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Abstract 
How Ambiguity affects Real Options is a recent research topic. Earlier research incorporated the 

maxmin model to estimate the effects, but the maxmin model groups together the perceived 

ambiguity level and the decision makers’ ambiguity preference. Here I create a Real Option 

model using a naïve 𝛼-Maxmin model, effectively separating the preference and the ambiguity 

level. A decision maker expresses his or her preference by creating a weighted average of an 

extremely ambiguity averse and extremely ambiguity loving preference. I show the merit of the 

𝛼-Maxmin model by comparing it to the Maxmin model and the ambiguity neutral model 

normally used. From an academic perspective the results are informative and interesting for 

future development. But in the field of economic implementation of the Maxmin and 𝛼-Maxmin 

model work needs to be done, if real life implementation is what we seek. 
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1 Introduction 
Real options (RO) are a valuable tool in dynamic decision-making processes. Real option theory 

is an application of option pricing theory, as economists noticed the similarities between the 

uncertainty faced for a financial assets and company investments in its various forms. These 

models were based upon the notion that we know the outcome probabilities for every future 

period, e.g. from the start we know how the future probabilities for every event looks like. Thus, 

using a Wiener process or lattice to simulate the future possible states, we can predict the 

expected optimal point in time to make investments in a project or terminate a project and we can 

take future decisions into account when valuing a project (see for example Brennan and 

Schwartz, 1985; Quigg, 1993). The option value and the value of waiting then follow from the 

simulation. The method focuses solely on a risky environment, although we do not know with 

certainty the future outcomes, the probability measures describe it quite precisely.  

Often decision makers do not know the exact probabilities for certain events. These 

unknown, hard to predict events do have a real impact on future results. Black and Scholes 

(1973) and Cox et al. (1979) type RO pricing do not take into account that invest/terminate 

decisions are sometimes made without precise knowledge on a probability measure. For example, 

an oil company can assess how likely it is that demand increases, but these estimates are 

surrounded with uncertainty regarding this estimate. Furthermore, not everyone has the same 

taste preference for this ambiguity. In the literature maxmin utility is utilized to incorporate 

ambiguity, as developed by Gilboa and Schmeidler (1989). In this thesis I develop six models: (1) 

a binomial RO model without ambiguity, (2) a naïve maxmin binomial RO model, (3) a naïve 𝛼-

maxmin binomial RO model, (4) a quadrinomial RO model without ambiguity, (5) a naïve 

maxmin quadrinomial RO model and (6) a naïve 𝛼-maxmin quadrinomial RO model.  Within the 

real option literature the maxmin expected utility model is used to model ambiguity attitude and 

when extended to a dynamic model also called the multiple priors model (Epstein, 1999). Instead 

of using one probability measure for all periods, a set of probability measures (priors) is taken. 

This makes sure that the probability measure can vary in every period. The most pessimistic 

measure is selected from this set to calculate the option value for a company with ambiguity 

aversion. The model with one known probability measure is ambiguity neutral - or more 

precisely, the conjunction of ambiguity loving and ambiguity averse. The priors set size describe 

the level of ambiguity aversion present.  
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In the decision theory literature alternatives have been proposed to measure ambiguity 

aversion, which can be incorporated in the RO theory. The theoretical addition to the RO 

literature will be the development of an α-maxmin model (Ghirardato and Marinacci, 2002). The 

added value of an α-maxmin model for ROs is the direct measure of ambiguity aversion, distinct 

from the ambiguity level. I keep the set size of the priors equal for all companies, while 

distinguishing between the levels of ambiguity aversion between companies.  This increases the 

flexibility when modeling RO. An applied framework of the α-maxmin model is not yet 

developed for ROs. Here three different ambiguity models are developed, using discrete time and 

a finite horizon approach. The differences in approach are compared using the ambiguity neutral 

model, the maxmin model and the α-maxmin model. 

In section 2 the existing literature on the topic will be discussed, section 3 introduces the 

baseline model and the extensions into the other two models, section 4 compares the resulting 

effects of the three models and section 5 concludes and discusses some possible extensions.  

 

2 Review of literature  
2.1	
  Theoretical	
  approaches	
  to	
  ambiguity	
  and	
  ambiguity	
  aversion	
  
Decision-­‐making	
  processes	
  and	
  ambiguity	
   is	
  a	
   topic	
  of	
   interest	
  with	
  a	
   long	
  history	
  within	
  

economics.	
  Knight	
   (1921)	
  was	
  one	
  of	
   the	
   first	
   to	
  make	
  a	
  distinction	
  between	
  measurable	
  

uncertainty	
  and	
  immeasurable	
  uncertainty	
  with	
  respect	
  to	
  uncertain	
  future	
  events.	
  In	
  more	
  

recent	
   literature,	
   the	
   former	
   is	
   risk	
   and	
   the	
   latter	
   is	
   ambiguity;	
   I	
  will	
   adapt	
   these	
   terms.	
  

Often	
  many	
  neglect	
  the	
  differences	
  between	
  risk,	
  ambiguity	
  and	
  uncertainty.	
  Risk	
  describes	
  

uncertainty	
   over	
   future	
   outcomes	
   with	
   known	
   probabilities;	
   ambiguity	
   describes	
  

uncertainty	
  about	
  both	
  probabilities	
  and	
  outcomes;	
  and	
  both	
  ambiguity	
  and	
  risk	
  are	
  a	
  type	
  

of	
   uncertainty.	
   Venezia	
   (1983)	
   was	
   one	
   of	
   the	
   earlier	
   authors	
   trying	
   to	
   describe	
   a	
   Real	
  

Option	
  model	
  with	
  unknown	
  future	
  growth.	
  Ambiguity	
  aversion	
  is	
  not	
  explicitly	
  mentioned	
  

and	
  the	
  prior	
  beliefs	
  were	
  still	
  in	
  the	
  realm	
  of	
  the	
  rational	
  approach.	
  Note	
  that	
  the	
  strongest	
  

result	
  is	
  for	
  the	
  Bayesian	
  approach,	
  while	
  the	
  non-­‐Bayesian	
  approach	
  is	
  mostly	
  described	
  in	
  

terms	
  relative	
  to	
  the	
  Bayesian.	
  	
  

	
   Two	
   inputs	
   that	
   impact	
   ambiguity	
   aversions	
   that	
   are	
   often	
   used,	
   deal	
   with	
   the	
  

application	
   of	
   Real	
   Options	
   and	
   the	
   applied	
   utility	
   function.	
   When	
   trying	
   to	
   analyse	
   a	
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dynamic	
  decision	
  making	
  process,	
  there	
  are	
  several	
  sources	
  of	
  ambiguity.	
  If	
  we	
  consider	
  an	
  

investment	
  problem:	
  waiting	
   to	
   invest	
   in	
  a	
  project	
   involves	
  ambiguity/risk	
  about	
  payoffs,	
  

but	
  the	
  same	
  applies	
  to	
  the	
  project	
  profits	
  itself	
  (McDonald	
  and	
  Siegel,	
  1986).	
  	
  

	
   Risk	
  aversion	
  is	
  a	
  well-­‐studied	
  and	
  well-­‐defined	
  phenomenon.	
  A	
  similar	
  approach	
  to	
  

ambiguity	
   aversion	
   is	
   still	
   being	
   debated.	
   Gilbao	
   and	
   Schmeidler	
   (1989)	
   developed	
   the	
  

maxmin	
   model.	
   It	
   describes	
   extreme	
   ambiguity	
   aversion	
   for	
   a	
   given	
   set	
   of	
   priors,	
   as	
   it	
  

considers	
  ambiguity	
  as	
  a	
  set	
  of	
  priors/probability	
  measures	
  on	
  future	
  outcomes	
  and	
  takes	
  

the	
   probability	
   measure	
   that	
   describes	
   the	
   worst-­‐case	
   scenario.	
   The	
   relative	
   ambiguity	
  

aversion	
  is	
  then	
  covered	
  by	
  the	
  size	
  of	
  the	
  set	
  and	
  the	
  convexity	
  of	
  the	
  sets.	
  	
  

	
   Convexity	
  is	
  not	
  a	
  necessary	
  requirement	
  to	
  have	
  an	
  aversion	
  towards	
  ambiguity.	
  An	
  

exertion	
   to	
   define	
   ambiguity	
   aversion	
   in	
   a	
   more	
   rigorous	
   fashion	
   was	
   made	
   by	
   Epstein	
  

(1999).	
   Ambiguity	
   aversion	
   is	
   then	
   defined	
   alongside	
   risk	
   aversion	
   on	
   a	
   utility	
   function.	
  

Risk	
   aversion	
   is	
   defined	
   relative	
   to	
   some	
   risk	
   neutral	
   case,	
   to	
   measure	
   the	
   level	
   of	
   risk	
  

aversion	
  and	
  to	
  have	
  a	
  baseline.	
  Likewise,	
  ambiguity	
  aversion	
  needs	
  some	
  baseline	
  case,	
  but	
  

this	
   obfuscated	
   through	
   the	
   effects	
   of	
   risk	
   aversion.	
  To	
  keep	
  ambiguity	
   aversion	
   and	
   risk	
  

aversion	
   apart,	
   we	
   need	
   an	
   ambiguity	
   neutral	
   baseline	
   measurement	
   incorporating	
   risk	
  

aversion.	
  Epstein	
  proposes	
   a	
  probabilistic	
   sophisticated	
  decision	
  preference	
   as	
   ambiguity	
  

neutral.	
  Ghirardato and Marinacci (2002) use expected utility as the ambiguity neutral baseline.	
  

For	
   this	
   thesis	
   a	
  more	
   appealing	
   definition	
   is	
   based	
   on	
   a	
  more	
   intuitive	
   notion	
   of	
  

ambiguity.	
   Ellsberg	
   (1961)	
   did	
   an	
   experiment	
   using	
   two	
   urns,	
   showing	
   the	
   impact	
   of	
  

ambiguity	
   on	
   decision-­‐making.	
   There	
   are	
   100	
   black	
   and	
   red	
   marbles	
   in	
   the	
   urns.	
   The	
  

distribution	
   of	
   black	
   and	
   red	
  marbles	
   is	
   known	
   for	
   urn	
   1,	
   50	
   black	
  marbles	
   and	
   50	
   red	
  

marbles.	
   For	
  urn	
  2	
   the	
  distribution	
  of	
  black	
  and	
   red	
  marbles	
   is	
  unknown.	
  Two	
  groups	
  of	
  

experiment	
  participants	
  are	
  asked	
  to	
  choose	
  whether	
  they	
  want	
  to	
  select	
  a	
  marble	
  from	
  urn	
  

1	
   or	
   urn	
  2.	
   The	
   first	
   group	
   gets	
   paid	
  €10	
   for	
   a	
   black	
  marble	
   and	
  otherwise	
  nothing.	
   The	
  

second	
  group	
  gets	
  paid	
  €10	
  for	
  a	
  red	
  marble	
  and	
  otherwise	
  nothing.	
  In	
  the	
  experiment	
  both	
  

groups	
  prefer	
  to	
  select	
  a	
  marble	
  from	
  the	
  unambiguous	
  urn	
  1,	
  in	
  other	
  words	
  they	
  perceive	
  

urn	
   1	
   as	
   the	
   better	
   bet.	
   As	
   the	
   possible	
   payoffs	
   are	
   the	
   same,	
   this	
   implies	
   that	
   the	
  

participants	
   perceive	
   the	
   subjective	
   probability	
   for	
   black	
   and	
   red	
   marbles	
   for	
   the	
  

ambiguous	
  urn	
  to	
  be	
  smaller	
  than	
  for	
  the	
  unambiguous	
  urn.	
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   𝑃amb black < 0.5	
   (1)	
  

	
   𝑃amb red < 0.5	
   (2)	
  

	
   𝑃amb black + 𝑃amb red < 1	
   (3)	
  

	
  

Where	
  𝑃amb ∙ 	
  is	
   the	
  probability	
  measure	
   for	
   the	
  ambiguous	
  urn.	
  Expected	
  utility	
  dictates	
  

that	
  probabilities	
  should	
  add	
  up	
  to	
  unity,	
  which	
  is	
  not	
  the	
  case	
  here.	
  Therefore,	
  an	
  improved	
  

model	
  is	
  necessary	
  to	
  describe	
  behaviour.	
  

Two	
  models	
   that	
   describe	
   ambiguity	
   aversion	
   shown	
   in	
   Ellsberg’s	
   experiment	
   are	
  

Choquet	
   expected	
   utility	
   and	
   multiple-­‐priors	
   expected	
   utility,	
   which	
   are	
   both	
  

generalisations	
  of	
  expected	
  utility.	
  Here	
  the	
  focus	
  will	
  be	
  on	
  the	
  latter	
  model,	
  which	
  has	
  an	
  

intuitive	
   explanation	
   for	
   the	
   ambiguity	
   aversion	
   effect.	
   For	
   the	
   ambiguous	
  urn	
  numerous	
  

distributions	
  of	
  black	
  and	
  red	
  marbles	
  are	
  possible,	
  e.g.	
  20	
  black	
  and	
  80	
  red,	
  40	
  black	
  and	
  

60	
  red,	
  etc.	
  The	
  maxmin	
  model	
  selects	
  the	
  worst	
  expected	
  case	
  of	
  all	
  possible	
  distributions	
  

that	
  are	
  deemed	
  possible	
  by	
  the	
  decision	
  maker	
  -­‐	
  called	
  the	
  set	
  of	
  priors	
  from	
  here	
  on.	
  This	
  

allows	
  the	
  probabilities	
  for	
  black	
  marbles	
  and	
  red	
  marbles	
  not	
  add	
  up	
  to	
  one,	
  because	
  the	
  

probabilities	
   for	
   either	
   the	
   black	
   or	
   red	
  marble	
   are	
   considered	
   separate	
   from	
   each	
   other	
  

and	
  the	
  probabilities	
  could	
  be	
  taken	
  from	
  a	
  different	
  distribution	
  for	
  both	
  colours.	
  	
  

The	
  model	
  developed	
  by	
  Epstein	
  and	
  others	
  have	
  as	
  a	
  disadvantage	
  that	
  ambiguity	
  

aversion	
   and	
   the	
   ambiguity	
   level	
   is	
   modelled	
   as	
   one	
   element.	
   It	
   would	
   enhance	
   insights	
  

when	
   we	
   separate	
   them,	
   as	
   one	
   is	
   a	
   preference	
   and	
   the	
   other	
   is	
   a	
   perceived	
   level	
   of	
  

ambiguity.	
   Developments	
   come	
   from	
   behavioural	
   and	
   model	
   robustness	
   concerns,	
   but	
  

establishes	
  similar	
  results.	
  Cagetti	
  et	
  al.	
  (2002)	
  are	
  not	
  directly	
  concerned	
  about	
  ambiguity	
  

aversion,	
  but	
  show	
  that	
   if	
  a	
  hidden	
  Markov	
   jump	
  model	
   is	
   introduced	
  as	
   the	
   true	
  process	
  

then	
  traditional	
  smooth	
  -­‐	
  continuous	
  -­‐	
  models	
  do	
  not	
  perform	
  optimally.	
  Ambiguity	
  about	
  

this	
   unknown	
   jump	
   process	
   is	
   modelled	
   through	
   relative	
   entropy.	
   Some	
   boundaries	
   are	
  

introduced	
   to	
   create	
   a	
   reasonable	
   deviation	
   from	
   the	
   estimated	
   probability.	
   Nearness	
   is	
  

used	
  to	
  ensure	
  a	
  reasonable	
  deviation,	
  which	
  is	
  defined	
  as	
  having	
  the	
  same	
  null	
  events	
  as	
  

the	
  estimated	
  probability.	
  The	
  null	
  events	
  are	
  those	
  events	
  that	
  are	
  not	
  described	
  by	
  the	
  set	
  

of	
  possible	
  outcomes	
  and	
  therefore	
  do	
  not	
  exist	
  for	
  this	
  particular	
  description	
  of	
  the	
  world.	
  

When	
  the	
  deviation	
  from	
  the	
  estimated	
  probability	
  measure	
  is	
  larger,	
  the	
  ambiguity	
  about	
  

the	
  correct	
  model	
  is	
  larger.	
  To	
  handle	
  ambiguity	
  aversion,	
  a	
  penalty	
  function	
  is	
  introduced	
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on	
  this	
  deviating	
  measure.	
  Robustness	
  is	
  then	
  further	
  developed	
  for	
  continuous	
  time	
  and	
  -­‐

using	
  recursive	
  utility	
   -­‐	
  an	
   intertemporal	
  model	
   is	
  produced	
  (Cagetti	
  et	
  al.,	
  2001;	
  Skiadas,	
  

2003)	
  	
  

	
   But	
   criticism	
   is	
   also	
   cast	
   on	
   the	
   robustness	
   approach	
   using	
   the	
   nearness	
   idea,	
  

because	
  this	
  technical	
  requirement	
  can	
  be	
  quite	
  restrictive.	
  Some	
  models	
  may	
  incorporate	
  

some	
  events	
   that	
  are	
  hard	
  to	
  predict,	
   for	
  example	
  extreme	
  weather.	
  This	
   is	
  not	
  necessary	
  

included	
  in	
  all	
  outcome	
  spaces.	
  In	
  risk	
  management,	
  the	
  coherent	
  and	
  convex	
  measures	
  of	
  

risk	
   have	
   a	
   representation	
   very	
   similar	
   to	
   the	
   maxmin	
   model.	
   Exploiting	
   these	
   risk	
  

measures	
   leads	
   to	
   robust	
   models	
   without	
   the	
   necessity	
   for	
   nearness	
   to	
   some	
   estimated	
  

probability	
  measure	
  (Cont,	
  2003).	
  	
  

Ju	
  and	
  Miao	
  (2011)	
  make	
  use	
  of	
  an	
  initial	
  model	
  by	
  Klibanoff	
  et	
  al.	
  (2005,	
  2006)	
  for	
  

smooth	
   ambiguity	
   measurement	
   of	
   asset	
   returns.	
   It	
   does	
   not	
   show	
   the	
   kink	
   in	
   the	
  

indifference	
   curve	
   that	
   the	
   maxmin	
   model	
   shows	
   and	
   the	
   model	
   makes	
   a	
   distinction	
  

between	
  ambiguity	
  and	
  ambiguity	
  aversion,	
  e.g.	
  between	
  beliefs	
  and	
  taste.	
  They	
  are	
  able	
  to	
  

explain	
   the	
   first	
   moment	
   of	
   the	
   equity	
   premium	
   puzzle,	
   making	
   a	
   distinction	
   between	
  

ambiguity	
   and	
   ambiguity	
   aversion.	
   As	
   a	
   disadvantage	
   the	
   method	
   is	
   hard	
   to	
   apply	
  

empirically	
   and	
   calibration	
   remains	
   tricky.	
   Learning	
   and	
   intertemporal	
   substitution	
   over	
  

time	
  can	
  also	
  be	
   folded	
   into	
   the	
  analysis	
   (Hayashi	
   and	
  Miao,	
  2011).	
   It	
   seems	
   that	
   a	
  more	
  

intuitive	
   and	
   easily	
   implemented	
   method	
   could	
   be	
   applied	
   to	
   estimate	
   ambiguity	
   and	
  

ambiguity	
  aversion.	
  	
  

A	
   final	
   approach	
   was	
   developed	
   using	
   Epstein’s	
   work,	
   where	
   the	
   authors	
   rely	
   on	
  

identical	
  utility	
  functions	
  when	
  comparing	
  relative	
  ambiguity	
  aversion	
  for	
  decision	
  makers	
  

(Ghirardato and Marinacci, 2002).	
   The	
   results	
   are	
   less	
   strong/defined	
   than	
   the	
   work	
   of	
  

Epstein,	
  but	
   easier	
   to	
   implement	
  as	
   the	
  baseline	
   set	
  has	
   to	
  be	
   less	
   rich.	
  As	
   an	
  alternative	
  

maxmin	
  utility	
   function	
   they	
   introduce	
   the	
  α-maxmin utility function. The attractive trait of 

the model is its simplicity relative to the smooth ambiguity model or even choquet expected 

utility. Furthermore, it does measure ambiguity aversion and ambiguity separately. It uses a 

weighted average of the maxmin and the maxmax model, where the weight factor 𝛼 is the 

aversion to ambiguity.	
  Maxmax	
  is	
  the	
  best	
  possible	
  outcome	
  given	
  the	
  set	
  of	
  priors.	
  Thus,	
  it	
  

measures	
   a	
   weighted	
   average	
   of	
   the	
   worst-­‐case	
   scenario	
   and	
   the	
   best-­‐case	
   scenario.	
   Its	
  

mathematical	
  tractability	
  allows	
  easy	
  implementation	
  into	
  the	
  real	
  option	
  theory. 
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2.2	
  Ambiguity	
  aversion	
  in	
  empirical	
  applications	
  
Chen and Epstein (2002) use the recursive multiple prior utility model and the earlier developed 

definitions for ambiguity aversion by Ghirardato and Marinacci (2002) to develop a continuous 

time model for asset pricing where risk aversion and ambiguity aversion are separate input 

factors. The authors do not make a difference between ambiguity aversion and ambiguity.  

A portfolio selection experiment, by Ahn, Choi, Gale and Kariv (2007), tests rival 

measures of utility. Here the α-maxmin model performs well, but does not fit every subjects 

preferences. Therefore the evidence shows a mixed image.  

Rigotti, Ryan and Vaithianathan (2008) use the Hurwicz criterion to measure levels of 

ambiguity aversion in an economy with ambiguity and risks. The economy is made up of old 

industry and new industry, where the former there are known risks and the latter shows 

ambiguity. They model how agents with heterogeneous ambiguity aversion choose between 

worker/entrepreneur and old/new industries. The model is compared to empirical findings and 

shows reasonably comparable results.  

 

2.3 Real options 
There are many similarities between financial options and real options; it both tries to model 

future opportunities with a right but not the obligation to some action. A financial option gives 

the right to buy or sell a stock or some other financial asset, meanwhile a real option gives the 

right to invest or disinvest in a project. The latter could be any decision where timing and 

uncertainty matters: when to go from renting to buying a house, the optimal time to marry and 

when to buy a new car. The costs involved analysing these decisions in such a fashion might be 

too high for such decision, but the possibility exists. Certain decisions with a structure that 

reflects more exotic options can easily be replicated using option theory. Nonetheless, real 

options are not perfect replications of financial options at all times.  

 Financial option pricing is based upon arbitrage arguments therefore a risk neutral pricing 

method can be used. The arbitrage argument states that there is a portfolio replicating the payoffs 

of the option. When the option price deviates from this price in a complete market - the assets 

necessary to create the replicating portfolio are available - a risk free profit could theoretically be 

made. This approach does not take into account any ambiguities and risks that occur in practice, 



	
   REAL	
  OPTIONS	
  AND	
  AMBIGUITY	
  AVERSION	
  

	
  

10	
  

subsection 2.4 deals with the former and a limited description of the latter will be treated in this 

subsection.  

 Mining operations, R&D, land development and supply chains are project types that are 

often taken as example for the use if real options. It could be the option to invest, disinvest, grow 

and shrink operations. Further, it could be an option on an option, an option with more than one 

source of uncertainty and with boundaries on payoffs. This list is not exhaustive, but gives a clear 

picture how real options help us analyse decisions on dynamic subjects.  

 Some real options have a closed form solution often these are in a sense the ‘simpler’ 

models. Whenever it gets more complicated some type of simulation is necessary. Cox (1979) 

introduced the relation between the Black-Scholes model and the binomial tree model. The latter 

model made it possible to price American options, which are quite interesting from a real option 

point of view. A European option can only be exercised/used at the end of its maturity T, when 

the maturity of an option is 10 years a project can only be initiated in 10 years. An American 

option can be exercised/used whenever the holder wants to exercise, the option with maturity of 

10 years can also be exercised in 5 years, 3 years or tomorrow.  

For stocks that do not pay dividends it is never interesting to terminate an option before 

maturity, but with stocks that do pay dividends early exercise can be a good opportunity. Real 

options often have costs imbedded in the underlying project that can be described as a form of 

dividends. Individual projects have a limited time where (excess) profits can be made, while a 

stable financial asset keeps its value and potential for capital gains for a much longer time. 

Permits to mine or drill often have a limited lifetime before the permit has to be renewed. 

Otherwise, companies face competitors that invest in the same R&D, which makes the maximum 

delay to invest in R&D limited. Therefore, exercise before maturity is often a good opportunity. 

Another approach when pricing real options could be Monte Carlo simulations. This makes direct 

use of the Wiener process, to model many possible paths. The Monte Carlo simulation has the 

advantage that many more decision moments and degrees of up and down are taken into account, 

but the binomial tree is easier to work with to model complicated processes. Both binomial trees 

and Monte Carlo simulations are computer intensive - a good reason to try and find closed form 

solutions when possible - but more flexible than closed form solutions.   

 Finally, risk neutral valuation is not always the best route to take. Brennan shows that if 

the project to be valuated has resources that are publicly traded in the form of futures, risk neutral 
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valuation is possible using a replicating portfolio. Without doubt this is will regularly not be the 

case, think of R&D for products that do not exist yet and processed products that are partially 

correlated, not correlated or correlated with many resource futures. Whenever this happens and 

assuming a risk averse investor, one has to calculate the option value using a utility functions that 

reflect the investor’s risk averseness.  

 

2.4 Real options and ambiguity aversion 
Within the real option literature ambiguity aversion is just emerging as a promising modelling 

tool. For financial options Cont (2003) is an early developer of ambiguity in the real option 

literature. More recent examples are Trojanowska and Kort (2010) and Miao and Wang (2011).  

The former use a method likewise to Cagetti et al. (2002) and Skiadas (2003) for 

ambiguity aversion, e.g. using probability measures related to a reference probability measure 𝑃. 

Waiting becomes less valuable when ambiguity is introduced and when ambiguity goes over a 

certain level a company might even not invest with a positive probability. This non-investment is 

related to time, as time goes towards infinity the probability to not invest is always larger than 

zero. Thus, the longer a project runs, the higher the probability that a company invests. An 

alternative model is developed using an endogenous risk factor, described by a Brownian motion.  

Miao and Wang (2011) use the multiple-prior model to see how uncertainty affects Real 

Option exercise, set in an infinite time horizon, discrete time setting. If we use a certain payment 

at exercise, therefore all uncertainty is resolved at that point; ambiguity pulls the 

exercise/stopping point forward. E.g. exercise is sooner and the overall uncertainty is resolved 

sooner in a continuation RO. If there are two prior sets 𝒫! and 𝒫! where 𝒫! ≥   𝒫!, then as 

ambiguity is larger for 𝒫! the point of stopping is reached earlier. The worst-case scenario is 

worse for 𝒫! then 𝒫!, therefore potential future outcomes are not as profitable in a maxmin type 

model. In the more realistic case where ambiguity is also present for the payoff, the results of 

ambiguity are less obvious. The ambiguity of payoffs counteracts the ambiguity of waiting, but if 

ambiguity is very large a myopic Net Present Value (NPV) rule should be used. Myopic NPV is 

calculated using the standard NPV model, but including a negative bias on future values thereby 

making future potential profits smaller then the expected value.  
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Following Miao and Wang, I propose two models using the α-maxmin model to 

conveniently separate ambiguity and ambiguity aversion and show how it performs relative to the 

ambiguity neutral model and the maxmin model.  

 

3 Model setup 
ROs show us the value of future opportunities and the decisions that are related to these 

opportunities. If decision makers contemplate whether to wait or to act immediately, ROs help 

them quantitatively analyse the future uncertainty and its effects on decision making. All models 

are set up in discrete time and with a finite time frame. Modern companies all face projects that 

might run for a long time or a short time, say respectively an energy plant and a mobile phone. 

The lack of an infinite time horizon unites these projects and therefore it seems reasonable to 

develop a model that has a finite time horizon.  

I develop three models in a logical progression; first the ambiguity neutral set up, second 

the maxmin set up and third the 𝛼-maxmin set up.  

 

3.1 Baseline set up 
3.1.1 Probability space 

The subject of interest is what value future decisions have, whether to suspend, start, grow 

or cut a project. Due to future uncertainty - here indicating a general term for future outcomes 

that we do not know whatever the source - it can only be described in terms of possible outcomes. 

Define an outcome space 𝛺,ℱ  with 𝛺 the set of possible states of the world 𝜔 and ℱ the set of 

all possible outcomes. In the baseline set up, there is one probability measure 𝑃 for the outcomes 

ℱ as there is only uncertainty about outcomes and not about the probabilities. An intertemporal 

process requires a filtration ℱ!, that leads to the probability space 𝛺,ℱ, ℱ! !!!,𝑃  with ℱ! = ℱ 

and 0 ≤ 𝑡 ≤ 𝑇. An example will be given for all described technical requirements. 

Take an urn with blue, red and green marbles. 𝛺 contains the set of possible individual 

states when taking out a marble, therefore 𝛺: {b, r, g}. ℱ reflects all possible outcomes, note that 

the outcomes could be combinations of individual states. If we are interested in taking one marble 

from the urn ℱ, coincides with 𝛺 as the outcome set consists of only individual states, therefore 

ℱ: {b, r, g}. Matters change whenever we take two marbles from the urn; we create a set 



	
   REAL	
  OPTIONS	
  AND	
  AMBIGUITY	
  AVERSION	
  

	
  

13	
  

containing combinations of states, therefore ℱ: {bb, br, bg, rr, rg, rb, gg, gb, gr}   . The more 

marbles we take from the urn, ℱ  changes in a similar fashion. Conveniently, the above 

description leads to the filtration ℱ!: assume there are two time periods where ℱ! = ℱ. In each 

period there are a limited amount of possible added states as described by 𝛺. In period one a 

marble is selected from the urn and ℱ!: b, r, g ; in period two - the final period - a marble is 

again selected from the urn and ℱ = ℱ!: {bb, br, bg, rr, rg, rb, gg, gb, gr} . Summarising, the 

filtration describes the development of the possible outcomes over time, until the final period is 

reached.  

Extending from the outcome space, when we select marbles from the urn there is 

uncertainty about the exact outcome. Before a marble is selected from the urn the outcome can 

only be described in terms of likeliness. To describe this we need a probability measure. For the 

baseline model there are 100 marbles in the urn with 60 green marbles, 30 red marbles and 10 

blue marbles. This yields the following probabilities for green, red and blue marbles: 

 

 
𝑃(𝑔) =

60
100 = 0.6 (4) 

 
𝑃 𝑟 =

30
100 = 0.3 (5) 

 
𝑃 𝑏 =

10
100 = 0.1 (6) 

  

The function P measures how likely some state 𝜔 is or more succinct 𝑃:  𝛺 → ℝ.  

 

3.1.2 From continuous Wiener process to discrete lattice 

Wiener processes are often used to model movements of random processes. It assumes 

independence between periods, such that past results do not influence the current result. A 

Wiener process is not a perfect representation of reality and often denounced when tested, but the 

process can be expanded to be more realistic (Lüders and Schröder, 2004). Here a simple Wiener 

process will suffice to show the effects of ambiguity compared to the ambiguity neutral model, 

ceteris paribus.  

 If the process of interest is the optimal point of investment in a project, we are interested 

whether it pays off to wait or act now. The simplest case is when we have just one variable 
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process and the rest is fixed, e.g. uncertainty is resolved at the moment of exercise and the 

investment has a fixed price. In that case the process describes how a profit varies over time and 

when exercised it materializes immediately. If profit is denoted by 𝜋, the Wiener process is 

described by  

 

 𝑑𝜋
𝜋 = 𝑟!𝑑𝑡 + 𝜎!𝑑𝐵! (7) 

 

With a return 𝑟, an infinitsimal change in time 𝑑𝑡, the return standard deviation 𝜎 and the 

Brownian motion 𝐵!, which is a random variable with a standard normal distribution 𝒩 0,1 . If 

the option to invest is exercised, the turnover at that point will be 𝜋! at the costs of investment I.   

To simplify matters I create a discrete variant of the Wiener process, using a binomial 

tree. The question is how I transform the Wiener process in a binomial discrete process with an 

upstate U and a downstate D. The discrete and continuous models are required to have matching 

expectations and variance. Furthermore, in the binomial model upstate U is reached with an 

objective probability 𝑞. Figure 1 shows the graphic representation of the binomial model.  

 

 

 

 

 

 

 

 

 

 

 

If the continuous process has an expected return 𝑟, the expected return for the discrete 

process should equal that return: 

 

 1+ 𝑟 = 𝑞𝑈 + 1− 𝑞 𝐷 (8) 

Figure 1: Binomial tree 

	
  q	
  

1-­‐q	
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and similar the variance 𝜎! for the continuous process should equal the variance of the discrete 

process: 

 

 𝜎! = 𝑞 𝑈 − 𝑞𝑈 + 1− 𝑞 𝐷 ! + 1− 𝑞 𝐷 − 𝑞𝑈 + 1− 𝑞 𝐷 !  

= 𝑞 1− 𝑞 𝑈 − 1− 𝑞 𝐷 ! + 1− 𝑞 𝑞𝐷 − 𝑞𝑈 !  

= 𝑞 1− 𝑞 ! 𝑈 − 𝐷 ! + 1− 𝑞 𝑞! 𝑈 − 𝐷 !  

= 𝑞 1− 𝑞 𝑈 − 𝐷 ! 

(9) 

 

In the case we know the true objective probability q was, there were two unknown variables - U 

and D - and two functions with the unknown variables in it. This gives us the opportunity to 

calculate the required values for U and D. When we maximise the uncertainty, 𝑞  is 0.5 . 

Throughout the thesis we will assume that q = 0.5. Note that this objective imposed probability is 

not the probability used when calculating the option value. Using equations 8 and 9, enter 0.5 for 

𝑞 and rewrite we obtain: 

 

 2 1+ 𝑟 = 𝑈 + 𝐷 (10) 

 2𝜎 = 𝑈 − 𝐷 (11) 

 

Rewriting functions 10 and 11 in terms of 𝑈 and 𝐷 gives 

 

 𝑈 = 1+ 𝑟 + 𝜎 (12) 

 𝐷 = 1+ 𝑟 − 𝜎 (13) 

 

Because variance and returns are not always scaled at the correct step size - e.g. lattice steps are 

monthly and the continuous parameters 𝑟 and 𝜎 are yearly - we scale them using the correct time 

step size. Return is scaled with respect to time with equation 14 

 

 1+ 𝑟 ! (14) 
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As the returns at each point are assumed to be independent of each other, we can simply use a 

linear scaling for variance with respect to time using equation 15 

 

 𝑡𝜎! (15) 

 

Plugging in equation 14 and 15 for the return and variance into equation 12 and 13 we obtain 

equation 16 and 17. This in effect makes U and D dependent on step size. 

 

 𝑈(𝑡) = 1+ 𝑟 ! + 𝜎 𝑡 (16) 

 𝐷(𝑡) = 1+ 𝑟 ! − 𝜎 𝑡 (17) 

 

Whenever the time interval nears zero, 𝑡 → 0, 1+ 𝑟 ! approximates 1+ 𝑟𝑡. This leads to  

 

 𝑈 𝑡 ≅ 1+ 𝑟𝑡 + 𝜎 𝑡 (18) 

 𝐷 𝑡 ≅ 1+ 𝑟𝑡 − 𝜎 𝑡 (19) 

 

The first term of a Taylor expansion for an exponential function is equal to our outcome, 

therefore equations 18 and 19 can be approximated by 

 

 𝑈 𝑡 ≅ 𝑒!!!! ! (20) 

 𝐷 𝑡 ≅ 𝑒!!!! ! (21) 

 

The binomial tree model, introduced by Cox et al. (1979), did not use the drift term, but the 

model can be expanded to create a certain drift up or down1. As noted earlier, the probability 𝑞 

will not be used, but a risk neutral probability. Following Cox et al. this probability has the form 
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  Lisbon.	
  



	
   REAL	
  OPTIONS	
  AND	
  AMBIGUITY	
  AVERSION	
  

	
  

17	
  

 
𝑝 =

𝑒!! − 𝐷
𝑈 − 𝐷  (22) 

 

The risk neutral probability is the probability that makes the expected return equal to the risk free 

return. Nonetheless, it will be necessary that 𝐷 < 𝑒!! < 𝑈, otherwise 𝑝 ∉ 0,1 .   

 

3.1.3 Option value 

Time 𝑡 might not be the optimal point of entry; a company should neither be too late nor too early 

to invest in a project. A company has a limited horizon when it can invest; in such a case an 

American option is the obvious choice to value a project and I assume that less units 𝜃 can be 

sold as time progresses. The latter gives the opportunity to model a certain necessity to invest 

within a reasonable time frame, as standard American calls will never exercise before maturity. 

Thus, 𝜃! > 𝜃! > 𝜃! with 𝑡 < 𝑇 and 𝜃! = 𝜃!!! − 𝛿 where 𝛿 is a predetermined and fixed number. 

Here I assume constant investment costs. At time 𝑡 one wants to maximize payoffs  

 

 𝐹! = max 𝜋!𝜃! − 𝐼,𝛽𝔼!
! 𝐹!!!  (23) 

 

And at time T the maximizing function is 

 

 𝐹! = max 𝜋!𝜃! − 𝐼, 0  (24) 

 

Where 𝛽 = [0,1] is the discount rate, 𝜋!  is the turnover at time 𝑡 and 𝔼!
!  is the expectation 

operator at time 𝑡 under the risk neutral probability measure described earlier. We are already 

taking into account what happens when a project becomes unprofitable, therefore the option 

could be seen as a risk-decreasing tool. Nonetheless risk neutral valuation will in some cases not 

be the right method. In such a case the expectation operator becomes more complicated. As the 

process for calculating options is recursive2 the value function for the real option at the initial 

decision time 0 is 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  Example:	
  at	
  any	
  node	
  in	
  the	
  binomial	
  tree	
  at	
  time	
  𝑇 − 1	
  the	
  recursive	
  maximising	
  function	
  
has	
  the	
  form:	
  𝐹!!! = max 𝜋!!!𝜃 − 𝐼,𝑝𝐹!,! + 1− 𝑝 𝐹!,! .	
  Where	
  the	
  second	
  term	
  is	
  the	
  
risk	
  neutral	
  expected	
  value.	
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 F! = max 𝜋!𝜃! − 𝐼,𝛽𝔼!
! 𝐹!  with some predetermined 𝜋! (29) 

 

Note that the above model is an American option, but it could easily be transformed into a 

European option or something in between when decision moments are not as plentiful.  

Figure 2 gives a graphical description of the option pricing process and how it is reversed from 

the earlier price process.  

 
 

Figure 2: the recursive process for the option 

pricing using the risk neutral probabilities 

 

3.1.4 Uncertain investments 

Naturally, this is not a very realistic case. Not only future turnovers are affected by changes over 

time, costs and project outcomes can be affected by uncertainty about the future. Investment costs 

𝐼 and project profits are not necessarily certain at time of investment, prices for raw resources 

might fluctuate and customers might not like the product the company sells. But project turnovers 

for a started project and a potential future turnover stream are determined from the same source. 

If we assume that an investment is only made at the start of a project, investments are only 

variable over time for the determination of the potential future costs. In that case turnover is 

determined by3 

 

 𝑑𝜋
𝜋 = 𝑟!𝑑𝑡 + 𝜎!𝑑𝐵!,! (25) 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  Subscript	
  added	
  for	
  clarity.	
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and future investment costs 

 

 𝑑𝐼
𝐼 = 𝑟!𝑑𝑡 + 𝜎!𝑑𝐵!,! (26) 

 

Using the same method described above, !"
!

can be made discrete 

 

 𝑈! 𝑡 ≅ 𝑒!!!!! ! (27) 

 𝐷! 𝑡 ≅ 𝑒!!!!! ! (28) 

 

Calculating the risk neutral probability s is the same for the investment, but can differ due to 

differences in drift and standard deviation. Moreover, there are two processes now enlarging the 

space of possible outcomes at any time, e.g. investment costs can be in up state and profits can be 

in down state. We expand the binomial model to a quadrinomial model where the processes are 

assumed to be independent, which gives us the risk neutral probabilities for every combination of 

states shown in table 1 

 

 

 

 

 

 

 

This gives me the opportunity to create a quadrinomial model; the ordering for the tree is clear 

for the top and bottom, lower investment costs and higher profits dominate over all other results 

and higher investment costs and lower profits are dominated by all others. The ordering in the 

middle depends on the parameters. The quadrinomial model is shown in figure 2 with objective 

probabilities q and k for the up and down states.  

 

 

   Investment costs 

 

Profits 

 Up Down 

Up 𝑝𝑠 𝑝(1− 𝑠) 

Down 1− 𝑝 𝑠 (1− 𝑝)(1− 𝑠) 
Table 1: Risk neutral probabilities for states with two 

processes 
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The cut-off point is important; the turnover process does not affect the option on the 

future the same as the project in implemented state. This is due to having a choice to invest or not 

for the former case; e.g. when the economic climate turns out negative for the project no real 

losses will be made and the project will not be implemented.  In that case, the option value at 

time 𝑡  is determined by  

 

 𝐹!   =max 𝜋!𝜃! − 𝐼! ,𝛽𝔼!
! 𝐹!!!  (29) 

 

And at time T the maximizing function is 

 

 𝐹! = max 𝜋!𝜃! − 𝐼! , 0  (30) 

 

And at the decision moment 𝐹! the option value is determined by  

 

 𝐹!   =max 𝜋!𝜃! − 𝐼!,𝛽𝔼!
! 𝐹!  with some predetermined 𝜋!  and  𝐼! (31) 

 

 

 

Figure 3: Quadrinomial model 

 

q(1-­‐k)	
  

qk	
  

(1-­‐q)(1-­‐k)	
  

(1-­‐q)k	
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3.2 Models with ambiguity 
3.2.1 Maxmin model 

Most decisions inherently contain more uncertainty than merely future outcomes and therefore 

ambiguity about the probability measure will be introduced in this subsection. Intuitively it seems 

straightforward to think of this ambiguity in a sense of having a vague idea about the exact 

parameters needed to put in the real option model. But the mathematics requires more than a 

vague idea to set up the real option model. How could one represent ambiguity? Any probability 

measure could be a valid predictor, but often there are some guidelines about the behaviour of the 

uncertain subject, some historical numbers that could help.  

 Say there are reasonable guesses based upon historical data or internal research on the 

subject matter, but not boiled down to one probability measure. These different measures could 

be because different time frames are researched, large deviations in the mean, noise or reasonable 

fitting for several models. These measures can be bundled in a set - within the maxmin model 

also called a set of priors - and say that these are the measures that can be used when valuating a 

real option or find the optimal timing. The maxmin assumes that a decision maker wants to be at 

the safe side when making a decision. This leads them to take the worst-case scenario when 

estimating the results.  

 The model has a lot of similarities with the baseline model, the outcome space and the 

filtration remains the same. The probability measure becomes a prior. In essence the probability 

space changes from 𝛺,ℱ, ℱ! !!!,𝑃  to 𝛺,ℱ, ℱ! !!!,𝒫 , where 𝒫 is the set of priors. Note that 

it generalises the baseline model, because when the prior contains one element the model 

collapses into the baseline model: 𝒫 = {𝑃}. When the set 𝒫 is larger there is more ambiguity 

surrounding the decision: if decision 1 contains more ambiguity than decision 2, than 𝒫! ⊂   𝒫!.   

 The maxmin model selects the least favourable case - calculate all results and pick the 

least favourable result. The set of priors is reduced with every step as more information becomes 

available. Variance in the drift estimate is assumed to drive the ambiguity - I could also vary 

other variables like the variance or change the complete underlying distribution, but it is not 

necessary to show the results - and the variance in drift affect the risk neutral probabilities for the 

binomial or quadrinomial tree.  
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 Before briefly describing the models used, I like to discuss the updating rule. In reality 

new information becomes available over time and the information can be incorporated if the 

investment is not yet done. Before hand we do not know this, thus one by one drift estimations 

are taken from the set, until there is only one probability measure left at the end. At the end it will 

be clear what the trend has been over time. This is obviously easy for the binomial model, but the 

quadrinomial model is more involved. Here the both processes have a set of priors evolving 

independently. 

 Model descriptions can be found below, starting with a price at some time 𝑡, at time 𝑇 and 

at time 0. Calculations coincide with each other, except that there is a selection procedure for the 

minimum function. The functions are given for the more general quadrinomial case, but return to 

the Binomial when  𝐼 is constant.  

 

 𝐹!!"#!"#   =max 𝜋!𝜃! − 𝐼!𝜃! ,𝛽 min
!∈𝒫!,!

𝔼!
! 𝐹!!!  (32) 

 

 

 𝐹!!"#!$% = max 𝜋!𝜃! − 𝐼!𝜃! , 0  (33) 

 

 𝐹!!"#!$%   =max 𝜋!𝜃! − 𝐼!𝜃!,𝛽 min
!∈𝒫!,!

𝔼!
! 𝐹!  (34) 

 

with some predetermined 𝜋!  and  𝐼!  

 For modelling purposes I create a naïve version of the maxmin model where no learning 

effects are taken into account. In that case I can use several probability measure to calculate the 

option prices and take the worst case at time 0. I feel this assumption is a reasonable one, as a 

good updating rule for the priors is quite complex to create and implement for a decision maker. 

Over time new information will determine how the priors will develop, but estimating this 

development at time 0 will be near impossible for most decision makers.  

 

3.2.2 𝛼-Maxmin model 

Section 2 already mentioned that the maxmin model does not take into account the issue that 

ambiguity and ambiguity aversion are not separated and that it assumes that ambiguity is very 
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much disliked by decision makers. The α-maxmin gives us the ability to separate these and at the 

same it is an easy application as the data is already available through the maxmin model. The 

model descriptions for the α-maxmin are  

 

𝐹!!"#$"%&   =max 𝜋!𝜃! − 𝐼!𝜃! ,𝛽   𝛼 min
!∈𝒫!,!

𝔼!
! 𝐹!!! + 1− 𝛼 max

!∈𝒫!,!
𝔼!
! 𝐹!!!  

 

𝐹!!"#!$% = max 𝜋!𝜃! − 𝐼!𝜃! , 0  
 

𝐹!!"#$"%&   =max 𝜋!𝜃! − 𝐼!𝜃!,𝛽 𝛼 min
!∈𝒫!,!

𝔼!
! 𝐹! + 1− 𝛼 max

!∈𝒫!,!
𝔼!
! 𝐹!  

 

 The 𝛼-maxmin model developed here is naïve in the sense that there are no learning 

effects over time and it is the weighted average over the maxmin and maxmax model at (and only 

at) time 0. 

 

4 Model analysis 
The models have some specific effects; I will start with the basic models with respect to prices. 

Some limitations for the maxmin model and the 𝛼-maxmin will be discussed. General price and 

optimal timing will be discussed and the differences between the standard model and the other 

two models. Finally, a numerical example will be given to see how the model could be applied. 

Before presenting the analysis some notation. 𝑇 is time, 𝑁 are time steps in the tree, 𝐼  are 

investments, 𝑟 is the risk free rate, 𝜋 are profits, 𝜃! are expected units sold, 𝛿 is the decrease in 

expected units sold, 𝜇 are drifts, 𝜎 is volatility, 𝒫 is the set of priors.  
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4.1 Analysis for the binomial model 
4.1.1 Value effect 

 
Figure 4: Value comparison between baseline investment option and immediate 

investment.  T=5, N=10, r=0.04, 𝜎=0.3, 𝜇=0 I=2000, 𝜃!=100, 𝛿=1, 𝜋! is varied 

between 0 and 60.  

 

Figure 4 shows how a standard type model operates. It yields what I would expect: 

waiting to invest is a profitable strategy at many levels compared to immediate investing. The 

lower line is the expected NPV without the option to wait, the upper line is the option value 

combined with immediate investment. The added value for waiting is the difference between the 

upper and lower lines. But when varying the different parameters a richer image is created. 

Varying the drift has relatively little impact on the price of the option as can be seen in figure 5, 

where I took a drift rate of 0, 0,3 and -0,3. The option has the highest value with a 0 drift rate, 

following intuition a negative drift performs worst in value terms and a positive drift is in 

between the zero and negative drift. The latter seems surprising, but an extremely positive 

outlook and decreasing units  
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sold over time will favour a rapid deployment reaping the immediate benefits and the volatility 

has less of a downward grip on future profits.  
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Figure 5:  Varying drifts and the resulting values. T=5, N=10, r=0.04, 𝜎=0.3, 

I=2000, 𝜃!=100, 𝛿=1, 𝜋! is varied between 0 and 40, 𝜇 is varied between -0.3 

and 0.3. 
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When varying volatility the effects are larger and more impressive, but the results 

obviously follow classical theory: increased volatility makes waiting more valuable. As can be 

seen in figure 6 the speed of convergence towards the boundary line is faster for the low variance 

option than the high variance option, where the dotted line is the boundary line for immediate 

investment.  

 

 
 

 

 

As expected, unit sales deterioration has a large impact on the option value to wait, later 

exercise is less attractive due to this decrease. It is similar to a dividend payment and though it is 

of little interest how the decreasing attractiveness is modelled, I find it the most realistic. Figure 7 

is illustrative for the effects of decreasing units sales over time, when there is no such effect the 

convergence towards the boundary line is slow indicating that it is always profitable to wait. 

When there is just a small effect present, 1 unit sale less every period, convergence happens 

much faster. Whenever I increase this to 3 unit sales less every period it becomes even more 

pronounced. If it goes above 4 unit sales decrease, the option is only more attractive when profits 

in the present are negative or zero.  
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Figure 6:  T=5, N=10, r=0.04, 𝜇=0, I=2000, 𝜃!=100, 𝛿=1, 𝜋! is varied 

between 0 and 40, 𝜎 is varied between 0.15 and 0.3. 
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As I use a naïve versions of the maxmin and 𝛼-maxmin model, such that the probability 

measures do not change over time and there is no interaction between the best case of the worst 

case, the general findings as described above will be similar. Nonetheless, ambiguity aversion 

does have an impact. Note that to measure ambiguity only the drift varies and what we saw 

earlier is that the value function does not purely shift parallel to each other. Instead the curvature 

can change. Depending on input parameters it is not obvious that the highest or lowest option 

value is produced by respectively the highest or lowest drift. This could give us some interesting 

insights.  

The difference between outcomes for the two lines are indeed not constant. At the bottom 

and top of the graphs the differences are smaller, while in the middle the effect is larger. If 

volatility would also be varied the effects would be larger than what we see here. When 

implementing the maxmin model, it seems that it matters what causes the ambiguity. Ambiguity 

about decreasing sales and volatility in profits have a larger impact than ambuigity about the drift 

direction. 
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Figure 7: Value difference when depreciation is varied. T=5, N=10, r=0.04, 𝜇=0, 

𝜎=0.3, I=2000, 𝜃!=100, 𝜋! is varied between 0 and 40, 𝛿 is varied between 0 and 

0,6. 
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Figure 8 shows the effects of a ambiguity neutral RO price and a maxmin ambiguity RO. 

The added value of the RO - recall it as the difference between the NPV and the RO price - 

becomes smaller when ambuigity is introduced. Ambuigity here is the uncertainty about the 

estimated drift. Note that the effects are quite small for the ambiguity model, although if 

multiplied by €100,000 the effects would be more pronounced and influence decision making 

drastic. 

Ambiguity aversion affects the value of waiting, the boundary profit level at which the 

decision maker immediately invests is lower compared to the standard model. Due to the changes 

in curvature of the RO value function simply taking the lowest and/or highest level of some range 

is even for the naïve version not a wise decision. Of course, at any starting profit 𝜋! a different 

probability measure might be the worst or best measure, while it is static for the standard model 

adding a certain flexibility. Figure 9 is a comparison for the standard option, the maxmax (𝛼 = 1) 

and the maxmin (𝛼 = 0) model. Figure 10 shows the effects for the maxmin, maxmax, lowest 

drift and highest drift and how they are related. The lowest drift exactly matches the the maxmin 

model, but the highest drift does not match the maxmax. The maxmin and lowest drift are 

therefore combined to one line in figure 10. 

 

 

Figure 8: differences between maxmin and standard option. T=5, N=10, r=0.04, 

𝜎=0.3, 𝜇=0 I=2000, 𝜃!=100, 𝛿=1, 𝜋! is varied between 0 and 60. Ambiguity 

range is 0.2 with steps of 0.05. 
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Figure	
  10:	
  Comparison	
  for	
  maxmax,	
  maxmin,	
  worst	
  drift	
  and	
  best	
  drift	
  

models.	
  Not	
  obvious	
  that	
  the	
  highest	
  drift	
  commands	
  the	
  best	
  option	
  

value.	
  

Figure 9: Comparison maxmax, maxmin and ambiguity neutral RO. Same input 

as figure 8. 
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A	
   static	
  𝛼-­‐maxmin	
   model	
   with	
  𝛼 = 0.5	
  matches	
   an	
   ambiguity	
   neutral	
   model,	
   as	
  

shown	
   by	
  Ghirardato and Marinacci (2002).	
   The	
   intertemporal	
   naïve	
  𝛼-­‐maxmin	
   RO	
  model	
  

presented	
  here	
  does	
  not	
  match	
  the	
  ambiguity	
  neutral	
  RO	
  model	
  and	
  there	
  is	
  no	
  reason	
  to	
  

assume	
   that	
   it	
  has	
   to	
  due	
   to	
   the	
   simplifications	
  assumed	
  and	
   interactions	
   in	
   the	
  dynamic	
  

model.	
  The	
   results	
   reflect	
   this:	
   the	
  ambiguity	
  neutral	
  RO	
  model	
   is	
   in	
   this	
   case	
  almost	
   the	
  

most	
   optimistic	
   case4 ,	
   therefore	
   the	
   RO	
   model	
   with	
  𝛼 = 0.5 	
  cannot	
   be	
   equal	
   to	
   the	
  

ambiguity	
  neutral	
  model	
  with	
  regards	
  to	
  the	
  models	
  presented	
  in	
  this	
  thesis.	
  This	
  is	
  in	
  line	
  

when	
  varying	
  the	
  drift	
  rate	
  for	
  the	
  standard	
  model.	
  	
  

Finally	
   there	
   is	
   the	
   case	
   of	
   ambiguity	
   levels,	
   which	
   the	
  𝛼-­‐maxmin	
   model	
   helps	
   to	
  

resolve	
   in	
   terms	
  of	
   the	
  difference	
  between	
   the	
   level	
   of	
   ambiguity	
   and	
   taste	
   in	
   ambiguity.	
  

Figure	
  11	
  gives	
  an	
  example	
  how	
  ambiguity	
  levels	
  affects	
  the	
  option	
  value	
  for	
  an	
  ambiguity	
  

averse	
   decision	
   maker.	
   There	
   is	
   no	
   difference	
   for	
   the	
   ambiguity	
   loving	
   decision	
   makers	
  

when	
  ambiguity	
   is	
   increased	
  or	
  decreased.	
  The	
  most	
  optimistic	
  case	
   lies	
  near	
  a	
  drift	
  of	
  0,	
  

therefore	
  enlarging	
  the	
  ambiguity’s	
  range	
  does	
  not	
  affect	
  the	
  valuation.	
  

	
  

	
  
Figure	
  11:	
  Difference	
  between	
  high	
  ambiguity	
  and	
  low	
  ambiguity	
  for	
  an	
  

ambiguity	
  averse	
  decision	
  maker.	
  Range	
  ambiguity	
  large	
  0.6,	
  range	
  

ambiguity	
  small	
  0.2.	
  

	
  

4.1.2	
  Optimal	
  timing	
  

When	
  considering	
  optimal	
  expected	
  timing	
  effects	
  between	
  the	
  models	
  I	
  will	
  focus	
  only	
  on	
  

the	
   differences	
   between	
   the	
   standard	
   model,	
   maxmin	
   and	
  𝛼 -­‐maxmin	
   model.	
   As	
   the	
  

valuations	
   indicate,	
   the	
  expected	
  optimal	
  timing	
  of	
   the	
  option	
  decreases	
  when	
  an	
  agent	
   is	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  Almost	
  indiscernible	
  in	
  the	
  graph,	
  but	
  there	
  is	
  a	
  difference.	
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ambiguity	
   averse.	
   Expected	
   timing	
   shows	
   us	
   that	
   agents	
  who	
   are	
  more	
   ambiguity	
   averse	
  

will	
  wait	
  a	
  shorter	
  period	
  compared	
  to	
  agents	
  who	
  do	
  not	
  take	
  into	
  account	
  ambiguity/are	
  

ambiguity	
  neutral.	
  While	
  ambiguity	
  loving	
  agents	
  clearly	
  prefer	
  to	
  wait	
  for	
  a	
  longer	
  period	
  

before	
  they	
  will	
  invest.	
  When	
  the	
  initial	
  project	
  profits	
  are	
  large	
  enough	
  the	
  larger	
  certainty	
  

about	
  a	
  positive	
  future	
  outcome	
  let	
  the	
  outcomes	
  almost	
  converge	
  to	
  one	
  point.	
  The	
  results	
  

seem	
  more	
  potent	
   for	
   timing	
  an	
   investment	
   than	
   for	
  valuing	
  an	
   investment.	
   	
  The	
  optimal	
  

timing	
   functions	
   for	
   the	
   ambiguity	
   preferences	
  have	
  different	
   sensitivities	
   changes	
   in	
   the	
  

initial	
  present	
  value	
  (PV)	
  profits.	
  An	
  ambiguity	
  averse	
  decision	
  maker	
  changes	
  their	
  optimal	
  

timing	
   with	
   a	
   smaller	
   amount	
   when	
   the	
   PV	
   increases	
   compared	
   to	
   an	
   ambiguity	
   loving	
  

decision	
  maker.	
  This	
  makes	
  sense,	
  because	
  ambiguity	
  about	
  profitability	
  is	
  higher	
  when	
  the	
  

PV	
   is	
   low.	
  The	
  ambiguity	
  averse	
  will	
   exercise	
   the	
  option	
  earlier	
  and	
   the	
  ambiguity	
   loving	
  

will	
   exercise	
   later.	
  When	
   the	
  PV	
   is	
   high	
   a	
  project	
  will	
   remain	
  profitable	
  most	
   of	
   the	
   time	
  

even	
   if	
   circumstances	
  worsen.	
   This	
   reduces	
   the	
   ambiguity	
   about	
   potential	
   losses	
   and	
   the	
  

preferences	
  of	
  the	
  ambiguity	
  averse	
  and	
  ambiguity	
  loving	
  will	
  converge.	
  

	
  

	
  
Figure	
  12:	
  Optimal	
  expected	
  timing	
  for	
  the	
  standard	
  model,	
  maxmin	
  and	
  

the	
  maxmax	
  model.	
  Timing	
  is	
  per	
  semester.	
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4.2	
  Analysis	
  for	
  the	
  quadrinomial	
  model	
  
4.2.1	
  Value	
  effect	
  

	
  Varying	
  investment	
  costs	
   independently	
  from	
  profits	
   introduces	
  more	
  risk	
  and	
  ambiguity	
  

for	
  all	
  models	
  involved.	
  It	
  would	
  also	
  be	
  more	
  realistic:	
  a	
  static	
  exercise	
  price	
  is	
  a	
  fact	
  for	
  a	
  

financial	
  option	
  due	
  to	
  the	
  contracts	
  involved,	
  but	
  not	
  for	
  an	
  investment.	
  These	
  costs	
  could	
  

be	
  hedged,	
  but	
  hedges	
  are	
  often	
  imperfect.	
  This	
  does	
  introduce	
  a	
  challenge	
  with	
  respect	
  to	
  

the	
   cost	
   development.	
   In	
   section	
  4.1	
   I	
   assumed	
   throughout	
   the	
   section	
   fixed	
   cost,	
   I	
   again	
  

assume	
  fixed	
  costs	
  instead	
  of	
  variable	
  costs.	
  The	
  difference	
  is	
  that	
  the	
  fixed	
  costs	
  vary	
  over	
  

time.	
  	
  	
  

	
   The	
  positive	
  influence	
  from	
  volatility	
  is	
  retained	
  when	
  introducing	
  varying	
  costs	
  over	
  

time.	
  What	
   is	
   interesting	
   though	
   is	
   that	
   with	
   low	
   cost	
   variance	
   the	
   quadrinomial	
   model	
  

returns	
  lower	
  values	
  compared	
  to	
  the	
  binomial	
  model	
  that	
  is	
  otherwise	
  the	
  same,	
  but	
  when	
  

this	
  volatility	
   increases	
  the	
  option	
  becomes	
  more	
  valuable	
  relative	
  to	
  the	
  binomial	
  model.	
  

The	
  rest	
  of	
  the	
  ideas	
  that	
  hold	
  for	
  the	
  binomial	
  model,	
  also	
  hold	
  for	
  the	
  quadrinomial	
  model	
  

(figure	
  13	
  and	
  14).	
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Figure	
  13:	
  Binomial	
  model	
  vs	
  quadrinomial	
  model,	
  variance	
  0.2	
  for	
  costs.	
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The	
  maxmin	
  model	
  and	
  𝛼-­‐maxmin	
  model	
  performs	
  the	
  same	
  as	
  in	
  the	
  case	
  of	
  the	
  binomial	
  

model.	
   Maxmin	
   has	
   a	
   more	
   pronounced	
   effect	
   for	
   the	
   quadrinomial	
   model	
   than	
   for	
   the	
  

binomial	
   model.	
   Obviously,	
   many	
   more	
   combinations	
   of	
   worst-­‐case	
   scenarios	
   can	
   be	
  

created	
  compared	
  for	
  the	
  quadrinomial	
  model	
  relative	
  to	
  the	
  binomial	
  model.	
   If	
   there	
  are	
  

four	
  different	
  measures	
   in	
   the	
   set	
  of	
  priors	
   for	
  profits	
   and	
  costs,	
   the	
  binomial	
  model	
  will	
  

have	
   four	
   combinations	
   to	
   compare,	
   while	
   the	
   quadrinomial	
   has	
   16	
   combinations	
   to	
  

compare.	
   This	
   leads	
   to	
   more	
   pronounced	
   effects	
   as	
   costs	
   could	
   have	
   a	
   greater	
   negative	
  

weight	
  (see	
  figure	
  15).	
  	
  

	
   	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

The	
  𝛼-­‐maxmin	
  model	
  than	
  gives	
  us	
  the	
  opportunity	
  to	
  see	
  how	
  the	
  other	
  extreme	
  looks	
  like.	
  

As	
  is	
  shown	
  in	
  figure	
  16.	
  	
  

Figure	
  14:	
  Different	
  volatility	
  levels	
  for	
  the	
  quadrinomial	
  model	
  

Figure	
  15:	
  ambiguity	
  neutral	
  quadrinomial	
  and	
  maxmin.	
  

𝜎=0.2	
  

𝜎=0.1	
  

𝜎=0.3	
  

Ambiguity	
  neutral	
  quadrinomial	
  RO	
  

Ambiguity	
  averse	
  maxmin	
  quadrinomial	
  RO	
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4.2.2	
  Timing	
  effects	
  

Timing	
  effects	
  for	
  the	
  quadrinomial	
  model	
  are	
  across	
  the	
  board	
  larger	
  than	
  for	
  the	
  binomial	
  

model.	
  What	
  we	
  see	
  is	
  that	
  an	
  expected	
  optimal	
  timing	
  is	
  quite	
  a	
  few	
  periods	
  ahead,	
  around	
  

four	
   years	
   there	
   is	
   the	
   tendency	
   to	
   implement	
   the	
   strategy,	
   at	
   that	
   moment	
   enough	
  

information	
  has	
  reached	
  the	
  decision	
  maker.	
  Again	
  the	
  standard	
  model	
  is	
  in	
  the	
  middle	
  in	
  

terms	
  of	
  waiting,	
  ambiguity-­‐averse	
  agents	
  will	
  prefer	
  earlier	
  exercise	
  and	
  ambiguity-­‐loving	
  

agents	
  will	
   prefer	
   later	
   exercise.	
   It	
   is	
   a	
  decreasing	
   function	
  with	
   respect	
   to	
   initial	
   profits.	
  

Convergence	
  over	
   time	
   is	
   similar	
   to	
   the	
  binomial	
  model,	
   but	
   runs	
   a	
   little	
   smoother	
  when	
  

considering	
  project	
  profits.	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

Figure	
  16:	
  Maxmax	
  and	
  maxmin	
  

Figure	
  17:	
  Optimal	
  expected	
  timing	
  for	
  quadrinomial	
  model,	
  timing	
  is	
  per	
  

semester	
  

Ambiguity	
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  RO	
  
Ambiguity	
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  maxmax	
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  RO	
  

Ambiguity	
  neutral	
  quadrinomial	
  RO	
  

Ambiguity	
  averse	
  maxmin	
  quadrinomial	
  RO	
  

Ambiguity	
  loving	
  maxmax	
  quadrinomial	
  RO	
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4.3	
  Economic	
  relevance	
  
The	
   models	
   presented	
   here	
   are	
   technical	
   in	
   nature	
   and	
   economical	
   relevance/practical	
  

application	
  is	
  a	
  serious	
  issue	
  to	
  deal	
  with.	
  Implementing	
  a	
  more	
  complicated	
  model	
  is	
  only	
  

interesting	
  when	
  the	
  model	
  performance	
  is	
  significantly	
  better,	
  reflects	
  the	
  preferences	
  of	
  

the	
  agents	
  and	
  has	
  an	
   intuitive	
   feel	
   for	
   the	
   final	
  decision	
  maker.	
  Agents	
  could	
  be	
  satisfied	
  

with	
   a	
   limited	
  quantitative	
   estimate	
   -­‐	
   not	
   representing	
   their	
   full	
   preferences	
   -­‐	
   due	
   to	
   the	
  

costs	
   involved	
   in	
   finding	
   how	
   ambiguity	
   averse	
   they	
   are	
   or	
   have	
   difficulties	
   with	
  

understanding	
  what	
  information	
  the	
  model	
  does	
  and	
  does	
  not	
  convey.	
  	
  

I	
  will	
  give	
  a	
  numerical	
  example,	
  giving	
  results	
   for	
  all	
  models	
   in	
  terms	
  of	
  waiting	
  time	
  and	
  

valuation.	
   Thereby	
   illuminating	
   how	
  a	
   practical	
   application	
   looks	
   like	
   and	
   reaching	
   out	
   a	
  

hand	
  from	
  academics	
  to	
  practice.	
  	
  

	
  

Mini	
  case:	
  Mining	
  venture	
  

A	
  company	
  has	
  bought	
   the	
   rights	
   to	
   exploit	
   a	
   goldmine.	
  The	
  mining	
  permit	
   has	
   a	
   limited	
  

lifetime;	
   during	
   the	
   next	
   10	
   years	
   the	
   company	
   is	
   allowed	
   to	
   mine.	
   The	
   mine	
   contains	
  

(effectively)	
  550	
  tons	
  of	
  gold;	
  the	
  yearly	
  excavation	
  is	
  50	
  tons	
  of	
  gold.	
  Every	
  year	
  they	
  do	
  

not	
  invest	
  they	
  lose	
  a	
  capacity	
  of	
  50	
  tons	
  of	
  excavation.	
  The	
  volatility	
  of	
  the	
  profits	
  is	
  40%	
  

and	
  the	
  company	
  expects	
  no	
  drift.	
  They	
  now	
  estimate	
  an	
  average	
  profit	
  of	
  $20	
  million	
  per	
  

tonne,	
  which	
  is	
  what	
  they	
  expect	
  to	
  earn	
  over	
  time	
  -­‐	
  $11	
  billion	
  if	
  they	
  invest	
  immediately.	
  

They	
  have	
  estimated	
  investment	
  costs	
  of	
  $4	
  billion,	
  these	
  costs	
  can	
  be	
  assumed	
  constant	
  or	
  

vary	
  over	
  time.	
  The	
  costs	
  have	
  a	
  volatility	
  of	
  20%.	
  The	
  company	
  is	
  not	
  completely	
  sure;	
  it	
  is	
  

hard	
  to	
  estimate	
  how	
  prices	
  will	
  develop.	
  Costs	
  are	
  more	
  stable	
  over	
  time,	
  thus	
  costs	
  show	
  a	
  

symmetric	
  range	
  of	
  10%	
  drift	
  differential	
  from	
  the	
  expectations.	
  Profits	
  have	
  been	
  eradicate	
  

lately	
  and	
  there	
  could	
  be	
  20%	
  drift	
  differential.	
  Steps	
  of	
  5%	
  are	
  taken	
  as	
  different	
  levels	
  of	
  

probability	
   measures.	
   Commodities	
   require	
   large	
   investments	
   and	
   are	
   general	
  

older/conservative	
   companies.	
   After	
   some	
   assessment	
   the	
   company	
   estimated	
   their	
  

ambiguity	
  aversion	
  parameter	
  𝛼	
  at	
  0.3.	
  Finally,	
  the	
  risk	
  free	
  rate	
  is	
  4%.	
  

The	
  valuation	
  of	
  the	
  project	
  yields	
  the	
  same	
  results	
  using	
  any	
  model.	
  The	
  cause	
  can	
  

be	
  found	
  in	
  the	
  fact	
  that	
   from	
  a	
  valuation	
  point	
  of	
  view,	
  the	
  waiting	
  value	
  does	
  not	
  weigh	
  

against	
   immediate	
   investment	
   profits.	
  My	
   assessment	
   is	
   that	
   depreciation	
   of	
   tonnes	
   sold	
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dominates	
  all	
  other	
  effects.	
  From	
  this	
  point	
  of	
  view	
  the	
  standard	
  model	
  performs	
  quite	
  well	
  

and	
   the	
   agent	
   could	
   save	
   the	
   time	
   of	
   developing	
  more	
   complicated	
  models.	
   On	
   the	
   other	
  

hand,	
  if	
  we	
  take	
  a	
  look	
  at	
  the	
  option’s	
  expected	
  optimal	
  timing	
  it	
  becomes	
  more	
  interesting.	
  

Postponing	
   investments	
   yield	
   seriously	
   different	
   results	
   and	
   it	
   seems	
  worthwhile	
   to	
   look	
  

into	
   possible	
   preferences	
   and	
   cost	
   structures	
   creating	
  drastically	
   different	
   results	
   for	
   the	
  

company.	
  Timing	
  an	
  investment	
  is	
  important	
  for	
  optimal	
  company	
  performance	
  and	
  these	
  

models	
   could	
   support	
   decision	
  makers	
  when	
   facing	
   complicated	
   projects	
  with	
   long-­‐term	
  

effects.	
  

	
  

	
  

	
  

Ambiguity aversion as a differentiated measure has a real effect when observing the difference 

for the maxmin and 𝛼-maxmin model. The mining corporation has the same ambiguity, but in the 

𝛼-maxmin model they can also express their preferences about the ambiguity. They are expected 

to wait longer to invest, giving us a hint that the ambiguity level is not the same as the ambiguity 

preference. The differences are minor though, compared to the ambiguity neutral model. I do not 

expect the ambiguity effects on drifts to be economic relevant when calculating the expectations 

for the project. With different input and more uncertainty the models might gain more traction. 

Within this framework the standard model would be precise enough and easier to understand for 

the mining company executives. Furthermore, a standard NPV model can also be applied for 

calculating the mine value, but the added value for the RO model lies in the field project timing.  

 

 

	
   Value	
   Timing	
  

Binomial	
  ambiguity	
  neutral	
   7000	
   3	
  years	
  6	
  months	
  

Binomial	
  maxmin	
   7000	
   3	
  years	
  

Binomial	
  𝛼-­‐maxmin	
   7000	
   3	
  years	
  2	
  months	
  	
  

Quadrinomial	
  ambiguity	
  neutral	
   7000	
   4	
  years	
  9	
  months	
  

Quadrinomial	
  maxmin	
   7000	
   4	
  years	
  6	
  months	
  

Quadrinomial	
  𝛼-­‐maxmin	
   7000	
   4	
  years	
  7	
  months	
  

Table	
  2:	
  Values	
  project	
  and	
  timing	
  project	
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5 Conclusion and discussion 
Concluding I can say that the real option models analysed in this thesis have very distinct 

uses. Especially when the uncertainty is great and the project complex, there is a payoff to do an 

analysis combining varying costs and ambiguity levels. From the point of view for optimal timing 

the results were most useful and salient. For optimal timing we see obvious differences between 

the ambiguity preferences. The extreme ambiguity averse maxmin preference decision maker pull 

forward the decision to invest relative to the ambiguity neutral. The extreme ambiguity lovers 

maxmax preference decision makers push backward the decision to invest relative to the 

ambiguity neutral. The quadrinomial model further pushes back the decision to invest when 

compared to the more standard binomial model. This is not strange, due to the extra information 

gained by waiting using the quadrinomial model. For certain parameters the valuations still 

matter though and even if the results are less striking, information can be gathered from it. It 

might be more interesting if there is an investment delay before profits can be made. The pricing 

of the ROs decreased with the ambiguity level for the ambiguity averse, the ambiguity loving 

decision makers show no effect with respect to increases in ambiguity. There can be several 

sources of ambiguity; here I investigated the influence of drift ambiguity. Nonetheless, research 

can be expanded when delving into several forms of ambiguity changing the shape of the 

probability function and even parameters not directly linked to the probability measure. An 

example for the former could be the standard deviation and an example for the latter could be the 

expected sales reduction over time. Drift ambiguity shows us that the maxmin model and the 

ambiguity neutral model with the worst drift coincide, but the maxmax model and the ambiguity 

neutral model with the best drift do not coincide. Suggesting it is too easy to just take what seems 

intuitively the worst case or the best case. Thereby, showing the added economic value of the 

model for ambiguous projects. The models give a nice distinction between ambiguity and 

ambiguity preference. The 𝛼-maxmin model shows that even for a naïve version it has an added 

value, due to the range of possible outcomes while maintaining one level of ambiguity. This 

preference can drastically influence project values and timing for decision makers, significantly 

impacting business decisions when implemented. An interesting research topic would be how 𝛼 

could be estimated. Here I assumed some level, but I cannot be sure how real life preferences are 

related to the 𝛼. The interpretation of 𝛼 and its relation to the ambiguity neutral case is another 

interesting topic. The ambiguity neutral RO is often at the top end of the ambiguity preference 
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spectrum, thereby skewing the measure 𝛼 downward. E.g. measuring mostly aversion attitudes 

and little loving attitudes. Often decision makers are averse, but the extreme skewedness in the 

measure is a striking phenomenon. 

 The model developed in this thesis has its limitations. The model I used for the maxmin is 

naïve, where the agent does not update upon receiving new information. This assumption works, 

as we do not know in the present what information we receive in the future. Often we only know 

what kind of profits are reasonable when the project is implemented, which makes it safer to keep 

the ambiguity constant over time. Further, I only try to understand what happens with the 

valuations and optimal timing in the present when I change the parameters. If one would compare 

a more dynamic approach, then some kind of information reflection could be incorporated. One 

does not invest at time 0 and waits to invest. At time 1 one could use an updating rule based upon 

best/worst performance and eliminate one of elements in the prior. This updating rule could be 

based upon several distance rules and estimation procedures. On the other hand, introducing 

learning within a RO model is a practice of making many assumptions about how the profit or 

cost processes develop and then imply how the decision maker would react on that. Learning 

effects are more interesting if we incorporate multi period RO calculations and at every period 

new, objective market information becomes available to incorporate in the model. Note this does 

not mean a sophisticated model, but better naïve models. Without doubt this new information 

does not necessarily decrease ambiguity and the model may survive without adaptations.   

The 𝛼-maxmin model as implemented in this thesis has an inherent challenge, due to the 

dynamic inconsistency of the model (Schröder, 2011). Dynamic consistency indicates that a 

dynamic model can be solved in a recursive fashion. As implemented in this thesis, it is a 

weighted average of the maxmax and maxmin model at time 0. This does not take into account 

the effects of weighted averages at times 𝑡 > 0. Effectively, I average a model for the extreme 

ambiguity loving and the extreme ambiguity averse. But a decision maker who is somewhere 

between those extremes should average the extremes at every point in time, taking into account 

interactions between extreme ambiguity aversion and extreme ambiguity love.  

A further limitation in my model is that I limit it to a discretisation of the lognormal 

model. It does not take into account skewness or fat tails, when considering worst cases. This also 

relates to limiting the ambiguity to the drift. Nonetheless, the possibility probably exists to adapt 

the discretisation to the third and fourth moments. 
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  Ambiguity aversion has a reasonable influence - albeit mostly an influence for the 

academic world - on a real option and the differentiation between ambiguity aversion and the 

ambiguity level has a real life impact. The 𝛼-maxmin model should be more extensively 

developed.  While I only made a weighted average at time 0, an improvement would be to find 

the worst/best option at every node and create a weighted average. Nonetheless, it is a promising 

field to do further research in and helps us shape the ideas about how true human preferences 

produce the best possible decisions. Finally, both the maxmin and the 𝛼-maxmin  model should 

be further developed if we strive for real life implementation, as the results for these model do 

not deviate a lot from the ambiguity neutral model. 
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Appendix	
  -­‐	
  Algorithm	
  for	
  models.	
  
Binomial	
  model	
  
	
  
Function	
  Binomial_Standard(P,	
  K,	
  T,	
  r,	
  mu1,	
  v1,	
  N,	
  Init,	
  St)	
  
	
  
S0	
  =	
  P	
  
I0	
  =	
  K	
  
Tijd	
  =	
  0	
  
Num	
  =	
  0	
  
	
  
	
  	
  	
  
dt	
  =	
  T	
  /	
  N	
  
U1	
  =	
  Exp(mu1	
  *	
  dt	
  +	
  v1	
  *	
  dt	
  ^	
  0.5)	
  	
  'size	
  of	
  up	
  jump	
  for	
  profit	
  
D1	
  =	
  Exp(mu1	
  *	
  dt	
  -­‐	
  v1	
  *	
  dt	
  ^	
  0.5)	
  'size	
  of	
  down	
  jump	
  for	
  profit	
  
P1	
  =	
  (Exp(r	
  *	
  dt)	
  -­‐	
  D1)	
  /	
  (U1	
  -­‐	
  D1)	
  'risk	
  free	
  probability	
  of	
  up	
  jump	
  for	
  profit	
  
P2	
  =	
  1	
  -­‐	
  P1	
  	
  'risk	
  free	
  probability	
  of	
  down	
  jump	
  for	
  profit	
  
	
  	
  	
  
	
  
ReDim	
  Smat(1	
  To	
  N	
  +	
  1,	
  1	
  To	
  N	
  +	
  1)	
  'holds	
  profits	
  
	
  	
  	
  
Smat(1,	
  1)	
  =	
  S0	
  
	
  	
  	
  
For	
  i	
  =	
  1	
  To	
  UBound(Smat,	
  2)	
  -­‐	
  1	
  ‘fills	
  the	
  profit	
  tree	
  
	
  	
  	
  	
  Smat(1,	
  i	
  +	
  1)	
  =	
  (Smat(1,	
  i)	
  *	
  U1)	
  
	
  	
  	
  	
  For	
  j	
  =	
  2	
  To	
  i	
  +	
  1	
  
	
  	
  	
  	
  	
  	
  	
  	
  Smat(j,	
  i	
  +	
  1)	
  =	
  Smat(j	
  -­‐	
  1,	
  i)	
  *	
  D1	
  
	
  	
  	
  	
  Next	
  j	
  
Next	
  i	
  
	
  
For	
  q	
  =	
  1	
  To	
  UBound(Smat,	
  2)	
  ‘differentiates	
  for	
  every	
  period	
  how	
  much	
  is	
  sold	
  
	
  	
  	
  	
  For	
  x	
  =	
  1	
  To	
  q	
  
	
  	
  	
  	
  	
  	
  	
  	
  Smat(x,	
  q)	
  =	
  Smat(x,	
  q)	
  *	
  Init	
  
	
  	
  	
  	
  Next	
  x	
  
	
  	
  	
  	
  Init	
  =	
  Init	
  -­‐	
  St	
  
Next	
  q	
  
	
  
ReDim	
  Cmat(1	
  To	
  N	
  +	
  1,	
  1	
  To	
  N	
  +	
  1)	
  
	
  
For	
  h	
  =	
  N	
  +	
  1	
  To	
  1	
  Step	
  -­‐1	
  ‘recursive	
  calculation	
  of	
  the	
  RO	
  
	
  	
  	
  	
  For	
  g	
  =	
  1	
  To	
  h	
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  If	
  h	
  =	
  N	
  +	
  1	
  Then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Cmat(g,	
  h)	
  =	
  WorksheetFunction.Max(Smat(g,	
  h)	
  -­‐	
  K,	
  0)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  If	
  Smat(g,	
  h)	
  -­‐	
  K	
  >	
  0	
  Then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Tijd	
  =	
  Tijd	
  +	
  h	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Num	
  =	
  Num	
  +	
  1	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  End	
  If	
  
	
  	
  	
  	
  	
  	
  	
  	
  Else	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  op	
  =	
  Exp(-­‐r	
  *	
  dt)	
  *	
  (P1	
  *	
  Cmat(g,	
  h	
  +	
  1)	
  +	
  P2	
  *	
  Cmat(g	
  +	
  1,	
  h	
  +	
  1))	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Cmat(g,	
  h)	
  =	
  WorksheetFunction.Max(Smat(g,	
  h)	
  -­‐	
  K,	
  op)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  If	
  op	
  <	
  Smat(g,	
  h)	
  -­‐	
  K	
  Then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Tijd	
  =	
  Tijd	
  +	
  h	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Num	
  =	
  Num	
  +	
  1	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  End	
  If	
  
	
  	
  	
  	
  	
  	
  	
  	
  End	
  If	
  
	
  	
  	
  	
  Next	
  g	
  
Next	
  h	
  
	
  
Binomial_Standard	
  =	
  Tijd	
  /	
  Num	
  ‘expected	
  timing	
  
OR	
  ALTERNATIVELY	
  
Binomial_Standard=Cmat(1,1)	
  ‘expected	
  value	
  
	
  
End	
  Function	
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𝛼-­‐maxmin	
  and	
  maxmin	
  binomial	
  model	
  
	
  
Public	
  Sub	
  alpha_Minmax_Binomial_model()	
  
	
  
Range("B14")	
  =	
  ""	
  
	
  
P	
  =	
  Range("B1")	
  
K	
  =	
  Range("B2")	
  
T	
  =	
  Range("B3")	
  
r	
  =	
  Range("B4")	
  
mu1	
  =	
  Range("B5")	
  
v1	
  =	
  Range("B6")	
  
N	
  =	
  Range("B7")	
  
RAp	
  =	
  Range("B8")	
  
SAp	
  =	
  Range("B9")	
  
alpha	
  =	
  Range("B10")	
  
Init	
  =	
  Range("B11")	
  
St	
  =	
  Range("B12")	
  
	
  
	
  
minmu	
  =	
  mu1	
  -­‐	
  RAp	
  	
  ‘creates	
  range	
  
maxmu	
  =	
  mu1	
  +	
  RAp	
  
	
  
steps	
  =	
  (maxmu	
  -­‐	
  minmu)	
  /	
  SAp	
  +	
  1	
  
nmbr	
  =	
  1	
  
	
  
ReDim	
  ambiguity(1	
  To	
  steps	
  +	
  1)	
  
	
  
For	
  i	
  =	
  minmu	
  To	
  maxmu	
  Step	
  SAp	
  	
  ‘creates	
  all	
  possibilities	
  
	
  	
  	
  	
  option_price	
  =	
  Binomial_Standard(P,	
  K,	
  T,	
  r,	
  i,	
  v1,	
  N,	
  Init,	
  St)	
  ‘creates	
  value	
  
	
  	
  	
  	
  ambiguity(nmbr)	
  =	
  option_price	
  
	
  	
  	
  	
  nmbr	
  =	
  nmbr	
  +	
  1	
  
	
  	
  	
  	
  Init	
  =	
  Range("B11")	
  
Next	
  i	
  
	
  
optlo	
  =	
  WorksheetFunction.Min(ambiguity)	
  
opthi	
  =	
  WorksheetFunction.Max(ambiguity)	
  
	
  
Range("B14")	
  =	
  alpha	
  *	
  optlo	
  +	
  (1	
  -­‐	
  alpha)	
  *	
  opthi	
  ‘weighted	
  average	
  
End	
  Sub	
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Standard	
  Binomial	
  model	
  
	
  
Public	
  Sub	
  Binomial_model()	
  
	
  
Range("B12")	
  =	
  ""	
  
	
  
P	
  =	
  Range("B1")	
  
K	
  =	
  Range("B2")	
  
T	
  =	
  Range("B3")	
  
r	
  =	
  Range("B4")	
  
mu1	
  =	
  Range("B5")	
  
Init	
  =	
  Range("B6")	
  
v1	
  =	
  Range("B7")	
  
St	
  =	
  Range("B8")	
  
N	
  =	
  Range("B9")	
  
	
  
	
  
option_price	
  =	
  Binomial_Standard(P,	
  K,	
  T,	
  r,	
  mu1,	
  v1,	
  N,	
  Init,	
  St)	
  ‘creates	
  the	
  necessary	
  price	
  
or	
  timing	
  
Range("B12")	
  =	
  option_price	
  
	
  
End	
  Sub	
  
 
 



	
   REAL	
  OPTIONS	
  AND	
  AMBIGUITY	
  AVERSION	
  

	
  

45	
  

Quadrinomial	
  model	
  
	
  
Public	
  Function	
  Quadrinomial(P,	
  K,	
  T,	
  r,	
  mu1,	
  mu2,	
  v1,	
  v2,	
  N,	
  Init,	
  St)	
  
	
  
	
  S0	
  =	
  P	
  
	
  	
  I0	
  =	
  K	
  
	
  	
  	
  
	
  	
  	
  dt	
  =	
  T	
  /	
  N	
  
	
  	
  U1	
  =	
  Exp(mu1	
  *	
  dt	
  +	
  v1	
  *	
  dt	
  ^	
  0.5)	
  	
  'size	
  of	
  up	
  jump	
  for	
  profit	
  
	
  	
  D1	
  =	
  Exp(mu1	
  *	
  dt	
  -­‐	
  v1	
  *	
  dt	
  ^	
  0.5)	
  'size	
  of	
  down	
  jump	
  for	
  profit	
  
	
  	
  U2	
  =	
  Exp(mu2	
  *	
  dt	
  -­‐	
  v2	
  *	
  dt	
  ^	
  0.5)	
  'size	
  of	
  up	
  jump	
  for	
  costs	
  
	
  	
  D2	
  =	
  Exp(mu2	
  *	
  dt	
  +	
  v2	
  *	
  dt	
  ^	
  0.5)	
  'size	
  of	
  down	
  jump	
  for	
  costs	
  
	
  	
  P1	
  =	
  (Exp(r	
  *	
  dt)	
  -­‐	
  D1)	
  /	
  (U1	
  -­‐	
  D1)	
  'risk	
  free	
  probability	
  of	
  up	
  jump	
  for	
  profit	
  
	
  	
  P2	
  =	
  1	
  -­‐	
  P1	
  	
  'risk	
  free	
  probability	
  of	
  down	
  jump	
  for	
  profit	
  
	
  	
  S1	
  =	
  (Exp(r	
  *	
  dt)	
  -­‐	
  D2)	
  /	
  (U2	
  -­‐	
  D2)	
  'risk	
  free	
  probability	
  of	
  up	
  jump	
  for	
  costs	
  
	
  	
  S2	
  =	
  1	
  -­‐	
  S1	
  'risk	
  free	
  probability	
  of	
  down	
  jump	
  for	
  costs	
  
	
  	
  Nodes	
  =	
  (4	
  ^	
  N)	
  ‘total	
  nodes	
  
	
  	
  	
  
	
  
	
  	
  ReDim	
  Smat(1	
  To	
  Nodes	
  +	
  1,	
  1	
  To	
  N	
  +	
  1)	
  'holds	
  profits	
  
	
  	
  ReDim	
  Imat(1	
  To	
  Nodes	
  +	
  1,	
  1	
  To	
  N	
  +	
  1)	
  'holds	
  costs	
  
	
  	
  	
  
	
  	
  Smat(1,	
  1)	
  =	
  S0	
  
	
  	
  Imat(1,	
  1)	
  =	
  I0	
  
	
  	
  subnodes	
  =	
  ""	
  
	
  	
  	
  
	
  	
  For	
  i	
  =	
  1	
  To	
  UBound(Smat,	
  2)	
  -­‐	
  1	
  ‘loops	
  creates	
  all	
  necessary	
  filling	
  of	
  tree	
  for	
  profits	
  and	
  
costs	
  
	
  	
  	
  	
  ex	
  =	
  1	
  
	
  	
  	
  	
  ec	
  =	
  1	
  
	
  	
  	
  	
  subnodes	
  =	
  4	
  ^	
  (i	
  -­‐	
  1)	
  
	
  	
  	
  	
  For	
  j	
  =	
  1	
  To	
  subnodes	
  
	
  	
  	
  	
  	
  	
  	
  	
  Smat(ex,	
  i	
  +	
  1)	
  =	
  Smat(j,	
  i)	
  *	
  U1	
  
	
  	
  	
  	
  	
  	
  	
  	
  Smat(ex	
  +	
  1,	
  i	
  +	
  1)	
  =	
  Smat(j,	
  i)	
  *	
  D1	
  
	
  	
  	
  	
  	
  	
  	
  	
  Smat(ex	
  +	
  2,	
  i	
  +	
  1)	
  =	
  Smat(j,	
  i)	
  *	
  U1	
  
	
  	
  	
  	
  	
  	
  	
  	
  Smat(ex	
  +	
  3,	
  i	
  +	
  1)	
  =	
  Smat(j,	
  i)	
  *	
  D1	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  ex	
  =	
  ex	
  +	
  4	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  Imat(ec,	
  i	
  +	
  1)	
  =	
  Imat(j,	
  i)	
  *	
  U2	
  
	
  	
  	
  	
  	
  	
  	
  	
  Imat(ec	
  +	
  1,	
  i	
  +	
  1)	
  =	
  Imat(j,	
  i)	
  *	
  U2	
  
	
  	
  	
  	
  	
  	
  	
  	
  Imat(ec	
  +	
  2,	
  i	
  +	
  1)	
  =	
  Imat(j,	
  i)	
  *	
  D2	
  
	
  	
  	
  	
  	
  	
  	
  	
  Imat(ec	
  +	
  3,	
  i	
  +	
  1)	
  =	
  Imat(j,	
  i)	
  *	
  D2	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  ec	
  =	
  ec	
  +	
  4	
  
	
  	
  	
  	
  Next	
  j	
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  subnodes	
  =	
  ""	
  
	
  	
  Next	
  i	
  
	
  	
  	
  
For	
  x	
  =	
  1	
  To	
  UBound(Smat,	
  2)	
  -­‐	
  1	
  ‘for	
  every	
  period	
  expected	
  sales	
  is	
  plugged	
  in	
  
	
  	
  	
  	
  subnodes	
  =	
  4	
  ^	
  (x	
  -­‐	
  1)	
  
	
  	
  	
  	
  For	
  y	
  =	
  1	
  To	
  subnodes	
  
	
  	
  	
  	
  	
  	
  	
  	
  Smat(y,	
  x)	
  =	
  Smat(y,	
  x)	
  *	
  Init	
  
	
  	
  	
  	
  Next	
  y	
  
	
  	
  	
  	
  Init	
  =	
  Init	
  -­‐	
  St	
  
	
  	
  	
  	
  subnodes	
  =	
  ""	
  
Next	
  x	
  
	
  
	
  
ReDim	
  Cmat(1	
  To	
  Nodes	
  +	
  1,	
  1	
  To	
  N	
  +	
  1)	
  
subnodes	
  =	
  ""	
  
tijd	
  =	
  0	
  
	
  
For	
  h	
  =	
  N	
  To	
  1	
  Step	
  -­‐1	
  ‘creates	
  option	
  value	
  using	
  cost	
  and	
  profit	
  tree	
  in	
  recursive	
  fashion	
  
	
  	
  	
  	
  ev	
  =	
  1	
  
	
  	
  	
  	
  subnodes	
  =	
  4	
  ^	
  (h	
  -­‐	
  1)	
  
	
  	
  	
  	
  For	
  g	
  =	
  1	
  To	
  subnodes	
  
	
  	
  	
  	
  	
  	
  	
  	
  If	
  h	
  =	
  N	
  Then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Cmat(g,	
  h)	
  =	
  WorksheetFunction.Max(Smat(g,	
  h)	
  -­‐	
  Imat(g,	
  h),	
  0)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  If	
  Smat(g,	
  h)	
  -­‐	
  Imat(g,	
  h)	
  >	
  0	
  Then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  tijd	
  =	
  tijd	
  +	
  h	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nmbr	
  =	
  nmbr	
  +	
  1	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  End	
  If	
  
	
  	
  	
  	
  	
  	
  	
  	
  Else	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  op	
  =	
  Exp(-­‐r	
  *	
  dt)	
  *	
  (P1	
  *	
  S1	
  *	
  Cmat(ev,	
  h	
  +	
  1)	
  +	
  P2	
  *	
  S1	
  *	
  Cmat(ev	
  +	
  1,	
  h	
  +	
  1)	
  +	
  P1	
  *	
  S2	
  *	
  
Cmat(ev	
  +	
  2,	
  h	
  +	
  1)	
  +	
  P2	
  *	
  S2	
  *	
  Cmat(ev	
  +	
  3,	
  h	
  +	
  1))	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ev	
  =	
  ev	
  +	
  4	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Cmat(g,	
  h)	
  =	
  WorksheetFunction.Max(Smat(g,	
  h)	
  -­‐	
  Imat(g,	
  h),	
  op)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  If	
  Smat(g,	
  h)	
  -­‐	
  Imat(g,	
  h)	
  >	
  op	
  Then	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  tijd	
  =	
  tijd	
  +	
  h	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nmbr	
  =	
  nmbr	
  +	
  1	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  End	
  If	
  
	
  	
  	
  	
  	
  	
  	
  	
  End	
  If	
  
	
  	
  	
  	
  Next	
  g	
  
Next	
  h	
  
	
  
Quadrinomial	
  =	
  Cmat(1,	
  1)	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  
End	
  Function	
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Standard	
  quadrinomial	
  model	
  
	
  
Sub	
  Simple_Quadrinomial()	
  
	
  
Range("B14")	
  =	
  ""	
  
	
  
P	
  =	
  Range("B1")	
  
K	
  =	
  Range("B2")	
  
T	
  =	
  Range("B3")	
  
r	
  =	
  Range("B4")	
  
mu1	
  =	
  Range("B5")	
  
mu2	
  =	
  Range("B6")	
  
v1	
  =	
  Range("B7")	
  
v2	
  =	
  Range("B8")	
  
N	
  =	
  Range("B9")	
  
Init	
  =	
  Range("B10")	
  
St	
  =	
  Range("B11")	
  
	
  
option_price	
  =	
  Quadrinomial(P,	
  K,	
  T,	
  r,	
  mu1,	
  mu2,	
  v1,	
  v2,	
  N,	
  Init,	
  St)	
  ‘option	
  price	
  is	
  created	
  
Range("B14")	
  =	
  option_price	
  
	
  
End	
  Sub	
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𝛼-­‐maxmin	
  and	
  maxmin	
  model	
  
	
  
Sub	
  alpha_Minmax_Quadrinomial()	
  
	
  
Range("B18")	
  =	
  ""	
  
	
  
P	
  =	
  Range("B1")	
  
K	
  =	
  Range("B2")	
  
T	
  =	
  Range("B3")	
  
r	
  =	
  Range("B4")	
  
mup	
  =	
  Range("B5")	
  
muc	
  =	
  Range("B6")	
  
vp	
  =	
  Range("B7")	
  
vc	
  =	
  Range("B8")	
  
N	
  =	
  Range("B9")	
  
RAp	
  =	
  Range("b10")	
  
SAp	
  =	
  Range("b11")	
  
RAc	
  =	
  Range("b12")	
  
SAc	
  =	
  Range("b13")	
  
alpha	
  =	
  Range("B14")	
  
Init	
  =	
  Range("B15")	
  
St	
  =	
  Range("B16")	
  
	
  
minmup	
  =	
  mup	
  -­‐	
  RAp	
  ‘range	
  is	
  established	
  
maxmup	
  =	
  mup	
  +	
  RAp	
  
	
  
minmuc	
  =	
  muc	
  -­‐	
  RAc	
  
maxmuc	
  =	
  muc	
  +	
  RAc	
  
	
  
StepsP	
  =	
  (maxmup	
  -­‐	
  minmup)	
  /	
  SAp	
  +	
  1	
  
StepsC	
  =	
  (maxmuc	
  -­‐	
  minmuc)	
  /	
  SAc	
  +	
  1	
  
Total_Possibles	
  =	
  StepsP	
  *	
  StepsC	
  
nmbr	
  =	
  1	
  
	
  
ReDim	
  Ambiguity(1	
  To	
  Total_Possibles)	
  ‘possibilites	
  are	
  put	
  into	
  array	
  and	
  then	
  the	
  best	
  or	
  
worst	
  is	
  found	
  for	
  value	
  or	
  timing.	
  
	
  
For	
  i	
  =	
  minmup	
  To	
  maxmup	
  Step	
  SAp	
  
	
  	
  	
  	
  For	
  j	
  =	
  minmuc	
  To	
  maxmuc	
  Step	
  SAc	
  
	
  	
  	
  	
  	
  	
  	
  	
  option_price	
  =	
  Quadrinomial(P,	
  K,	
  T,	
  r,	
  i,	
  j,	
  vp,	
  vc,	
  N,	
  Init,	
  St)	
  
	
  	
  	
  	
  	
  	
  	
  	
  Ambiguity(nmbr)	
  =	
  option_price	
  
	
  	
  	
  	
  	
  	
  	
  	
  nmbr	
  =	
  nmbr	
  +	
  1	
  
	
  	
  	
  	
  	
  	
  	
  	
  Init	
  =	
  Range("B15")	
  
	
  	
  	
  	
  Next	
  j	
  
Next	
  i	
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alphaoption	
  =	
  WorksheetFunction.Min(Ambiguity)	
  *	
  (1	
  -­‐	
  alpha)	
  +	
  
WorksheetFunction.Max(Ambiguity)	
  *	
  alpha	
  
Range("B18")	
  =	
  alphaoption	
  
	
  
End	
  Sub	
  
 


