
A Dynamic Programming Approach to
the Orienteering Problem with

Deterministic-Stochastic Weights

Marijn T. Waltman
Erasmus University Rotterdam

June 30, 2013

Abstract

In this paper a new variant of the Orienteering Problem with Stochastic Weights
(OPSW) is introduced: the Orienteering Problem with Deterministic-Stochastic
Weights (OPDSW), where the weights on the arcs are a mix of a deterministic
weight plus a non-negative stochastic weight. The problem is solved exactly
using a Dynamic Programming (DP) approach and multiple state pruning
algorithms are proposed with the goal of making the DP algorithm more
efficient. Specific combinations of these algorithms are tested in a case study
with a dataset of 30 nodes. The pruning algorithms have a substantial positive
effect on the runtime of the DP algorithm, while the optimal tour remains
mostly unchanged. The combination of using the End-Of-Tour method plus
the relaxed Completion Bound method (a pruning method that is unique for
the OPDSW) results in the biggest reduction of the runtime. This reduction
increases even further if an initial solution is used and if the relaxed Completion
Bound algorithm is only applied on specific states, which are determined by
some decision rule.

Keywords: Orienteering, Stochastic weights, Dynamic Programming,
Pruning, Completion Bound
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Chapter 1

Introduction

The Orienteering Problem (OP) is an interesting routing problem with many
applications to real-world economic decision problems. It is similar to the well
known Traveling Salesman Problem (TSP) and is also commonly referred to
as the Selective Traveling Salesman Problem (STSP) or the Time-Constrained
Traveling Salesman Problem (TCTSP). A complete directed graph is given along
with a fixed start and end node. Each node has a certain reward for visiting
that node and each arc has a certain weight. The goal of the problem is to find
the path with the highest total profit that satisfies a certain capacity constraint
on the total weights of the arcs in the path. In the OP we assume that each
node can not be visited more than once, which means that the path must be
elementary. This aspect of the OP makes it similar to the TSP, but instead of
having to visit all nodes in the TSP we can choose which nodes we visit.

An application of the OP can be seen in multiple real world problems. Take
for example a traveler who starts at home and has several destinations that
he can choose from. Each destination (node) has a specific attractiveness (re-
ward) and the roads between two destinations (arcs) have a certain travel time
(weight), but the traveler only has a limited time T before he has to return back
home.

In the original OP the weights on the arcs are considered to be deterministic.
However this is not always the case in reality, where the weights are often
uncertain; think for example of unforeseen events like traffic jams that could
increase the travel time. A more accurate representation of real-world problems
could be made by using stochastic weights. This variant of the OP is classified
as the Orienteering Problem with Stochastic Weights (OPSW) [6]. In this paper
I will explore a variant of the OPSW that uses a sum of a deterministic weight,
which denotes the travel time in the best-case scenario, and a non-negative
stochastic weight, which denotes the delay caused by random events. Because of
the added uncertainty we can not simply state whether the sum of the weights of
the arcs in a path is lower than the weight limit; instead we know the probability
that this occurs. A path is therefore defined as feasible if this probability is
greater than a certain required probability α. There is very little literature
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on this specific variant of the OPSW. By lack of a previously defined name,
the problem in this paper will be referred to as the Orienteering Problem with
Deterministic-Stochastic Weights (OPDSW).

The focus in this paper is on finding the exact solution of the problem: the
feasible path with the highest possible total profit. To this end I will apply a
Dynamic Programming (DP) approach which is based on the DP approach for
solving the TSP [11] and the OPSW [3, pp. 65-66]. The dynamic programming
approach of the OPDSW will be formulated in detail in Chapter 2.

In dynamic programming, a pruning algorithm [1] is an algorithm that uses
a certain pruning rule to determine at a certain decision node (called a state)
whether another decision node should be visited or not. If the latter is the case,
then that decision node and its subtree will be pruned. In Chapter 3 I will
introduce two pruning rules that apply to the OP in general and three pruning
algorithms that are based on these rules and are adapted to the OPDSW. In
Chapter 4 I will test the efficiency of the dynamic programming approach by
means of a case study and discuss how the aforementioned pruning algorithms
affect the run time of the dynamic programming algorithm. Finally, Chapter 5
concludes the paper and suggests future research on this subject.
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Chapter 2

Dynamic Programming
formulation

In this chapter I will provide a formulation of the dynamic programming method.
First I will discuss the notation of the OPDSW in detail. Then I will explain
the concepts of states, stages and decision sets in dynamic programming ter-
minology, I will explain what pulling and reaching methods are and how they
relate to this dynamic program, and I will show that some states dominate other
states. Finally I will present the DP algorithm and explain it in detail.

2.1 OPDSW notation
The notation of the OPDSW in this paper is for the most part consistent with
the notation of the OPSW in Evers et al. [5, 6]. Let N be a set of n nodes. In
this paper I will consider the case where the start and end node are the same
node, which is called the depot and is denoted by node 0 /∈ N . In this case a
path is formally called a tour. The case where the start and end nodes can be
different will also be reviewed in Section 3.2.1. Let G = (N+, A) be a complete
directed graph, where N+ = N ∪ {0} is the set of all nodes including the depot
and A is the set of all arcs. Each node i ∈ N has an associated reward ri. Each
arc (i, j) ∈ A has an associated weight fij :

fij = dij + γij , (2.1)

where dij is the deterministic part and γij ∼ Γ(kij , θ) is the stochastic part,
which is a Gamma distributed random variable. I will assume that the scale
parameter θ is the same for each arc and only focus on the shape parameter
kij . Note that if we set dij = 0 the problem becomes the OPSW, and that if
we remove γij from (2.1) the problem becomes the deterministic OP. Lastly,
assume that the matrices D = [dij ] and K = [kij ] and the vector R = [ri] are
all given a priori.
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Next, consider a path P = n1 → ...→ np, which is a sequence of p distinct,
consecutive nodes n1, ..., np. Let the deterministic distance of a path P be

d(P ) ≡
p−1∑
i=1

dnini+1 , (2.2)

or in other words: the sum of dij for all p− 1 arcs (i, j) in P . Similarly let the
stochastic distance of a path P be

k(P ) ≡
p−1∑
i=1

knini+1 . (2.3)

Note that the sum of the weights fij of the arcs in P is equal to d(P )+Γ(k(P ), θ),
since the sum of two Gamma distributed random variables γ1 ∼ Γ(k1, θ) and
γ2 ∼ Γ(k2, θ) with the same scale parameter is Γ(k1 + k2, θ) distributed.

2.2 Dynamic Programming notation
2.2.1 States, stages and decision sets
In this section I will introduce the dynamic programming approach and discuss
its notation and terminology. The following notation is similar to the one used
in Campbell et al. [3]. Let Ps be the path that has been traveled so far. Let
i be the last node visited and let K be the lexicographically ordered set of all
nodes in Ps (i.e. order is based on the index of each node). Also let d ≡ d(Ps)
and k ≡ k(Ps) and lastly denote r as the sum of the rewards of all previously
visited nodes. Then the state s = (i,K, d, k, r) describes the current state of
the dynamic program. These parameters will henceforth also be denoted as si,
sK , sd, sk, and sr respectively.

Next I will describe the concepts of stages and decision sets in the dynamic
program as is described in Bradley et al. [2, pp. 320-349]. For a given state
s = (i,K, d, k, r) the set of decisions Ds is the subset of all states that can be
visited directly after this state. If the current node is i and the set of all previous
nodes is K, then N\K is the set of all nodes that can still be visited. Thus all
|N\K| decisions of s are of the form (j,K ∪ j, d + dij , k + kij , r + rj), where
j ∈ N\K. Also, the set D′s denotes the set of all predecessor states of s, or in
other words: all states s∗ where s ∈ Ds∗ .

A stage is defined as follows: the dynamic program starts at an initial stage
and each decision from a state in the current stage must put the dynamic pro-
gram into the next stage, and so on. Therefore, let the stage be determined by
the length of the path of the current state. This then satisfies the definition of
a stage, since each decision increases the length of the path of the current state
by 1. To initialize the dynamic program the initial stage is defined as 0 and has
only one state: s0 = (0, ∅, 0, 0, 0). See Figure 2.1 for a graphical representation
of states, stages and decision sets.
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Figure 2.1: Graphical representation of states, stages and decision sets. A
dashed arrow from one state to another indicates that the former is a predecessor
state of the latter.

2.2.2 Pulling and reaching methods
Dynamic programming algorithms are often based on so called pulling methods
[8] such as the following method, which uses forward recursion. Start at the
initial stage and repeatedly determine for each state s in the current stage the
optimal way of getting to it from a predecessor state s′′ ∈ D′s from the previous
stage, until the path can no longer be increased due to the time deadline. For
every state s we memoize the functional value f(s), which is defined by the
recursive equation

f(s) = max
s′′∈D′s

{f(s′′) +R(s′′, s)}, (2.4)

where R(s′′, s) denotes the profit of going from state s′′ to s. The optimal
predecessor state p(s) is then defined as

p(s) = arg max
s′′∈D′s

{f(s′′) +R(s′′, s)}. (2.5)

Pulling methods like the one described above require that for a given state
s we must know D′s. However in our problem Ds is easily computed, but com-
puting D′s requires more work. For the OPDSW, however, we can make use
of the so called reaching method [8]. This method is based on the concept of
forward recursion and works the same way as the previously described method.
However we can omit computing D′s and simply only visit the states s′ from
Ds under the assumption that all predecessor states of s′ have been considered
in determining the functional value and that s is the optimal predecessor state.
Because each state s has |sK |−1 predecessor states (since si can be visited from
any node in sK\si) and because every one of those predecessors will be consid-
ered at some point in the algorithm, the previously mentioned assumption can
safely be made.
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Now this will be applied to the OPDSW. If we choose to visit j from
(i,K, d, k, r), then this results in the expected profit

R(i, d, k, j) = rj(F (T − d− dij ; k + kij , θ)− α), (2.6)

where F (x; k, θ) is the cdf of the Gamma distribution. Also, (2.4) translates to
the following functional equation:

f(j,K ′, d′, k′, r′) =
max

(i,K,d,k,r):K=K′\j,d′=d+dij ,k′=k+kij ,r′=r+rj

{f(i,K, d, k, r) +R(i, d, k, j)}. (2.7)

In (2.6), F (T − d − dij ; k + kij , θ) denotes the probability that the path is
feasible after adding the arc (i, j). We then subtract α, which means (2.6) is
positive if and only if the feasibility probability is bigger than α. This is then
multiplied by a factor rj , which indicates that visiting nodes with higher profits
implies a higher functional value than those with lower profits. Furthermore, if
R(i, d, k, j) ≤ 0, then node j can not be visited before the deadline, and we will
therefore never travel to this node from the current state.

2.2.3 Dominant states
In this section I will explain the relationships between states and show that
certain states dominate other states. This is an important result as it will
substantially reduce the number of states that have to be visited. If there are
two states s and s′ such that si = s′i and sK = s′K , then the set of all paths1 to
complete the tour are the same. This is clear since the last nodes of the paths
are the same and since both states have the same set of unvisited nodes. Now
consider a path τ from this set. Then if

P (Aj ≤ T ) ≥ P (A′j ≤ T ) (2.8)

for every j ∈ τ , Aj and A′j (where Aj and A′j are random variables representing
the arrival time to node j from s and s′ respectively), it was proven in Campbell
et al. [3, p. 66] that if f(s) ≥ f(s′) then s dominates s′. This then implies that
s′ can be pruned.

In Campbell et al. [3, p. 66] it was shown that (2.8) is true for the OPSW if
the stochastic distance parameter of s is smaller than or equal to that of s′, so
sk ≤ s′k. This is true because

1. if sk ≤ s′k, then F (T ; sk, θ) ≥ F (T ; s′k, θ), and

2. this remains true for every continuation of the path with cumulative
stochastic distance k′ > 0, since F (T ; sk + k′, θ) ≥ F (T ; s′k + k′, θ).

So in order to show that (2.8) is true for the OPDSW, the following two questions
must be answered.

1both feasible and infeasible
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sk < s′k sk = s′k sk > s′k

sd < s′d
sd < x ≤ s′d True True True
sd < s′d < x False

sd = s′d True True False

sd > s′d
sd > s′d ≥ x True False False
sd > x > s′d False

Figure 2.2: The outcomes of (2.9) for all combinations of sd, s′d, sk and s′k.

1. Which combinations of sd, s′d, sk and s′k satisfy

F (T − sd; sk, θ) ≥ F (T − s′d; s′k, θ)? (2.9)

2. Does (2.9) remain true after every continuation of the path with cumu-
lative deterministic distance d′ > 0 and cumulative stochastic distance
k′ > 0? In other words, is

F (T − sd − d′; sk + k′, θ) ≥ F (T − s′d − d′; s′k + k′, θ) (2.10)

true for every combination of sd, s′d, sk and s′k that satisfies (2.9)?

To answer the first question, all possible combinations are enumerated in
Figure 2.2, where True means that (2.9) is true for those values and obviously
False means that this is false. Here x is the solution to

F (T − sd; sk, θ) = F (T − x; s′k, θ), (2.11)

where we note the following results:

sk > s′k ⇐⇒ sd < x,

sk = s′k ⇐⇒ sd = x,

sk < s′k ⇐⇒ sd > x.

(2.12)

Also, if we apply the identity in (2.11) to the left-hand side of (2.9), then we get

F (T − x; s′k, θ) ≥ F (T − s′d; s′k, θ), (2.13)

which clearly shows that (2.9) is true if and only if s′d ≥ x and false otherwise.
Lastly, the second question is shown to be true by the following proof.

Theorem 1. Equation (2.10) is true for all combinations of sd, s′d, sk and s′k
where (2.9) is true and false otherwise.

Proof. We can easily deduce that sk × s′k ⇐⇒ sk + k′ × s′k + k′ (where ×
represents the operator <, = or >), and similarly sd × s′d ⇐⇒ sd + d′ × s′d + d′.
This covers almost all combinations; we only need to show that the outcomes
of the two cases in the top-right corner and the two cases in the bottom-left
corner of Figure 2.2 remain the same. Let x′ be the solution to (2.11) with
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sd ← sd +d′, sk ← sk +k′ and s′k ← s′k +k′. Then the results in (2.12) will still
be true. Now we only need to verify that (2.10) is true if and only if s′d +d′ ≥ x′
and false otherwise. Note that

F (T − (sd + d′); sk + k′, θ) (2.11)= F (T − x′; s′k + k′, θ), (2.14)

so (2.10) is equivalent to F (T − x′; s′k + k′, θ) ≥ F (T − (s′d + d′); s′k + k′, θ). So
(2.10) is true if and only if (2.13) is true for x← x′, s′d ← s′d + d′, sk ← sk + k′

and s′k ← s′k + k′. This implies that (2.10) is true if and only if s′d + d′ ≥ x′

(and false otherwise), which is what needed to be shown.

To summarize: if there are two states s and s′ where si = s′i and sK = s′K ,
then the set of all paths to complete the tour are equal. Also, if the probability
that s is feasible is greater than or equal to the probability that s′ is feasible,
then this remains true for every path to complete the tour. Therefore s′ can
never become more feasible than s and so if f(s) ≥ f(s′), then this will remain
true for all continuations of the tour. So s dominates s′ and so s′ can be pruned.

2.3 Dynamic Programming algorithm
Now that the notation has been discussed I will explain the basic dynamic
programming algorithm. A general outline of this algorithm can be found in
Algorithm 1. The algorithm itself is divided into 3 phases: the initialization
phase (lines 1-3), the reaching phase (lines 4-17) and the tour retrieval phase
(lines 18-22).

1. The initialization phase: The algorithm starts by defining the initial state
s0. We let smax denote the state with the current highest functional value,
but smax is required to end at the depot. This implies that we are only
interested in tours. Initially we set smax to s0. Lastly, let S be the set of
states in the current stage (which is informally initialized at stage 0) and
let S′ be the set of feasible states in the next stage.

2. The reaching phase: The first while-loop signals that the reaching phase
will stop if there are no more feasible states in the current stage. If this
is false, then for all states s in the current stage we will visit all states s′
from the decision set of s, but only if the expected profit of going to that
state (denoted as ρ) is strictly positive. s′ = (j, sK ∪ j, ∗, ∗, ∗) is defined
in line 8 and we let f(s′) and p(s′) be defined in terms of the current
state s. This does not mean, however, that f(s′) and p(s′) are defined
correctly, because we have not yet visited every single predecessor state
of s′ so we do not know if s is the optimal predecessor state or not. So
before we decide to add s′ to S′, we note that if the state (j, sK ∪ j, ∗, ∗, ∗)
has already been visited, then there must now be another version of this
state, say s∗, in S′, but f(s∗) and f(s′) may differ. Then by the result in
Section 2.2.3 we know that if f(s∗) ≥ f(s′), then s∗ dominates s′ and thus
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s′ can be pruned (i.e. it will not be added to S′). If instead f(s′) > f(s∗),
then s′ dominates s∗ and now s∗ can be pruned (i.e. it will be removed
from S′). If however no state s∗ exists in S′, then (j, sK ∪j, ∗, ∗, ∗) has not
yet been visited and we therefore add s′ to S′. Further, in lines 15-16 we
check if a return to the depot from this state is feasible and, if so, we check
whether this would increase the current highest functional value f(smax).
Finally, in line 17 the stage of the dynamic program is increased by 1, by
setting S to S′.

3. The tour retrieval phase: At this point we have visited all feasible states
and we have successfully determined smax. Then we can simply retrieve
the optimal tour by starting at smax,i, which is the last node of the tour
before the return to the depot. Then we repeatedly insert the node of the
optimal predecessor state of the current state before the first node in the
tour, until we are back at s0. That is, the optimal tour t is

t = 0→ ...→ p(p(smax))i → p(smax)i → smax,i → 0. (2.15)

Further note that smax,r denotes the reward associated with this tour.
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Algorithm 1: Dynamic Programming algorithm
Data: Time deadline T ; required probability α; set of nodes N+ and the

associated data matrices D, K, and R
Output: Optimal tour t

1 s0 ← (0, ∅, 0, 0, 0), f(s0)← 0, p(s0)← s0
2 smax ← s0
3 S ← {s0}, S′ ← ∅
4 while S 6= ∅ do
5 for s ∈ S do // i ≡ si

6 for j ∈ N\sK do
7 ρ← R(i, sd, sk, j)
8 ρ′ ← R(j, sd + dij , sk + kij , 0)
9 s′ ← (j, sK ∪ j, sd + dij , sk + kij , sr + rj),

f(s′)← f(s) + ρ, p(s′)← s
10 if ρ > 0 then
11 if ∃s∗ ∈ S′ : s∗i = s′i ∧ s∗K = s′K then
12 if f(s′) > f(s∗) then
13 remove s∗ and add s′ to S′

14 else add s′ to S′
15 if ρ′ > 0 and f(s′) + ρ′ > f(smax) then
16 smax ← s′, f(smax)← f(s′) + ρ′

17 S ← S′, S′ ← ∅
18 s← smax, t← empty tour
19 repeat
20 insert si at beginning of t
21 s← p(s)
22 until s = s0
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Chapter 3

Pruning algorithms

In this chapter I will discuss several state pruning algorithms that apply to the
OPDSW. In state pruning (see Bailey et al. [1]), states are adaptively removed
(pruned) from the dynamic programming network when they are deemed not to
lie on an optimal path by a certain pruning rule. The use of pruning methods
for dynamic programs that make use of the reaching method has been shown
to greatly reduce the number of states that are visited in Denardo and Fox [4],
which in effect speeds up the DP algorithm. Since Algorithm 1 uses the reaching
method, it is therefore interesting to see if using certain pruning algorithms
might speed up the DP algorithm for the OPDSW. I will propose the following
two pruning rules in which we can assume that the current state is s and that
we determine whether or not to travel to a state s′ with s′i = j /∈ sK and
s′K = sK ∪ j.

1. End-Of-Tour method: prunes s′ if traveling from j to the depot is infea-
sible.

2. Completion Bound method: prunes s′ if there exists no feasible path from
j to the depot with a strictly higher profit than the current highest profit.

3.1 End-Of-Tour method
The End-Of-Tour (EOT) method is based on the assumption that if, after vis-
iting node j, reaching the depot is infeasible, then there is no other feasible way
to end the tour from s′ and it should therefore be pruned. This assumption is
based on the assumption that the weight fij of every arc (i, j) corresponds to
the shortest path from i to j, thus satisfying the following triangle inequality:

E[fij ] ≤ E[fih] + E[fhj ];∀h 6= i, h 6= j, (3.1)

which must in particular be true for j = 0. This is a commonly used assumption
in many routing problems with practical applications (see for example Righini
and Salani [10, p. 156], Laporte and Martello [9, p. 193]). If this inequality
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wasn’t true for j = 0, then E[fi0] > E[fih] + E[fh0] and so there would be the
possibility that j → 0 is infeasible while an indirect path j → h→ 0 is feasible
(which clearly has a higher profit than j → 0). For the purpose of demonstrating
the End-Of-Tour method, I will thus assume that (3.1) with j = 0 is true.

Implementing this method in Algorithm 1 is pretty straightforward: instead
of checking if ρ′ > 0 in line 15 we add this as a condition to the if-statement
in line 10, so a state will only be considered potentially feasible if the expected
profit from j to the depot is positive.

3.2 Completion Bound method
The Completion Bound (CB) method is a pruning method that tries to find
a feasible path to the depot, say τ , starting from s′ such that the profit of s′
including τ is strictly greater than the current maximum. If it fails to find such
a path then s′ will be pruned. Or simply put: the CB method prunes any state
if no improvement can be made from visiting that state. This method is very
good at pruning large subtrees of the dynamic programming network at a very
early stage, but as a consequence the computation time is relatively high. In
this section I will discuss two variations of the Completion Bound method: the
exact CB algorithm and the relaxed CB algorithm.

3.2.1 The exact Completion Bound algorithm
In the exact CB algorithm the goal is to determine whether a feasible path from
an initial state s′ to the depot exists with a functional value that is strictly
larger than the current highest functional value. This problem is exactly like the
OPDSW, but in this case the start and end nodes can be different. It can thus be
solved by simply reapplying an adjusted dynamic programming algorithm with
initial state s0 = s′. Note that for this algorithm to determine if a specific state
can be pruned it must have visited all possible feasible paths from that state, and
thus an exact solution method (such as the dynamic programming algorithm)
is required; using an approximation method to save time is not possible. The
adjusted DP algorithm is shown in Algorithm 2.

Let fmin denote the required functional value. In line 2 it is checked if the
precondition, namely that the functional value of s′0 must still be improved, is
true. From then on the algorithm is roughly the same as the reaching phase
in Algorithm 1. The only differences are that this algorithm stops and re-
turns true in line 15 if an improvement has been made, and that it returns
false if it has reached the end of the reaching phase (since it has therefore
not found an improvement). The implementation of Algorithm 2 in Algo-
rithm 1 is again straightforward. After line 6 but before line 10 we deter-
mine ExactCB(s′,f(smax)) (since f(smax) denotes the current highest func-
tional value) and we simply add the condition that this must be true to the
if-statement in line 10.
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Algorithm 2: Exact Completion Bound algorithm
Input: Initial state s′0; minimum functional value fmin

Output: true if there exists a path starting at state s′0 to the depot
with functional value > fmin; false otherwise

1 Function ExactCB(s′0,fmin)
2 if f(s′0) > fmin then return true
3 S ← {s′0}, S′ ← ∅
4 while S 6= ∅ do
5 for s ∈ S do // i ≡ si

6 for j ∈ N\sK do
7 ρ← R(i, sd, sk, j)
8 ρ′ ← R(j, sd + dij , sk + kij , 0)
9 s′ ← (j, sK ∪ j, sd + dij , sk + kij , sr + rj), f(s′)← f(s) + ρ

10 if ρ > 0 then
11 if ∃s∗ ∈ S′ : s∗i = s′i ∧ s∗K = s′K then
12 if f(s′) > f(s∗) then
13 remove s∗ and add s′ to S′

14 else add s′ to S′
15 if ρ′ > 0 and f(s′) + ρ′ > fmin then return true

16 S ← S′, S′ ← ∅
17 return false

Note that, since this is also an instance of the OPDSW, we can implement
all the pruning algorithms from this chapter in this algorithm as well. So every
combination of the exact CB algorithm plus other pruning algorithms, such as
the End-Of-Tour method, the relaxed CB algorithm or a recursive implementa-
tion of the exact CB algorithm, are all possible and will be explored in Chapter
4.

3.2.2 The relaxed Completion Bound algorithm
Next I propose an alternative to the exact Completion Bound method. This
method is based on the fact that with each arc (i, j) that we travel, we add
a value dij > 0 to d and kij > 0 to k, both of which decrease the probability
that the tour is feasible. So if we disregard the stochastic distance per arc (e.g.
we set kij = 0), then there is a theoretical upper bound d on the deterministic
distance that we have left to travel before the path becomes infeasible. For
every actual path the deterministic distance will always be smaller than d since
kij > 0. In the case of the OPDSW this upper bound can be defined as the x
where F (x; s′k, θ) = α, so

d = T − F−1(α; s′k, θ), (3.2)
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Algorithm 3: Relaxed Completion Bound algorithm
Input: Initial state s′0; maximum deterministic travel time dmax;

minimum total reward rmin

Output: true if there exists a path starting at state s′0 to the depot
with total reward > rmin and total deterministic travel time
≤ dmax; false otherwise

1 Function RelaxedCB(s′0,dmax,rmin)
2 if s′0,r > rmin then return true
3 if s′0,d + min

m 6=i
{dim}+ min

m 6=0
{dm0} > dmax then return false

4 S ← {s′0}, S′ ← ∅
5 while S 6= ∅ do
6 for s ∈ S do // i ≡ si

7 for j ∈ N\sK do
8 ρ← R′(i, sd, j)
9 ρ′ ← R′(j, sd + dij , 0)

10 s′ ← (j, sK ∪ j, sd + dij , sk + kij , sr + rj), f(s′)← f(s) + ρ
11 if ρ > 0 then
12 if ∃s∗ ∈ S′ : s∗i = s′i ∧ s∗K = s′K then
13 if f(s′) > f(s∗) then
14 remove s∗ and add s′ to S′

15 else add s′ to S′
16 if ρ′ > 0 and s′r > rmin then return true

17 S ← S′, S′ ← ∅
18 return false

where F−1(p; k, θ) is the inverse cdf of the Gamma distribution with 0 ≤ p ≤ 1.
We can further decrease this upper bound by noting that if an improvement
must still be made then the path must visit at least one node, so we know that
we can at least add the minimum stochastic distance from node i to another
node and from any node to the depot. That is, we can add

min
m∈N\sK ,m 6=i

{kim}+ min
m∈N\sK ,m 6=0

{km0}, (3.3)

where i ≡ s′i, to the shape parameter of F−1 in (3.2).
The disregard of the stochastic distance has effectively turned the OPDSW

into the deterministic OP, so we can make use of the many fast known algorithms
to solve the deterministic OP for the relaxed CB method. For the computational
experiments in this paper I will apply a dynamic programming based algorithm,
which is shown in Algorithm 3. Since the functional value depends on the
expected profit, which requires the addition of a stochastic distance (which we
have disregarded) we can not make use of the functional value for comparing
the current solution with the optimal solution. Instead we must use the sum of
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the profits of the previously visited nodes, s′r, to do this. Furthermore, to suit
the deterministic OP, the expected profit function is changed to

R′(i, d, j) = rj(T − d− dij). (3.4)

Here T − d − dij denotes the time that is left to finish the tour after the arc
(i, j) has been traveled, and it is negative if and only if the path is infeasible.

I will now explain Algorithm 3. Let rmin denote the required total profit and
let dmax denote the limit on the total deterministic distance. The algorithm first
starts by determining if an improvement must still be made by only continuing
if s′0,r ≤ rmin. If this is true, then we check whether it is possible to at least
travel the minimum deterministic distance from node i to another node and
from any node to the depot (which is similar to Equation (3.3)). If this is
false then obviously the path can not be improved; if this is true, then the
algorithm continues in a similar way as Algorithm 2. The only differences are
the replacement of the expected profit function from (2.6) to (3.4), and in line 16
the profit sr is compared to rmin to determine if the algorithm can return true.
Lastly, the implementation of this algorithm in Algorithm 1 is similar to the
implementation of Algorithm 2 in Algorithm 1, but this algorithm is initialized
by RelaxedCB(s′,d,smax,r) (since smax,r denotes the current highest profit).

16



Chapter 4

Case study

In this chapter I will test the Dynamic Programming algorithm from Chapter
2 including multiple combinations of the pruning algorithms in Chapter 3, by
solving the OPDSW for a dataset consisting of 30 nodes (excl. the depot). All
algorithms are then compared based on computation time and the number of
states that are visited.

4.1 Overview of algorithms
Table 4.1 provides an overview of different versions of the dynamic programming
algorithm, all of which do not use the End-Of-Tour method. To avoid overly
long labels, if the algorithm does include the EOT method then its label will
be suffixed with a ’+’, so DP with EOT is DP+ and ECB with EOT is ECB+.
Thus the following are all the algorithms that will be tested:

1. DP

2. DP+

3. DP/ECB

4. DP+/ECB

5. DP/ECB+

6. DP+/ECB+

7. DP/ECB/ECB

8. DP+/ECB/ECB

9. DP/ECB+/ECB+

10. DP+/ECB+/ECB+

11. DP/ECB/RCB

12. DP+/ECB/RCB

13. DP/ECB+/RCB

14. DP+/ECB+/RCB

15. DP/RCB

16. DP+/RCB

4.2 Implementation details
The dataset consists of 30 nodes plus a depot in Euclidean space. The deter-
ministic distance is set to the Euclidean distance between two nodes. The scale
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Label Description
DP Basic dynamic programming algorithm without the addi-

tion of pruning algorithms.
DP/ECB DP with the exact Completion Bound method without

pruning algorithms.
DP/ECB/ECB DP with the exact CB method, which itself also uses the

exact CB method.
DP/ECB/RCB DP with the exact CB method, which itself uses the relaxed

CB method.
DP/RCB DP with the relaxed Completion Bound method.

Table 4.1: An overview of the different versions of the DP algorithm with their
respective labels.

parameters of the stochastic distance of all arcs are independent random vari-
ables with a mean of approx. 3; the shape parameter θ is fixed at 0.5. For all
algorithms the time deadline T varies between 20 and 40 with increments of 5.
For all instances the required probability α is set to 0.95, meaning that at most
5% of the tours is allowed to be infeasible.

If an algorithm implements a Completion Bound method (exact or relaxed),
then the algorithm is run twice: in the first run smax is set to s0 (so f(smax) = 0
and smax,r = 0), and in the second run smax is set to the smax of the first run (so
smax is the optimal solution). This is done to investigate the use of any initial
solution (with f(smax) > 0 and smax,r > 0) to set a high initial benchmark
in order to prune more states early on in the DP algorithm. Thus using the
actual solution as the initial solution will show the results in the theoretical (yet
plausible) case that the initial solution already is the optimal solution.

The implementation of all algorithms was done in Java and were run on a
Windows PC with 3.10 GHz Intel Core i5-2400 64-bit quad core processor with
4.00 GB of RAM.

4.3 Results of the case study
The solutions of the DP algorithm are shown in Table 4.2. Every algorithm
returns a tour with a profit that is equal to the profit of the solution; the tour
itself must of course be feasible but it might differ from the tour in Table 4.2.
The DP algorithm does however guarantee that its solution tour has the highest
probability of being feasible. The solution tours from all algorithms in this case
study are exactly the same as the tours from the DP algorithm, except for the
DP/RCB and DP+/RCB algorithms, where the solution tour for T = 35 was
different (it was reversed) yet still feasible.

Table 4.4 shows the runtimes (in seconds) of every algorithm over all time
deadlines and Table 4.5 shows the number of visited states, where a ‘visited’
state is defined as a feasible state that passes all pruning algorithms that the
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T Profit Probability Tour
20 25 0.9852 0→ 25→ 26→ 0
25 45 0.9633 0→ 27→ 30→ 25→ 26→ 0
30 55 0.9593 0→ 27→ 29→ 30→ 25→ 26→ 0
35 65 0.9723 0→ 26→ 30→ 25→ 21→ 20→ 11→ 0
40 80 0.9594 0→ 20→ 21→ 22→ 24→ 25→ 30→ 26→ 0

Table 4.2: Solutions to the problem of this case study for multiple time dead-
lines.

specific algorithm implements. When the DP algorithm implements the ECB
or RCB methods, then the tables show two numbers: the number before the
brackets shows the results of the first run (where smax is set to s0) and the
number between brackets shows the results of the second run (smax is set to the
optimal solution).

4.3.1 Analysis of the results
The results show that the use of one or more pruning algorithms can lead to
an improvement of the runtime when compared to using no pruning algorithms
at all. These effects on the runtime also increase as T gets larger and thus as
the total number of feasible tours increases. The following are the effects of the
individual pruning algorithms on the DP algorithm.

1. The End-Of-Tour method: The EOT method has a substantial positive
effect on the runtime for both the DP and the ECB algorithms, regardless
of the other pruning algorithms that were used. Therefore I advise that
the EOT method should be used in the DP algorithm, given that the data
allows for it.

2. The exact Completion Bound method: The ECB method on its own (with-
out implementing any pruning algorithms itself) only decreases the run-
time when T gets large. This means that the effect of the ECB method
will only be noticeable if there are many feasible tours, which is obvious
since the number of states that are pruned as a result of implementing
the algorithm will increase as the total number of states increases. If
the ECB algorithm itself implements pruning algorithms, then the run-
time will decrease; though this is not true for the DP/ECB/ECB and
DP+/ECB/ECB algorithms. The biggest decrease in runtime can be
made by letting the ECB method apply both the EOT and the RCB
methods.
If we compare the results of using no initial solution versus using an ini-
tial solution, then we see a general reduction of the runtime in the lat-
ter case. The effect of the reduction varies depending on the pruning
algorithms that the ECB method implements. In the DP+/ECB and
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T DP/RCB DP+/RCB
20 0.063 0.024
25 0.078 0.065
30 1.009 0.589
35 2.066 1.592
40 17.78 11.69

(a) The runtimes (in seconds)

T DP/RCB DP+/RCB
20 70 20
25 89 88
30 1509 1204
35 2883 2718
40 39910 31808
(b) The number of visited states

Table 4.3: Results of the RCB algorithms, if an initial solution is used, after
applying the decision rule.

DP+/ECB/ECB algorithms the runtime surprisingly increases when an
initial solution is used, and only for T = 25 and T = 30. Although I am
unsure about the exact cause, it might be the result of the exponential
increase of the runtime when the number of nodes n gets larger. That
is, the algorithm might take more time to prune states at an early stage
(where it must solve the OPDSW for lots of nodes) than it takes to visit
other states first and to prune states at a later stage (when the OPDSW
contains fewer nodes). As we can see in Table 4.5 that the number of
visited states is particularly low for those problem instances, this further
supports the previous statement.

3. The relaxed Completion Bound method: The RCB method on its own has
a substantial positive effect on the runtime of the DP algorithm: it reduces
the runtime of the DP algorithm approx. 513 times at T = 40 and approx.
677 times when the EOT method is also implemented. It also outperforms
the other pruning algorithms by a wide margin.
Using an initial solution with the RCB method seems to decrease the
runtime for smaller T but the reduction gradually gets smaller as T gets
larger and eventually causes a (quite substantial) increase in the runtime at
T = 40. This is caused by the fact that the RCB method is bad at pruning
states at the first few stages of the DP algorithm due to the imposed
relaxation. It only actually prunes states at later stages of the algorithm,
as opposed to the exact CB algorithm which is able to prune states from a
very early stage. As a result, the RCB method causes unnecessary runtime
(as it fails to prune states) relatively often if the algorithm has a lot of
stages yet to visit. However, this problem can be omitted if a certain
decision rule would be used to determine if the RCB algorithm should be
applied at a specific state or not. A simple arbitrarily chosen rule such as
“only apply the RCB method if the length of the current path is bigger
than or equal to the length of the path of the initial solution divided by
2” has been applied, and the results are shown in Table 4.3. It shows
a dramatic decrease of the runtimes for higher values of T and for all T
a decrease when compared to using no initial solution. The DP+/RGB
algorithm including this decision rule is also the fastest algorithm that has
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Figure 4.1: Runtimes of the fastest algorithm on a smaller dataset.

been tested.

4.3.2 Higher deadlines
To examine the effects of the dynamic programming algorithm on higher dead-
lines, I will apply the DP+/RGB algorithm (including the decision rule) to a
smaller dataset, which uses the first 10 nodes of the previous dataset. The
resulting runtimes can be found in Figure 4.1. The leftmost vertical line at
T = 52 denotes the point where the optimal tour first contains all 10 nodes.
T = 48 denotes the first point where the optimal tour contains 9 nodes. The
big increase in runtimes shows that the algorithm performs poorly when the
optimal tour contains 9 nodes1. After T = 52 the length of the tour stays equal
to 10, but the composition of the tour still changes. This stops at T = 79, after
which the tour remains the same. The figure shows that the runtime continues
to increase exponentially until the tour contains all nodes. Then the runtime
will still increase, but it will slowly converge at the point where the optimal tour
remains the same.

Up to this point the deadlines for the experiments with the larger dataset
have been relatively low and the optimal tours have been relatively short; the
route at T = 40 consists of only 7 out of 30 nodes. Running the algorithm
at T = 60 takes over 24 hours and contains merely 11 out of 30 nodes. Since
the runtime is expected to increase exponentially even further, it is clear that
this algorithm is not practical for large problem instances (i.e. high deadlines
and/or a lot of nodes).

1This is a result of the fact that the RCB algorithm is bad at pruning states when the
optimal tour is long. The current decision rule postpones the RCB algorithm to later stages in
the DP algorithm, but the effects of it are still visible when the optimal tour contains a lot of
nodes. A better decision rule could potentially reduce the effects of this problem completely.
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Chapter 5

Future research

Since the OPDSW and OPSW are largely unexplored, many directions are open
for future research. The optimal solution could be improved even further by
using a faster algorithm than the DP algorithm that was used in this paper to
solve the deterministic OP in the relaxed CB method. This could for example
be done by using an Integer Programming formulation (see Vansteenwegen et al.
[12, p. 3]) or any of the other exact solution methods that are given in Feillet
et al. [7]. For finding an initial solution to use in the Completion Bound methods,
a heuristic can be applied to find an approximate solution of the OPDSW, where
the emphasis lies on finding a solution fast rather than finding an accurate
solution. Many heuristics that work for the OPSW (see Campbell et al. [3])
can be applied to the OPDSW to get this result, but fast heuristics that work
specifically for the OPDSW could be developed. Also the results from Table 4.3
show that even a simple decision rule to determine when to apply the CB method
has a big impact on the runtime. I am therefore curious in the effectiveness of
other decision rules and if an ‘optimal’ decision rule would exist.

Besides improving the optimal solution, other Completion Bound methods
could be explored. An example would be a method that determines, based
on an initial solution, whether there exists a better solution that must include
a certain node. If this is not the case then the node would never lie on the
optimal path and so it can be removed from the graph. This method could then
be applied a priori, which would result in a smaller graph and thus a reduction
in the runtime for the remainder of the algorithm.
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