
ERASMUS UNIVERSITY ROTTERDAM 
Erasmus School of Economics 

 

 

 
 

Option strike effects on stock returns and 
volatilities 

 
 
 
 
 

Msc. Econometrics and Management Science 
Quantitative Finance 

 
 
 
 

August 16, 2013 
 
 
 
 
 
 

 
Author :  L.H.E.T. Knops 
Student nr. :  363624 
Supervisor :  Dr. M. van der Wel 
Co-reader :  Dr. E. Kole 

 
 

  



Abstract 

Derivative markets have become so large that they sometimes overshadow the market 

for underlying securities, causing the so-called ‘tail wags the dog’ effect. In this thesis I 

present a new perspective on stock price behavior around option strike prices. The standard 

CAPM factor model for stock returns is extended with additional terms for detecting effects 

of strike price proximity. To disentangle a strike price effect from round-number effects, the 

study also uses variables taking option open interest and option gammas into account. The 

main factor model is extended with ARCH volatility effects, considered in a panel set-up, and 

estimated using maximum likelihood. I find that strike nearness in combination with a large 

option open interest affects the returns and market following behavior of the underlying 

negatively when taking the average daily trading volume in the underlying into account. The 

negative effect on the market following behavior is confirmed when taking additionally also 

the net gamma of the option open interest into account. Furthermore the size of the 

unexpected returns declines consistently if the underlying nears a strike. These results 

cannot be explained by the human bias for round numbers and are in accordance with 

existing theory on option pinning effects. 
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1 Introduction 

Trading volumes and financial interest in derivatives have increased relative to those in 

the underlying securities in financial markets. Roll et al. (2010) estimate that trading volumes 

in derivatives on a single stock level have reached a level of approximately a quarter of the 

trading volumes in the underlying stock over the period between 1996 and 2007. Derivatives 

derive their value from the price level of the underlying securities. If trading volumes in the 

derivatives are high enough, a situation in which “the tail wags the dog” can develop. 

Trading activity in the derivative will then affect the activity in the underlying security such 

that its price is influenced. 

I investigate the presence of this “tail wags the dog” effect in situations when the price of 

a stock is near the strike price of derivatives with this stock as the underlying security. In this 

vicinity additional effects related to option hedging come into play. These additional effects 

can potentially change the price behavior and returns of the underlying security. According 

to classical finance theory returns should be the same on these occasions as on any other 

trading day. I look for different behavior on these specific days by incorporating additional 

regression variables indicating nearness to a strike in a factor model for the stocks’ daily 

returns. 

The relevance of this study lies in both the academic and practical field. In the academic 

field this study follows to the wide array of anomalies that were researched following the 

work by Fama and French (1992). This study can potentially result in an additional anomaly 

for the returns of optionable securities. The discovery of anomalies also has a practical 

relevance as it (if the anomaly is strong enough) can serve as the base of a profitable trading 

strategy. This strategy exploits the effects forecasted with the anomaly which are not priced 

into the market. 

In this study, I use data on 27 constituents of the Dow Jones 30 Index. The data consists 

of daily closing prices and returns on one side.  On the other side I use daily option data on 

these same stocks, which consists of available strike prices and maturities, closing prices and 

open interests. 
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For the different underlyings I pose a CAPM formulation for returns. I construct these 

models in a similar fashion as Driessen et al. (2013), who study effects of the 52-week high 

and low on return and volatilities. I expand the basic factor model with additional variables 

indicating option strike nearness and option activity on the nearest option strike. I formulate 

three different return models in this study and carry out the parameter estimations for these 

models with a maximum likelihood method. 

In a simple model I add only a dummy variable for nearness to strike to the factor model 

to allow for different alpha and market beta if the dummy takes value 1. I allow for 

conditional variance in this model which depends in different formulations on the nearness 

to strike dummy variable and additional AR terms. 

Two more elaborate models incorporate the formulation with a nearness to strike 

dummy but add to this with an extra variable indicating the economic importance of the 

nearest strike. This step bans any potential effects that round numbers may have from the 

parameter estimates. In one model this importance is assessed on the base of the total 

option open interest on that strike. The other model applies the option gammas of the 

options that are outstanding. I derive these gammas first from available bid and offer prices 

for matched call and put options, risk free rates and the price of the underlying. These two 

models allow for conditional error variance conditional on the nearness to strike dummy 

variable combined with the open interest (gamma) and additional AR terms. 

As a final step I apply a panel model setup to assess the nearness to strike effects for the 

entire panel in the formulation incorporating the dummy together with the additional open 

interest variable. This formulation results in estimates for the relevant parameters that are 

founded on the entire dataset in one regression. It distills the relevant parameter estimates 

from the single stock setups into one set of parameter estimates. At the same time the 

formulation leaves room for stock-specific parameters that are unrelated to strike nearness 

in the factor model. 

Key findings from this study are as follows. Nearness to strike alone has significant 

effects for some individual stocks under consideration on both the alpha and beta, but no 

common direction across all stocks. When taking additionally the option open interest on 

the nearest strike into account again significant effects are visible for individual stocks with 



3 
 

also a common factor, namely a negative influence to the CAPM beta. Stocks that close near 

an existing strike with a high open interest become less sensitive to the market return and 

show more idiosyncratic behavior. Taking additionally also the gamma of the open interest 

into account proves not to be an addition to the model as it results in individual significant 

effects but no common direction across the different stocks. A decrease in the variance of 

the unexpected returns in the case of strike nearness is observable as a common effect on all 

stocks and across all model formulations. Hence idiosyncratic errors in the returns of the 

underlying decrease in the vicinity of an option strike. 

The remainder of this report is structured such that Chapter 2 will provide an overview of 

the existing theoretical framework. Chapter 3 introduces the data employed for the 

research. Chapter 4 contains the methods applied and results obtained from the analysis. In 

Chapter 5 the obtained results are tested for their robustness to changes in the methods 

that are applied. Chapter 6 contains the conclusions of this research and in Chapter 7 areas 

for further research are suggested.  
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2 Theoretical framework 

In this study, I devote research to the effect of option strike nearness to the price 

behavior of underlying stocks. Obviously the price behavior of traded securities has been 

subject of multiple academic research papers in the past. Also the behavior of underlyings in 

relation to effects of several types of derivatives has been examined in various studies. 

Futures market effects 

The market for the most basic type of widely traded derivatives is that for futures. Note 

that futures are virtually never constructed based on individual stocks as underlying, but 

rather on baskets of stocks or indices. This makes however no fundamental difference for 

the market situation. Several researchers put effort in deriving effects of the presence of a 

futures market on the market for the underlying. Gulen and Mayhew (1999) find that the 

introduction of a futures market has an increasing effect on the volatility of the market in 

the underlying for US and Japanese indices. Chan (1992) finds strong evidence that the 

futures market leads the cash market for the Amex Major Market Index (MMI) and only 

weak evidence of the cash market leading the futures market. This proves that there are at 

least periods in which the “tail wags the dog”.  

One-time effect of option introductions 

For most single stocks, options are the only derivatives that are widely traded on an open 

market or exchange. A substantial amount of research is performed on the relation between 

single stock returns and options on these stocks. First there are researches that focus on 

one-time changes in the underlying’s price level. Sorescu (2002) finds that the introduction 

of stock options increases returns on the underlyings in the first years and documents a 

reverse effect in later years. Lundstrum and Walker (2006) research the influence of the 

introductions of LEAPS, or stock options with a time to maturity of several years. They find 

that these introductions result in short term declines in the prices of underlyings, resulting 

from option activity replacing activity in the underlying stock. 

Option pinning 

Not only the introduction of options on a stock has an effect on the pricing of the 

underlying stock. Also the option expirations which take place on regular intervals have 

effects on the underlying.  The effects around expiration are predominantly related to so 
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called option pinning. Option pinning is the effect caused by market parties hedging their 

option position’s delta by means of trading the underlying. The pinning process in stocks is 

modeled by Avellaneda and Lipkin (2003) whose work is later extended by Jeannin et al. 

(2008). Both studies find that returns in underlying stocks are partially induced by existing 

option positions on option expiration dates. Their models are based on the theory that a 

delta neutral position requires trading not only at the initiation of a position. Trading in the 

underlying is a continuous process of adjusting the hedge of the option position’s delta as 

the delta changes with time and the price of the underlying. When approaching expiration 

the volumes of these re-hedging trades increase as can be derived from the option pricing 

model originally posed by Black and Scholes (1973). In their model option prices become 

increasingly sensitive for price changes in the underlying at the approach of the options’ 

expiration date. 

Ni et al. (2005) apply the option pricing and pinning models and find the presence of 

significant price clustering of optionable stocks around option strikes. They find that trades 

initiated by delta-hedging market participants are a major driver for this, especially in the 

last days leading up to expiration. This adds to existing work by proving that the effects are 

already present in the week leading up to expiration. In a more general study into the effect 

of option trading on stock returns, Pearson et al. (2007) show that the clustering effect of 

option hedging is not only confined to the expiration week, but is observable in the absolute 

return of the underlying in earlier periods as well. This is a confirmation of effects suggested 

by Willmot and Schönbucher (2000) who pose a theoretical model for the effects of delta-

hedging activities on the market for the underlying away from expiration. 

The aforementioned research studies prove that option markets indeed influence the 

market in the underlying stocks. Now that we have established this, it remains the question 

which role the actual option strike prices play in this. 

Round number preference 

Option strikes are (except for post introduction contract adjustments) always equal to 

round numbers. This is an important realization. Round numbers in relation to investors’ 

perception and irrational behavior is a combination which has attracted research with 

remarkable results in the past. Back in the time when stocks were traded in discrete price 
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fractions Harris (1991) argued that traders have a preference for trading on quarters, halves 

or whole numbers rather than on odd eights. He showed this by categorizing a huge dataset 

of trades on the base of the execution price. At that time, this clustering could be regarded 

as a rational market response to trading impediments. Ikenberry and Weston (2008) provide 

evidence that also after decimalization of stock trading, prices cluster at increments of five 

and ten cents. They contribute this effect to the fundamental human bias for prominent 

(round) numbers as the effect is also prominently observable in times when order execution 

prices are no longer bound by fractions. 

Knowing that we are dealing with the influence of the option strike itself on the market 

in the underlying on one side and on the other side the effect of the round number on which 

the option strike is pinned down will be of influence in this research. Our interest lies in 

providing insight in the actual strike effects without contaminating our results with separate 

effects of round numbers. 
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3 Data Description 

The data used in this study consists of three parts. First, there is return and price data on 

underlying securities. Secondly data on options on these underlyings and finally risk-free 

rates and market wide returns are of use in the formulations that are presented in Chapter 

4. Daily data on these sets are used over a sample period from 1 January 2000 to 31 

December 2012 (3269 trading days). The following paragraphs provide a description of the 

data. 

3.1 Underlying securities 

In this study I analyze constituents of the Dow Jones 30 Index. These stocks are chosen as 

there is a very liquid market in options on these stocks ensuring availability of reliable option 

data. The companies of which the stock is included in the Dow Jones Index have an average 

market capitalization in excess of $ 130 billion and qualify as large caps. Among the 

constituents are Bank of America, ExxonMobil, Home Depot, Intel, McDonald’s, Merck, 

Microsoft and Verizon Communications, all leading US companies in the sectors in which 

they operate. 

In the first steps of the analysis we use daily closing prices and returns for the sampled 

companies. In a later stadium also the daily trading volumes in the stocks are used. These 

data series are sourced from Wharton Research Data Services (WRDS) Center for Research in 

Securities Pricing (CRSP) database. Because of issues with missing values and clear presence 

of noise in the data series for three of the Dow Jones 30 stocks, data for only 27 stocks is 

used in the remainder of this study. Statistics of the returns on these 27 stocks over the 

sample period are listed in Table 1. 

Mean and median annualized returns vary a lot across the list of 27 stocks. Alcoa (AA) is 

the only company that shows a negative mean return over the sample period, though it is 

only slightly negative on an annualized base. United Health (UNH) is the top performer over 

the 13 year sample with an average annualized return in excess of 22 %. The volatilities of 

the different stocks differ significantly. We find an annualized 21 % as the lowest standard 

deviations of the annualized returns for Johnson & Johnson (JNJ), a pharmaceutical company 

(this sector is known as a very stable non cyclical one). A 53% standard deviation is listed for 
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Bank of America (BAC) operating in a sector of which we all know that especially the years 

2007 until 2009 have seen very high volatility. Both negative and positive skewness are 

observed with Procter and Gamble (PG) standing out with a skewness of -3, caused by 

several very large negative returns (mostly after earnings announcements) in combination 

with rather low overall volatility. All stocks show excess-kurtosis and Jarque-Bera tests 

convincingly reject normality for all of the 27 underlyings. 

Table 1: Descriptive statistics on the returns of the underlying stocks over the timeframe 2000 – 2012. Stock tickers 

are listed in the first column. Mean and median annualized returns (in percents) are reported in the second and third with 

the annualized standard deviation of the daily returns in column four. Skewness and Kurtosis figures are listed in columns 

five and six. Column 7 contains Jarque-Bera test statistics on normality. 

Ticker Mean Median St. Dev. Skewness Kurtosis JB-test

AA -0.06 0.00 44.80 0.23 10.21 7,110

AXP 10.76 0.00 40.61 0.39 11.46 9,841

BA 11.86 10.03 32.49 -0.03 7.74 3,064

BAC 11.44 3.08 53.29 0.87 25.23 67,713

CAT 18.81 14.95 34.81 0.12 6.81 1,983

CSCO 2.53 10.18 44.68 0.55 11.13 9,179

CVX 13.98 23.93 27.23 0.42 15.93 22,857

DD 5.27 0.00 30.43 0.03 7.63 2,915

DIS 10.96 0.00 33.70 0.27 10.82 8,361

GE 1.70 0.00 33.57 0.33 11.02 8,816

HD 7.20 0.00 35.02 -0.37 15.35 20,856

IBM 9.59 6.25 28.28 0.27 10.52 7,753

INTC 5.23 0.00 41.75 -0.10 9.39 5,559

JNJ 7.64 3.63 20.60 -0.22 16.92 26,404

KO 6.69 7.58 22.88 0.31 11.37 9,600

MCD 11.49 17.40 25.67 -0.02 8.18 3,650

MMM 10.44 5.48 25.21 0.23 7.75 3,095

MRK 4.86 6.90 30.05 -0.87 21.33 46,150

MSFT 1.62 0.00 33.19 0.27 12.21 11,591

PFE 5.05 0.00 27.45 -0.10 7.53 2,795

PG 6.90 4.73 23.38 -3.01 70.56 626,724

TRV 13.89 5.95 33.08 0.82 18.44 32,857

UNH 22.56 15.18 35.25 1.01 28.25 87,411

UTX 13.42 9.88 29.69 -0.82 22.49 52,130

VZ 6.30 0.00 27.45 0.37 9.48 5,788

WMT 4.73 4.48 26.02 0.37 8.26 3,844

XOM 11.60 17.55 26.53 0.37 13.70 15,682  

3.2 Options 

Having chosen constituents of the Dow Jones 30 Index as the underlying securities, we 

use data on the associated options in further analysis. The entire dataset is sourced from 

WRDS’ OptionMetrics database. The option data that is sampled with daily frequency 

consists in the first place of the option strikes that are available for trading. The exchange 
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board is responsible for introducing options and setting strike prices. The intervals between 

strike prices and the maturities that should be available for trading vary according to the 

price, market capitalization and liquidity of the underlying. Generally a minimum interval of 

$ 1.00 between strikes is maintained for stocks with a price below $ 20. A maximum interval 

of $ 5.00 is observed for stocks of over $ 50. Note that these are only rough observations 

and that the actual intervals vary per stock. Additional strikes are introduced periodically and 

after large price changes of the underlying to ensure a wide enough variety of choice around 

the underlying’s price. Maturities available for trading are generally the front three months 

and quarterly or semi-annually after that until (again depending on the underlying) up to 

three or even five years out in time. 

For the stocks under consideration the amount of option strike price / maturity 

combinations available for trading is at any moment in the region of 80 to 100. Each of the 

strike / maturity combinations has both a put and a call option listed, such that for each 

trading day about 160 to 200 individual lines of option data are available for each underlying 

stock. Aggregating these lines provides a daily list of available strikes prices. This list 

determines together with daily closing prices of the underlying stock whether the underlying 

trades close to a strike or not.  

In Figure 1, daily available strikes and closing prices in the stock are plotted against time 

for Alcoa (AA). The range of available option strikes changes over time as do the intervals 

between the strikes. It is adjusted regularly with the introduction of new strikes, based on 

the current stock price. Hence the range of strike prices shows co-movement with the stock 

price itself. There is however some lag in this co-movement as the introduction of options 

with long maturities results in strikes existing up until this maturity where the stock price 

may have moved far away from this strike in an early stage. For instance at the end of 2009, 

there are still options listed with strikes of up to $ 70, whereas the Alcoa stock price has not 

been above $ 20 for over a year. Note that the abrupt drop in share price visible in June of 

2000 is caused by a 2-for-1 stock split. 

In a later stage of the analysis also daily open interest in each option as well as maturity 

dates and closing bid and ask prices are used for calculating open interest at the nearest 

strike and option gammas. For both these calculations it is a first step to determine which 
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option strike is nearest to the price of the underlying. The daily open interest at the nearest 

strike is obtained by summing all open interests of existing options with this particular strike.  

Option gammas are calculated for all options with this particular strike and various maturity 

dates, each with their own volatilities implied by their price on the option market. The 

results of the option gamma calculations are in accordance with a set of OptionMetrics 

listings. An elaborate derivation of the option gamma calculations is included in Appendix 1. 

A plot of the daily development in the open interest and closing bid and ask prices for a 

given option on Alcoa is included in Figure 2. The option for which the plot is made is the AA 

Mar-2009 40 call option. It is introduced on 30 May 2006 and expires on 17 January 2009.  In 

the beginning we see a buildup of open interest starting from zero at introduction with some 

sudden increases as well as decreases (though less often). The bid and ask prices move 

together closely. These movements can be (partially) related back to the development in the 

price of the underlying in Figure 1. An increasing price of the underlying results (roughly 

speaking) in an increase of the option price which is consistent with the properties of a call 

option. 

 

Figure 1: Alcoa (AA) share price and strike prices (Time Frame 2000 – 2012). A time series plot of the Alcoa share price 

development together with the existing option strikes (dotted) at each instance is provided in this figure. 
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Figure 2: Alcoa (AA) March-2009 40 call option open interest and price development. A time series plot of the 

development of the open interest and bid and ask prices over the life of the option. 

3.3 Additional market data 

Apart from data on options and underlying stocks, we use some additional data series in 

our analysis as will become clear in Chapter 4. These series are a daily market return series 

and a series of daily risk free rates. Both these series are part of the famous Fama French 

studies and are updated on French’s personal website. Daily figures on the market wide 

return as well as daily risk free rates are therefore sourced from this website. Summary 

statistics of these series are reported in Table 2. 

Table 2: Descriptive statistics on the market and risk-free returns over the timeframe 2000 – 2012. 

Mean Median St. Dev. Skewness Kurtosis JB-test

Market 2.31 12.50 21.54 -0.01 6.48 1,649

Risk-free 2.10 1.50 0.13 0.62 -0.98 2,371  

An average annualized market return of 2.31% is recorded over the sample period 

running from 2000 through to 2012.  The average risk-free rate is approximately the same 

over this period. Both series are clearly not following a normal distribution with the market 

return showing excess kurtosis whereas the risk-free rate shows a platykurtic pattern. 

3.4 Preliminary analysis 

With the daily closing prices together with an overview of daily available option strikes it 

is possible to make a first split. By defining a range around the strike prices and checking 

daily whether the closing price of an underlying stock is within this range, the sample can be 

split in one part where the previous day’s closing price is near a strike and a second where 
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this is not the case. For these two samples we can draw up similar descriptive statistics as 

are reported for the entire sample in Table 1. This split is made taking a range of (an 

arbitrary) $ 0.30 into account around the strikes. Descriptive statistics for split samples are 

listed in Table 3. 

Table 3: Descriptive statistics on Returns split for share price nearness to option strike on previous day. In this table, 

the same statistics are presented as presented in Table 3.1. In this case however, the sample of returns is split in two for 

each stock. This split is made based on the previous day’s closing price in relation to the existing option strikes on that day. 

A reading is included in the ‘Near’ sample if the share price was within (an arbitrary) $ 0.30 distance of an existing option 

strike. If this was not the case, the reading is added to the ‘Far’ sample. 

Ticker

Near Far Near Far Near Far Near Far Near Far Near Far Near Far

AA 1115 2153 2.58 -1.14 12.63 -7.98 44.34 45.05 -0.21 0.44 7.83 11.37 1094 6350

AXP 1076 2192 23.85 4.96 -1.98 0.00 42.52 39.61 1.08 -0.03 13.50 10.03 5157 4519

BA 689 2579 37.55 5.21 26.58 3.88 31.83 32.65 0.14 -0.07 5.30 8.33 154 3051

BAC 1006 2262 59.85 -9.69 0.00 5.24 67.03 45.83 1.67 -0.45 20.31 24.69 13028 44413

CAT 656 2612 46.68 11.50 35.64 9.99 35.17 34.71 0.69 -0.03 6.70 6.81 427 1580

CSCO 1233 2035 -9.32 9.61 0.00 11.93 45.16 44.40 0.73 0.44 12.48 10.27 4724 4551

CVX 413 2855 21.72 13.17 4.18 27.23 25.78 27.42 0.09 0.46 4.77 17.19 54 24070

DD 980 2288 -5.14 9.88 5.70 -5.26 29.64 30.77 -0.30 0.15 7.15 7.78 717 2183

DIS 1158 2110 40.49 -5.49 23.78 -14.16 31.71 34.71 0.80 0.07 10.32 10.88 2712 5455

GE 1239 2029 -7.97 7.99 0.00 0.00 34.71 32.85 0.04 0.55 8.27 13.05 1432 8644

HD 1053 2215 21.78 0.85 6.25 0.00 34.01 35.46 0.32 -0.65 8.16 18.23 1188 21565

IBM 406 2862 31.34 5.89 8.69 6.05 30.65 27.86 1.16 0.08 9.66 10.64 841 6964

INTC 1171 2097 26.65 -7.40 9.00 0.00 39.83 42.74 0.19 -0.23 6.07 10.73 465 5241

JNJ 560 2708 12.37 6.77 9.94 0.00 24.01 19.82 -2.34 0.56 30.72 10.23 18447 6041

KO 770 2498 11.05 5.67 7.09 7.88 19.96 23.69 0.54 0.27 7.00 11.85 550 8182

MCD 752 2516 -14.65 19.47 0.00 20.48 25.47 25.71 -0.32 0.07 7.77 8.28 726 2928

MMM 471 2797 0.57 12.43 -16.45 8.13 23.91 25.40 0.34 0.21 11.98 7.19 1591 2067

MRK 1018 2250 -6.48 9.92 -7.04 17.34 28.00 30.94 -3.35 -0.04 55.69 10.60 119672 5409

MSFT 1301 1967 -4.23 5.51 -9.23 0.00 29.78 35.28 -0.03 0.38 8.28 13.11 1510 8428

PFE 1170 2098 13.16 0.73 -7.68 0.00 26.56 27.93 0.16 -0.22 8.00 7.28 1224 1615

PG 637 2631 7.04 7.07 0.00 7.48 19.34 24.26 -0.09 -3.34 7.89 74.92 637 571933

TRV 429 2839 -0.72 16.28 -9.95 9.60 31.02 33.38 1.58 0.73 12.58 19.07 1817 30815

UNH 905 2363 -0.47 31.27 10.00 18.40 39.68 33.40 -0.83 2.19 11.97 39.15 3140 130561

UTX 495 2773 -5.57 17.16 -15.38 14.78 27.74 30.01 0.88 -1.06 12.48 23.84 1917 50711

VZ 1065 2203 -0.42 9.84 0.00 5.10 22.94 29.38 0.24 0.38 9.21 9.06 1720 3421

WMT 718 2550 12.44 2.88 5.50 4.11 26.94 25.75 0.72 0.26 10.15 7.61 1593 2288

XOM 653 2615 14.32 11.21 22.35 16.90 23.08 27.32 -0.32 0.47 5.84 14.50 230 14509

JB-testSample size Mean Median St. Dev. Skewness Kurtosis

 

We cannot yet draw any definite conclusions on the base of the data contained in this 

table; there are however some observations to be made. The sizes of the “Near” and “Far” 

sample for instance vary across the different stocks.  The “Near” sample ranges between 400 

and 1300 observations per stock with the “Far” sample making up for the reminder of the 

3268 observations (not 3269, as we include a split based on the one day lag of the nearness 

to a strike). For all stocks except Procter and Gamble (PG) there is a difference of at least a 
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few percent between the mean annualized returns of the different samples.  This difference 

reaches 45% for the Walt Disney Company (DIS) and almost 70 % for Bank of America (BAC). 

There is however no clear pattern of consistently higher returns for one of the two samples. 

The standard deviations of the two samples are mostly a lot closer to each other. An 

exception to this is Bank of America where the difference is as large as 20%. Also we find 

several names for which the standard deviations lay approximately 5% apart. Again there is 

no clear pattern of consistently smaller standard deviations in one of the two samples. The 

Jarque-Bera test statistics indicate that none of the samples are normally distributed. These 

are all mere observations and no definite points. The split samples provide however a 

starting point for further analysis which is performed in Chapter 4. 
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4 Results of modeling and analysis 

In this chapter, we analyze in detail the data introduced in Chapter 3. I propose 

functional forms for the effects of trading near option strikes, similar to the ones used by 

Driessen et al. (2013) for detecting the effects of 52-week highs and lows. I start off with a 

functional form applying only a dummy variable as an indicator of strike nearness. In a next 

step, this functional form is expanded with a variable indicating the option open interest on 

the nearest strike. A third setup replaces the (simple) open interest with one taking the 

gammas of the different options into account. Furthermore I estimate a panel formulation 

and finally a formulation allowing asymmetric behavior. 

4.1 CAPM type model with dummy variables 

To assess the presence and size of the effects of trading near existing option strikes on 

the underlying, I use a framework within which I can separate the different components that 

together result in the returns of the underlying. The Capital Asset Pricing Model (CAPM), 

being the most widely used asset pricing model, offers a starting point. Its formulation is 

                , (4.1) 

with                and               . 

In this formulation, the estimated return on a certain asset over period t in excess of the risk-

free return is equal to a constant plus a factor that depends linearly on the excess return of 

the market over this same period t. Hence, this formulation separates the observed excess 

returns already in two components: a constant and a time varying market-wide part. We 

would however like to see what role the nearness to an option strike plays in the return 

generating process rather than learning which part is constant and which is influenced by 

the market return. In Chapter 3, we made a start with exploring this role by splitting the 

return samples off all stocks under consideration in two subsamples, one for which the 

previous day’s closing price was near a strike and one for which this was not the case. 

Parallel to that split, we can introduce a similar split in the CAPM model by making use of a 

dummy variable in addition to the original model. With this dummy we can allow for 

different α and β coefficients on days for which the previous day’s closing price is near a 

strike versus the days where this is not the case. Specifically we consider 
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            , (4.2) 

with   
       a dummy variable with value 1 if the day’s closing price of the underlying is near 

a strike and zero otherwise. Hence we get two different values for the constant term in the 

asset’s return, α0 in case the previous days’ closing price is not near a strike and α0 + α1 if the 

previous days price is near a strike. The same holds for the β coefficient. 

We can apply the formulation in equation 4.2 to our data set and estimate the different 

parameters for the 27 underlying stocks in the data sample. For the sake of making the 

parameter estimation extendable in the reminder of this study, this is done with a Maximum 

Likelihood Estimation (MLE) method. For this type of estimation, a distribution for the errors 

needs to be assumed for constructing the (log) likelihood function. I present different 

alternatives for the error distribution in paragraphs 4.1.1 and 4.1.2. 

4.1.1 Constant error variance 

As a starting point we assume that the errors are distributed according to a normal 

distribution with mean zero and standard deviation σ being constant over time. The 

standard deviation of the errors is estimated in the same step with the parameters of the 

return equation. The likelihood function that is to be maximized based on the assumption of 

normal errors with constant variance is derived in Appendix 2. 

Taking the likelihood function together with equation (4.2) to the data we have on hand, 

we obtain parameter estimates for α0, α1, β0, β1 and σ for each of the 27 stocks under 

consideration as listed in Table 4. We calculate standard errors of the estimation based on 

the estimated information matrix. The diagonal of the inverse information matrix contains 

the squared standard errors for each of the parameter estimates. An estimate of the 

information matrix is obtained by taking the negative of the expected Hessian matrix. 

We can relate the α0 parameter estimates to the efficient market hypothesis. In an 

efficient market, the α0 parameter should be centered around zero. The β0 estimates should 

average around 1, as the returns on the list of stocks under consideration form an integral 

part of the market return. The parameter estimates confirm this is the case. Looking solely at 

these parameter estimates would lead to concluding that we are indeed dealing with an 

efficient market here. In our regression we however also include additional α1 and β1 
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parameters for assessing the effects of strike nearness. These parameters should both be 

centered around zero to be in accordance with an efficient market. We observe however a 

considerable amount of estimates significantly different from zero. 

Table 4: Parameter estimates of CAPM model with dummy for nearness to strikes and constant error variance. This 

table shows the results of estimating a model as proposed in equation (4.2) with normal errors with standard deviation σ to 

27 stocks. The   
       dummy in this equation takes value 1 if the day’s closing price of the underlying is within $ 0.30 of an 

existing option strike in the underlying. Significance levels of the parameters are 1 % for ** and 5 % for * all measured in 

difference to zero. 

Ticker α0 α1 β0 β1 σ

MMM 0.0295 -0.0457 0.777 ** 0.024 1.188 **

AA -0.0247 0.0148 1.397 ** 0.059 2.075 **

AXP -0.0150 0.0874 1.399 ** 0.048 1.696 **

BAC -0.0366 0.1615 1.361 ** 0.702 ** 2.533 **

BA 0.0287 0.0108 0.933 ** -0.040 1.623 **

CAT 0.0574 -0.0109 1.096 ** 0.107 * 1.587 **

CVX 0.0353 0.0360 0.806 ** 0.044 1.319 **

CSCO 0.0001 -0.0366 1.535 ** -0.327 ** 2.100 **

KO 0.0043 0.0011 0.467 ** 0.043 1.293 **

DD -0.0065 0.0373 0.934 ** 0.177 ** 1.374 **

XOM 0.0352 -0.0205 0.801 ** -0.064 1.289 **

GE -0.0125 -0.0019 1.103 ** 0.111 ** 1.426 **

HD 0.0205 -0.0072 1.060 ** -0.081 1.708 **

INTC -0.0088 0.0064 1.501 ** -0.399 ** 1.939 **

IBM 0.0033 0.1934 ** 0.841 ** 0.152 ** 1.350 **

JNJ 0.0141 -0.0225 0.451 ** 0.066 1.140 **

MCD 0.0482 -0.0303 0.543 ** -0.039 1.451 **

MRK 0.0051 -0.0391 0.661 ** 0.025 1.669 **

MSFT 0.0143 -0.0484 1.142 ** -0.211 ** 1.536 **

PFE -0.0400 0.1111 * 0.684 ** 0.005 1.462 **

PG -0.0041 0.0058 0.439 ** 0.073 1.344 **

TRV 0.0356 0.0221 0.975 ** -0.033 1.621 **

UTX 0.0447 -0.0563 0.951 ** 0.010 1.357 **

UNH 0.1046 ** -0.1080 0.673 ** 0.266 ** 1.952 **

VZ 0.0055 0.0079 0.739 ** -0.076 1.438 **

WMT -0.0125 0.0847 0.623 ** -0.002 1.409 **

DIS 0.0299 -0.0204 1.051 ** 0.046 1.560 **  

  The recorded α1 estimates contain only two significant observations, a low number, 

which could point to simple coincidence. The β1 parameter estimates for nine different 

underlying stocks are significantly different from zero. This suggests that several of the 

underlyings indeed show different price behavior when trading close to an option strike. 

More specifically we might intuitively expect the CAPM β to decline when the underlying is 

trading near a strike. This because the previously discussed round number and option 

pinning effects would (if present) come at the expense of the market-following behavior of 
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each underlying. We observe however mixed estimates for β1 with only three out of nine 

significant estimates being negative.  

It is remarkable to see that the Bank of America stock has a β1 parameter estimate as 

high as 0.7 which results in a total β coefficient of over 2 in case the stock trades close to a 

strike. Also this stock shows a highly positive though not significant α1 estimate. We can 

relate this positive estimate to what we saw for this stock in the two samples of Table 3.  

Average returns in the “Near” sample are an annualized 70% higher than the ones in the 

“Far” which is consistent with a positive estimate for α1. The insignificance of this high α1 

estimate together with the high estimate for σ indicates high standard errors and therefore 

a lot of dispersion in the data for this underlying. 

The β1 parameter estimate for Intel Corporation on the contrary is more in line with the 

intuitive statement made above. A negative estimate of about -0.4 reduces the CAPM β 

when the underlying closed near a strike price considerably towards zero. A slightly positive 

though not significant α1 estimate is again in accordance with what was found earlier in 

Table 3. It is however fair to say that this slightly positive α1 is not solely responsible for the 

difference between the “Near” and “Far” sample. The combination of the β1 parameter and 

the timing of positive and negative market returns also has a large part in this difference. 

Off course the model that is applied here implicates several assumptions which are up 

for dispute. Therefore we extend the model in further paragraphs to investigate what 

happens to the suggested effects if we relax some assumptions. 

4.1.2 Conditional error variance 

We assume in paragraph 4.1.1 that the error variance is constant. In this section, this 

assumption is relaxed and four different conditional variance equations are introduced to 

assess the effect of allowing for heteroskedasticity in the error terms. 

Similar to  allowing the α and β coefficients of the original CAPM model to alter in the 

event of closing near a strike on the previous trading day, there is also a chance that the 

error variance, σ takes on a different value on that occasion. We can allow for this by 

combining our optimization function derived in Appendix 2 with a conditional variance 

formulated as 
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       (4.3) 

In this formulation, the error term is drawn from a normal distribution with mean zero and 

standard deviation of either σ0 in case the previous day’s closing price was not near a strike 

or σ0 + σ1 if it was. Parameter estimates incorporating this conditional variance equation are 

listed in Table 5. 

Table 5: Parameter estimates of CAPM model with dummy for nearness to strikes and error variance conditional on 

dummy. This table shows the results of estimating a model as proposed in equation 4.2 with normal errors with conditional 

standard deviations as defined in equation 4.3 to 27 stocks. The   
       dummy in these equations takes value 1 if the day’s 

closing price of the underlying is within $ 0.30 of an existing option strike in the underlying. Significance levels of the 

parameters are 1 % for ** and 5 % for * all measured in difference to zero. 

Ticker α0 α1 β0 β1 σ0 σ1

MMM 0.0315 -0.0113 0.777 ** 0.024 1.188 ** 0.002

AA 0.0360 -0.0585 1.451 ** -0.100 2.101 ** -0.082

AXP 0.0032 -0.0031 1.400 ** 0.050 1.695 ** 0.005

BAC 0.0260 -0.6916 ** 1.380 ** 0.630 ** 2.222 ** 0.738 **

BA 0.0319 -0.0001 0.932 ** -0.040 1.622 ** 0.005

CAT 0.0118 0.0158 1.091 ** 0.127 ** 1.583 ** 0.022

CVX 0.0359 -0.0135 0.807 ** 0.044 1.319 ** 0.001

CSCO -0.0338 0.0488 1.585 ** -0.421 ** 2.184 ** -0.247 **

KO 0.0425 -0.0473 0.467 ** 0.044 1.296 ** -0.018

DD -0.0850 ** 0.0813 0.936 ** 0.175 ** 1.448 ** -0.272 **

XOM 0.0298 0.0881 0.784 ** 0.016 1.297 ** -0.050

GE -0.0049 -0.0024 1.103 ** 0.111 ** 1.424 ** 0.005

HD -0.0319 0.1647 ** 1.059 ** -0.083 1.738 ** -0.105 *

INTC 0.0165 -0.0333 1.501 ** -0.399 ** 2.058 ** -0.327 **

IBM -0.0155 0.0439 0.841 ** 0.144 ** 1.351 ** 0.002

JNJ 0.0643 ** -0.1230 * 0.450 ** 0.066 1.094 ** 0.232 **

MCD 0.0507 -0.0338 0.533 ** 0.006 1.458 ** -0.030

MRK -0.0384 -0.0352 0.661 ** 0.029 1.698 ** -0.102 *

MSFT 0.0598 0.0115 1.143 ** -0.214 ** 1.642 ** -0.263 **

PFE -0.0290 0.1196 * 0.684 ** 0.004 1.465 ** -0.010

PG -0.0269 0.2327 ** 0.456 ** -0.007 1.377 ** -0.230 **

TRV 0.0371 -0.0120 0.976 ** -0.047 1.620 ** 0.007

UTX 0.0437 -0.0206 0.951 ** 0.010 1.357 ** 0.000

UNH 0.0459 0.2871 ** 0.673 ** 0.264 ** 1.851 ** 0.310 **

VZ 0.0001 0.1780 ** 0.738 ** -0.077 * 1.508 ** -0.247 **

WMT 0.0014 0.0403 0.624 ** -0.002 1.412 ** -0.012

DIS 0.0694 * 0.1141 * 1.046 ** 0.053 1.610 ** -0.175 **  

The parameter estimates in this table indeed suggest that allowing the error variance to 

depend on the dummy is a significant improvement to the original model for almost half of 

the stocks under consideration indicated by a significant σ1 parameter. We find that this 

extension of the model results in more significant readings for the other parameter 

estimates as well. Especially the α1 estimates attain a larger number of additional significant 
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values. This suggests that the effect of the conditional variance, left out in the paragraph 

4.1.1 result in a disturbance of the estimation process there. 

With this set-up we can also re-examine the estimates for Bank of America (BAC) and 

Intel Corporation. For Bank of America we find that the very high β1 estimate which was so 

remarkable in Table 4 is still high. The α1 estimate also catches the eye right away with a 

very significant -0.7 where it was estimated to be about 0.16 with the constant error 

variance setting. Hence we can state that this conditional variance setup has a huge 

influence for this specific stock which we can also derive from the significance of the σ1 

estimate which is large and positive. This highly positive estimate is in accordance with the 

statistics presented in Table 3. There it was found that the standard deviation in the “Near” 

sample was a lot higher than that in the “Far” sample for Bank of America. The highly 

positive σ1 estimate underlines this. The β parameter estimates for Intel Corp are not much 

different from the previous estimates without conditional variance. For the α parameter 

estimates signs have changed, but nothing significant is observable there. Still a very 

significant σ1 parameter is estimate for this stock. Contrary to Bank of America, this 

parameter is estimated negatively however. The negative estimate is in accordance with the 

differences in the standard deviations we observe for Intel’s split samples in Table 3. 

Another usual component of conditional variance equations is some form of 

autoregressive process. This autoregressive element introduces the phenomenon of 

volatility clustering in the estimation process. The lagged residuals of the estimation as well 

as lagged conditional variance terms are applied to construct the variance term of the 

current residual distribution. In general applications, the first lags are applied in this setup 

resulting in GARCH (1,1) models. This kind of setup might however not be optimal in this 

application as there will be many occasions on which the previous day’s stock price was 

already near a strike. This would imply that both the lagged conditional variance as well as 

the lagged residual is already lower than usual. As a result, the standard GARCH (1,1) model 

may not be the best way to assess the effect of being near a strike on the conditional 

variance. Therefore the same reasoning as in Driessen et al (2013) is followed. Hence we will 

only consider adding residuals that are lagged 10 days or more for the conditional variance 

equation. Three different formulations of the conditional variance equation with AR-terms 
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are considered in this report: one complex variant and two simpler versions which are both 

nested in the complex one. We consider first the complex setup 

            
              

         
         

         
         

 , (4.4) 

 with                 . 

In this setup, the estimation errors over the five day period between 10 and 14 days 

previously each have their own coefficient in forecasting today’s conditional error variance.  

A somewhat simpler version is 

            
               

       
       

       
       

  . (4.5) 

This form restricts the complex setup in the sense that the coefficient of each lagged error is 

bound to be the same. This reduces the amount of parameters that is to be estimated by 4 

relative to the complex form. A second simplification we consider is 

            
              

 . (4.6) 

In this setup, the same basics as in the complex setup are present, albeit that only the 

coefficient for the lagged error of 10 days ago is allowed to deviate from zero. Hence, this 

also reduces the amount of parameters by 4 relative to the complex formulation. 

These three setups can be tested and compared to each other, by coupling them to the 

return formulation of equation (4.2) and estimating the three different models on the 

available data. The likelihoods of the two simpler setups can both be compared with LR-tests 

to the complex version as they are both nested in the complex formulation. The resulting LR-

test statistics can then be compared to the asymptotical theoretical distribution which is Chi-

squared with 4 degrees of freedom for both comparisons. I list these test statistics as well as 

their significance in Table 6. 

The conditional variance formulation in equation (4.6) is for all stocks significantly worse 

than the more elaborate setup of equation (4.4). For the conditional variance formulation in 

equation (4.5), this is only the case for a couple of stocks. For a majority of stocks, the 

difference between this concise formulation and the complex one is not significant. Hence 

we opt for the conditional variance setup from equation (4.5) to proceed with because of 

the simpler formulation with less parameters. Parameter estimates obtained with the 
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original return formulation in equation (4.2) combined with this conditional variance setup 

are listed in Table 7. 

Table 6: Test statistics of LR-tests on three different conditional variance setups in original CAPM type model. In the 

table, LR-test statistics are listed for two simple conditional variance setups (defined in equations (4.5) and (4.6)) versus 

their complex counterpart in equation (4.4). Significance levels of the LR-tests are 1 % for ** and 5 % for *. 

Ticker

MMM 1.99 214.28 **

AA 7.86 281.66 **

AXP 5.42 492.07 **

BAC 12.45 * 1085.43 **

BA 1.02 203.00 **

CAT 71.53 ** 202.21 **

CVX 9.75 * 341.16 **

CSCO 16.91 ** 349.33 **

KO 6.91 537.97 **

DD 0.93 294.32 **

XOM 1.35 273.03 **

GE 22.20 ** 492.09 **

HD 37.72 ** 239.99 **

INTC 8.88 267.93 **

IBM 5.18 258.37 **

JNJ 1.93 506.57 **

MCD 3.02 142.83 **

MRK 19.32 ** 37.10 **

MSFT 3.67 313.31 **

PFE 9.73 * 293.13 **

PG 114.62 ** 782.47 **

TRV 7.75 299.57 **

UTX 59.52 ** 371.09 **

UNH 11.53 * 91.23 **

VZ 37.61 ** 507.21 **

WMT 1.08 560.65 **

DIS 3.49 112.46 **

4.5 vs 4.4 4.6 vs 4.4

 

The σ2 parameter that is added to the conditional variance equation appears to be 

significantly different from zero for all underlyings. This results in different estimates for all 

other parameters as well, including significant parameters. Therefore we can identify this 

autoregressive term as a useful addition to the model, improving the quality of the return 

equation parameter estimates. The addition of this parameter is also of large influence on 

the estimates for the other parameters in the conditional variance equation. We find that it 

invokes changes in both the σ0 and σ1 estimates. Note that there is now also more 

consistency in the σ1 estimates which are generally negative. 
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Table 7: Parameter estimates of CAPM model with dummy for nearness to strikes and error variance conditional on 

dummy and lagged errors. This table shows the results of estimating a model as proposed in equation (4.2) with normal 

errors with conditional standard deviations as defined in equation (4.5) to 27 stocks. The   
       dummy in these equations 

takes value 1 if the day’s closing price of the underlying is within $ 0.30 of an existing option strike in the underlying. 

Significance levels of the parameters are 1 % for ** and 5 % for * all measured in difference to zero. 

Ticker α0 α1 β0 β1 σ0 σ1 σ2

MMM 0.0109 0.0219 0.813 ** 0.052 0.944 ** -0.005 0.032 **

AA -0.0214 0.0331 1.343 ** 0.113 * 1.483 ** -0.158 ** 0.027 **

AXP 0.0413 -0.0486 1.241 ** 0.054 1.020 ** 0.014 0.043 **

BAC -0.0018 -0.1355 * 0.957 ** 0.521 ** 1.015 ** 0.067 0.056 **

BA 0.0462 -0.0326 0.969 ** -0.028 1.265 ** -0.034 0.027 **

CAT 0.0671 * 0.0063 1.166 ** -0.004 1.282 ** -0.035 0.023 **

CVX 0.0247 0.0017 0.802 ** 0.080 0.912 ** -0.079 * 0.046 **

CSCO 0.0387 -0.0325 1.367 ** -0.264 ** 1.445 ** -0.020 0.028 **

KO 0.0208 0.0088 0.518 ** 0.088 ** 0.799 ** -0.063 * 0.057 **

DD 0.0152 -0.0429 1.000 ** 0.140 ** 1.015 ** -0.116 ** 0.037 **

XOM -0.0173 0.0003 0.829 ** -0.044 0.909 ** -0.117 ** 0.049 **

GE -0.0094 0.0118 1.069 ** 0.136 ** 0.895 ** -0.015 0.056 **

HD 0.0206 -0.0290 1.116 ** -0.153 ** 1.241 ** -0.211 ** 0.038 **

INTC 0.1157 ** -0.0329 1.306 ** -0.267 ** 1.413 ** -0.106 * 0.030 **

IBM 0.0148 0.0143 0.787 ** 0.118 * 0.996 ** -0.065 0.037 **

JNJ 0.0067 0.0391 0.466 ** 0.028 0.759 ** -0.087 ** 0.054 **

MCD 0.0396 0.0063 0.555 ** -0.007 1.122 ** 0.030 0.029 **

MRK 0.0455 -0.1031 0.665 ** 0.017 1.537 ** -0.052 0.011 **

MSFT 0.0395 -0.0709 1.077 ** -0.198 ** 1.167 ** -0.084 * 0.033 **

PFE -0.0708 * 0.1002 * 0.759 ** -0.038 1.084 ** -0.102 ** 0.038 **

PG 0.0365 0.0001 0.479 ** 0.052 0.824 ** -0.033 0.063 **

TRV 0.0170 0.0072 0.896 ** 0.152 * 1.152 ** -0.052 0.034 **

UTX 0.0529 * 0.0163 0.988 ** -0.031 1.007 ** -0.055 0.040 **

UNH -0.0269 0.1900 ** 0.582 ** 0.275 ** 1.429 ** 0.186 ** 0.023 **

VZ 0.0892 ** -0.0803 * 0.705 ** -0.119 ** 0.982 ** -0.101 ** 0.046 **

WMT 0.0044 -0.0373 0.662 ** -0.045 0.967 ** 0.019 0.037 **

DIS 0.0120 0.0705 0.998 ** 0.142 ** 1.402 ** -0.242 ** 0.018 **  

Specifically for Bank of America it appears that the addition of the AR term has resulted 

in the σ1 estimate becoming insignificant where it was highly positive in the formulation 

without AR terms. Further we see that the α1 estimate decreased a lot though it is still 

significantly different from zero. The size and sign of the β1 parameter estimate are still 

remarkable and significant. For Intel Corporation, the addition of the AR terms to the 

conditional variance equation has mainly results for the α0 estimate. This is suddenly positive 

and significant. For the other parameters estimates only small changes are observed. 

4.2 Alternative variables indicating option activity 

Option strikes are generally defined to be round numbers. Therefore there may be a 

mixture of round number effects and actual option effects around strikes. By applying the 

setups of paragraph 4.1 all these mixed effects are basically assumed to be caused by the 
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presence of an option strike only. A possible way to split the effects is by introducing 

additional variables into the formulations. These additional variables should be indicative of 

option activity only and unrelated to round numbers if they were to be of help for this 

purpose. 

4.2.1 Open Interest Ratio 

The option open interest at the nearest strike over all expiration dates qualifies for this 

purpose as it indicates exactly how much financial interest exists around a strike at 

expiration. We should see this financial interest in the options in relation to a form of 

financial interest in the underlying. This interest in the underlying can be approximated by 

the trading volume in the underlying. Trading volumes vary greatly from one day to another. 

A much used alternative for daily trading volume is therefore the average trading volume 

over the past 20 trading days, which behaves much more smoothly. A potential additional 

variable would therefore be a combination of this option open interest and the average daily 

trading volume in the underlying over the past 20 days referred to as the Open Interest Ratio 

from here on: 

    
       

          
 

      
 
    

. (4.7) 

In this definition     is the open interest on day t in options with strike K and maturity T.     

denotes the trading volume in the underlying stock at day i. Summary statistics on this 

variable are included in Appendix 3. 

Applying this new variable in the return equation and in the conditional variance 

equation with AR terms yields the new return equation (4.8) and conditional variance 

equation (4.9). Parameter estimates obtained with this formulation are listed in Table 8. 
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Table 8: Parameter estimates of CAPM model taking open interest into account and error variance conditional on 

open interest and lagged errors. This table shows the results of estimating a model as proposed in equation (4.8) with 

normal errors with conditional standard deviations as defined in equation (4.9) to 27 stocks. The     
       variable in these 

equations is defined in equation (4.7).  The   
       dummy in the equation takes value 1 if the day’s closing price of the 

underlying is within $ 0.30 of an existing option strike in the underlying. Significance levels of the parameters are 1 % for ** 

and 5 % for * all measured in difference to zero. 

Ticker α0 α1 β0 β1 σ0 σ1 σ2

MMM -0.0060 0.0907 0.825 ** -0.031 0.941 ** 0.007 0.032 **

AA 0.0166 -0.0026 1.372 ** 0.077 1.473 ** -0.145 ** 0.026 **

AXP 0.0414 -0.0537 * 1.266 ** -0.028 1.042 ** -0.043 * 0.042 **

BAC 0.0535 * -0.0455 1.071 ** -0.068 1.051 ** -0.115 ** 0.058 **

BA 0.0454 0.0055 0.959 ** 0.034 1.262 ** -0.049 0.027 **

CAT 0.0763 ** 0.0119 1.185 ** -0.189 ** 1.277 ** -0.037 0.024 **

CVX 0.0139 0.0063 0.810 ** 0.046 0.907 ** -0.060 0.046 **

CSCO -0.0009 -0.0116 1.296 ** -0.349 ** 1.436 ** -0.010 0.028 **

KO 0.0333 -0.0249 0.535 ** 0.022 0.793 ** -0.017 0.056 **

DD -0.0026 -0.0160 1.049 ** 0.012 1.017 ** -0.165 ** 0.036 **

XOM -0.0257 0.0974 * 0.815 ** -0.005 0.915 ** -0.182 ** 0.048 **

GE -0.0186 0.0072 1.140 ** -0.051 0.951 ** -0.157 ** 0.053 **

HD 0.0796 ** -0.1220 * 1.032 ** 0.104 1.222 ** -0.243 ** 0.037 **

INTC 0.1035 ** -0.2305 ** 1.198 ** -0.262 ** 1.391 ** -0.130 * 0.031 **

IBM 0.0012 0.0267 0.802 ** 0.030 1.004 ** -0.086 ** 0.036 **

JNJ 0.0244 -0.0001 0.475 ** -0.029 0.765 ** -0.085 ** 0.053 **

MCD 0.0574 * -0.0419 0.547 ** 0.035 1.134 ** -0.027 0.029 **

MRK -0.0266 -0.0301 0.702 ** -0.252 ** 1.425 ** 0.216 ** 0.015 **

MSFT -0.0177 0.0081 0.998 ** -0.066 1.209 ** -0.227 ** 0.032 **

PFE -0.0595 * 0.0767 * 0.740 ** -0.003 1.074 ** -0.074 ** 0.037 **

PG 0.0347 -0.0957 ** 0.488 ** 0.002 0.853 ** -0.134 ** 0.061 **

TRV 0.0339 0.0190 0.908 ** 0.120 * 1.171 ** -0.235 ** 0.033 **

UTX 0.0536 * 0.0135 0.986 ** -0.050 1.034 ** -0.242 ** 0.038 **

UNH 0.0908 ** 0.0005 0.701 ** -0.181 * 1.498 ** 0.003 0.022 **

VZ 0.0578 * -0.0039 0.637 ** 0.068 * 1.009 ** -0.146 ** 0.043 **

WMT 0.0157 -0.0612 0.654 ** -0.009 0.985 ** -0.052 * 0.036 **

DIS 0.0906 ** -0.1417 ** 1.067 ** -0.059 1.366 ** -0.202 ** 0.018 **  

It seems that most stocks with significant α0 parameter estimates show positive 

parameters. Most of the significant α1 parameters estimates are however negative, 

suggesting that when trading near a strike on the previous day, a large       
      has a 

negative effect on returns. Also observable are several significantly negative β1 parameter 

estimates. This can be translated in a lesser degree of correlation with the market return if 

the previous day’s closing price is near a strike and open interest is large relative to average 

daily trading volume. Nearly all σ1 estimates are negative meaning that average size of the 

unexpected returns decreases in case of large open interest and trading near a strike. 

When comparing the parameter estimates for this formulation with the ones in 

paragraph 4.1 for Bank of America, several notable changes are visible. The α0 estimate 

becomes significantly positive whereas the β1 estimate changes from very significantly 
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positive to slightly negative. The σ1 coefficient is estimated significantly negative whereas 

there was a slightly positive estimate in the previous formulation with the dummy and AR 

terms only. 

For Intel Corp the parameter estimate signs have not changed relative to the estimates 

from paragraph 4.1. Note however that the estimates for the α parameters become more 

significant than they were before and the β0 estimate is lowered by about 0.1. These 

changes indicate that the return variation captured by the new combination of the dummy 

with       
       leans for Intel Corp data more towards α. 

4.2.1 Open Interest Gamma Ratio 

The open interest ratio was included in our formulations to reflect the relative 

importance of the financial interest in the option markets in relation to the market in stocks 

of the underlying. The open interest reflects this however only partially. Reason is that the 

instantaneous financial interest of an option is somewhat different from the terminal 

interest at expiration (for which the open interest is the perfect indicator). The 

instantaneous financial interest of an option can be defined as the instantaneous derivative 

of the option price with respect to the price of the underlying, also denoted with the Greek 

letter δ. The γ of an option is the second derivative of the option price with respect to the 

underlying. This γ can be of influence on the underlying returns through the pinning 

mechanism. We discussed this mechanism briefly in the literature review of Chapter 2. It is a 

known fact that several market parties (most predominantly the market makers) hedge the 

δ of the options they buy or sell. This is in most cases done by either selling or buying the 

underlying in a quantity equal to the option δ but opposite of sign. This hedge is however 

only perfect if the underlying stays near the price it traded on when the hedge was put in 

place, as the δ of an option changes when the price of the underlying changes.  The γ of an 

option, which is the derivative of the δ with respect to the underlying determines how much 

of the underlying stocks are to be sold or bought to maintain a delta-hedged position in the 

event of a $ 1 price change in the underlying. The total γ of the option position of a delta-

hedging party could therefore be predictive of the trading behavior of this party in the event 

of a price change in the underlying. 
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For every option seller, there is an option buyer. This leads to a total net γ of zero in the 

market. We know however that only part of the market participants apply delta-hedging in 

their trading strategies, such that it is at all times highly likely that the net γ of the delta-

hedging market participants is not equal to zero. The exact distribution of the positions at 

any moment between the different market participants is unknown. It is however plausible 

that the γ position of the delta-hedging parties is correlated over time with the γ of the 

overall open interest. 

The γ of the open interest can at any time be determined by calculating the γ of all 

existing options and multiplying each of these with the open interest in that specific option. 

Summing the γ of these different options provides the total γ open interest in the option 

market. Similar to the transformation of the open interest into an open interest ratio, this 

market net γ is also to be seen in perspective to the trading volume in the underlying. Also 

we are (similarly to what was done for the open interest ratio) not looking for the net γ 

across all strikes, but only interested in the net γ at the strike nearest to the closing price in 

the underlying. Equation (4.10) provides the formulation for the additional variable which 

will be referred to as “Open Interest Gamma Ratio”. 

     
       

                 

 
      

 
    

 
(4.10) 

The method used for calculating the γ of each option is derived and discussed in Appendix 1. 

Appendix 3 contains summary statistics on this variable. With this new additional variable, 

the return equation of the underlying and the conditional error variance formulation change 

to the ones presented in equations (4.11) and (4.12). Estimates for the parameters in these 

two equations on the base of the available data are listed in Table 9. 
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Table 9: Parameter estimates of CAPM model taking the gamma of the open interest into account and error variance 

conditional on open interest gamma and lagged errors. This table shows the results of estimating a model as proposed in 

equation 4.11 with normal errors with conditional standard deviations as defined in equation 4.12 to 27 stocks. The 

    
       variable in these equations is defined in equation 4.10.  The   

       dummy in the equation takes value 1 if the 

day’s closing price of the underlying is within $ 0.30 of an existing option strike in the underlying. Significance levels of the 

parameters are 1 % for ** and 5 % for * all measured in difference to zero. 

Ticker α0 α1 β0 β1 σ0 σ1 σ2

MMM 0.0127 1.029 0.826 ** -20.21 0.943 ** 0.52 0.032 **

AA -0.0047 -0.200 1.368 ** 48.23 * 1.425 ** -0.10 0.027 **

AXP 0.0288 0.037 1.269 ** -49.73 1.028 ** -0.03 0.043 **

BAC 0.0389 -0.066 1.054 ** -10.78 1.018 ** -0.06 0.059 **

BA 0.0300 2.026 0.966 ** -34.61 1.262 ** -3.16 0.026 **

CAT 0.0766 ** -0.037 1.164 ** 11.58 1.275 ** -0.07 0.023 **

CVX 0.0145 0.087 0.811 ** 38.24 0.901 ** 0.07 0.046 **

CSCO -0.0042 -0.063 1.252 ** -53.73 1.431 ** 0.22 0.028 **

KO 0.0279 0.013 0.541 ** -1.38 0.786 ** -0.09 0.057 **

DD -0.0007 0.997 1.063 ** 3.91 0.977 ** -1.44 0.038 **

XOM -0.0105 0.268 0.822 ** -49.23 0.882 ** -0.01 0.050 **

GE 0.0235 -14.219 1.135 ** -11.02 0.922 ** -19.72 ** 0.056 **

HD 0.0632 * 0.042 1.068 ** -45.07 1.153 ** 0.18 0.040 **

INTC 0.0486 -0.212 1.167 ** -34.30 1.369 ** 0.15 0.031 **

IBM 0.0211 -0.046 0.802 ** 20.87 0.989 ** -0.03 0.036 **

JNJ 0.0058 0.289 0.474 ** -13.86 0.747 ** 0.07 0.054 **

MCD 0.0495 * 0.002 0.552 ** 2.53 1.127 ** -0.11 0.029 **

MRK 0.0024 -0.006 0.671 ** 0.00 1.520 ** -0.01 0.011 **

MSFT 0.0026 2.384 1.016 ** -49.87 ** 1.129 ** -4.67 0.032 **

PFE -0.0333 -0.106 0.753 ** -19.56 * 1.037 ** 0.21 0.039 **

PG 0.0110 -0.014 0.490 ** -0.05 0.823 ** 0.01 0.063 **

TRV 0.0329 -0.532 0.910 ** 94.18 1.148 ** 0.67 0.034 **

UTX 0.0547 ** -0.155 0.981 ** 7.94 1.001 ** 0.08 0.039 **

UNH 0.0930 ** -0.048 0.678 ** -11.71 1.498 ** 0.01 0.023 **

VZ 0.0433 0.061 0.659 ** -4.28 0.961 ** -0.08 0.044 **

WMT 0.0096 0.275 0.657 ** -23.81 0.971 ** 0.24 0.037 **

DIS 0.0208 0.139 1.059 ** -24.39 1.327 ** -0.32 0.019 **  

The rationale behind the formulation was that this new Open Interest γ Ratio should be 

able to capture option activity better than the previous OIR variable. This intuitive 

assumption is not translated into (a lot of) significant α1, β1 and σ1 parameter estimates. Still 

it is observable that two thirds of the β1 parameter estimates are negative. The lack of 

significant estimates could indicate that there actually exist no significant effects of option 

activity on the CAPM parameters. From the previous setup where the OIR was applied as 

additional variable, the conclusion was however that there are significant effects. These are 

predominantly negative for β1 as is more or less confirmed here. From this fact, I conclude 

that the previously found effects on the β are confirmed, but the OIγR is not the ideal 

variable for detecting these. Hence, in the next paragraph, we leave this setup and carry on 

with the formulation from paragraph 4.2.1 applying the OIR variable. 
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4.3 Full panel formulation 

Up until this paragraph, all the parameter estimates are based on the data for one 

underlying stock only. Hence, we obtain 27 different sets of parameter estimates for each 

model formulation. This also means that the magnitude (and even the sign) of the effects of 

option activity and nearness to strike varies across the different underlyings. 

For several of the underlying stocks, significant effects of nearness to strike in 

combination with option activity are found, especially in the formulation used in paragraph 

4.2. In case these individual effects have the same sign for a majority of stocks it is suggested 

that these effects hold in general. It is statistically however more powerful, if we can confirm 

a significant effect over all underlyings. To be able to do this, the relevant parameters for the 

option strike nearness effects (α1, β1 and σ1) are to be estimated on the entire dataset, 

composed of the 27 different samples of the different underlyings. Allowing the other 

parameters to vary across the different underlyings ensures that only the effects we are 

looking for are assigned to the relevant option strike nearness parameters. This is formalized 

in the return and conditional variance formulations in equations (4.13) and (4.14) which are 

based on the original equations (4.8) and (4.9). 

                     
              

                     
              

             (4.13) 

 

                  
              

                   
         

         
         

         
   (4.14) 

In these formulations, the index “i” is added to variables and parameters to indicate that 

these are specific for underlying “i”, rather than common for all underlyings. The parameter 

estimates resulting from this setup are listed in Table 10. To reduce the computational costs, 

standard errors are only calculated for the three common parameters in Panel A on the base 

of a reduced Hessian matrix with fixed specific parameters. 

The estimated common parameters in Panel A clearly confirm our previous observations 

as both β1 and σ1 are estimated significantly negative over the entire panel. The α1 

parameter estimate is slightly positive but not significant. We can compare the company 

specific parameters to the ones estimated previously in Table 8. Here we observe some sign 

changes for α0 and minor changes in the β0 estimates that stay within 0.1 of the old 
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estimates. Larger changes are visible in the σ0 estimates which are considerably lower for 

this panel formulation. These lower estimates for σ0 come however with higher σ2 estimates. 

This results in a lower base level of the conditional variance compensated for by a higher 

autocorrelation effect invoked by the higher σ2 estimate. 

Table 10: Parameter estimates of panel formulation of CAPM model taking open interest into account and error 

variance conditional on open interest and lagged errors. This table shows the results of estimating a model as proposed in 

equation (4.13) with normal errors with conditional standard deviations as defined in equation (4.14) to 27 stocks. The 

    
       variable in these equations is defined in equation (4.7).  The   

       dummy in the equation takes value 1 if the 

day’s closing price of the underlying is within $ 0.30 of an existing option strike in the underlying. Significance levels are only 

calculated for panel A and are 1 % for ** and 5 % for * all measured in difference to zero. 

Panel A: Common parameters

α1 β1 σ1

Common 0.0011 -0.138 ** -0.085 **

Panel B: Parameters specific for underlying

Ticker α0 β0 σ0 σ2

MMM 0.000 0.954 0.562 0.051

AA 0.002 1.409 1.276 0.056

AXP 0.006 1.262 0.557 0.092

BAC 0.002 1.089 0.638 0.067

BA 0.000 1.158 1.518 0.038

CAT 0.000 1.120 0.594 0.057

CVX 0.004 0.962 0.393 0.049

CSCO 0.009 1.256 0.409 0.093

KO 0.004 0.609 0.719 0.055

DD 0.001 0.976 0.754 0.052

XOM 0.002 0.820 0.478 0.074

GE 0.003 1.324 1.108 0.015

HD -0.005 1.042 0.336 0.048

INTC 0.002 1.095 0.918 0.049

IBM 0.005 0.844 0.667 0.044

JNJ 0.002 0.371 0.439 0.068

MCD -0.001 0.571 0.600 0.054

MRK 0.000 0.766 0.671 0.062

MSFT 0.003 1.048 0.702 0.076

PFE 0.005 0.833 0.526 0.052

PG 0.004 0.493 0.585 0.074

TRV 0.001 0.877 0.597 0.046

UTX 0.002 0.950 0.432 0.037

UNH 0.004 0.767 0.766 0.090

VZ 0.000 0.782 0.461 0.072

WMT 0.008 0.574 0.469 0.059

DIS -0.003 1.095 0.977 0.038  

The estimated common parameters fit Bank of America rather nicely. Although the 

common α1 estimate has a different sign than the one observed specifically for this stock in 

Table 8, both are not significant. The common β1 and σ1 are pretty similar to the original 

specific estimates. The α0 estimate for this specific stock changed from significantly positive 
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to slightly negative and the β0 estimates are practically equal. Regarding the σ0 and σ1 

estimates we indeed see a lower base variance but higher autocorrelation in this name as 

indicated previously. 

For Intel Corp a highly significant negative α1 parameter was estimated in Table 8. 

Obviously this negative parameter is not confirmed by the entire panel, hence the 

discrepancy here. The other common parameter estimates have the same sign as the 

original specific estimates but are both smaller in magnitude. These changes have their 

effect on the α0 β0 and σ0 estimates, as these reflect now part of the effect that was in 

paragraph 4.2.1 attributed to the strike nearness. The resulting estimates for all three 

parameters are as a result of this effect lower in this common estimation set-up than they 

were previously. 

4.4 Asymmetric effects of closing below and above strikes 

An assumption that is embedded in the original return setup in equation 4.2 and the 

construction of the dummy variable is that closing near a strike either above or below the 

strike makes no difference to the effect on the estimated return. We can assess whether this 

is a reasonable assumption by adjusting the setup to reflect the different occasions on which 

the underlying closes slightly above and slightly below the nearest strike. A practical way to 

do this is by splitting the original dummy variable into two new dummies, one taking a value 

1 only when the day’s closing price is near and above a strike and a second with value 1 only 

when the day’s closing price is near and below a strike. Including the two dummy variables 

results in the following formulation 

                
               

                   
               

              (4.15) 

The conditional variance equation that is assumed for the estimation residuals is taken to be 

similar to equation (4.4) with as only change the split dummy. 

             
               

                
       

       
       

       
   (4.16) 

Taking this new proposition to the data we can generate estimates for the parameters in 

equations (4.15) and (4.16). As our interest lies in the parameters affected by the different 

choice of dummy variables, we include only the estimates of parameters in relation to these 
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variables in Table 11 with the same parameters estimated from equations (4.2) and (4.4) for 

comparison. 

The parameter estimates in this table and their significance give a first impression about 

the presence of asymmetric effects. This first impression is however not enough to formalize 

the presence or absence of significant asymmetric effects. The effects can be formalized by 

means of a Likelihood Ratio test between the restrictive model (consisting of equations (4.2) 

and (4.4)) and the unrestrictive model (equations (4.15) and (4.16)). Likelihood Ratio test 

statistics of these combinations are listed in the final column of Table 11. 

Table 11: α1 β1 and σ1 parameter estimates of CAPM model with dummy for nearness to strikes only versus split 

dummies for above and below strike and error variance conditional on dummies and lagged errors. This table shows the 

results of estimating the α1 β1 and σ1 parameters as proposed in equation (4.2) together with their + and – counterparts 

stemming from equation (4.7) with normal errors with conditional standard deviations as defined in equation (4.6) and (4.8) 

to 27 stocks. The   
       dummy in the equations takes value 1 if the day’s closing price of the underlying is within $ 0.30 of 

an existing option strike in the underlying. The   
       dummy takes value 1 if the day’s closing price is within $ 0.30 above 

an existing option strike. The   
       dummy takes value 1 if the day’s closing price is within $ 0.30 below an existing 

option strike. Significance levels of the parameters are 1 % for ** and 5 % for * all measured in difference to zero. 

Ticker α1 α1+ α1- β1 β1+ β1- σ1 σ1+ σ1- LR-test

MMM 0.022 0.016 0.060 0.052 0.033 0.039 -0.005 -0.053 -0.031 0.52

AA 0.033 0.029 0.001 0.113 * 0.123 0.106 -0.158 ** 0.018 -0.117 * 3.93

AXP -0.049 -0.026 -0.093 0.054 0.101 0.050 0.014 -0.021 0.048 4.61

BAC -0.135 * -0.045 0.224 ** 0.521 ** 0.477 ** 0.630 ** 0.067 -0.029 0.168 ** 6.17

BA -0.033 0.057 -0.042 -0.028 -0.016 0.009 -0.034 0.010 -0.046 0.34

CAT 0.006 0.011 -0.086 -0.004 -0.061 0.029 -0.035 0.127 -0.173 ** 16.14 **

CVX 0.002 0.104 -0.115 0.080 0.089 0.076 -0.079 * -0.061 -0.048 2.54

CSCO -0.033 -0.055 0.082 -0.264 ** -0.277 ** -0.248 ** -0.020 0.040 -0.092 6.63

KO 0.009 -0.031 -0.053 0.088 ** 0.116 ** 0.043 -0.063 * -0.159 ** 0.034 14.38 **

DD -0.043 -0.112 * -0.006 0.140 ** 0.175 ** 0.141 ** -0.116 ** 0.049 -0.035 6.98

XOM 0.000 -0.029 0.116 * -0.044 0.029 -0.028 -0.117 ** -0.030 -0.117 ** 2.66

GE 0.012 -0.036 0.028 0.136 ** 0.230 ** 0.040 -0.015 0.049 -0.096 ** 24.85 **

HD -0.029 -0.021 -0.010 -0.153 ** -0.184 ** -0.110 -0.211 ** -0.038 -0.031 3.39

INTC -0.033 0.030 0.042 -0.267 ** -0.268 ** -0.281 ** -0.106 * -0.169 ** -0.001 5.73

IBM 0.014 0.069 -0.010 0.118 * 0.105 0.133 * -0.065 -0.017 -0.080 2.63

JNJ 0.039 0.003 0.103 * 0.028 -0.007 -0.023 -0.087 ** -0.089 * -0.061 6.37

MCD 0.006 -0.042 -0.034 -0.007 -0.021 -0.037 0.030 -0.037 0.010 3.43

MRK -0.103 0.191 ** -0.010 0.017 0.044 -0.153 * -0.052 -0.446 ** 0.137 * 90.96 **

MSFT -0.071 0.086 0.075 -0.198 ** -0.170 ** -0.218 ** -0.084 * -0.240 ** -0.053 25.62 **

PFE 0.100 * -0.020 0.124 * -0.038 -0.019 -0.010 -0.102 ** -0.089 * -0.030 9.00 *

PG 0.000 -0.046 0.083 0.052 0.079 -0.158 ** -0.033 -0.117 * -0.046 14.75 **

TRV 0.007 0.042 0.022 0.152 * -0.098 0.361 ** -0.052 -0.263 ** 0.144 33.67 **

UTX 0.016 0.102 -0.050 -0.031 0.037 0.016 -0.055 0.037 -0.119 * 3.46

UNH 0.190 ** -0.227 * -0.205 * 0.275 ** 0.349 ** 0.197 * 0.186 ** 0.028 0.227 ** 14.47 **

VZ -0.080 * 0.004 0.129 * -0.119 ** -0.095 * -0.136 ** -0.101 ** -0.192 ** -0.129 ** 16.60 **

WMT -0.037 -0.092 -0.036 -0.045 -0.120 * -0.010 0.019 -0.026 0.066 7.25

DIS 0.071 0.167 * 0.097 0.142 ** 0.044 -0.010 -0.242 ** -0.144 ** -0.086 7.23
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The parameter estimates for several stocks indicate some asymmetric behavior simply 

on the base of discrepancies between the estimates for the “+” and “-“ variant of each 

parameter. This asymmetric behavior is however only formalized in the LR-test results, 

which assesses whether the differences between the variants are large enough to speak of 

significant asymmetric behavior. From these test results, we conclude that for about a third 

of the stocks significant asymmetric effects are present.  

For Bank of America, the α1 and σ1 parameter estimates in the model allowing for 

asymmetric behavior seem to be seriously different from each other. For the β1 estimates, 

this is however not so much the case. This last fact and the dominance of this parameter in 

the estimation process have led to the result of the LR-test, indicating no significant 

asymmetric behavior. 

In the Intel Corp parameter estimates it is especially remarkable that both the α1 

parameter estimates in the asymmetric formulation (which are nicely in line with each 

other) have a different sign than their symmetric counterpart. Furthermore all the β1 

estimates are nicely in line where the σ1 estimates show a somewhat larger spread. Overall it 

seems again as if the β1 estimates are dominant resulting in the LR-test not rejecting 

symmetry here. 
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5 Robustness to nearness to strike definition 

All the observations that are made so far are based on supposed formulations to 

entangle the option strike nearness effects from all other effects on the returns of 

underlying securities. To assess the value of these observations it is essential knowing to 

which degree these observations are the result of choices in our formulation and to which 

degree the observations are robust to these. 

Up until now we haven’t discussed the construction of the nearness to strike dummy 

  
       widely. Its construction is posed as a given without any further ado. Question is 

however whether the exact formulation of this dummy has a detrimental effect on the 

found results. Therefore we perform parameter estimations with variations to the dummy 

measure in paragraph 5.1 and assess to what degree our previous observations hold. In 

paragraph 5.2 we abandon the formulation in the form of a dummy and formulate a 

continuous variable indicating strike nearness. 

5.1 Dummy measure variation 

The return formulations in chapter 4 all include the nearness to strike dummy   
      . 

This dummy is constructed by taking the distance of the day’s closing price in the underlying 

to the nearest existing option strike on that day. If this distance is smaller than $ 0.30 the 

dummy takes value 1, if this is not the case, the dummy takes value zero. 

We would like to know how robust our findings are to changes in the $ 0.30 measure 

that is applied. To assess this, the estimation of the parameters in the formulation from 

paragraph 4.2.2 with the Open Interest Ratio (which delivered the most interesting results) is 

redone. This time however the dummy variable is based on four other measures: $ 0.10, $ 

0.20, $ 0.40 and $ 0.50 while maintaining the same OIR variable. The parameter estimates 

for the α1, β1 and σ1 parameters with the original $ 0.30 measure as well as with these four 

additional measures are listed in Table 12 for each of the 27 underlying stocks. Varying the 

measure between $ 0.10 and $ 0.50 has some implications. A small measure results in only a 

small selection of closing prices that are deemed close to a strike. On the other hand, all the 

closing prices that are deemed close to a strike are indeed very close, such that any strike 

effects (if present) should be the most exposed for the ones selected. A larger measure 
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results in a larger set of closing prices that are close to a strike. The effects that are supposed 

to be detected are probably however less pronounced for this larger set. 

Table 12: α1 β1 and σ1 parameter estimates of CAPM model with dummy for nearness to strikes taking option open 

interest into account and conditional variance with different settings for generating the dummy variable. This table 

shows the results of estimating the α1 β1 and σ1 parameters as proposed in equation 4.8 with normal errors and conditional 

standard deviations as defined in equation 4.9 for 27 stocks. The   
       dummy in the equations takes value 1 if the day’s 

closing price of the underlying is within $ X of an existing option strike in the underlying. In this table X varies from $ 0.10 to 

$ 0.50 in steps of $ 0.10. Significance levels of the parameters are 1 % for ** and 5 % for * all measured in difference to 

zero. 

Ticker 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50 0.10 0.20 0.30 0.40 0.50

MMM 0.03 0.12 0.09 0.05 0.02 0.03 -0.11 -0.03 -0.03 -0.02 -0.19 ** -0.02 0.01 0.03 -0.01

AA 0.00 0.00 0.00 0.13 * -0.03 0.20 * 0.00 0.08 0.04 0.05 -0.05 -0.09 * -0.15 ** -0.10 * -0.23 **

AXP -0.02 -0.08 * -0.05 * -0.04 0.01 -0.08 -0.03 -0.03 -0.02 -0.05 -0.01 -0.01 -0.04 * -0.07 ** -0.06 **

BAC -0.14 ** -0.06 -0.05 -0.05 -0.04 0.02 -0.05 -0.07 -0.10 ** -0.12 ** -0.02 -0.09 ** -0.11 ** -0.14 ** -0.17 **

BA 0.07 0.01 0.01 -0.01 -0.08 -0.15 0.00 0.03 -0.14 * -0.14 ** -0.23 ** -0.02 -0.05 -0.16 ** -0.15 **

CAT -0.08 0.02 0.01 0.00 -0.02 -0.10 -0.18 * -0.19 ** -0.07 -0.04 0.04 -0.03 -0.04 0.00 0.06

CVX -0.03 -0.04 0.01 -0.04 0.02 -0.05 0.05 0.05 0.02 -0.02 0.01 0.00 -0.06 -0.01 -0.04

CSCO 0.03 -0.09 -0.01 -0.08 0.01 -0.42 ** -0.31 ** -0.35 ** -0.31 ** -0.31 ** -0.04 -0.39 ** -0.01 -0.08 -0.01

KO -0.03 -0.02 -0.02 0.00 0.00 0.04 0.05 0.02 0.03 -0.01 -0.01 0.00 -0.02 -0.03 ** -0.05 **

DD 0.06 0.02 -0.02 -0.03 -0.08 ** 0.08 0.02 0.01 0.06 0.06 -0.13 * -0.15 ** -0.16 ** -0.16 ** -0.13 **

XOM 0.09 0.08 0.10 * 0.05 0.05 -0.03 -0.03 0.00 -0.04 0.02 -0.18 ** -0.19 ** -0.18 ** -0.19 ** -0.21 **

GE 0.10 0.01 0.01 0.01 0.01 -0.08 -0.04 -0.05 -0.02 -0.06 * -0.17 ** -0.16 ** -0.16 ** -0.13 ** -0.15 **

HD -0.25 ** -0.14 * -0.12 * -0.08 -0.19 ** -0.04 -0.05 0.10 -0.06 -0.08 -0.21 ** -0.22 ** -0.24 ** -0.27 ** -0.27 **

INTC -0.28 * -0.25 ** -0.23 ** -0.22 ** -0.18 * -0.14 -0.12 -0.26 ** 0.03 0.03 -0.18 -0.11 -0.13 * -0.14 ** -0.14 **

IBM 0.03 0.02 0.03 0.05 0.03 0.16 * 0.09 0.03 0.09 * 0.09 * -0.01 -0.07 * -0.09 ** -0.04 -0.06 **

JNJ 0.03 0.06 * 0.00 0.05 * 0.02 -0.10 * -0.06 -0.03 -0.07 ** -0.08 ** -0.08 ** -0.08 ** -0.09 ** -0.08 ** -0.08 **

MCD -0.04 -0.08 ** -0.04 -0.03 -0.01 0.08 0.05 0.04 0.00 -0.01 -0.12 ** -0.09 ** -0.03 -0.07 ** -0.07 **

MRK 0.39 ** -0.30 ** -0.03 -0.15 * -0.07 -0.05 -0.11 -0.25 ** -0.09 -0.19 ** 0.62 ** 0.36 ** 0.22 ** 0.18 ** 0.20 **

MSFT 0.08 0.09 0.01 0.01 -0.08 -0.04 -0.09 -0.07 -0.10 * -0.09 * -0.21 ** -0.18 ** -0.23 ** -0.20 ** -0.28 **

PFE 0.09 0.09 * 0.08 * 0.04 0.04 -0.13 * -0.03 0.00 -0.03 -0.02 0.05 -0.03 -0.07 ** -0.02 -0.04

PG -0.02 0.03 -0.10 ** 0.04 -0.05 * -0.03 -0.01 0.00 0.05 -0.03 -0.12 ** -0.07 * -0.13 ** -0.07 ** -0.15 **

TRV -0.04 0.07 0.02 0.07 0.05 0.93 ** 0.19 * 0.12 * 0.10 * 0.19 ** -0.03 -0.21 ** -0.24 ** -0.25 ** -0.18 **

UTX 0.06 -0.06 0.01 0.01 0.01 -0.01 -0.02 -0.05 0.00 -0.02 -0.22 ** -0.19 ** -0.24 ** -0.24 ** -0.28 **

UNH -0.06 -0.06 0.00 0.07 -0.06 -0.32 ** -0.22 * -0.18 * -0.27 ** -0.29 ** 0.17 0.03 0.00 -0.08 -0.01

VZ -0.05 0.01 0.00 -0.01 0.00 0.06 0.01 0.07 * -0.07 * -0.05 -0.14 ** -0.14 ** -0.15 ** -0.13 ** -0.11 **

WMT 0.02 -0.03 -0.06 0.01 -0.01 0.01 0.00 -0.01 0.03 0.02 0.04 0.00 -0.05 * -0.05 * -0.03

DIS -0.06 0.01 -0.14 ** 0.03 0.06 -0.14 -0.10 -0.06 0.18 ** 0.01 -0.14 ** -0.21 ** -0.20 ** -0.19 ** -0.29 **

α1 β1 σ1

 

As becomes clear from the table, the parameter estimates are indeed closely related to 

the choice of the measure. The estimates for the parameters change in size and sometimes 

also in sign with a different choice of measure. The tendency is however that at least the 

signs stay the same for parameters for which at least one of the measures results in a 

significant result. Hence on a single stock basis significant effects are in a vast majority of 

cases robust to changes in the measure though they may no longer be statistically significant 

after this change. 
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The preliminary conclusions that were drawn for the whole set of underlyings in 

paragraph 4.2.1 seem to hold partially for all choices of measures. The effects of nearness to 

strike and a large open interest on the α in the CAPM model do not seem to be consistently 

strongly negative and would based on especially a $ 0.10 and $ 0.40 measure be assessed 

neutral. This is not the case for the CAPM β. The effect of strike nearness and large open 

interest on the β is consistently negative across all measures. The same accounts for the 

negative effect on the σ in the conditional variance equation which is consistent across all 

measures. 

For the Bank of America and Intel Corp stocks we find that the α1 estimate is rather 

robust to the choice of measure. There is some variance in the significance level of the 

estimate, but the sign stays the same for both regardless of the measure. In the β1 estimate 

we observe more variance across the different measures. Both stocks experience sign 

changes in the estimates with different measures. Where the β1 estimate becomes positive 

for Bank of America when taking a small measure, this is exactly reversed for Intel Corp. The 

σ1 estimates are consistently negative for the both stocks with the estimates becoming more 

significant with a larger measure. 

5.2 Continuous variable instead of dummy 

Also the construction of this variable as a dummy can be discussed. Why should the 

distance to a strike take the shape of a dummy rather than measuring the distance? When 

abandoning the specification of dummy, but using a transformation of the actual distance to 

the nearest strike, more information can be captured in this variable. What this variable 

should look like then is up for discussion. One possible specification is evaluated in this 

paragraph. 

The formulation of this variable should take the actual distance to the nearest strike into 

account in determining the variable value. For the ease of using this variable, it is further 

specified that the variable should always take a value between 0 and 1. 1 would then be a 

logical value for the case where the day’s closing price in the underlying is equal to a strike. 0 

is reserved for cases in which the day’s closing price lies exactly in the middle between two 

strikes. For the sake of simplicity the rest of the closing prices are assigned a linear 
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interpolation between these two points. The formulation of the variable called   
       is 

therefore 

  
          

       

             
   

(5.1) 

In which Pt is the closing price at day t, Kl,t is the nearest on day t existing strike below Pt and 

Kh,t is the nearest strike above Pt.. A graphical representation of this variable’s definition is 

included in Figure 3. This new variable replaces the dummy in the formulations from 

paragraph 4.2.2 and changes the return and conditional variance equations to equations 5.2 

and 5.3. 

 

Figure 3: Graphical representation of   
       construction. The value of   

       is determined on the base of the spot 

price of the underlying (St), the nearest strike on the upside (Kh) and the nearest strike on the downside (Kl). The solid line in 

the figure represents the value of   
       on the vertical axis associated with the value of the spot price relative to the two 

strikes on the horizontal axis. The dotted line represents the determination of the   
       value for two underlying prices: 

St1 and St2.  

               
            

                 
            

             (5.2) 

 

            
            

               
       

       
       

       
   (5.3) 

 

The estimates for the α1, β1 and σ1 parameters from this formulation can be compared to 

the estimates from the original formulation in equation 4.8 and 4.9. These estimates are all 

visible in Table 13. 

0 

1 
Vt strike 

Spot and strike price levels 

Vt strike variable definition 

0.75 

Kl St 1 ½(Kl+Kh) St 2 Kh 
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Table 13: α1 β1 and σ1 parameter estimates of CAPM model with dummy for nearness to strikes taking option open 

interest into account and conditional variance compared to estimates incorporating a continuous distance to strike 

indicator. This table shows the results of estimating the α1 β1 and σ1 parameters as proposed in equation 4.8 incorporating 

the    
       dummy with normal errors and conditional standard deviations as defined in equation 4.9 for 27 stocks. These 

estimates are flanked by their counterparts resulting from estimating parameters with equations 5.2 and 5.3 using the  

  
       continuous variable. Significance levels of the parameters are 1 % for ** and 5 % for * all measured in difference to 

zero. 

Ticker Dummy Cont. Dummy Cont. Dummy Cont.

MMM 0.091 0.049 -0.031 -0.041 0.007 -0.116 **

AA -0.003 0.017 0.077 -0.054 -0.145 ** -0.225 **

AXP -0.054 * -0.030 -0.028 -0.106 ** -0.043 * -0.098 **

BAC -0.045 -0.027 -0.068 -0.382 ** -0.115 ** -0.214 **

BA 0.006 -0.044 0.034 -0.275 ** -0.049 -0.088

CAT 0.012 -0.008 -0.189 ** -0.178 ** -0.037 -0.044

CVX 0.006 0.124 * 0.046 0.029 -0.060 -0.143 **

CSCO -0.012 0.115 -0.349 ** -0.100 -0.010 -0.159

KO -0.025 -0.006 0.022 0.011 -0.017 -0.063 **

DD -0.016 -0.011 0.012 -0.129 ** -0.165 ** -0.224 **

XOM 0.097 * 0.079 -0.005 -0.106 -0.182 ** -0.401 **

GE 0.007 -0.096 ** -0.051 -0.111 ** -0.157 ** -0.205 **

HD -0.122 * -0.397 ** 0.104 0.136 -0.243 ** -0.169 **

INTC -0.231 ** -0.256 * -0.262 ** 0.053 -0.130 * -0.189 **

IBM 0.027 0.026 0.030 0.085 * -0.086 ** -0.139 **

JNJ 0.000 0.022 -0.029 -0.101 ** -0.085 ** -0.142 **

MCD -0.042 0.010 0.035 0.011 -0.027 -0.115 **

MRK -0.030 -0.183 ** -0.252 ** -0.078 0.216 ** 0.242 **

MSFT 0.008 0.067 -0.066 0.059 -0.227 ** -0.309 **

PFE 0.077 * 0.010 -0.003 0.001 -0.074 ** -0.097 **

PG -0.096 ** 0.058 * 0.002 -0.041 * -0.134 ** -0.182 **

TRV 0.019 0.129 ** 0.120 * 0.109 * -0.235 ** -0.265 **

UTX 0.014 0.116 * -0.050 -0.037 -0.242 ** -0.381 **

UNH 0.001 0.007 -0.181 * -0.298 ** 0.003 -0.378 **

VZ -0.004 0.029 0.068 * 0.025 -0.146 ** -0.140 **

WMT -0.061 -0.070 -0.009 0.031 -0.052 * -0.141 **

DIS -0.142 ** 0.090 -0.059 -0.129 * -0.202 ** -0.164 **

α1 β1 σ1

 

The parameter estimates for the two different methods of taking strike nearness into 

account can again be compared to grasp the influence of the method that is applied on the 

found effects. Clearly there are some substantial changes in the parameter estimates for 

individual underlyings. We even see the Procter and Gamble (PG) α1 parameter estimate 

change from significantly negative to significantly positive. For the β1 and σ1 parameter 

estimates we do not observe such an extremity, however also here the changes in individual 

parameters are apparent. On a general note, taking an overall stand it seems again as if the 

effect of strike nearness and a large open interest has a very mixed effect on the α 

parameter of the CAPM when using the continuous variable approach. This again does not 

confirm the preliminary conclusion in paragraph 4.2.1 that α is affected negatively by strike 
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nearness and open interest. For the β1 and σ1 parameters however we see again a 

confirmation of our previous conclusions when taking an overall view. The changeover from 

a dummy to a continuous variable makes no general difference in the negative effect of 

strike nearness and open interest on the β and σ parameters of the CAPM and conditional 

variance equation. 

For Bank of America the setup with a continuous strike nearness variable results in more 

pronounced estimates of the option strike nearness effects. The effect on the CAPM α stays 

insignificant with this different formulation, but the negative β effect increases to a 

significant level. Also the σ1 estimate increases in magnitude, though it was already 

significant in the dummy formulation. 

For Intel Corp the presence of an option strike nearness effect on the α is confirmed with 

this continuous setup. The α1 estimate increases in magnitude, but becomes slightly less 

significant indicating larger standard errors for this estimation. The originally found negative 

β effect vanishes completely by switching over to a continuous nearness to strike indicator. 

Apparently the observations on this effect are for Intel rather sensitive to changes in the 

setup and therefore not consistent. The conditional variance parameter σ1 increases 

marginally in magnitude and becomes more significantly negative for the continuous case. 
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6 Conclusion 

In this report I investigate the effects of option strike nearness on the behaviour of the 

underlying stocks. For assessing these effects I pose expanded versions of the CAPM with 

additional variables indicating option strike nearness and option activity at the nearest 

strike. 

From the different analyses I find that the return effect of trading near an existing option 

strike alone is mixed for different underlyings. Both significantly positive and negative CAPM 

α parameters for specific stocks are found. Nearness to an option strike alone also has 

significant, but mixed effects on the market following behaviour of individual underlying 

stocks. The size of the unexpected returns shows a consistent decrease under the influence 

of option strike nearness. When supplementing the nearness to strike variable with the open 

interest at that particular strike more general effects are found. The effects are generally 

negative for returns as well as for their sensitivity to the market return or beta and the size 

of unexpected returns. The negative return effect of the nearness to strike in combination 

with open interest could not be confirmed in a robustness check. The negative effects on the 

beta and magnitude of unexpected returns are robust to changes in the appraisal of the 

nearness to an option strike. These effects also hold when additionally the option gammas of 

the open interest are taken into account. We therefore conclude that the beta of a stock is 

generally lowered when it trades near an option strike with a large open interest and 

unexpected returns decrease in magnitude under these circumstances. This conclusion is in 

accordance with existing theory on option pinning. The effect on the beta cannot be 

explained by round number effects because it was not until the open interest at the nearest 

strike was added to the estimation that the general change in the market beta was found. 
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7 Areas for further research 

With the insights I gained during this research I would like to suggest three areas for 

further research. The results of the formulation incorporating option gammas go against 

prior expectations. We know of the presence of pinning effects from previous studies by 

Avellaneda and Lipkin (2003), Jeanin et al. (2008), Ni et al. (2005) and Pearson et al. (2007) 

and about the role that option gammas play in these effects. Further research into the effect 

of option strikes on underlying returns with models applying these option gammas would 

therefore be promising. The theoretical model for delta-hedging effects from Willmot and 

Schönbucher (2000) can serve as an instrument in this study. 

Secondly I suggest research into the practical consequences of the results that are found 

in this research. The fact that CAPM parameters and variance for individual stocks change 

under the influence of option strike nearness affects investors’ portfolios. Portfolios that are 

tailored to an investor’s specific preferences may become inefficient as a result of the 

temporary changes in the CAPM parameters. Ghyssels and Jacquier (2005) provide a starting 

point for research in this direction as they explore the effects of time varying betas of 

portfolio components on portfolios with a target beta. 

Finally it would potentially be possible to set up a profitable trading strategy based on 

the results in this research. This strategy will be based on the changing market betas of the 

different constituents of the Dow Jones 30 Index. The changes in the individual stocks’ betas 

under the influence of option nearness might offer opportunities for dispersion trading 

strategies. A short introduction into such strategies is provided by Avellaneda (2002). I would 

suggest taking long positions in options on the individual constituents and short index 

options if market betas are expected to decrease due to option strike nearness. In 

Avellaneda (2002) a strategy similar to this is documented as a profitable strategy employed 

by hedge funds. 

 

  



41 
 

Appendix 1: Gamma derivation 

The derivation of the gamma of a certain option is based on the Black and Scholes 

formulation for the price of a European call option in combination with that for a European 

put option paying a continuous stream of dividends: 

                                     and                         

                

With    
 

     
    

 

 
       

  

 
        and             

In these formulations, N() is the cumulative distribution of the standard normal density 

function, S is the spot price of the underlying, K is the strike price of the option, r is the risk-

free rate, q is the dividend rate, T is the expiration date, t is the current date and σ is the 

volatility of the underlying. 

By definition the gamma of an option is the second derivative of the option price with 

respect to the price of the underlying. It appears that the second derivative with respect to 

the underlying is the same for a put and call option with the same strike, namely: 

   

   
 

   

   
 

 

      

      

  
 

In order to calculate this value for every option all parameters that are listed above are 

to be known. From these parameters, the OptionMetrics database has following information 

available on every existing option on a daily basis: S, K, T and t. Furthermore, we can 

approximate r by applying the data from French’s personal website. Lacking are however q 

(the dividend rate) and σ (the volatility of the underlying).  

Daily closing bid and ask prices for all options are included in the OptionMetrics 

database. With these prices, a theoretical closing mid-price can be determined which is 

together with the already available information enough input for deriving the missing 

parameters using the Black and Scholes formulations. For deriving q, we start with rewriting 

the put option price expression and subtract it from the call option (with the same strike) 

price: 



42 
 

                                        

                        

Rewriting this into a formulation for q, this yields: 

   
 

   
    

             

 
  

This equation is easy to solve analytically. 

For determining the market implied value for σ, one is however convicted to using a 

numerical method. One can choose for either using the call or put option formulation for 

this purpose. The estimation entails finding the parameter value σ for which the result of the 

option price formulation is in accordance with the closing mid-price in the market. 

At this point, all parameters are either known or estimated, such that the gamma of each 

option can be calculated with: 
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Appendix 2: Likelihood function 

The likelihood function that is to be maximized by optimizing parameters is constructed 

based on a supposed distribution. It is assumed in this study that errors are distributed 

normally meaning that the likelihood function is to be based on the probability density 

function of the normal distribution: 

     
 

     
     

      

   
  

We are however not looking for the probability of one observation (x) knowing one mean 

(μ), but for the probability of multiple observations (      ) each with its own estimated 

mean (       ). This transforms the probability density function for one observation into one 

for an entire series of observations: 

   
 

     

 

   
     

           
    

 

   
  

For problems for which T is large, the outcome of likelihood function becomes extremely 

small, too small for practical numerical optimization. Hence in these cases the log likelihood 

is used as an optimization target, the log likelihood function becomes: 
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Appendix 3: OIR and OIγR summary statistics 

Table A: OIR and OIγR summary statistics. In the formulations of Chapter 4, two new variables are introduced.  

          and            indicate the option open interest at the nearest strike and the option gamma at the nearest strike 

respectively. Summary statistics on these two variables are listed in the table below. For both variables the mean and 

standard deviation are included in the first four columns. Also included in column five is the correlation between the two 

variables as their construction is somewhat similar. 

Ticker Mean St. dev. Mean St. dev. Correl.

AA 0.89 0.51 0.07 0.10 0.45

AXP 0.76 0.59 0.13 0.19 0.44

BA 0.89 1.16 0.09 0.19 0.63

BAC 1.00 0.76 0.13 0.25 0.35

CAT 0.77 0.43 0.06 0.07 0.40

CSCO 0.78 0.48 0.05 0.07 0.46

CVX 0.75 0.46 0.05 0.08 0.54

DD 0.52 0.33 0.11 0.19 0.38

DIS 1.23 0.81 0.15 0.19 0.56

GE 0.75 0.52 0.09 0.12 0.55

HD 0.72 0.34 0.07 0.07 0.64

IBM 0.98 0.85 0.16 0.17 0.70

INTC 0.66 0.49 0.09 0.11 0.57

JNJ 0.52 0.36 0.09 0.10 0.59

KO 1.18 0.69 0.08 0.13 0.50

MCD 1.23 0.62 0.12 0.14 0.49

MMM 0.91 0.91 0.12 0.21 0.57

MRK 0.81 0.66 0.09 0.12 0.63

MSFT 0.72 0.48 0.10 0.12 0.52

PFE 1.02 0.75 0.17 0.17 0.62

PG 1.15 0.74 0.11 0.13 0.49

TRV 0.53 0.61 0.05 0.07 0.69

UNH 0.68 0.37 0.05 0.08 0.45

UTX 0.62 0.51 0.06 0.15 0.40

VZ 0.95 0.75 0.12 0.14 0.67

WMT 1.11 0.66 0.11 0.12 0.59

XOM 0.75 0.61 0.11 0.16 0.63

OIR OIγR
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