can only

draw valid conclusions the first market impounding new information first, when price series

have the same level of noise. If this assumption is violated, both measures measure not only

the impounding of new information, but also a relative avoidance of noise. It turns out a

(relatively) less noise causes a higher information share. This can make the ”slowest” market

getting the highest information share. Putnins (2013) comes up with a robust metric which

combines both measures to get rid of the noise issue in bivariate markets: the informational

leadership share (ILS), which is an adaptation, extension and modification of Yan and Zivot
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(2010). The model of Yan and Zivot (2010) assumes a fairly simple cointegration model. This

makes them observe the IS captures both permanent (a shock leads to the same change in

price) and transitory shocks (on the long-run, prices are not effected through the shock), while

the CS only captures transitory shocks. On the short-term, affection of price by transitory

shocks depends on each price’ lag polynomial. So, as Yan and Zivot (2010) conclude, the

outcomes may be misleading, as the reaction to temporary shocks differs. To rule out the

transitory effects in the measures, the following share is proposed:

ILS =

∣∣∣∣IS1CS2IS2CS1

∣∣∣∣ (16)

As the above equation shows, the ILS can only be computed in the case of two markets.

In our case, we compare options with a strike prices of 500, 505, 510, ..., 695, 700 to the stock-

price. We perform this analysis per day to get daily estimates of the CS, IS and ILS measures.

Finally, we compute the Hasbrouck (1995) information shares per day, for both the stock

and the option. Following Chakravarty et al. (2004) we can investigate in time-series de-

terminants of the level of price discovery by subsampling the information shares on basis of

variables as volume and volatility. At this point, we also look at the moneyness of the options,

which is defined as S/K, in which S is the stock-price and K is the strike-price of an option.

Also, following Mizrach and Neely (2008), we can analyse the explicability and predictabil-

ity of the information shares. Therefore we use the average spread during a trading day, the

total volume traded on a day and the realized variance (i.e. the annualized daily standard

deviation), all for both the stock as the option market as explaining variables. The relevant

regression we estimate with OLS is:

(17)
ln

(
ISj,t

1− IS1,t

)
= c+ b1 · ln

(
Sj,t

S1,t + S2,t

)
+ b2 · ln

(
Nj,t

N1,t +N2,t

)
+ b3 · ln

(
RVj,t

RV1,t +RV2,t

)
+ b4 · trend+ εt

for j = 1, 2, which indicates the stock (j = 1) or option (j = 2) market. S represent the

average daily spread, N cointains the daily trading volumes, RV consists of Realized Variances

per day and the variable ”trend” just represents a simple linear trend. IS contains the

estimated information shares per day. This regression is also performed using ILS estimates.

HMW regressions are omitted, due to their fluctuating results.
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VIII Results

Figure 1: This figure describes the IS and ILS measures over the different options. The values
on the y-axis are the daily estimates of a certain price discovery measure, averaged over time.
The x-axis gives the strike price of the option. The moneyness at a strike price of 500 is
about 1.17, decreasing to 0.87 at a strike price of 700. The call option with strike price 585
is ATM.

First of all we convert the call option values to implied stock prices by two times using the

Black-Scholes formula; first we compute the implied volatility, thereafter we use the inverse

Black-Scholes formula to get an implied stock price. Thereafter, we can compute the I(L)S

measures.

For each Apple option (the only difference is the strike price) we take the mean of the daily

price discovery measures. So we can easily compare options of different moneyness. These

results are displayed in Table 1.

For every option we analyze about 43 trading days in the period 12 March till 1 June 2012.

The HMW measure gives strange results, in the sense that most measures are extremely high

or low. The HMW at some options reports acceptable values, but some values are of a far

too big magnitude. Therefore, this measure isn’t useful.

The Hasbrouck (IS) - we present the mean between upper and lower bound of the IS - mea-
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Figure 2: This figure describes the IS measures over the trading days. The values on the y-axis
are the price discovery measures estimated per day, averaged over the options with different
strike prices. The x-axis depicts the trading day number.

sure gives a more stable view on the option price discovery; see also Figure 1. Although,

the averaged IS value equals 0.43, which is quite high in comparison with the literature, like

Chakravarty et al. (2004).

To see whether the somewhat high IS values are a result of the earlier described possible

unequal levels of noise between the price series, we perform a calculation of the ILS. The mean

of this series is 0.54, which is somewhat higher than values from the existing literature, but

only a little higher than the IS measure. This makes it highly convincing, there is relatively

less noise in the option market timeseries, causing the IS share of the option market (which

seems to be the ”slowest” market when compared to the stock market) being relatively high.

There is no clear pattern visible in the price discovery measures, although it seems that, ac-

cording to both measures, the higher strike prices (i.e. the lower moneyness) get a more stable

pattern in I(L)S measures. Moreover we have a slightly higher IS / ILS for the options with

a relatively low strike price (except from the part around K = 525). A possible explanation

for this could be the fact that informed traders prefer trading in ITM options, rather than

11



12

Table 1: Price discovery measures per option

This table reports the moneyness of each call option, with a given strike price, based on
S/K, where S is the average spotprice during the used data sample from 12 March up to
and including 1 June 2012. The number of trading days represents the number of days we
used to calculate daily estimates of price discovery on the option, compared to the same
days of the stock. In the last three columns each column represents one price discovery
measure, measures are averaged over the trading days.

Strike price Moneyness # trading days HMW IS (mean) ILS
C500 1.17 9 -0.46 0.32 0.63
C505 1.16 15 -0.10 0.28 0.55
C510 1.15 19 1.38 0.29 0.52
C515 1.14 26 0.26 0.29 0.47
C520 1.13 30 2.54 0.31 0.44
C525 1.12 35 0.72 0.36 0.46
C530 1.11 40 0.15 0.39 0.45
C535 1.10 45 1.88 0.41 0.51
C540 1.09 45 1.38 0.43 0.54
C545 1.08 46 -0.84 0.44 0.53
C550 1.07 48 0.02 0.48 0.55
C555 1.06 49 -0.06 0.50 0.57
C560 1.05 49 0.24 0.50 0.59
C565 1.04 51 -0.11 0.47 0.56
C570 1.03 52 11.65 0.51 0.58
C575 1.02 50 0.30 0.50 0.57
C580 1.01 50 -0.17 0.48 0.56
C585 1.00 50 1.44 0.47 0.54
C590 0.99 50 1.32 0.47 0.55
C595 0.99 52 -0.38 0.47 0.56
C600 0.98 51 36.74 0.44 0.55
C605 0.97 49 -4.77 0.46 0.55
C610 0.96 50 -0.74 0.45 0.55
C615 0.95 50 -0.57 0.45 0.54
C620 0.95 48 -16.71 0.44 0.54
C625 0.94 46 0.93 0.45 0.55
C630 0.93 46 -4.19 0.44 0.53
C635 0.92 42 1.68 0.43 0.52
C640 0.92 43 0.61 0.43 0.51
C645 0.91 43 14.29 0.45 0.54
C650 0.90 42 -0.47 0.42 0.52
C655 0.90 43 -0.01 0.44 0.54
C660 0.89 42 -1.83 0.47 0.57
C665 0.88 41 119.22 0.46 0.56
C670 0.88 41 -0.99 0.45 0.55
C675 0.87 43 1.30 0.44 0.52
C680 0.86 38 -1.16 0.45 0.55
C685 0.86 41 -0.84 0.46 0.56
C690 0.85 41 -0.03 0.47 0.58
C695 0.84 41 0.29 0.46 0.59
C700 0.84 40 -0.04 0.41 0.57



Figure 3: This figure describes the ILS measures over the trading days. The values on the
y-axis are the price discovery measures estimated per day, averaged over the options with
different strike prices. The x-axis depicts the trading day number.

ATM or even OTM options. Therefore, the ”signal” they give may be more vague for the

higher strike price options, while for options with a lower strike price, there is a clear leading

role visible, when compared to the stock market.

A second approach is averaging the estimates of different options per day, so that we can

compare different measures over the trading days.

Results are shown in Figure 2 and 3, for respectively the IS and ILS measures.

Again, it seems we capture some noise, due to the fact IS measures both permanent and

transitory shocks. While the IS pattern in Figure 2 is heavily fluctuating over time, the

graphs in Figure 3 are a little bit more stable.

An overview of both the measures and both stock and option spread is given in Table 2. Also,

we publish the daily volatility estimates and the number of trades on both markets.

We perform several regressions on the data from Table 2, but unfortunately don’t find any

useful relation between I(L)S and the other variables. This could be due to the very fluctuating

I(L)S pattern over the days. Perhaps, averaging over more days and using a longer sample

13



could form a basis for finding this kind of relations.

Table 2: Daily option market Information Shares

This table shows the per day estimates of both the IS and ILS, averaged over the different options.

Furthermore, the number of trades in both the stock and option markets are shown. Moreover,

we give the daily volatility estimate of the stock market, which is computed as the annualized

standard deviation of the returns. Also, the average daily stock spread is presented.

Date IS ILS Stock # Opt. # Stock spread Opt. Spread Volatility

20120312 0.26 0.41 39750 747 0.123 0.223 0.144

20120314 0.04 0.24 141276 4138 0.169 0.536 0.306

20120315 0.01 0.04 121831 4008 0.182 0.737 0.312

20120316 0.34 0.52 72403 1443 0.157 0.411 0.215

20120319 0.55 0.71 90915 2728 0.132 0.438 0.219

20120320 0.52 0.63 82553 1679 0.150 0.385 0.216

20120321 0.98 0.94 62648 1579 0.134 0.372 0.181

20120322 0.11 0.21 61601 1207 0.146 0.374 0.190

20120323 0.71 0.83 47068 790 0.130 0.402 0.145

20120326 0.55 0.67 59636 1191 0.119 0.249 0.140

20120327 0.25 0.32 64639 1677 0.122 0.370 0.159

20120328 0.68 0.75 68000 1914 0.146 0.423 0.180

20120329 0.43 0.58 65326 1331 0.143 0.398 0.171

20120330 0.79 0.85 78620 1652 0.134 0.133 0.173

20120402 0.18 0.28 67592 1745 0.145 0.413 0.154

20120403 0.19 0.38 93562 3559 0.140 0.445 0.188

20120404 0.53 0.60 63636 1779 0.143 0.404 0.165

20120405 0.40 0.53 67873 2201 0.121 0.386 0.142

20120409 0.58 0.58 66035 4972 0.164 0.379 0.180

20120410 0.84 0.88 103960 5901 0.175 0.413 0.228

20120411 0.87 0.79 73535 2560 0.181 0.277 0.203

20120412 0.74 0.76 66433 2152 0.171 0.468 0.191

20120417 0.69 0.78 116974 5525 0.179 0.206 0.299

20120418 0.59 0.60 107326 4783 0.202 0.240 0.277

20120419 0.76 0.76 94979 4741 0.202 0.116 0.289

20120423 0.38 0.55 110322 13896 0.219 0.262 0.412

20120424 0.32 0.54 107247 11902 0.188 0.214 0.307

20120425 0.23 0.51 104995 13187 0.156 0.331 0.236

20120426 0.72 0.74 62396 6090 0.170 0.218 0.177

Continued on next page
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Table 2 – Continued from previous page

Date IS ILS Stock # Opt. # Stock spread Opt. Spread Volatility

20120427 0.05 0.26 48475 5786 0.147 0.267 0.151

20120430 0.78 0.63 64701 8546 0.186 0.024 0.217

20120501 0.83 0.81 71536 8139 0.189 0.236 0.230

20120502 0.14 0.28 49349 5475 0.202 0.240 0.217

20120503 0.71 0.76 44262 4101 0.176 0.066 0.188

20120504 0.80 0.81 64808 8847 0.160 0.084 0.198

20120507 0.09 0.18 53192 7701 0.206 0.187 0.231

20120508 0.06 0.19 56396 7791 0.212 0.170 0.243

20120509 0.09 0.32 54418 7861 0.214 0.189 0.231

20120510 0.84 0.82 38132 6753 0.186 0.164 0.188

20120511 0.13 0.40 43557 8063 0.179 0.171 0.186

20120514 0.91 0.91 42329 9882 0.185 0.159 0.202

20120515 0.32 0.48 56575 13253 0.189 0.143 0.233

20120516 0.80 0.69 61843 24843 0.196 0.118 0.258

20120517 0.37 0.38 85056 23104 0.209 0.078 0.280

20120518 0.48 0.51 79747 20821 0.207 0.089 0.291

20120521 0.47 0.60 78984 27423 0.188 0.116 0.255

20120522 0.71 0.67 88759 28575 0.200 0.117 0.270

20120523 0.25 0.32 68543 20273 0.213 0.115 0.306

20120524 0.49 0.60 56369 16947 0.227 0.164 0.271

20120525 0.32 0.47 39068 9446 0.169 0.148 0.204

20120529 0.24 0.36 45172 13680 0.205 0.162 0.216

20120530 0.17 0.29 66566 18546 0.175 0.197 0.223

20120531 0.22 0.35 56933 13619 0.204 0.244 0.224

20120601 0.62 0.66 61710 17718 0.170 0.166 0.211

Average 0.47 0.55 71103.91 8301.30 0.17 0.26 0.22

The results of the regression done following Mizrach and Neely (2008) are presented in

Table 3. We perform four regressions; for both the IS and ILS measure and for both the stock

and option group. We estimate equation (17) with OLS and present the estimated coefficients

and corresponding p-values in the table.

There are some conclusions that can be drawn from this output. First, the coefficient for

the constant is negative in all cases, which means the other variables overestimate the I(L)S.

Second, the spread has a negative coefficient when talking about stocks, as hypothesized

by Mizrach and Neely (2008); ”a smaller bid-ask spread expedites the tatonnement”. The
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Table 3: Mizrach and Neely (2008) regression results

Models for both the IS and ILS measures, for
the stock as well as for the option. Coefficients
estimated by OLS are presented together with
their p-values in italics.

Stock Option
IS ILS IS ILS

Constant -1.2 -1.06 -9.39 -5.46
0.421 0.3179 0.048 0.107

Spread -0.339 -0.159 0.78 1.07
0.774 0.8503 0.579 0.288

Volume -153.84 -155.53 -0.9 -0.61
0.421 0.256 0.105 0.153

RV -1.13 -0.667 -2.89 -2.22
0.054 0.11 0.064 0.048

Trend -0.019 -0.017 0.074 0.051
0.634 0.55 0.053 0.063

R2 0.159 0.128 0.218 0.185

spreads have a positive coefficient for the options. The traded volume has a negative effect

on the measures; more trading seems to lessen the leading position of the market. This is in

contradiction with Mizrach and Neely (2008). The same holds for realized variance; a more

volatile markets informational position is relatively lower. This is possibly due to noise trades

which (should) diminish the information share. The trend isn’t interpretable.

Most variables are not significant on a 5% or 10% level.

The R2 values are between 0.128 and 0.218. Although we modified the Mizrach and Neely

(2008) regression slightly, the magnitude of this numbers is consistent with the magnitude of

Mizrach and Neely’s (2008) R2 values.
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IX Conclusions

In this research we investigated in the role of price discovery between the stock and option

market for Apple, traded on the NASDAQ, in the period March till June 2012.

In his paper Chakravarty et al. (2004) extensively use Hasbrouck’s (1995) method to

compute information shares for both the stock and option market, by slightly adjusting his

techniques.

Putnins (2013) avoids capturing temporary noise effects, by efficiently combining measures of

Hasbrouck (1995) and Harris et al. (2002).

We calculated all three measures: Hasbrouck’s (1995) information share (IS), Harris’ et

al. (2002) component share (CS) and Puntin’s (2013) informational leadership share (ILS).

Over time we see a very fluctuating pattern in both the IS and ILS, between stock and implied

option prices. We therefore cannot draw clear conclusions about leading roles over time.

Figure 1 shows a reasonably constant IS and ILS. The option I(L)S fluctuates at about 45%,

the stock market at 55%. This is not in agreement with the conclusions of Chakravarty et al.

(2004), who estimates a much lower (higher) informational role for the option (stock) market.

We had a look at some market related characteristics, but found no useful relationship

with the I(L)S measure.

To analyze the predictive power of some market characteristic variables, Mizrach and

Neely (2008) invented a regression to predict IS / ILS measures. Due to very fluctuating

measures, we can not draw an useful conclusion, although we have acceptable R2 values and

some relations with are understandable.

For further research we would advise to work with a longer time sample (although data

availability is less), because daily measures fluctuate heavily. Another possibility is to differ

the datafrequency.

The option dataset used by Chakravarty et al. (2004) is big, but a bit outdated. To test

the validity of the estimated option market information role in this paper, it would be inter-

esting to not only use a longer time period, but to also have a comparison between multiple

companies.
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