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Abstract

This thesis addresses the storage-retrieval problem for a fully automated storage facility.
We alter an existing deterministic and a factor-based storage and retrieval model to be
applicable to a fully automated multi-deep storage facility. The models are able to handle
uncertain supply and variable demand. Some practical attributes are added to the class
based models, which can be influenced by the assignment of penalties. The results show
that the model based on deterministic supply shows better results than the factor-based
allocation model, when applied on a multi-deep facility.
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Table of abbriviations

BOX OptilogX
SAT Satellite warehouse
VT Vertical Transporter
HT Horizontal Transporter
SIBA The shuttle used in the SAT
I/O site Infeed and Outfeed site

Table 1: Table of abbriviations
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1 Introduction

The art of the econometrician consists in finding the set of assumptions which
are both sufficently specific and sufficiently realistic to allow him to take the best
possible advantage of the data available to him.

- Edmond Malinvaud

1.1 Why this study

Operations in warehouses are an essential part of the supply chain of any logistic company. In
the last decades, technical development has made it possible to reduce human component in
the warehousing process. This has lead to the development of fully automatic warehouses.
In this study we will take a closer look at automatic warehouses with multiple floor and
multi-deep lanes. The consultancy company Ortec has been assigned to the operational and
tactical software design of this type of 3-D warehouse. This study will focus on the tactical
allocation of the pallets in this 3-D warehouse, based on uncertain supply and variable
demand.

As an operations research company Ortec has begun a partnership with the engineering
company SPIE in the development of a fully automated warehouse. The responsibility of
Ortec is to design the software which controls the movement of pallets in the warehouse.
The first warehouse was placed at a Dutch icecream company in 2010. Ever since there are
several warehouses build in The Netherlands, The United Kingdom and France.

As a decision maker on inventory in a warehouse, the whole supply chain movement can
be influenced by the inventory management system. It is the responsibility of the manager
to anticipate parameter ambiguity and stochastic uncertainty. In other words, he wants to
use a robust inventory optimization system.

The operational efficiency of warehouses can play a crucial role in customer service and
profit margins for any production company. In traditional warehouses, also called unit-load
warehouses, all pallets are stored and retrieved with single pallet quantities. The basic
characteristic of such warehouses is that no pallet is placed in front of another. These types
of warehouses can be found both upstream and downstream in the supply chain.

Much research has been done on unit-load warehouses, however in this study we will
consider multi-deep warehouses. In such warehouses multiple pallets can be stored in front
of each other, meaning not every pallet can be reached directly. This type of warehouse
is compact and very suitable for products that need to be stored in a cold environment.
Up to this point, Ortec uses rule based decisions for the allocation and retrieval of pallets.
The software does not anticipate on production schedules and there is no form of long term
optimization present.
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The warehouses considered in this study often have a production facility linked to the
warehouse. Despite of carefully prepared production schedules, it can happen that produc-
tion exceeds the expected quantity. It is desired to incorporate this excessive production
and anticipate on it. In other words, the goal of this thesis is to design a robust allocation
and retrieval model for a multi-deep warehouse. The model must have the ability to handle
uncertain supply and variable demand and will optimize the worst-case scenario.

We start this paper by describing the pallet allocation and retrieval problem and give a
description of the warehouses in section 2. In section 3 a literature review is given, describing
previous research on pallet allocation problems and comparable problems in the field of
container handling on container terminal. The mathematical formulation of the problem
with a unit-load warehouse and deterministic demand is given in section 4. In section 5 this
model is transformed into a robust allocation and retrieval model with uncertain supply and
variable demand. In section 6 we will add the characteristics of a multi-deep warehouse to the
model. Also different aspects of the layout of a warehouse are used to tune the model as the
user desires. After this, we will validate the model by showing a small example solved by the
model described in section 5. Next we will use a practical case Sodebo in section 8 to compair
performance results of the different model types. Finally, we will make our conclusions and
have a business recommandation for Ortec, which says which model performs best in partice.
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2 Problem description

Supply chain optimization is a trending topic in operational research. The interaction be-
tween all components in the supply chain is an area which can result in a large inefficiency.
One of the largest cost containing parts in the supply chain is warehousing. When commu-
nication between all components is optimal, many costs can be saved. This thesis will focus
on the allocation and retrieval of pallets within a storage warehouse.

Compact, multi deep warehousing systems, similar to one described in Koster et al.
(2012), have become more and more popular in the last decade. The extra dimension of
multi deep aisles, makes such systems radical different from 2-D systems. Traditional opti-
mized routing algorithms, storage strategies and capacity models cannot be applied on these
systems.

The goal of this study is to design an allocation model for a multi-deep warehouse. The
transformation of allocation models used in a 2-D warehouse to a multi-deep warehouse will
be described. For practical usage of the model, it is important that the model can handle
small changes in the supply as this can deviate from the expectation. Also demand is not
constant in a warehouse, so it is also important that the model can handle variable demand.

The warehouse system on which this study is inspired, is an automated warehouse con-
sisting of a warehouse and (optional) an OptilogX. The OptilogX is designed by engineering
company SPIE and is described extensively at www.spie-nl.com. The OptilogX system is
a fully automated storage, order picking and buffer system and is comparable to a sliding-
puzzle. There are three main-components that provide the movements in three directions;
vertical-transporters, horizontal-shuttles and conveyor-aisles. The design of this system leads
to high throughput and sorting capacities in a compact space. This characteristic is mostly
valued in warehouses which contain cooled or frozen products, where space is desired to be
minimal.

The OptilogX can also be a part of a forward-reserve system where the OptilogX passes
the incoming pallets to a storage warehouse (SAT). This warehouse is also fully automated
but has much more storage positions, a low throughput capacity, but is cheaper than the
OptilogX. These differences mostly originate from the change of using a shuttle which moves
into the aisles (SIBA) instead of a chain conveyor in the aisles. In the case studies performed
in this thesis an OptilogX is always present, but the pallet allocation and retrieval model
will be applied on the SAT warehouse behind the OptilogX.

In case there is an OptilogX, the infeed pallets are transported by a VT to the destination
level. There they are transferred on a shuttle which displaces the pallet to the destination
aisle. When the destination of the pallet in in the SAT, the pallet is transported through the
OptilogX to the shuttle on the other side of the OptilogX. On that side the SU is respectively
displaced by a shuttle, a VT and then on the shuttle of the SAT.
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The decision to store infeed pallets in the OptilogX or in the SAT is made when the
pallets arrive in the forward-reserve system. Part of the pallets can be kept in the forward
warehouse which can be used for short term storage. The rest of the pallets will be directly
assigned to the SAT warehouse where they can be stored for a longer period.

Due to the third dimension, this type of warehouse is similar to container handling on a
shipyard. Different levels within a warehouse can be seen as different storage yards. When
containers are stacked on a storage yard, the placement of a container is similar to the
placement of a pallet in the warehouse. The retrieval process can be compared as well.
When a container has to be retrieved and it is not positioned at the top of a stack, the
containers on top of the desired container have to be re-handled first. This is also the case
if a desired pallet is not placed at the front of a lane.

Figure 1: Overview OptilogX and OptilogX-SAT system

2.1 Test case warehouse description

The model will be tested on a practical case: the Obedos warehouse. Obedos produces
products for the fresh catering market for supermarkets and hypermarkets and instant food.
The Obedos warehouse consists of two components. First, a fast moving storage section
(the BOX), which for example is a 17x15x4 storage unit at Obedos. The BOX handles the
infeed and outfeed of pallets from outside the warehouse (left unit in Figure 2). The second
component of the warehouse (right unit in Figure 2) is a satellite warehouse which can store
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Figure 2: Schematic lay out of the Obedos warehouse

over 2700 pallets at Obedos. This satellite warehouse has 6 levels and pallets can move from
the BOX to the SAT on the second level and from the SAT to the BOX on the fourth level.
The BOX functions as a buffer zone for incoming batches or outgoing orders, where the SAT
is used for long term storage.

2.1.1 Transporters

The pallets are moved through the warehouse via transporters. The box has horizontal
transporters on every level at the front and back side of the pallet lanes. An example of
this can be seen at the Obedos warehouse shown in Figure 2. On these HTs pallets can be
moved within one level. On each level both HTs can receive or give a pallet to three vertical
transporters. VTs can transport a pallet over different floors. Pallets enter or leave the
BOX via the infeed and outfeed site. The I/O site is positioned on the ground floor under
the BOX and can transport pallets from and to the BOX. Pallets can leave the box to the
outside the warehouse via VT1 and VT2. VT4 and VT6 can transport pallets between the
different levels of the box. These VTs do not move all the way down to the I/O site. This in
contrary to VT5, which can move rejected pallets directly to the I/O site. When a pallet is
moved from the BOX to the SAT, VT7, VT8 and VT9 can then transport the pallets from
level 2 to different levels in the SAT. Even when a pallet is assigned a place on the second
level, the pallet can only enter the SAT via VT7-VT9.

The SAT has four areas for storage, where the outer areas can only be accessed by one
HT. Two middle areas can be accessed by two HTs. In these areas, pallets can be transported
at the top and bottom of a lane. Due to the fact that the lanes are not moved by chain
conveyors byt by SIBA, the mechanism does not allow for a row of pallets to move as a
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whole. Pallets can only be moved one at a time. For this study it is assumed that such a
lane can be seen as two separate lanes of which the total length has to be equal to or smaller
than the total lane size. The determination of the lane length can be fixed or variable. In
the second case the lane length can be optimized depending on the infeed forecasts. This
study however will only consider fixed lane depths.

2.2 Warehouse optimization

There are several elements of scheduling in a warehouse. First, products have to be stacked
on a pallet. This is called pallet assignment. Second, storage assignment takes place, which
means that pallet loads have to be assigned to storage locations. And last, the rules for
sequencing storage and retrieval requests which is called interleaving. An optimal scheduling
process can take place when all three elements are integrated in one model.

This thesis will focus on the optimization of the SAT warehouse. This optimization pro-
cess exists out of three parts. First, the pallet placement problem. Given that a certain
pallet enters the SAT, what would be its best position for placement. Second, the pallet
retrieval problem. When the retrieval of a pallet causes extra pallet movements, the destina-
tions of these movements have to be determined too. Last, when no placement or retrieval
operations take place, the layout of the warehouse could be optimized. This process is called
housekeeping. In this thesis we will only consider the movement of infeed and outfeed pallets.
Housekeeping is not a part of this thesis.

2.3 Data availability

2.3.1 Infeed data

There are different types of infeed orders possible for a warehouse. In the case of Obedos
the infeed orders origin at a production center where trucks with capacity of 18 are loaded
and transported to the warehouse. These 18 pallets do not have to be of the same product
type, but can consist out of multiple products as there are four product lines working in
parallel at the production site. A production schedule can be used to determine the infeed
of the warehouse, but this schedule is not always followed exactly. In practice production is
based on a minimum number of products requested, but some loss of products is accounted
for. This means that overproduction often takes place by a number of pallets. Due to this
characteristic we introduce uncertain supply into our model.

2.3.2 Outfeed data

Outfeed orders can also occur in different types. First there is the case where there are only
outfeed orders of size one. An example of this case is the outfeed procedure at Obedos,
where the pallets move from the warehouse to a picking zone. When a pallet is picked empty
a new request for a pallet is send to the warehouse. In this case the exact outfeed orders are
not predictable, but outfeed over a period of time can be estimated properly.
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It is more common that outfeed orders consist of batches of pallets. These outfeed orders
can be multi-product or single-product orders. Unilever is an example of this situation. At
Unilever trucks arrive to transport pallets to another location outside the warehouse. So in
this case the order can be prepared in the BOX and pallets can be retrieved from the SAT
and the BOX to store in prepare lanes inside the BOX near the I/O point.

2.3.3 Usage of prior knowledge: The current situation at Obedos

In the current planning software at the Obedos warehouse, prior knowledge about infeed and
outfeed orders is not used very well. For infeed orders it can be known in advance which
pallets arrive during the day. At the moment, when a pallet batch enters the BOX it is the
first time the pallet ID’s are scanned. The labels that are scanned contain all information
about the pallet. Prior to the moment of scanning no information on the presence of the
pallet is known to the warehouse software. Much improvement can be made when infeed and
outfeed data over a wider period is available. A comparison between the current situation
at Obedos and the results of this study are academically irrelevant and therefore outside the
scope of this study.

2.4 Multi-deep storage lanes

One aspect of a 3D warehouse is the presence of multi-deep storage lanes. Pallets which
are not stored in front of the lane cannot be accessed directly. This property can be a
disadvantage if operators do not handle this wisely. The situation can occur where a pallet
is stored in front of a pallet which is selected for retrieval. The desired pallet will have to
be excavated by displacing the pallet in front of it. Excavating a pallet will consume much
time and movements on a level and is therefore not desirable.
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3 Literature

Pallet handling in a multi-deep warehouse has similarities in both pallet handling in a 2-
dimensional warehouse and container handling on terminals. This research studies a forward
and reserve warehouse which handles the handling of unit-loads in the form of pallets. In
this section various literature on these subjects is collected.

3.1 Warehouse literature

In a unit-load warehouse all handled items are in the form of pallets. Each pallet contains
only one product type and can be transported with one unit at a time. A comprehensive
review on warehouse operations has been made in Goetschalckx et al. (2007). Goetschalckx
et al. (2007) splits decisions concerning warehouses up into warehouse design and warehouse
operation problems. Gunn et al. (1992) gives an overview of models on warehouse operation.
Warehouse design falls outside the scope of this paper and is given for the Obedos case.

In the Obedos case we have two storage areas, also called a forward and reserve facility
warehouse design. The allocation of pallets to these areas is described in Goetschalckx et al.
(2010) and Sharp et al. (1998). Sharp et al. (1998) formulates the forward-reserve problem
as a special case of the knapsack problem and proposes a greedy knapsack heuristic. For
practical usages the paper also formulates a continues knapsack problem that considers re-
plenishment limits. In warehouses there is often a maximum number of forklifts or manpower
who can move pallets to their allocated places.

In order picking, different objectives can be considered. Leduc et al. (2007) did a
literature review on warehouse order picking. Different order picking methods can be used
in a warehouse, for example: single-order picking, batching and sort-while-pick, batching
and sort- after-pick, single-order picking with zoning, and batching with zoning Sharp et al.
(1998). Each order picking method consists of some or all of the following steps: batching,
routing and sequencing, and sorting.

Travel time models are often used for the determination of storage locations. Babu et
al. (1995) gives a critical review on automated storage and retrieval systems with a special
emphasis on travel time models. The most commonly used time travel models are random
assignment, full turnover-based assignment and class-based turnover assignment. Random
assignment stores a pallet in the closest location. White et al. (1984) have used a statistical
approach to develop expressions for travel time. A random storage model can be further
improved by optimizing its dwell point, see Egbelu et al. (1991) for an LP-based minimization
of the service response time.

Schwarz et al. (1976) model the turnover-based policy under the unrealistic assumption
of shared storage, i.e. the storage space allocated to one product can only accommodate its
average inventory level; no specific space is reserved to store the maximum inventory of a
product. It is said to outperform the ABC-class based storage policy. However, when it is
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applied to a travel time model based on full turnover-based dedicated storage, Koster et al.
(2013) show that the more practical full turnover-based dedicated storage policy outperforms
the ABC-class based storage policy.

With class-based turnover assignment, a warehouse is divided into different classes. Pal-
lets with the highest turnover rate are assigned to the class with the lowest associated costs.
Methods for deriving the optimal boundaries for two or three storage regions are proposed
bySchwarz et al. (1976). Eynan et al. (1989) and Rosenblatt et al. (1994) developed simple
recursive procedures to derive optimal boundaries for a general n-class storage rack.

Ramirez et al. (1986) performs a computational study on the optimal stock picking deci-
sions in an automatic S/R system. Like most storage and retrieval models the objective is to
minimize picking costs in the form of traveling times. Kanet also considers the minimization
of breakdowns, both with and without regard to picking costs. Breakdown costs cover the
pallet picking process when an ordered quantity exceeds the volume of a pallet. Poort et
al. (1998) made a comparison between the optimal routing of order pickers and a heuristic
solution.

Previous literature was only applied on 2-dimensional warehouses. Research has been
done as well in the field on 3-dimensional warehouses. The common assumption in this field
is that there is one storage and retrieval (S/R) machine which can move horizontal and
vertical simultaneously. This way the 3-dimensional pallet allocation problem is similar to
the 2-dimensional problem. Cardin et al. (2013) presented a new storage-retrieval method
called In-Deep Class Storage for 3-D warehouses. The method is based on the fact that it
is more efficient to dedicate the front layers of each lane to the class of the most popular
items, rather than dedicating whole bins close to the drop-off station. The disadvantage of
this model is the usage of statistical demand, where the moment of retrieval is assumed to be
known. Koster et al. (2012) have developed a sequencing heuristic for storing and retrieving
unit loads in a 3-D compact automated warehousing system. The system also has an S/R
machine which can move in both directions simultaneously. The lanes in the system they
researched work like a carousel, so every pallet can be reached directly by the S/R machine
without it having to excavate.

Ang et al. (2012) proposes a LP model which handles warehouses with variable supply
and uncertain demand in a multi-period setting. A robust optimization model is introduced,
which minimizes the worst-case expected total travel in the warehouse with distributional
ambiguity of demand. Despite the imprecise specification of demand distributions, the com-
putational experiments show that the model performs close to the expected value given
perfect information and significantly outperforms existing heuristics in the literature.

3.2 Container handling literature

Papers on pallet movement in 2-dimensional warehouses and even for 3-dimensional ware-
houses do not cover the characteristics of the multi-deep lanes of the Obedos warehouse.
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Pallets which are not located in the first bin of a lane have to be excavated. This property
can be found in container stacking. Containers that are (un)loaded to a ship have to be
placed in a shipyard on a maritime terminal first. Liu et al. (2003) solved the container
stacking problem using a rolling-horizon approach. For each planning horizon, the problem
was decomposed into two levels and each level is formulated as a mathematical programming
model. First the distribution of pallets over the yard is determined. Second, the allocation
of containers of each vessel to blocks takes place.

In container placement of inbound containers, a shipyard often has to handle containers,
each with a different outfeed date. This causes stacks with containers with multiple outfeed
dates and excavation of a container is not uncommon. Container movement costs a lot of
time, therefore the objective of many papers concerning container placement is to minimize
relocations of containers, next to the minimization of travel time. Kim et al. (2006) addressed
a dynamic location problem as well as a static location problem. Both a genetic algorithm
as simple heuristic rules are suggested and compared in a numerical experiment.

[13] studied the effect of efficient berth and quay crane schedules. This schedule takes
arrival time of vessels also into account using a genetic algorithm. One of the assumptions
made in this study is that the handling time of containers is known. Kim et al. (2012)
handles the optimization of a mixed-block stacking storage system like a container yard.
This paper builds its genetic algorithm on the average duration of stay per container type.
Choe et al. (2011) proposes a stacking policy in an automated container terminal which
consists out of two stages. First block determination and second slot determination. This
method is a simple heuristic with weighted decision criteria which can be dynamic adjusted
over multiple periods.

The container locating problem can also be approached in more detail if one considers only
one ship yard.Schwarze et al. (2012) formulates a mathematical model for a 2-dimensional
stacking area for multiple time periods. It also proposes a simple heuristic based on a simple
rule of thumb. Each stack has a stack score, which helps to determine where a relocating
block should be placed. Hong et al (2006) also works with the principle of having a stack
score, which is formulated as a branch and bound algorithm. To limit the solution space of
a relocation model, the corridor method proposed by Vo et al. (2009) could be applied.

In most warehouses the lay-out is fixed. In practice however it is possible to vary lane
depth in some lanes. Goetschalckx et al. (1991) developed a procedure for selecting lane
depths out of a limited number of allowable depths for the case of multi products. This is
applicable for the Obedos warehouse also, but falls outside the scope of this thesis.

The paper that has the most similarities with the characteristics of multi-deep warehouses
used in this study is the paper of Ang et al. (2012). The properties of variable supply and
uncertain demand are incorporated and the warehouse is divided in multiple areas used for
allocation. In the Obedos warehouse, these properties are the other way around. Supply is
uncertain and demand is variable. Another deviation on the Ang et al. (2012) model is the
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property of multi deep lanes. We will incorporate this characteristic, but do not use any
published literature for this as there is non found at this point.
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4 Deterministic demand

In this section we will present a retrieval en allocation model with deterministic supply. This
model is based on Ang et al. (2012) and will be the basis for all models described in this
study.

4.1 Problem formulation

We start with a deterministic model, where demand and supply are known at the beginning
of the first planning period for the entire planning horizon. Suppose there are M products
indexed by i = 1, ...,M . The planning horizon is divided into T periods indexed by t =
1, ..., T . The warehouse is divided in N areas, called classes. We index these classes by
j = 1, ..., N and assume that all places in j have equal costs. For each period, we assume all
pallets arrive at the start of the period and all pallets demanded from outside the warehouse
are retrieved at the end of that period. The model described below can be applied on a
unit-load warehouse and is the basis of the allocation model for the multi-deep warehouse.
The objective of the model is to minimize the total expected costs over the entire planning
horizon. Lets define N = {1, ..., N},N− = {1, ..., N − 1},M = {1, ...,M}, T = {1, ..., T}
and T + = {1, ..., T + 1}.

Let ati be the number of pallets of product i which arrive at the start of period t. Let
vti,j be the decision variable determining the number of arriving pallets of product i that
are assigned to class j in period t. wti,j is the decision variable determining the number of
outfeed pallets of product i that are retrieved from class j in period t. The warehouse is
divided in different classes j, where all pallets entering the warehouse must be assigned to a
class. This can be formulated as

∑
j∈N v

t
ij = ati, for i ∈ M, t ∈ T . In the same manner we

can define the demand dti as the number of pallets of product i that are ordered in period
t. We now have

∑
j∈N w

t
ij = dti, for i ∈ M, t ∈ T . sj are the storage costs for class j and

rj are the retrieval costs for class j. These costs can be equal, but do not have to be if the
infeed and outfeed point are not at the same location in the warehouse for example.

For the inventory we say xtij is the number of pallets of product i in class j at the start
of period t. Where the start inventory at the beginning of period 1 can be equal to zero, but
an extra constraint can be added where x1ij is equal to a predefined start inventory. Also we
assume that no backorders are allowed, so even after the last period this means xtij ≥ 0, for

i ∈M, j ∈ N , t ∈ T +. We can define the inventory for period t+ 1 as xt+1
ij = xtij + vtij −wtij

for i ∈ M, j ∈ N , t ∈ T . The last component of this problem is the capacity constraint
which cannot be exceeded:

∑
i∈M(xtij + vtij) ≤ cj, for j ∈ N−, t ∈ T .

The decision variables do not need to have an integer constraint, as the supply and
demand parameters are integer, this is automatically the case. The linear optimization
problem can be formulated as:
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min
∑
t∈T

∑
i∈M

∑
j∈N

(sjv
t
ij + rjw

t
ij) (1)

s.t.
∑
j∈N

vtij = ati ∀i ∈M, t ∈ T (2)

∑
j∈N

wtij = dti ∀i ∈M, t ∈ T (3)

xt+1
ij = xtij + vtij − wtij ∀i ∈M, j ∈ N , t ∈ T (4)

x1ij = 0 ∀i ∈M, j ∈ N (5)

∑
i∈M

(xtij + vtij) ≤ cj ∀j ∈ N−, t ∈ T (6)

xtij ≥ 0 ∀i ∈M, j ∈ N , t ∈ T + (7)

vtij, w
t
ij ≥ 0 ∀i ∈M, j ∈ N , t ∈ T (8)

In this model it is assumed that any shortage of inventory does not occur. It is the
responsibility of the supplier to make sure there is sufficient inventory to meet the demand
for every period. Equivalently,

t∑
T=1

dTi ≤
t∑

T=1

aTi ∀i ∈M, t ∈ T (9)

[1] has proven that the linear program is only feasible if and only if equation (9) holds.
In case the initial inventory is not equal to zero, equation (9) can be rewritten as

∑t
T=1 d

T
i ≤∑t

T=1 a
T
i +

∑t
T=1 x

1
ij ∀i ∈M, t ∈ T .

As this model is a linear programming problem, it is solvable in polynomial time. The
size however, can become very large if one of the sets contains a large number of elements.
The size of the problem can become T ×M × N × 3, because it applies to each of the 3
decision variables.
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5 Stochastic demand

5.1 Factor-based demand model

In practice, supply and demand are often not known in advance. In this section we will
base the model on uncertain demand and variable supply based on [1]. An estimation of
the expected supply can be made based on production orders or historical data. The model
described in this section will be able to handle this uncertain supply. In this section a
factor based demand model will be introduced where supply for each product in period t is
dependent on factors z̃k, k = 1, ..., Kt. Kt represents the number of demand factors used to
model the supply up to period t, where 1 ≤ K1 ≤ K2 ≤ ... ≤ KT . At the end of period t z̃k,
k = 1, ..., Kt are known and new uncertain factors z̃k, k = Kt, ..., Kt+1 are introduced. For
notational purpose we define κt ≡ {1, ..., Kt}, κ0t ≡ {0, ..., Kt}.

Supply in period t for product i can now be written as a function of z̃t: ati(z̃
t) = at,0i

+
∑

k∈κt a
tk
i z̃t, for i ∈ M, t ∈ T . Making use of this definition of supply, a factor based

optimization model can include correlation of supply for different products over different
periods.

5.2 Stochastic robust optimization model

For the determination of storage and retrieval locations of pallets a model is desired which can
take adjustability into account as information unfolds over time. To realize this, we introduce
the vector z̃t, which contains all realized supply of period t. We repeat the following sequence
of events for every period t: At the start of period t, the information (z̃t−1) is known. The
storage locations of arriving pallets in period t are determined based on this information.
The realized supply in period t is known at the end of period t and z̃t becomes available,
then the retrieval of pallets can take place. We can repeat this procedure every time period,
using a rolling horizon.

Since the actual supply distribution is not known, we can consider multiple supply sce-
narios in the following robust optimization model.

ZR = min maxP∈UEP
∑
t∈T

∑
i∈M

∑
j∈N

(sjv
t
ij(z̃

t) + rjw
t
ij(z̃

t)) (10)

s.t.
∑
j∈N

vtij(z̃
t) = ati ∀i ∈M, t ∈ T (11)

∑
j∈N

wtij(z̃
t) = dti(z̃

t) ∀i ∈M, t ∈ T (12)

xt+1
ij (z̃t) = xtij(z̃

t−1) + vtij(z̃
t−1)− wtij(z̃t) ∀i ∈M, j ∈ N , t ∈ T (13)

x1ij(z̃
0) = 0 ∀i ∈M, j ∈ N (14)
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∑
i∈M

(xtij(z̃
t−1) + vtij(z̃

t−1)) ≤ cj ∀j ∈ N−, t ∈ T (15)

xtij(z̃
t−1) ≥ 0 ∀i ∈M, j ∈ N , t ∈ T + (16)

vtij(z̃
t−1), wtij(z̃

t) ≥ 0 ∀i ∈M, j ∈ N , t ∈ T (17)

5.3 2-D linear storage and retrieval model

When zk is defined as the difference between the expected demand and the realization in
scenario k. For example, if the expected demand of product i is 20 and scenario k describes
a demand of 18, then zk = −2. In this way all expected demand scenarios can be expressed
in the terms of zk. Taking in account all scenarios k, the linear program described below will
optimize the storage and retrieval policy based on a worst case scenario. In other words, the
model will assign a pallet location for the exceeding supply.

ZLR = min g0 + maxz∈W̃
∑
k∈KT

gkzk (18)

s.t. gk =
∑
t∈T

∑
i∈M

∑
j∈N

(sjv
t,k
ij + rjw

t,k
ij ), ∀k ∈ K0

T (19)

∑
j∈N

vt,kij =

{
ati if k = 0

0 otherwise
∀i ∈M, k ∈ K0

T , t ∈ T (20)

∑
j∈N

wt,kij =

{
dt,ki if k ∈ K0

t

0 otherwise
∀i ∈M, k ∈ K0

T , t ∈ T (21)

xt+1,k
ij = xt,kij + vt,kij − w

t,k
ij ∀i ∈M, j ∈ N , k ∈ K0

T , t ∈ T (22)

x1,0ij = 0 ∀i ∈M, j ∈ N (23)

ht,kj =
∑
i∈M

(xt,kij + vt,kij ) ∀j ∈ N , k ∈ K0
T , t ∈ T (24)

ht,0j +
∑
k∈KT

ht,kj zk ≤ cj ∀z ∈ W, j ∈ N−, t ∈ T (25)

vt,0ij +
∑
k∈KT

vt,kij zk ≥ 0 ∀z ∈ W, i ∈M, j ∈ N , t ∈ T (26)

wt,0ij +
∑
k∈KT

wt,kij zk ≥ 0 ∀z ∈ W, i ∈M, j ∈ N , t ∈ T (27)
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xt,0ij +
∑
k∈KT

xt,kij zk ≥ 0 ∀z ∈ W, i ∈M, j ∈ N , t ∈ T + (28)

wt,kij = 0 ∀i ∈M, j ∈ N , k ∈ KT \ Kt, t ∈ T (29)

vt,kij = xt,kij = ht,kij = 0 ∀i ∈M, j ∈ N , k ∈ KT \ Kt−1, t ∈ T (30)

All previous models described in this paper are based on a warehouse with single deep
lanes. These type of models can also be used in a multi-deep warehouse when all pallets for
one lane are stored or retrieved in the same time period. This way the costs of storing or
retrieving the lane are equal to the costs of storing or retrieving a pallet to the dedicated
class × the capacity of the lane. Next we will describe a pallet allocation model that can be
applied on a multi-deep warehouse where pallets are not necessarily allocated and retrieved
per full lane.
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6 3-Dimensional model description

6.1 Multi pallet lanes

In this section the assumption of multi-pallet lanes is introduced. In contrary to the models
presented in previous sections, multiple pallets of the same product can be stored in one
lane. By expanding the model with this characteristic, it is not necessary to buffer pallets in
the BOX warehouse to the point one full lane can be filled. To avoid excavating movements,
we assume only pallets of the same product can be stored in the same lane. The second
assumption we make is that all pallets of the same product are exchangeable. By doing this,
there will never be the need to excavate a pallet. In practice, it might be more efficient to
store pallets of the same product in the same lane. Products with the latest expiration date
will then have to be stored in the back of the lane. This way excavating will not take place,
but you may not have sufficient storage space.

Constraint (24) and (25) are not applicable when single product lanes are assumed. As
the capacity of a class is now defined by the number of lanes it contains and not the total
number of pallets. Therefore capacity constraint (25) can be rewritten as:

∑
i∈M

∑
k∈K

(NrInventoryLanest,ki,j +NrInfeedLanest,ki,j ) ≤ Capacityj ∀j ∈ N , t ∈ T (31)

Where the number of inventory lanes can be expressed as:

0 ≤ (LaneDepth×NrInventoryLanest,ki,j )− x
t,k
i,j ≤ LaneDepth− 1 (32)

∀i ∈M, j ∈ N , t ∈ T , k ∈ K

NrInventoryLanest,ki,j ∈ Z ∀i ∈M, j ∈ N , t ∈ T , k ∈ K (33)

NrInventoryLanest,ki,j will be forced to be the minimal number of inventory lanes required
by constraint (32). Constraint (33) is a necessary constraint to make sure the number of
lanes is an integer.

When determining the number of infeed lanes it is assumed that the minimum number
of lanes is used for storage within a class. This can be accomplished by keeping track of
the rest inventory for period t in every class. RestInventoryt,ki,j is the number of open pallet
places in a lane where product i is present at the beginning of period t in class j. As it is
assumed that all not fully stored lanes will be filled before a new lane is used, we can use
the RestInventory to determine how many infeed pallets are needed to fill this lane. We
can subtract the RestInventory from the number of allocated pallets of product i in class j
in period t to know how many lanes we need to reserve to cover the infeed.
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RestInventoryt,ki,j = (NrInventoryLanest,ki,j × LaneDepth)− xt,ki,j (34)

∀i ∈M, j ∈ N , t ∈ T , k ∈ K

Where

0 ≤ (LaneDepth×NrInfeedLanest,ki,j )− (vt,ki,j −RestInventory
t,k
i,j ) ≤ LaneDepth− 1

(35)

∀i ∈M, j ∈ N , t ∈ T , k ∈ K

6.2 Practical additions

The objective of the current model is to minimize the total travel costs over the time horizon.
This may not be the best objective for operational purposes as there are more factors to be
considered for the allocation schedule to be optimal. In the following sections a few aspects
are further investigated.

6.2.1 Demand Leveling

The model described above follows the Just In Time retrieval policy. The pallets that are
selected for an outfeed order are retrieved the time period the outfeed order is issued. This
strategy makes sure that the SAT warehouse is used as a storage facility and the BOX as
a buffer. However, this strategy can cause peak activity at different moments of the day.
In a warehouse a constant level of activity over the day is desired. A method to level the
activity over the different time periods is to assign a penalty when the total activity in the
warehouse in period i exceeds the average activity over the day. As we assume the supply
flow cannot be shifted over the day, the outfeed orders can be prepared in reserved lanes in
the BOX warehouse. However, the total number of pallets retrieved at period t should be
at least the cumulative demand at period t. Equation [21] can now be altered to:

∑
j∈N

Cumwt,kij ≥

{
Cumdt,ki if k ∈ K0

t

0 otherwise
∀i ∈M, k ∈ K0

T , t ∈ T (36)

Where

Cumdt,ki =
t∑

r=1

dt,ki ∀t ∈ T , k ∈ K (37)

Cumwt,kij =
t∑

r=1

∑
j∈N

wt,kij ∀t ∈ T , k ∈ K (38)
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The equations stated below describe for every period the number of pallets that exceeds
the average activity. If leveling over the periods is desired, the exceeding number of pallets
can be penalized. By defining a CrossTime variable this way, it is implicitly assumed the
warehouse can handle the average activity. If this is not the case, the warehouse is not used
or designed properly. However, this topic falls outside the scope of this thesis.

AverageActivity =
∑
t∈T

∑
i∈M

ati + dt,0i /T (39)

CrossT imet ≥
∑
i∈M

∑
j∈N

(wt,0ij + vt,0ij )− AverageActivity (40)

CrossT imet ≥ 0 (41)

6.2.2 Class Leveling

The type of warehouse considered in this thesis consists of different levels. Each level contains
a shuttle with capacity one to transport pallets to the class(es) located on that level. The
different levels are connected with one or multiple VTs. In a warehouse with this structure,
it is not desirable to have all pallets allocated on one level. If the activity within one time
period is not spread over the different floors, the utilization of the shuttle capacity is not
optimal. One of the consequences of allocating all pallet activity to one level is that the
maximum shuttle capacity is exceeded and not all pallet movements can be executed within
the desired time period. To level the activity over the different floors the following equations
can be used:

ClassAveraget =
∑
j∈N

∑
i∈M

(V t,0
i,j +W t,0

i,j )/|N | ∀t ∈ T (42)

∑
i∈M

W t,0
i,j + V t,0

i,j − LevelAveraget ≤ CrossClassj,t ∀t ∈ T , j ∈ N (43)

CrossClasslj,t ≤ 0 (44)

In equations (42) - (44) the CrossLevelf,t variable is defined. CrossLevelf,t notes the
number of pallets that exceed the average level activity in class j in period t. In practice it
can occur that only a selected group of classes is considered for leveling, because otherwise,
for example, the preferable classes are not filled up if they get leveled. This situation is
probably not desirable.
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6.2.3 Daily Infeed Rate

In the model described so far, there is no distinction made between the different product
pallets that are not retrieved within the time horizon. In practice it might be desirable
to make a distinction between products with a high turnover rate and pallets with a low
turnover rate. In traditional ABC-allocation models, products with a high turnover rate
are placed in the front and products with a low turnover rate are placed in the back of the
warehouse. By including the daily infeed rate/turnover rate, the slow moving products can
be placed deeper in the warehouse than high turnover rate products. The turnover rate
can be based on historical data and future data if it is available. By making a division by
turnover rates, the travelling costs can be reduced over a period beyond the planning horizon
of the proposed model.

The turnover rate can be incorporated in the objective function by assigning storage costs
proportional to the turnover rate. This can be done in several ways. One can add the costs
to the original objective function or the turnover rate can be incorporated by multiplying the
storage costs with the corresponding turnover rate. When using the latter, the proportion
of the storage costs to the retrieval and potential penalty costs will be completely different
and can cause undesired allocation decisions. Therefore we have chosen to incorporate the
turnover rate by adding the values as shown in equation (46).

6.2.4 Planning horizon

By using the daily infeed rate to determine the allocation of pallets, it is useful to model
with a rolling horizon. The length of the horizon has to be at least the maximum of (batch
size of product i / daily demand). By taking this value for the time horizon, at least one
batch of every product has entered the warehouse. The result of this characteristic is that
the most efficient storage location for every product is achieved. The rolling horizon ensures
that this property is always valid.

6.2.5 Objective function

To integrate demand leveling, class leveling and daily infeed rates over the periods, then the
objective function (18) can be altered. For the integration of CrossT imet and CrossClassj,t,
these values can be penalized in the objective function. Equation (18) and (19) can now be
written as:

ZLR = min g0 + maxz∈W̃
∑
k∈KT

gkzk (45)
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s.t. gk =
∑
t∈T

∑
i∈M

∑
j∈N

(sjv
t,k
ij + rjw

t,k
ij ) +

∑
t∈T

(TimePenalty × CrossT imet)

+
∑
t∈T

∑
j∈N

(ClassPenaltyj × CrossClassj,t) +
∑
t∈T

∑
i∈M

∑
j∈N

(TurnoverRate× sjvt,kij ),

∀k ∈ K0
T

(46)

6.3 Model specification

The models that can be applied on a BOX or SAT-warehouse are described in section 6.2.
All different versions of the allocation model have the property of multi pallet deep lanes.
The different versions of the models are declared as follows:

1. The model presented in section 6.1 where the objective is to minimize the total travel
distance with variable supply

2. The model presented in section 6.3.1 where demand leveling is included

3. The model presented in section 6.3.2 where class leveling is also included, for j ≥ 7

4. The model presented in section 6.2 where the daily infeed rate is also included
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7 Validation

Throughout this thesis different additions have been made to the model presented by [1] and
shown in section 5. In section 6 these additions are presented. In this section we will use a
small case to demonstrate the allocation model presented in section 6.2.5. The dataset will
consists out of 3 products, 2 time periods, 4 classes and 2 floors.

7.1 Example

To illustrate the model shown in section 5 this section will be used to show a small example.
This example uses 4 classes, 2 floors and 3 products. The lane depth is 2 pallets and zk = 2
for all k. It is easy to verify in table 2 and 3 that there is enough inventory to meet demand
for all z in each period.

t=1 t=2
i a1i d1i (z̃

1) a2i d2i (z̃
2)

1 10 2+z1 5 2+z4
2 10 5+z2 5 5+z5
3 10 0+z3 5 7+z6

Table 2: Number of arrivals and demand for each product in each period

Class Floor Storage Costs Retrieval Costs Capacity
1 1 10 10 5
2 1 20 20 10
3 2 15 15 7
4 2 30 30 100

Table 3: Warehouse Layout

Let vt,k and wt,k be 3x4 matrices with vt,ki,j and wt,ki,j as their (i, j) entries respectively.
Solving model 1 gives

v1,0 =


2 6 2
8 3 0
0 1 8
0 0 0

 v1,1 =


0 0 0
0 0 0
1 0 0
0 0 0

 v1,2 =


0 0 0
0 1 0
0 0 0
0 0 0

 v1,3 =


0 0 0
0 0 0
0 0 1
0 0 0


v2,k = 0, k = 4, ..., 6
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The matrix v1,0 shows the allocation of product i for class j in period 1. In this example
2, 8, 0 and 0 pallets of product 1 are assigned to class 1 to 4 in the first period. The matrices
v1,1 to v1,3 show that the variable supply of product 1 and 2 are allocated to class 3 and the
extra supply of product 2 may be stored in class 2.

It is easy to see that this allocation complies with the capacity constraint. If we look at
class 2 for example, we see that 8 pallets of product 1 and 3 pallets of product 2 are assigned.
As the capacity is expressed in number of lanes and the lane depth equals two, there are six
lanes occupied by the initially. We can see in matrix v1,2 that the extra supply of product 2
is allocated to class two as well, which fills up the capacity of 7 lanes exactly.

Given the coefficients of vt,k, once supply in period 1 is realized, we can determine the
allocation decisions for period 1 according to v1ij(z̃

1) = v1,0+v1,1i,j z̃1+v1,2i,j z̃2+v1,3i,j z̃3. Supposed
the realized supply is 3, 5 and 2 pallets for product 1-3 resp. Using product 1 for illustration
we have 

v11,1(z̃
1)

v11,2(z̃
1)

v11,3(z̃
1)

v11,4(z̃
1)

 =


2
8
0
0

 +


0
0
1
0

 (1) +


0
0
0
0

 (0) +


0
0
0
0

 (2) =


2
8
1
0


The solution of model 1 shows the coefficients w1,k

i,j as follows

w1,0 =


2 6 2
0 0 0
0 0 1
0 0 0

 , w1,k = 0, k = 1, ..., 6

As we allow retrieval in prior periods, we see that in this example 1 pallet of product 2
and 3 pallets of product 3 are retrieved earlier than necessary. This creates storage space
for period 2, where the allocation is as follows:

v2,0 =


2 4 4
0 0 0
3 1 1
0 0 0

 v2,4 =


0 0 0
1 0 0
0 0 0
0 0 0

 v2,5 =


0 0 0
0 1 0
0 0 0
0 0 0

 v2,6 =


0 0 0
0 0 1
0 0 0
0 0 0


v2,k = 0, k = 1, ..., 3

It may appear odd that in the first period only one pallet of product two is placed in
class 3. This allocation is explained by the allocation in the second period. No pallet is
retrieved from the third class and the lane is filled up with 1 pallet in the second period.
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Due to the symmetry and littleness of this example this solution is not unique, but it is one
of the optimal solutions which is found.

Finally, the retrieval coefficients of the second period are:

w2,0 =


2 4 4
0 0 0
0 0 0
0 0 0

 , w2,k = 0, k = 1, ..., 6

After drawing of this example we can summarize the procedure of the policy as follows:
We first obtain coefficients vt,ki,j and wt,ki,j by solving a linear optimization problem. After
supply is realized in each period t, we derive the factors z̃t. Finally we determine the

operational storage and retrieval decisions according to vtij(z̃
t) = vt,0 +

∑Kt

k=0 v
t,k
i,j z̃k.



29

8 Case studies

8.1 Obedos case

In this section we will apply the models developed in section 5 and 6. We will look at the
effect of the additions in the models on the pallet allocation. Based on the results we hope
to give a founded performance review and a business recommendation for practical usage of
the model. All results in this study are obtained while using the CPLEX 12.5 solver of the
AIMMS 3.13 package on a computer with a Core i5-3380M, 2.90 GHz processor with 8,00
GB RAM.

8.1.1 The Company Obedos

Obedos is one of Ortecs customers where the OptilogX is in operation. Obedos is a French
company which produces instant meals and sandwiches. These products can be found at
almost every gas station in France and parts of Belgium. Thirty-five years have passed
since Obedos began producing and marketing products that are fresh, tasty and innovative.
Today, they are the leader in France in the fresh deli products segment. This independent,
family-owned company employs more than 2,000 staff members.

8.1.2 Data

For this study we have inventory, infeed and outfeed data available over the period 17 April
2011 to 22 April 2011. In this period 438 different products were moved into and/or out of
the warehouse. Almost all activity in the Obedos warehouse takes place from Monday until
Friday. Figure 3 shows the infeed and outfeed activities over this period.

Figure 3: Infeed and Outfeed activities at Obedos

As can be seen in figure 3, the infeed quantity over the weekdays in the studied period is
nearly constant. The outfeed quantity seems to increase over the weekdays. The activity on
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the Saturday is not even half the activity on the calmest weekday. However, it is noticeable
that the outfeed on the Saturday is almost three times higher as the infeed.

When we look at the data, we can apply a form of ABC classification policy. If the
volume of production is set against number of products, we can define an ABC policy for
the pallet storage in a warehouse. Such a policy categorizes products in three groups, A, B
and C. Products in category A are called fast moving products and products in category C
are slow movers.

• A-items are goods which annual consumption value is the highest. The top 70-80% of
the annual production typically accounts for only 10-20% of the total products.

• B-items are the interclass items, with a medium consumption value. Those 15-25% of
annual production typically accounts for 30% of the total products.

• C-items are, on the contrary, items with the lowest consumption value. The lower 5%
of the annual production typically accounts for 50% of the total products.

The ABC classification of Obedos is shown in figure 4. Class A items exist out of 20% of
the products which cover 64% of the weekly infeed. Items in the B-class cover almost 25%
of the infeed and contains 30% of the items. The rest of the products (50%) the remaining
infeed (almost 13%).

Figure 4: ABC Supply Scheme

For test purposes we will only consider the 163 products most commonly produced. This
product group represents 80% of the total weekly storage volume. The rest of the products
are not taken in consideration, because only a few pallets per week are requested. Including
them in the model would make the model very large. These products have little turnaround,
so they could be stored according to a classic ABC storage classification model and do not
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need to follow the single-product lane restriction if necessary as they have so little demand.
To reduce the size of the storage allocation problem, we will only consider variable supply
in the first period. This is also acceptable when the model is used in practice.

8.1.3 Initial Inventory

The initial inventory in the warehouse per product is known for the Obedos case. To incor-
porate this information in the model we have to determine a class in which the inventory
is stored initially. To do this we apply a simple uniform distribution (random number) to
allocate a class to the inventory. When doing this we assume that all pallets of the same
product are stored in the same class.

Class 1 2 3 4 5 6 7 8 9 10 11 12
Nr of Pallets 135 107 92 169 127 154 149 155 136 88 231 167
Nr of Lanes 27 25 20 32 25 29 30 29 28 19 44 35

Table 4: Example Initial Inventory Obedos Case

This procedure is repeated 10 times, so we create 10 different start inventory situations
to test the robustness of the model with respect to the starting inventory. The starting
inventory can be expressed in pallet or lane quantity. An example of this allocation is shown
in table 4. Figure 5 shows the minimum and maximum number of pallets of initial inventory
per class over 10 different simulated start inventories.

Figure 5: The min and max number of pallets in the start inventory for each class

If a model can find a feasible or optimal solution is dependent on the way the MIP
solution tree is searched. Therefore it is important to test the different models and cases
with multiple start inventory instances.
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8.1.4 Capacity

The capacity used in this simulation is divided in two groups. For the first class on every
floor in the warehouse a capacity of 52 lanes is defined. For the classes in the back of the
warehouse a capacity of 100 lanes is used. The lane depth is set as 5 pallets deep. This
means that the classes in the front of the warehouse have a capacity of 312 pallets and the
classes in the back of the warehouse have capacity 600 pallets.

8.2 Case Specification

Data of five days of supply and demand is available. The simulation will have a time horizon
of five periods, where each period represents one day. Every simulation is terminated if the
gap between the lower bound and the best solution is smaller than a certain percentage.
From preliminary experiments the value 5% appeared to be a good choice for the Obedos
case.

8.2.1 Case 1: Stochastic Supply

In the first case a situation is simulated where supply is not deterministic. For every product
an extra supply of two pallets is incorporated. These pallets are allocated to a position in the
warehouse, but not included in the inventory of the next periods. Only stochastic demand is
considered in the first period, because it has no influence on the operational execution of the
upcoming period to incorporate the stochastic supply of the periods beyond the first period.

8.2.2 Case 2: Increased Deterministic Supply

In the second case the supply is defined deterministic, but we now incorporate the ex-
tra potential supply by adding the zk values to the expected supply Supplyti . If we de-
fine the original supply variable as ∗Supplyti , the new input variable supply now becomes
Supplyti =∗Supplyti + zk if t = 1. If t > 1 the supply does not change. The disadvantage
of this method is that the extra supply incorporated stays present in the inventory of the
warehouse for all periods. So when this new supply is not completely met, it still has an
effect on the allocation of pallets in the warehouse. This effect is probably not very large,
due to the fact that every period the simulation can be performed with an accurate inventory
for the beginning of period 1. The advantage however, is that the model is smaller than in
case 1. Especially the number of constrains is reduced significantly.

Case 1 and 2 are described below in terms of variable and constraint size for the first
two models. The difference in size is not very large, due to the fact that for many variables
the value is always equal to zero. For that reason these variables are not considered in the
problem formulation. For model type 3 and 4, the model size will increase by the same
absolute number of variables and constraints as these variables are not dependent on the
index k.
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Model Nr of Variables Nr of Integer Variables Nr of Constraints
Case 1 1,2 57187 23328 37717
Case 2 1,2 52489 21384 34741

Table 5: Cases Obedos

The objective function is the same in both cases. The penalty for every pallet that
exceeds the average activity in a time period is equal to 1. This means that the only
difference between the cases is the fact that in case 1 supply is split in 2 categories and in
case 2 there is only 1 category. Case 1 does not consider the extra potential infeed expressed
in values of z. Therefore the difference in the objective value is created by two causes:

1. The extra expected supply is not considered in the inventory of the next period (period
2).

2. The extra expected supply is not combined with the normal supply, therefore both
types of supply will not share the same lane in the warehouse. So even if there is still
enough rest inventory, the extra expected supply will have a lane allocated separately.

8.3 Results Obedos Case 1

In the first Obedos case, stochastic supply is assumed and anticipated on. The average per-
formance values of the different models are given in table 6. A more detailed representation
of the results is given in the appendix. When solving the models, there are 3 different pos-
sible termination procedures. First, we can have a gap smaller than 5% between the best
found solution and the best lower bound. Second, it can happen that the solver terminates
the procedure when no feasible solution has been found. Last, a user interrupt has taken
place, due to a long computational time and a small marginal improvement on the gap. We
define a solved instance if a feasible solution is found, even if the gap is larger than 5%.

Tabel 6 shows the results of the different model types, using stochastic supply. Each
model has been solved with 10 different starting inventories. The tabel shows the number of
instances where a feasible solution was found, the average gap for which these solutions were
found, the average solving time and the average number of iterations. The tabel also shows
the minimum and maximum gap and solving time for the 10 different starting inventories.



8.3 Results Obedos Case 1 34

Nr Solved Min Max Solving Min Max Number of
instances Obj. Gap gap gap Time (s) Time Time Iterations

Model 1 10 120530 1,96 1,1 4,47 610 303 942 329998
Model 2 8 113683 1,95 1,2 5,26 673 310 3216 340774
Model 3 9 119594 6,23 2,22 17,33 851 92 3553 442989
Model 4 10 116836 3,39 2,02 5,26 770 235 1459 385867

Table 6: Obedos Results with stochastic supply, average values

In table 6 we can see that there are two instances of model 2 where no solution is found,
and one instance of model 3. The average gap of model 3 is higher than 5%, due to the
fact that 2 instances have been terminated by a user interruption. This happened when the
solutions were at a gap of 16,3% and 17,2% and explains the high average gap value.

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 6: Average utilisation for case 1
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It is remarkable to see that model 4 performs the best. As the objective value is small,
it would be rather difficult for the solver to find a solution with a small gap between the
solution and the lower bound. Apparently this has not been the case. We can also see that
model four has found a solution with a gap smaller than 5% for all instances, this opposed
to model 2 and 3.

The utilization of the four different models is stated in figure 6. We can see that the
classes with the lowest costs have the highest utilization in all four models, which is expected.
For model 1-3, the utilization of classes 1 and 2 drop significantly in period 6. This happens,
because it is assumed retrieval takes place after allocation of pallets. So the desired situation
is that all pallets are retrieved in the cheapest class in the last period, because these have
the smallest travel times. Therefore we can say that the results show the expected scenario.

When we compare the different utilization charts, we see that there is not much difference
between the models. We do see that from model 1 to model 4, the utilization is somewhat
more stable over the time periods. However, this is not a very large change.

8.4 Results Obedos Case 2

In the second case we increase the deterministic supply and include these values in the
inventory of the next periods. We expect the total utility of the first period to be smaller
than in the first case. This is because less lanes are reserved for infeed, as the infeed lanes
are filled up first, instead of reserving a separate lane for the extra supply.

Nr Solved Min Max Solving Min Max Number of
instances Obj. Gap gap gap Time (s) Time Time Iterations

Model 1 10 134464 10,12 2,90 18,07 2077 369 3350 1002422
Model 2 10 124464 7,86 2,01 21,97 1303 103 2912 639475
Model 3 10 120045 4,41 1,81 18,12 1109 225 2852 545723
Model 4 10 136531 7,13 1,90 16,47 1458 502 3507 715299

Table 7: Obedos Results with deterministic supply, average values

When we compare the results shown in table 6 and 7, we see that the model based
on stochastic supply is not always able to result in a feasible solution. The second and
third model have 1 and 2 instances respectively where the model types are not able to find
a feasible solution for the given start inventories. As the models which use deterministic
demand have less unfeasible solutions, the solutions that are found have a higher gap with
the lower bound on average. The cause of this lies in the fact that there are 10 instances
where the marginal improvement is very little and the solving procedure is terminated before
a gap of 5% is reached.
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It is interesting to note that if an optimal solution is found, the largest computation time
is 1459 seconds with an exception of 1 case. When no optimal solution is found, the minimal
computation time is 2718 seconds. These numbers indicate that a large computation time
can be set to be a termination condition.

We can see in table 7 that the first model has the most difficulty to find an optimal
solution using deterministic supply. In 50% of the instances a solution with a gap larger
than 5% is found. However, model 2-4 give a total of 4 suboptimal feasible solutions out of
the 30 instances.

When we look at the course of the utilization values in figure 7a - 7d, we see that the
changes within the model types have a larger effect on the utilization than in the previous
case. When we look at the utilization of the first model, we see that after the first period,
the utilization decreases by 40% for class 6 and higher. This behavior can be caused by the
increase of supply in these types of models. This can cause a large decrease in the second
period. After period 1, the utilization values increase over time. We see that every addition
to the models smooth out the utilization over the periods, where there is almost no variation
of the utilization in each class in the fourth model.

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 7: Average utilization for case 2
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We have now performed an overall analysis of the different models and cases. In the next
section we will analyze the impact of the different model types. We will look at one start
inventory instance when comparing the different model types.

8.5 Detailed analysis on the different model types

To see what effect the different versions of the objective function described in section 6.3
have, we will devote this section to look at the different models in more detail. This analysis
will be based on the start inventory set of instance 1 where stochastic supply is used.

8.5.1 Smoothing of periodic activity

When we add the penalty when the activity in a period exceeds the average activity, we
observe that this creates a shift of 0,88% in the allocation of pallets over time. The highest
allocation and retrieval activity takes place in the first period. We can explain this by looking
at the number of early retrieval actions in this period. Pallets can be retrieved in an earlier
time period as they are required for outfeed. This property is described in equation (36) and
can cause early retrieval actions. However this can cause activity smoothing over the time
periods, we see that when the penalty of timecrossing is not high enough, the penalty costs
of timecrossing do not exceed the benefits of early retrieval. In practice this might not be
the desired outcome.

To prevent this effect the penalty costs for timecrossing can be increased, which forces
the model to reduce early retrieval activity in the first period. When the penalty costs
are doubled, we observe a reduction in early retrievals of 0.93%. Remarkable is that when
penalty costs are increased tenfold, the number of early retrieved pallets increase by 10%.
This may not be the desired outcome, so we see that tuning of the penalty costs is very
important.

8.5.2 Smoothing of level activity

When creating smoothing of activity over levels, we have assumed that only smoothing of
the more expensive classes is wanted. In the Obedos case, this means only classes 7-12 have
to deal with CrossClass penalties. When testing the influence of the CrossClass penalties,
we will compare the activities in the considered classes of model 2 and 3. The results are
shown in figure 8 - 10. Only the first period exceeds the CrossClass average and this can
be explained by the assumption made on the start inventory. Activity is forced in the first
period, as it is assumed all pallets of a product are stored in the same class when the start
inventory is determined. In practice, this will not be the case and a representative image is
the activity in periods 2-5, where inventory is not forced in the more expensive classes.

However, we can still see that the penalty values influence the activity on an overall level,
as the total activity in these classes are reduced especially in the first period. Further, we
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can see that an increase of the penalty values has a positive effect on the smoothing between
classes.

Figure 8: Activity model 2, class 7-12

Figure 9: Activity model 3, Penalty = 1, class 7-12
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Figure 10: Activity model 2, Penalty = 3, class 7-12

8.5.3 Including turnover rate

To influence the placement of pallets that are not retrieved within the time horizon, we will
include the turnover rate of each product in the objective function. The desired effect is that
products with a high turnover rate are placed in a less expensive class than a low turnover
rate product. We can measure this by taking the average class the pallets are allocated at
infeed. This number can tell us if high turnover pallets are actually placed more in front of
the warehouse, as we wish to accomplish. To create a more representative result, we only
consider the infeed allocation over all periods.

In figures 11 - 13, the average class the pallets are placed are set out per product. The
products are sorted on turnover, where product 1 has the highest turnover and product 162
has the lowest. We have determined the trend and the coefficient of determination, R2.

Figure 11: Average Class Allocation model 1
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Figure 12: Average Class Allocation model 4, Penalty = 1

Figure 13: Average Class Allocation model 4, Penalty = 10

We see that the trend increases slightly when we incorporate the turnover rate, from
0,007 to 0,0085. However, this is not a significant increase and we can therefore conclude
that the addition of the usage of turnover rates does not have the desired effect. Including the
turnover rate in the model does have an effect on the R2-value. When the penalty increases,
the error decreases. This is the desired result.

8.6 Bound Convergence

When solving a mixed integer problem (MIP), the optimal solution is found by using a search
tree. The path of this procedure is shown in figure 14 and figure 15. The path of the lower
bound shown in these figures is typical behavior for these models. Both cases have a similar
order of execution time and both cases seem to have one point in the process where the
decrease stagnates. Nonetheless, case 1 appears to converge faster to the lower bound than
case 2. So in the case a time constraint on the execution time is applied, the model with
stochastic supply would have a higher probability to give a solution with a smaller gap than
the model using deterministic supply.
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Figure 14: Convergence of bounds model 1, case 1

Figure 15: Convergence of bounds model 1, case 2

8.7 Model evaluation

Now that we have applied the model to a practical case, we can evaluate the results. We
have split the models up in two cases: stochastic and deterministic supply. In the first case,
where supply is stochastic, we use factors to incorporate the uncertain supply. In the second
case we add the expected uncertain supply to the normal expected supply.

We have seen that the model based on stochastic supply is not always able to result in
a feasible solution. However the model which uses deterministic supply has found a feasible
solution in all 40 instances, but it takes much longer on average to find a solution with a gap
smaller than 5%. One way to avoid this property is to use a termination criterion based on
solving time and marginal improvement of the objective function.

When we look at the influence of the different model types, we see that the additions
made to the objective function have more effect in the cases with deterministic supply. This
can be explained by the fact that the models which use stochastic supply have reserved an
excessive number of lanes. This creates robustness, but also inefficient use of the warehouse.
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There are two main causes which lead to the differences in results between the two cases.
First, the extra uncertain supply is not considered in the inventory of the next period in the
first case. Second, this extra supply is also not combined with the normal expected supply.
This means that in the first case more lanes are reserved than may be necessary. This leads
to inefficient use of the warehouse, especially for products with a low supply.
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9 Discussion

This section discusses some of the choices and assumptions that are made in this study.
The purpose of this section is to investigate which assumptions are made and whether the
proposed models are applicable to other cases as well.

9.1 Assumptions

First we will discuss some assumptions that are made in this study.

During the allocation of pallets, we assume single-product lanes. This means that only
pallets with the same product type are stored in the same lane. In practice, this causes lanes
to not be filled up to capacity, which can lead to inefficient use of the warehouse. As the
models presented are used for a tactical purpose, the operational software can correct for
this assumption. Pallets which are expected to leave the warehouse earlier than other pallets
can be stored in front of each other without the need to excavate at the moment of retrieval.
Another consequence of this assumption is that the overall capacity of the warehouse can be
exceeded. Due to the inefficient use of space, especially when the factor-based models are
used, this can lead to infeasible instances.

When the allocation of pallets is determined in the model, it assumes that all lanes within
a class are exchangeable. In other words, it assigns equal travel times/costs to each lane in
the class. In practice this assumption is acceptable when the sizes of the classes are relative
small. If not, the travel distance within a class can differ very much, which makes this a
nonrealistic assumption.

By allowing the possibility of early retrieval in constraint (36), we assume that the model
is applied on a forward and reserve warehouse. The retrieved pallets can then temporarily be
stored in the forward section of the warehouse. If this is not the case, this constraint should
be strict like stated in constraint (21). This will limit the solution space of the models and
can lead to longer solution times.

One other characteristic of the warehouses these models can be applied on, are the
property of fixed and equal lane depths. We have assumed all lanes within the warehouse
have equal depth. In many warehouses this does not have to be the case. It could be that
the depth of the lanes variate in different areas of the warehouse and even the lane depth
does not have to be fixed over time. For instance at the Obedos warehouse, the lanes in
the middle of the warehouse can be entered from both sides. In the case studies we have
separated these lanes by using a fixed lane depth and both sides of this lane are even assigned
to different classes. If the lanedepth is variable, it means the only restriction on these lanes
is the total length of the lane.

The basis of all models presented in this study is the availability of supply and demand
information. If this information is not available of incorrect, this will cause the model to
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perform badly with respect to the real demand and supply. For the application of all model
types presented in this study it is important that the data is available and corresponds with
reality.

9.2 Penalty weights

The additions made to the basic model, introduced in section 6, have corresponding penalty
weights. The values of these weights will determine the behavior of the pallet allocation
model. This can be an advantage for the user, as he can increase the penalty on the aspects
he finds of importance. In this study, the assignments of penalties to the CrossLevel and
CrossTime variable have been set to different values. It has shown that an increase of the
penalty value has the desired effect, see section 8.5.1. So when the models which include
penalty costs are applied in practice, it is important to thoroughly test the models before
setting a fixed penalty value.

9.3 Generality of the model

All conclusions made in section 8 are based on the Obedos warehouse and data. However,
the models used can easily be altered to warehouses with a different lay-out or product range.
The lay-out can simply be altered to the desired form by changing the lanedepth and the
capacity of the classes. The models could even be applied on single-unit storage facilities, for
which the lanedepth would be set to 1. These attributes make the models widely applicable.
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10 Conclusion

The allocation of pallets while minimizing travel in a unit-load warehouse is a complex
and nontrivial problem. The problem becomes more complex by the fact that supply and
demand are determined by sources outside the warehouse, like production plants. It is
therefore challenging to find an efficient storage-retrieval policy for the warehouse.

In this study we have taken a closer look at the storage and retrieval model used by
Ang et al. (2012). We have ellaborated on the factor based storage and allocation model
which can handle uncertain supply and variable demand. This model is compared to the
storage-retrieval model based on deterministic supply.

The results of both models show some essential differences in outcome. One important
aspect is the solvability of the models. In the first case, there are some instances which
could not be solved, which limits the practical usage of the model. If a feasible solution was
found in the first case, in almost all cases a solution with a gap smaller than 5% was found
in reasonable time.

For every model which can handle deterministic supply, we have found an feasible solution
within a few seconds (gap is less than 50%). We can also determine a maximal solving time,
for a solution within a 5% gap per model. So a computation time based termination criteria
can be constructed based on test cases. There is a window of computation time, where we
can terminate the procedure knowing that no better solution will be found soon. This causes
a tradeoff between the hope for a better solution, and saving of computation time.

The effect of the additions of the different models can be tuned by adjusting the associated
penalty costs. The more developed the model, the less clear the effects of increased penalty
costs get. A higher penalty cost can have an undesired effect as can be seen by the increased
penalty of timecrossing.

10.1 Business recommendation

After these results, we can conclude that the models where deterministic supply is used are
recommended to Ortec. It is expected that this model will perform better than a rule based
heuristic used to allocate pallets. It has also shown in previous research that this model
shows better results than the classic ABC-storage model. These types of models have shown
to always be able to find a feasible solution. In practice this is a desired attribute for a model
to have, even if the solution found is not optimal. It depends on the characteristics of the
products and the design of the warehouse which specific model type is recommended.

As a tactical allocation tool it is also important to have a supporting operational system.
Some assumptions made, like single product lanes, can be ignored by the operational software
of the warehouse. This way, the warehouse can be used even more efficient than the allocation
model shows.
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11 Appendix

11.1 Result tables

The following tables show the results of the Obedos case with all model types described in
section 6.3.

Objective value Gap Solving Time Iterations Notes
1 118542 1,1 357 171548
2 120362 1,45 452 249196
3 118802 1,16 303 157558
4 121349 1,72 499 280381
5 123966 4,47 942 527070
6 122027 2,56 788 413211
7 120776 1,75 556 291317
8 121011 2,63 879 488626
9 118691 1,26 916 491270
10 119777 1,53 408 229804
Average 120530 1,96 610 329998

Table 8: Model 1 with stochastic supply

Objective value Gap Solving Time Iterations Notes
1 111710 1,2 373 187820
2 113489 1,4 508 266682
3 LB: 110579 3216 1107893 solver termination
4 114688 1,81 1192 570212
5 LB: 111621 2371 825910 solver termination
6 118405 5,26 1216 585525
7 113614 1,44 498 267262
8 112389 1,22 310 159738
9 112131 1,64 861 447002
10 113034 1,69 427 241953
Average 113683 1,95 673 340774

Table 9: Model 2 with stochastic supply

Zonder k en alleen storage and retrieval costs
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Objective value Gap Solving Time Iterations Notes
1 112974 2,22 92 57370
2 116133 3,23 222 137210
3 134201 17,33 3553 1830951 User Interrupt
4 119387 5,29 934 454505
5 114106 1,77 202 109648
6 LB: 112743 2799 1087525 Solver termination
7 134225 16,16 1950 1013938 User Interrupt
8 115487 3,46 186 111190
9 114669 3,48 261 129410
10 115168 3,14 256 142680
Average 119594 6,23 851 442989

Table 10: Model 3 with stochastic supply

Objective value Gap Solving Time Iterations Notes
1 114228 2,02 949 470455
2 116640 3,86 1166 611558
3 114462 2,01 1459 748878
4 116829 2,16 818 396271
5 119590 5,26 674 361678
6 118768 4,12 235 137090
7 117223 3,02 1253 584031
8 117281 3,94 560 235853
9 115651 3,29 238 139436
10 117690 4,21 347 173420
Average 116836 3,39 770 385867

Table 11: Model 4 with stochastic supply
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Objective value Gap Solving Time Iterations Notes
1 122720 2,9 369 173971
2 145301 16,9 2718 1356320 User Interrupt
3 125884 4,99 2104 1057222
4 127436 4,78 1036 499207
5 126826 4,98 896 473536
6 142267 14,83 3119 1481921 User Interrupt
7 122728 1,48 1031 484190
8 145911 17,93 3172 1668004 User Interrupt
9 139180 14,34 3350 1452059 User Interrupt
10 146386 18,07 2970 1377792 User Interrupt
Average 134464 10,12 2077 1002422

Table 12: Model 1 with deterministic supply

Objective value Gap Solving Time Iterations Notes
1 116293 3,17 504 240082
2 116504 2,12 103 62630
3 116649 3,07 787 409836
4 119397 3,73 687 353939
5 145982 21,97 2912 1441835 User Interrupt
6 138779 17,31 2589 1277219
7 143852 20,4 2082 1045773
8 116307 2,61 209 111866
9 115149 2,21 253 126648
10 115725 2,01 2905 1324924
Average 124464 7,86 1303 639475

Table 13: Model 2 with deterministic supply
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Objective value Gap Solving Time Iterations Notes
1 115278 1,81 234 126782
2 117775 2,41 836 429241
3 115768 1,84 558 266816
4 122013 5,19 832 407211
5 117525 2,42 2137 968211
6 141081 18,12 2852 1480216 User Interrupt
7 118861 3,08 1253 574502
8 116483 2,18 225 125268
9 119485 5,24 1058 517687
10 116184 1,85 1100 561299
Average 120045 4,41 1109 545723

Table 14: Model 3 with deterministic supply

Objective value Gap Solving Time Iterations
1 127705 2,2 502 262777
2 151601 16,47 2900 1521056 User interrupt
3 131488 4,69 813 389598
4 156840 18,8 2624 1238000
5 128722 1,83 546 262803
6 149662 15,02 3507 1710221 User interrupt
7 133936 5,24 831 398412
8 129865 3,27 997 512046
9 127316 1,9 1302 570666
10 128172 1,92 557 287406
Average 136531 7,13 1458 715299

Table 15: Model 4 with deterministic supply


