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ABSTRACT

In this study I combine six individual models to price European call options on the

S&P500 index. Each model relaxes one or more assumptions of the Black-Scholes (1973)

framework. The combining methods considered include three parametric and three non-

parametric approaches. Combining outperforms most individual models in terms of the

Root Mean Squared Error during the overall period (January 2006-December 2011) and

three sub-periods. A simple and easy-implementable way of combining based on the

historical performance of the individual models yields the best results among all individ-

ual and combining models considered. This method attaches most weight to the Merton

(1976) jump diffusion model.
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1 INTRODUCTION

The focus of option pricing is to obtain model-based price estimates that approach the

true market prices. Various papers analyze ways to improve and obtain better estimates

than the pioneering option pricing model as proposed by Black and Scholes (1973) (BLS

model). While this model suffers much from systematic biases1, there is still not a con-

sensus on which alternative is the best option pricing model. A reason could be that

many studies focus on relaxing one or more assumptions of BLS, hence discriminating

which assumptions are important and neglecting others. In this way, not all features

of the market are always captured properly and one is faced with determining which

generalizations are important before applying option pricing techniques. In this study I

try to cope for these concerns by means of a combining framework that relaxes multiple

assumptions of the BLS method. The implications of this study may reveal important

aspects of the diverse option pricing models, such as the importance of specific assump-

tions throughout time.

The list of possible alternatives to the BLS model is exhaustive long. Most of these

models can be categorized into two main classes, referred to as modern parametric op-

tion pricing and non-parametric option pricing. The parametric methods are easier to

use and understand, and are usually an extended framework of the BLS method. Most

option pricing models within this category are based on at least three assumptions: the

underlying price process, the interest rate process, and the market price of factor risks.

For every assumption, there are multiple choices to be made. Examples include methods

with stochastic volatility (see e.g., Heston (1993), Heston and Nandi (2000)), jump diffu-

sion (see e.g., Merton (1976), Cheang and Chiarella (2011)) and stochastic interest rates

(see e.g., Bakshi et al. (1997)). Non-parametric approaches incorporate multiple features

by means of relaxing multiple simplified assumptions through fitting the data instead of

assuming a distribution. Again, there are multiple choices to be made on which method

to use in order to achieve the desired objective. Examples include demand-based option

pricing and option pricing by means of a (hybrid) Artificial Neural Network (see e.g., An-

dreou et al. (2008)). Many proponents of non-parametric techniques argue that these ap-

proaches allow for higher multivariate and more complex nonlinear relationships, which

in the end leads to better out-of-sample pricing performance. While non-parametric ap-

proaches allow for higher complexity and nonlinear relationships, the models are difficult

to implement, may be subject to overfitting and are also not always easily interpretable.

1These biases are the result of the simplified assumptions of the model (Andreou et al., 2008), such
as a geometric Brownian motion of stock price movements, continuous trading, continuous share price,
constant interest rates, constance variance of the underlying returns and no dividends. See e.g., Black and
Scholes (1975), MacBeth and Merville (1980), Gultekin et al. (1982), Bates (1991), Bakshi et al. (1997),
Bates (2003).
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Hence, the decision of choosing a parametric or non-parametric approach is a trade off

between pricing accuracy and complexity.

In search of the perfect option pricing model, we first need to determine which as-

sumptions we want to relax and whether it is worth the additional effort in terms of

complexity and implementation time. Several strings of related option pricing litera-

ture have therefore turned their attention to applications of the Generalized Autoregres-

sive Conditional Heteroscedasticity (GARCH) model (Stentoft, 2011). Recent contribu-

tions have managed to relax many assumptions of this approach such that more flexible

parametric specifications of the underlying distributions can be realized. This includes

applications (i) of non-Gaussian frameworks (see e.g., Christoffersen et al. (2006) and

Christoffersen et al. (2010)); (ii) where volatility has both long and short run compo-

nents (see e.g., Christoffersen et al. (2008a)); (iii) where flexible mixture models are used

(see e.g., Robouts and Stentoft (2010)); (iv) GARCH models with jump components (see

e.g., Christoffersen et al. (2008b)). Still, while these complex models are more capable

in capturing multiple dynamics at once, they are prone to larger parameter uncertainty

or calibration issues, such as non-convergence of the likelihood function to a global op-

timum. In this way, the complex models may become misspecified, which holds true for

most approaches that extend the BLS framework.

Choosing the ‘perfect’ model is therefore a choice among misspecified models, as Bak-

shi et al. (1997) notes, for which the model is chosen (i) that is the the least misspeci-

fied; (ii) has the lowest pricing error; (iii) that obtains the best performance in terms of

trading or hedging. Discriminating between models however may not be the way to go

as one may neglect important features from models that perform less during a specific

period of time. It is imaginable that misspecified model producing high pricing errors

during a recession, may actually be the better model during another business cycle with

its individual characteristics. Also, in this way the focus lies on assessing the relative

performance instead of actually testing the performance in absolute terms.

A way to overcome discriminating and neglecting models that may contain impor-

tant information, is by means of utilizing features from multiple candidate models. If

every model is misspecified, then we may get closer to the ‘true’ market price by mod-

eling this price as a function of multiple estimates from different sources. In general,

in the first step we calibrate every candidate model and produce an estimate, such as

an option price. Then we construct a combined estimate by assigning weights to each

individual candidate model. In the field of forecasting, Timmermann (2006) argues that

combining actually may work in several situations. For instance, the risk of loss in ne-

glecting important information is reduced by the combining frameworks which implicitly

discriminate the ‘bad’ models when needed, by assigning a low weight. This is in par-
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ticular an useful tool when there are structural breaks affecting the individual models.

It also holds true for rapidly changing market environments such as the time-varying

option pricing attitudes of market participants (see e.g., Rubinstein (1985)). In this way,

the risk of negative effects due to model misidentifications can be reduced, in a similar

fashion as with diversifying assets. This may lead to a smaller gap between the theoret-

ical price and the desired ‘true’ market price, with appreciable consequences for many

applications.

Despite the increasing popularity of combining in economics and finance (see e.g.,

Rapach et al. (2010)), applications in the option pricing literature are relatively rare.

One of the fewer exceptions is a recent article by Andreou et al. (2008) who proposes a

(hybrid) Artificial Neural Network model to incorporate information from both the Black-

Scholes-Merton (Merton, 1973) model as the Corrado and Su (1996) framework. Andreou

et al. (2008) find that with these frameworks, a significant gain can be achieved in terms

of pricing, hedging and trading of the S&P500 index. This approach is motivated by

the assumption that parametric models cannot adjust fast enough to changing market

behavior. Neural networks are free of financial theory as they use the historical data to

estimate the empirical option pricing functions. As a result, the approach can recognize

and handle with any nonlinearity. Additionally if frequently trained, ANN’s can adapt to

various and dynamic market environments. These results are in line with other studies

on non-parametric techniques that have shown to be capable of outperforming the BLS

model and some extended alternatives, in terms of pricing, hedging and trading (see e.g.,

Yao et al. (2000), Heston and Nandi (2000), Lin and Yeh (2005), Andreou et al. (2008)

and Wang (2009)).

However, these non-parametric (combining) frameworks also imply some crucial dis-

advantages due to the additional complexities involved. As Tu (1996) discusses, neural

networks (i) are a black box2, (ii) may be more difficult to use in the field, (iii) require

greater computational resources, (iv) are prone to overfitting and (v) the development

is empirical with many methodological issues remaining to be resolved. These concerns

are especially pronounced in the more advanced NN training concepts, making it be-

yond the scope of a newcomer. Also, the greater computational time may have its clear

disadvantages for intra-day traders who frequently use option pricing techniques to allo-

cate their position. Similar arguments can be given for other non-parametric, extended

parametric methods (such as Bakshi et al. (1997)) and other complex techniques in op-

tion pricing. Also, the performance of a given approach is strongly linked to the field

of study (exchange rate pricing, asset pricing, interest rate hedging, trading, etc.). As a

2It may be a bit pity to treat the Neural Networks as a ‘black box’, as reasonably sound statistical
procedures for their implementation are available. See e.g., Teräsvirta et al. (2006). I thank Dick van Dijk
for this comment.
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consequence, a complex or extended approach is not a very useful tool for the majority of

practitioners, who seek for consistent, fast and preferably closed-form elegant solutions

that can deal with the shortcomes of the BLS model.

In this study I apply a more pragmatic approach of combining by dealing with the

shortcomes of the complex models, but without loosing its benefits. That is, I test a

weighted combination combination of multiple option pricing methods that relax one or

more assumptions. In this way, the combined model is a flexible and adaptable approach

that fits various kind of data. Hence, as the combined model is a function of extended

individual models, multiple relaxations are allowed and additional complexities are dis-

carded. The importance of a given assumption can in the end also be expressed by the

magnitude of the corresponding weight. The model is then also less sensitive to rapid

changing market behavior as it can capture the changes by assigning different weights

to the individual models.

My approach of combining option prices involves two steps. First I calibrate the six

candidate models, following the literature of Black and Scholes (1973), Merton (1973),

Corrado and Su (1996), Merton (1976), Cox and Rubinstein (1979) and Heston (1993).

The motivation for the choice of these models can be mostly attributed to the relative

‘simple’ nature of these frameworks, for which a closed form solution is available and

which are relative straightforward to implement3. As each model relaxes one or more

assumptions of BLS, the method allows for higher complexities by capturing multiple

features of the market at once. After calibration of these models, I obtain the in-sample

pricing errors and analyze the parameter estimates. Next, I combine the six individual

models by means of three parametric approaches where weights are assigned to each

candidate model: (i) by means of the historical performance in terms of the Discounted

Mean Squared Error; (ii) with equal weights; (iii) and the median of all six candidate

model estimates. These frameworks are compared against three non-parametric bench-

mark combining methods that utilize information from the candidate models by means

of Neural Networks. Additional robustness checks include the assessment of the perfor-

mance of the considered models during different sub-periods and by discarding the best4

performing model from the analysis.

The results of this study reveal that combining is an useful asset in the option pricing

literature, producing lower pricing errors for the overall period (2006-2011) and various

3In contrast, it would also make sense to combine the more elaborate models. Yet they are harder to
implement, may be more sensitive to overfitting and require greater computational time, making them not
useful for a large part of practitioners.

4In one of the robustness checks, the best performing model is discarded as a candidate model for the
combining frameworks. The motivation for this approach is to determine to which extent the low pricing
errors of the combining frameworks is attributed to the performance of this particular method. This
importance is also expressed by the size of the weight.
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sub-periods. While best results are obtained with combining by means of Neural Net-

works during and before the recession, the combining framework that assigns weights to

individual models based on the historical performance yields consistent results during

all sub-periods considered. During the overall period, it outperforms all individual and

combining models for most moneyness-maturity categories. An additional contribution

of this study is an assessment of the empirical performance of the candidate methods

throughout time. The most striking results is that relaxing the jump diffusion process

assumption yields the best performance during the overall period.

The remainder of this paper is as follows. Section 2 discusses the individual option

pricing models used as an input for the combining frameworks. This is followed by a

short discussion on the data used in section 3 and the structural estimation of the pa-

rameters in section 4. Three parametric approaches of combining are proposed in section

5 along with the non-parametric frameworks that are used as an benchmark. The im-

plied parameters are analyzed along with the in-sample pricing fit of all the models in

section 6. To control for the possibility of overfitting, the out-of-sample pricing results

and additional robustness checks are presented in section 7. The study concludes in

section 8.

2 OPTION PRICING MODELS

In this study, all the models to be combined, from now on referred to as individual mod-

els, fall into the class of parametric approaches. For the combining schemes I both con-

sider parametric as non-parametric methods in order to exploit the information content

of the individual models as best as possible. In addition, this allows for testing the rel-

ative performance of the simple approaches against the more complex non-parametric

methods. A good performing model, which is in its nature simple and intuitive, will be

favored by the vast majority of practitioners.

The reminder of this section discusses the individual models, from which the ob-

tained option prices will be used as an input for the combining methods. Moreover, in

this study I only include the initial BLS model in addition to five option pricing methods

that individually relax one or more assumptions of BLS. Table 1 gives an overview of the

candidate models and the assumptions that are relaxed. Note that not all assumptions

are considered, such as the assumption of no-arbitrage pricing and no taxes and trans-

action costs. The major reasons for neglecting are the non-availability of ‘elegant’ closed

form solutions or a lack of popularity in literature. The implications of including these

missing assumptions is therefore an avenue open for further investigation. Still, the

considered catalog of models and assumptions included is expected to capture the main

and most important features, such as the presence of dividends, time-varying interest
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rate and jump processes.

The selection of the individual models plays a crucial role in the combining frame-

works. Moreover, when individual models and the corresponding estimated prices are

strongly correlated (multi-collinearity), there may be a large fraction of estimation un-

certainty in the assigned weights. For this reason, it is important to try to obtain a

diverse selection of models which capture different characteristics of the evolution of the

stock market. In particular for the option pricing literature, this may be a concern to take

into account. Moreover, as most parametric methods are an extension of BLS, there is

quite often an overlap between the particular methods. For instance, the Merton (1973)

(MER1) framework can be seen as a restricted variant of Corrado and Su (1996) (CSU)

for skewness µ3 = 0 and kurtosis µ4 = 3. For this reason, it may be questionable whether

the selection of the individual models is ‘diverse’ enough. On the other hand, the benefits

of reducing model uncertainty and coping for model misspecification, by means of com-

bining, remains evaluated as a tradeoff against the weights uncertainty. Therefore, the

pricing results of the combining methods in the end provide an answer to this concern.

TABLE 1: OVERVIEW OF THE INDIVIDUAL OPTION PRICING MODELS USED IN THIS STUDY

This table gives an overview of the individual models (all parametric) used in this study for the
purpose of combining. Additionally I report which assumption(s) of Black and Scholes (1973)
(BLS) the models relax.

Assumptions BLS
A1 Log normal distribution of stock returns
A2 Continuous trading
A3 Continuous evolution of the share price
A4 Constant interest rates
A5 Constant variance of the underlying returns
A6 No dividends
A7 Continuous diffusion of the underlying

Individual models Relaxes assumption(s) BLS
(i) Black and Scholes (1973) -
(ii) Corrado and Su (1996) A1, A6
(iii) Merton (1976) A2, A7
(iv) Cox and Rubinstein (1979) A3
(v) Merton (1973) A6
(vi) Heston (1993) A5, A4∗

* While the original Heston model does not generalize the assumption of constant interest rates,
it can be adapted to allow for time-varying rates. See Bakshi et al. (1997) for stochastic
volatility models with an stochastic interest rate component (not included in this study).
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Notation Throughout the discussion of the individual models I use the same notation

for the overlapping variables. This includes, St which is the stock price at time t, X

the strike price, r the annualized continuously compounded risk-free rate (assuming 252

trading days in a year) and T the time to maturity of the option. All other variables and

parameters are discussed in the corresponding sections. In section 4 I discuss ways to ob-

tain the implied parameters of each candidate option pricing model, through solving the

corresponding equations of each candidate model, iteratively for the implied parameters

given the values of the observable market price.

2.1 Black-Scholes (1973)

The Black and Scholes (1973) for the price at time t of a European call option cBLS
t is

given by:

cBLS
t = StN(d1)− X e−rT N(d2), (2.1)

with

d1 = ln(St/X )+ (r+σ2/2)T

σ
p

T
, (2.2)

d2 = d1 −σ
p

T. (2.3)

Here σ is the stock price volatility which is the only variable that is unobserved. The

function N(x) is the cumulative probability distribution function of a standard normal

distribution and hence expresses the probability that a variable following a standard

normal distribution will be less than a particular value x. It can be easily seen that the

call price increases for a greater distance between St and X , a higher volatility σ and

higher risk free rate r. For a detailed description of this model and a derivation of the

formula I refer to Hull (1999) and Black and Scholes (1972).

2.2 Merton (1973)

A generalization of the BLS model with respect to dividends is given by the Merton

(1973) (MER1) framework. This method allows to price European options on stock or

indices paying an observed dividend yield. The formula for the call option cMER1
t , with

dividends paid on the underlying stock, is given by:

cMER1
t = StN(d∗

1 )− X e−rT N(d∗
2 ), (2.4)



MSC THESIS • SEMIN IBIŠEVIĆ 12

with

d∗
1 = ln(St/X )+ (r−δ)T + (σ

p
T)2/2

σ
p

T
, (2.5)

d∗
2 = d∗

1 −σ
p

T. (2.6)

Here δ is the continuously compounded annual dividend yield. As it is in the case for

BLS, the volatility of the underlying is unobserved and needs to be estimated. Some

of the shortcomings of this approach are the assumptions that dividends are paid out

continuously and that it is a know constant. When pricing a stock index however, this

problem is less profound as it averages outs the payments of multiple individual stocks.

A higher dividend yield implies a lower call price, which is due its negative effect on

the underlying stock price. Moreover, the stock price is adjusted downwards by a cer-

tain fraction of the dividend on the dividend payment date. This is because a dividend

payment reflects a reduction in the company’s market cap value.

2.3 Corrado and Su (1996)

Rubinstein (1985) and various others show that the implied volatility as a function of the

moneyness ration (S/X ) and time to expiration (T), derived via diverse option pricing

models, typically exhibits a U shape. In literature this is refereed to as the volatility

smile. This occurs when models do not account for returns which are negatively skewed

and have excess kurtosis (Bates, 1991). As a correction for this concern, Corrado and Su

(1996) propose a method to extend the MER1 model to account for these biases induced.

Through a Gram-Charlier series expansion of the normal density function, the method

provides skewness and kurtosis adjustment terms for the initial models. In this way, the

method does not rely on specific assumptions about the underlying stochastic process

and can be classified as a semi-parametric approach (Andreou et al., 2008). Following

Andreou et al. (2008), I apply the correction for the MER1 model. The formula for the

European call option cCSU
t obtained with the Corrado and Su (CSU) method at time t is

given by:

cCSU
t = cMER1

t +µ3Q3 + (µ4 −3)Q4, (2.7)

with

Q3 = 1
3!

Ste−δTσ
p

T((2σ
p

T −d∗
1 )h(d∗

1 )+σ2TN(d∗
1 )), (2.8)

Q4 = 1
4!

Ste−δTσ
p

T([d∗
1 ]2 −1−3σ

p
T(d∗

1 −σ
p

T))h(d∗
1 )+σ3T3/2N(d∗

1 ), (2.9)

h(z) = 1p
2π

exp(−z2/2). (2.10)
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Here µ3 and µ4 are the coefficients of skewness and kurtosis of the returns. Like σ they

are unobserved and need to be estimated. This can be achieved in a similar way as for

the previous two models. For µ3 = 0 and µ4 = 3, the CSU framework is equivalent to

MER1.

2.4 Merton (1976)

Another way to capture negative skewness and excess kurtosis of the underlying stock

price density, and hence ‘fat tails’, is by including a Poisson jump component in the gen-

eration of the underlying stock returns as proposed by Merton (1976) (MER2). Merton

assumes that in this way the extra randomness can be diversified away which is imposed

by jumps in the underlying . As explained by Cheang and Chiarella (2011), assume that

the jump sizes are normally distributed with mean α, variance ϑ2 and jump-intensity λ,

under the equivalent martingale measure Q. For a stock paying continuous dividend at

the rate δ and for which the stock price follows a geometric Brownian motion with an

additional Poisson jump component, the European call option price cMER2
t is given by:

cMER2
t =

∞∑
i=0

e−λT(λT)i

i!
cBLS

t (St, X ,T,σi, r i), (2.11)

where cBS
t (.) is the Black-Scholes price without jumps with the following inputs: the spot

price St, strike X , time-to-maturity T, the total variance with jumps σi and the adjusted

risk free rate r i. Hence λ=λeα+
ϑ2
2 with

σ2
i = σ2 + iϑ2

T
, (2.12)

r i = r−λ(e−λT −1)+ i(α+ ϑ2

2 )
T

. (2.13)

The parameters to be estimated include the volatility of the underlying σ, and the three

jump parameters λ, α and ϑ. The intensity is annualized and obviously a larger value of

λ means that the jumps are expected to occur more frequently during a year. This jump

diffusion model can be also seen as a weighted average of the Black-Scholes model, with

the weights determined by the underlying asset price jumps dynamics.

2.5 Cox and Rubinstein (1979)

The binomial option pricing technique, as initialized by Cox and Ross (1976) and later

extended as the Cox and Rubinstein (1979) approach, can be applied to calculate and

price complex options. The model relaxes the assumption of continuous evolution of the
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share price by considering the evolution discrete and that it can only take two possible

values each period. Moreover, the model assumes that the current stock price St can

either move up or down with a specific proportion u and probability p. This implies that

the underlying asset price can be seen as a binomial tree where each node represents a

possible value of the asset price.

To price the call option, the model assumes that the underlying asset price rises by

a factor u = eσ
p

h or decreases by a factor d = u−1, with h = T/n which is the size of

the time interval between two successive jumps and n the number of time steps used in

calculations. The probability of an upward jump is given by the risk-neutral probability

p = (erh −d)(u−d), which is chosen such that it simulates a geometric Brownian motion

of the underlying stock.

For a given number of iterations n, the call price of an European call option is given

by:

cCOX
t =

[∑n
j=a

(
n!

j!(n− j)!

)
p j(1− p)n− j[u jdn− jSt − X ]

]
rn , (2.14)

for a standing for a minimum number of upward moves which the stock must make over

the next n periods for the call to finish in-the-money, equivalent to the smallest non-

negative integer such that uadn−aSt > K . For a > n this implies cCOX
t = 0 as call will

finish out-of-the-money even if the stock moves upward every period. The value n is also

referred to as the height of a binomial tree. For n →∞ the COX model converges to the

continuous version of BLS. It may be optimal and intuitive to set n equivalent to T as it

represents a time interval h of 1 between two successive jumps, corresponding to 1 day.

However, this results in a long computational time. For this concern I set n equivalent to

25 which is approximately in the 0.18 quantile of all time-to-maturities for this dataset.

2.6 Heston (1993)

There is evidence that realized volatility of traded assets displays significant variability.

Some explanations can be attributed to the economic effects that give rise to an equity

skew, such as leverage effects and massive portfolio re-balancing in case of declining

stock prices. By assuming nonconstant volatility of the underlying, Heston (1993) (HES)

derives a closed-form solution to price European call options with stochastic volatility.

This model also allows for correlation between volatility and spot asset returns and can

be adapted to incorporate for stochastic interest rates (see e.g., Bakshi et al. (1997)).

The HES method was introduced as an alternative for the at the moment stochastic

volatility models which don’t have a closed form solution (see e.g., Scott (1987) and Hull

and White (1987)) or assumed that the volatility is uncorrelated with the spot asset

(see e.g., Jarrow and Rudd (1982)). While the HES model may account for stochastic
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volatility and improve the pricing performance of call options under certain conditions,

the model has five unknown parameters which can be difficult to calibrate5. The Heston

formula is a solution in a form similar to the BLS model. Moreover, the call price cHES
t

on a non-dividend paying asset for the Heston model is given by:

cHES
t = StP1 −K erTP2. (2.15)

Here P1 is also known as the delta of the call option, whereas P2 is the conditional risk

neutral probability that the asset price will be greater than the strike at maturity. The

terms P1,P2 can be defined via the inverse Fourier transformation and are given by6:

P j = 1
2
+ 1
π

∫ ∞

0
Re

[
e−iuln(K)ϕ j(St,σ,T,u)

iu

]
du, j = 1,2. (2.16)

The characteristic functions ϕ1 and ϕ2 are given in the form:

ϕ j(St,σ,T,u)= exp
[
C j(T;ϕ)+D j(T;ϕ)σ+ iϕSt

]
, j = 1,2. (2.17)

As described in Mikhailov and Nögel (2003), the characteristic functions can be substi-

tuted in the Garman equation to get the following ordinary differential equations for the

unknown functions C j(T,ϕ) and D j(T,ϕ):

dC j(T,ϕ)
dT

−κϕD j(T,ϕ)− (r−d)ϕi = 0,

dD j(T,ϕ)
dT

−
ν2ϕD2

j (T,ϕ)

2
+ (b j −ρϕi)D j(T,ϕ)−u jϕi+ ϕ2

2
= 0

With zero initial conditions C j(0,ϕ)= D j(0,ϕ)= 0, the solution of this system is given by:

C(T,ϕ) = (r−d)ϕiT + kϕ
ν2

[
(b j −ρνϕi+b)T −2ln

[
1− gebr

1− g

]]
, (2.18)

D(T,ϕ) = b j −ρνϕi+b
ν2

[
1− ebT

1− gebT

]
, (2.19)

5Finding the global minimum can be difficult and depends on the optimization method used. Gradient
based optimization methods can be useless and unique solutions need not necessarily to exist. Another
danger when implementing the Heston framework using the Fast Fourier Transform approach is the ‘He-
ston trap’ (see e.g., Albrecher et al. (2007)) which can arise when computing the logarithm of complex
numbers. Lord and Kahl (2010) discusses some of these complex discontinuities and how to avoid them in
Heston-like models.

6Re[x] is the real part of a complex number x.



MSC THESIS • SEMIN IBIŠEVIĆ 16

where:

g = b j −ρνϕi+b
b j −ρνϕi−b

,

b =
√

(ρνϕi−b j)2 −ν2(2u jϕi−ϕ2),

u1 = 0.5, u2 =−0.5,

a = κϕ,

b1 = κ+λ−ρν,

b2 = κ+λ.

The parameters of interest, which are unobserved and need to be calibrated in this

framework include σ the variance of the underlying, ν the volatility of the variance, κ the

mean reversion rate, ϕ the long run variance and ρ the correlation between the log re-

turns and the volatility of the asset. I assume κ> 0,ν> 0 and |ρ| < 1. For ν= 0 this model

converges to the BLS model with a time-dependent volatility. The remaining unknown

is the market price of the volatility risk λ, which is in practice difficult to estimate. Yet

it can be shown that under the martingale measure Q, this parameter is eliminated. In

addition, this parameter also eliminates when applying a Fast Fourier Transform (FFT)

method to evaluate equation 2.15. Proposed by Carr and Madan (1999), this method is

much quicker than using a numerical optimization for the mentioned integrals. This

includes distinguishing between in-the-money (and at-the-money) and out-of-money op-

tions which depend differently on the intrinsic value of options7. The FFT method is

discussed in more detail in Appendix A.1.

3 DATA

The models are evaluated and estimated using a data set on plain vanilla S&P500 Eu-

ropean call options obtained from OptionMetrics, also available at the WRDS database.

This is a popular index among researchers8, especially due to its high liquidity. Addition-

ally, the daily dividend distributions are available. The sample consists of daily bid-ask

quotes on option contracts in the period January 3, 2006 - December 31, 2011. The call

price is then assumed to be the mid price. The choice for the daily data makes this study

useful for a majority of practitioners and institutions who, if needed, reallocate their

position on a daily base for the purpose of hedging or trading.

Additionally, I obtain daily data on the zero-coupon interest rate and dividends on

7Out-of-money options don’t have an intrinsic value. For this reason, Carr and Madan (1999) derive a
FFT based on the time value of the option.

8See for example the references of Christoffersen et al. (2006).
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the index, again from the OptionMetrics database. As the zero-coupon interest rates are

given for only specific days-to-maturities, I interpolate the values for missing days such

that rates for every day-to-maturity is available. By means of the Piecewise Cubic Her-

mite Interpolating Polynomial (PCHIP) method, the resulting yield curve is smooth and

I don’t observe any anomalies. The S&P500 spot index series are obtained from Yahoo

Finance, for which also the dividend-exclusive series are available. This is consistent

with Bakshi et al. (1997) who adjust the series for discrete dividends by subtracting the

present value of future dividends from the spot index level.

Following Andreou et al. (2008) and Bakshi et al. (1997), I employ several exclusion

filters. This includes eliminating call contracts (i) for which the call contract price is

greater than the asset value; (ii) with less than six days to expiration (as they may lead

to liquidity-related biases); (iii) price quotes not satisfying the arbitrage restriction

ct ≥ max(0,St − X ,St −δ− X r f ),

with St the spot price, X the strike price and δ and r f the dividend and risk-free rate re-

spectively; (iv) price quotes lower than 3/8 (to discard to the impact of price discreteness

on option valuation). By employing this criteria, a total of 155470 observations, approx-

imately 14% percent of the total, are filtered out of the original sample that consisted of

more than a million observations. This leaves 901593 observations to be included in the

analysis which is larger than in any other study known. The exclusion of observations is

mostly attributed to the filtering rules (ii) and (iv). The fraction deleted observations is

similar as in Andreou et al. (2008).

Table 3 reports the sample properties of option contracts in the remaining dataset,

categorized by the moneyness and time-to-expiration sets. There are more in-the-money

(574802) than out-the-money (291677) options, which is also observed in the study of

Bakshi et al. (1997). The average price call price is 211.03 with an average spread of

3.06. This is especially due to the high number of observations and high call price of the

very deep in-the-money options (St/X > 1.35). Options with less than 60 days to maturity

and that are out and at-the money are the most liquid, while options in-the-money and

time-to-maturity more than 180 days the least.

4 PARAMETER ESTIMATION PROCEDURE

To apply option pricing models we need to find estimates for the volatility of the under-

lying and other corresponding parameters of the models. As these are usually unobserv-

able, I minimize a price deviation function with respect to the unobserved parameters

and spot volatility. The ‘true’ prices are assumed to be the market option prices (cmkt
t ).
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TABLE 2: SAMPLE PROPERTIES OF THE S&P500 EUROPEAN CALL OPTIONS (2006-2011)

Reported are the average bid-ask mid-point quotes, the bid-ask spread (ask minus bid) shown in paren-
thesis () and the total number of observations shown in brackets []. The contracts are categorized by each
moneyness-maturity categories and weighted to obtain an average value per set. The sample period cov-
ers January 3, 2006 until December 31, 2011. St is the spot price on the S&P500 and X the strike. The
layout of this table is conform Bakshi et al. (1997) and the moneyness-maturity categories are inspired by
Andreou et al. (2008).

Moneyness Days to expiration

St/X < 60 60−180 > 180 All

< 0.85 1.62 2.64 13.95 10.58
(1.24) (1.28) (2.48) (2.13)
[7624] [21972] [71877] [101473]

0.85−0.95 4.38 11.24 52.53 24.47
(1.08) (1.66) (3.62) (2.21)
[33641] [43058] [44366] [121065]

0.95−0.99 12.34 33.07 92.82 39.69
(1.46) (2.42) (3.85) (2.38)
[29637] [21559] [17943] [69139]

0.99−1.01 27.30 51.75 113.32 57.41
(2.05) (2.65) (3.92) (2.72)
[15123] [10756] [9235] [35114]

1.01−1.05 52.13 74.89 133.96 80.85
(2.48) (2.77) (3.90) (2.95)
[27542] [19151] [17047] [63740]

1.05−1.10 94.72 111.28 166.05 119.27
(2.69) (2.95) (3.97) (3.12)
[30336] [19481] [19241] [69058]

1.10−1.35 205.15 214.85 256.73 222.86
(2.94) (3.16) (4.20) (3.37)
[88896] [57962] [60195] [207053]

> 1.35 461.61 507.58 574.75 519.73
(3.21) (3.41) (4.74) (3.88)
[75252] [65696] [94003] [234951]

All 189.00 197.25 242.60 211.23
(2.51) (2.69) (3.85) (3.06)
[308051] [259635] [333907] [901593]
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At every point in time t, there are Qt option contracts available, hence option transac-

tion datapoints, with each different characteristics in terms of strike price and expira-

tion date. Using all the option contracts from the past 10 days9 up to today t, I split

this in-sample dataset by the eight moneyness and three time-to-maturity categories10,

resulting in 24 sets of in-sample data. The following therefore holds for every model

k = 1, ..., M and for every set of options data 1, ..., Nt,p that share the same maturity and

time-to-expiration:

ck
t = {ck

t,p}24
p=1,

ck
t,p = {ck

t,p, j}
Nt,p
j=1 ,

Qt =
24∑

p=1
Nt,p.

Then the difference

εk
s,p, j = cmkt

s,p, j − ck
s,p, j, (4.1)

for j = 1, ..., Ns,p, s = t−10, ..., t

between the market cmkt
s,p, j and the model value of a certain option ck

s,p, j is a function of

the values taken by the unknown parameters. To find the optimal implied parameters, I

solve at every point in time t the optimization problem in the following form:

SSE(t, p,k)=min
θk

t,p

t∑
s=t−10

Ns,p∑
j=1

(εk
s,p, j)

2, (4.2)

where θk
t,p is the vector of parameters corresponding to model k at time t and moneyness-

maturity category p. This results for every time t and moneyness-maturity category p

in θBLS = {σ}, θMER1 = {σ}, θcsu = {σ,µ3,µ4}, θMER2 = {σ,λ,α,ϑ}, θCOX = {σ} and θHES =
9Andreou et al. (2008) and Bakshi et al. (1997) use only the current day’s option contracts to the obtain

the current day’s implied parameters. The average number of option contacts in my dataset is approxi-
mately 596. In estimating the implied parameters by splitting this sample into the 24 moneyness-maturity
categories, some categories (such as the very deep out-the-money and very deep in-the-money) are left
without sufficient number of observations (less than 20). I therefore use all option contracts of the past
10 days to secure stable estimation of the implied parameters. In addition, this may have it’s benefits for
out-of-sample pricing as time-variation is taken into account as well. Taking into account only the current
day’s option contracts may be an additional robustness check open for further investigation.

10Andreou et al. (2008) analyzes the effect of inclusion of several sets of parameters, including historical
parameters, a VIX volatility proxy derived by weighting implied volatilities and implied parameters which
are obtained by minimizing the Sum of Squared Errors with (i) all available options data available during
the in-sample period, (ii) options that share the same maturity, (iii) options that share the same maturity
and expiration date and (iv) contract specific parameters. While the contract specific parameters yielded
the best results in combination with a (hybrid) Black-Scholes based ANN model, the difference with the
monyness-maturity approach, hence applied in this study, is negligible small. By this division, additional
complexity is allowed to cope for the moneyness-maturity related biases as reported in many studies. In
addition, this requires less computational time as with the contract specific approach.
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{σ,κ,ν,$,ρ}. The SSE is minimized by means of nonlinear least squares based on the

interior-point algorithm. To improve the calibration speed, I incorporate constraints for

the spot volatility such that 0 < σ < 1. To avoid obtaining local minima as much as

possible I adapt various checks. That is, first I use three different starting values for

all the unknown parameters; two based on reported averages in corresponding papers

and one corresponding the obtained optimal parameters from the previous day t−1 with

the same moneyness-maturity category p. Then I check for nearby optima by adding

and subtracting a small number 4 to the converged parameter values. This is repeated

iteratively for every point in time and for each of the twenty four categories.

5 COMBINING THE MODELS

Given the estimated parameters and option prices, this section describes a couple of

ways to utilize the information from the individual models. The objective in combining

is to find unique weights that are assigned to the individual estimates, which in the

end leads to a closer estimate to the market prices and for which the moneyness and

maturity-biases are minimized. These weights also reveal the importance of a specific

model, and hence can be seen as a goodness of fit.

The motivation behind combining lies in the assumption that not a single model is ca-

pable of producing the ‘true’ price, and that the individual performance varies over time

and by the different moneyness (spot St divided by the strike X ) and time-to-maturity

T categories. Combining has proven to be an useful asset in various other fields, such

as equity premium forecasting and density forecasting. For instance, a recent article of

Rapach et al. (2010) shows how combining delivers statistically and economically signif-

icant out-of-sample gains in equity premium forecasting, relative to the historical aver-

age consistently over time. Also, (i) combining forecasts incorporates information from

numerous economic variables while substantially reducing forecast volatility; (ii) com-

bination forecasts are linked to the real economy. Despite the increasing popularity of

forecast combination in economics and finance, applications in the option pricing litera-

ture are relatively rare. One of the few exceptions is a recent article of Andreou et al.

(2008) who utilize the information of the MER1 (Merton, 1973) and the CSU (Corrado

and Su, 1996) framework by means of Neural Networks.

Another important aspect of combining individual models is the meaning of arbitrage-

free. While the option pricing formulas for the individual models are obtained using a

no-arbitrage condition, the combination of no-arbitrage models should not necessarily

imply an arbitrage free combined framework. Some examples of arbitrage conditions

that limit the degrees of freedom for a trader include are the put-call parity and the rule

that bid-ask spread rates are not zero. I leave the implications of these conditions in a
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combining framework open for further investigation.

In the first part of this section I discuss parametric approaches, inspired by Rapach

et al. (2010) and Stock and Watson (2004) in equity premium forecasting. In the second

part I discuss a Artificial Neural Network approach that is expected to allow for higher

complexity, following closely Andreou et al. (2008). This approach is therefore considered

as a benchmark to the proposed parametric methodology which is a more pragmatic way

of combining.

5.1 Parametric methods

For every individual model k = 1, ..., M, at every point in time t there are multiple esti-

mates of options prices with different strike and expiration date. To obtain the combined

option prices, I first split the sample during the relevant time period into one of the

eight moneyness and three time-to-maturity categories. This allows for flexible weights

and dynamic behavior between the moneyness-maturity categories, resulting in twenty-

four collections of option prices at every point in time t. From section 4 we know that

ck
t =

{
ck

t,p

}24

p=1
is a collection of estimated option prices by individual model k correspond-

ing to one of the twenty-four categories p.

In calculated the combined option price, again a distinction is made between out-of-

sample ccomb,oos
t+1 and in-sample ccomb,is

t combined option prices. For the out-of-sample

combined option prices I use the forecasts of the option prices, hence using parameter

estimates obtained with all data up to time t and then forecast the next day’s t+1 option

prices ck,oos
t+1 . In contrast, for in-sample combined option prices I use the fitted values ck,is

t

of the option prices at time t. More specific, the combined option price in an in-sample

framework is given by:

ccomb,is
t,p =

M∑
k=1

wk,is
t,p ck,is

t,p for p = 1, ...,24. (5.1)

The combined option price in an out-of-sample framework is given by:

ccomb,oos
t+1,p =

M∑
k=1

wk,oos
t,p ck,oos

t+1,p for p = 1, ...,24. (5.2)

In estimating the weights wk,Υ
t,p , for both approaches only the out-of-sample or in-sample

prices of the past m days up to time t are used as given. Define Υ = {is,oos}. Then I

evaluate the performance of the individual models during the hold-out period t−m, ..., t

based on the discounted mean squared error (DMSE). Moreover, the weights are obtained
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by solving:

wk,Υ
t,p =

(
φ

k,Υ
t,p

)−1

∑M
l=1

(
φ

l,Υ
t,p

)−1 , for Υ= {is,oos}, (5.3)

where

φ
k,Υ
t,p =

m∑
s=0

ξt−s
(
cmkt

t,p − ck,Υ
t,p

)2
, for Υ= {is,oos}. (5.4)

with ξ being the discounting factor and cmkt
t,p is the collection of true observed market

price for the option with moneyness-maturity category p. Here a hold-out period is used

of 10 past days, like for the estimation of the implied parameters. This method assigns

higher weights to models with lower DMSE during the hold-out period. For ξ < 1 more

importance is attached to the most recent observations and for ξ= 1 there is no discount-

ing. In this study I set the discount factor to 0.9. The second class of weights includes

averaging over the individual models (hence every model has the same weight) and tak-

ing the median of all the individual estimates. Moreover, for the mean combined option

price the weights are given by wk,Υ
t,p = 1/M for k = 1, ..., M and the median combined option

price is the median of
{

ck,Υ
t,p

}M

k=1
.

There are numerous other ways to combine the candidate option prices. Geweke

and Amisano (2011) for instance use a log scoring rule for predictive distributions to

impose weights on individual candidates. These can on their turn again be based on the

historical performance or fixed. Another idea is to estimate the weights and parameters

simultaneously or to allow weights to switch between various regimes (Waggoner and

Zha, 2012). Still, while the extended methods may allow for additional complexities and

better pricing performance, linear pooling approaches remains a competitive substitute

(see e.g., Timmermann (2006)). These avenues are open for further investigation.

5.2 Non-parametric methods

In this study I also pay attention to non-parametric approaches in order to provide a com-

petitive framework against, the more simplistic, combining parametric models. By doing

so, we can question whether the additional complexity of non-parametric approaches

has significant benefits, and whether the models are a complement or substitute in the

existing option pricing literature. Moreover, the non-parametric approaches, such as

Artificial Neural Networks (ANN), may have their disadvantages such as higher com-

putational time and be more difficult to use in practice. On the other hand, they have

proven to be robust during rapidly changing market environments, making them use-

ful during volatile periods such as the latest financial crisis. This section discusses the

considered models in brief, with the choices and assumptions made.
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In a similar fashion as in Andreou et al. (2008), I implement the Neural Network

model with as inputs the option prices from the CSU and MER1 models and target

primarily the option market price cmkt
t . The notation for this model is given by ANN2.

In this way, the NN model is a function of parametric and non-parametric methodology.

Moreover, cANN2
t = f2(cCSU

t , cMER1
t ) where f2(.) is the network that links information

from the parametric models with the prices cCSU
t Corrado and Su (1996) and cMER1

t

Merton (1973). As an additional benchmark I also include a Neural Network model that

combines all the individual models considered (ANNa) through the neural network fa(.).

Finally, I also model a conventional Artificial Neural Network option pricing model that

uses as inputs the variables spot price St, strike X , dividend δ, zero-coupon interest

rate r f and time-to-maturity T, with notation ANNx. Hence, cANNx
t = fx(St, X ,R f ,T,δ).

The targets for all the ANN models considered are the true and observed market prices,

cmkt
t . Andreou et al. (2008) considers two alternative target functions: (i) the option price

divided by the strike price cmkt
t /X ; (ii) the residual between the actual call market price

and the individual model based option price both divided by strike cmkt
t /X − ck

t /X . While

this may lead to improved pricing performance, in this study however this would lead

to unfair comparison between the parametric and non-parametric methods. Moreover,

for the parametric methods the weights are only obtained by taking into account the

residuals between the option market price and model-based price estimates. An avenue

open for further investigation may be ways to obtain weights that also incorporate other

information from the option contracts, such as the strike and time-to-expiration.

In implementing and estimating the neural networks, I again split the sample into

24 categories based on the moneyness and maturity of the option prices. Each network

is estimated and optimized by the Mean Square Error (MSE) criterion, with a maximum

of 200 iterations. Like in most cases in modeling an ANN model, the in-sample dataset

is split into three subsets. First, the training or estimation set. Second the validation set

where the optimal number of neurons and the weights are determined11. Third a testing

set where the pricing performance is monitored. Finally, this calibrated neural network

is used as as the resulting framework for pricing the option prices in-sample, at time t or

out-of-sample, at t+1, with as inputs the corresponding prices or variables at that time.

To train the ANN’s, I utilize the modified LM algorithm. For a detailed discussion about

the technical details and implementation of the NN models see A.2.

11For computational reasons I set the number of hidden layers equal to 10 (which is the default). This
may be an avenue open for improvement as selecting the optimal number of neurons may be of significant
importance; selecting too much leads to over-fitting yielding an unidentified model. See Balkin and Ord
(2006) and Teräsvirta et al. (2006) for ways to determine the optimal number of hidden units.
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6 IMPLIED PARAMETERS AND IN-SAMPLE PRICING FIT

The purpose of this section is to obtain a clear picture of how generalizing BLS can lead

to improved performance, in terms of pricing error reduction, and to motivate the use of

combining. Additional attention is given to the related moneyness- and maturity biases

and the implications of model misspecification. Table 3 shows the weighted averages

of the obtained parameters during the full period (2006-2011). Presented are the daily

average and standard deviation of the estimated parameters with the daily root mean

squared of in-sample pricing errors (RMSE). These statistics inform about the internal

working of the individual models.

From the table, we can observe multiple features. The implied volatilities σ of BLS,

COX and HES and the volatilities of the Merton models MER1 and MER2 seem to

be relatively close to each other. It is interesting to see what impact this has on out-

of-sample pricing and trading as small differences in implied volatility estimates can

lead to significantly different performance. CSU is the only model with a remarkably

higher implied volatility than the others. This could be due to a different influence of

this parameter as opposed to the skewness µ3 and kurtosis µ4 parameters. Moreover, we

observe an implied positive skewness of 0.46 and a lacking kurtosis of 2.46. This differs

to some extent from the skewness and kurtosis of the spot rate during the time period

2005-2008, which is equivalent to -0.3607 and 2.605 respectively. The annualized jump

frequency λ of the MER2 jump diffusion model is around 0.38 times a year, with an

average jump size of -0.05 and jump size uncertainty 0.23. Allowing price jumps to occur

can help to cope with more negative skewness and higher kurtosis without affecting

the other parameters. The mean reversion parameter κ of the Heston model is about

17.46 (3.30). This parameter can be seen as the degree of volatility clustering. Hence,

an increasing reversion parameter flattens the implied volatility smile. Yet in case of

stochastic volatility models, capturing the skewness and kurtosis is mostly attributed to

correlation ρ and volatility variation ν parameters (Bakshi et al., 1997). A positive ρ of

around 0.12 indicates a spread in the right tail and squeeze in the left tail, and therefore

a right-tailed distribution, hence capturing the skewness. The volatility of the variance

ν has effect on the kurtosis of the distribution and is estimated to be 3.67, creating heavy

tails on both sides. A higher ν indicates a higher prominence of the volatility smile. In

addition it reflects a higher probability of extreme movements.

Figure 1 shows the time-variation of the backed-out implied volatility parameters

against the VIX index on the S&P500. The values are the average across all maturity-

moneyness groups for each day in the sample. We observe for all models with exception

of the CSU framework that the pattern is similar to that of the the VIX index.
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TABLE 3: IMPLIED PARAMETERS AND IN-SAMPLE FIT

Each day in the sample (2006-2011), the structural parameters of a given model are estimated by minimizing the sum of squared pricing errors between the market price
and the model-determined price for each option. The daily average of the estimated parameters is reported first, followed by its standard deviation in parentheses. The
parameters are estimated by splitting the in-sample data into twenty-four categories, based on the moneyness (eight categories) and expiration date (three categories)
of all the available options up to current day. The values presented are the weighted averages across the twenty-four categories and over time. σ is the implied volatility,
µ3 and µ4 respectively the skewness and kurtosis of the underlying, λ the jump-frequency, α and ϑ the mean and standard deviation of the jump, κ the mean-reversion
parameter ϕ the long run variance, ν the volatility of the volatility and ρ the correlation between the log-returns and volatility of the asset. BLS refers to the benchmark
Black and Scholes (1973), MER1 to Merton (1973), CSU to Corrado and Su (1996), MER2 to the Merton (1976) jump diffusion, COX to Cox and Rubinstein (1979) and
HES to the Heston (1993) stochastic volatility model. RMSE is the average daily Root Mean Squared Error of the relevant option prices during the sample period. T
represent the time-to-maturity, hence indicating days to expiration date. The parameters in the groups under ‘All Options’, ‘Short-Term Options’, and ‘At-The-Money
Options’ are obtained by respectively averaging across all moneyness-maturities, averaging across only options with maturity less than 60 days, and averaging across
only options with moneyness 0.99-1.01 as input into the estimation

All Options Short-Term Options At-The-Money Options

Parameters BLS MER1 CSU MER2 COX HES BLS MER1 CSU MER2 COX HES BLS MER1 CSU MER2 COX HES

σ 0.13 0.18 0.34 0.17 0.14 0.14 0.14 0.18 0.34 0.18 0.15 0.10 0.15 0.18 0.38 0.17 0.17 0.13
(0.08) (0.08) (0.05) (0.08) (0.08) (0.07) (0.09) (0.10) (0.08) (0.10) (0.09) (0.07) (0.08) (0.07) (0.12) (0.10) (0.08) 0.10

µ3 0.46 -0.02 1.07
(0.30) (0.25) (0.56)

µ4 2.46 2.24 2.42
(0.37) (0.41) (1.11)

λ 0.38 0.70 0.31
(0.22) (0.51) (0.41)

α -0.05 -0.02 -0.08
(0.11) (0.10) (0.10)

ϑ 0.23 0.26 0.25
(0.03) (0.06) (0.07)

κ 17.46 17.99 21.86
(3.30) (3.38) (2.54)

$ 0.05 0.04 0.02
(0.04) (0.04) (0.02)

ν 3.66 3.78 3.36
(1.72) (1.73) (2.63)

ρ 0.12 0.07 0.05
(0.19) (0.19) (0.16)

RMSE 7.43 4.66 5.17 4.05 7.74 8.27 3.01 2.49 2.84 2.49 3.21 4.31 5.79 4.04 4.49 5.01 5.73 7.18
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This lack of variation of the CSU method is probably compensated by the variation

in the other parameters skewness µ3 and kurtosis µ4. The implications of these results

are that the time-variation of the volatility seems to be captured for a large part by the

estimated implied volatility parameters. For completeness, Table B.1 in the Appendix

shows the implied volatilities averaged across time by the various moneyness-maturity

categories and during different subperiods. The backed out volatilities show the typical

strong U-shaped pattern or smile; when the call option goes from in-the-money to at-the-

money and then again to out-to-money. This is the case for all time-to-expirations and the

different sub-periods. This smile is the strongest for the short-term options which could

be an indication that models are the most misspriced for this category. The moneyness-

and maturity-related biases give an argument for relaxing the BLS assumptions and

considering alternative option pricing models. As Bakshi et al. (1997) notes, to cope

for the volatility smile, the better model should allow for negative skewness and excess

kurtosis as the presence of a smile is an indication of negatively skewed returns with

excess kurtosis.

From the pricing performance of the individual models, we see that especially Mer-

ton models MER1 and MER2 yield relatively small RMSE for all option contracts of

4.66 and 4.05 respectively. The generalization of the assumptions no-dividends and con-

tinuous diffusion of the underlying seems therefore to lead to better in-sample pricing

performance. The result of the Heston stochastic volatility model is somewhat surpris-

ing with a RMSE of 8.27, being the worst performer. While this is mostly attributed to

bad pricing performance for out-of-the money option contacts (see table B.2 in the Ap-

pendix), this holds true for other moneyness-maturity categories as well. It may imply

that stochastic volatility plays a smaller role during the considered time period. Yet

this does not seem plausible given the high volatile markets during 2007-2009. On the

other hand, a high degree of volatility clustering could explain why assuming a constant

volatility during a particular period of time may seem a reasonable assumption. Another

explanation is the presence of calibration issues, as addressed by various papers (see e.g.,

Albrecher et al. (2007)). Finally, relaxing the assumption of continuous evolution of the

share price doesn’t seem to lead to improvement in in-sample pricing as well, as we can

see from the pricing results of the COX model with a RMSE of 7.74.

As for the combining frameworks, it seems that only cMSE which combines based

on the historical performance yields a reduction in the RMSE for most moneyness and

maturity categories. cMEAN, cMED and the Neural Network model cANN2 fail to

be of significant influence. As for cMEAN and cMED it may be that the individual

forecasts are too much correlated (around 0.95-0.99) such that no significant benefits are

achieved from combining. Hence, cMSE takes into account possible biases due to model
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FIGURE 1: IMPLIED VOLATILITIES OVER TIME AGAINST THE VIX RATE

Presented are the average (across all moneyness-maturity categories) implied volatilities backed out by
the various individual models against the VIX index. Each day in the sample (2006-2011), the structural
parameters of a given model are estimated by minimizing the sum of squared pricing errors between the
market price and the model-determined price for each option. The parameters are estimated by splitting
the in-sample data into twenty-four categories, based on the moneyness (eight categories) and expiration
date (three categories) of all the available options up to current day. The values presented are the weighted
averages across the twenty-four categories and over time. BLS refers to the benchmark Black and Scholes
(1973), MER1 to Merton (1973), CSU to Corrado and Su (1996), MER2 to the Merton (1976) jump diffusion,
COX to Cox and Rubinstein (1979) and HES to the Heston (1993) stochastic volatility model.
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misspecifications through the weights. As for cANN2, the Neural Networks may not

be well calibrated. For instance, the number of neurons is not chosen properly. A closer

look at the RMSE of this model over time (not shown here) reveals that in particular

after 2010 the model produces large in-sample pricing errors. Hence, a structural break

affecting the networks may require an additional calibration effort after a particular

point in time.

Finally I take a closer look at the parameter estimates by averaging only across short-

term, which are challenging to price, and at-the-money options, which are considered in

many studies. From the table we can observe that the parameters are different among

the various options with respect to maturity and moneyness. This holds especially true

for the jump-intensity λ in MER2 and mean-reversion rate κ in HES. For the HES

model we observe that the jump-intensity (jump-size) is the highest (lowest) for short-

term-options. This implies that shocks are more likely to have an effect on short-term

options, while the jumps have a smaller size and volatility. The volatility coefficient of

short-term options is higher for BLS, MER2 and COX , implying that for the short-term

options to be priced correctly by means of these models, the volatility needs to be more

volatile than for all options of all maturities. This holds true for all the models estimated

for at-the-money options with exception of HES. From the CSU parameters, we can

see that short-term options are skewed less to none (-0.02), but that the at-the-money

options exhibit a larger skew (1.07).

In all, these findings suggest that the candidate option pricing models are probably

not entirely correctly specified. Moreover, if it were the case, the 24 categories of option

prices split by the moneyness-maturity categories, should not have resulted in different

parameter estimates. Thus, this gives an argument for combining.

7 OUT-OF-SAMPLE PRICING

Results on the in-sample pricing performance show that relaxing the continuous dif-

fusion of the underlying and no dividend assumptions yields the highest reduction in

pricing errors. Also, combining based on the historical performance yields an improved

fit. The increased fit however may be the consequence of having more parameters. In an

out-of-sample framework on the other hand, having more parameters may lead to over-

fitting and hence a higher RMSE if the additional parameters does not have significant

added value. I therefore next asses the performance of the methods in an out-of-sample

framework, where the previous day’s implied parameters and volatilities values as an

input to compute the current days’s option pricing models.
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7.1 Pricing errors

Table 4 reports the RMSE of the various individual option pricing models, along with the

combined framework. I again distinguish between the various moneyness and maturity

categories in the presentation of the results. The relative performance of the models dif-

fers among the various moneyness-maturity categories, especially for maturities longer

than 180 days. This can be for a part explained by the larger pricing errors that occur

when the option prices are higher, as it is the case for longer maturities. Among the indi-

vidual models, we can observe the same performance characteristics as for the in-sample

results. That is, the MER1, MER2 and CSU models are among the best performers

for most moneyness and maturity categories, whereas COX and HES fail to beat the

BLS model. Non-dividend paying methods seem to be therefore in a disadvantage. The

best performer is the MER2 jump diffusion model with an average RMSE of 4.37 over

the whole dataset. These results imply that the increased fit for the individual models

in an in-sample framework is in line with the performance of these methods in an out-

of-sample framework. In addition, all models are capable of beating the random walk12

(RW).

Combining based on the discounted historical performance (cMSE) is the overall

best performer with a RMSE of 4.26 for the full dataset. This is consistent among al-

most all moneyness and maturity categories. Taking the median instead of the mean

yields better results, but does not beat the cMSE. This is in contrast with the in-sample

results where combining based on these schemes didn’t had any added value. The NN

(cANN2) that utilizes information from CSU and MER1 models performs worse com-

pared to cMSE, whereas taking into account information from all the models (cANNa)

leads to an improvement with a RSME of 7.68. Also, the ‘two-step’ approach similar

as for Andreou et al. (2008) leads to better results as opposed to a pure Artificial NN

method (ANNx). This implies that more benefits can be achieved and higher complexity

captured, by considering a two-step approach that individually utilizes information from

different frameworks instead of directly modeling the option prices by means of a Neu-

ral Network or complex extended framework. This can be somewhat compared to what

we observe in the literature of equity premium forecasting. Timmermann (2006) and

Rapach et al. (2010) show that such two-step way of modeling or forecasting, by utiliz-

ing information from individual models with one regressor, leads to better out-of-sample

performance as opposed to one ‘super’ model with multiple regressors.

12One may suspect that the bad performance of the Random Walk (RW) is due to the unbalanced sam-
ples. More specific, when using previous day’s option prices as an estimate for current day’s there are no
forecasts available for option contracts that are added at that specific day. In a separate analysis I match
the sample of the RW forecasts with the other models and find that the results are qualitatively similar.
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TABLE 4: OUT-OF-SAMPLE PRICING PERFORMANCE OF ALL THE MODELS (2006-2011)

Presented are the pricing errors of the various option pricing models considered in this study, in an out-of-sample framework. I compute the current’s day option prices using the previous day’s implied parameters
and implied stock volatility. For each moneyness-maturity category, I report the Root Mean Squared Error (RMSE) of the difference between market price and model price for all option contacts. The sample
period covers January 2006 - December 2011, with a total of 893708 observations. A total of 7885 observations are discarded from the analysis due to calibration issues or an non-feasible estimates. The
individual models considered are the BLS (Black and Scholes, 1973), MER1 (Merton, 1973), CSU (Corrado and Su, 1996), MER2 (Merton, 1976), COX (Cox and Rubinstein, 1979) and HES Heston (1993). cMSE
is the combined model which combines the individual option prices of all models, by assigning weights to each individual model based on the historical performance, measured by the Discounted Mean Squared
Error (DMSE), during a hold-out period of 10 days. cMEAN and cMED refer to respectively the average and median of all model based estimates of the individual option pricing models on a given day. cANN2 is
the neural network model, following Andreou et al. (2008) which utilizes information from the MER1 and CSU framework by means of an Artificial Neural Network. cANNa uses the same methodology as ANN2
but utilizes information from all individual models. cANNx is the conventional Artificial Neural Network model which uses the inputs of the BLS and targets the true market price. RW refers to the Random
Walk option pricing model, which uses the past day true market price as an estimate for the current’s day, for all contracts. Underlined values represent the lowest value for a given row/moneyness category.

Moneyness Days to maturity: <60 days

St/X Obs. BLS MER1 CSU MER2 COX HES cMSE cMEAN cMED cANN2 cANNa cANNx RW
< 0.85 7624 8.99 7.00 7.93 7.40 9.42 12.98 7.30 8.20 7.65 7.32 6.63 9.48 17.46
0.85 - 0.95 33461 9.42 5.88 6.45 5.11 9.55 9.86 4.99 6.35 5.75 8.41 7.58 9.59 12.51
0.95 - 0.99 29312 9.86 5.15 5.79 4.31 9.95 9.19 4.24 6.57 5.24 7.74 7.02 9.76 10.85
0.99 - 1.01 14939 10.06 5.03 5.62 4.32 10.15 9.09 4.06 6.22 4.99 7.81 6.87 9.65 10.45
1.01 - 1.05 27219 9.78 5.08 5.63 4.15 9.88 9.28 4.15 6.16 4.99 7.78 7.01 9.66 10.40
1.05 - 1.10 30009 9.93 5.26 5.68 4.17 9.95 9.15 4.20 6.41 5.16 7.81 7.13 9.84 10.45
1.10 - 1.35 88190 10.04 5.63 6.05 4.38 10.12 9.53 4.33 6.06 5.27 8.33 7.35 9.70 10.69
> 1.35 74601 9.81 5.97 5.81 4.25 9.98 9.23 4.16 5.56 5.06 9.67 8.57 9.48 10.52
All 305355 9.84 5.62 5.96 4.45 9.95 9.46 4.39 6.12 5.28 8.46 7.55 9.64 10.97

Moneyness Days to maturity: 60-180 days

St/X Obs. BLS MER1 CSU MER2 COX HES cMSE cMEAN cMED cANN2 cANNa cANNx RW
< 0.85 21932 8.16 5.98 6.57 5.58 8.48 10.27 5.56 6.32 6.04 8.23 7.32 9.65 15.07
0.85 - 0.95 42782 9.22 5.43 5.88 4.44 9.36 9.12 4.32 5.86 5.08 8.79 7.71 9.68 11.27
0.95 - 0.99 21363 9.66 4.93 5.64 4.25 9.73 8.87 4.06 6.07 4.91 8.33 7.38 9.60 10.63
0.99 - 1.01 10642 10.18 4.97 5.88 4.20 10.26 9.28 3.96 6.40 4.88 8.34 7.28 9.52 10.58
1.01 - 1.05 18957 10.13 5.02 6.00 4.22 10.14 8.98 4.04 6.22 4.97 8.13 7.32 9.64 10.35
1.05 - 1.10 19321 10.09 5.22 5.88 4.30 10.17 9.13 4.04 6.17 5.03 8.74 7.44 9.45 10.53
1.10 - 1.35 57432 9.71 5.25 5.66 4.18 9.80 8.97 4.03 6.14 5.11 8.87 7.83 9.49 10.95
> 1.35 65051 9.21 5.56 5.52 4.16 9.37 8.92 3.97 5.53 4.94 9.70 8.52 9.31 10.53
All 257480 9.45 5.36 5.79 4.35 9.57 9.11 4.19 5.97 5.10 8.88 7.81 9.51 11.13

Moneyness Days to maturity: > 180 days

St/X Obs. BLS MER1 CSU MER2 COX HES cMSE cMEAN cMED cANN2 cANNa cANNx RW
< 0.85 71432 8.73 5.60 5.96 4.86 8.90 9.67 4.76 6.06 5.47 8.55 7.58 9.47 13.39
0.85 - 0.95 43920 10.16 5.16 5.58 4.33 10.19 9.27 4.24 6.55 5.06 8.23 7.45 9.72 11.13
0.95 - 0.99 17771 10.61 5.03 5.74 4.36 10.60 9.41 4.16 6.62 4.95 8.01 7.15 9.82 10.66
0.99 - 1.01 9127 10.30 5.02 5.70 4.32 10.34 9.59 4.10 6.89 5.06 8.00 7.12 10.02 10.67
1.01 - 1.05 16854 10.66 4.83 5.62 4.18 10.63 9.38 3.97 6.75 4.92 7.79 6.96 9.81 10.37
1.05 - 1.10 19052 11.10 5.06 5.64 4.29 11.07 9.51 4.13 7.13 5.01 7.94 7.13 9.70 10.43
1.10 - 1.35 59553 10.50 5.03 5.54 4.17 10.53 9.22 3.97 6.68 4.90 8.37 7.41 9.59 10.40
> 1.35 93164 9.81 5.39 5.40 3.98 9.89 8.90 3.99 5.98 4.85 9.50 8.53 9.49 10.11
All 330873 9.92 5.26 5.62 4.31 9.99 9.28 4.21 6.36 5.04 8.62 7.71 9.60 11.08

Overall 893708 9.76 5.41 5.79 4.37 9.86 9.29 4.26 6.17 5.14 8.64 7.68 9.59 11.06
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The out-of-sample results of the combining frameworks are not entirely in line with

the correlations between the individual models. These are relatively high (between 0.95

and 0.99); combining highly collinear forecasts would not per se give large reduction in

the Mean Squared Error. Yet, we still see benefits arising from combining the individ-

ual frameworks. As in the case for the in-sample results, an explanation could be that

the benefits of combining arise due to corrections for the misspecification of the individ-

ual models. If each model is to some extent misspecified, then by definition each price

estimate is consistently biased. These biases are then corrected by the combining frame-

works through the weights. Another possible reason could be that for the option pricing

literature, the values of the correlations are not that informative as in the case for equity

premium forecasting. Moreover, the option pricing forecasts represent the absolute value

and not the returns, which are for their part more volatile and show higher dispersion.

Table 5 reports the Diebold-Mariano (DM) test statistics, here used to compare the

pricing performance of the various models. In case the test-statistic follows a standard

normal distribution, a positive value in the table larger than 1.645 (2.325) would imply

that the model in the vertical heading has a larger pricing error than the model in the

horizontal heading at a 5% (1%) significance level. However, this is not a valid assump-

tion since this study compares linear and nonlinear nested models13. A way to solve for

this concern is by bootstrapping the DM-statistic. However, due to the large number of

parameters, variables and hence combinations possible, this is not an easy task to over-

come due to the large computational time. Another alternative would be to consider the

Model Confidence Set (MCS) procedure of Hansen et al. (2011). This method handles

the limitations of the data by not assuming that a particular model is the true model.

Instead, it is constructed such that it yields a best model with a given level of confidence.

Still, the DM test statistic values presented can give some indication of the direction and

to some extent the relative magnitude of the individual performance. For instance, we

can observe that the cMSE model outperforms all the other models as expected with

a large DM-statistic. Exceptions are the DM-statistics against the MER2 and cMED

models, meaning that these three models yield close results. While we don’t know the

true distribution of the statistic, the values reveal to some extent how close these models

are in terms of pricing performance during the considered time period.

13Comparing errors from nested models, as it is the case in this study, leads to tests with low power and
a undersized statistic (McCracken (2007) and Clark and West (2007)). For this reason Clark and West
(2007) develop an adjusted version of the Diebold and Mariano (1995) and West (1996) statistic that is
line with the standard normal distribution and generates asymptotically valid inferences for comparing
forecasts from nested linear models. This approach however is not valid as well, given that we combine
nested nonlinear and linear models.
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TABLE 5: DIEBOLD-MARIANO TEST FOR COMPARING PRICING ERRORS

Reported are the Diebold and Mariano (1995) test-statistics for comparing the pricing errors of the various
models considered. Under the null hypothesis the expected squared errors of two competitive models are
the same. Hence, a positive DM-value means that the model in the vertical heading has a larger pricing
error than the model in the horizontal heading. Since we do not exclusively compare linear and non-nested
models, the assumption of the statistic following a standard normal distribution is not valid. Therefore
inferences made about the statistical significance of the values are dubious without first knowing the
true distribution. The random walk (RW) method is discarded from this analysis due to an un-matching
number of observations as opposed to the other methods.

BLS MER1 CSU MER2 COX HES cMSE cMEAN cMED cANN2 cANNall cANNx
BLS 221.7 199.2 251.6 -30.0 24.9 253.9 196.9 236.0 47.4 87.3 8.2

MER1 -34.9 98.6 -234.6 -221.6 120.4 -61.2 26.4 -154.2 -107.7 -214.4
CSU 123.4 -211.2 -203.4 139.7 -30.2 57.2 -140.0 -91.3 -196.9

MER2 -264.9 -265.8 13.9 -155.2 -82.3 -195.7 -151.0 -259.0
COX 30.8 267.8 208.9 249.8 52.7 93.5 13.0
HES 269.6 183.2 243.2 28.8 72.7 -14.6
cMSE -180.6 -109.8 -200.7 -155.1 -263.4

cMEAN 126.7 -122.1 -74.5 -181.5
cMED -168.0 -120.8 -229.0
cANN2 48.0 -42.8

cANNall -86.6
cANNx

7.2 Sub-periods

The data set considered spans some remarkable years with major events such as the

latest financial crisis. Due to the large fluctuations in the market and multiple events

happening, the behavior and consistency of the various models may differ during differ-

ent sub-periods. I therefore next asses the absolute performance of the models considered

during three sub-periods: (i) before the latest recession, (ii) during the recession and (iii)

after the recession. The start and end dates of the latest recession are obtained from the

NBER website which also reports the historical business cycles.

The weighted RMSE averages, across all moneyness-maturity categories, of all mod-

els during the different sub-periods are given in table 6. Now we observe that while

the two-step neural network models (cANN2 and cANNa) are not of significant mean-

ing during the overall period, they are capable of outperforming most models during

and before the recession. This result may be somewhat explained by the characteristic

of the approach which is designed to cope for high complexity, which can arise during

volatile periods such as a crisis. On the other hand, the pre-recession results suggest

that two-step ANN’s were also of influence during an expansion. The poor results af-

ter the recession may indicate a changed market behavior for which the two-step ANN’s

haven’t adjusted rapidly enough or certain behavior that needs more attention in mod-

eling. Like we observe for the overall period, including more individual models in the

two-step ANN framework yields better results (cANNa performs better than cANN2).

The most striking result however is the simple parametric combining framework cMSE

shows consistent behavior across the various sub-periods. It consistently outperforms
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TABLE 6: PRICING PERFORMANCE DURING SUB-PERIODS

Presented are the pricing errors of the various option pricing models considered in this study, in an out-
of-sample framework. That is, I compute the current’s day option prices using the previous day’s implied
parameters and implied stock volatility. I report the Root Mean Squared Error (RMSE) of the difference
between market price and model price for all option contacts. The overall sample period covers January
2006 - December 2011, with a total of 893708 observations. The recession start and end date are obtained
from the NBER website and indicate the latest recession, characterized by the recent financial crisis,
which spans December 2007 - June 2009. Obs. stands for the number of observations.

Obs. BLS MER1 CSU MER2 COX HES cMSE cMEAN cMED cANN2 cANNa cANNx RW

Overall
893708 9.76 5.41 5.79 4.37 9.86 9.29 4.26 6.17 5.14 8.64 7.68 9.59 11.06

Recession
224071 7.85 5.15 6.20 5.13 8.15 9.78 4.89 5.92 5.66 4.83 3.94 9.47 13.30

Pre-recession
166910 13.45 3.83 5.70 4.56 13.24 9.99 3.84 8.68 4.74 3.65 2.88 10.07 8.68

Post-recession
500249 9.05 6.01 5.67 4.02 9.22 8.85 4.11 5.17 5.02 10.91 9.80 9.49 10.70

most models and shows also good results after the crisis, unlike the two-step ANN’s. For

a practitioner who is seeking for a consistent and relative easy approach to model option

prices, cMSE may be the best alternative.

7.3 Importance individual models

The performance of the cMSE model is consistent and relative stable over time. This

performance however depends much on the individual inputs; the choice of the individual

models and their performance. As the weights are a function of the mean squared error,

inferences made about the relative importance of the individual models is expected to be

in line with the relative performance of the pricing errors.

A way to asses the importance of individual models is by looking at the magnitude

of the assigned weights over time. I therefore calculate the weighted average weight

by averaging over all the moneyness and maturity categories for each day during the

sample. The outcome of these computations is given in figure 2. As expected, the models

with lower RMSE receive higher weights. The weight attributed to MER2 is almost

always higher than 20%, with an increase from the end of 2009 through 2011. The BLS

model also gains more importance during the recession, hence implying that relaxing

the assumptions leads to a smaller improvement in pricing during this period of time.

We can also observe an increase in importance of the COX framework during the same

period, while CSU is especially more prevailing pre- and post the recession. The Heston

framework is the least favored with an average assigned weight of 9% over the overall

period. In all, every model is included and reasonably important during the full sample.
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FIGURE 2: WEIGHTS ATTRIBUTED TO THE INDIVIDUAL MODELS BY cMSE

Presented are the weighted average weights assigned by the combining method cMSE. The model assigns
weights to each individual model by means of the past performance during a hold-out-period of 10 days,
following closely the methodology of Stock and Watson (2004). The performance is based on the Discounted
Mean Squared Error (DMSE) of the pricing errors of the individual models, with a discount factor of 0.9.
The average weights are obtained by averaging across all maturities and moneyness categories. The grey
thin line is the actual average weight, whereas the black thicker line represents a 20 day average, included
for visional reasons. Over the full period, the average weight assigned to the models are as follows: 0.13
for BLS; 0.21 for MER1; 0.21 for CSU ; 0.24 for MER2; 0.12 for COX ; 0.09 for HES.
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TABLE 7: AVERAGE WEIGHTS BY MONEYNESS AND MATURITY

Presented are the weighted average weights assigned by the combining method cMSE for the various
moneyness and maturity categories. The model assigns weights to each individual model by means of the
past performance during a hold-out-period of 10 days, following closely the methodology of Stock and Wat-
son (2004). The performance is based on the Discounted Mean Squared Error (DMSE) of the pricing errors
of the individual models, with a discount factor of 0.9. The average weights per moneyness category are
obtained by averaging across all maturity categories and time; whereas the average weights per maturity
category are obtained by averaging across all moneyness categories and time. The sample period covers
Januari 2006 - December 2011.

BLS MER1 CSU MER2 COX HES

Moneyness
< 0.85 0.20 0.18 0.19 0.17 0.14 0.12
0.85 - 0.95 0.19 0.19 0.18 0.16 0.18 0.09
0.95 - 0.99 0.19 0.20 0.18 0.17 0.18 0.07
0.99 - 1.01 0.17 0.20 0.18 0.15 0.17 0.12
1.01 - 1.05 0.16 0.21 0.18 0.17 0.17 0.11
1.05 - 1.10 0.15 0.22 0.19 0.18 0.15 0.11
1.10 - 1.35 0.13 0.21 0.19 0.22 0.13 0.10
> 1.35 0.03 0.23 0.26 0.39 0.03 0.06

Maturity
< 60 0.13 0.20 0.20 0.24 0.13 0.09
60-180 0.13 0.20 0.22 0.23 0.12 0.10
> 180 0.13 0.22 0.21 0.24 0.11 0.09

All 0.13 0.21 0.21 0.24 0.12 0.09

The results also confirm that when choosing which assumptions relax, one should not

neglect the characteristics of the time period.

Next I distinguish by the various moneyness and maturity categories in order to ob-

tain a better understanding of how much the various type of options are explained by the

different models. Table 7 presents the average weights, across the maturities, money-

ness and time. The very deep out-the-money options are the best explained by the BLS

model, hence receiving the highest weights. To explain the at-the-money options, most

weight is attributed to the MER1 model, whereas the very deep in-the-money options

are captured by the jump diffusion model MER2. A reason for the latter could be the

magnitude of the jumps who become more prevailing for very deep in-the-money options;

the jumps become larger when the option prices are higher. Across the maturities it are

especially the MER1, CSU and MER2 who are receiving the highest weights, which

holds true when averaging over all the categories. These results indicate that when

combining, differentiating between the various moneyness categories may be more im-

portant than between the maturity categories. Hence, weight size is more dependent on

the moneyness of options14.

14An avenue open for further investigation may be to consider ’restricted’ combination schemes, where
the weights given to individual models are the across maturity and/or moneyness buckets. While this
sacrifices the flexibility of the ’unrestricted’ approach, it may reduce the estimation uncertainty in the
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TABLE 8: PRICING PERFORMANCE OF THE PARAMETRIC COMBINING METHODS WITH AND

WITHOUT MERTON (1976)

Presented here are the results of the parametric combining frameworks with and without using the jump
diffusion framework Merton (1976) or MER2 as individual input. The combining frameworks without
Merton are a primarily a function of the methods BLS, CSU , MER1, COX and HES. To obtain the cur-
rent’s day option prices of the individual models I use the previous day’s implied parameters and implied
stock volatility. Then a combined option price is obtained by either taking the mean (cMEAN) or median
(cMED), or by assigning weights to each individual model based on the performance of the individual
models during the past 10 days (cMSE). This performance is based on the Discounted Mean Squared Er-
rors (DMSE) with a discount factor of 0.9, and follows closely the methodology of Stock and Watson (2004).
The overall sample period covers January 2006 - December 2011, with a total of 893708 observations.
The recession start and end date are obtained from the NBER website and indicate the latest recession,
characterized by the recent financial crisis, which spans December 2007 - June 2009. Obs. stands for the
number of observations.

Without Merton With Merton

Obs. cMSE∗ cMEAN∗ cMED∗ cMSE cMEAN cMED

Overall 893708 4.70 6.96 6.31 4.26 6.17 5.14
Recession 224071 5.07 6.33 6.29 4.89 5.92 5.66
Pre-recession 166910 3.96 10.26 6.00 3.84 8.68 4.74
Post-recession 500249 4.75 5.77 6.43 4.11 5.17 5.02

The relative high weight assigned to the MER2 model indicates that much of the

performance of the combining framework is attributed to this individual model. For this

reason it is difficult to asses whether the performance of the proposed combining frame-

work is the result of the good performance of the MER2 model or the result of combining.

To differentiate between these two implications, I re-estimate the parametric combining

frameworks without using the MER2 model as one of the individual inputs, and eval-

uate the performance during the various sub-periods. The outcome of this approach is

presented in table 8. We observe that the difference in RMSE is relatively small for the

cMSE framework. The RMSE increases slightly from 4.26 to 4.70 for the overall period,

which is mostly attributed to the deteriorated post-recession performance (increase of

.64). The combining frameworks cMEAN and cMED suffers much more from excluding

the MER2 individual model, which is as expected as the methods do not discriminate

based on the historical performance. The results indicate that the proposed combining

method cMSE is less sensitive to the input of the individual models, and that the consis-

tent and good results are not primarily attributed to the good performance of one of the

individual models MER2. Moreover, the good performance of cMSE is mostly attributed

to the benefits of combining and not to the performance of primarily one of the individual

models.

weights and thereby benefit the forecast accuracy. I thank Dick van Dijk for this insight.
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8 CONCLUSION

This study tests a pragmatic approach of combining various parametric option pricing

models to price European call options on the S&P500 index, using daily data from 2006

to 2011. The individual models considered include Black and Scholes (1973) (BLS), Mer-

ton (1973) (MER1), Corrado and Su (1996) (CSU), Merton (1976) (MER2), Cox and

Rubinstein (1979) (COX ) and Heston (1993) (HES). Each individual model relaxes one

or several assumptions of the initial BLS framework. This includes a generalization of

(i) log normal distribution of stock returns; (ii) continuous trading; (iii) continuous evolu-

tion of the share price; (iv) constant variance of the underlying returns; (v) no dividends;

and (vi) continuous diffusion of the underlying.

The estimates of the structural parameters reveal the typical moneyness-maturity re-

lated biases, thus giving an argument for combining. The in-sample results reveal that

combining based on the discounted historical performance (cMSE) is the only combining

framework that consistently outperforms all individual models. A possible explanation

could be that a consistent bias, imposed by the misspecification of the models, is corrected

by means of the assigned weights of this method. In an out-of-sample framework, where

previous day’s parameter estimates and implied volatilities are used to price current

day’s option prices, I find that combining leads to gains in terms of pricing performance

during the overall period (2006-2011) for most combining methods. The relative per-

formance of the combining models is consistent among the various moneyness-maturity

categories. Combining based on the historical performance is the overall best performer

and outperforms the Neural Network (NN) models. On the other hand, during and be-

fore the recession (December 2007 - June 2009), combining by means of NN’s yield the

lowest pricing errors.

The weights of the cMSE framework reveal that BLS (no relaxations) and COX (re-

laxation of continuous evolution of the share price) gain importance during the recession,

while CSU (relaxation of log normal distribution of stock returns) loses. In line with the

pricing results, the weights assigned to MER2 jump diffusion model is the highest across

all the moneyness and maturity categories and during most part of the sample. A closer

look at the weights assigned to the individual models across the various moneyness-

maturity categories, reveals that when combining, differentiating between the various

moneyness categories may be more important than between the maturity categories. In

other words, weight size depends on the moneyness of options. Finally, a robustness

check by discarding the best performing model (MER2) from the combining frameworks

indicates that the good performance of the cMSE method is the result of combining and

not only to the good performance of this method. This is verified by the weights size of

this method, which is on average 24%.
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The results imply that more benefits and higher complexity can be achieved by con-

sidering a two-step approach that utilizes information from different frameworks instead

of considering a larger ‘super’ model, which is in line with the literature on equity pre-

mium forecasting. In addition, a simple pragmatic approach can already lead to lower

pricing errors. It consistently outperforms most models and shows also good results after

the crisis, unlike the NN’s. For a practitioner who is seeking for a consistent and relative

easy approach to model option prices, combining may be a competitive alternative.

While this study takes into account various approaches to utilize information as best

as possible, there are still avenues open for further investigation. First one may look at

the implications of combining on trading and hedging and other applications that test the

economic significance. A second focus may lie in the choice of different weighting schemes

and the implications of estimating the weights and implied parameters simultaneously.

Determining under which circumstances combining works for option pricing may reveal

important characteristics too. Third, combining can be also analyzed for other types of

options, such as exotic trading instruments and foreign exchange option pricing. Fourth,

attention can be given to arbitrage-free question: is a combination of arbitrage-free mod-

els still arbitrage free and what does this imply? Fifth, the study can be extended by

additional robustness checks and by inclusion of additional individual models. For in-

stance, the Heston model can be extended to allow for stochastic interest rate variation

and the inclusion of dividends. The combining NN’s can be also re-estimated using sim-

ilar target functions as in Andreou et al. (2008), even though this does not allow for fair

comparison with the parametric methods.
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A TECHNICAL DETAILS

A.1 Fast Fourier Transform Heston

Following Moodley (2005), I briefly summarize the Fast Fourier Transform (FFT) method

to evaluate the closed-form solution of an European call option for the Heston model.

This approach has been proposed by Carr and Madan (1999) to overcome the numerical

difficulties that arise when evaluating the integrals in the Heston framework, see for

instance equation 2.16. The formula derived by Carr and Madan (1999) depends on the

intrinsic value of an option. However, out-the-money options don’t have an intrinsic

value. For this reason the authors distinguish between options with and without an

intrinsic value, which need to be applied for the corresponding option contracts.

FFT for options with an intrinsic value The call price cHES
t for at-the-money and

in-the-money options, on a non-dividend paying asset for the Heston model is given by:

cHES
t ≈ e−ακu

π

N∑
j=1

e−i 2π
N ( j−1)(u−1)eibv j Fc(v j)

η

3
(3+ (−1) j −∆ j−1) (A.1)

for which

b = π/η,

cc = 600,

N = 4096,

η = cc/N,

v j = η( j−1),

κu = −b+ (2b/N)(u−1), u = 1,2, ..., N +1.

These parameters are given by Carr and Madan (1999) such that there exist a balance

between optimization time and pricing accuracy. The characteristic function Fc of ln(St)

under the martingale measure Q can be expressed as:

Fc(φ) = eA(φ)+B(φ)+C(φ),

A(φ) = iφ(ln(St)+ rT),

B(φ) = 2ζ(φ)(1− eψ(φ)T)σ
2ψ(φ)− (ψ(φ)−γ(φ))(1− eψ(φ)T)

,

C(φ) = −κθ
ν2

[
2log

(
2ψ(φ)− (ψ(φ)−γ(φ))(1− e−ψ(φ)T)

2ψ(φ)

)
+ (ψ(φ)−γ(φ))T

]
,
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ζ(φ) = −1
2

(φ2 − iφ),

ψ(φ) =
√
γ(φ)2 −2ν2ζ(φ),

γ(φ) = κ−ρνφi.

The parameters of interest, which are unobserved and need to be calibrated in this

framework include σ the variance of the underlying, ν the volatility of the variance,

κ the mean reversion rate, θ the long run variance and ρ the correlation parameter. The

remaining parameter of interest is α which is usually chosen such that it satisfies the

following constraints:

E[Sα+1
T ] < ∞,

Fc(−(α+1)i) < ∞.

Following Carr and Madan (1999) I choose an α of 1.25.

FFT for options without an intrinsic value The call price cHES
t for out-the-money

options, on a non-dividend paying asset for the Heston model is given by:

cHES
t ≈ 1

πsinh(αku)

N∑
j=1

e−i 2π
N ( j−1)(u−1)eibv jγT(v j)

η

3
(3+ (−1) j −∆ j−1) (A.2)

with:

γT(v j) = χT(v j − iα)−χT(v j + iα)
2

, (A.3)

χT(v j) = e−rT

[
1

1+v j
− erT

iv j
− Fc(v j − i)

v2
j − iv j

]
. (A.4)

For a more detailed description of the derivation, implementation and code to evaluate

these terms see also Moodley (2005) and Mikhailov and Nögel (2003).

A.2 Neural Networks

This section discusses the Neural Network combining frameworks in more detail. Two

of the three benchmark combining frameworks considered in this study are inspired by

Andreou et al. (2008). These authors propose a method to utilize information from the

individual models by means of an Artificial Neural Network (ANN). In the following I

summarize their methodology in brief.

Neural Networks are a collection of systems of interconnected ‘neurons’ or nodes
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structured in successive layers. This resulting network consists of an input layer with

N input variables; a hidden layer with H neurons and a single neuron output layer. The

connections between the layers are formed through weights wk,i with k = 1, ...,H and

i = 1, ..., N and a bias v0 for the output layer. In the end, this results in neurons that

consists of four elements: (i) a vector of input signals; (ii) vector weights and the bias;

(iii) a neuron that sums the product of the input signals with the corresponding weights

and bias; (iv) and a neuron transfer function. A convenient way to look at ANN’s is to see

them as a nonlinear regression tool in the form:

Y =G(x̃)+εANN ,

that connect the input variable vector x̃ = [x1, x2, ..., xN] with the target function Y through

the unknown function f (.) and an error term εANN . These inputs are prepared in terms

of feature vectors x̃q = [x1,q, x2,q, ..., xN,q] and are assumed to have a corresponding or

associated known target Y = tq. In this study the known target is set to the option

market price tq = cmkt
q with q = 1, ...,P with P the number of available features. While

Andreou et al. (2008) considers different target functions that may lead to better pricing

performance in terms of Root Mean Squared Error, setting the option market price as

the target functions allows for fair comparison with the parametric methods. Further-

more, this study considers three non-parametric approaches that distinguish themselves

by the choice of the input variables. The first Neural Network combining framework

(cANN2) uses as inputs the model-based estimated option prices from the Corrado and

Su (1996) and Merton (1973) frameworks. The second non-parametric combining frame-

work (cANNa) utilizes information from all the individual models by setting the inputs

to the model-based estimated option prices of all the models, resulting in six input vari-

ables. The third non-parametric combining approach (cANNx) uses as inputs the spot

price St, strike X , dividend δ, risk free rate r and the time-to-maturity T of the option

contracts. To estimate the output y or combined option price this involves computing yq

for all the features:

yq = f0

[
v0 +

H∑
k=1

vk fH(bk +
N∑

i=1
wk,ixi,q

]
. (A.5)

We can observe that there are some similarities with the parametric combining frame-

works a proposed in this study; the output or combined option price y is a function of

individual option pricing model estimates. Following Andreou et al. (2008), the hidden

layer uses a hyperbolic tangent sigmoid transfer function and the output layer a linear

transfer function. I also use one hidden layer such that the ANN framework operates
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as a nonlinear regression tool that can be trained by most functions, see also Cybenko

(1989).

In the ANN framework, the first step in optimization involves training the networks.

I use the modified LM algorithm for this purpose which updates the weights and biases

in such a way that minimizes the following performance function:

F(W)=
P∑

q=1
e2

q =
P∑

q=1
(yg − tq)2.

Here W is the N-dimensional column vector that contains the weights and biases W =
[b1, ...,bH ,w1,1, ...,wH,N ,vo, ...,vH]T . At each operation τ of the LM algorithm, the weight

vector is updated by the following equation:

Wτ+1 =Wτ+
[
JT(Wτ)J(Wτ)+µτI

]−1
JT(Wτ)e(Wτ),

with I an N ×N identity matrix, J(W) the P ×N Jacobian matrix of the P-dimensional

output error column vector e(W). The learning parameters µτ is adjusted in each it-

eration such that convergence is obtained. Further discussion of the LM algorithm is

given by Hagan and Menhaj (1994) and Hagan et al. (1996). This algorithm along with

the neural networks is also implemented and available in the MATLAB toolbox ‘Neural

Network Toolbox’15. Further discussion on splitting up the dataset is given in section

5.2.

B COMPLEMENTARY RESULTS

15See also: http://www.mathworks.com/products/neural-network/
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TABLE B.1: IMPLIED VOLATILITIES BY VARIOUS MONEYNESS-MATURITY CATEGORIES AND PERIODS

This table shows the implied volatilities backed out by the various individual models for different moneyness and maturity categories. Each day in the sample (2006-2011), the implied volatility of a given
model is estimated by minimizing the sum of squared pricing errors between the market price and the model-determined price for each option. The parameters are estimated by splitting the in-sample data
into twenty-four categories, based on the moneyness (eight categories) and expiration date (three categories) of all the available options up to current day. The values presented are the weighted averages across
different sub-periods. The overall sample period covers January 2006 - December 2011, with a total of 893708 observations. The recession start and end date are obtained from the NBER website and indicate
the latest recession, characterized by the recent financial crisis, which spans December 2007 - June 2009. BLS refers to the benchmark Black and Scholes (1973), MER1 to Merton (1973), CSU to Corrado and
Su (1996), MER2 to the Merton (1976) jump diffusion, COX to Cox and Rubinstein (1979) and HES to the Heston (1993) stochastic volatility model.

Moneyness (S/X) Days to maturity < 60 days Days to maturity 60-180 days Days to maturity > 180 days

Overall period BLS MER1 CSU MER2 COX HES BLS MER1 CSU MER2 COX HES BLS MER1 CSU MER2 COX HES
< 0.85 0.218 0.222 0.413 0.544 0.219 0.178 0.146 0.154 0.306 0.255 0.172 0.224 0.123 0.148 0.177 0.136 0.137 0.190

0.85 - 0.95 0.139 0.144 0.196 0.154 0.146 0.068 0.140 0.150 0.311 0.130 0.139 0.082 0.133 0.165 0.259 0.144 0.132 0.141
0.95 - 0.99 0.151 0.158 0.352 0.147 0.145 0.086 0.153 0.167 0.523 0.151 0.151 0.124 0.137 0.178 0.263 0.150 0.144 0.142
0.99 - 1.01 0.161 0.172 0.410 0.172 0.174 0.080 0.160 0.178 0.469 0.179 0.175 0.111 0.130 0.185 0.262 0.158 0.155 0.206
1.01 - 1.05 0.170 0.188 0.298 0.170 0.163 0.102 0.161 0.189 0.324 0.174 0.161 0.120 0.130 0.190 0.259 0.159 0.134 0.190
1.05 - 1.10 0.163 0.211 0.323 0.177 0.152 0.093 0.155 0.203 0.330 0.169 0.141 0.133 0.129 0.198 0.215 0.157 0.125 0.196
1.10 - 1.35 0.145 0.261 0.559 0.199 0.134 0.114 0.152 0.228 0.406 0.183 0.146 0.152 0.112 0.211 0.282 0.168 0.102 0.207

> 1.35 0.250 0.238 0.397 0.174 0.175 0.138 0.179 0.243 0.574 0.174 0.113 0.196 0.108 0.306 0.492 0.166 0.035 0.144

Recession BLS MER1 CSU MER2 COX HES BLS MER1 CSU MER2 COX HES BLS MER1 CSU MER2 COX HES
< 0.85 0.240 0.243 0.407 0.475 0.230 0.192 0.183 0.190 0.330 0.207 0.202 0.248 0.167 0.189 0.161 0.169 0.175 0.245

0.85 - 0.95 0.211 0.216 0.239 0.196 0.208 0.108 0.206 0.216 0.247 0.186 0.195 0.119 0.186 0.216 0.255 0.197 0.178 0.142
0.95 - 0.99 0.231 0.239 0.315 0.241 0.225 0.122 0.223 0.238 0.439 0.248 0.225 0.142 0.193 0.230 0.272 0.206 0.203 0.142
0.99 - 1.01 0.244 0.253 0.301 0.280 0.266 0.131 0.232 0.249 0.340 0.308 0.257 0.192 0.196 0.236 0.347 0.224 0.220 0.326
1.01 - 1.05 0.254 0.267 0.261 0.258 0.249 0.184 0.238 0.258 0.263 0.276 0.243 0.206 0.197 0.241 0.269 0.216 0.210 0.273
1.05 - 1.10 0.264 0.286 0.320 0.284 0.247 0.149 0.244 0.272 0.188 0.258 0.229 0.183 0.197 0.249 0.179 0.222 0.195 0.248
1.10 - 1.35 0.240 0.311 0.557 0.273 0.316 0.193 0.239 0.296 0.389 0.244 0.230 0.239 0.157 0.265 0.317 0.220 0.201 0.272

> 1.35 0.334 0.281 0.389 0.238 0.359 0.202 0.214 0.306 0.564 0.253 0.294 0.378 0.135 0.313 0.401 0.211 0.154 0.266

Before recession BLS MER1 CSU MER2 COX HES BLS MER1 CSU MER2 COX HES BLS MER1 CSU MER2 COX HES
< 0.85 0.248 0.251 0.505 0.586 0.253 0.110 0.102 0.108 0.228 0.498 0.159 0.315 0.069 0.098 0.214 0.106 0.103 0.099

0.85 - 0.95 0.080 0.085 0.165 0.146 0.100 0.028 0.081 0.090 0.303 0.083 0.092 0.036 0.069 0.104 0.296 0.083 0.084 0.138
0.95 - 0.99 0.086 0.093 0.192 0.081 0.084 0.050 0.086 0.101 0.531 0.085 0.084 0.093 0.063 0.112 0.298 0.092 0.070 0.142
0.99 - 1.01 0.093 0.104 0.370 0.093 0.097 0.053 0.088 0.109 0.470 0.096 0.096 0.079 0.078 0.117 0.314 0.091 0.069 0.134
1.01 - 1.05 0.095 0.117 0.296 0.104 0.090 0.063 0.086 0.117 0.331 0.103 0.083 0.069 0.035 0.120 0.266 0.102 0.117 0.100
1.05 - 1.10 0.053 0.129 0.362 0.100 0.158 0.050 0.047 0.125 0.444 0.093 0.130 0.079 0.030 0.123 0.262 0.080 0.098 0.134
1.10 - 1.35 0.032 0.159 0.490 0.128 0.142 0.053 0.031 0.106 0.301 0.112 0.147 0.049 0.016 0.115 0.201 0.107 0.102 0.082

> 1.35 0.051 0.065 0.666 0.112 0.275 0.061 0.050 0.068 0.641 0.116 0.142 0.062 0.064 0.166 0.571 0.111 0.142 0.074

After recession BLS MER1 CSU MER2 COX HES BLS MER1 CSU MER2 COX HES BLS MER1 CSU MER2 COX HES
< 0.85 0.191 0.195 0.391 0.589 0.199 0.200 0.136 0.143 0.313 0.215 0.156 0.195 0.135 0.158 0.160 0.137 0.137 0.224

0.85 - 0.95 0.137 0.142 0.192 0.134 0.142 0.081 0.144 0.154 0.358 0.131 0.139 0.096 0.149 0.180 0.232 0.156 0.139 0.142
0.95 - 0.99 0.149 0.157 0.499 0.139 0.140 0.091 0.159 0.173 0.569 0.140 0.154 0.135 0.158 0.196 0.231 0.160 0.164 0.142
0.99 - 1.01 0.162 0.172 0.509 0.164 0.174 0.068 0.168 0.186 0.550 0.161 0.184 0.085 0.162 0.204 0.168 0.167 0.180 0.215
1.01 - 1.05 0.176 0.192 0.324 0.165 0.168 0.088 0.177 0.199 0.361 0.165 0.175 0.106 0.165 0.211 0.248 0.169 0.173 0.208
1.05 - 1.10 0.193 0.222 0.295 0.177 0.183 0.095 0.189 0.219 0.333 0.173 0.173 0.145 0.168 0.222 0.221 0.175 0.163 0.219
1.10 - 1.35 0.178 0.275 0.613 0.209 0.199 0.120 0.195 0.265 0.497 0.198 0.194 0.174 0.165 0.251 0.325 0.182 0.155 0.264

> 1.35 0.139 0.344 0.197 0.185 0.273 0.160 0.142 0.338 0.529 0.170 0.214 0.192 0.091 0.343 0.489 0.180 0.113 0.139
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TABLE B.2: IN-SAMPLE PRICING PERFORMANCE OF ALL THE MODELS (2006-2011)

Presented are the pricing errors of the various option pricing models considered in this study, in an in-sample framework. I compute the current’s day option prices using the current day’s implied parameters and
implied stock volatility. For each moneyness-maturity category, I report the Root Mean Squared Error (RMSE) of the difference between market price and model price for all option contacts. The sample period
covers January 2006 - December 2011, with a total of 894305 observations. A total of 7288 observations are discarded from the analysis due to calibration issues or an non-feasible estimates. The individual
models considered are the BLS (Black and Scholes, 1973), MER1 (Merton, 1973), CSU (Corrado and Su, 1996), MER2 (Merton, 1976), COX (Cox and Rubinstein, 1979) and HES Heston (1993). cMSE is the
combined model which combines the individual option prices of all models, by assigning weights to each individual model based on the historical performance, measured by the Discounted Mean Squared Error
(DMSE), during a hold-out period of 10 days. cMEAN and cMED refer to respectively the average and median of all model based estimates of the individual option pricing models on a given day. cANN2 is the
neural network model, following Andreou et al. (2008) which utilizes information from the MER1 and CSU framework by means of an Artificial Neural Network. Underlined values represent the lowest value
for a given row/moneyness category.

Moneyness Days to maturity <60 days

St/X Obs. BLS MER1 CSU MER2 COX HES cMSE cMEAN cMED cANN2
< 0.85 7624 1.66 1.67 1.71 1.63 2.43 1.81 1.59 1.63 1.64 9.13
0.85 - 0.95 33467 2.41 2.39 2.45 2.65 2.84 3.07 2.41 2.43 2.43 17.20
0.95 - 0.99 29346 3.07 3.11 3.13 3.41 3.33 7.30 3.14 3.33 3.12 15.40
0.99 - 1.01 14959 3.42 3.46 3.43 4.02 3.51 5.60 3.46 3.57 3.45 10.78
1.01 - 1.05 27256 3.34 3.36 3.30 3.68 3.29 5.40 3.25 3.35 3.29 7.51
1.05 - 1.10 30048 3.21 2.92 2.95 3.14 3.46 4.98 2.83 2.99 2.93 4.96
1.10 - 1.35 88236 3.12 2.57 2.72 2.17 3.40 4.09 2.11 2.39 2.35 4.50
> 1.35 74619 2.97 1.58 2.82 1.55 2.98 3.26 1.33 1.85 1.89 6.15
All 305555 3.01 2.49 2.84 2.49 3.21 4.31 2.28 2.54 2.50 8.08

Moneyness Days to maturity: 60-180 days

St/X Obs. BLS MER1 CSU MER2 COX HES cMSE cMEAN cMED cANN2
< 0.85 21932 1.88 1.89 1.96 2.22 3.12 2.56 1.91 1.96 1.92 17.03
0.85 - 0.95 42795 3.27 3.40 3.53 3.53 3.66 8.49 3.29 3.51 3.31 15.77
0.95 - 0.99 21379 4.15 4.34 4.26 4.76 4.81 13.28 4.27 4.72 4.25 11.10
0.99 - 1.01 10654 4.14 4.20 4.05 5.41 4.20 5.31 4.09 4.19 4.13 7.96
1.01 - 1.05 18975 4.15 4.12 4.11 4.80 4.18 5.54 3.97 4.07 4.05 5.97
1.05 - 1.10 19333 4.51 3.83 3.75 4.13 4.44 5.50 3.67 3.86 3.77 4.70
1.10 - 1.35 57470 6.02 4.25 3.49 3.07 6.41 4.86 3.02 3.56 3.27 4.47
> 1.35 65089 7.69 3.63 4.27 2.46 7.66 6.68 2.03 3.56 4.09 5.44
All 257627 5.15 3.72 3.72 3.36 5.45 6.54 2.98 3.60 3.58 8.49

Moneyness Days to maturity: >180 days

St/X Obs. BLS MER1 CSU MER2 COX HES cMSE cMEAN cMED cANN2
< 0.85 71460 4.42 5.04 6.80 5.76 7.14 6.41 4.04 3.92 4.05 17.05
0.85 - 0.95 43958 6.46 6.68 9.35 7.55 7.13 24.79 5.80 7.18 6.09 10.16
0.95 - 0.99 17785 8.28 5.97 7.65 7.13 7.63 29.52 6.02 8.44 6.75 7.42
0.99 - 1.01 9139 11.09 5.44 6.36 8.89 10.58 9.60 5.76 7.49 7.20 6.74
1.01 - 1.05 16872 12.63 5.23 7.46 6.58 11.98 10.08 5.59 7.38 6.35 6.58
1.05 - 1.10 19074 14.54 5.04 7.75 7.05 13.18 9.01 5.41 7.95 6.00 6.32
1.10 - 1.35 59619 16.23 7.20 8.48 5.69 16.02 9.59 5.58 9.51 6.96 7.12
> 1.35 93216 22.43 11.00 9.95 4.86 22.27 14.14 6.23 12.32 9.39 9.87
All 331123 13.28 7.39 8.45 6.01 13.71 13.27 5.48 8.48 6.81 10.37

Overall 894305 7.43 4.66 5.17 4.05 7.74 8.27 3.67 5.04 4.41 9.05
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