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Abstract 
How Ambiguity affects Real Options is a recent research topic. Earlier research incorporated the 

maxmin model to estimate the effects, but the maxmin model groups together the perceived 

ambiguity level and the decision makers’ ambiguity preference. Here I create a Real Option 

model using a naïve 𝛼-Maxmin model, effectively separating the preference and the ambiguity 

level. A decision maker expresses his or her preference by creating a weighted average of an 

extremely ambiguity averse and extremely ambiguity loving preference. I show the merit of the 

𝛼-Maxmin model by comparing it to the Maxmin model and the ambiguity neutral model 

normally used. From an academic perspective the results are informative and interesting for 

future development. But in the field of economic implementation of the Maxmin and 𝛼-Maxmin 

model work needs to be done, if real life implementation is what we seek. 
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1 Introduction 
Real options (RO) are a valuable tool in dynamic decision-making processes. Real option theory 

is an application of option pricing theory, as economists noticed the similarities between the 

uncertainty faced for a financial assets and company investments in its various forms. These 

models were based upon the notion that we know the outcome probabilities for every future 

period, e.g. from the start we know how the future probabilities for every event looks like. Thus, 

using a Wiener process or lattice to simulate the future possible states, we can predict the 

expected optimal point in time to make investments in a project or terminate a project and we can 

take future decisions into account when valuing a project (see for example Brennan and 

Schwartz, 1985; Quigg, 1993). The option value and the value of waiting then follow from the 

simulation. The method focuses solely on a risky environment, although we do not know with 

certainty the future outcomes, the probability measures describe it quite precisely.  

Often decision makers do not know the exact probabilities for certain events. These 

unknown, hard to predict events do have a real impact on future results. Black and Scholes 

(1973) and Cox et al. (1979) type RO pricing do not take into account that invest/terminate 

decisions are sometimes made without precise knowledge on a probability measure. For example, 

an oil company can assess how likely it is that demand increases, but these estimates are 

surrounded with uncertainty regarding this estimate. Furthermore, not everyone has the same 

taste preference for this ambiguity. In the literature maxmin utility is utilized to incorporate 

ambiguity, as developed by Gilboa and Schmeidler (1989). In this thesis I develop six models: (1) 

a binomial RO model without ambiguity, (2) a naïve maxmin binomial RO model, (3) a naïve 𝛼-

maxmin binomial RO model, (4) a quadrinomial RO model without ambiguity, (5) a naïve 

maxmin quadrinomial RO model and (6) a naïve 𝛼-maxmin quadrinomial RO model.  Within the 

real option literature the maxmin expected utility model is used to model ambiguity attitude and 

when extended to a dynamic model also called the multiple priors model (Epstein, 1999). Instead 

of using one probability measure for all periods, a set of probability measures (priors) is taken. 

This makes sure that the probability measure can vary in every period. The most pessimistic 

measure is selected from this set to calculate the option value for a company with ambiguity 

aversion. The model with one known probability measure is ambiguity neutral - or more 

precisely, the conjunction of ambiguity loving and ambiguity averse. The priors set size describe 

the level of ambiguity aversion present.  
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In the decision theory literature alternatives have been proposed to measure ambiguity 

aversion, which can be incorporated in the RO theory. The theoretical addition to the RO 

literature will be the development of an α-maxmin model (Ghirardato and Marinacci, 2002). The 

added value of an α-maxmin model for ROs is the direct measure of ambiguity aversion, distinct 

from the ambiguity level. I keep the set size of the priors equal for all companies, while 

distinguishing between the levels of ambiguity aversion between companies.  This increases the 

flexibility when modeling RO. An applied framework of the α-maxmin model is not yet 

developed for ROs. Here three different ambiguity models are developed, using discrete time and 

a finite horizon approach. The differences in approach are compared using the ambiguity neutral 

model, the maxmin model and the α-maxmin model. 

In section 2 the existing literature on the topic will be discussed, section 3 introduces the 

baseline model and the extensions into the other two models, section 4 compares the resulting 

effects of the three models and section 5 concludes and discusses some possible extensions.  

 

2 Review of literature  
2.1	  Theoretical	  approaches	  to	  ambiguity	  and	  ambiguity	  aversion	  
Decision-‐making	  processes	  and	  ambiguity	   is	  a	   topic	  of	   interest	  with	  a	   long	  history	  within	  

economics.	  Knight	   (1921)	  was	  one	  of	   the	   first	   to	  make	  a	  distinction	  between	  measurable	  

uncertainty	  and	  immeasurable	  uncertainty	  with	  respect	  to	  uncertain	  future	  events.	  In	  more	  

recent	   literature,	   the	   former	   is	   risk	   and	   the	   latter	   is	   ambiguity;	   I	  will	   adapt	   these	   terms.	  

Often	  many	  neglect	  the	  differences	  between	  risk,	  ambiguity	  and	  uncertainty.	  Risk	  describes	  

uncertainty	   over	   future	   outcomes	   with	   known	   probabilities;	   ambiguity	   describes	  

uncertainty	  about	  both	  probabilities	  and	  outcomes;	  and	  both	  ambiguity	  and	  risk	  are	  a	  type	  

of	   uncertainty.	   Venezia	   (1983)	   was	   one	   of	   the	   earlier	   authors	   trying	   to	   describe	   a	   Real	  

Option	  model	  with	  unknown	  future	  growth.	  Ambiguity	  aversion	  is	  not	  explicitly	  mentioned	  

and	  the	  prior	  beliefs	  were	  still	  in	  the	  realm	  of	  the	  rational	  approach.	  Note	  that	  the	  strongest	  

result	  is	  for	  the	  Bayesian	  approach,	  while	  the	  non-‐Bayesian	  approach	  is	  mostly	  described	  in	  

terms	  relative	  to	  the	  Bayesian.	  	  

	   Two	   inputs	   that	   impact	   ambiguity	   aversions	   that	   are	   often	   used,	   deal	   with	   the	  

application	   of	   Real	   Options	   and	   the	   applied	   utility	   function.	   When	   trying	   to	   analyse	   a	  
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dynamic	  decision	  making	  process,	  there	  are	  several	  sources	  of	  ambiguity.	  If	  we	  consider	  an	  

investment	  problem:	  waiting	   to	   invest	   in	  a	  project	   involves	  ambiguity/risk	  about	  payoffs,	  

but	  the	  same	  applies	  to	  the	  project	  profits	  itself	  (McDonald	  and	  Siegel,	  1986).	  	  

	   Risk	  aversion	  is	  a	  well-‐studied	  and	  well-‐defined	  phenomenon.	  A	  similar	  approach	  to	  

ambiguity	   aversion	   is	   still	   being	   debated.	   Gilbao	   and	   Schmeidler	   (1989)	   developed	   the	  

maxmin	   model.	   It	   describes	   extreme	   ambiguity	   aversion	   for	   a	   given	   set	   of	   priors,	   as	   it	  

considers	  ambiguity	  as	  a	  set	  of	  priors/probability	  measures	  on	  future	  outcomes	  and	  takes	  

the	   probability	   measure	   that	   describes	   the	   worst-‐case	   scenario.	   The	   relative	   ambiguity	  

aversion	  is	  then	  covered	  by	  the	  size	  of	  the	  set	  and	  the	  convexity	  of	  the	  sets.	  	  

	   Convexity	  is	  not	  a	  necessary	  requirement	  to	  have	  an	  aversion	  towards	  ambiguity.	  An	  

exertion	   to	   define	   ambiguity	   aversion	   in	   a	   more	   rigorous	   fashion	   was	   made	   by	   Epstein	  

(1999).	   Ambiguity	   aversion	   is	   then	   defined	   alongside	   risk	   aversion	   on	   a	   utility	   function.	  

Risk	   aversion	   is	   defined	   relative	   to	   some	   risk	   neutral	   case,	   to	   measure	   the	   level	   of	   risk	  

aversion	  and	  to	  have	  a	  baseline.	  Likewise,	  ambiguity	  aversion	  needs	  some	  baseline	  case,	  but	  

this	   obfuscated	   through	   the	   effects	   of	   risk	   aversion.	  To	  keep	  ambiguity	   aversion	   and	   risk	  

aversion	   apart,	   we	   need	   an	   ambiguity	   neutral	   baseline	   measurement	   incorporating	   risk	  

aversion.	  Epstein	  proposes	   a	  probabilistic	   sophisticated	  decision	  preference	   as	   ambiguity	  

neutral.	  Ghirardato and Marinacci (2002) use expected utility as the ambiguity neutral baseline.	  

For	   this	   thesis	   a	  more	   appealing	   definition	   is	   based	   on	   a	  more	   intuitive	   notion	   of	  

ambiguity.	   Ellsberg	   (1961)	   did	   an	   experiment	   using	   two	   urns,	   showing	   the	   impact	   of	  

ambiguity	   on	   decision-‐making.	   There	   are	   100	   black	   and	   red	   marbles	   in	   the	   urns.	   The	  

distribution	   of	   black	   and	   red	  marbles	   is	   known	   for	   urn	   1,	   50	   black	  marbles	   and	   50	   red	  

marbles.	   For	  urn	  2	   the	  distribution	  of	  black	  and	   red	  marbles	   is	  unknown.	  Two	  groups	  of	  

experiment	  participants	  are	  asked	  to	  choose	  whether	  they	  want	  to	  select	  a	  marble	  from	  urn	  

1	   or	   urn	  2.	   The	   first	   group	   gets	   paid	  €10	   for	   a	   black	  marble	   and	  otherwise	  nothing.	   The	  

second	  group	  gets	  paid	  €10	  for	  a	  red	  marble	  and	  otherwise	  nothing.	  In	  the	  experiment	  both	  

groups	  prefer	  to	  select	  a	  marble	  from	  the	  unambiguous	  urn	  1,	  in	  other	  words	  they	  perceive	  

urn	   1	   as	   the	   better	   bet.	   As	   the	   possible	   payoffs	   are	   the	   same,	   this	   implies	   that	   the	  

participants	   perceive	   the	   subjective	   probability	   for	   black	   and	   red	   marbles	   for	   the	  

ambiguous	  urn	  to	  be	  smaller	  than	  for	  the	  unambiguous	  urn.	  
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	   𝑃amb black < 0.5	   (1)	  

	   𝑃amb red < 0.5	   (2)	  

	   𝑃amb black + 𝑃amb red < 1	   (3)	  

	  

Where	  𝑃amb ∙ 	  is	   the	  probability	  measure	   for	   the	  ambiguous	  urn.	  Expected	  utility	  dictates	  

that	  probabilities	  should	  add	  up	  to	  unity,	  which	  is	  not	  the	  case	  here.	  Therefore,	  an	  improved	  

model	  is	  necessary	  to	  describe	  behaviour.	  

Two	  models	   that	   describe	   ambiguity	   aversion	   shown	   in	   Ellsberg’s	   experiment	   are	  

Choquet	   expected	   utility	   and	   multiple-‐priors	   expected	   utility,	   which	   are	   both	  

generalisations	  of	  expected	  utility.	  Here	  the	  focus	  will	  be	  on	  the	  latter	  model,	  which	  has	  an	  

intuitive	   explanation	   for	   the	   ambiguity	   aversion	   effect.	   For	   the	   ambiguous	  urn	  numerous	  

distributions	  of	  black	  and	  red	  marbles	  are	  possible,	  e.g.	  20	  black	  and	  80	  red,	  40	  black	  and	  

60	  red,	  etc.	  The	  maxmin	  model	  selects	  the	  worst	  expected	  case	  of	  all	  possible	  distributions	  

that	  are	  deemed	  possible	  by	  the	  decision	  maker	  -‐	  called	  the	  set	  of	  priors	  from	  here	  on.	  This	  

allows	  the	  probabilities	  for	  black	  marbles	  and	  red	  marbles	  not	  add	  up	  to	  one,	  because	  the	  

probabilities	   for	   either	   the	   black	   or	   red	  marble	   are	   considered	   separate	   from	   each	   other	  

and	  the	  probabilities	  could	  be	  taken	  from	  a	  different	  distribution	  for	  both	  colours.	  	  

The	  model	  developed	  by	  Epstein	  and	  others	  have	  as	  a	  disadvantage	  that	  ambiguity	  

aversion	   and	   the	   ambiguity	   level	   is	   modelled	   as	   one	   element.	   It	   would	   enhance	   insights	  

when	   we	   separate	   them,	   as	   one	   is	   a	   preference	   and	   the	   other	   is	   a	   perceived	   level	   of	  

ambiguity.	   Developments	   come	   from	   behavioural	   and	   model	   robustness	   concerns,	   but	  

establishes	  similar	  results.	  Cagetti	  et	  al.	  (2002)	  are	  not	  directly	  concerned	  about	  ambiguity	  

aversion,	  but	  show	  that	   if	  a	  hidden	  Markov	   jump	  model	   is	   introduced	  as	   the	   true	  process	  

then	  traditional	  smooth	  -‐	  continuous	  -‐	  models	  do	  not	  perform	  optimally.	  Ambiguity	  about	  

this	   unknown	   jump	   process	   is	   modelled	   through	   relative	   entropy.	   Some	   boundaries	   are	  

introduced	   to	   create	   a	   reasonable	   deviation	   from	   the	   estimated	   probability.	   Nearness	   is	  

used	  to	  ensure	  a	  reasonable	  deviation,	  which	  is	  defined	  as	  having	  the	  same	  null	  events	  as	  

the	  estimated	  probability.	  The	  null	  events	  are	  those	  events	  that	  are	  not	  described	  by	  the	  set	  

of	  possible	  outcomes	  and	  therefore	  do	  not	  exist	  for	  this	  particular	  description	  of	  the	  world.	  

When	  the	  deviation	  from	  the	  estimated	  probability	  measure	  is	  larger,	  the	  ambiguity	  about	  

the	  correct	  model	  is	  larger.	  To	  handle	  ambiguity	  aversion,	  a	  penalty	  function	  is	  introduced	  
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on	  this	  deviating	  measure.	  Robustness	  is	  then	  further	  developed	  for	  continuous	  time	  and	  -‐

using	  recursive	  utility	   -‐	  an	   intertemporal	  model	   is	  produced	  (Cagetti	  et	  al.,	  2001;	  Skiadas,	  

2003)	  	  

	   But	   criticism	   is	   also	   cast	   on	   the	   robustness	   approach	   using	   the	   nearness	   idea,	  

because	  this	  technical	  requirement	  can	  be	  quite	  restrictive.	  Some	  models	  may	  incorporate	  

some	  events	   that	  are	  hard	  to	  predict,	   for	  example	  extreme	  weather.	  This	   is	  not	  necessary	  

included	  in	  all	  outcome	  spaces.	  In	  risk	  management,	  the	  coherent	  and	  convex	  measures	  of	  

risk	   have	   a	   representation	   very	   similar	   to	   the	   maxmin	   model.	   Exploiting	   these	   risk	  

measures	   leads	   to	   robust	   models	   without	   the	   necessity	   for	   nearness	   to	   some	   estimated	  

probability	  measure	  (Cont,	  2003).	  	  

Ju	  and	  Miao	  (2011)	  make	  use	  of	  an	  initial	  model	  by	  Klibanoff	  et	  al.	  (2005,	  2006)	  for	  

smooth	   ambiguity	   measurement	   of	   asset	   returns.	   It	   does	   not	   show	   the	   kink	   in	   the	  

indifference	   curve	   that	   the	   maxmin	   model	   shows	   and	   the	   model	   makes	   a	   distinction	  

between	  ambiguity	  and	  ambiguity	  aversion,	  e.g.	  between	  beliefs	  and	  taste.	  They	  are	  able	  to	  

explain	   the	   first	   moment	   of	   the	   equity	   premium	   puzzle,	   making	   a	   distinction	   between	  

ambiguity	   and	   ambiguity	   aversion.	   As	   a	   disadvantage	   the	   method	   is	   hard	   to	   apply	  

empirically	   and	   calibration	   remains	   tricky.	   Learning	   and	   intertemporal	   substitution	   over	  

time	  can	  also	  be	   folded	   into	   the	  analysis	   (Hayashi	   and	  Miao,	  2011).	   It	   seems	   that	   a	  more	  

intuitive	   and	   easily	   implemented	   method	   could	   be	   applied	   to	   estimate	   ambiguity	   and	  

ambiguity	  aversion.	  	  

A	   final	   approach	   was	   developed	   using	   Epstein’s	   work,	   where	   the	   authors	   rely	   on	  

identical	  utility	  functions	  when	  comparing	  relative	  ambiguity	  aversion	  for	  decision	  makers	  

(Ghirardato and Marinacci, 2002).	   The	   results	   are	   less	   strong/defined	   than	   the	   work	   of	  

Epstein,	  but	   easier	   to	   implement	  as	   the	  baseline	   set	  has	   to	  be	   less	   rich.	  As	   an	  alternative	  

maxmin	  utility	   function	   they	   introduce	   the	  α-maxmin utility function. The attractive trait of 

the model is its simplicity relative to the smooth ambiguity model or even choquet expected 

utility. Furthermore, it does measure ambiguity aversion and ambiguity separately. It uses a 

weighted average of the maxmin and the maxmax model, where the weight factor 𝛼 is the 

aversion to ambiguity.	  Maxmax	  is	  the	  best	  possible	  outcome	  given	  the	  set	  of	  priors.	  Thus,	  it	  

measures	   a	   weighted	   average	   of	   the	   worst-‐case	   scenario	   and	   the	   best-‐case	   scenario.	   Its	  

mathematical	  tractability	  allows	  easy	  implementation	  into	  the	  real	  option	  theory. 
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2.2	  Ambiguity	  aversion	  in	  empirical	  applications	  
Chen and Epstein (2002) use the recursive multiple prior utility model and the earlier developed 

definitions for ambiguity aversion by Ghirardato and Marinacci (2002) to develop a continuous 

time model for asset pricing where risk aversion and ambiguity aversion are separate input 

factors. The authors do not make a difference between ambiguity aversion and ambiguity.  

A portfolio selection experiment, by Ahn, Choi, Gale and Kariv (2007), tests rival 

measures of utility. Here the α-maxmin model performs well, but does not fit every subjects 

preferences. Therefore the evidence shows a mixed image.  

Rigotti, Ryan and Vaithianathan (2008) use the Hurwicz criterion to measure levels of 

ambiguity aversion in an economy with ambiguity and risks. The economy is made up of old 

industry and new industry, where the former there are known risks and the latter shows 

ambiguity. They model how agents with heterogeneous ambiguity aversion choose between 

worker/entrepreneur and old/new industries. The model is compared to empirical findings and 

shows reasonably comparable results.  

 

2.3 Real options 
There are many similarities between financial options and real options; it both tries to model 

future opportunities with a right but not the obligation to some action. A financial option gives 

the right to buy or sell a stock or some other financial asset, meanwhile a real option gives the 

right to invest or disinvest in a project. The latter could be any decision where timing and 

uncertainty matters: when to go from renting to buying a house, the optimal time to marry and 

when to buy a new car. The costs involved analysing these decisions in such a fashion might be 

too high for such decision, but the possibility exists. Certain decisions with a structure that 

reflects more exotic options can easily be replicated using option theory. Nonetheless, real 

options are not perfect replications of financial options at all times.  

 Financial option pricing is based upon arbitrage arguments therefore a risk neutral pricing 

method can be used. The arbitrage argument states that there is a portfolio replicating the payoffs 

of the option. When the option price deviates from this price in a complete market - the assets 

necessary to create the replicating portfolio are available - a risk free profit could theoretically be 

made. This approach does not take into account any ambiguities and risks that occur in practice, 
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subsection 2.4 deals with the former and a limited description of the latter will be treated in this 

subsection.  

 Mining operations, R&D, land development and supply chains are project types that are 

often taken as example for the use if real options. It could be the option to invest, disinvest, grow 

and shrink operations. Further, it could be an option on an option, an option with more than one 

source of uncertainty and with boundaries on payoffs. This list is not exhaustive, but gives a clear 

picture how real options help us analyse decisions on dynamic subjects.  

 Some real options have a closed form solution often these are in a sense the ‘simpler’ 

models. Whenever it gets more complicated some type of simulation is necessary. Cox (1979) 

introduced the relation between the Black-Scholes model and the binomial tree model. The latter 

model made it possible to price American options, which are quite interesting from a real option 

point of view. A European option can only be exercised/used at the end of its maturity T, when 

the maturity of an option is 10 years a project can only be initiated in 10 years. An American 

option can be exercised/used whenever the holder wants to exercise, the option with maturity of 

10 years can also be exercised in 5 years, 3 years or tomorrow.  

For stocks that do not pay dividends it is never interesting to terminate an option before 

maturity, but with stocks that do pay dividends early exercise can be a good opportunity. Real 

options often have costs imbedded in the underlying project that can be described as a form of 

dividends. Individual projects have a limited time where (excess) profits can be made, while a 

stable financial asset keeps its value and potential for capital gains for a much longer time. 

Permits to mine or drill often have a limited lifetime before the permit has to be renewed. 

Otherwise, companies face competitors that invest in the same R&D, which makes the maximum 

delay to invest in R&D limited. Therefore, exercise before maturity is often a good opportunity. 

Another approach when pricing real options could be Monte Carlo simulations. This makes direct 

use of the Wiener process, to model many possible paths. The Monte Carlo simulation has the 

advantage that many more decision moments and degrees of up and down are taken into account, 

but the binomial tree is easier to work with to model complicated processes. Both binomial trees 

and Monte Carlo simulations are computer intensive - a good reason to try and find closed form 

solutions when possible - but more flexible than closed form solutions.   

 Finally, risk neutral valuation is not always the best route to take. Brennan shows that if 

the project to be valuated has resources that are publicly traded in the form of futures, risk neutral 
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valuation is possible using a replicating portfolio. Without doubt this is will regularly not be the 

case, think of R&D for products that do not exist yet and processed products that are partially 

correlated, not correlated or correlated with many resource futures. Whenever this happens and 

assuming a risk averse investor, one has to calculate the option value using a utility functions that 

reflect the investor’s risk averseness.  

 

2.4 Real options and ambiguity aversion 
Within the real option literature ambiguity aversion is just emerging as a promising modelling 

tool. For financial options Cont (2003) is an early developer of ambiguity in the real option 

literature. More recent examples are Trojanowska and Kort (2010) and Miao and Wang (2011).  

The former use a method likewise to Cagetti et al. (2002) and Skiadas (2003) for 

ambiguity aversion, e.g. using probability measures related to a reference probability measure 𝑃. 

Waiting becomes less valuable when ambiguity is introduced and when ambiguity goes over a 

certain level a company might even not invest with a positive probability. This non-investment is 

related to time, as time goes towards infinity the probability to not invest is always larger than 

zero. Thus, the longer a project runs, the higher the probability that a company invests. An 

alternative model is developed using an endogenous risk factor, described by a Brownian motion.  

Miao and Wang (2011) use the multiple-prior model to see how uncertainty affects Real 

Option exercise, set in an infinite time horizon, discrete time setting. If we use a certain payment 

at exercise, therefore all uncertainty is resolved at that point; ambiguity pulls the 

exercise/stopping point forward. E.g. exercise is sooner and the overall uncertainty is resolved 

sooner in a continuation RO. If there are two prior sets 𝒫! and 𝒫! where 𝒫! ≥   𝒫!, then as 

ambiguity is larger for 𝒫! the point of stopping is reached earlier. The worst-case scenario is 

worse for 𝒫! then 𝒫!, therefore potential future outcomes are not as profitable in a maxmin type 

model. In the more realistic case where ambiguity is also present for the payoff, the results of 

ambiguity are less obvious. The ambiguity of payoffs counteracts the ambiguity of waiting, but if 

ambiguity is very large a myopic Net Present Value (NPV) rule should be used. Myopic NPV is 

calculated using the standard NPV model, but including a negative bias on future values thereby 

making future potential profits smaller then the expected value.  
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Following Miao and Wang, I propose two models using the α-maxmin model to 

conveniently separate ambiguity and ambiguity aversion and show how it performs relative to the 

ambiguity neutral model and the maxmin model.  

 

3 Model setup 
ROs show us the value of future opportunities and the decisions that are related to these 

opportunities. If decision makers contemplate whether to wait or to act immediately, ROs help 

them quantitatively analyse the future uncertainty and its effects on decision making. All models 

are set up in discrete time and with a finite time frame. Modern companies all face projects that 

might run for a long time or a short time, say respectively an energy plant and a mobile phone. 

The lack of an infinite time horizon unites these projects and therefore it seems reasonable to 

develop a model that has a finite time horizon.  

I develop three models in a logical progression; first the ambiguity neutral set up, second 

the maxmin set up and third the 𝛼-maxmin set up.  

 

3.1 Baseline set up 
3.1.1 Probability space 

The subject of interest is what value future decisions have, whether to suspend, start, grow 

or cut a project. Due to future uncertainty - here indicating a general term for future outcomes 

that we do not know whatever the source - it can only be described in terms of possible outcomes. 

Define an outcome space 𝛺,ℱ  with 𝛺 the set of possible states of the world 𝜔 and ℱ the set of 

all possible outcomes. In the baseline set up, there is one probability measure 𝑃 for the outcomes 

ℱ as there is only uncertainty about outcomes and not about the probabilities. An intertemporal 

process requires a filtration ℱ!, that leads to the probability space 𝛺,ℱ, ℱ! !!!,𝑃  with ℱ! = ℱ 

and 0 ≤ 𝑡 ≤ 𝑇. An example will be given for all described technical requirements. 

Take an urn with blue, red and green marbles. 𝛺 contains the set of possible individual 

states when taking out a marble, therefore 𝛺: {b, r, g}. ℱ reflects all possible outcomes, note that 

the outcomes could be combinations of individual states. If we are interested in taking one marble 

from the urn ℱ, coincides with 𝛺 as the outcome set consists of only individual states, therefore 

ℱ: {b, r, g}. Matters change whenever we take two marbles from the urn; we create a set 
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containing combinations of states, therefore ℱ: {bb, br, bg, rr, rg, rb, gg, gb, gr}   . The more 

marbles we take from the urn, ℱ  changes in a similar fashion. Conveniently, the above 

description leads to the filtration ℱ!: assume there are two time periods where ℱ! = ℱ. In each 

period there are a limited amount of possible added states as described by 𝛺. In period one a 

marble is selected from the urn and ℱ!: b, r, g ; in period two - the final period - a marble is 

again selected from the urn and ℱ = ℱ!: {bb, br, bg, rr, rg, rb, gg, gb, gr} . Summarising, the 

filtration describes the development of the possible outcomes over time, until the final period is 

reached.  

Extending from the outcome space, when we select marbles from the urn there is 

uncertainty about the exact outcome. Before a marble is selected from the urn the outcome can 

only be described in terms of likeliness. To describe this we need a probability measure. For the 

baseline model there are 100 marbles in the urn with 60 green marbles, 30 red marbles and 10 

blue marbles. This yields the following probabilities for green, red and blue marbles: 

 

 
𝑃(𝑔) =

60
100 = 0.6 (4) 

 
𝑃 𝑟 =

30
100 = 0.3 (5) 

 
𝑃 𝑏 =

10
100 = 0.1 (6) 

  

The function P measures how likely some state 𝜔 is or more succinct 𝑃:  𝛺 → ℝ.  

 

3.1.2 From continuous Wiener process to discrete lattice 

Wiener processes are often used to model movements of random processes. It assumes 

independence between periods, such that past results do not influence the current result. A 

Wiener process is not a perfect representation of reality and often denounced when tested, but the 

process can be expanded to be more realistic (Lüders and Schröder, 2004). Here a simple Wiener 

process will suffice to show the effects of ambiguity compared to the ambiguity neutral model, 

ceteris paribus.  

 If the process of interest is the optimal point of investment in a project, we are interested 

whether it pays off to wait or act now. The simplest case is when we have just one variable 
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process and the rest is fixed, e.g. uncertainty is resolved at the moment of exercise and the 

investment has a fixed price. In that case the process describes how a profit varies over time and 

when exercised it materializes immediately. If profit is denoted by 𝜋, the Wiener process is 

described by  

 

 𝑑𝜋
𝜋 = 𝑟!𝑑𝑡 + 𝜎!𝑑𝐵! (7) 

 

With a return 𝑟, an infinitsimal change in time 𝑑𝑡, the return standard deviation 𝜎 and the 

Brownian motion 𝐵!, which is a random variable with a standard normal distribution 𝒩 0,1 . If 

the option to invest is exercised, the turnover at that point will be 𝜋! at the costs of investment I.   

To simplify matters I create a discrete variant of the Wiener process, using a binomial 

tree. The question is how I transform the Wiener process in a binomial discrete process with an 

upstate U and a downstate D. The discrete and continuous models are required to have matching 

expectations and variance. Furthermore, in the binomial model upstate U is reached with an 

objective probability 𝑞. Figure 1 shows the graphic representation of the binomial model.  

 

 

 

 

 

 

 

 

 

 

 

If the continuous process has an expected return 𝑟, the expected return for the discrete 

process should equal that return: 

 

 1+ 𝑟 = 𝑞𝑈 + 1− 𝑞 𝐷 (8) 

Figure 1: Binomial tree 

	  q	  

1-‐q	  
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and similar the variance 𝜎! for the continuous process should equal the variance of the discrete 

process: 

 

 𝜎! = 𝑞 𝑈 − 𝑞𝑈 + 1− 𝑞 𝐷 ! + 1− 𝑞 𝐷 − 𝑞𝑈 + 1− 𝑞 𝐷 !  

= 𝑞 1− 𝑞 𝑈 − 1− 𝑞 𝐷 ! + 1− 𝑞 𝑞𝐷 − 𝑞𝑈 !  

= 𝑞 1− 𝑞 ! 𝑈 − 𝐷 ! + 1− 𝑞 𝑞! 𝑈 − 𝐷 !  

= 𝑞 1− 𝑞 𝑈 − 𝐷 ! 

(9) 

 

In the case we know the true objective probability q was, there were two unknown variables - U 

and D - and two functions with the unknown variables in it. This gives us the opportunity to 

calculate the required values for U and D. When we maximise the uncertainty, 𝑞  is 0.5 . 

Throughout the thesis we will assume that q = 0.5. Note that this objective imposed probability is 

not the probability used when calculating the option value. Using equations 8 and 9, enter 0.5 for 

𝑞 and rewrite we obtain: 

 

 2 1+ 𝑟 = 𝑈 + 𝐷 (10) 

 2𝜎 = 𝑈 − 𝐷 (11) 

 

Rewriting functions 10 and 11 in terms of 𝑈 and 𝐷 gives 

 

 𝑈 = 1+ 𝑟 + 𝜎 (12) 

 𝐷 = 1+ 𝑟 − 𝜎 (13) 

 

Because variance and returns are not always scaled at the correct step size - e.g. lattice steps are 

monthly and the continuous parameters 𝑟 and 𝜎 are yearly - we scale them using the correct time 

step size. Return is scaled with respect to time with equation 14 

 

 1+ 𝑟 ! (14) 
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As the returns at each point are assumed to be independent of each other, we can simply use a 

linear scaling for variance with respect to time using equation 15 

 

 𝑡𝜎! (15) 

 

Plugging in equation 14 and 15 for the return and variance into equation 12 and 13 we obtain 

equation 16 and 17. This in effect makes U and D dependent on step size. 

 

 𝑈(𝑡) = 1+ 𝑟 ! + 𝜎 𝑡 (16) 

 𝐷(𝑡) = 1+ 𝑟 ! − 𝜎 𝑡 (17) 

 

Whenever the time interval nears zero, 𝑡 → 0, 1+ 𝑟 ! approximates 1+ 𝑟𝑡. This leads to  

 

 𝑈 𝑡 ≅ 1+ 𝑟𝑡 + 𝜎 𝑡 (18) 

 𝐷 𝑡 ≅ 1+ 𝑟𝑡 − 𝜎 𝑡 (19) 

 

The first term of a Taylor expansion for an exponential function is equal to our outcome, 

therefore equations 18 and 19 can be approximated by 

 

 𝑈 𝑡 ≅ 𝑒!!!! ! (20) 

 𝐷 𝑡 ≅ 𝑒!!!! ! (21) 

 

The binomial tree model, introduced by Cox et al. (1979), did not use the drift term, but the 

model can be expanded to create a certain drift up or down1. As noted earlier, the probability 𝑞 

will not be used, but a risk neutral probability. Following Cox et al. this probability has the form 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Derivation	  adapted	  from	  reader	  created	  by	  João	  Amaro	  de	  Matos,	  Professor	  at	  Nova	  
University	  Lisbon.	  
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𝑝 =

𝑒!! − 𝐷
𝑈 − 𝐷  (22) 

 

The risk neutral probability is the probability that makes the expected return equal to the risk free 

return. Nonetheless, it will be necessary that 𝐷 < 𝑒!! < 𝑈, otherwise 𝑝 ∉ 0,1 .   

 

3.1.3 Option value 

Time 𝑡 might not be the optimal point of entry; a company should neither be too late nor too early 

to invest in a project. A company has a limited horizon when it can invest; in such a case an 

American option is the obvious choice to value a project and I assume that less units 𝜃 can be 

sold as time progresses. The latter gives the opportunity to model a certain necessity to invest 

within a reasonable time frame, as standard American calls will never exercise before maturity. 

Thus, 𝜃! > 𝜃! > 𝜃! with 𝑡 < 𝑇 and 𝜃! = 𝜃!!! − 𝛿 where 𝛿 is a predetermined and fixed number. 

Here I assume constant investment costs. At time 𝑡 one wants to maximize payoffs  

 

 𝐹! = max 𝜋!𝜃! − 𝐼,𝛽𝔼!
! 𝐹!!!  (23) 

 

And at time T the maximizing function is 

 

 𝐹! = max 𝜋!𝜃! − 𝐼, 0  (24) 

 

Where 𝛽 = [0,1] is the discount rate, 𝜋!  is the turnover at time 𝑡 and 𝔼!
!  is the expectation 

operator at time 𝑡 under the risk neutral probability measure described earlier. We are already 

taking into account what happens when a project becomes unprofitable, therefore the option 

could be seen as a risk-decreasing tool. Nonetheless risk neutral valuation will in some cases not 

be the right method. In such a case the expectation operator becomes more complicated. As the 

process for calculating options is recursive2 the value function for the real option at the initial 

decision time 0 is 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Example:	  at	  any	  node	  in	  the	  binomial	  tree	  at	  time	  𝑇 − 1	  the	  recursive	  maximising	  function	  
has	  the	  form:	  𝐹!!! = max 𝜋!!!𝜃 − 𝐼,𝑝𝐹!,! + 1− 𝑝 𝐹!,! .	  Where	  the	  second	  term	  is	  the	  
risk	  neutral	  expected	  value.	  	  
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 F! = max 𝜋!𝜃! − 𝐼,𝛽𝔼!
! 𝐹!  with some predetermined 𝜋! (29) 

 

Note that the above model is an American option, but it could easily be transformed into a 

European option or something in between when decision moments are not as plentiful.  

Figure 2 gives a graphical description of the option pricing process and how it is reversed from 

the earlier price process.  

 
 

Figure 2: the recursive process for the option 

pricing using the risk neutral probabilities 

 

3.1.4 Uncertain investments 

Naturally, this is not a very realistic case. Not only future turnovers are affected by changes over 

time, costs and project outcomes can be affected by uncertainty about the future. Investment costs 

𝐼 and project profits are not necessarily certain at time of investment, prices for raw resources 

might fluctuate and customers might not like the product the company sells. But project turnovers 

for a started project and a potential future turnover stream are determined from the same source. 

If we assume that an investment is only made at the start of a project, investments are only 

variable over time for the determination of the potential future costs. In that case turnover is 

determined by3 

 

 𝑑𝜋
𝜋 = 𝑟!𝑑𝑡 + 𝜎!𝑑𝐵!,! (25) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  Subscript	  added	  for	  clarity.	  
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and future investment costs 

 

 𝑑𝐼
𝐼 = 𝑟!𝑑𝑡 + 𝜎!𝑑𝐵!,! (26) 

 

Using the same method described above, !"
!

can be made discrete 

 

 𝑈! 𝑡 ≅ 𝑒!!!!! ! (27) 

 𝐷! 𝑡 ≅ 𝑒!!!!! ! (28) 

 

Calculating the risk neutral probability s is the same for the investment, but can differ due to 

differences in drift and standard deviation. Moreover, there are two processes now enlarging the 

space of possible outcomes at any time, e.g. investment costs can be in up state and profits can be 

in down state. We expand the binomial model to a quadrinomial model where the processes are 

assumed to be independent, which gives us the risk neutral probabilities for every combination of 

states shown in table 1 

 

 

 

 

 

 

 

This gives me the opportunity to create a quadrinomial model; the ordering for the tree is clear 

for the top and bottom, lower investment costs and higher profits dominate over all other results 

and higher investment costs and lower profits are dominated by all others. The ordering in the 

middle depends on the parameters. The quadrinomial model is shown in figure 2 with objective 

probabilities q and k for the up and down states.  

 

 

   Investment costs 

 

Profits 

 Up Down 

Up 𝑝𝑠 𝑝(1− 𝑠) 

Down 1− 𝑝 𝑠 (1− 𝑝)(1− 𝑠) 
Table 1: Risk neutral probabilities for states with two 

processes 
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The cut-off point is important; the turnover process does not affect the option on the 

future the same as the project in implemented state. This is due to having a choice to invest or not 

for the former case; e.g. when the economic climate turns out negative for the project no real 

losses will be made and the project will not be implemented.  In that case, the option value at 

time 𝑡  is determined by  

 

 𝐹!   =max 𝜋!𝜃! − 𝐼! ,𝛽𝔼!
! 𝐹!!!  (29) 

 

And at time T the maximizing function is 

 

 𝐹! = max 𝜋!𝜃! − 𝐼! , 0  (30) 

 

And at the decision moment 𝐹! the option value is determined by  

 

 𝐹!   =max 𝜋!𝜃! − 𝐼!,𝛽𝔼!
! 𝐹!  with some predetermined 𝜋!  and  𝐼! (31) 

 

 

 

Figure 3: Quadrinomial model 

 

q(1-‐k)	  

qk	  

(1-‐q)(1-‐k)	  

(1-‐q)k	  
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3.2 Models with ambiguity 
3.2.1 Maxmin model 

Most decisions inherently contain more uncertainty than merely future outcomes and therefore 

ambiguity about the probability measure will be introduced in this subsection. Intuitively it seems 

straightforward to think of this ambiguity in a sense of having a vague idea about the exact 

parameters needed to put in the real option model. But the mathematics requires more than a 

vague idea to set up the real option model. How could one represent ambiguity? Any probability 

measure could be a valid predictor, but often there are some guidelines about the behaviour of the 

uncertain subject, some historical numbers that could help.  

 Say there are reasonable guesses based upon historical data or internal research on the 

subject matter, but not boiled down to one probability measure. These different measures could 

be because different time frames are researched, large deviations in the mean, noise or reasonable 

fitting for several models. These measures can be bundled in a set - within the maxmin model 

also called a set of priors - and say that these are the measures that can be used when valuating a 

real option or find the optimal timing. The maxmin assumes that a decision maker wants to be at 

the safe side when making a decision. This leads them to take the worst-case scenario when 

estimating the results.  

 The model has a lot of similarities with the baseline model, the outcome space and the 

filtration remains the same. The probability measure becomes a prior. In essence the probability 

space changes from 𝛺,ℱ, ℱ! !!!,𝑃  to 𝛺,ℱ, ℱ! !!!,𝒫 , where 𝒫 is the set of priors. Note that 

it generalises the baseline model, because when the prior contains one element the model 

collapses into the baseline model: 𝒫 = {𝑃}. When the set 𝒫 is larger there is more ambiguity 

surrounding the decision: if decision 1 contains more ambiguity than decision 2, than 𝒫! ⊂   𝒫!.   

 The maxmin model selects the least favourable case - calculate all results and pick the 

least favourable result. The set of priors is reduced with every step as more information becomes 

available. Variance in the drift estimate is assumed to drive the ambiguity - I could also vary 

other variables like the variance or change the complete underlying distribution, but it is not 

necessary to show the results - and the variance in drift affect the risk neutral probabilities for the 

binomial or quadrinomial tree.  
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 Before briefly describing the models used, I like to discuss the updating rule. In reality 

new information becomes available over time and the information can be incorporated if the 

investment is not yet done. Before hand we do not know this, thus one by one drift estimations 

are taken from the set, until there is only one probability measure left at the end. At the end it will 

be clear what the trend has been over time. This is obviously easy for the binomial model, but the 

quadrinomial model is more involved. Here the both processes have a set of priors evolving 

independently. 

 Model descriptions can be found below, starting with a price at some time 𝑡, at time 𝑇 and 

at time 0. Calculations coincide with each other, except that there is a selection procedure for the 

minimum function. The functions are given for the more general quadrinomial case, but return to 

the Binomial when  𝐼 is constant.  

 

 𝐹!!"#!"#   =max 𝜋!𝜃! − 𝐼!𝜃! ,𝛽 min
!∈𝒫!,!

𝔼!
! 𝐹!!!  (32) 

 

 

 𝐹!!"#!$% = max 𝜋!𝜃! − 𝐼!𝜃! , 0  (33) 

 

 𝐹!!"#!$%   =max 𝜋!𝜃! − 𝐼!𝜃!,𝛽 min
!∈𝒫!,!

𝔼!
! 𝐹!  (34) 

 

with some predetermined 𝜋!  and  𝐼!  

 For modelling purposes I create a naïve version of the maxmin model where no learning 

effects are taken into account. In that case I can use several probability measure to calculate the 

option prices and take the worst case at time 0. I feel this assumption is a reasonable one, as a 

good updating rule for the priors is quite complex to create and implement for a decision maker. 

Over time new information will determine how the priors will develop, but estimating this 

development at time 0 will be near impossible for most decision makers.  

 

3.2.2 𝛼-Maxmin model 

Section 2 already mentioned that the maxmin model does not take into account the issue that 

ambiguity and ambiguity aversion are not separated and that it assumes that ambiguity is very 
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much disliked by decision makers. The α-maxmin gives us the ability to separate these and at the 

same it is an easy application as the data is already available through the maxmin model. The 

model descriptions for the α-maxmin are  

 

𝐹!!"#$"%&   =max 𝜋!𝜃! − 𝐼!𝜃! ,𝛽   𝛼 min
!∈𝒫!,!

𝔼!
! 𝐹!!! + 1− 𝛼 max

!∈𝒫!,!
𝔼!
! 𝐹!!!  

 

𝐹!!"#!$% = max 𝜋!𝜃! − 𝐼!𝜃! , 0  
 

𝐹!!"#$"%&   =max 𝜋!𝜃! − 𝐼!𝜃!,𝛽 𝛼 min
!∈𝒫!,!

𝔼!
! 𝐹! + 1− 𝛼 max

!∈𝒫!,!
𝔼!
! 𝐹!  

 

 The 𝛼-maxmin model developed here is naïve in the sense that there are no learning 

effects over time and it is the weighted average over the maxmin and maxmax model at (and only 

at) time 0. 

 

4 Model analysis 
The models have some specific effects; I will start with the basic models with respect to prices. 

Some limitations for the maxmin model and the 𝛼-maxmin will be discussed. General price and 

optimal timing will be discussed and the differences between the standard model and the other 

two models. Finally, a numerical example will be given to see how the model could be applied. 

Before presenting the analysis some notation. 𝑇 is time, 𝑁 are time steps in the tree, 𝐼  are 

investments, 𝑟 is the risk free rate, 𝜋 are profits, 𝜃! are expected units sold, 𝛿 is the decrease in 

expected units sold, 𝜇 are drifts, 𝜎 is volatility, 𝒫 is the set of priors.  
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4.1 Analysis for the binomial model 
4.1.1 Value effect 

 
Figure 4: Value comparison between baseline investment option and immediate 

investment.  T=5, N=10, r=0.04, 𝜎=0.3, 𝜇=0 I=2000, 𝜃!=100, 𝛿=1, 𝜋! is varied 

between 0 and 60.  

 

Figure 4 shows how a standard type model operates. It yields what I would expect: 

waiting to invest is a profitable strategy at many levels compared to immediate investing. The 

lower line is the expected NPV without the option to wait, the upper line is the option value 

combined with immediate investment. The added value for waiting is the difference between the 

upper and lower lines. But when varying the different parameters a richer image is created. 

Varying the drift has relatively little impact on the price of the option as can be seen in figure 5, 

where I took a drift rate of 0, 0,3 and -0,3. The option has the highest value with a 0 drift rate, 

following intuition a negative drift performs worst in value terms and a positive drift is in 

between the zero and negative drift. The latter seems surprising, but an extremely positive 

outlook and decreasing units  
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sold over time will favour a rapid deployment reaping the immediate benefits and the volatility 

has less of a downward grip on future profits.  
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Figure 5:  Varying drifts and the resulting values. T=5, N=10, r=0.04, 𝜎=0.3, 

I=2000, 𝜃!=100, 𝛿=1, 𝜋! is varied between 0 and 40, 𝜇 is varied between -0.3 

and 0.3. 
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When varying volatility the effects are larger and more impressive, but the results 

obviously follow classical theory: increased volatility makes waiting more valuable. As can be 

seen in figure 6 the speed of convergence towards the boundary line is faster for the low variance 

option than the high variance option, where the dotted line is the boundary line for immediate 

investment.  

 

 
 

 

 

As expected, unit sales deterioration has a large impact on the option value to wait, later 

exercise is less attractive due to this decrease. It is similar to a dividend payment and though it is 

of little interest how the decreasing attractiveness is modelled, I find it the most realistic. Figure 7 

is illustrative for the effects of decreasing units sales over time, when there is no such effect the 

convergence towards the boundary line is slow indicating that it is always profitable to wait. 

When there is just a small effect present, 1 unit sale less every period, convergence happens 

much faster. Whenever I increase this to 3 unit sales less every period it becomes even more 

pronounced. If it goes above 4 unit sales decrease, the option is only more attractive when profits 

in the present are negative or zero.  
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Figure 6:  T=5, N=10, r=0.04, 𝜇=0, I=2000, 𝜃!=100, 𝛿=1, 𝜋! is varied 

between 0 and 40, 𝜎 is varied between 0.15 and 0.3. 
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As I use a naïve versions of the maxmin and 𝛼-maxmin model, such that the probability 

measures do not change over time and there is no interaction between the best case of the worst 

case, the general findings as described above will be similar. Nonetheless, ambiguity aversion 

does have an impact. Note that to measure ambiguity only the drift varies and what we saw 

earlier is that the value function does not purely shift parallel to each other. Instead the curvature 

can change. Depending on input parameters it is not obvious that the highest or lowest option 

value is produced by respectively the highest or lowest drift. This could give us some interesting 

insights.  

The difference between outcomes for the two lines are indeed not constant. At the bottom 

and top of the graphs the differences are smaller, while in the middle the effect is larger. If 

volatility would also be varied the effects would be larger than what we see here. When 

implementing the maxmin model, it seems that it matters what causes the ambiguity. Ambiguity 

about decreasing sales and volatility in profits have a larger impact than ambuigity about the drift 

direction. 
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Figure 8 shows the effects of a ambiguity neutral RO price and a maxmin ambiguity RO. 

The added value of the RO - recall it as the difference between the NPV and the RO price - 

becomes smaller when ambuigity is introduced. Ambuigity here is the uncertainty about the 

estimated drift. Note that the effects are quite small for the ambiguity model, although if 

multiplied by €100,000 the effects would be more pronounced and influence decision making 

drastic. 

Ambiguity aversion affects the value of waiting, the boundary profit level at which the 

decision maker immediately invests is lower compared to the standard model. Due to the changes 

in curvature of the RO value function simply taking the lowest and/or highest level of some range 

is even for the naïve version not a wise decision. Of course, at any starting profit 𝜋! a different 

probability measure might be the worst or best measure, while it is static for the standard model 

adding a certain flexibility. Figure 9 is a comparison for the standard option, the maxmax (𝛼 = 1) 

and the maxmin (𝛼 = 0) model. Figure 10 shows the effects for the maxmin, maxmax, lowest 

drift and highest drift and how they are related. The lowest drift exactly matches the the maxmin 

model, but the highest drift does not match the maxmax. The maxmin and lowest drift are 

therefore combined to one line in figure 10. 

 

 

Figure 8: differences between maxmin and standard option. T=5, N=10, r=0.04, 

𝜎=0.3, 𝜇=0 I=2000, 𝜃!=100, 𝛿=1, 𝜋! is varied between 0 and 60. Ambiguity 

range is 0.2 with steps of 0.05. 

Ambiguity	  neutral	  

Ambiguity	  averse	  
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Figure	  10:	  Comparison	  for	  maxmax,	  maxmin,	  worst	  drift	  and	  best	  drift	  

models.	  Not	  obvious	  that	  the	  highest	  drift	  commands	  the	  best	  option	  

value.	  

Figure 9: Comparison maxmax, maxmin and ambiguity neutral RO. Same input 

as figure 8. 
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A	   static	  𝛼-‐maxmin	   model	   with	  𝛼 = 0.5	  matches	   an	   ambiguity	   neutral	   model,	   as	  

shown	   by	  Ghirardato and Marinacci (2002).	   The	   intertemporal	   naïve	  𝛼-‐maxmin	   RO	  model	  

presented	  here	  does	  not	  match	  the	  ambiguity	  neutral	  RO	  model	  and	  there	  is	  no	  reason	  to	  

assume	   that	   it	  has	   to	  due	   to	   the	   simplifications	  assumed	  and	   interactions	   in	   the	  dynamic	  

model.	  The	   results	   reflect	   this:	   the	  ambiguity	  neutral	  RO	  model	   is	   in	   this	   case	  almost	   the	  

most	   optimistic	   case4 ,	   therefore	   the	   RO	   model	   with	  𝛼 = 0.5 	  cannot	   be	   equal	   to	   the	  

ambiguity	  neutral	  model	  with	  regards	  to	  the	  models	  presented	  in	  this	  thesis.	  This	  is	  in	  line	  

when	  varying	  the	  drift	  rate	  for	  the	  standard	  model.	  	  

Finally	   there	   is	   the	   case	   of	   ambiguity	   levels,	   which	   the	  𝛼-‐maxmin	   model	   helps	   to	  

resolve	   in	   terms	  of	   the	  difference	  between	   the	   level	   of	   ambiguity	   and	   taste	   in	   ambiguity.	  

Figure	  11	  gives	  an	  example	  how	  ambiguity	  levels	  affects	  the	  option	  value	  for	  an	  ambiguity	  

averse	   decision	   maker.	   There	   is	   no	   difference	   for	   the	   ambiguity	   loving	   decision	   makers	  

when	  ambiguity	   is	   increased	  or	  decreased.	  The	  most	  optimistic	  case	   lies	  near	  a	  drift	  of	  0,	  

therefore	  enlarging	  the	  ambiguity’s	  range	  does	  not	  affect	  the	  valuation.	  

	  

	  
Figure	  11:	  Difference	  between	  high	  ambiguity	  and	  low	  ambiguity	  for	  an	  

ambiguity	  averse	  decision	  maker.	  Range	  ambiguity	  large	  0.6,	  range	  

ambiguity	  small	  0.2.	  

	  

4.1.2	  Optimal	  timing	  

When	  considering	  optimal	  expected	  timing	  effects	  between	  the	  models	  I	  will	  focus	  only	  on	  

the	   differences	   between	   the	   standard	   model,	   maxmin	   and	  𝛼 -‐maxmin	   model.	   As	   the	  

valuations	   indicate,	   the	  expected	  optimal	  timing	  of	   the	  option	  decreases	  when	  an	  agent	   is	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  Almost	  indiscernible	  in	  the	  graph,	  but	  there	  is	  a	  difference.	  
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ambiguity	   averse.	   Expected	   timing	   shows	   us	   that	   agents	  who	   are	  more	   ambiguity	   averse	  

will	  wait	  a	  shorter	  period	  compared	  to	  agents	  who	  do	  not	  take	  into	  account	  ambiguity/are	  

ambiguity	  neutral.	  While	  ambiguity	  loving	  agents	  clearly	  prefer	  to	  wait	  for	  a	  longer	  period	  

before	  they	  will	  invest.	  When	  the	  initial	  project	  profits	  are	  large	  enough	  the	  larger	  certainty	  

about	  a	  positive	  future	  outcome	  let	  the	  outcomes	  almost	  converge	  to	  one	  point.	  The	  results	  

seem	  more	  potent	   for	   timing	  an	   investment	   than	   for	  valuing	  an	   investment.	   	  The	  optimal	  

timing	   functions	   for	   the	   ambiguity	   preferences	  have	  different	   sensitivities	   changes	   in	   the	  

initial	  present	  value	  (PV)	  profits.	  An	  ambiguity	  averse	  decision	  maker	  changes	  their	  optimal	  

timing	   with	   a	   smaller	   amount	   when	   the	   PV	   increases	   compared	   to	   an	   ambiguity	   loving	  

decision	  maker.	  This	  makes	  sense,	  because	  ambiguity	  about	  profitability	  is	  higher	  when	  the	  

PV	   is	   low.	  The	  ambiguity	  averse	  will	   exercise	   the	  option	  earlier	  and	   the	  ambiguity	   loving	  

will	   exercise	   later.	  When	   the	  PV	   is	   high	   a	  project	  will	   remain	  profitable	  most	   of	   the	   time	  

even	   if	   circumstances	  worsen.	   This	   reduces	   the	   ambiguity	   about	   potential	   losses	   and	   the	  

preferences	  of	  the	  ambiguity	  averse	  and	  ambiguity	  loving	  will	  converge.	  

	  

	  
Figure	  12:	  Optimal	  expected	  timing	  for	  the	  standard	  model,	  maxmin	  and	  

the	  maxmax	  model.	  Timing	  is	  per	  semester.	  
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4.2	  Analysis	  for	  the	  quadrinomial	  model	  
4.2.1	  Value	  effect	  

	  Varying	  investment	  costs	   independently	  from	  profits	   introduces	  more	  risk	  and	  ambiguity	  

for	  all	  models	  involved.	  It	  would	  also	  be	  more	  realistic:	  a	  static	  exercise	  price	  is	  a	  fact	  for	  a	  

financial	  option	  due	  to	  the	  contracts	  involved,	  but	  not	  for	  an	  investment.	  These	  costs	  could	  

be	  hedged,	  but	  hedges	  are	  often	  imperfect.	  This	  does	  introduce	  a	  challenge	  with	  respect	  to	  

the	   cost	   development.	   In	   section	  4.1	   I	   assumed	   throughout	   the	   section	   fixed	   cost,	   I	   again	  

assume	  fixed	  costs	  instead	  of	  variable	  costs.	  The	  difference	  is	  that	  the	  fixed	  costs	  vary	  over	  

time.	  	  	  

	   The	  positive	  influence	  from	  volatility	  is	  retained	  when	  introducing	  varying	  costs	  over	  

time.	  What	   is	   interesting	   though	   is	   that	   with	   low	   cost	   variance	   the	   quadrinomial	   model	  

returns	  lower	  values	  compared	  to	  the	  binomial	  model	  that	  is	  otherwise	  the	  same,	  but	  when	  

this	  volatility	   increases	  the	  option	  becomes	  more	  valuable	  relative	  to	  the	  binomial	  model.	  

The	  rest	  of	  the	  ideas	  that	  hold	  for	  the	  binomial	  model,	  also	  hold	  for	  the	  quadrinomial	  model	  

(figure	  13	  and	  14).	  	  
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Figure	  13:	  Binomial	  model	  vs	  quadrinomial	  model,	  variance	  0.2	  for	  costs.	  



	   REAL	  OPTIONS	  AND	  AMBIGUITY	  AVERSION	  

	  

33	  

0"

500"

1000"

1500"

2000"

2500"

0" 1000" 2000" 3000" 4000" 5000"

O
p#

on
&v
al
ue

&

Project&profits&

Quadrinomial"vol"0,2"

Quadrinomial"vol"0,1"

Quadrinomial"vol"0,3"

0"

500"

1000"

1500"

2000"

2500"

0" 500" 1000" 1500" 2000" 2500" 3000" 3500" 4000" 4500"

Standard"quadrinomial"

Minmax"quadrinomial"

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

The	  maxmin	  model	  and	  𝛼-‐maxmin	  model	  performs	  the	  same	  as	  in	  the	  case	  of	  the	  binomial	  

model.	   Maxmin	   has	   a	   more	   pronounced	   effect	   for	   the	   quadrinomial	   model	   than	   for	   the	  

binomial	   model.	   Obviously,	   many	   more	   combinations	   of	   worst-‐case	   scenarios	   can	   be	  

created	  compared	  for	  the	  quadrinomial	  model	  relative	  to	  the	  binomial	  model.	   If	   there	  are	  

four	  different	  measures	   in	   the	   set	  of	  priors	   for	  profits	   and	  costs,	   the	  binomial	  model	  will	  

have	   four	   combinations	   to	   compare,	   while	   the	   quadrinomial	   has	   16	   combinations	   to	  

compare.	   This	   leads	   to	   more	   pronounced	   effects	   as	   costs	   could	   have	   a	   greater	   negative	  

weight	  (see	  figure	  15).	  	  

	   	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

The	  𝛼-‐maxmin	  model	  than	  gives	  us	  the	  opportunity	  to	  see	  how	  the	  other	  extreme	  looks	  like.	  

As	  is	  shown	  in	  figure	  16.	  	  

Figure	  14:	  Different	  volatility	  levels	  for	  the	  quadrinomial	  model	  

Figure	  15:	  ambiguity	  neutral	  quadrinomial	  and	  maxmin.	  
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𝜎=0.1	  

𝜎=0.3	  

Ambiguity	  neutral	  quadrinomial	  RO	  

Ambiguity	  averse	  maxmin	  quadrinomial	  RO	  
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4.2.2	  Timing	  effects	  

Timing	  effects	  for	  the	  quadrinomial	  model	  are	  across	  the	  board	  larger	  than	  for	  the	  binomial	  

model.	  What	  we	  see	  is	  that	  an	  expected	  optimal	  timing	  is	  quite	  a	  few	  periods	  ahead,	  around	  

four	   years	   there	   is	   the	   tendency	   to	   implement	   the	   strategy,	   at	   that	   moment	   enough	  

information	  has	  reached	  the	  decision	  maker.	  Again	  the	  standard	  model	  is	  in	  the	  middle	  in	  

terms	  of	  waiting,	  ambiguity-‐averse	  agents	  will	  prefer	  earlier	  exercise	  and	  ambiguity-‐loving	  

agents	  will	   prefer	   later	   exercise.	   It	   is	   a	  decreasing	   function	  with	   respect	   to	   initial	   profits.	  

Convergence	  over	   time	   is	   similar	   to	   the	  binomial	  model,	   but	   runs	   a	   little	   smoother	  when	  

considering	  project	  profits.	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

Figure	  16:	  Maxmax	  and	  maxmin	  

Figure	  17:	  Optimal	  expected	  timing	  for	  quadrinomial	  model,	  timing	  is	  per	  

semester	  

Ambiguity	  averse	  maxmin	  quadrinomial	  RO	  
Ambiguity	  loving	  maxmax	  quadrinomial	  RO	  

Ambiguity	  neutral	  quadrinomial	  RO	  

Ambiguity	  averse	  maxmin	  quadrinomial	  RO	  

Ambiguity	  loving	  maxmax	  quadrinomial	  RO	  
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4.3	  Economic	  relevance	  
The	   models	   presented	   here	   are	   technical	   in	   nature	   and	   economical	   relevance/practical	  

application	  is	  a	  serious	  issue	  to	  deal	  with.	  Implementing	  a	  more	  complicated	  model	  is	  only	  

interesting	  when	  the	  model	  performance	  is	  significantly	  better,	  reflects	  the	  preferences	  of	  

the	  agents	  and	  has	  an	   intuitive	   feel	   for	   the	   final	  decision	  maker.	  Agents	  could	  be	  satisfied	  

with	   a	   limited	  quantitative	   estimate	   -‐	   not	   representing	   their	   full	   preferences	   -‐	   due	   to	   the	  

costs	   involved	   in	   finding	   how	   ambiguity	   averse	   they	   are	   or	   have	   difficulties	   with	  

understanding	  what	  information	  the	  model	  does	  and	  does	  not	  convey.	  	  

I	  will	  give	  a	  numerical	  example,	  giving	  results	   for	  all	  models	   in	  terms	  of	  waiting	  time	  and	  

valuation.	   Thereby	   illuminating	   how	  a	   practical	   application	   looks	   like	   and	   reaching	   out	   a	  

hand	  from	  academics	  to	  practice.	  	  

	  

Mini	  case:	  Mining	  venture	  

A	  company	  has	  bought	   the	   rights	   to	   exploit	   a	   goldmine.	  The	  mining	  permit	   has	   a	   limited	  

lifetime;	   during	   the	   next	   10	   years	   the	   company	   is	   allowed	   to	   mine.	   The	   mine	   contains	  

(effectively)	  550	  tons	  of	  gold;	  the	  yearly	  excavation	  is	  50	  tons	  of	  gold.	  Every	  year	  they	  do	  

not	  invest	  they	  lose	  a	  capacity	  of	  50	  tons	  of	  excavation.	  The	  volatility	  of	  the	  profits	  is	  40%	  

and	  the	  company	  expects	  no	  drift.	  They	  now	  estimate	  an	  average	  profit	  of	  $20	  million	  per	  

tonne,	  which	  is	  what	  they	  expect	  to	  earn	  over	  time	  -‐	  $11	  billion	  if	  they	  invest	  immediately.	  

They	  have	  estimated	  investment	  costs	  of	  $4	  billion,	  these	  costs	  can	  be	  assumed	  constant	  or	  

vary	  over	  time.	  The	  costs	  have	  a	  volatility	  of	  20%.	  The	  company	  is	  not	  completely	  sure;	  it	  is	  

hard	  to	  estimate	  how	  prices	  will	  develop.	  Costs	  are	  more	  stable	  over	  time,	  thus	  costs	  show	  a	  

symmetric	  range	  of	  10%	  drift	  differential	  from	  the	  expectations.	  Profits	  have	  been	  eradicate	  

lately	  and	  there	  could	  be	  20%	  drift	  differential.	  Steps	  of	  5%	  are	  taken	  as	  different	  levels	  of	  

probability	   measures.	   Commodities	   require	   large	   investments	   and	   are	   general	  

older/conservative	   companies.	   After	   some	   assessment	   the	   company	   estimated	   their	  

ambiguity	  aversion	  parameter	  𝛼	  at	  0.3.	  Finally,	  the	  risk	  free	  rate	  is	  4%.	  

The	  valuation	  of	  the	  project	  yields	  the	  same	  results	  using	  any	  model.	  The	  cause	  can	  

be	  found	  in	  the	  fact	  that	   from	  a	  valuation	  point	  of	  view,	  the	  waiting	  value	  does	  not	  weigh	  

against	   immediate	   investment	   profits.	  My	   assessment	   is	   that	   depreciation	   of	   tonnes	   sold	  
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dominates	  all	  other	  effects.	  From	  this	  point	  of	  view	  the	  standard	  model	  performs	  quite	  well	  

and	   the	   agent	   could	   save	   the	   time	   of	   developing	  more	   complicated	  models.	   On	   the	   other	  

hand,	  if	  we	  take	  a	  look	  at	  the	  option’s	  expected	  optimal	  timing	  it	  becomes	  more	  interesting.	  

Postponing	   investments	   yield	   seriously	   different	   results	   and	   it	   seems	  worthwhile	   to	   look	  

into	   possible	   preferences	   and	   cost	   structures	   creating	  drastically	   different	   results	   for	   the	  

company.	  Timing	  an	  investment	  is	  important	  for	  optimal	  company	  performance	  and	  these	  

models	   could	   support	   decision	  makers	  when	   facing	   complicated	   projects	  with	   long-‐term	  

effects.	  

	  

	  

	  

Ambiguity aversion as a differentiated measure has a real effect when observing the difference 

for the maxmin and 𝛼-maxmin model. The mining corporation has the same ambiguity, but in the 

𝛼-maxmin model they can also express their preferences about the ambiguity. They are expected 

to wait longer to invest, giving us a hint that the ambiguity level is not the same as the ambiguity 

preference. The differences are minor though, compared to the ambiguity neutral model. I do not 

expect the ambiguity effects on drifts to be economic relevant when calculating the expectations 

for the project. With different input and more uncertainty the models might gain more traction. 

Within this framework the standard model would be precise enough and easier to understand for 

the mining company executives. Furthermore, a standard NPV model can also be applied for 

calculating the mine value, but the added value for the RO model lies in the field project timing.  

 

 

	   Value	   Timing	  

Binomial	  ambiguity	  neutral	   7000	   3	  years	  6	  months	  

Binomial	  maxmin	   7000	   3	  years	  

Binomial	  𝛼-‐maxmin	   7000	   3	  years	  2	  months	  	  

Quadrinomial	  ambiguity	  neutral	   7000	   4	  years	  9	  months	  

Quadrinomial	  maxmin	   7000	   4	  years	  6	  months	  

Quadrinomial	  𝛼-‐maxmin	   7000	   4	  years	  7	  months	  

Table	  2:	  Values	  project	  and	  timing	  project	  
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5 Conclusion and discussion 
Concluding I can say that the real option models analysed in this thesis have very distinct 

uses. Especially when the uncertainty is great and the project complex, there is a payoff to do an 

analysis combining varying costs and ambiguity levels. From the point of view for optimal timing 

the results were most useful and salient. For optimal timing we see obvious differences between 

the ambiguity preferences. The extreme ambiguity averse maxmin preference decision maker pull 

forward the decision to invest relative to the ambiguity neutral. The extreme ambiguity lovers 

maxmax preference decision makers push backward the decision to invest relative to the 

ambiguity neutral. The quadrinomial model further pushes back the decision to invest when 

compared to the more standard binomial model. This is not strange, due to the extra information 

gained by waiting using the quadrinomial model. For certain parameters the valuations still 

matter though and even if the results are less striking, information can be gathered from it. It 

might be more interesting if there is an investment delay before profits can be made. The pricing 

of the ROs decreased with the ambiguity level for the ambiguity averse, the ambiguity loving 

decision makers show no effect with respect to increases in ambiguity. There can be several 

sources of ambiguity; here I investigated the influence of drift ambiguity. Nonetheless, research 

can be expanded when delving into several forms of ambiguity changing the shape of the 

probability function and even parameters not directly linked to the probability measure. An 

example for the former could be the standard deviation and an example for the latter could be the 

expected sales reduction over time. Drift ambiguity shows us that the maxmin model and the 

ambiguity neutral model with the worst drift coincide, but the maxmax model and the ambiguity 

neutral model with the best drift do not coincide. Suggesting it is too easy to just take what seems 

intuitively the worst case or the best case. Thereby, showing the added economic value of the 

model for ambiguous projects. The models give a nice distinction between ambiguity and 

ambiguity preference. The 𝛼-maxmin model shows that even for a naïve version it has an added 

value, due to the range of possible outcomes while maintaining one level of ambiguity. This 

preference can drastically influence project values and timing for decision makers, significantly 

impacting business decisions when implemented. An interesting research topic would be how 𝛼 

could be estimated. Here I assumed some level, but I cannot be sure how real life preferences are 

related to the 𝛼. The interpretation of 𝛼 and its relation to the ambiguity neutral case is another 

interesting topic. The ambiguity neutral RO is often at the top end of the ambiguity preference 
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spectrum, thereby skewing the measure 𝛼 downward. E.g. measuring mostly aversion attitudes 

and little loving attitudes. Often decision makers are averse, but the extreme skewedness in the 

measure is a striking phenomenon. 

 The model developed in this thesis has its limitations. The model I used for the maxmin is 

naïve, where the agent does not update upon receiving new information. This assumption works, 

as we do not know in the present what information we receive in the future. Often we only know 

what kind of profits are reasonable when the project is implemented, which makes it safer to keep 

the ambiguity constant over time. Further, I only try to understand what happens with the 

valuations and optimal timing in the present when I change the parameters. If one would compare 

a more dynamic approach, then some kind of information reflection could be incorporated. One 

does not invest at time 0 and waits to invest. At time 1 one could use an updating rule based upon 

best/worst performance and eliminate one of elements in the prior. This updating rule could be 

based upon several distance rules and estimation procedures. On the other hand, introducing 

learning within a RO model is a practice of making many assumptions about how the profit or 

cost processes develop and then imply how the decision maker would react on that. Learning 

effects are more interesting if we incorporate multi period RO calculations and at every period 

new, objective market information becomes available to incorporate in the model. Note this does 

not mean a sophisticated model, but better naïve models. Without doubt this new information 

does not necessarily decrease ambiguity and the model may survive without adaptations.   

The 𝛼-maxmin model as implemented in this thesis has an inherent challenge, due to the 

dynamic inconsistency of the model (Schröder, 2011). Dynamic consistency indicates that a 

dynamic model can be solved in a recursive fashion. As implemented in this thesis, it is a 

weighted average of the maxmax and maxmin model at time 0. This does not take into account 

the effects of weighted averages at times 𝑡 > 0. Effectively, I average a model for the extreme 

ambiguity loving and the extreme ambiguity averse. But a decision maker who is somewhere 

between those extremes should average the extremes at every point in time, taking into account 

interactions between extreme ambiguity aversion and extreme ambiguity love.  

A further limitation in my model is that I limit it to a discretisation of the lognormal 

model. It does not take into account skewness or fat tails, when considering worst cases. This also 

relates to limiting the ambiguity to the drift. Nonetheless, the possibility probably exists to adapt 

the discretisation to the third and fourth moments. 
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  Ambiguity aversion has a reasonable influence - albeit mostly an influence for the 

academic world - on a real option and the differentiation between ambiguity aversion and the 

ambiguity level has a real life impact. The 𝛼-maxmin model should be more extensively 

developed.  While I only made a weighted average at time 0, an improvement would be to find 

the worst/best option at every node and create a weighted average. Nonetheless, it is a promising 

field to do further research in and helps us shape the ideas about how true human preferences 

produce the best possible decisions. Finally, both the maxmin and the 𝛼-maxmin  model should 

be further developed if we strive for real life implementation, as the results for these model do 

not deviate a lot from the ambiguity neutral model. 
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Appendix	  -‐	  Algorithm	  for	  models.	  
Binomial	  model	  
	  
Function	  Binomial_Standard(P,	  K,	  T,	  r,	  mu1,	  v1,	  N,	  Init,	  St)	  
	  
S0	  =	  P	  
I0	  =	  K	  
Tijd	  =	  0	  
Num	  =	  0	  
	  
	  	  	  
dt	  =	  T	  /	  N	  
U1	  =	  Exp(mu1	  *	  dt	  +	  v1	  *	  dt	  ^	  0.5)	  	  'size	  of	  up	  jump	  for	  profit	  
D1	  =	  Exp(mu1	  *	  dt	  -‐	  v1	  *	  dt	  ^	  0.5)	  'size	  of	  down	  jump	  for	  profit	  
P1	  =	  (Exp(r	  *	  dt)	  -‐	  D1)	  /	  (U1	  -‐	  D1)	  'risk	  free	  probability	  of	  up	  jump	  for	  profit	  
P2	  =	  1	  -‐	  P1	  	  'risk	  free	  probability	  of	  down	  jump	  for	  profit	  
	  	  	  
	  
ReDim	  Smat(1	  To	  N	  +	  1,	  1	  To	  N	  +	  1)	  'holds	  profits	  
	  	  	  
Smat(1,	  1)	  =	  S0	  
	  	  	  
For	  i	  =	  1	  To	  UBound(Smat,	  2)	  -‐	  1	  ‘fills	  the	  profit	  tree	  
	  	  	  	  Smat(1,	  i	  +	  1)	  =	  (Smat(1,	  i)	  *	  U1)	  
	  	  	  	  For	  j	  =	  2	  To	  i	  +	  1	  
	  	  	  	  	  	  	  	  Smat(j,	  i	  +	  1)	  =	  Smat(j	  -‐	  1,	  i)	  *	  D1	  
	  	  	  	  Next	  j	  
Next	  i	  
	  
For	  q	  =	  1	  To	  UBound(Smat,	  2)	  ‘differentiates	  for	  every	  period	  how	  much	  is	  sold	  
	  	  	  	  For	  x	  =	  1	  To	  q	  
	  	  	  	  	  	  	  	  Smat(x,	  q)	  =	  Smat(x,	  q)	  *	  Init	  
	  	  	  	  Next	  x	  
	  	  	  	  Init	  =	  Init	  -‐	  St	  
Next	  q	  
	  
ReDim	  Cmat(1	  To	  N	  +	  1,	  1	  To	  N	  +	  1)	  
	  
For	  h	  =	  N	  +	  1	  To	  1	  Step	  -‐1	  ‘recursive	  calculation	  of	  the	  RO	  
	  	  	  	  For	  g	  =	  1	  To	  h	  
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	  	  	  	  	  	  	  	  If	  h	  =	  N	  +	  1	  Then	  
	  	  	  	  	  	  	  	  	  	  	  	  Cmat(g,	  h)	  =	  WorksheetFunction.Max(Smat(g,	  h)	  -‐	  K,	  0)	  
	  	  	  	  	  	  	  	  	  	  	  	  If	  Smat(g,	  h)	  -‐	  K	  >	  0	  Then	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Tijd	  =	  Tijd	  +	  h	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Num	  =	  Num	  +	  1	  
	  	  	  	  	  	  	  	  	  	  	  	  End	  If	  
	  	  	  	  	  	  	  	  Else	  
	  	  	  	  	  	  	  	  	  	  	  	  op	  =	  Exp(-‐r	  *	  dt)	  *	  (P1	  *	  Cmat(g,	  h	  +	  1)	  +	  P2	  *	  Cmat(g	  +	  1,	  h	  +	  1))	  
	  	  	  	  	  	  	  	  	  	  	  	  Cmat(g,	  h)	  =	  WorksheetFunction.Max(Smat(g,	  h)	  -‐	  K,	  op)	  
	  	  	  	  	  	  	  	  	  	  	  	  If	  op	  <	  Smat(g,	  h)	  -‐	  K	  Then	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Tijd	  =	  Tijd	  +	  h	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Num	  =	  Num	  +	  1	  
	  	  	  	  	  	  	  	  	  	  	  	  End	  If	  
	  	  	  	  	  	  	  	  End	  If	  
	  	  	  	  Next	  g	  
Next	  h	  
	  
Binomial_Standard	  =	  Tijd	  /	  Num	  ‘expected	  timing	  
OR	  ALTERNATIVELY	  
Binomial_Standard=Cmat(1,1)	  ‘expected	  value	  
	  
End	  Function	  
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𝛼-‐maxmin	  and	  maxmin	  binomial	  model	  
	  
Public	  Sub	  alpha_Minmax_Binomial_model()	  
	  
Range("B14")	  =	  ""	  
	  
P	  =	  Range("B1")	  
K	  =	  Range("B2")	  
T	  =	  Range("B3")	  
r	  =	  Range("B4")	  
mu1	  =	  Range("B5")	  
v1	  =	  Range("B6")	  
N	  =	  Range("B7")	  
RAp	  =	  Range("B8")	  
SAp	  =	  Range("B9")	  
alpha	  =	  Range("B10")	  
Init	  =	  Range("B11")	  
St	  =	  Range("B12")	  
	  
	  
minmu	  =	  mu1	  -‐	  RAp	  	  ‘creates	  range	  
maxmu	  =	  mu1	  +	  RAp	  
	  
steps	  =	  (maxmu	  -‐	  minmu)	  /	  SAp	  +	  1	  
nmbr	  =	  1	  
	  
ReDim	  ambiguity(1	  To	  steps	  +	  1)	  
	  
For	  i	  =	  minmu	  To	  maxmu	  Step	  SAp	  	  ‘creates	  all	  possibilities	  
	  	  	  	  option_price	  =	  Binomial_Standard(P,	  K,	  T,	  r,	  i,	  v1,	  N,	  Init,	  St)	  ‘creates	  value	  
	  	  	  	  ambiguity(nmbr)	  =	  option_price	  
	  	  	  	  nmbr	  =	  nmbr	  +	  1	  
	  	  	  	  Init	  =	  Range("B11")	  
Next	  i	  
	  
optlo	  =	  WorksheetFunction.Min(ambiguity)	  
opthi	  =	  WorksheetFunction.Max(ambiguity)	  
	  
Range("B14")	  =	  alpha	  *	  optlo	  +	  (1	  -‐	  alpha)	  *	  opthi	  ‘weighted	  average	  
End	  Sub	  
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Standard	  Binomial	  model	  
	  
Public	  Sub	  Binomial_model()	  
	  
Range("B12")	  =	  ""	  
	  
P	  =	  Range("B1")	  
K	  =	  Range("B2")	  
T	  =	  Range("B3")	  
r	  =	  Range("B4")	  
mu1	  =	  Range("B5")	  
Init	  =	  Range("B6")	  
v1	  =	  Range("B7")	  
St	  =	  Range("B8")	  
N	  =	  Range("B9")	  
	  
	  
option_price	  =	  Binomial_Standard(P,	  K,	  T,	  r,	  mu1,	  v1,	  N,	  Init,	  St)	  ‘creates	  the	  necessary	  price	  
or	  timing	  
Range("B12")	  =	  option_price	  
	  
End	  Sub	  
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Quadrinomial	  model	  
	  
Public	  Function	  Quadrinomial(P,	  K,	  T,	  r,	  mu1,	  mu2,	  v1,	  v2,	  N,	  Init,	  St)	  
	  
	  S0	  =	  P	  
	  	  I0	  =	  K	  
	  	  	  
	  	  	  dt	  =	  T	  /	  N	  
	  	  U1	  =	  Exp(mu1	  *	  dt	  +	  v1	  *	  dt	  ^	  0.5)	  	  'size	  of	  up	  jump	  for	  profit	  
	  	  D1	  =	  Exp(mu1	  *	  dt	  -‐	  v1	  *	  dt	  ^	  0.5)	  'size	  of	  down	  jump	  for	  profit	  
	  	  U2	  =	  Exp(mu2	  *	  dt	  -‐	  v2	  *	  dt	  ^	  0.5)	  'size	  of	  up	  jump	  for	  costs	  
	  	  D2	  =	  Exp(mu2	  *	  dt	  +	  v2	  *	  dt	  ^	  0.5)	  'size	  of	  down	  jump	  for	  costs	  
	  	  P1	  =	  (Exp(r	  *	  dt)	  -‐	  D1)	  /	  (U1	  -‐	  D1)	  'risk	  free	  probability	  of	  up	  jump	  for	  profit	  
	  	  P2	  =	  1	  -‐	  P1	  	  'risk	  free	  probability	  of	  down	  jump	  for	  profit	  
	  	  S1	  =	  (Exp(r	  *	  dt)	  -‐	  D2)	  /	  (U2	  -‐	  D2)	  'risk	  free	  probability	  of	  up	  jump	  for	  costs	  
	  	  S2	  =	  1	  -‐	  S1	  'risk	  free	  probability	  of	  down	  jump	  for	  costs	  
	  	  Nodes	  =	  (4	  ^	  N)	  ‘total	  nodes	  
	  	  	  
	  
	  	  ReDim	  Smat(1	  To	  Nodes	  +	  1,	  1	  To	  N	  +	  1)	  'holds	  profits	  
	  	  ReDim	  Imat(1	  To	  Nodes	  +	  1,	  1	  To	  N	  +	  1)	  'holds	  costs	  
	  	  	  
	  	  Smat(1,	  1)	  =	  S0	  
	  	  Imat(1,	  1)	  =	  I0	  
	  	  subnodes	  =	  ""	  
	  	  	  
	  	  For	  i	  =	  1	  To	  UBound(Smat,	  2)	  -‐	  1	  ‘loops	  creates	  all	  necessary	  filling	  of	  tree	  for	  profits	  and	  
costs	  
	  	  	  	  ex	  =	  1	  
	  	  	  	  ec	  =	  1	  
	  	  	  	  subnodes	  =	  4	  ^	  (i	  -‐	  1)	  
	  	  	  	  For	  j	  =	  1	  To	  subnodes	  
	  	  	  	  	  	  	  	  Smat(ex,	  i	  +	  1)	  =	  Smat(j,	  i)	  *	  U1	  
	  	  	  	  	  	  	  	  Smat(ex	  +	  1,	  i	  +	  1)	  =	  Smat(j,	  i)	  *	  D1	  
	  	  	  	  	  	  	  	  Smat(ex	  +	  2,	  i	  +	  1)	  =	  Smat(j,	  i)	  *	  U1	  
	  	  	  	  	  	  	  	  Smat(ex	  +	  3,	  i	  +	  1)	  =	  Smat(j,	  i)	  *	  D1	  
	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  ex	  =	  ex	  +	  4	  
	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  Imat(ec,	  i	  +	  1)	  =	  Imat(j,	  i)	  *	  U2	  
	  	  	  	  	  	  	  	  Imat(ec	  +	  1,	  i	  +	  1)	  =	  Imat(j,	  i)	  *	  U2	  
	  	  	  	  	  	  	  	  Imat(ec	  +	  2,	  i	  +	  1)	  =	  Imat(j,	  i)	  *	  D2	  
	  	  	  	  	  	  	  	  Imat(ec	  +	  3,	  i	  +	  1)	  =	  Imat(j,	  i)	  *	  D2	  
	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  ec	  =	  ec	  +	  4	  
	  	  	  	  Next	  j	  
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	  	  	  	  subnodes	  =	  ""	  
	  	  Next	  i	  
	  	  	  
For	  x	  =	  1	  To	  UBound(Smat,	  2)	  -‐	  1	  ‘for	  every	  period	  expected	  sales	  is	  plugged	  in	  
	  	  	  	  subnodes	  =	  4	  ^	  (x	  -‐	  1)	  
	  	  	  	  For	  y	  =	  1	  To	  subnodes	  
	  	  	  	  	  	  	  	  Smat(y,	  x)	  =	  Smat(y,	  x)	  *	  Init	  
	  	  	  	  Next	  y	  
	  	  	  	  Init	  =	  Init	  -‐	  St	  
	  	  	  	  subnodes	  =	  ""	  
Next	  x	  
	  
	  
ReDim	  Cmat(1	  To	  Nodes	  +	  1,	  1	  To	  N	  +	  1)	  
subnodes	  =	  ""	  
tijd	  =	  0	  
	  
For	  h	  =	  N	  To	  1	  Step	  -‐1	  ‘creates	  option	  value	  using	  cost	  and	  profit	  tree	  in	  recursive	  fashion	  
	  	  	  	  ev	  =	  1	  
	  	  	  	  subnodes	  =	  4	  ^	  (h	  -‐	  1)	  
	  	  	  	  For	  g	  =	  1	  To	  subnodes	  
	  	  	  	  	  	  	  	  If	  h	  =	  N	  Then	  
	  	  	  	  	  	  	  	  	  	  	  	  Cmat(g,	  h)	  =	  WorksheetFunction.Max(Smat(g,	  h)	  -‐	  Imat(g,	  h),	  0)	  
	  	  	  	  	  	  	  	  	  	  	  	  If	  Smat(g,	  h)	  -‐	  Imat(g,	  h)	  >	  0	  Then	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tijd	  =	  tijd	  +	  h	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  nmbr	  =	  nmbr	  +	  1	  
	  	  	  	  	  	  	  	  	  	  	  	  End	  If	  
	  	  	  	  	  	  	  	  Else	  
	  	  	  	  	  	  	  	  	  	  	  	  op	  =	  Exp(-‐r	  *	  dt)	  *	  (P1	  *	  S1	  *	  Cmat(ev,	  h	  +	  1)	  +	  P2	  *	  S1	  *	  Cmat(ev	  +	  1,	  h	  +	  1)	  +	  P1	  *	  S2	  *	  
Cmat(ev	  +	  2,	  h	  +	  1)	  +	  P2	  *	  S2	  *	  Cmat(ev	  +	  3,	  h	  +	  1))	  
	  	  	  	  	  	  	  	  	  	  	  	  ev	  =	  ev	  +	  4	  
	  	  	  	  	  	  	  	  	  	  	  	  Cmat(g,	  h)	  =	  WorksheetFunction.Max(Smat(g,	  h)	  -‐	  Imat(g,	  h),	  op)	  
	  	  	  	  	  	  	  	  	  	  	  	  If	  Smat(g,	  h)	  -‐	  Imat(g,	  h)	  >	  op	  Then	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tijd	  =	  tijd	  +	  h	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  nmbr	  =	  nmbr	  +	  1	  
	  	  	  	  	  	  	  	  	  	  	  	  End	  If	  
	  	  	  	  	  	  	  	  End	  If	  
	  	  	  	  Next	  g	  
Next	  h	  
	  
Quadrinomial	  =	  Cmat(1,	  1)	  
	  	  	  	  	  	  	  	  	  
End	  Function	  
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Standard	  quadrinomial	  model	  
	  
Sub	  Simple_Quadrinomial()	  
	  
Range("B14")	  =	  ""	  
	  
P	  =	  Range("B1")	  
K	  =	  Range("B2")	  
T	  =	  Range("B3")	  
r	  =	  Range("B4")	  
mu1	  =	  Range("B5")	  
mu2	  =	  Range("B6")	  
v1	  =	  Range("B7")	  
v2	  =	  Range("B8")	  
N	  =	  Range("B9")	  
Init	  =	  Range("B10")	  
St	  =	  Range("B11")	  
	  
option_price	  =	  Quadrinomial(P,	  K,	  T,	  r,	  mu1,	  mu2,	  v1,	  v2,	  N,	  Init,	  St)	  ‘option	  price	  is	  created	  
Range("B14")	  =	  option_price	  
	  
End	  Sub	  



	   REAL	  OPTIONS	  AND	  AMBIGUITY	  AVERSION	  

	  

48	  

𝛼-‐maxmin	  and	  maxmin	  model	  
	  
Sub	  alpha_Minmax_Quadrinomial()	  
	  
Range("B18")	  =	  ""	  
	  
P	  =	  Range("B1")	  
K	  =	  Range("B2")	  
T	  =	  Range("B3")	  
r	  =	  Range("B4")	  
mup	  =	  Range("B5")	  
muc	  =	  Range("B6")	  
vp	  =	  Range("B7")	  
vc	  =	  Range("B8")	  
N	  =	  Range("B9")	  
RAp	  =	  Range("b10")	  
SAp	  =	  Range("b11")	  
RAc	  =	  Range("b12")	  
SAc	  =	  Range("b13")	  
alpha	  =	  Range("B14")	  
Init	  =	  Range("B15")	  
St	  =	  Range("B16")	  
	  
minmup	  =	  mup	  -‐	  RAp	  ‘range	  is	  established	  
maxmup	  =	  mup	  +	  RAp	  
	  
minmuc	  =	  muc	  -‐	  RAc	  
maxmuc	  =	  muc	  +	  RAc	  
	  
StepsP	  =	  (maxmup	  -‐	  minmup)	  /	  SAp	  +	  1	  
StepsC	  =	  (maxmuc	  -‐	  minmuc)	  /	  SAc	  +	  1	  
Total_Possibles	  =	  StepsP	  *	  StepsC	  
nmbr	  =	  1	  
	  
ReDim	  Ambiguity(1	  To	  Total_Possibles)	  ‘possibilites	  are	  put	  into	  array	  and	  then	  the	  best	  or	  
worst	  is	  found	  for	  value	  or	  timing.	  
	  
For	  i	  =	  minmup	  To	  maxmup	  Step	  SAp	  
	  	  	  	  For	  j	  =	  minmuc	  To	  maxmuc	  Step	  SAc	  
	  	  	  	  	  	  	  	  option_price	  =	  Quadrinomial(P,	  K,	  T,	  r,	  i,	  j,	  vp,	  vc,	  N,	  Init,	  St)	  
	  	  	  	  	  	  	  	  Ambiguity(nmbr)	  =	  option_price	  
	  	  	  	  	  	  	  	  nmbr	  =	  nmbr	  +	  1	  
	  	  	  	  	  	  	  	  Init	  =	  Range("B15")	  
	  	  	  	  Next	  j	  
Next	  i	  
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alphaoption	  =	  WorksheetFunction.Min(Ambiguity)	  *	  (1	  -‐	  alpha)	  +	  
WorksheetFunction.Max(Ambiguity)	  *	  alpha	  
Range("B18")	  =	  alphaoption	  
	  
End	  Sub	  
 


