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ABSTRACT 

In the Orienteering Problem (OP), a set of nodes is given, each with a profit. The goal is to determine 

a tour, limited in length, that visits a subset of nodes and maximizes the sum of the collected profits. 

In this paper, the Orienteering Problem with Stochastic Weights (OPSW) is used to reflect uncertainty 

in real-life applications. This problem is approached by the Two-Stage Orienteering Problem (TSOP). 

Hereby, the problem is formulated as a two-stage stochastic model with recourse for the OPSW where 

the capacity constraint is hard. An existing heuristic for this TSOP is described and tested on 29 problem 

instances. The computational results are presented in detail.  

Keywords: {orienteering problem}, {uncertainty}, {stochastic weights}, {TSOP heuristic}
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1.INTRODUCTION 

The Orienteering Problem is a routing problem which possesses characteristics of both the Traveling 

Salesman Problem (TSP) and the Knapsack Problem (KP). The TSP asks the following question: Given a 

list of cities and the distances between each pair of cities, what is the shortest possible tour that visits 

each city exactly once and returns to the origin city? The KP is a problem in combinatorial optimization 

and it asks the following question: Given a set of items, with a weight and a value, determine the 

number of each item to include in a collection so that the total weight is less than or equal to a given 

limit and the total value is as large as possible.  

The OP considers a profit associated to each node and a weight associated to each arc. The profit of a 

node is collected only if that node is visited, what means that not every node has to be visited (in 

contrast to the TSP). The aim is to find a feasible tour that maximizes the profit, starting and ending at 

the depot. A tour is only feasible if it satisfies a capacity constraint on the total weight of the arcs 

selected in that tour. The fact that we select nodes in such a way that the weight associated to this 

selection does not exceed a predefined capacity, relates to the KP. Contrary to the KP, the ordering of 

the nodes in the selection influences the associates total weight.  

There are many applications where the OP is relevant. One of these applications is the tourist tour 

planning problem (W. Souffriau (2008)). In this problem, the tourist wants to visit several different 

sightseeing locations. But for each of these locations the tourist has a different preference level and 

the length of the tourist tour is of course restricted by the total time the tourist can spend on 

sightseeing. Another application is a military application. This application of the OP considers 

Unmanned Aerial Vehicle (UAV) mission planning to collect intelligence information about different 

locations in the area of operations. The aim of these missions is to acquire as much information as 

possible during the flight, while the length of the flight is limited by the available fuel capacity of the 

UAV (Evers et al. (2012)). 

In most urban environments, the travel times can vary greatly. Thus, it is in general impossible to know 

with certainty which of the used nodes can be visited without exceeding the predefined capacity. This 

uncertainty can be caused by several factors like weather circumstances, heavy-traffic and other 

unforeseen events. Many choices could be made to solve this problem. The average weight could be 

chosen and used to construct a tour and this tour will be followed as long as possible. Or the maximum 

weight could be chosen as starting-point to calculate the best tour. But the disadvantage of taking the 

maximum weight is that it would give you a worst case scenario tour, which is not very likely and thus 

suboptimal since all other scenarios would give you a better result. However, this paper considers a 
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new variant of the OP where the weights are stochastic, only the distribution of the uncertain weights 

is known beforehand. This problem can be classified as the Orienteering Problem with Stochastic 

Weights (OPSW). I assume that the distribution of the weights follows a gamma distribution with fixed 

scale parameters and that the capacity constraint on the total weight is hard. That means that the 

depot has to be reached before the total realized weight exceeds the capacity and that no profit can 

be obtained for the unvisited nodes in the planned tour. The weights in this paper represent the travel 

times and the profits model the importance of the location.  

Evers et al. (2013) have introduced a new model to tackle the OPSW where the capacity constraint is 

hard, which they call the Two-Stage Orienteering Problem (TSOP). The TSOP considers uncertainty in 

the weights of the arcs of the OP and the effect thereof on the profit value to be obtained. The TSOP 

is a two-stage recourse model in which the first-stage decision is to construct a tour, which may have 

to be aborted in the second stage before reaching the final target because of the weight realization. 

They have used two approaches for solving the TSOP: Sample Average Approximation (SAA), a well-

known technique from stochastic programming, and a heuristic approach. Whereupon they have 

shown that the SAA is time-consuming and that the TSOP heuristic provides good quality solutions with 

much less computational effort. So in this paper the TSOP heuristic is used to construct toures.  

This paper is structured as follows. In Section 2, a mathematical formulation of the TSOP is given. 

Section 3 describes the heuristic that is used to solve the TSOP. The information about the data and 

the implementation details are given in Section 4 and the computational results of the heuristic are 

present in detail in Section 5. Finally, concluding remarks are given in Section 6.  

 

2.MATHEMATICAL FORMULATION 

In order to give a better picture of the TSOP, in this section I will first give a mathematical formulation 

of the OP and then the mathematical formulation of the TSOP which is introduced in the paper of Evers 

et al. (2013). 

2.1 The deterministic orienteering problem 

Consider a complete graph 𝐺 =  (𝑁+, 𝐴) with |𝑁| + 1 nodes, where 𝑁 = {1, … , 𝑛} the set of all 

targets. Denote the depot location by node 0 ∉ 𝑁, thus we get the set 𝑁+ = 𝑁 ∪ {0}. To each node 

𝑖 ∈ 𝑁 we associate a profit value 𝑝𝑖. To each arc (𝑖, 𝑗) ∈ 𝐴 we associate a value 𝑓𝑖𝑗  representing the 

weight of arc (𝑖, 𝑗). Further we know that the total capacity of the arcs that can be selected in any tour 

is C. 
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We have two different decision variables. One of these decision variables is the binary variable 𝑥𝑖𝑗: 

𝑥𝑖𝑗 = {
 1          𝑖𝑓 𝑎𝑟𝑐 (𝑖, 𝑗) 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟
 0                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

And the other decision variable is the auxiliary variable 𝑢𝑖 ∈ {1, … , 𝑛}, this variable denotes the 

position of node 𝑖 in the tour. 

The aim is to find a tour that maximizes the total profit, that is feasible with respect to the capacity 

constraint and that starts and ends at the depot. 

The mathematical formulation of the deterministic OP is as follows:  

max ∑ 𝑝𝑖𝑖∈𝑁 ∑ 𝑥𝑖𝑗𝑗∈𝑁+\{𝑖}  (1) 

subject to  

∑ 𝑥0𝑖𝑖∈𝑁 =  ∑ 𝑥𝑖0𝑖∈𝑁 = 1  (2) 

∑ 𝑥𝑖𝑘𝑖∈𝑁+\{𝑘} = ∑ 𝑥𝑘𝑖𝑖∈𝑁+\{𝑘} ≤ 1  ∀𝑘 ∈ 𝑁  (3) 

∑ 𝑓𝑖𝑗𝑥𝑖𝑗 ≤ 𝐶(𝑖,𝑗)∈𝐴       (4) 

𝑢𝑖 − 𝑢𝑗 + 1 ≤ (1 − 𝑥𝑖𝑗)|𝑁|   ∀𝑖, 𝑗 ∈ 𝑁  (5) 

 1 ≤ 𝑢𝑖 ≤ |𝑁|     ∀𝑖 ∈ 𝑁  (6) 

𝑥𝑖𝑗 ∈ {0,1}     ∀(𝑖, 𝑗) ∈ 𝐴  (7) 

Constraint 1: The objective function to maximize the total collected profit. 

Constraint 2: The constraint guarantees that the tour starts at the depot and ends at the depot. By 

setting the summation over all nodes to one, you guarantee that there is exactly one node that comes 

before and one that comes after the depot. 

Constraint 3: The constraint ensures the connectivity of the tour and guarantees that every node is 

visited no more than once. The summation ensures that a node is either visited once or not visited at 

all. After visiting a node you have to ‘leave’ the node and if you have not visited the node you cannot 

‘leave’ it, thus the equality. 

Constraint 4: The capacity constraint that guarantees that the total weight of the selected arcs does 

not exceed the capacity. 
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Constraint 5 and 6: These constraints are necessary to prevent the construction of subtours. These are 

the well-known Miller-Tucker-Zemlin (1960) constraints. These constraints indeed exludes subtours:  

1. The arcs constraint for (𝑖, 𝑗) forces 𝑢𝑗 ≥ 𝑢𝑖 + 1, when 𝑥𝑖𝑗 = 1.  

2. If there are more than one subtour constructed, then at least one of these subtours does not 

contain the depot node. Along this subtour the 𝑢𝑖 values would have to increase to infinity and 

constriant (6) will not permit this: Suppose that we have the subtour 1 → 2 → 3, with 𝑥12 =

𝑥23 = 1. There is no way to return to node 1, because 𝑢1 < 𝑢2 < 𝑢3 < 𝑢1 is not a valid 

inequality. Thus there is only one tour that can be valid and that is the one with the depot as 

the starting and ending location. Here we have 𝑥0𝑎 = … =  𝑥𝑏0 = 1, this is valid because the 

depot does not have to met the MTZ constraint 1 ≤ 𝑢𝑖 ≤ |𝑁|. 

2.2 The two-stage orienteering problem 

Consider now a tour with an associated ordering of nodes. Because of the uncertainty in the weights, 

the probability that a node cannot be reached is higher if that node is scheduled further ahead in the 

tour. This means that, while following the tour, it can be necessary to return to the depot at some 

point based on the actual realization of the weights. As a result the profit of all nodes that is not visited 

due to the actual realization of the weights, will not be obtained and the total realized profit will be 

smaller than the total profit of the given tour. Using a two-stage recourse model, it is possible to model 

all possible moments of returning to the depot and the associated loss in profit. To obtain the best 

solution you must return to the depot at the moment that the remaining capacity equals the expected 

weight required to return from the current location to the depot. 

The associated recourse cost is defined as the profit shortage. The profit shortage is the sum of the 

profit of the nodes selected in the first-stage tour that cannot be visited. One assumption is made for 

the TSOP: a certain amount of extra capacity is available to cover the maximum deviation from the 

expected weight on any of the arcs to the depot. This safety stock is not part of the capacity 𝐶, which 

is used in the model. 

The aim now is to find a tour that maximizes the profit that is obtained from the first stage of the TSOP 

corrected by the expected second-stage profit shortage.  

2.3 From orienteering problem to two-stage orienteering problem 

For the TSOP we need the weight 𝑓𝑖𝑗  of arc (𝑖, 𝑗), which is a random variable that follows a predefined 

probability distribution, in my case the gamma distribution. For notational convenience, I will also use 
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𝑓𝑖𝑗  to denote the realization of these random variables. The vector that contains the weight realization 

of each arc is denoted by 𝑓. The distance associated to each arc is denote by 𝑑𝑖𝑗.  

Now we can define the expected value of the weight associated to each arc (𝑖, 𝑗) as follows:  

𝑓𝑖𝑗
̅̅ ̅ = 𝑑𝑖𝑗 + 𝑔𝑎𝑚𝑚𝑎(𝑠ℎ𝑎𝑝𝑒𝑖𝑗 , 𝑠𝑐𝑎𝑙𝑒). 

Note that the travel time (weight) can be broken down into its deterministic (minimum time that is 

needed) and stochastic (represented by a two-parameter gamma distribution) components.  

Based on these definitions, the mathematical formulation of the TSOP is the following: 

max ∑ 𝑝𝑖𝑖∈𝑁 ∑ 𝑥𝑖𝑗 + 𝔼𝑓(𝑣(𝑥, 𝑓))𝑗∈𝑁+\{𝑖}  (8) 

subject to  

∑ 𝑥0𝑖𝑖∈𝑁 =  ∑ 𝑥𝑖0𝑖∈𝑁 = 1  (2) 

∑ 𝑥𝑖𝑘𝑖∈𝑁+\{𝑘} = ∑ 𝑥𝑘𝑖𝑖∈𝑁+\{𝑘} ≤ 1  ∀𝑘 ∈ 𝑁  (3) 

𝑢𝑖 − 𝑢𝑗 + 1 ≤ (1 − 𝑥𝑖𝑗)|𝑁|   ∀𝑖, 𝑗 ∈ 𝑁  (5) 

 1 ≤ 𝑢𝑖 ≤ |𝑁|     ∀𝑖 ∈ 𝑁  (6) 

𝑥𝑖𝑗 ∈ {0,1}     ∀(𝑖, 𝑗) ∈ 𝐴  (7) 

Constraint 8: The objective function to maximize the total expected profit.  

𝑣(𝑥, 𝑓) is a function that models the profit shortage for a tour 𝑥 and weight realization 𝑓. 

𝔼𝑓(𝑣(𝑥, 𝑓)) is the expected profit shortage for a tour 𝑥 with respect to the distribution of 𝑓.  

Constraint 4 (OP formulation): The constraint is not necessary for the TSOP, since capacity limitations 

are already incorporated in the expected profit shortage in the objective function (8). 

 

3.TWO-STAGE ORIENTEERING PROBLEM HEURISTIC 

In this section I will describe the heuristic that I have used to solve the TSOP (Evers et al. (2013)). This 

heuristic makes use of a randomization concept and a score measure. This score measure incorporates 

the profit of a node as well as the profits of the nodes in its proximity.  
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The OP has in most of the cases a larger set of optimal solutions than the TSOP because of the 

uncertainty in the weights. Suppose that there are, with respect to the deterministic capacity 

constraint, two feasible tours that contain the same nodes but in a different order. In the OP these two 

tours will have the same objective function, in contrast with the TSOP: different orderings of nodes in 

a solution are likely to result in different expected profit values. A heuristic approach for the TSOP is 

required to adequately take into consideration the uncertainty and the associated different expected 

profits between different solutions. 

In the TSOP heuristic, multiple iterations are performed. First, an initial solution is constructed which 

is then improved by local search moves. The best solution found within these iterations will be the final 

solution of the TSOP heuristic. To avoid that the final solution is a local minimum that is not a global 

minimum, a diversity of initial solutions is created and explored. The initial solutions are obtained using 

a constructive heuristic based on the problem structure, combined with a randomization concept. The 

pseudo code of the TSOP heuristic is given in figure 1. 
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𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑛𝑢𝑙𝑙 

for node 𝑖 ← 1 to 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑁𝑜𝑑𝑒𝑠 

do  compute score measure 𝑠𝑖  

for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 1 to 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

  Construction phase: 

  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑛𝑢𝑙𝑙 

  while 𝑇𝑆𝑂𝑃(𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) can be extended 

    for each node 𝑖 ∉ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

     do compute ratio 𝑟𝑖(𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑠𝑖) 

   do randomization: 

    draw random number, select new node 𝑖 with prob 𝑑𝑒𝑠𝑖(𝑟𝑖) 

    𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 + new node 

 do Improvement phase: 

  𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

  while 𝑇𝑆𝑂𝑃(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) can be improved 

    interchange(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 

   do insert(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 

    remove-insert(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 

  Store best tour found so far: 

  If 𝑇𝑆𝑂𝑃(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) > 𝑇𝑆𝑂𝑃(𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 

   then 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

return (𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛) 

 

Figure 1 Pseudo code of the TSOP heuristic  
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The first thing to do in de TSOP heuristic is calculating the score measure 𝑠𝑖  for all nodes 𝑖 ∈ 𝑁. For this 

I have used the formula that Evers et al. (2013) used in their paper, which is developed by Golden et 

al. (1988). The formula looks like:  

𝑠𝑖 = ∑ 𝑝𝑗 ∙ 𝑒−𝜇𝑓𝑖𝑗

𝑗∈𝑁

 

Where 𝜇 > 0 is a parameter setting of the heuristic. This score measure takes into account the profit 

of node 𝑖 itself and the profit of the nodes in the neighborhood of 𝑖. This means that the closer node 𝑗 

is located to node 𝑖, the higher the contribution of the profit of node 𝑗 will be to the score measure of 

node 𝑖. As a result, the nodes that are positioned in clusters of nodes get higher values for the score 

measure, rather than the individual nodes with high profit, which are more isolated. This score 

measure will be used in the construction phase. 

3.1 The construction phase  

In constructing an initial solution, nodes will be added iteratively at the end of the current solution. To 

also take weight uncertainty into account in deciding which node to add to the current solution, I made 

use of the probability that the weight realization allow that node 𝑖 will be reached (and thus the profit 

of node 𝑖 is obtained). More specifically, the profit of node 𝑖 can be obtained if the remaining capacity 

after visiting node 𝑖 as the final node in the current tour, is greater than or equal to the expected weight 

required to return form node 𝑖 to the depot. Because the distribution of the weights is known, this 

probability 𝑔𝑖(𝑥) can be calculated as follows: 

𝑔𝑖(𝑥) = 𝐹(𝐶; 𝑠ℎ𝑎𝑝𝑒, 𝑠𝑐𝑎𝑙𝑒) 

Where 𝐹 is the cumulative distribution function of the gamma distribution and 𝐶 the total capacity. 

The shape parameter is equal to the sum of the shape parameters of the current tour 𝑥 plus the shape 

parameter of the arc that is between the last node of the current tour and the node 𝑖. The expected 

score measure is then defined by multiplying this probability 𝑔𝑖(𝑥) by the score measure 𝑠𝑖. 

With these information the ratio 𝑟𝑖(𝑥) can be calculated for each node 𝑖 not yet in the solution, to 

indicate the attractiveness of adding node 𝑖 to the current solution: 

𝑟𝑖(𝑥) =
𝑔𝑖(𝑥)𝑠𝑖

𝑓𝑘𝑖 + 𝑓𝑖0 − 𝑓𝑘0
 

where 𝑘 is the last node of the current solution. This ratio expresses the expected score measure 

relative to the expected weight required to add node 𝑖 to the current solution. 
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To decide which node will be added next to the current initial solution, a selection must be made by 

choosing one out of the four nodes with the highest value for the ratio 𝑟𝑖(𝑥) (Tsiligirides (1984)). For 

each of these nodes, a desirability probability 𝑑𝑒𝑠𝑖  is computed by normalizing the ratios as follows: 

𝑑𝑒𝑠𝑖 =
𝑟𝑖(𝑥)

∑ 𝑟𝑖′(𝑥)4
𝑖′=1

 

where the index 𝑖′ denotes the node with the 𝑖′𝑡ℎ largest ratio. Node 𝑖 will be selected as the next 

node in the current solution with probability 𝑑𝑒𝑠𝑖. 

Nodes will be added until there is not enough remaining capacity after visiting one of the nodes that 

are not yet selected in the current solution, to return to the depot. 

3.2 Improvement phase 

In the improvement phase, three different local search moves are used to improve the initial 

solution. The local search move that is evaluated are ‘interchange’, ‘insert’ and ‘remove-insert’.  

Interchange: Switching the position of two nodes in the tour and also reversing the order of the 

nodes in between. I have chosen to switch a node with the node that is 3 steps further in the tour. 

For example, suppose that the current tour consist of the ordered sequence of nodes (0, 1, 2, 3, 4, 

5,0). By applying an interchange move at the first selected node (1) we get the solution (0, 4, 2, 3, 1, 

5,0). If reversing the order of the nodes in between, (0, 4, 3, 2, 1, 5 0), provides a higher estimated 

TSOP objective we also apply the reversing move, otherwise only the interchange move. If more than 

one of such moves results in an increased estimated TSOP objective, the move which results in the 

highest TSOP objective value is applied.  

After applying interchange, the total expected weight of the new tour might be different from the 

previous tour. Therefore, it might be possible to insert additional nodes in the current tour.  

Insert: For all nodes that are not yet selected in the current tour, we evaluate the estimated TSOP 

value after insertion at all possible positions in the current tour. The node which results in the 

highest possible increase in the estimated TSOP objective will be inserted at its individual best insert 

position. Insertion will be performed as long as an increase in the estimated TSOP objective is 

possible.  

Remove-insert: Removing one node from the current tour and inserting one or more new nodes 

according to the insertion procedure just described. For this remove-insert procedure I accept the 

first improvement found.  
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This process of interchange, insert and remove-insert is repeated until none of these moves can 

improve upon the estimated TSOP objective value.  

 

4.DATASET AND IMPLEMENTATION DETAILS 

There are 6 datasets used for this paper. The sets contain 5, 10, 15, 20, 25 and 30 nodes, respectively, 

and 2, 6, 2, 7, 2 and 10 different capacity parameters. This gives a total of 29 problem instances. 

For all of the datasets, I assume that the nodes are fully connected and that the weights on the arcs 

are gamma distributed. The gamma distribution is a very rich function. This distribution is especially 

relevant for the OPSW as it is restricted to nonnegative values: travel times cannot be negative. It has 

also a small probability of large values: an accident in the roadway or a flat tire, for example, can disrupt 

the delivery. Furthermore, for each instance, the scale parameters of the gamma distribution are fixed 

to the same value for every arc. The effect of fixing the scale parameter to the same value for every 

arc is that the sum of the weights distribution can be characterized by the sum of the shape parameters 

for the arcs traversed.  

The datasets contain information about the location of the nodes and the profit obtained if the node 

is visited. We also know the distance between the different nodes and the shape parameters for the 

gamma distribution. With the fixed scale parameter value of 0.5, we can calculate the expected 

weights of each arc. 

For the score measures 𝑠𝑖, a value of 𝜇 = 10 is used, because this value was used by Evers et al. (2013) 

and it provided also good results in the TSOP heuristic. Since a randomization concept is applied in the 

construction of the initial solutions, different iterations of the heuristics might result in different 

solutions. Based on experimental testing I have found that good results are obtained when using 30 

iterations.  

 

5.COMPUTATIONAL RESULTS 

This section presents the results of the TSOP heuristic. I have looked at the effect that capacity 

parameters have on the objective value of the problem and on the number of selected nodes. I have 

also checked what the difference is in computation time within the different instances.  
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5.1 Tours 

In figure 2 tours are shown that are obtained from different datasets with different capacity 

parameters. As can be seen, the nodes near the end of the stochastic tours are typically ones with low 

profits, and thus not a priority. So they are placed at the end of the tours where there is low probability 

of them being reached. 

 

(a) Dataset 1, Capacity  30     (b) Dataset 2, Capacity  30 

 

(c) Dataset 3, capacity 55     (d) Dataset 4, capacity 55 

 

(e) Dataset 5, capacity 90      (f) Dataset 6, Capacity  100 

Figure 2 Tour  
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5.2 Stability 

First, to illustrate the stability of the TSOP heuristic that is used in this paper, I will focus on one specific 

problem instance. For this purpose, I use the problem instance from Dataset 2 with capacity 30, 1000 

iterations are performed. In figure 3 (a) the objective values of the initial solutions that are constructed 

in the construction phase are shown. Note that the points are very scattered. This is caused by the fact 

that randomization concepts are used in the construction phase. But in figure 3 (b) it can be seen that 

this is resolved in the improvement phase of the heuristic. The best solution obtained within these 

1000 iterations is equal to 37.37. Figure 3 (b) shows that a lot of solutions are near to the best solution, 

what means that the TSOP heuristic is reasonably stable.  

 

      (a) Initial solutions (Construction phase)   (b) Improved Solution (Improvement phase) 

Figure 3 Iteration vs. Objective value for Dataset 2, Capacity 30.   

In table 1, the mean and the standard deviations of both the initial solutions and improved solutions 

are shown, to get a better view of the situation. The difference between the mean of the improved 

solutions and the best solution is circa 6%. Thus, using 30 iterations is also good enough to get a good 

quality solution. Which is also clear if we look at the values in table 2.  

 

 Initial solution Improved solution 

Mean 26.75 34.97 

Standard deviation 12.95 1.85 

Table 1 Statistics of the initial solutions and improved solutions 
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 Initial Solution Improvement Solution 

 Amount Percentage Amount Percentage 

= 37.37 0 0.0% 53 5.3% 

>36 7 0.7% 302 30.2% 

>35 10 1.0% 607 60.7% 

>34 28 2.8% 850 85.0% 

Table 2 The amount and percentage 

5.3 Capacity constraint 

Figure 4 shows the relation of the capacity parameter and the objective value. All graphs have the 

same form. It is obvious that the profit will increase if the capacity increase. It could be that in de 

optimal solution all nodes are visited, but that not all of the profit is obtained due to the fact that we 

work with stochastic weights. Thus when the capacity constrains less, the profit will increase less too 

(see figure 3). This means that the profit will reach the maximum what could be obtain.  

 

(a) Dataset 2 

 

                                        (b) Dataset 4                      (c) Dataset 6 

Figure 4 Capacity vs. objective value for dataset 2, 4 and 6  
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Table 3 shows also the number of selected nodes. It can be seen that the profits can increase, while 

the number of selected nodes remains the same.  This will continue until the profit has reached the 

maximum what could be obtained, because the capacity does not constrain anymore.   

 

Capacity Number of 

selected 

nodes 

Profit Capacity Number of 

selected 

nodes 

Profit Capacity Number of 

selected 

nodes 

Profit 

10 4 15.48 10 2 4.37 10 3 10.53 

30 6 37.37 20 5 19.02 20 5 33,80 

40 9 61.07 40 11 69.13 40 10 88,12 

45 10 72,93 60 15 117.17 60 17 138,76 

50 10 79,15 80 20 161.42 80 20 185,72 

55 10 79,91 90 20 169,48 90 24 213,15 

   100 20 169,92 100 26 239,72 

      110 26 254.92 

      120 30 274,68 

      130 30 279,60 

 

Table 3 Number of selected nodes and the associated profits for Dataset 2, 4 and 6 

 

5.4 Running time 

As earlier mentioned the TSOP heuristic provides good quality solutions with less computational effort, 

also for larger instances (Evers et al. (2013)). To illustrate the computation time for the heuristic used 

in this paper, I will make use of all datasets, all with a capacity of 40. The results are shown in figure 5. 

As can be seen in this figure the computation time increases if the dataset gets larger. This makes sense 

because the heuristic needs more time in larger instances to go along all nodes, in the construction 

phase as in the improvement phase. Note that the computation time increases reasonably: if there are 

twice as many nodes, the computation time gets three times as large.  
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Figure 5 Total number of nodes vs. Running time (in sec). The capacity is equal to 40. 

 

The running times of the instances of dataset 3 are calculated and shown in figure 6. As can be seen in 

this figure, the running time increases if the predefined capacity increases. This is caused by the fact 

that there are more opportunities to construct a tour and also more opportunities to improve the tour.  

The computation time increases here also reasonably: if the predefined capacity is twice as large, the 

computation time gets circa four times as large.  

 

Figure 6 Capacity vs. Running time (in sec). Dataset 3. 
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6.CONCLUSION 

This paper covers the Orienteering Problem with Stochastic Weights (OPSW), where the weights 

represent travel times and the profits model the importance of the locations. To solve the OPSW, the 

Two-Stage Orienteering Problem (TSOP) approach, in which we assume that the weights of the arcs 

follow a given probability distribution, is used. The TSOP is a two-stage recourse model in which the 

first-stage decision is to construct a tour, which may have to be aborted in the second stage before 

reaching the final target because of the weight realization. A heuristic approach to solve the TSOP is 

used and tested. The computational results show that the TSOP heuristic provides good quality results 

within a reasonable computation time. Tours are obtained, where the nodes near the end of these 

stochastic tours are typically the ones with low profit, and thus not a priority. The stability of the 

heuristic is also tested and we conclude that the heuristic is stable, thus the results that are obtained 

are reliable. 
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