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ABSTRACT 

In this thesis I combine the filtered historical simulation (FHS) method of Barone-Adesi, Engle and 

Mancini (2008) with the Realized GARCH model of Hansen, Huang and Shek (2011). I use the RGARCH 

model instead of the GJR-GARCH model, since realized data contains information on the volatility 

and contributes to more accurate volatility estimates. Using an empirical analysis, I apply the FHS 

method on in-the-money and out-of-the-money option data of the S&P 500, for the period January 

2nd 2002 till December 30th 2011. Based on statistical criteria such as the root mean squared error 

and the mean absolute error, the FHS method in combination with the RGARCH model improves 

option pricing. The latter method also produces accurate Value-at-Risk forecasts. 

Keywords: Filtered Historical Simulation, Realized GARCH, Option Pricing, State-Price-Density. 
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1 INTRODUCTION 

Since the 1980s and 1990s a major growth in the use of derivative products has taken place. Among 

the several types of derivatives, options are the most popular. With the increasing popularity of 

options, option pricing has become a major topic in financial literature (see e.g. Merton (1976), Cox, 

Ross and Rubinstein (1979), Bakshi, Cao and Chen (1997), Lee (2004), Barone-Adesi, Engle and 

Mancini (2008)). Regarding the financial pricing theory, an important concept is volatility. Volatility is 

a quantity which measures the fluctuation in prices, whether it may be asset or derivative prices. 

Often volatility is also seen as a measure of risk. When it comes to derivative pricing, there are two 

types of volatility i.e. realized volatility and the implied volatility. The realized volatility is simply a 

calculation as a function of historical returns e.g. the 1 month standard deviation of daily returns on 

options. The implied volatility on the other hand refers more to a volatility level based on the 

market’s assessments. It can be implied from the derivative prices using a certain pricing model e.g. 

the Black-Scholes model. A well-known measure of the implied volatility of option prices on the S&P 

500 is the Chicago Board Options Exchange Market Volatility Index, also known as the VIX index. In 

this thesis, I incorporate a realized measure of the volatility (i.e. the realized kernel) in an option 

pricing model. 

While several option pricing models have become popular during the past 30 years, few models 

make besides the historical asset prices use of the information contained in option prices to actually 

price the options (see e.g Duan (1995) and Heston and Nandi (2000)). However, a recent option 

pricing method of Barone-Adesi, Engle and Mancini (2008), BAEM hereafter, uses the information of 

the prices of the option and the underlying while allowing for disturbances with different density 

parameters by means of the filtered historical simulation (FHS) method. Although the method of 

BAEM (2008) outperforms other competing option pricing models, it is based on the asymmetric 

Generalized Auto-Regressive Conditional Hetroskedasticity (GARCH) model of Glosten, Jagannathan 

and Runkle (1993), which does not take into account information of realized measures3 such as the 

realized variances.  

Outside of the option pricing literature Hansen, Huang and Shek (2011) show that the GARCH 

volatility model is outperformed by the Realized GARCH, hereafter RGARCH, model. The key idea of 

the RGARCH model is to use the information of a realized measure in modelling the volatility. 

                                                           
3
 A realized measure is a statistic derived from high-frequency data, e.g. realized variance, realized kernel, 

intraday range, number of transactions and trading volume. 
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Moreover, the model not only specifies a relationship for the return series and the conditional 

volatility, but a measurement equation relating the realized measure to the conditional volatility is 

specified as well.  The model inhibits an ARMA structure for the conditional variance and the realized 

measure. In this way it facilitates coherence between returns and future volatility in a simple 

manner. 

The contribution of this thesis is to merge the approach of BAEM (2008) for option pricing with the 

innovation of the RGARCH model to use realized information. To implement this, I start from the 

method of BAEM (2008), the FHS-GJR method hereafter, but I use a RGARCH instead of the Glosten, 

Jagannathan and Runkle (GJR) model. In this way the key features of the FHS method, such as 

historical and option pricing returns, flexible change of measures and nonparametric innovation 

distributions, are combined with a RGARCH model, which takes information on realized measures 

into account. Thus, in this thesis I study whether applying the filtered historical simulation method on 

the RGARCH model of Hansen, Huang and Shek (2011), improves the option pricing method of 

Barone-Adesi, Engle and Mancini (2008). 

To answer this question, I perform an empirical analysis. As a starting point, I replicate the results of 

BAEM (2008) as far as the FHS approach is concerned, by using similar data. Next, I reproduce the 

results of HHS (2011) for the Realized GARCH model, also using similar data. Thereafter, I combine 

the FHS approach of BAEM (2008) and the RGARCH model to check whether applying the FHS 

method on a RGARCH model improves the option pricing method of BAEM (2008). This combination 

is referred to as the FHS-RGARCH method. 

The data I use for the empirical analysis consist of several parts. Firstly, for the replication of BAEM 

(2008), I use data on European options on the S&P 500 index, for the period January 2nd 2002 –

December 29th 2004. Also, the replication of BAEM requires data on the S&P 500 index values for the 

period January 1st 1985 until December 29th 2004. For the replication of the RGARCH model, I use the 

data on the S&P 500 returns and the realized kernel, for the period January 1st 2002 – August 31st 

2008. Finally, when combining the Realized GARCH model with the FHS method, I use European 

options on the S&P 500 index for the period January 2nd 2002 –December 30th 2011 and data on the 

S&P 500 index values and the realized kernel for the period January 3rd 1996 until December 30th 

2011. 

I compare the results of the FHS-RGARCH method with those of the FHS-GJR method in several ways. 

Firstly, I evaluate these methods on their ability to price options correctly. As evaluation criteria I use 

the statistical criteria: the root mean squared error, the mean absolute error, the minimum and 
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maximum pricing errors and the percentage of positive pricing errors. Furthermore, I look at the 

state price density estimates and their accordance with the characteristics in financial markets. Also, 

I perform an inference on the volatility estimates resulting from the FHS-RGARCH method. I evaluate 

these volatility estimates by evaluating the VaR using the correct conditional coverage test and 

comparing the test results to those of the FHS-GJR method. Finally, the volatility estimates can be 

compared to the volatility indicated by the VIX index. 

The FHS method combined with the RGARCH model is able to price options better compared to the 

GJR model based on the statistical criteria such as the root mean squared error. This is due to the 

high information contained by both the FHS method (through historical shocks) and the RGARCH 

model (through the realized measure). Also, the FHS-RGARCH method produces risk-neutral densities 

quite similar to pricing densities. Besides, based on the conditional coverage test, the FHS-RGARCH 

method produces accurate VaR and thus volatility estimates. 

The remainder of this paper is organized as follows. Chapter 2 describes previous conducted research 

on option pricing and GARCH models. In Chapter 3 I describe the methods I use in thesis, together 

with the evaluation methods. Chapter 4 elaborates on the dataset used for the empirical research. I 

present the results of the empirical analysis in Chapter 5. Chapter 6, finally, concludes this thesis. 
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2 LITERATURE 

In 1973, Black and Scholes developed the first option pricing model (Black and Scholes (1973)). Their 

option pricing method was based on a replication of a portfolio consisting of the underlying asset and 

a riskless bond. However, this pricing technique becomes less precise for markets with changing 

volatilities, which happens to be the case in real markets. Therefore several recent studies have been 

using models that consider both historical asset and option pricing (i.e., risk neutral) return dynamics 

(e.g. Duan (1995) and Heston and Nandi (2000)). Among models that focus on return dynamics, 

GARCH models are the most popular ones. GARCH is often used to capture the changing volatility or 

risk of asset returns (e.g. Holt and Aradhyula (1990), Ledoit, Santa-Clara and Wolf (2003), Wagner 

and Marsh (2005)). When it comes to option pricing, recent GARCH-type pricing models focus not 

only on the dynamics of the historical asset returns, but on the option pricing returns as well. 

However, until 2008, previous studies assumed the same model parameters for the historical and 

pricing distributions, leading to poor pricing performances (Chernov and Ghysels (2000) and 

Christoffersen and Jacobs (2004)). This changed when Barone-Adesi, Engle and Mancini (2008) 

proposed a new method of option pricing, in which they considered the historical and pricing 

distributions to be different. Barone-Adesi, Engle and Mancini apply a filtered historical simulation 

technique on the asymmetric GARCH model of Glosten, Jagannathan and Runkle (1993), the GJR 

model.  

The filtered historical simulation (FHS) method introduced by Barone-Adesi, Giannopoulos, and 

Vosper (1999) is a scenario generating technique which makes use of a combination of past returns 

and nonlinear econometric models to simulate possible future price values which are then used to 

construct a probability distribution. Compared to a simple historical simulation, the FHS method has 

the major advantage of incorporating the volatility reflected in markets; i.e. in order to make past 

returns stationary and generate suitable shocks for the simulation process, the FHS method first 

scales the returns on each day by the volatility on that day. Next, the volatility conditions prevailing 

in the markets are reflected by multiplying the scaled returns by forecasts of the volatility. Besides 

the advantage of incorporating volatility conditions, another advantage of the FHS method is the use 

of a semi-parametric simulation technique. In the FHS method, no assumption is made regarding the 

probability distribution of the return series. Instead the historical or empirical distribution is used, 

allowing the data to set its own course. In this way the FHS method allows for fat tails, volatility 

clusters and changing means. Since risk estimation is highly dependent on good prediction of 

uncommon events, simulation models drawing innovations from theoretical distributions may 

discard ‘catastrophic risks’. However, the FHS method accounts for these risks and is therefore a 
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prudent approach for parameter calibration of volatility models. Other advantages of the FHS 

method are that this simulation technique easily deals with dependencies across large numbers of 

assets, generates a lot of scenarios for the mean and variance of each risk factor in a multi-period 

horizon, and is able to capture cross-dependencies while maintaining reasonable computation time.4 

The FHS method appears promising, though, one may need to apply additional refinements to take 

time-varying correlations into account and to choose the appropriate length of the historical sample 

period (Pritsker (2001)). By using the FHS method, BAEM (2008) allows for an option-pricing 

distribution which differs in shape from the historical distribution. With the help of an extensive 

empirical analysis, BAEM show that their method outperforms other competing GARCH models and 

ad hoc Black-Scholes option pricing models. 

Besides developments in option pricing methods such as that of Barone-Adesi, Engle and Mancini 

(2008), progress has also been made in the volatility models itself. After the introduction of the 

autoregressive conditional hetroskedasticity (ARCH) model in 1982 by Robert F. Engle, his student 

Bollerslev came up with a more general version of this model in 1986, called the Generalized 

AutoRegressive Conditional Hetroskedasticity (GARCH) model. Since then, several variants of this 

GARCH model have been developed (e.g. EGARCH by Nelson (1991), NGARCH of Engle and NG 

(1991), GJR-GARCH (Glosten, Jagannathan and Runkle (1993)), QGARCH by Sentana (1995) and 

TGARCH by Zakoian (1994)). All these GARCH models have in common that they only use the squared 

returns to extract information about the latent volatility process. The difference between the 

models, however, lies in the specified GARCH equations that determine how the squared returns are 

related to the level of volatility. A disadvantage of only using the squared returns to determine the 

volatility level is that the conditional variance in GARCH models needs many periods to adjust to its 

new level (see Andersen et al. (2003)). To tackle this problem a new type of model, the so-called 

GARCH-X model, is employed (see Engle (2002) and Forsberg and Bollerslev (2002)). The GARCH-X 

model relates the volatility level in the GARCH equation also to realized measures such as the 

realized variance, bipower variation, realized kernel etc. Though, in this model, no latent volatility 

process of the realized measures is specified.  

The first model introducing additional latent volatility processes for the realized measures is the 

multiplicative error model (MEM) of Engle and Gallo (2006). Another well-known model of this type 

is the HEAVY model of Shephard and Sheppard (2010). Research, among which Christoffersen et al. 

(2010) and Dobrev and Szerszen (2010), show that the economic and statistical gains of volatility 

                                                           
4
 See the official website of the FHS: http://www.filteredhistoricalsimulation.com/ 

http://www.filteredhistoricalsimulation.com/
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models with well specified realized measures are quite large. The reasoning is that good realized 

measures are much more informative about the current volatility level than the squared returns. 

Consequently, Hansen, Huang and Shek (2011) introduce the Realized GARCH model (RGARCH) which 

is a GARCH model with realized measures, in which a ‘measurement equation’ relates the conditional 

variance of the returns to the realized measure. Using an empirical application, Hansen, Huang and 

Shek (HHS, hereafter) show that the RGARCH model substantially improves the empirical fit 

compared to the standard GARCH models that only use return series. Compared to the other well 

performing models that incorporate realized measures (i.e. the MEM and HEAVY model), the 

reasoning behind the RGARCH model is that it is a simple yet well performing model that directly 

specifies a relation between the returns and future volatility allowing in this way construction of 

multiple period forecasts. 

Inspired by the success of the filtered historical simulation method applied by BAEM (2008) for 

option pricing and the success of the RGARCH model in empirical fitting, I introduce a combination of 

the filtered historical simulation method of BAEM (2008) with the RGARCH model of Hansen, Huang 

and Shek (2011). The FHS approach which allows for semi-parametrical shocks in the return series is 

similarly applied on the shocks in the realized kernel series. In this way the benefits of semi-

parametric simulation of the FHS method and the extra information of the realized measure in the 

RGARCH model are combined effectively. Besides applying the FHS method on a RGARCH model 

instead of a GJR model, compared to BAEM (2008), I not only expand the sample period from 2002 – 

2004 to 2002 – 2011, but I also consider in-the-money options and options with very short maturities 

as well, while BAEM (2008) restrict their empirical analysis to out-of-the money options with certain 

characteristics (see Section 4.2.1). 
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3 METHODS 

In this chapter I describe the methods and models. The first subsection in this chapter gives an 

overview of the FHS-GJR method and describes the filtered historical simulation steps to be applied 

on the GJR model (as is done by BAEM (2008)). Next, the second subsection delineates the RGARCH 

model of HHS (2011). Combining the FHS method for option pricing of BAEM (2008) with the 

RGARCH model, in the third subsection I describe the FHS-RGARCH method, which is the main 

innovation of this thesis. Finally, in the last subsection of this chapter I describe three evaluation 

methods used in this thesis, which are categorized into statistical criteria, state-price-densities and 

volatility evaluation.  

3.1 GJR-GARCH with Filtered Historical Simulation 

As mentioned earlier in Chapter 2, Barone-Adesi, Engle and Mancini (2008) use an option pricing 

method which is based on the application of the filtered historical simulation (FHS) on a GJR volatility 

model. The FHS method is a semi-parametric simulation technique. The FHS method as applied by 

BAEM (2008) is given by the following steps: 

1. Let    denote the price of the underlying on day  . For a given day   estimate then, using   

historical log-returns of the underlying (       (
  

    
)                        , 

the following GJR model: 

         

  
         

       
           

     
(1) 

in which                     and       , when        and   otherwise. Thus, an 

assumption of zero mean and unit variance for the innovations    is made. For convenience I 

leave out the index   on the parameters which are estimated each day   using a rolling 

window of length  . Note that the estimation of the set of parameters             

occurs under the historical measure  , since the historical (index) prices are used. The 

empirical innovations    are also estimated. 

2. Initialize a set of parameters    equal to  ̂, which is the estimate of   obtained in step 1.  

3. Given   , simulate an asset return path from   to     using Equation (1) for     

       where      . Simulate the return path by randomly drawing one of the 

estimated past innovations of step 1, say  [ ], and consequently calculating the conditional 

variance     
   Next, draw a second innovation  [ ] and calculate     

 . This process continues 
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until time    . The  -period return is then equal to          (    ∑        [ ]
 
   ), 

where    is fixed at the short term risk-free rate. 

4. Estimate the state price density or martingale measure (Harrison and Kreps (1979)) for   

periods by repeating step 3 a large number of times.  

5. Calculate the price of a call option with strike   and maturity   at time   as 

    

 
∑        

   
       

   , where   
   

 is the simulated asset price at time   in the  th sample 

path and   is the total amount of simulated paths.   corresponds to the  -period interest 

rate. Calculate put prices analogously. 

6. Let the parameters    vary in such a way that the mean squared pricing error 

∑         
   

    is minimized, where          is the difference between the price simulated 

by the GARCH model and the market price of option   with strike    and maturity   .    is 

the total number of options on a given day  . Stop with the calibration of    when the mean 

squared pricing error is under a predefined threshold. 

Step 3 to step 6 can be seen as an optimization procedure. Following BAEM (2008), I perform this 

minimization process using the fminsearch algorithm of Matlab. More specifically, I make use of the 

Nelder-Mead algorithm. However, the GJR model requires some restrictions. In fact, for the variance 

series   
  to be positive, it is necessary that    . Also, stationarity in the GARCH equation requires 

that     
 

 
   , while     and   should be positive (Villar and Ortega (2010)). Since the GJR 

model parameters require some stationarity restrictions, I use parameter transformations in order to 

use unconstrained minimization. See Appendix A, for the exact parameter transformations. To 

estimate the   -period interest rate   in step 5, I use the 1-month, 3-month, 6-month, 1-year, 2-year 

and 5-year US Treasury Constant Maturity rates. In particular, assuming 30 days for each month, the 

 -period interest rate can be obtained by applying linear interpolation. 

In this thesis I differentiate between estimated parameters and calibrated parameters. Estimated 

parameters are obtained using a certain estimation procedure, such as (quasi) maximum likelihood, 

and rely on observed data. These are obtained in the first step of the FHS procedure. The calibrated 

parameters on the other hand, are obtained by setting the parameters in such a way that the 

difference between the simulated option prices and the observed option prices are minimized. 

Calibration in this context thus also relies on simulations. Therefore, calibrated values may differ, 

though insignificantly, each time an empirical analysis is conducted. 
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3.2 Realized GARCH 

In the previous subsection I described the FHS-GJR method. However, in thesis I apply the FHS 

method of BAEM (2008) on a volatility model that incorporates the information contained in realized 

measures. Beside MEM and HEAVY, another model that completely specifies the relations between 

realized measures and the volatility is the Realized GARCH model of Hansen, Huang and Shek (2011). 

In accordance with HHS (2011), I use the log-linear specification of the RGARCH model. The main 

reason for this choice is that the logarithmic specification automatically ensures that the variance 

and the realized kernel are positive. In addition, since the FHS method uses a moving window 

estimation technique, the RGARCH model may be exposed to large shocks. For the linear 

specification, this may result in violating the conditions of positiveness of the realized kernel and thus 

the variance series, requiring extra complications for model estimation. Since the log-linear 

specification automatically guarantees positiveness of the realized kernel and the variance, this 

problem cannot occur for the log-linear specification.  

The RGARCH(1,1) model in its log-linear specification can be written as: 

            

      
              

              

                 
               

(2) 

in which                 ,                 
   and   

             where the information set is 

defined as                        , with    and    the return and the realized measure on day  . 

The three equations are called the return equation, the GARCH equation and the measurement 

equation, respectively.       is called the leverage function, since it captures the relation between 

the shocks in returns and future volatilities (indirectly). This is a crucial characteristic since it is well-

known in the financial world that the market tends to be more sensitive to negative shocks than 

positive shocks. Following HHS, I assume that the leverage function has a simple quadratic form, 

namely                 
    , such that  [     ]    for each distribution with  [  ]    and 

 [  ]   . This leverage function       is closely related to the news impact curve which depicts the 

effect of positive and negative shocks on future volatility. The Realized GARCH model used in HHS 

(2011) assumes    . However, for completeness and comparability with the return equation of the 

GJR model, the RGARCH model as presented in Equation (2) allows for an average return. 

The RGARCH model of Equation (2) implies some parameter restrictions. For the GARCH equation, no 

positiveness restrictions are required for   since the log-linear specification automatically allows for 

positive values of   
 . However, to let       

   be a stationary time series, it is required that 
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        and      . Regarding the measurement equation, no special restrictions are 

required for the parameters due to the log-linear specification. The variance of   , though, needs to 

be positive (  
      

To estimate the RGARCH model I employ the quasi-maximum likelihood (QML) method, which is 

consistent with literature (see e.g. Lee and Hansen (1994), Harvey et. al (1994), Alizadeh et. al (2002), 

Hansen, Huang and Shek (2011)). Adopting a Gaussian specification for both    and   , the log-

likelihood function to be maximised can be expressed as:  

 
           

 

 
∑      

   
       

  
        

   
  

 

  
  

 

   

  (3) 

in which                        
    The estimates  ̂ are obtained by numerical optimization.5 

Although the RGARCH model requires constrained optimization, I perform the QML using the 

fminsearch function of the software package Matlab. To utilize the unconstrained optimisation 

method, I again use parameter transformations. I refer to Appendix A for these transformations. 

To obtain the standard deviations of the QML estimations, I use the inverse of the Fisher information 

matrix as follows: 

 
 ̂  (

          

     )

  

 |

 
 

   ̂
   (4) 

 where  ̂  is the estimated variance matrix of the QML estimates. So, the standard deviations can be 

obtained with the hessian matrix of the log-likelihood function. I compute the hessian matrix 

numerically with the fminunc optimization function in Matlab, which is able to produce the hessian 

of the optimized function for the optimum values. 

3.3 Realized GARCH with Filtered Historical Simulation 

In the previous two subsections I described the FHS-GJR method, which is the FHS method applied on 

a GJR model and the RGARCH(1,1) model of HHS (2011). In this subsection I describe the FHS-

RGARCH method. As I pointed out earlier, the FHS-RGARCH method is a combination of the 

previously described simulation steps of the FHS method but with a RGARCH model instead. 

                                                           
5
 Although the RGARCH model requires constrained optimization, I perform the QML using the fminsearch 

function of the software package Matlab. The reason for this is that the Nelder-Mead algorithm produces 
robuster optima compared to the Sequential Quadratic Programming algorithm used by HHS (2011). Applying 
the unconstrained optimisation method requires parameter transformations. These parameter transformations 
can be found in Appendix A. 
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Moreover, the steps are similar to those of the FHS-GJR method but Equation (1) should be replaced 

by Equation (2). Beside the realized measures, another dissimilitude of the RGARCH and the GJR-

GARCH model is the manner in which the models allow for a leverage effect. The GJR model, on the 

one hand, incorporates the leverage effect directly in the GARCH equation. The RGARCH model, on 

the other hand, includes the leverage effect indirectly through the measurement equation. The latter 

model may thus tend to neglect leverage effects as the realized measure tend to become less 

informative to the volatility.  

Combining the filtered historical simulation method with the RGARCH model, I apply the FHS-

RGARCH method as follows: 

1. For a given day  , using   historical log-returns of the underlying asset 

(       (
  

    
)                         I estimate the following RGARCH(1,1) 

model: 

            

   (  
 )        (    

 )      (    ) 

   (  )         (  
 )   (  )        

(5) 

in which                 ,                 
   and   

             where the information set 

is defined as                        . Thus, the model assumes zero mean and unit 

variance for the innovations   . Regarding the shocks in the log realized kernel the model 

only assumes zero mean. Again, I leave out the index   on the parameters that are estimated 

using a moving window. Note that similar to the FHS-GJR method, the estimation of the set 

of parameters                           occurs under the   measure, since the 

historical (index) prices are used. The innovations    and    are also estimated. 

2. I initialize a set of parameters        
  equal to  ̂        which is the QML estimate of 

        obtained in step 1. 

3. Given        
 , I simulate an asset return path from   to     using Equation (5) for 

           where      . Similar to the FHS-GJR method, I simulate a return path by 

drawing randomly one of the estimated past innovations with the corresponding kernel 

shock of step 1, say  [ ] and  [ ], and consequently calculating the conditional variance 

    
  6 Next, I draw a second pair of a return innovation and a kernel shock  [ ] and  [ ], and 

                                                           
6
 Thus the past innovations and kernel shocks are bootstrapped simultaneously. 
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calculate     
 . I continue this process until time    . The  -period return then equals 

         (    ∑        [ ]
 
   ), where I fix    at the short term risk-free rate. 

4. I estimate the state price density or martingale measure for   periods by repeating step 3 a 

large number of times. 

5. I calculate the price of a call option with strike   and maturity   at time   as 

    

 
∑        

   
       

   , where   
   

 is the simulated asset price at time   and   is the 

total amount of simulated paths, while   corresponds to the  -period interest rate. I calculate 

put prices in a similar way. 

6. I vary the parameters        
  in such a way that the mean squared pricing error 

∑         
   

    is minimized, where          is the difference between the price simulated 

by the model and the market price of option   with strike    and maturity   .    is the total 

number of options on a given day  . The calibration of        
  is finished when the mean 

squared pricing error is under a predefined threshold.7 

As in the case of the FHS-GJR method, the FHS procedure for this RGARCH model also uses linear 

interpolation for constructing the interest rates assuming 30 days a month. Similar to the FHS-GJR 

method and the QML estimation of the RGARCH model, I use the Nelder-Mead algorithm in 

combination with the parameter transformations for the optimizations. In addition, in the estimation 

step (step 1), I use the estimates of the previous day as start values, while for the first day the results 

of HHS (2011) are given as start values.  

3.4 Evaluation Methods 

In this section I describe the methods I use to evaluate the different models. The different methods 

can be roughly divided in to three groups, namely evaluation based on statistical criteria, evaluation 

based on the state-price-density and evaluation of the estimated volatility. These methods are 

described in the following subsections. 

3.4.1 Statistical Criteria 

To evaluate the FHS-RGARCH method, I use several statistical criteria. First of all I compare the 

results using the root mean square error (RMSE) which is the square root of the averaged squared 

deviations between the model and actual prices. To compare the results of the different models I 

                                                           
7
 To implement a robust method I perform the minimization process using the fminsearch algorithm of Matlab. 

More specifically, I make use of the Nelder-Mead algorithm. Since the RGARCH model requires some 
parameter restrictions, I use parameter transformations in order to use unconstrained minimization. See 
Appendix A, for the exact parameter transformations. 
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also use the mean absolute error (MAE), the mean outside error, which is the average error outside 

the bid-ask spread, the minimum and maximum pricing errors and the percentage of positive pricing 

errors. During the calculation of the pricing errors, the actual price of each option is calculated as the 

average of the best bid and best ask price. 

3.4.2 State-Price Density 

When it comes to derivative pricing, the price of a derivative is calculated as the net present value of 

the future cash-flows, using a risk-free rate  . In this process, the expected value is calculated using a 

probability density function (PDF) of the future cash-flows. Cox and Ross (1976) call this probability 

function the state-price-density (SPD) or the risk-neutral PDF, while Harrison and Kreps (1976) names 

it the martingale measure. In formula form the price of a derivative on time  , say   , with a payoff 

on the future date       can be expressed as: 

 
     [   

      ]      ∫                  

 

 

  (6) 

where        is the payoff of the derivative on time   as a function of the price of the underlying    

on time  ,          is the martingale measure on time   under the risk-neutral measure   for payoffs 

received at time  .   [ ] is the expectation function under the                  is the set 

containing all information up to time  .  

Determining the SPD can be quite a difficult task, since the risk-neutral PDF describes the 

probabilities of future prices. An approach to tackle this problem is to price the derivative using a 

historical measure, and apply a change of measure in the form of a SPD per unit probability. The 

derivative price can then be written as: 

 
     [         ]  ∫                          

 

 

  (7) 

where   is the historical measure,      is the PDF under the historical measure at time   for payoffs 

received at time   and      is the SPD per unit probability.      is the also called the asset pricing 

kernel (Rosenberg and Engle (2002)) or stochastic discount factor (Campbell, Lo and MacKinlay 

(1997)). Mathematically,      is also known as a Radon-Nikodym derivative. An advantage of the SPD 

per unit probability is the high information content of it or as Aït‐Sahalia and Lo (1998) puts it: “From 

a pricing perspective, SPDs are "sufficient statistics" in an economic sense; they summarize all 

relevant information about preferences and business conditions for purposes of pricing financial 

securities.” Using the SPD per unit probability and historical asset or index prices, the equilibrium or 

market prices of the derivatives can be approximated. On the other hand, using the market prices of 
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the derivatives and the historical distribution, the SPD containing information about market 

characteristics can be obtained. While several option pricing models assume a special form for      

(see e.g. Aït-Sahalia and Lo (2000), Jackwerth (2000) and Rosenberg and Engle (2002)), the option 

pricing method of BAEM using the FHS approach makes no certain assumption on the change of 

measure. Beside statistical measures such as the RMSE or the MAE, one could also evaluate the FHS-

GJR and FHS-RGARCH option pricing methods by verifying to what extent the estimated SPDs 

correspond to market characteristics. 

3.4.3 Volatility Evaluation 

Besides the correctness of option pricing, another way to evaluate the different methods is the 

estimation accuracy of the volatility. Therefore, in this section I describe the volatility evaluation of 

the FHS-GJR and the FHS-RGARCH method. Since proxies for volatility are usually quite noisy, I 

evaluate the methods indirectly by means of the Value-at-Risk (VaR). Hence, the first subsection 

focuses on the construction of the VaR measures. To evaluate the VaR forecast, I use the correct 

(un)conditional coverage tests and the independence test. These are described in the second 

subsection. I compare the VaR results of the FHS-GJR and the FHS-RGARCH method to the VaR 

resulting from the VIX index. 

3.4.3.1 Constructing the Value-at-Risk (VaR) 

The VaR is the minimum return that could occur over a given holding period with a specified 

confidence level. To construct the daily VaR measures, the volatilities are required. After constructing 

the volatilities series using the FHS method, I calculate the VaRs. Mathematically the  -day VaR on 

day   can be defined as: 

            [         ]               (8) 

where  [ ] is the probability function,    is the information set up to time   and           is the 

cumulative distribution function of      conditional on   . In this thesis I limit the VaR analysis only to 

the one-day VaR.  

Assuming           , the        % - VaR can then be calculated as: 

                   (9) 

3.4.3.2 Tests  on the VaR 

One could say that a good VaR forecast should be one for which the fraction of the returns 

observations lower than the VaR is about the same as the VaR probability. So for a 5% VaR, a good 
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VaR is when approximately 5% of the returns sample is lower than the VaR. To evaluate the Value-at-

Risk forecasts formally, I use the tests of Christoffersen (1998). The idea behind these tests is 

following: 

Starting from a general (     )  interval forecast with the interval (                   ) 

constructed such that 

 [                        |  ]     

the VaR can then obtained by setting 

                                        

Thus the idea for these tests is to make use of the techniques developed for evaluating interval 

forecasts. Thus a good VaR forecast should meet the following properties: 

1. The fraction of the observations lower than the VaR must be equal to the nominal coverage 

probability. This is called the “correct unconditional coverage”. 

2. Return observations lower than the VaR should be spread out over the whole sample rather 

than occur in clusters. This is called “independence”, which is relevant for “volatility 

clustering”. 

The combination of both properties together is called the correct conditional coverage.  

3.4.3.2.1 Correct Unconditional Coverage 

To test for correct unconditional coverage, I use the likelihood ratio (LR) test of Christoffersen (1998). 

For a one-day (     )  VaR the test is as follows: 

Let      be the indicator function such that  

     {
                  
                          

 

Thus,      gives the violations of the VaR. Since a good VaR should have correct unconditional 

coverage, the expected number of violations should be equal to the nominal coverage probability. 

This implies the following for the null-hypothesis: 

    [      ]   [    ]    

Assuming independence of              the likelihood function for the forecasts with coverage 

probability    [      ], is given by: 



Realized GARCH Option Pricing using the Filtered Historical Simulation Approach 

3 Methods 

 

16 
 

                   [                       ] 

  [     ] [         ]  [     ] 

             

where    ∑   
    

 and        . The idea of the LR test is then compare the likelihood under the 

null hypothesis that     to the alternative    , where   is obtained using maximum likelihood 

(ML) estimation. The ML estimator of   is given by: 

 ̂   ̂[      ]  
  

     
  

The likelihood ratio value for the unconditional coverage test is then given by: 

 
          (

          

    ̂    ̂  
)         ̃

   
   

    (10) 

 where   
  is the chi-square distribution with 1 degree of freedom. 

3.4.3.2.2 Independence 

Besides correct unconditional coverage, good VaR estimates should have independence too. This 

implies that the VaR violations should not occur in clusters, but instead they should be spread out 

over the whole sample period. To test for independence in the violations, the null hypothesis can be 

defined as: 

    [         ]   [      ]            

The alternative hypothesis is a first-order Markov chain. Using the theory of conditional probabilities 

that  [   ]   [   ]   [ ], the likelihood can be written as: 

                   [                       ] 

  [                       ]   [                 ] 

  

 ∏ [               ]

   

   

  [     ]  

Suppose that the transition probability matrix of the first-order Markov chain is given by: 

   (
        

        
)  

where      [           ], the likelihood is then as follows: 
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    represents the number of observations in such a way that        and       The maximum 

likelihood estimate of    is then given by: 

 ̂   (
   ̂   ̂  

   ̂   ̂  
)  

(

 

   

       

   

       

   

       

   

       )

   

Under the null-hypothesis of independence, it holds that           . The likelihood then 

becomes  

                         
             

           

   can be estimated using maximum likelihood which yields: 

 ̂  
       

               
  

Using the maximum likelihood estimates of  ̂    ̂   and  ̂  the likelihood ratio for the test on 

independence is then equal to: 

 
           (

    ̂  
           ̂  

         

    ̂   
     ̂   

       ̂   
     ̂   

   
)         ̃

   
   

    (11) 

where   
  is the chi-square distribution with 1 degree of freedom. 

3.4.3.2.3 Correct Conditional Coverage 

While the previous two test focus on one of the properties of a good VaR estimate, in the evaluation 

of VaR measures it is necessary that both requirements are fulfilled. Hence, one could use the test 

for correct conditional coverage which is a joint test on both correct unconditional coverage and 

independence. The likelihood ratio value of the latter is a combination of the likelihood ratios of the 

correct unconditional coverage and independence test. The null-hypothesis to be tested for a 

         VaR is defined as: 

    [         ]   [      ]    

Under the alternative hypothesis,      is a first-order Markov chain, with transition probability matrix 

    This leads to the following likelihood ratio statistic: 
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          (
                 

 ( ̂              )
)         ̃

   
   

   

where   
  is the chi-square distribution with 2 degrees of freedom. Reasoning the same as before and 

conditioning on the first observation in test for unconditional coverage, it follows that  ̂   ̂ . The 

likelihood ratio value for the conditional coverage test can then easily be computed as: 

 
          (

                 

   ̂              
)        (

   ̂               

 ( ̂              )
) 

             

(12) 

where      and       are the likelihood ratio values of the correct unconditional coverage and 

independence test, respectively.   
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4 DATA 

In this previous chapter, I described the methods and models I use in this thesis. In this chapter I 

describe the data that I use for the empirical analysis in this thesis. This chapter consists of 6 

subsections. The first five subsections each describe a different type of data. The several types of 

data I use are the S&P 500 index data, S&P 500 Europeans-style option data, US Treasury rates, data 

on the realized kernel of the S&P 500 and the VIX index.  Finally, in the last subsection I describe the 

different sample periods I consider and present an overview of the datasets.  

4.1 S&P 500 index values 

 In this research I use several datasets for the empirical analysis. Firstly, I use the S&P 500 index 

values which I downloaded from the Economic Research website of the Federal Reserve Bank of St. 

Louis8. I use this dataset to estimate the model in the FHS method using a rolling window (step 1 of 

the FHS method). The S&P 500 index data covers the period January 2nd 1985 until December 30th 

2011. An overview of the evolution of the S&P 500 series during the time period January 2nd 1985 

until December 30th 2011 is given in Figure 1. This period incorporates two well-known crises: the 

burst of the tech and dotcom bubble in 2000 and the credit crunch in 2007. Especially the recent 

financial crisis resulted in a large negative shock at the end of 2008, which becomes clear if we look 

at Figure 1. Further investigation points out that this shock occurs on Friday, October 10th 2008, after 

the collapse of the Icelandic banks. From this figure, we can also see that the S&P is dominated by 

three booming periods (1985-2000, 2002-2007 and 2009-2011), which corresponds to the cycle of 

booming periods after the occurrence of crises. 

Estimates based on the historical returns may act as a good simulation basis for option pricing. 

However, the generally highly increasing values of the S&P 500 during 1985-1997 may impact the 

estimated average return ( ̂). During the FHS procedure it is more appropriate to calculate the 

options prices using a fixed short term risk-free rate    (see step 3 of the FHS calibration procedure), 

rather than an approximate average of the historical return,  ̂, since the former occurs under the risk 

free measure  , while  ̂ is estimated under the historical measure  . Obviously it is also possible to 

let   be calibrated along with the GARCH parameters of the GJR model. I present the results 

regarding these calibrations in Section 5.1. 

                                                           
8
 http://research.stlouisfed.org/fred2/series/SP500/downloaddata?cid=32255 

http://research.stlouisfed.org/fred2/series/SP500/downloaddata?cid=32255
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Figure 1: S&P 500 Price Index Values starting from 2 January 1985 until 30 December 2011 

 
        Note: This figure depicts the S&P 500 Price Index Values over the period January 2, 1985 till December 30, 2011. 

4.2 S&P 500 European Option data 

Besides the S&P 500 European option data, I use daily data of European-style S&P 500 options. 

Unlike the index values, the option data ranges from January 2nd 2002 until December 30th 2011. I 

downloaded the option data from the OptionMetrics database. This dataset includes for each day, 

for each option (distinguished by a unique option ID) the strike price ( ), the maturity ( ), the best 

bid and ask price on that day for that specific option, the implied volatility9 and the option type (call 

or put).   

Figure 2 presents the daily average option price for call and puts, together with the implied volatility. 

We notice two large shocks in the put prices (panel A) and in the implied volatilities (panel B), during 

2002 and around the end of 2008, 10th October to be more specifically. These shocks typically 

represent the effects of the burst of the dotcom bubble and the recent financial crisis, respectively. 

Especially for the recent financial crisis period, the shocks in the put prices correspond to quickly 

decreasing S&P 500 index values and US Treasury rates (see Figure 3 later on), both negatively 

related to the value of put options. This explains the large positive shock in the put prices during the 

                                                           
9
 The implied volatility is calculated using the Black-Scholes model (see RiskMetrics Group (2009) for the 

implied volatility calculation description). 
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recent financial crisis. The shocks in the call prices, though, remain moderate during this period, 

while the implied volatility of call-options closely follows the implied volatility of puts. The implied 

volatilities in panel B also exhibit a spiky pattern. The reason for this pattern is the incorporation of 

in-the-money (ITM) options in the dataset. Compared to out-of the money (OTM) options, ITM 

options have higher values, which correspond to higher levels of implied volatility. 

Figure 2: Daily average option prices and implied volatilities for January 2nd 2002 – December 30th 2011 

 
Note: This figure shows the daily average prices (panel A) and implied volatilities (panel B) of S&P 500 call and put options 
for the period January 2

nd
 2002 to December 30

th
 2011. The daily-average call-price is calculated as the average option price 

of all call options on a certain day. Each option price is calculated as the average of the best bid and ask price. The average 
put prices are calculated similarly. The daily average implied volatility is calculated analogously to the daily average option 
price. 

4.2.1 Filtering the data 

Following the research of Barone-Adesi, Engle and Mancini (2008), I filter the option data for only 

Wednesdays. I apply this filter to reduce the total number days in the sample period 2002 – 2011 

from 2519 to 516, leading to a reduction of the option data observations from 2,674,422 to 435,455. 

In this way the required computation time decreases significantly. I present an overview of the some 

key statistics of this filtered data in Table 1. The data inhibits the volatility smile property, i.e. the 

Black-Scholes volatility decreases as options tend to become at-the-money (ATM). The same holds 

for the option prices itself. Regarding the option prices, an important point to note here is that 

option prices at a certain moneyness level are influenced by both in-the-money and out-of-the-

money options e.g. at a moneyness level of 0.80, call-options are OTM, but put options on the other 
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hand are ITM. Since ITM prices of options are quite higher than the prices of OTM options, the 

average option price at a certain moneyness level is dominated by the prices of ITM options. Since 

ITM options decrease in prices as the option moves towards an ATM position, the average option 

price of both call-and puts (ITM and OTM) show a smile-shape when depicted against the 

moneyness, measured by the ratio of the spot price ( ) and the strike price ( ). From Table 1 

another basic property of options becomes clear i.e. as the maturity of options increases, the value 

of the option increases while the volatility and the bid – ask spread decrease.  

Table 1: Data Description for January 2nd 2002 – December 30th 2011 

Moneyness Maturity 

     Less than 60     60 to 160     More than 160 
  Mean Std. Mean Std. Mean Std. 

<0.85 Option Price $ 127.46 199.95 138.68 227.62 178.64 269.13 

    (%) 52.87 40.68 28.34 11.08 21.52 6.86 
Bid-Ask (%) 114.31 93.64 102.19 90.55 48.21 69.23 

Observations 16213  16104  39230  
        

0.85-1.00 Option Price $ 36.20 47.47 56.77 53.00 100.37 64.90 

    (%) 23.70 17.37 19.25 7.13 19.72 5.73 
Bid-Ask (%) 40.86 60.83 16.15 31.61 5.40 5.24 

Observations 48431  30697  38384  
        

1.00-1.15 Option Price $ 43.18 46.87 64.07 47.01 108.65 59.00 

    (%) 28.96 17.83 23.81 7.69 22.41 6.01 
Bid-Ask (%) 18.04 29.94 6.35 5.15 4.12 3.02 

Observations 51257  27113  34770  
        

>1.15 Option Price $ 71.76 130.04 78.58 129.28 126.49 162.14 

    (%) 55.38 35.12 39.91 15.75 32.06 11.46 
Bid-Ask (%) 76.58 74.20 50.52 64.34 21.94 37.89 

Observations 39938  33090  60228  
        

Note: This table reports the mean, standard deviation (Std.) and the number of observations for each moneyness/maturity 

category of out-of-the-money S&P 500 options observed on Wednesdays from January 2, 2002 until December 30, 2011.     
represents the Black-Scholes implied volatility. The bid ask spread (Bid-Ask) is calculated as 100 x (ask price – bid price)/market 
price, where the market price is assumed to be equal to the average of the bid and ask prices. The moneyness is the spot price 
divided by the strike price (   ). The maturity is measured in calendar days. This table is inspired by Table 1 of BAEM (2008). 

For the replication data to be similar to the data of BAEM (2008) who consider for the option data 

only the time-period of January 2nd 2002 to December 29th 2004, I filter the data even more. 

Moreover, in the data regarding the replication of BAEM (2008) I filter the data for only OTM options. 

Also, options with prices lower than 0.05$, implied volatilities higher than 0.7 and time to maturities 

outside the interval of 10-360 days are discarded. This yields a total of 25371 observations spread 

over 155 Wednesdays. Compared to the data of BAEM (2008) there are some minor differences 
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which is because the filtered data of BAEM has two extra days as they incorporate for two 

unavailable Wednesdays the subsequent days, while I simply discard them in my data filtration. 

4.3 US Treasury rates  

To approximate relevant interest rates used for the option pricing, I use the 1-month, 3-month, 6-

month, 1-year, 2-year and 5-year US Treasury Constant Maturity yields. These rates are also 

downloaded from the Economic Research website of the Federal Reserve Bank of St. Louis. I present 

the movements of the yields through time in Figure 3. Throughout the years there is a general 

decreasing trend in the US Treasury rates. Since interest rates are positively related to the value of 

calls, this would imply a decreasing trend in the call prices. However, this seems not to be the case if 

we look back at the graph of the option prices given in panel A of Figure 2. In contrast, there is a 

slightly increasing trend in the value of the call options which may be explained by the increasing 

value of the underlying in the same period (see Figure 1). For put options, one could argue its 

development similarly. For the recent financial crisis period, we also see a sudden decrease in the 

interest rate values, corresponding to the positive shocks in the put prices discussed before. 

Figure 3: US Constant Treasury Yields 

 
Note: This figure shows the US constant treasury yields in percentage for the 1-month, 3-month, 6-month, 1-year and 2-year 
bonds. 
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4.4 The Realized Kernel 

The implementation of the Realized GARCH model requires a realized measure. For this purpose, I 

use S&P 500 realized kernel data. Although the realized kernel data of HHS (2011) is available at the 

Journal of Applied Econometrics Data Archive10, I use realized kernel data ranging from January 3rd 

1996 until December 30th 2011 similar to that of Shephard and Sheppard (2010), which I downloaded 

from the Oxford-Man Institute's realized library.11 The reasoning behind this choice is that the data of 

HHS (2011) only covers the period January 1st 2002 until August 29th 2008. In order to apply the FHS-

RGARCH method on option prices starting from 2002, realized kernel data prior to the year 2002 is 

needed for the estimation in the FHS procedure (step 1). Therefore, the realized kernel data of HHS is 

not enough to apply the FHS method on the RGARCH model starting from 2002. However, for the 

replication of HHS (2011) I use the S&P index returns (open-to-close) and the realized kernel data 

from the Journal of Applied Econometrics Data Archive. An overview of the square root S&P 500            

   

Figure 4: Square root of realized kernel for the S&P 500 for January 3rd 1996 to December 30th 2011 

 
Note: This figure depicts the square root of the realized kernel for the period January 3

rd
 1996 to December 30

th
 2011. This 

kernel data is downloaded from the Oxford-Man Institute and is similar to the realized kernel as used in Shephard and 
Sheppard (2010). 

                                                           
10

 http://qed.econ.queensu.ca/jae/2012-v27.6/hansen-huang-shek/ 
11

 Heber, Gerd, Asger Lunde, Neil Shephard and Kevin Sheppard (2009) "Oxford-Man Institute's realized 
library", Oxford-Man Institute, University of Oxford, Library Version 0.2.  

http://qed.econ.queensu.ca/jae/2012-v27.6/hansen-huang-shek/
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realized kernel data from the Oxford-Man Institute is graphed in Figure 4. An eye catcher is the 

enormous shock at the end of 2008. This corresponds to the previously discussed shocks in the 

option prices and the S&P 500 index during the recent financial crises. Furthermore we see 

somewhat higher squared realized kernel values after the burst of the tech and dotcom bubble in 

2000. 

4.5 The VIX Index 

As described in section 3.4.3, I also look at the estimated volatility to evaluate the FHS-GJR and the 

FHS-RGARCH model. I compare the VaR models with VIX index. The VIX index data is downloaded 

from the official CBOE website.12 The VIX as downloaded from the CBOE website is an indication of 

the expected volatility of the S&P 500 index. In the beginning the VIX as introduced by Whaley (1993) 

was based on eight at-the-money call and put options on the S&P 100 index. As the demand for OTM 

and ATM options and S&P 500 options increased during the 90s, the calculation of the VIX index was 

changed in 2003. The new VIX index is based on ATM and OTM S&P 500 options. The CBOE has made 
  

Figure 5: Daily VIX index for the period 1996 - 2011 

 
Note: This figure shows the daily values of the not-annualized VIX index for the period 1996 – 2011. The data is downloaded 
from the official CBOE website. The index value is calculated using the new methodology, thus using ATM and OTM S&P 500 
options. 

                                                           
12

 http://www.cboe.com/micro/vix/historical.aspx 

http://www.cboe.com/micro/vix/historical.aspx
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for the period 1990 to present datasets of both calculation methods available on their website. The 

VIX index I use in this thesis is based on the new methodology.  

The daily VIX index is given in Figure 5. The VIX index looks quite similar to the square root of the 

realized kernel in Figure 4. However, the extremes of the VIX index appear to be smaller. The 

enormous shock in 2008 is clearly visible. Also, the high volatility values during the dotcom crisis 

appear from Figure 5. 

4.6 Sample Periods and Datasets Overview 

As described in the previous subsections, there are several types of data used in this research. Also, 

depending on the purpose of the data, the sample periods differ. The latter partly depends on the 

purpose of the datasets. For the replication of BAEM (2008), the sample period of the option data 

ranges from January 2nd 2002 till December 29th 2004. Besides, I use the US Treasury rates for the 

period 2002 – 2004 for the replication of BAEM (2008). Replication of the results of BAEM (2008) also 

requires the use of S&P 500 index values of the period 1985 – 2004. The latter is of importance for 

the first step of the FHS procedure. For the replication of Hansen, Huang and Shek sample period 

simply covers the period 2002 – 2008. To analyse the FHS-RGARCH method empirically, I use the 

sample period 2002 – 2011 for the option data and the US Treasury rates and the period 1996 – 2011 

for the S&P 500 index values and the realized kernel. The latter sample period is quite short 

compared to the S&P 500 index sample used for the replication of BAEM (2008) due to the fact that 

the available realized kernel data starts on January 3rd 1996 at its earliest. Since there are quite 

some datasets and different sample periods I use in this research, I present for the sake of clarity in a 

summarizing overview of the main purpose of the each dataset and the relevant sample-period in 

Table 2 on the next page.   
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Table 2: Overview of the different datasets and sample periods 

Purpose of use  Type of Data  Sample-
period 

Replication of the results of 
BAEM (2008) as far as the FHS 
method is concerned (see 
Section 5.1) 

 S&P 500 index values from OptionMetrics  1985 – 2004 

    

 S&P 500 option data filtered for 
Wednesdays and OTM options with 
certain properties (see section 4.2.1) 

 2002 – 2004 
 

    

 US Treasury Constant Maturity rates from 
the Federal Reserve Bank of St. Louis 

 2002 – 2004 

     

     

Replication of the results of HHS 
(2008) for the RGARCH (1,1) 
model (see Section 5.2) 

 S&P 500 open-to-close and close-to-close 
returns from the Journal of Applied 
Econometrics Data Archive 

 2002 – 2008 

    

 Realized Kernel data of HHS (2011) from 
the Journal of Applied Econometrics Data 
Archive 

 2002 – 2008 

     

     

Application of the FHS-RGARCH 
method and the FHS-GJR 
method for comparison (see 
Section 5.3) 

 S&P 500 index values from OptionMetrics  1996 – 2011 

    

 S&P 500 option data filtered for 
Wednesdays only 

 2002 – 2011 

    

 Realized kernel data as used by Shephard 
and Sheppard (2010) from the Oxford-
Man Institute 

 1996 – 2011 

    

 US Treasury Constant Maturity rates from 
the Federal Reserve Bank of St. Louis 

 2002 – 2011 

    

 VIX data from the official CBOE website, 
based on the new calculation 
methodology. 

 2002 – 2011 

     

Note: This table gives an overview of the several datasets used in this research. For each main purpose, the used data type 
and the relevant sample-period are given. 
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5 EMPIRICAL RESULTS 

Up till now, I have described the methods and the data I use to study whether applying the filtered 

historical simulation method with the RGARCH improves the option pricing method of BAEM (2008). 

In this section I report the results of the empirical analysis for the methods described in Chapter 3. 

This section consists of three subsections. The first subsection reports the results of the replication of 

BAEM (2008) as far as the FHS approach is concerned. Also, this subsection reports the results for 

applying the FHS-GJR method on both OTM and ITM options for the period 2002 – 2004. The results 

are compared using the statistical criteria and the state-price-densities. The second subsections 

presents estimation results of the RGARCH model using the data of HHS (2011) and the realized 

kernel from the Oxford-Man Institute. Finally, the last subsection reports the results of the FHS-GJR 

and the FHS-RGARCH applied on the period 2002 – 2011 for both OTM and ITM options. These 

results are compared not only using statistical criteria and the state-price-densities, but VaR 

estimates as well. 

5.1 GJR-GARCH with Filtered Historical Simulation 

This section presents the results of the FHS-GJR method applied on the data similar to BAEM (2008), 

for each Wednesday in the period 2002 – 2004. I report not only the results for the OTM option data 

but also for the ITM and OTM option data together. The latter results provide insight on the 

goodness of the FHS-GJR method for both OTM and ITM option pricing. To obtain the results, the 

length of the estimation window   is set equal to 3500 days (13 years approximately), while the 

number of simulation paths   for step 5 of the FHS procedure is set to 1000 (similar to BAEM).  

I present the results for the FHS-GJR method applied using ( ) FHS innovations and (  ) Gaussian 

innovations. The FHS innovations are obtained by randomly drawing estimated past innovations (see 

step 3 of the FHS procedure in Section 3.1), while the Gaussian innovations are randomly drawn from 

the standard normal distribution. Histograms of these innovations together with a histogram of the 

returns are presented for an arbitrary day, July 9th 2003, in Figure 6. The returns are clearly not 

normally distributed, which corresponds to the general characteristics of return series. This 

characteristic is closely followed by the FHS innovations, which is indeed one of the advantages of 

the FHS method. Moreover, it seems that the histograms of the FHS innovations and the return 

series indicate similar distributions, apart from the fact that the FHS innovations are standardized. 

This is one of the advantages of the semi-parametrical property of the FHS method. The normally 

distributed GAUSS innovations on the other hand, closely follow the standard normal distribution, 

which is obvious since I assume standard normality for the simulated GAUSS innovations.  
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Figure 6: Histograms of the returns, the FHS and Gaussian innovations for July 9th 2003 

 
Note: This figure presents histograms together with the theoretical distributions. For the return series, the FHS and the 
GAUSS innovations, this is assumed to be the normal distribution. Although the FHS method does not require any 
distribution assumption, for comparison purposes, the normal distribution is plotted.  

Table 3 presents the estimations and calibrations for   together with the short term treasury rates. 

The calibration yields negative, though insignificant, values for  , which are obtained under the risk-

neutral measure  . However, compared to the treasury rates the calibrated   values differ from the 

significant fixed treasury rates, which could be due to the fact that the latter are also influenced by 

regulation. From this table we can also see that the GJR estimation of   is quite higher than the 

calibrated values and the short term treasury rates. As argued previously in Section 4.1, this is due to 

the fact that the GJR estimation value is based on historical data (  measure), while the calibrated 

average return (  ) and the short term treasury rates represent the risk-neutral world. For the 

calibration of the GJR parameters of the GARCH equation ( ) it is appropriate to either use short 

term treasury rate or the calibrated values for  . Therefore, in further analyses, the average return is, 

in accordance with BAEM (2008), fixed at the 1-month treasury rate during the calibration of the 

GARCH equation parameters. 

Table 3: Estimated and calibrated values for   and the short term interest rate for January 2nd 2002 – 
December 29th 2004 

   ̂    (%)        
  (%)      

  (%)           (%)           (%) 

Year  Mean Std.  Mean Std.  Mean Std.  Mean Std.  Mean Std. 

2002  12.87 0.74  -0.60 1.24  -1.18 1.55  1.63 0.18  1.64 0.19 

2003  10.87 0.38  -1.36 0.94  -1.39 1.06  1.02 0.13  1.03 0.11 

2004  11.48 0.42  -0.54 1.83  -0.74 1.93  1.27 0.40  1.40 0.45 

                

Note: This table reports the average values of   for the different methods and the 1-month and 3-month rates for US T-Bills 
with constant maturities. The rates are annualized assuming 365 days each year and are given in percentages.     

  and 
      

  are calibrated using the GJR model on only OTM options. 
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5.1.1 OTM Options 

5.1.1.1 Statistical Criteria 

Table 4 presents several pricing error criteria for the FHS-GJR method when applied on only OTM 

options for the period 2002 – 2004. The pricing errors for the calibration using Gaussian innovations 

(GAUSS) are generally a bit smaller than the pricing errors of the calibration using FHS innovations. 

For example, the FHS innovations yield a mean absolute error of 1.77, while the Gaussian innovations 

result in a mean absolute error of 1.60. A possible reason for a slightly better performance of the 

Gaussian innovations may be the fact that the past does not guarantee for the future. Therefore, the 

historical distribution of the FHS method may fall short to describe future possible shocks, while the 

Gaussian distribution assumes equal probability of positive and negative shocks. For both methods, 

though, we see that the minimum and maximum pricing errors are more or less similar. Also, a bit 

less than a half of the pricing errors are positive, indicating that the options are slightly underpriced 

during the replication. Compared to the results of BAEM (2008), the pricing errors in the replication 

analysis are a bit higher. However, further investigation on the pricing errors of both calibration 

methods still indicate correctness of the FHS-GJR method, since the absolute pricing error series have 

a standard deviation of 2.11 dollars for the FHS method and 1.91 dollars for the GAUSS method, 

implying insignificance of the absolute pricing error series. For some additional results on the 

replication of BAEM (2008), I refer to Appendix C. 

Table 4: Pricing error statistics for the calibration of OTM options for the years 2002 – 2004 

 RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE% 

FHS 2.75 1.77 1.28 -19.73 15.80 46.28 178.23 35.01 23.40 
GAUSS 2.49 1.60 1.12 -19.16 12.94 42.67 159.02 29.44 17.88 
FHS (BAEM (2008))13 0.87 0.44 0.08 -6.02 4.64 50.50 23.69 21.16 10.75 

          
Note: This table reports the aggregate pricing errors statistics for the calibrations applied on out-of-the-money S&P 500 options. RMSE 
stands for the root mean square error of the dollar pricing error (model price−market price); MAE is the dollar average absolute pricing 
error and MOE is the dollar average pricing error outside the bid-ask spread (MAE% and MOE% are in relative terms as a percentage of 
the market price); Min (Max) is the minimum (maximum) pricing error; Err>0% is the percentage of positive pricing errors and ErrBD% 
is the average absolute pricing error as a percentage of the bid-ask spread. Inspired by Table 5 of BAEM (2008). 

We can also observe the correctness of the calibration methods when we look at Figure 7. In this 

figure we can see an example of how closely the model prices and market prices are from each other 

for the arbitrary day, July 9th 2003. It seems that the prices according to the model do not differ much 

from the market prices. 

                                                           
13

 Retrieved from Barone-Adesi, Engle and Mancini (2008), Table 5. 
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Figure 7: Call and put prices as determined by the FHS-GJR method for OTM options on 9 July 2003 

 
Note: This figure shows the option prices for the FHS-GJR method based on FHS and Gaussian innovations, together with the 
market price for out-of-the-money options on July 9

th
 2003. The price of calls (puts) is plotted on the left (right) side. 

Moneyness is the ratio of the S&P 500 index value S over the strike price K. Inspired by figure 2 of BAEM (2008). 

5.1.1.2 State-Price-Density Analysis 

Another way to evaluate the models is by looking at the state-price-density per unit probability 

(    ). The numerical values of     , with       for 4 different maturities for July 9th 2003 are 

given in Table 5. It appears that      is decreasing as the state-price of the S&P 500 is increasing. 

Since the change of measure may also be interpret as the shadow price of risk per unit probability 

(see Persson (1994)), for OTM options the decreasing trend of      implies that for higher state 

prices agents are less willing to take risk and therefore require higher risk premiums, which is in 

accordance with economic theory. The reasoning is as follows. Because      is the change of 

measure from   to  , low values of      imply higher probabilities under the historical measure 

compared to the risk-neutral measure. Therefore, when switching from a risk-neutral price to a risk 

containing price, the agent requires a higher risk-premium. 

The generally decreasing trend of      also becomes clear from Figure 8 (except for the GAUSS 

innovations for a time to maturity of 164 days). From this figure, it also seems that the SPDs are 

slightly negatively skewed, implying overall small positive returns, while less frequent but more 

extreme negative returns. The negative skewness characteristic is in accordance with financial 

markets. 
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Table 5: State-price-densities per unit probability on July 9th 2003 for different maturities using OTM options 

S&P 500                                     

800 
FHS 1.99 1.18 1.57 1.59 
GAUSS 2.08 1.54 1.59 1.55 
FHS (BAEM (2008)) 1.72 1.37 1.56 1.69 

      

900 
FHS 1.48 1.41 1.71 1.4 
GAUSS 1.65 1.18 1.69 1.67 
FHS (BAEM (2008)) 1.26 1.27 1.48 1.64 

      

1000 
FHS 1.06 1.15 1.32 1.53 
GAUSS 1.03 1.22 1.29 1.36 
FHS (BAEM (2008)) 1.08 1.15 1.22 1.26 

      

1100 
FHS 0.7 0.67 0.8 1.01 
GAUSS 0.68 0.7 0.82 1.02 
FHS (BAEM (2008)) 0.64 0.71 0.84 0.9 

      

1200 
FHS 0.29 0.56 0.44 0.55 
GAUSS 0.44 0.39 0.45 0.57 
FHS (BAEM (2008)) 0.2 0.36 0.48 0.59 

      
Note: This table reports the state price densities per unit probability of   38, 73, 164 and 255 days, estimated on July 9th 2003. 
       is the discounted ratio of the pricing over the historical densities of the calibrated GJR model.

 
The FHS(BAEM(2008)) 

values are retrieved from Barone-Adesi, Engle and Mancini (2008), Table 10 

Figure 8: SPDs and SPD per unit probability estimates for different maturities 

 
Note: This figure depicts the pricing and historical density estimates for different time horizons in the left graphs. The pricing 
densities are calibrated on the cross-section of OTM options using both FHS and Gaussian innovations for the GJR model. The 
historical densities are obtained by fitting the GJR model using  =3500 historical returns. The right graphs show the SPD per 
unit probability calculated as the discounted value of the pricing density over the historical densities. 
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5.1.2 ITM and OTM Options 

5.1.2.1 Statistical Criteria 

Since I use both ITM and OTM options for the FHS-RGARCH method, I also present some results of 

the FHS-GJR method applied on both ITM and OTM options for the period 2002 – 2004. In this way I 

can analyse whether incorporating all options in the dataset may significantly influence the results of 

the FHS-GJR method. The pricing error criteria for this period for both ITM and OTM options are 

given in Table 6. 

Table 6: Pricing error statistics for the calibration of ITM and OTM options for the years 2002 – 2004 

 RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE% 

FHS 4.53 3.11 2.37 -35.01 26.97 41.16 205.08 32.32 17.97 
GAUSS 4.41 3.06 2.31 -35.15 27.17 40.52 198.24 31.51 17.05 

          
Note: This table reports the aggregate pricing errors statistics for the calibrations applied on both OTM and ITM S&P 500 
options for the period 2002 – 2004. See Table 4 for legend. 

Figure 9: Call and put prices as determined by the FHS-GJR method for ITM and OTM options on 9 July 2003 

 
Note: This figure shows the option prices for the FHS-GJR method based on FHS and Gaussian innovations, together with the 
market price for in-the-money and out-of-the-money options on July 9

th
 2003. The price of calls (puts) is plotted on the left 

(right) side. Moneyness is the ratio of the S&P 500 index value S over the strike price K. 

If we compare Table 6 with Table 4, it seems that the pricing errors increase as I incorporate ITM 

options in the dataset. A possible explanation for this is that the prices of ITM options are quite 

different from OTM options. In this way the calibrated model has to accommodate both ITM and 
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OTM options in correct option pricing. This makes it more difficult to find one set of parameters that 

fits all. However, further investigation of these pricing errors point out again that the FHS-GJR 

method generally performs well, i.e. the standard deviations of the absolute pricing errors of the FHS 

and GAUSS calibration methods are 3.29 and 3.17 respectively. This indicates insignificant absolute 

pricing error series for the FHS-GJR method, even when ITM options are incorporated. I present an 

overview of the model performance for July 9th 2003 in Figure 9. We can see from this figure that 

prices determined by the FHS-GJR methods are quite close to the market prices. In short, the FHS-

GJR method is also able to determine the prices of in-the-money options quite well. 

5.1.2.2 State-Price-Density Analysis 

For ITM and OTM options, the interpretation of      becomes a bit ambiguous, since lower state 

prices influence both ITM puts and OTM call options. Figure 10 gives the pricing and historical 

densities, for OTM and ITM options together with the change of measure. It appears from this figure 

that similar to the situation of OTM options, the SPDs are a bit negatively skewed and the pricing 
  

Figure 10: SPDs and SPD per unit probability estimates for different maturities for ITM and OTM options  

 
Note: This figure depicts the pricing and historical density estimates for different time horizons in the left graphs. The pricing 
densities are calibrated on the cross-section of OTM options using both FHS and Gaussian innovations for the GJR model. 
The historical densities are obtained by fitting the GJR model using  =3500 historical returns. The right graphs show the SPD 
per unit probability calculated as the discounted value of the pricing density over the historical densities. 



Realized GARCH Option Pricing using the Filtered Historical Simulation Approach 

5 Empirical Results 

 

35 
 

densities of the FHS and GAUSS are quite close. For the change in measure, there is no overall trend. 

A possible reason for this is that since both OTM and ITM options are included, the information 

contained by the SPD per unit probability can be hardly allocated to a certain option type. 

5.2 Realized GARCH 

In the previous subsection I presented some results relating to the replication of BAEM (2008). In this 

subsection I report the results regarding the estimation of the RGARCH model given in Equation (2). I 

present the results for the replication of HHS (2011) as described in Section 3.2. Also, I show the 

results obtained from estimation of the RGARCH model using realized kernel data of the Oxford-Man 

institute. Finally, to gain some insight in the effect of incorporating an average return parameter ( ), I 

report the results of the parameter estimation without any restrictions on  . 

The results for the estimation of the RGARCH model using the data of HHS (2011) are presented in 

Table 7. This table presents different estimation results, namely: ( ) estimation using the data of HHS 

(2011), (  ) the results of HHS (2011), (   ) the results when the RGARCH model is estimated using the 

realized kernel data of the Oxford-Man institute when   is restricted to zero and (  ) estimation 

results using the Oxford-Man data when   is unrestricted. The results are based on returns scaled in 

percentages. When we compare the results for the replication of HHS (2011), the estimated RGARCH 

parameters are quite similar to the results of HHS (2011), while the standard deviations of the 

estimates are a bit smaller. Though, there is much resemblance between the replicative results and 

that of HHS (2011).  

To investigate the effect of the different datasets, we can compare the estimation results of the HHS 

replication to that of the Oxford-Man Institute with   fixed, for the period 2002 – 2008. It seems that 

using the kernel data of the Oxford Man Institute produces in general similar results as that of HHS 

(2011). Besides the difference between the use of realized kernel data from Hansen, Huang and Shek 

and the realized kernel data from the Oxford Man Institute, we can also conclude from Table 7 what 

the effect is of incorporating the years 2009 – 2011. It seems that there is no major difference in the 

estimated parameters when the latter period is added to the sample. This could probably be due to 

the fact that a part of the recent financial crises already is incorporated in the period 2002 – 2008. 

Finally, from Table 7 it also becomes clear that containing an average return parameter ( ) does not 

lead to major changes in the estimated values of the other parameters, which corresponds to the 

insignificance of the latter parameter when we look at the mean and the standard deviation of  . 

Concluding, the good performance results of the RGARCH model, does not fall short, when 
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estimating the RGARCH model with a parameter for the average return for the period 2002 – 2011 

using the realized kernel data of the Oxford-Man Institute. 

Table 7: Estimation results for the RGARCH model using the realized kernel data of HHS (2011) and the data 
from the Oxford-Man Institute 

 Replication of HHS (2011)  Oxford-Man Institute   restricted  
Oxford-Man Institute   

unrestricted 

 2002 – 2008  Results of HHS1  2002 – 2008  2002 – 2011  2002 – 2008  2002 – 2011 

 Mean Std.  Mean Std.  Mean Std.  Mean Std.  Mean Std.  Mean Std. 

 ̂ 0   0   0   0   0.00 0.02  0.01 0.02 

 ̂ 0.07 0.02  0.06 0.02  0.15 0.02  0.17 0.01  0.15 0.02  0.17 0.01 

 ̂ 0.53 0.03  0.55 0.03  0.64 0.02  0.61 0.02  0.64 0.02  0.61 0.02 

 ̂ 0.43 0.03  0.41 0.03  0.35 0.02  0.38 0.02  0.35 0.02  0.37 0.02 

 ̂ -0.19 0.04  -0.18 0.05  -0.43 0.03  -0.45 0.03  -0.43 0.03  -0.45 0.03 

 ̂ 1.03 0.04  1.04 0.06  0.98 0.03  0.98 0.03  0.98 0.03  0.98 0.03 

  ̂ -0.06 0.01  -0.07 0.01  0.04 0.01  0.03 0.01  0.04 0.01  0.03 0.01 

  ̂ 0.07 0.01  0.07 0.01  0.03 0.01  0.03 0.01  0.03 0.01  0.03 0.01 

   0.38 0.01  0.38 0.08  0.51 0.01  0.52 0.01  0.51 0.01  0.52 0.01 

                  

Note: This table reports the estimated values of the parameters of the Realized GARCH model. The table reports the estimates using the data from HHS 
(2011) together with the results of HHS (2011) and the parameter estimates when the realized kernel data of the Oxford-Man Institute is used. Since the 
Realized GARCH model as estimated in HHS (2011) does not allow for an average in the return series, the parameter   is fixed equal to 0 and therefore 
has no standard deviation.  

5.3 Realized GARCH with Filtered Historical Simulation 

In this section I present the empirical results for the application of the FHS-RGARCH method. 14 The 

results I present are based on ITM and OTM options for the sample January 2nd 2002 – December 30th 

2011. Besides the results of the FHS-RGARCH method, for comparability, I also present the results of 

the FHS-GJR method applied to ITM and OTM options for the latter sample period. The results are 

obtained using an estimation window length of        days (approximately 4 years) for the first 

step of the FHS procedure. The reason for the smaller window length compared to previous results in 

Section 5.1 is that the realized kernel data is available from 1996. In order to decrease the 

computation time, the number of simulation paths used in the FHS procedure ( ) is set equal to 100. 

From a conducted simulation study it appears that the reduction in the number of simulation paths 

used in the FHS procedure does not have a major influence on the results. See Appendix B, for the 

simulation study.  

                                                           
14

 Some additional results for the FHS-RGARCH method are presented in Appendix D. 
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5.3.1 Statistical Criteria 

Table 8 presents some price error statistics for the BAEM and the FHS-RGARCH method for 2002 – 

2011. Except for the results of the calibrations, this table also present the pricing errors resulting 

from option prices determined by parameter estimation instead of calibration (see the GJR and 

RGARCH rows). For completeness, the results for the FHS-GJR method applied on the period 2002 – 

2004 are presented again. 

Looking at Table 8, is seems that for the FHS-GJR method, the calibrated parameters with the 

Gaussian innovations perform the best. This is in line with results for the period 2002 – 2004 already 

presented in Table 6. Also, it seems that comparing the FHS-GJR method for 2002 – 2008 to the 

results of the period 2002 – 2004, the pricing errors seem to increase. This is because the former 

sample period includes the financial crisis of 2008 which is a period with higher volatilities. 

Therefore, it becomes more difficult to price options more accurately which leads to higher pricing 

errors. However, looking at the mean and the standard deviation of the absolute pricing errors, the 

BEAM method is still able to price the options appropriately, even for the period 2002 – 2011. 

Table 8: Pricing error statistics for the calibration of ITM and OTM options for the period 2002 – 2011 

 RMSE MAE MOE Min Max Err>0% ErrBD% MAE% MOE% SAE 

           
FHS-GJR (2002 – 2004) 
GJR 51.22 29.52 28.70 -176.32 280.42 44.50 1438.69 93.43 78.57 41.86 
FHS 4.53 3.11 2.37 -35.01 26.97 41.16 205.08 32.32 17.97 3.29 
GAUSS 4.41 3.06 2.31 -35.15 27.17 40.52 198.24 31.51 17.05 3.17 

           
FHS-GJR (2002 – 2011) 
GJR 35.30 18.72 17.63 -348.02 342.74 42.26 691.62 83.73 66.73 29.93 
FHS 22.98 12.46 11.37 -172.78 244.16 40.18 482.97 72.72 55.78 19.31 
GAUSS 19.69 11.10 10.02 -192.06 193.36 38.09 443.28 64.71 47.74 16.26 

           
FHS-RGARCH (2002 – 2011) 
RGARCH 39.60 19.68 18.59 -416.52 374.20 43.06 886.80 115.46 98.42 34.36 
FHS 8.14 5.34 4.29 -129.37 65.29 42.31 285.24 80.22 63.27 6.14 
GAUSS 8.41 5.62 4.57 -106.87 64.05 42.18 303.91 95.49 78.44 6.25 

           
Note: This table reports the aggregate pricing errors statistics for the FHS-GJR method and the FHS-RGARCH method, when 
the calibrations are applied on OTM and ITM S&P 500 options for the period January 2

nd
 2002 till 30

th
 December 2011. GJR 

and RGARCH indicate the pricing errors resulting from option prices determined by the estimated model parameters. FHS and 
GAUSS indicate the pricing errors resulting from the option prices determined by the calibrated parameters using FHS and 
Gaussian innovations respectively. RMSE stands for the root mean square error of the dollar pricing error (model price−market 
price); MAE is the dollar average absolute pricing error and MOE is the dollar average pricing error outside the bid-ask spread 
(MAE% and MOE% are in relative terms as a percentage of the market price); Min (Max) is the minimum (maximum) pricing 
error; Err>0% is the percentage of positive pricing errors and ErrBD% is the average pricing error as a percentage of the bid-
ask spread. SAE is the standard absolute error which is the standard deviation of the absolute pricing errors. 
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If we look at the results for the FHS-RGARCH method in Table 8, it seems that the calibration 

methods are much better than option pricing based on the QML estimated parameters of the 

RGARCH model. Moreover, the FHS method seems to perform the best, though, the Gaussian 

innovations yield smaller extreme pricing errors. Compared to the FHS-GJR method, the FHS-RGARCH 

method is performing much better, whether using FHS or GAUSS innovations. However, this does not 

seem to be the case if the options are priced using estimated parameters instead of calibrated 

parameters.  

It is interesting is to examine how close the model prices are to the market price. Therefore, for both 

the FHS-GJR method and the FHS-RGARCH method, I present the model prices and the market prices 

for July 9th 2003 in Figure 11. It seems that the GJR model prices are closer to the market prices when 

the estimated parameters are used. Surprisingly, the estimated RGARCH model seems to perform 

very bad in determining the option prices, although it incorporates extra information through the 

realized measure. However, the prices based on the calibrated parameters of the RGARCH model 

(the FHS-RGARCH method) seem to lie closer to the market prices compared to the GJR model. This is 

in line with the results observed in Table 8.  

Since the BAEM and the FHS-RGARCH methods are option pricing techniques, it may be interesting to 

observe how well the model prices are compared to the market prices for a financial crises period. As 

mentioned before, the enormous drop in the S&P 500 value occurs on October 10th 2008. Therefore, 

I have plotted for both methods the model and market prices for the next Wednesday, which is 

October 15th 2008, in Figure 12. From this figure it clearly appears that the GJR model is unable to 

produce accurate option prices on such a volatile day, whether it uses estimated or calibrated 

parameters. On the other hand, the RGARCH model performs quite well on this highly volatile day. 

To get an impression of the pricing errors during the whole period of 2002 – 2011, I present in Figure 

13 for call (panel A) and put (panel B) options for 2002 – 2011 the pricing errors of the FHS method 

applied on a GJR model (BAEM) and the pricing errors of the FHS method applied on a RGARCH 

model (FHS-RGARCH). It is remarkable that the FHS-RGARCH performs consistently well, though we 

observe a slight increase of the pricing errors during the recent financial crises period. The FHS-GJR 

method on the other hand is submitted to the state of the financial markets, since the pricing errors 

for the period 2007 – 2009 are relatively high (especially for put options). Another point that 

becomes clear from Figure 13 is that for the FHS-GJR method the pricing errors are generally positive 

(negative) for call (put) options, implying overpricing (underpricing) of the call (put) options. The FHS-

RGARCH method on the other hand does not exhibit this problem. 
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Figure 11a: Option prices for the FHS-GJR method on July 9th 2003  

 
Figure 11b: Option prices for the FHS-RGARCH method on July 9th 2003  

 
Note: This figure shows the option prices for the FHS-GJR method (Figure 11a) and the FHS-RGARCH method (Figure 11b), 
based on the estimated parameters, the FHS and the Gaussian innovations, together with the market price for in-the-money 
and out-of-the-money options on July 9

th
 2003. The price of calls (puts) is plotted on the left (right) side. Moneyness is the 

ratio of the S&P 500 index value S over the strike price K. 
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Figure 12a: Option prices for the FHS-GJR method on October 15th 2008 

 
Figure 12b: Option prices for the FHS-RGARCH method on October 15th 2008 

 
Note: This figure shows the option prices for the FHS-GJR method (Figure 12a) and the FHS-RGARCH method (Figure 12b), 
based on the estimated parameters, the FHS and the Gaussian innovations, together with the market price for in-the-money 
and out-of-the-money options on October 15

th
 2008. The price of calls (puts) is plotted on the left (right) side. Moneyness is 

the ratio of the S&P 500 index value S over the strike price K. 
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Figure 13: Pricing errors for the FHS-GJR and the FHS-RGARCH method for the period 2002 – 2011. 

 
Note: This figure depicts for the period 2002 – 2011 for call (panel A) and put (panel B) options the pricing errors of the 
BAEM and the FHS-RGARCH method when using FHS innovations. 

Concluding, one could say that applying the FHS method, surely improves option pricing, whether 

taking innovations of the historical distribution or the Gaussian distribution. Furthermore, using a 

RGARCH model instead of the GJR model does not lead to better option pricing results. However, 

when applied in combination with the FHS method, the RGARCH model performs a lot better than 

the GJR model, whether it concerns turbulent periods in the financial markets or not. 

5.3.2 State-Price-Density Analysis 

Figure 14 presents the SPDs and      for FHS-GJR and the FHS-RGARCH method, for different 

maturities, on October 15th 2008. Since these methods are applied on both ITM and OTM options, 

the interpretation of      becomes a bit more difficult, as explained before. It appears from this 

figure that similar to the previous results that the SPDs are slightly negatively skewed. However, 

unlike the previous results, the pricing densities of the FHS innovations are closer to the historical 

densities rather than the pricing density using Gaussian innovations. This is expressed by a very 

constant SPD per unit probability (close to 1). Especially for the FHS-RGARCH method, there is hardly 

any difference between the historical and the pricing density, which could probably be due to the 

information taken into account by the FHS and the RGARCH model together. In fact, while the FHS 

method incorporates historical information on the return series, the RGARCH model contributes by 

incorporating the historical information of the realized measure. This results in very good PDF      
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Figure 14a: SPDs and      estimates for different maturities on October 15th 2008 for the FHS-GJR method 

 
Figure 14b: SPDs and      estimates for different maturities on October 15th 2008 for the FHS-RGARCH method 

 
Note: This figure depicts the pricing and historical density estimates for different time horizons on October 15

th
 2008 in the 

left graphs. The pricing densities are calibrated on the cross-section of OTM options using both FHS and Gaussian 
innovations for the GJR model (Figure 14a) and the RGARCH model (Figure 14b). The historical densities are obtained by 
fitting the GJR, respectively RGARCH, model using  =1472 historical returns. The right graphs show the SPD per unit 
probability calculated as the discounted value of the pricing density over the historical densities.  
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estimation. The SPDs using Gaussian innovations on the other hand differ slightly more from the 

historical distribution. This indicates the importance of the ability of the FHS method to incorporate 

historical information. 

5.3.3 Volatility Evaluation 

In the previous sections I have presented the results of the FHS-RGARCH model as far as the 

statistical criteria and the state-price-densities is concerned, for the sample period 2002 – 2011. As 

described in section 3.4.3, another way to evaluate the FHS-RGARCH method is to look at the 

estimated volatilities. Therefore, this section compares the VaRs of the FHS-GJR and the FHS-RGARCH 

model to the VaRs estimated using the VIX index. 

Figure 15 presents 1%, 5% and 10% VaR estimates for the FHS-GJR (Figure 15a), the FHS-RGARCH 

(Figure 15b) method and the VIX index (Figure 15c). For the sake of clarity I plotted the VaR estimates 

of the three methods in separate charts. The VaR estimates for the FHS calibration methods yield 

slightly higher volatilities compared to the VIX index. In fact, in absolute terms, the smallest VaR 

estimates are obtained from the VIX index, followed by the FHS-GJR and last by the FHS-RGARCH 

method. However, higher absolute VaR estimates do not necessarily imply bad volatility estimates. 

When we look at the conditional coverage test results in Table 9, the VaR estimates seem to be 

performing quite good based on a 5% significance level. For all the VaR estmiates except for the 5% 

VaR for the FHS-GJR model, the null-hypotheses of approximately 1%, 5% and 10% independent 

violations cannot be rejected, indicating proper VaR estimates. Based on the p-values, the VIX index 

produces the best VaR estimates, followed by the FHS-GJR model and finally by the FHS-RGARCH 

model. 

Table 9: Results of correct conditional coverage test for VaR estimates 

  1% VaR  5% VaR  10% VaR 

       P-value       P-value       P-value 

FHS-GJR  1.62 0.45  7.36 0.03  1.66 0.44 

FHS-RGARCH  4.01 0.13  4.35 0.11  2.13 0.35 

VIX  0.34 0.84  1.13 0.57  0.85 0.65 

          

Note: This table reports the likelihood ratio and the corresponding p-values for the correct conditional 
coverage test applied on the 1%, 5% and 10% VaR estimates constructed using the FHS-GJR, the FHS-RGARCH 
method and the VIX index, for the period 2002 - 2011. 
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Figure 15a: S&P 500 returns together with the VaR-values for the FHS-GJR method for 2002 – 2011 

 
 

Figure 15b: S&P 500 returns together with the VaR-values for the FHS-RGARCH method for 2002 – 2011 
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Figure 15c: S&P 500 returns together with the VaR-values for the VIX index for 2002 – 2011 

 
Note: This figure depicts the return series of the S&P 500 index together with the 1%, 5% and 10% VaR-measures 
constructed using the FHS-GJR (Figure 15a), FHS-RGARCH method (Figure 15b) and the VIX index (Figure 15c), for each 
Wednesday during the period January 2

nd
 2002 to December 30

th
 2011. The legends also show the likelihood ratio and 

corresponding p-values of the correct conditional coverage test. 
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6 CONCLUSION 

In this thesis I have combined the option pricing method of Barone-Adesi, Engle and Mancini (2008) 

with the Realized GARCH volatility model of Hansen, Huang and Shek (2011). In fact, this thesis 

verified whether applying the filtered historical simulation method on the RGARCH model of Hansen, 

Huang and Shek (2011), improves the option pricing method of Barone-Adesi, Engle and Mancini 

(2008). At the same time, while BAEM (2008) is restricted to option pricing of out-of-the-money 

options, this thesis included also in-the-money options. Using an empirical analysis for the period 

2002 – 2011, I verified the option pricing method of a FHS approach on a RGARCH model. 

First I started with the replication of the FHS-GJR method to assure proper implementation and 

understanding of the applied method. Using similar data to BAEM (2008), I applied the FHS method 

on a GJR-GARCH model. The results of the replication generally matched those of BAEM (2008). After 

that, I extended the replication of the FHS-GJR method to a dataset including ITM options, while 

keeping the same sample period as BAEM (2008). This leaded to poorer, but still good option pricing 

results. Obviously, it is harder for a model to produce results that fit both types of options (ITM and 

OTM) than to produce results that fit only one option type (OTM only). 

Next, after replicating the FHS-GJR method, I continued with replicating the results of HHS (2011). 

Using the same dataset as Hansen, Huang and Shek (2011), I confirmed the implementation of the 

RGARCH(1,1) model. Thereafter, I estimated the RGARCH model using the realized kernel similar to 

Shephard and Sheppard (2010) to verify whether using different realized kernel data could lead to 

major differences. It appeared that using different realized kernel data has no major influence on the 

RGARCH estimation results. Even extending the period from 2002 – 2008 to 2002 – 2011 or allowing 

for an average return parameter in the model do not lead to major differences in the results, 

indicating the robustness of the RGARCH model as already praised by HHS (2011). 

Subsequently, proper implementation of the FHS method of BAEM (2008) and the RGARCH model of 

HHS (2011), gave rise to the main innovation of this thesis which is the combination the FHS method 

with the RGACH model (the FHS-RGARCH method). To compare the result to the FHS method 

combined with a GJR model (FHS-GJR method) I applied both methods on a dataset containing OTM 

and ITM options for the period 2002 – 2011. Based on statistical criteria, an estimated RGARCH 

model is unable to price options well, while the FHS method combined with the RGARCH model is 

strikingly better in option pricing, when compared to the FHS approach applied on a GJR model. 

Analysis of the pricing error series pointed out that where the FHS-GJR method is still delicate for 

turbulent periods, the FHS-RGARCH method deals with turbulent periods very well. Also, for the FHS-
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RGARCH model, the estimated state-price-densities under the risk-neutral measure are very similar 

to the historical distribution. Finally, the VaR estimates constructed from the FHS-GJR, the FHS-

RGARCH or the VIX index perform quite well based on the correct conditional coverage test. 

In this thesis I showed that the FHS method in combination with the RGARCH model improves option 

pricing when we look at measures such as the root mean squared error, the mean absolute error, 

state-price densities and estimated volatilities. The FHS method, which employs historical 

information of returns, combined with the RGARCH model, which uses the information of realized 

measures, contribute very well to the pricing of both out-of-the-money and in-the-money options. 

Even for the crises periods, this pricing method seems quite stable.  

For further research I have several suggestions. A first possibility is to apply another volatility model 

which incorporates a realized measure such as the MEM or HEAVY model. Also the use of jump-

robust realized measures could improve option pricing using the combination of the FHS method and 

the RGARCH model. Finally, further research could focus on the performance of option pricing 

methods based on a combination of the FHS method and a stochastic volatility model. 
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APPENDIX A PARAMETER TRANSFORMATIONS 

In this appendix I present the parameter transformations transformations I used to perform the FHS 

method by means of an unconstrained optimization algorithm (Nelder-Mead) instead of constrained 

optimization.  

A.1 Parameter Transformations for the GJR Model 

The parameter restrictions for the GJR model in Equation (1) are as follows15: 

     

        

    
 

 
    

(A1) 

To imply the restrictions one can use the unrestricted parameters  ̃  ̃ and  ̃ and utilise the following 

relations: 
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(A2) 

By substituting the relations in Equation (A2), one could verify whether the conditions of Equation 

(A1) are met. 

A.2 Parameter Transformations for the RGARCH Model 

Though already mentioned in Section 3.2, the parameter restrictions for the RGARCH model in 

Equation (2) are: 

      

    

      

  
    

(A3) 

                                                           
15

 Villar and Ortega (2010) 
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The application of parameters transformations for the RGARCH model is almost similar to the GJR 

model. Therefore, one could use the following transformations: 

 
  

   (  ̃)

     (  ̃)     (  ̃)
 

  
   (  ̃)

     (  ̃)     (  ̃)
 

  
        ̃ 

   

(A4) 

in which  ̃  ̃ and  ̃ 
  are unrestricted. Using these relations, the conditions of Equation (A3) can be 

verified.
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APPENDIX B SIMULATION ANALYSIS 

In this appendix I perform a simulation analysis on the filtered historical simulation method applied 

on the GJR model. Using a simulation study, one can extend the knowledge about this method 

regarding its sensitivity to different settings. Also, a simulation study can be used to provide 

directions in what to expect from an empirical analysis. 

B.1 Simulation Procedure 

The simulation procedure consists mainly of three parts. The first part encompasses simulating the 

S&P 500, the second focuses on generating the option data and the third part consists of applying 

the FHS method using the simulated data from the first two parts.  

To simulate the S&P 500 index, the GJR model of Equation (1) is assumed as the DGP. For 

convenience this model is presented again as: 

          

  
         

       
           

    
(B1) 

The simulation procedure is then as follows. First, for each simulation   I randomly draw   standard 

normally distributed innovations given by the set                  . Next I set the parameter 

values             equal to   . The parameters under the   measure are thus set equal to   . 

Subsequently, assuming the model of Equation (B1), I simulate   return paths of length T with   
   

 

representing the simulated S&P 500 return of the     path at time  . For each simulation, I then 

construct the simulated S&P 500 index series (  
   

   
   

     
   

) assuming the first S&P 500 value 

equal to the real index value, that is        
   

   , where    represents the real index value at 

time    . 

After generating the index series, I simulate the option data. For each simulation   and each point in 

time for which the calibration method will be applied (that is                       , where 

              ), I perform the following simulation steps. 

1. For options with predefined maturities and strike prices, I simulate    return paths with the 

length of the largest maturity (    ) using the parameter values    and bootstrapped 

innovations. The bootstrapped innovations are randomly drawn from      with 

replacement. An important point to note here is that since I simulate the    return paths 

using the   , I assume that the process of the index values is similar under the   and   

measures in the data generating process. 
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2. I calculate the call-option price at time t as     
   

 
        

  
∑    (  

     
    )

  
     The 

prices of for puts are calculated in a similar way. 

After determining the option price, I apply the previously described six-steps FHS procedure which 

yields the calibrated values   
 
   

. The number of simulation paths I use during the FHS procedure is 

denoted by   . 

B.2 Simulation Results 

For the simulation, I use the following parameter settings:16  

- Number of simulations ( ) = 50 

- Number of points in time for which I apply the FHS method (            ) = 25 

- Number of points in time for which I simulate the S&P 500 path ( ) = 3500 

- Number of different maturities (  ) = 5, ranging from 10 to 260 

- Number of different strike prices (  ) = 10, ranging from 50 to 400 

- Number of return paths simulated in the DGP of the option prices (  ) = 100 

Table B1 reports the average value of the calibrated parameters for different simulation settings. I 

calculate the calibrated values of the parameters by averaging over all simulations (which yields   
 ), 

followed by averaging over the time-dimension, yielding      
 . To compute the standard deviations, 

I calculate for each point in time the sample standard deviation over all simulations, after which I 

average over time. 

If we look at Table B1 it appears that as the window length ( ) of the estimation step (step 1 of the 

FHS procedure) increases, the standard deviations of the calibrated parameters generally decrease. 

Also, the standard deviations of the parameters increase as the number of simulation paths in the 

FHS procedure (  ) increases. A possible explanation for this not so intuitive relation is that as the 

number of simulation paths during the FHS procedure increases, the possible scenarios taken into 

account by this method increase. In this way the parameters are calibrated based on a wider range of 

possible outcomes of the S&P 500 values, leading to an increment of the standard deviations of the 

                                                           
16

 Due to the enormous computation time required to perform the simulations, the total number of simulations 
and the number of calibration points in time is kept relatively small. Also, I restrict the simulation study to the 
12 scenarios in Table B1 in order to limit the computation time. Since the simulation study serves as a basis for 
parameters in the empirical analysis to be conducted, in the choice of scenarios, I vary only the parameters that 
may determine the empirical results. The required computation time for each scenario is approximately 
               minutes, yielding for the given parameter settings about two weeks of computation time for 
the 12 different simulation scenarios in Table B1. 



Realized GARCH Option Pricing using the Filtered Historical Simulation Approach 

Appendix B Simulation Analysis 

 

B–3 
 

calibrated parameters. A point to be noted here is that an increase of the number of simulations in a 

standard simulation study leads to more accurate results. However, since    represents the number 

of simulation paths used in the FHS procedure (see step 5), increasing    does not necessarily 

produce more accurate calibrations, while the calibrated parameters may be more robust to shocks 

in the S&P 500 index. In order to increase the accuracy of the calibrated parameters, one could 

increase the number of simulations ( ). Though, one has to keep eye for the consumed computation 

time. Another notable result from Table B1 is the effect of the interest rate on the calibrated 

parameters. It seems that if I incorporate an interest rate in the simulation and FHS-calibration 

procedure, the calibrated parameters are closer to the parameters of the DGP which are represented 

by the results in the first row. This supports the use of interest rates in the FHS method. 

Table B1: FHS-calibrated parameter values for simulations 

       (%)                     

    Mean Std.  Mean Std.  Mean Std.  Mean Std. 

    1.390   0.930   0.007   0.100  

1000 100 0  9.119 25.726  0.717 0.328  0.059 0.172  0.371 0.538 

1000 100 6  1.788 0.778  0.924 0.013  0.007 0.008  0.104 0.018 

1000 500 0  6.442 16.056  0.771 0.301  0.038 0.134  0.281 0.442 

1000 500 6  1.965 1.222  0.920 0.023  0.011 0.013  0.103 0.028 

2000 100 0  3.809 9.140  0.748 0.301  0.063 0.153  0.309 0.455 

2000 100 6  1.522 0.428  0.929 0.010  0.006 0.007  0.102 0.013 

2000 500 0  5.107 12.437  0.754 0.310  0.042 0.124  0.317 0.480 

2000 500 6  1.562 0.523  0.928 0.012  0.008 0.008  0.100 0.017 

3000 100 0  3.739 8.753  0.743 0.306  0.071 0.163  0.291 0.452 

3000 100 6  1.431 0.377  0.930 0.009  0.006 0.006  0.102 0.012 

3000 500 0  5.555 14.318  0.753 0.300  0.053 0.141  0.312 0.458 

3000 500 6  1.436 0.340  0.929 0.010  0.009 0.007  0.099 0.014 

Note: This table reports the values of the FHS calibrated GJR parameters averaged over time, for different settings of         and  . 
The results in the first row represent the values of the parameters used in the data generating process. The interest rate is represented 
as annualized. The mean is calculated by averaging first over all simulations (M) followed by averaging over the points in time for 
which the FHS method is applied, thus for                       . The standard deviation is calculated over all simulations and 
then averaged over the number of calibration points. 

To give an overview of the parameters over time resulting from the simulation study, Table B2 

presents the calibrated parameter values for 25 days. The mean and standard deviation of the 

calibrated parameters are given by: 
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where    indicates the average value of   
  over time and     indicates the standard deviation of 

  
  averaged over time. For clarification, the values of   

  and their respective standard deviations are 

given below. The values are calculated by averaging over all simulations (M).  

Table B2: FHS-calibrated parameter values over time for                      and       

                      

  Mean Std.  Mean Std.  Mean Std.  Mean Std. 

3476  6.44 15.30  0.72 0.35  0.07 0.20  0.30 0.51 

3477  4.74 13.39  0.75 0.31  0.07 0.18  0.28 0.45 

3478  4.78 11.44  0.75 0.33  0.05 0.16  0.32 0.50 

3479  4.80 10.42  0.70 0.36  0.06 0.17  0.37 0.58 

3480  5.29 12.76  0.72 0.33  0.06 0.17  0.34 0.53 

3481  5.41 12.51  0.72 0.33  0.04 0.11  0.34 0.52 

3482  5.50 17.97  0.77 0.30  0.06 0.16  0.27 0.45 

3483  4.51 11.64  0.75 0.32  0.04 0.14  0.37 0.54 

3484  4.36 14.00  0.76 0.32  0.05 0.15  0.31 0.50 

3485  5.29 16.11  0.73 0.34  0.07 0.20  0.34 0.53 

3486  6.32 17.74  0.73 0.35  0.05 0.16  0.31 0.54 

3487  3.44 10.69  0.78 0.29  0.05 0.13  0.23 0.37 

3488  5.88 16.18  0.71 0.34  0.07 0.18  0.40 0.56 

3489  4.25 10.75  0.75 0.32  0.04 0.13  0.33 0.52 

3490  6.27 16.57  0.76 0.28  0.07 0.20  0.30 0.42 

3491  5.82 14.45  0.75 0.31  0.08 0.22  0.29 0.44 

3492  4.50 11.92  0.77 0.29  0.05 0.14  0.25 0.36 

3493  3.90 13.96  0.77 0.30  0.07 0.21  0.24 0.39 

3494  6.31 24.35  0.75 0.33  0.07 0.21  0.27 0.44 

3495  6.73 19.11  0.72 0.35  0.05 0.17  0.36 0.55 

3496  5.43 17.35  0.81 0.27  0.06 0.16  0.23 0.40 

3497  6.11 20.68  0.74 0.34  0.05 0.16  0.26 0.46 

3498  6.87 24.19  0.79 0.27  0.04 0.14  0.30 0.47 

3499  7.10 18.49  0.75 0.32  0.06 0.18  0.29 0.47 

3500  5.00 13.25  0.77 0.30  0.03 0.13  0.24 0.38 

Note: This table reports for the calibrated parameter values over time (  
  , for the number of calibration points 

(             = 25). The length of the window for the GJR-GARCH estimation is equal to 1000 observations ( =1000).  
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APPENDIX C ADDITIONAL REPLICATION RESULTS OF BAEM (2008) 

This appendix describes some additional results for the replication of BAEM (2008), using only OTM 

option data for the period 2002 – 2004. Table C1 presents the estimation and calibration results of 

the GJR parameters using the filtered data similar to BAEM (2008). The length of the estimation 

window   is equal to 1000 and the number of simulation paths   is set to 3500 (similar to BAEM). 

From this table it is clear that the standard deviations of the calibrated parameters (whether with 

Gaussian or FHS innovations) are higher compared to the standard deviations of the GJR estimates 

(compare panel A and B to each other). For the annualized volatility on the other hand, it seems that 

the calibration methods lead to smaller annualized volatilities with smaller standard deviations.  

Table C1: Estimated and calibrated GJR parameters for OTM options for 2002 –2004 
Panel A:            

GJR   ̂        ̂   ̂        ̂  Persistency  Ann. Vol. 

Year  Mean Std.  Mean Std.  Mean Std.  Mean Std.  Mean Std.  Mean Std. 

2002  1.356 0.125  0.930 0.005  7.294 0.759  0.096 0.009  0.986 0.001  0.283 0.085 

2003  1.130 0.189  0.932 0.006  6.422 1.527  0.101 0.007  0.989 0.002  0.194 0.051 

2004  0.994 0.045  0.932 0.002  7.025 1.736  0.103 0.003  0.991 0.000  0.143 0.023 

                   

Panel B:            

GAUSS                          Persistency  Ann. Vol. 

Year  Mean Std.  Mean Std.  Mean Std.  Mean Std.  Mean Std.  Mean Std. 

2002  2.347 3.432  0.852 0.146  5.387 19.661  0.259 0.240  0.987 0.023  0.290 0.094 

2003  1.718 2.603  0.878 0.160  0.585 2.904  0.230 0.313  0.993 0.011  0.195 0.053 

2004  0.834 0.956  0.885 0.084  0.000 0.001  0.225 0.163  0.998 0.004  0.143 0.029 

                   

FHS                   

Year  Mean Std.  Mean Std.  Mean Std.  Mean Std.  Mean Std.  Mean Std. 

2002  2.001 2.290  0.902 0.080  1.649 7.433  0.158 0.115  0.983 0.020  0.285 0.089 

2003  1.287 2.141  0.928 0.057  0.431 3.076  0.125 0.090  0.991 0.013  0.196 0.052 

2004  1.565 2.310  0.843 0.184  3.213 12.791  0.290 0.355  0.992 0.011  0.143 0.036 

                   

Note: This table reports the mean and standard deviation (Std.) of each of the parameters of the GJR-GARCH model estimated (Panel A) and calibrated 
(Panel B) on OTM S&P 500 options on each Wednesday from January 2, 2002 to December 29, 2004. Estimation occurs using maximum likelihood and 
3500 historical log-returns while the model is calibrated using both the Filtered Historical Simulation (FHS) method and a calibration method using GAUSS 
innovations. The GJR model under the historical measure   is specified by           

         
       

           
 , and under the risk-neutral 

measure   by           
           

        
            

 , with         when         and        otherwise. The persistency is 

calculated as     
 

 
 under the historical measure   and        

  

 
 under the risk-neutral measure  . Ann. Vol. stands for the annualized volatility. 
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Figure C1: Estimated and calibrated GJR parameters for OTM options for 2002 –2004 

 
Note: This figure presents the parameter values of the GJR GARCH model based on the ML estimation (GJR), the FHS method 
and the calibration with Gaussian innovations. The GJR model under the historical measure   is specified by      

     
         

       
           

 , with         when         and        otherwise. 

Figure C2: The daily log returns, the conditional GARCH volatility and the FHS innovations of the S&P 500 index 
from August 23rd 1989 until July 9th 2003 

 
Note: This figure depicts the daily log-returns of the S&P 500 Index from August 23

rd
 1989 until July 9

th
 2003 (3500 

observations), the conditional GARCH volatility    (annualized), the FHS and GAUSS innovations   .The GJR model is 
estimated using the ML method under the assumption of Gaussian innovations. The GAUSS innovations are assumed to be 
normally distributed. Comparable to Figure 1 of BAEM (2008). 
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Table C2: GJR Pricing errors for OTM options for 2002 – 2004 disaggregated by moneyness and maturities 

Moneyness  Maturity 

      Less than 60  60 to 160  More than 160 

   RMSE MOE MAE%  RMSE MOE MAE%  RMSE MOE MAE% 

<0.85 FHS  0.40 0.12 59.51  0.72 0.28 53.26  1.82 0.99 67.74 

 GAUSS  0.42 0.13 60.96  0.52 0.17 44.28  1.13 0.46 36.48 

              

0.85-1.00 FHS  1.52 0.71 33.72  1.87 0.81 18.10  3.86 2.23 11.59 

 GAUSS  1.57 0.74 34.55  1.67 0.68 15.83  3.75 2.14 11.12 

              

1.00-1.15  FHS  1.55 0.74 30.79  3.32 1.84 13.79  6.20 4.22 12.85 

 GAUSS  1.50 0.70 27.32  3.03 1.65 13.06  5.52 3.68 11.63 

              

>1.15 FHS  0.78 0.35 84.82  1.36 0.66 55.93  2.50 1.21 32.81 

 GAUSS  0.77 0.34 73.54  1.21 0.56 45.04  2.05 0.95 29.05 

              

Note: This table reports the pricing errors of the GJR model calibrated using FHS and Gaussian innovations disaggregated by moneyness and 
maturities. RMSE stands for the root mean square error of the dollar pricing error (model price−market price); MAE is the dollar average absolute 
pricing error and MOE is the dollar average pricing error outside the bid-ask spread (MAE% and MOE% are in relative terms as a percentage of the 
market price); Min (Max) is the minimum (maximum) pricing error; Err>0% is the percentage of positive pricing errors and ErrBD% is the average 
absolute pricing error as a percentage of the bid-ask spread. Inspired by Table 6 of BAEM (2008). 
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APPENDIX D ADDITIONAL RESULT OF THE FHS-RGARCH METHOD 

In this appendix I present some additional results for the FHS-RGARCH method applied on both ITM 

and OTM option data for the period 2002 – 2011. The results are obtained using a window length   

of 1472 days and 100 simulation paths (     ). The estimated and calibrated parameters for the 

GARCH equation of the RGARCH model are given in Table D1. The estimated and calibrated 

parameters for the measurement equation are presented in Table D2. 

 
Table D1: Estimated and calibrated parameters of the GARCH equation of the RGARCH model for 2002 – 2011 

Panel A:          

RGARCH   ̂   ̂   ̂  Persistency  Ann. Vol. 

Year  Mean Std.  Mean Std.  Mean Std.  Mean Std.  Mean Std. 

2002 – 2006   0.259 0.113  0.464 0.035  0.532 0.034  0.724 0.109  0.198 0.111 

2007 – 2009   0.230 0.041  0.470 0.035  0.530 0.035  0.700 0.033  0.292 0.200 

2010 – 2011   0.312 0.023  0.389 0.015  0.611 0.015  0.701 0.016  0.229 0.122 

                

Panel B:          

GAUSS              Persistency  Ann. Vol. 

Year  Mean Std.  Mean Std.  Mean Std.  Mean Std.  Mean Std. 

2002 – 2006   0.205 0.933  0.614 0.340  0.373 0.340  0.818 0.975  0.225 0.138 

2007 – 2009   -0.268 3.030  0.508 0.393  0.478 0.390  0.240 3.100  0.340 0.407 

2010 – 2011   0.413 1.974  0.632 0.347  0.364 0.344  1.044 1.916  0.127 1.289 

                

FHS                

Year  Mean Std.  Mean Std.  Mean Std.  Mean Std.  Mean Std. 

2002 – 2006   0.289 1.137  0.651 0.317  0.328 0.305  0.940 1.100  0.035 0.490 

2007 – 2009   0.133 0.593  0.610 0.343  0.380 0.340  0.743 0.583  0.312 0.232 

2010 – 2011   0.096 0.831  0.779 0.235  0.212 0.232  0.875 0.850  0.259 0.226 

                

Note: This table reports the mean and standard deviation (Std.) of each of the parameters of the GARCH equation of the RGARCH model 
estimated (Panel A) and calibrated (Panel B) on each Wednesday from January 2, 2002 to December 29, 2004. Estimation is done using 
maximum likelihood and 1000 historical log-returns while the model is calibrated using both the Filtered Historical Simulation (FHS) method 
and a calibration method using GAUSS innovations. The return and GARCH equation of the RGARCH model under the historical measure   
are specified by                 

              
              and under the risk-neutral measure   by       

           
                

              . (See Table D2 for results regarding the parameters of the measurement equation). 
The persistency is calculated as     under the historical measure   and        under the risk-neutral measure  . Ann. Vol. stands for 
the annualized volatility. 
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Table D2: Estimated and calibrated parameters of the measurement equation of the RGARCH model for 
January 2nd 2002 – December 30th 2011 

Panel A:        

RGARCH    ̂   ̂    ̂    ̂ 

Year  Mean Std.  Mean Std.  Mean Std.  Mean Std. 

2002 – 2006   -2.357 0.295  0.796 0.030  -0.124 0.036  0.078 0.015 

2007 – 2009   -1.876 0.210  0.848 0.024  -0.064 0.004  0.101 0.009 

2010 – 2011   -1.627 0.047  0.878 0.004  -0.082 0.008  0.117 0.003 

             

Panel B:        

GAUSS            
     

  

Year  Mean Std.  Mean Std.  Mean Std.  Mean Std. 

2002 – 2006   -2.928 5.357  0.896 0.391  -0.343 0.773  -0.050 0.959 

2007 – 2009   -2.207 8.885  0.788 0.273  -0.225 0.317  -0.413 2.107 

2010 – 2011   -2.845 4.540  0.853 0.205  -0.275 0.619  -0.144 0.994 

             

FHS             

Year  Mean Std.  Mean Std.  Mean Std.  Mean Std. 

2002 – 2006   -3.752 7.569  0.836 0.292  -0.360 1.194  -0.122 1.445 

2007 – 2009   -2.224 3.031  0.825 0.235  -0.197 0.858  0.024 1.215 

2010 – 2011   -2.001 2.870  0.912 0.220  -0.145 0.407  0.156 0.552 

             

Note: This table reports the mean and standard deviation (Std.) of each of the parameters of the measurement equation of the 
RGARCH model estimated (Panel A) and calibrated (Panel B) on each Wednesday from January 2, 2002 to December 29, 2004. 
Estimation is done using maximum likelihood and 1000 historical log-returns while the model is calibrated using both the Filtered 
Historical Simulation (FHS) method and a calibration method using GAUSS innovations. The measurement equation of the RGARCH 
model under the historical measure   is specified by                    

        and under the risk-neutral measure   

by              
      

    
        . 
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Figure D1: Estimated and calibrated parameters of the GARCH equation of the RGARCH model for 2002 – 2011 

 
Note: This figure presents the parameter values of the GARCH equation of the RGARCH model based on the QML estimation 
(RGARCH), the FHS method and the calibration with Gaussian innovations. The return and GARCH equation of the RGARCH 

model under the historical measure   are specified by                 
              

              and under 
the risk-neutral measure   by                  

                
              . 

Figure D2: Estimated and calibrated parameters of the measurement equation of the RGARCH model for 
January 2nd 2002 – December 30th 2011 

 
Note: This figure presents the parameter values of the measurement equation of the RGARCH model based on the QML 
estimation (RGARCH), the FHS method and the calibration with Gaussian innovations. The measurement equation of the 

RGARCH model under the historical measure   is specified by                    
        and under the risk-

neutral measure   by              
      

    
        . 


