

Identifying the level of agile in software development projects and
what will be the effect?

Niels Oomen, BEng
Student number: 360324

The Thesis Committee for Niels Oomen
Certifies that this is the approved version of the following thesis:

Identifying the level of agile in software development projects and what will
be the effect?

APPROVED BY
SUPERVISING COMMITTEE:

Supervisor:

dr.ir. Ton van der Wiele

Co-reader:

dr. Paul Beije

Identifying the level of agile in software development projects and what will
be the effect?

by

Niels Oomen, BEng

Master Thesis

Presented to the Rotterdam School of Management for the Degree of:

Master of Science in Business Administration

Rotterdam School of Management
Erasmus University

August 2013

© www.dilbert.com

The copyright of the Master thesis rests with the author. The author is responsible for its

contents. RSM is only responsible for the educational coaching and cannot be held liable for

the content.

Copyright by

Niels Oomen, Augustus 2013

Preface

The master thesis, in front of you, is the end result of the part-time study Master of

Science Business Administration at the Rotterdam School of Management, Erasmus

University. With this thesis a period of two years will be finished. An intensive period with

evening colleges two times a week and finding a balance between study, personal life and a

fulltime job. It was a long and sometimes a difficult journey, but I’m glad I did it. It resulted in

new knowledge (also about myself), but also in new friends.

It is not possible to fulfill this study without help, so from this position I would like to

thank some people. First I would like to thank my colleagues of Transtrack International and

especially Ronald van Vliet and Theo DeOliveira who gave me the opportunity to follow this

education and give me the time to do this. Second I would like to thank my coach, Ton van der

Wiele for his input and feedback. Especially during the moments I was lost or blind for

possible problems. Also I would like to thank my co-reader Paul Beije for his feedback and

comments.

Further I would like to thank my family and friends, who accepted my absences and

lacks of being family or a friend the last two years or who helped me to succeed this study

with all their help in their own way.

Last, but not least I would like to give special thanks to my wife and my sons. Riana,

without your sacrifices the last two years I was not able to this study at all. Thank you for all

your help, input and encouragements to me. Twan, from now on I will spend unlimited hours

in the swimming pool with you. Roel, you only will hear the stories about daddy’s absences

for his study from your big brother, you will never experience it.

Thank you all so much.

Niels Oomen
August 12th, 2013

 vi

Executive summary

We live in a society that is and will be a more and more digital environment, both

private and work related. Most of the products we use contain software or we use a

software system. It is a discussion for several years now how the software development

process should be controlled to deliver the software faster, better and cheaper. The most

common way to deliver software is via the waterfall method. This way of working means

decide early and deliver slowly. This approach of working has been changed into a more

adaptive way, this means decide late and deliver fast. This last method is called: Agile.

The purpose of this study is to investigate the effects if a higher level of agile will

increase the quality of a software development projects.

For this study the chosen research strategy is a survey. The major objective of

this research is to test the probabilistic relation between the level of agile software

development projects and four elements of a software development project: quality of the

software, project finished within budget, project finished within budget and project

finished within scope. The data for this research were gathered by using an online survey

with 33 questions. The empirical part of this research was conducted in between June and

July 2013. The subjects were selected based on agile user groups at LinkedIn.

Based on the data analysis it can be concluded that there is no significant

relationship between the project elements (budget, planning, scope and quality) and the

level of agile. Looking to the initial research question: “Will the, level of the agile

working method, influence the quality of a project?” the results did not support the

expectations that a higher level of agile will increase the total quality of a project.

Although the outcome is not significant some directions of the relations can be are

interesting. Therefore it is the advice to do further research to the level of agile and the

relation between the quality of software development projects in future studies.

 vii

Table of Contents

Preface ... v	

Executive summary .. vi	

List of Tables .. ix	

List of Figures .. x	

Chapter 1: Introduction .. 11	

1.1	
 Introduction ... 11	

1.2	
 Research questions and conceptual model .. 12	

1.3	
 Theoretical and practical relevance ... 14	

1.4	
 Research methodology .. 14	

1.5	
 Structure of the thesis .. 16	

Chapter 2: Literature review .. 17	

2.1	
 Software development ... 17	

2.2	
 Agile Software development ... 20	

2.2.1. Characteristics of Agile Software development 24	

2.2.2. Levels of agile ... 25	

2.3	
 Software development quality ... 27	

2.4	
 (Software) Project Management .. 31	

2.5	
 Theory and propositions .. 34	

Chapter 3: Methodology .. 37	

3.1	
 Research design ... 37	

3.2	
 Data collection ... 38	

3.2.1 Sample selection ... 38	

3.3	
 Data analysis .. 39	

3.3.1 Level of Agile ... 40	

3.3.2 Project planning & budget .. 41	

3.3.5 Project scope ... 41	

3.3.5 Software quality .. 41	

 viii

3.4	
 Validity and reliability ... 42	

3.4.1 Validity ... 42	

3.4.1 Reliability ... 42	

Chapter 4: Analysis & Results .. 43	

4.1	
 Descriptive ... 43	

4.2	
 Level of Agile .. 44	

4.3	
 Level of Agile versus Project elements ... 46	

4.3.1 Level of Agile and planning ... 46	

4.3.2 Level of Agile and budget .. 47	

4.3.3 Level of Agile and quality .. 48	

4.3.4 Level of Agile and scope .. 49	

Chapter 5: Conclusion & Discussion .. 51	

5.1	
 Discussion & Limitations .. 51	

5.2	
 Conclusion ... 52	

5.3	
 Future research .. 53	

Chapter 6: References .. 54	

Appendix A: Agile methodologies .. 58	

Appendix B: Survey .. 59	

 ix

List of Tables

Table 1: Research design ... 15	

Table 2: Problems related to the waterfall method. ... 19	

Table 3: Principles of Agile software development .. 21	

Table 4: Comparison of Agile versus Traditional ... 22	

Table 5: Level of agile ... 26	

Table 6: Characteristic of software quality ... 28	

Table 7: Perspectives of quality .. 29	

Table 8: Characteristics manufactures view .. 30	

Table 9: Characteristics & metrics of an agile method ... 34	

Table 10: LinkedIn user groups ... 39	

Table 11: Example agile level calculation ... 40	

Table 12: Respondents per country ... 43	

Table 13: Used agile methods ... 44	

Table 14: Level of agile & respondent agile score .. 45	

Table 15: Regression analysis of agile level and project planning 46	

Table 16: Regression analysis of agile level and project budget 48	

Table 17: Regression analysis of agile level and software quality 49	

Table 18: Regression analysis of agile level and scope .. 50	

 x

List of Figures

Figure 1: Conceptual model .. 14	

Figure 2: Waterfall model ... 18	

Figure 3: Iron Triangle .. 32	

Figure 4: Conceptual model .. 36	

Figure 5: Level of Agile results ... 45	

Figure 6: Level of Agile & Project Planning ... 47	

Figure 7: Level of Agile & Project budget .. 48	

Figure 8: Level of Agile & software quality ... 49	

Figure 9: Level of Agile & Scope ... 50	

 11

Chapter 1: Introduction

This chapter will give an introduction about this research and will contain five

paragraphs. The first paragraph will provide a general introduction of the research. It

follows with the research questions and the conceptual model. The third paragraph will

discuss the theoretical and practical relevance of this research. Then the research

methodology is described and the last paragraph explains the structure of this thesis.

1.1 INTRODUCTION

We live in a society that is and will be a more and more digital environment, both

private and work related and most of the products we use contain software. As a result of

this, all kinds of projects will have a relationship with IT or contains an actual software

implementation. This can be a brand new software application or an upgrade of a current

system. We experience this every day. It can be an upgrade of the Microsoft Office

software at home, the warehouse inventory system at work or an update of an app on our

smartphone or tablet. The enormous amount of products, which includes software, is too

large to describe. Without knowing it, software is all around us: computers & smartphones,

plains, trains, equipment in hospitals, ATM machines, etc. The list of products we use,

where software is involved, is just extremely long. It's what lets us get cash from an ATM,

make a phone call, and drive our cars. Just to give an example based on (Goldstein, 2005):

General Motors Corp. estimated that by 2010 its cars would each have 100 million lines of

code. The user is not thinking about the software of the car, the user is expecting a perfect

car to drive from A to B.

We use software direct or indirect and work or private related on a daily basis. How

come that, those IT implementations often result in a failure? This means that the

 12

implementations were delayed, cancelled or abandoned (Charette, 2005) and (Goldstein,

2005). Based on research 32% of the IT projects are successful (on time, within budget and

fully functional) (Standish Group International, 2010). This means that 68% of the IT

projects are not successful! A claim is often that the software development process is not

perfect (Chow & Cao, 2008). The manner in which the software development takes place is

mostly time consuming and the different projects are delivered with a delay or cancelled.

It is a discussion for several years now how software development should be

controlled to deliver the software faster, better and cheaper (Dybå & Dingsøyr, 2008).

According to (Petersen & Wohlin, 2009) it is much more important to be more flexible in

handling changes of requirements, so software can be delivered quickly to the market.

The most common way to deliver software is via a predictive way, which is called

the waterfall method (Royce, 1970). This way of working means decide early and deliver

slowly. This approach of working has been changed into a more adaptive way, this means

decide late and deliver fast. This last method is called: Agile. Based on a survey in 2008

among 3061 companies in 80 countries, 25% of the respondents realized more than 25%

improvement on productivity and 30% of the respondents realized a reducing of software

defects by more than 25% (Versionone, 2008). Looking to the situation that agile software

development is more adopted in the software development society over the last years and

has been successful (Versionone, 2008) does it really make a difference and how will it

make difference? Will agile software development methods increase the quality of a

software development projects?

1.2 RESEARCH QUESTIONS AND CONCEPTUAL MODEL

The objective of this research is to contribute to the theory about the level of agile

working methods and the aspects (dependent concepts) of a project. The starting point for

 13

all propositions will be the same: The level of the agile working method. All this will lead

to the following general research question:

Will the, level of the Agile working method, influence the quality of a project?

This study will look into agile software development projects and what the results

are by using this method within a project. It is not a comparison between agile and non-

agile projects, because it is hard to compare two different development methods within the

same project. The research can be split up in two parts: 1) Agile development methods and

2) project management concepts: budget, scope, planning and quality. First the literature

review will have a focus on agile software development with a brief overview of software

development in general. Second the literature review will have an outline of the concepts of

project management related to software projects, also known as the Iron Triangle

(Atkinson, 1999). The literature review will lead towards the following propositions:

• P1: When the level of the “agile” method is higher, then it is likely that the
quality of the software higher.

• P2: When the level of the “agile method is higher, then it is likely that the
project will finish more closely to the estimated budget.

• P3: When the level of the “agile” method is higher, then it is likely that the
project will finish more closely to the estimated deadline (planning).

• P4: When the level of the “agile” method is higher, then it is likely that the
project will finish more accurate within in the defined scope.

Based on the exploration of the literature about agile software development methods

and the concepts of project management I have the claim that the higher the level of the

used agile software development method, the better the result of each aspect of the project

management will be. This all will lead towards the following conceptual model:

 14

Figure 1: Conceptual model

1.3 THEORETICAL AND PRACTICAL RELEVANCE

This research will have a theoretical relevance and a practical relevance. The

practical relevance will look to the results of implementing an agile working method for

projects in general and how will this have an effect on the quality of a project and specific

for agile software development projects. Further this thesis will support the theory related

to agile software development projects and how quality of a project and the effect of the

agile working method implementation can be measured and if a agile method will result in

better quality, like mentioned in the literature.

1.4 RESEARCH METHODOLOGY

The methodology for this research will be a survey. This research will test the

probabilistic relation between the level of agile working methods in software development

projects (independent concept) and the four dependents concepts of the projects: 1) quality

of the software, 2) project finished within budget, 3) project finished within budget and 4)

project finished within scope. This research will be executed based on the research

approach, which is defined by (Dul & Hak, 2008) and visible in Table 1: Research design.

Level of agile in software
development projects

Quality of software

Project within budget

Project within planning

Project within scope

+

+

+

+

 15

An experiment is the preferred research strategy (Dul & Hak, 2008), but will not be feasible

due to the available time. The current research needs to be done within six months.

Developing software will take longer than six months. The second reason for not using the

experiment as a research study is because of testing a probabilistic relation. To generalize

the outcome a large number of instances (“Large N”) are needed. The best way to do is by

using a survey a research strategy. A survey strategy will be used during this research. To

collect the data an online questionnaire tool will be used. The instances will be found via

specific focus groups within the agile community. An example will be to use social media

(LinkedIn) to contact project managers of software projects who are using agile methods.

The limitation is that software projects need to be executed based on agile methods.

Phase Research project step
Preparation 1) Define research topic
 2) Define the general research objectives and the

general type of research
 3) Define the specific research objectives and the

specific type of research
Research 4) Choose the research strategy
 5) Select instances
 6) Conduct measurement
 7) Conduct data analysis
Implications and report 8) Discuss results
 9) Report the research
Table 1: Research design
Source: (Dul & Hak, 2008)

 16

1.5 STRUCTURE OF THE THESIS

This thesis is having five chapters and will have the following structure. Four

chapters follow after this first introductory chapter. Chapter two will present the literature

review, the final propositions and conceptual model. Chapter three describes the research

methodology. The data analysis will be presented in chapter four. The final chapter will

contain the conclusions and discussion.

 17

Chapter 2: Literature review

The objective of the chapter is to present a review of the available literature relevant

for this research. This chapter will begin by giving a historical explanation about software

development in general. In the second paragraph there will be a clarification about agile

software development. This clarification will contain a general introduction, advantages

and characteristics of agile software development. In the third section software

development quality will be discussed and in paragraph four the relation between software

development and project management will be explained. The last part of this chapter will

be a summary of the theory including the propositions.

2.1 SOFTWARE DEVELOPMENT

The terminology of software development or software engineering was initially

defined at the NATO Science Conference in 1968 (Ehlers, 2011), but has been changed /

updated over time. In this thesis the definition of software engineering or software

development of (IEEE, 1990) will be used:

‘The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software.’

Software development is not only writing code, but includes also the whole

software development process (Ehlers, 2011). Since the introduction of software

development in the late 60’s, several methodologies have been introduced (Huo, Verner,

Zhu, & Babar, 2004). According to (Cugola & Ghezzi, 1998) the waterfall method is the

most broadly known method in the software development community. The waterfall

method is introduced by (Royce, 1970) and contains the following general steps in the

software development process: Requirements, Design, Implementation, Validation and

 18

Maintenance. The basic principle is that the waterfall development method proceeds in a

linear approach (Cugola & Ghezzi, 1998), is that this process is not a cycle. According to

(Brooks, 2012) and (Hoogendoorn, 2012) one of the main problems is that it is almost

impossible to go a step back to the previous step. The phases are a one-off and need to be

executed in the correct sequences. The waterfall method is a method that is sufficient for

extending a known solution (Brooks, 2012). In Figure 2: Waterfall model the waterfall

method is visualized.

Figure 2: Waterfall model
Source: (Ehlers, 2011)

In his white paper (Royce, 1970) already indicated that the waterfall method is not

sufficient. According to (Hoogendoorn, 2012) Royce is describing a software development

method how it should not work. Royce supports a “do-it-twice” method, where software is

delivered in smaller parts and where customer involvement is needed.

Criticism to the waterfall method is that it is slow and bureaucratic (Van der Klis,

2009) and it does not fit into the way of working of the developers nowadays (Larman &

Basili, 2003). According to (Hoogendoorn, 2012) most of the projects have been executed

based on the waterfall method (or variations on this model). When looking to those

 19

projects, there are some key problems that can be identified (Hoogendoorn, 2012). Those

key problems are visible in Table 2: Problems related to the waterfall method.

Problems in
Waterfall Projects

Description

Knowledge
disappears

Each phase is executed by a specific role, this role disappears when the phase
is completed and therefor the knowledge. It is also not possible to document
everything.

New Insights Each phase will give the project team more information (new insights), but it
is not possible to use this. All deliverables of previous phases completed.

Changing
requirements

All requirements are completely elaborated in previous phases, so adding
new requirements are inefficient and expensive.1

Complete At the end of a phase the deliverable will not change anymore, so everything
needs to be completed for 100%. A new requirement in a next phase is an
imperfection of a previous phase. This will lead to delays in early phases.

To much
documentation

In many cases there is too much documentation that it almost impossible to
develop, imagine testing.

Estimation
difficulties

Each phase requires its own activities and pace, this makes it hard to predict
the lead-time needed for this phase (or activity).

Late risk’s Testing can only start when code is fully delivered. Solving errors will have
higher costs when found in each later phase. The costs will increase
exponentially.2

Table 2: Problems related to the waterfall method.
Source: (Hoogendoorn, 2012)

The waterfall method is a method that is sufficient for extending a known solution

(Brooks, 2012). If the waterfall method is giving many problems, why is it still being used

in software development projects? The waterfall method is an easy to use mode and is easy

to explain, the waterfall method gives the impression that it is predictable and measurable

and people are conservative and do not want to change (Hoogendoorn, 2012). Hoogendoorn

(2012) continues that the waterfall method is a method that will not work and never have

worked. The method should change from waterfall to iterative. Interesting from the initial

study of (Royce, 1970) is that he actually refers to an iterative process (Hoogendoorn,

2012) and that it is different than the original explanation of the waterfall model (Ehlers,

1 On average 20 to 25 percentage of the requirements will change during a project (Hoogendoorn, 2012)
2 Boehm’s law, 1987

 20

2011). Ehlers continues his criticism with the fact that the paper of Royce in most cases

only is referenced than read. A different approach to develop software is by using an agile

method. In the next paragraph there will be an explanation about the characteristics of the

agile software development method.

2.2 AGILE SOFTWARE DEVELOPMENT

The most traditional way of software development, as discussed before, is using the

waterfall method. For several decades both developers and users have spent significant

amounts of time to improve this methods (Huo et al. (2004). One of the major innovations

in software development methodologies of the last few years has been the introduction of

agile principles (Vlaaderen et al. (2011). Several companies, from small to large

multinationals have adopted the agile methods (Dingsøyr et al. (2006). Previous studies

have shown that agile software development methods can lead to significant benefits (Mann

& Mauer, 2005) and (Versionone, 2008).

Agile software development finds it origin in 2001 when a manifest was published

by a group of software practitioners and consultants (Abrahamsson et al. (2002). This

manifest is called the: Agile Software Development Manifesto and contains four core values

for the agile community. Those core values are3:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change over following a plan.

Next to four core values, the agile manifesto also contains twelve principles, which are

visible in Table 3: Principles of Agile software development.

3 http://agilemanifesto.org

 21

Principle Description
Customer
satisfaction

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

Accept changes Welcome changing requirements, even late in development. Agile
processes harness change for the customer's competitive advantage.

Iterative Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

Cooperation Business people and developers must work together daily throughout the
project.

Motivation Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

Direct
communication

The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

Working software Working software is the primary measure of progress.
Sustainability Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace
indefinitely.

Continuous
improvement

Continuous attention to technical excellence and good design enhances
agility.

Simplicity Simplicity--the art of maximizing the amount of work not done--is
essential.

Self-organizing
teams

The best architectures, requirements, and designs emerge from self-
organizing teams.

Regular reflecting At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behaviour accordingly.

Table 3: Principles of Agile software development
Source: http://agilemanifesto.org/principles.html

As mentioned earlier, agile is different from the traditional way of software

development, but what is agile actually and especially agile software development?

According to (Boehm, 2002) agile is a reaction against traditional methodologies, also

known as rigorous or plan-driven software development methodologies. Looking to the

methodologies we see that there are different methods, with all their own advantages or

disadvantages. The six most common (Van der Klis, 2009) agile methodologies are:

Extreme Programming, Crystal Methods, Scrum, Rational Unified Process (RUP),

Dynamic Systems Development Method (DSDM) and Adaptive Software Development

 22

(ASD). In Appendix A: Agile methodologies, there is a description of each of the six

methodologies, based on (Abrahamsson et al. (2002).

This research is not a comparison between agile development methods versus the

traditional development methods, although it is good to have a look to the differences

between those two ways of software development. Both agile software development and

the waterfall (traditional) method have their advantages and disadvantages. In Table 4:

Comparison of Agile versus Traditional a comparison is displayed of the differences

between agile methods and traditional methods (Awad, 2005).

 Agile Traditional / Heavyweight4
Approach Adaptive Predictive
Success Measurement Business value Conformation to plan
Project Size Small Large
Management Style Decentralized Autocratic
Perspective to change Change adaptability Change sustainability
Culture Leadership-Collaboration Command-control
Documentation Low Heavy
Emphasis People-oriented Process-oriented
Cycles Numerous Limited
Domain Unpredictable/Exploratory Predictable
Upfront planning Minimal Comprehensive
Return on investment Early in project End of project
Team size Small/creative Large
Table 4: Comparison of Agile versus Traditional
Source: (Awad, 2005)

Agile software development has been a topic for literature and debates for several

periods. Yet, academic research on this theme is rare (Abrahamsson et al. (2003). Most of

the publications are written by practitioners and consultants (Abrahamsson et al. (2003).

4 The waterfall method is a so-called heavyweight methodology (Awad, 2005)

 23

Still it is good to have a look to the authors who have written about agile software

development. The research of Van der Klis (2009) shows an overview of the studies related

to agile software development in comparison with the Agile Manifesto, which are the

principles of agile software development. In Table 5: Summarize of agile visions related to

the agile principles, a summary of the agile visions, per main author is visible in relation to

the agile principles of the Agile Manifesto.

Agile Manifesto
(2001)

(Miller, 2001) (Highsmith &
Cockburn,
2001)

Abrahamsson et
al. (2003)

Boehm (2005) Turner (2007)

Customer
satisfaction

 Focus on value
to customer

Accept changes Adaptive Continuous
Improvement

Adaptive Embracing
change

Neutrality to
change

Iterative Iterative, time
bound

Rapid
delivery, Test
constantly

Incremental Fast cycles,
frequent
delivery,
Refactoring

Short iterations
delivering
value

Cooperation Collaborative Cooperative Pair
programming

Team
ownership

Motivation People
oriented

Direct
communication

Collaborative Cooperative Tacit
Knowledge

Working
software

Incremental Rapid delivery Incremental Continuous
integration,
Focus on value
to customer

Sustainability Rapid delivery Incremental
Continuous
improvement

Simplicity Parsimony Simplicity Straightforward Simple design Lean attitude
Self-organizing
teams

 Team
ownership

Regular
reflecting

Modularity, Continuous
improvement

Straightforward Retrospective
or reflection

Learning
attitude

Risk (Van der
Klis, 2009)

 Rapid
delivery, Test
constantly

 Test-driven
development

Test-driven

Table 5: Summarize of agile visions related to the agile principles
Source: (Van der Klis, 2009)

 24

In his research, Van der Klis (2009), mentioned that risk is not a topic of the agile

manifesto at all, while some authors have written about this. This item added by Van der

Klis (2009) to the summary of the several visions on agile. After looking into those visions

it is interesting to see that the principle: “Continuous improvement” is never mentioned and

that only one author mentions the principle “Customer satisfaction”.

Throughout this research we take into account the positive effects (Versionone,

2008) of using an agile software development methods comparing to the traditional way of

software development. Although there are also other studies which have shown no

significant difference between agile processes and structured processes (Estler (2012).

Furthermore there are some factors that affect the selection of a development method.

Those factors are project size, people and risk (Awad, 2005). This means that in some cases

the traditional waterfall method can be the best method for the development.

2.2.1. Characteristics of Agile Software development

Interesting is to understand when a project is agile and how to define or measure it.

One of the characteristics of agile software development is having a short iteration. The

length of iterations can be influenced by several factors (Hoogendoorn, 2012). It can

depend on the size of a project or release, if the team is new, changing of the priorities;

focus can change when iterations are too long, etc. (Hoogendoorn, 2012). Several authors

have mentioned that the maximum amount of weeks, of an iteration, should be around six

weeks (Highsmith & Cockburn, 2001), (Abrahamsson et al. (2002) and (Miller, 2001).

Another important characteristic is team interaction and especially the size of the team. The

authors (Cockburn & Highsmith, 2001) say that large teams can make agile development

more difficult. They continue that the average size of a team is nine people. The agile teams

are small and compact. When the teams are bigger the efficiency will decrease and the

 25

communication will increase (Hoogendoorn, 2012). According to Hoogendoorn (2012) the

average size of should be is between eight and ten members. Better is to have smaller

teams, but in projects which are complex with different technologies it is hard to have

smaller teams (Hoogendoorn, 2012).

The authors (Abrahamsson, Salo, Ronkainen, & Warsta, 2002) have given answer

to the question: “What makes a development method an agile one?” They conclude that the

development method should be:

• Incremental (small software releases, with rapid cycles),

• Cooperative (customer and developers working constantly together with
close communication),

• Straightforward (the method itself is easy to learn and to modify, well
documented) and

• Adaptive (able to make last moment changes).
Source: (Abrahamsson, Salo, Ronkainen, & Warsta, 2002)

2.2.2. Levels of agile

In the literature there is not a lot written about levels of agile. When answering an

email on 21 May 2013, Dr. Pekka Abrahamsson explained that it is hard to measure the

level of agile. Agile is a relative concept and therefore cannot be measured as such (P.

Abrahamsson 2013, pers. comm., 21 May). One of the very limited studies about the level

of agile is the doctoral dissertation of (Sidky, 2007). In the study of Sidky (2007) the level

of agile is described in the following way:

‘A set of agile practices that are related and, when adopted collectively, make
significant improvements in the software development process, thereby leading to
the realization of a core value of agility.’

 26

The level of agile is the way of working of a company or within a certain project.

Depending on the project the methods or agile methods can differ, but within the project the

same methods should be used. According to (Hoogendoorn, 2012) multidisciplinary

collaboration is essential for agile and therefore it should not be the case that team members

use a different method.

One of the biggest challenges is to define the levels of agility (Sidky, 2007). It

cannot be the case that the usage of an agile software development method will result in a

different level of agile (Sidky, 2007). According to Sidky (2007) the levels must be based

on the core values and qualities of agility. To do this the basis is the Agile Manifesto with

the core values and principles that are described above. Sidky (2007) used the Agile

Manifesto to limit the 12 principles into five values and qualities of agility. Those values

and qualities are visible in: Table 5: Level of agile, together with the levels of agile. Sidky

(2007) have defined five levels of agile, but it can be the case that a concept or component

is available in level one and not in level five. This would make it a model, were not each

component will increase when the agile level is higher. Each aspect should be measured in

for each level and that is in the model of Sidky (2007) not the case. This is the reason the

model is not fully adopted.

Agile level Level Name Agile Value or Quality
Level 5 Encompassing Providing an all-­‐encompassing agile environment

Level 4 Adaptive Responding to change through multiple levels of feedback
Level 3 Effective Producing quality software
Level 2 Evolutionary Ensuring continuous delivery of software
Level 1 Collaborative Establishing communication and collaboration

Table 5: Level of agile
Source: (Sidky, 2007)

 27

2.3 SOFTWARE DEVELOPMENT QUALITY

An important part of a software development project is the quality of software.

When measured according to the agreement with the project team and with the customer it

will give information of the progress of the project or the actual quality of the software and

development process itself. The problem about software quality is how to define it, how to

measure it and when to measure it. What is the meaning of e.g. 1000 defects5 in the

software? And what means 1 defect after 10 test rounds and defect fixing? According to

(Kitchenham & Pfleeger, 1996) “software quality is a complex concept and means different

things to different people” (p.21). Further several authors have mentioned that there is no

universal definition for software quality (Kitchenham & Pfleeger, 1996), (Phan, George, &

Vogel, 1995), (Weinberg, 1991), (van Solingen & Berghout, 1999), (Jørgensen, 1999) and

(Garvin, 1986).

One of the major problems during a software development project, as mentioned

above, is defining of the quality of the software and especially how to measure this. Will it

be the total amount of defects, the amount of defects per lines of code or the final opinion

of the customer: the software is good or bad? According to (van Solingen & Berghout,

1999) software quality is having two fundamental complications: 1) It is hard to indicate

the software quality in measurable terms and 2) it is hard to select the best development

process to achieve the specified level of quality. Also (Phan, George, & Vogel, 1995)

mentioned the problem of defining the quality of software. This is because of the

immaturity of software quality. According to (Weinberg, 1991)"Quality is relative. What

quality is to one person may even be lack of quality to another”. Again quality, in a more

general definition, is hard to define and hard to measure it, but the problem is also that

managers are failing to communicate what exactly is meant with quality (Garvin, 1986).

5 Common terminology about errors or bugs in a software application.

 28

There are several moments during the process of software development when the

quality is measured. It is done at the beginning of the project (how do we communicate it?),

during the project and at the end by the approval of the final customer. During this study we

do not look to the quality of the software based on the judgment of the customer. Although

for the company it is important to know the opinion of the customer, but it can be a

subjective opinion. We focus on the quality of the software during the development process

itself and how it can be defined and measured.

According to the (ISO 25010:2010(E), 2010), the general definition of quality is:

“The ability of a set of intrinsic characteristics to satisfy requirements”. When we look

more in depth to the quality of software (ISO 25010:2010(E), 2010) the ISO standard uses

two main quality models: 1) Product quality and 2) Quality in use. Those two quality

models are divided in 13 characteristics Table 6: Characteristic of software quality. The

problem related to this is that the ISO standard is used for developed and deployed software

and not about the process until the software is deployed and used. Although the ISO

standard shows characteristics of the product quality and quality in use it does not describe

the quality (and measurements) for the software development process itself.

Quality Model Characteristic
Product Quality Functional suitability
 Performance efficiency
 Compatibility
 Usability
 Reliability
 Security
 Maintainability
 Portability
Quality in use Effectiveness
 Efficiency
 Satisfaction
 Freedom from risk
 Context coverage

Table 6: Characteristic of software quality
Source: (ISO 25010:2010(E), 2010)

 29

During the development of software the project team want to measure the amount of

errors, although we still do not know if 1000 defects is good or bad. Throughout the

development process of the software the project team wants to measure the quality of the

developed software, which is also described as “code”. The less errors, the less time (and

money) it cost to develop the software. When the quality of software will be measured after

the development (ISO 25010:2010(E), 2010) based on characteristics or based on the

customers judgment, how can it be measured during the development? Therefore we need

to look into the process of the project generally. The software development project in

general will look if the project is on time, within budget and according to the specifications

(scope) (Toor & Ogunlana, 2010). According to (Cooke-Davies, 2002) there is a distinction

between the success of the project and the project management success.

According to (Garvin, 1986) quality in general is so complex that it can be divided

in five different perspectives. Those perspectives are visible in Table 7: Perspectives of

quality and have been translated to software quality by (Kitchenham & Pfleeger, 1996).

Quality Perspectives Definition
Transcendental
view

Sees quality as something that can be recognized but not
defined. This is on a more abstract level.

User view Sees quality for purpose. Does the product meet the user’s
needs?

Manufacturing view Sees quality as conformance to specification. This is an
examination if the product was constructed “right the first
time”.

Product view Sees quality as tied to inherent characteristics of the product.
Value-based view Sees quality as dependent on the amount a customer is

willing to pay for it. In other words value for money.
Table 7: Perspectives of quality
(Source: (Kitchenham & Pfleeger, 1996))

 30

Looking to the earlier described five perspectives the “Manufacturing Perspective”

is looking to the internal process (software development) itself. This view observes if the

product was developed correct the first time. This means avoiding extra costs related to

rework during development and after delivery (Kitchenham & Pfleeger, 1996).

When looking in to the Manufactures view of quality and measure this view, there

are two suggested characteristics: defect counts and rework costs (Table 8: Characteristics

manufactures view). Rework can lead to a lower overall quality of the software and by

reducing the rework the product quality will improve (Deephouse, Mukhopadhyay,

Goldenson, & Kellner, 1995). Measuring the rework in activities or costs will give a good

insight of the software development process. A defect is one of the seven wastes of

software development (Poppendieck & Poppendieck, 2003). They continue to say that a

defect needs to be reduced as soon as possible, to minimize the impact.

Quality Perspectives Definition
Defect counts Number of known defects recorded against a product during

development and use
Rework costs Rework is defined as any additional effort required to find

and fix problems after documents and code are formally
signed-off as part of configuration management.

Table 8: Characteristics manufactures view
Source: (Kitchenham & Pfleeger, 1996)

 31

2.4 (SOFTWARE) PROJECT MANAGEMENT

The focus for this research will be on software development projects. Therefore it is

important to look into the key elements of Project Management and in specific Project

Management for software development projects. This chapter will describe the main

components of Project Management.

If the usage of an agile software development method is increasing the quality of the

software development project, how should this be defined? When the success of a project in

general need to be measured it is important to understand how success is defined. A project

in general can be measured by common criteria like cost, time and quality (Atkinson,

1999); (Jugdev & Muller, 2005) and (Procaccino et al. (2005). Those criteria are also

known as the Iron Triangle (Atkinson, 1999), Figure 3: Iron Triangle. The “Quality” aspect

as a part of the Iron Triangle can also been seen as: “according to specifications” (Toor &

Ogunlana, 2010) and it is not the quality of the product (software, house, car, etc.) itself.

“According to specification” can also be mentioned as the “Scope” of a project. During this

research we will use the terminology: Scope. The Iron Triangle is an extensively

recognized measurement during last couple of periods (Toor & Ogunlana, 2010). A change

to one of the components will lead automatically to a change of the other components. E.g

when a project need to be finished earlier the cost and the scope will be affected. The costs

will be less, but also the scope will be less. If the scope needs to be the same, the costs will

increase (e.g. extra resources are needed).

 32

Figure 3: Iron Triangle

There is a difference between “Project Success” and “Project Management Success

(de Wit, 1988). Project Management Success is measured based on the performance

indicators as mentioned before: cost, time & quality, but that Project Success is measured

based on the general objectives of a project (de Wit, 1988). According to (Cooke-Davies,

2002) project management success is the difference between success criteria and success

factors. As described there is a difference between the success of a project and the success

of project management. The project can be a success while the project management

indicators are a failure or vice versa e.g. the project was not in budget or not on time.

‘For example, the Sydney Opera House took 15 years to build and was 14 times
over budget, yet it is proudly displayed as an engineering masterpiece.’
(Source: (Jugdev & Muller, 2005))

For this research the focus will be on the project itself, without looking to the

external criteria. Some parties can have a subjective opinion about the outcome of a

(software development) project while the activities went according to plan. During this

study the focus will be on the internal activity. This means we will look into the criteria for

project management success. “Good project management can contribute towards project

success, it is unlikely to be able to prevent failure” (de Wit, 1988) p. 164). This means that

the whole project team cannot prevent the final judgment of the stakeholders. If the project

management was a success, the project still can be a failure. The proposition is that the

 33

Cost, Time and Scope (software functionality and quality combined) are the key parameters

to manage the process adopted in a project and therefore also the software development

projects. There are several criteria that can be measured (Wateridge, 1998) and (de Wit,

1988). The most focus during projects will be on cost, time and scope (Atkinson, 1999).

Based on the work from to (Karlesky & Vander Voord, 2008) the traditional project

management is insufficient to manage the inevitable changes that are characteristic for

software projects. They continue to say that agile project management is good to assist

software development teams (and project managers) by managing the risks, scope, budget

and planning of the project. This also confirmed by (Cockburn & Highsmith, 2001). They

say that an agile methodology a better business performance, customer satisfaction and

quality.

We can conclude, for this part of the review that cost, time and scope are the most

important part of the project management indicators for the internal assessment of the

project. There are more indicators for the success of a project, but those external indicators

like customer satisfaction, end user satisfaction, etc. Those are all external indicators and

during this research we are looking to the internal process. The question will be if an agile

method will have a positive effect on the internal project management measurements.

 34

2.5 THEORY AND PROPOSITIONS

This paragraph summarizes the literature review and describes the deduction of the

theory, the associated propositions and conceptual model. Based on the theory, several

probabilistic propositions are formulated for each aspect of software development projects.

The formulated propositions are probabilistic, because it is assumed that the independent

and dependent concepts on average increase or decrease on the same time.

When looking to the independent concept: level of agile working method, we can

identify multiple characteristics about performing an agile project and how to identify when

a project is agile (Highsmith & Cockburn, 2001), (Abrahamsson, Salo, Ronkainen, &

Warsta, 2002) and (Hoogendoorn, 2012). In Table 9: Characteristics & metrics of an agile

method the characteristics and the metrics are visible related to performing an agile project.
Characteristics Metrics
Iterations Maximum to six weeks
Team size What is the teams size, up to ten members
Adaptive Can the customer make changes?
Cooperative How often is there contact between the

customer and the developers
Straightforward How easy is it to use the agile method

Table 9: Characteristics & metrics of an agile method

The literature describes that it is very hard or difficult to describe software quality.

The work of (Kitchenham & Pfleeger, 1996) and (Deephouse, Mukhopadhyay, Goldenson,

& Kellner, 1995) describes that the important parts of measuring the software quality is

using the characteristics number of defects and rework cost. By using an agile method it

should reduce the number of defects and lower the rework costs. This all will lead to the

following proposition.

• P1: When the level of the “agile” method is higher, then it is likely that the
quality of the software higher.

 35

The work of (de Wit, 1988) and (Cooke-Davies, 2002) shows that important

measurements for project management success are costs, time and scope. The expectation

is that the level of agile has a direct, positive impact on those elements during when a

project is done based on an agile method. Based on this theory the following three

probabilistic propositions are made.

• P2: When the level of the “agile method is higher, then it is likely that the

project will finish more closely to the estimated budget.

• P3: When the level of the “agile” method is higher, then it is likely that the

project will finish more closely to the estimated deadline (planning).

• P4: When the level of the “agile” method is higher, then it is likely that the

project will finish more accurate within in the defined scope.

There has been made a choice to distinguish the three components of the iron

triangle (Atkinson, 1999). It also could be possible to make a proposition for a better

project management result without defining it per individual item, but it makes it more

interesting to see if there is a difference in the results when the aspects of the iron triangle

are analysed as individual aspect.
The above exploration leads towards the following conceptual model:

Level of agile in software
development projects

Quality of software

Project within budget

Project within planning

Project within scope

+

+

+

+

 36

Figure 4: Conceptual model

The theory describes a simple causal relation between the independent concepts and

the multiple dependent concepts. The level of agile in software development projects can

lead to better quality of the software, projects can finish more accurate in budget, projects

can finish more accurate in planning and projects can finish more accurate within scope.

The objects of study for this research are projects. The specific research objective for this

study is theory testing. The domain of the theory for which the propositions are believed to

be true are all projects.

 37

Chapter 3: Methodology

This chapter first describes the research design that is applied for this research. This

will give an explanation for selecting a survey as a research design. Second the process of

the data analysis is described. This will include the selection of instances and the method

how to analyze the data. The last paragraph of this chapter will conclude the validity and

reliability in this study.

3.1 RESEARCH DESIGN

For this study the chosen research strategy is a survey. This strategy is chosen to

test the probabilistic relation between the level of agile software development projects

(independent concept) and the four dependents concepts: 1) quality of the software, 2)

project finished within budget, 3) project finished within budget and 4) project finished

within scope. An experiment is the preferred research strategy (Dul & Hak, 2008), but will

be not be feasible due to the available time. The current research needs to be done within

approximately six months. Developing software, normally, will take longer than six

months, including design, describing specification, developing, testing, etc. The second

reason for not using the experiment as a research study is because of testing a probabilistic

relation. To generalize the outcome a large number of instances (“Large N”) are needed.

The best way to do is by using a survey a research strategy. In case an experiment is not

possible, a survey as research strategy is the second best option. The scores gained from the

online questionnaire are analysed in a quantitative method.

 38

3.2 DATA COLLECTION

The data collection will be done via an online questionnaire. The online

questionnaire is created via an online questionnaire tool6. The questionnaire contains 33

questions about general company information, agile, project management and software

quality. A questionnaire is a so-called self-completion questionnaire and according to

Bryman & Bell (2011) there are several advantages of a self-completion questionnaire.

Those advantages are: cheaper to administer, quicker to administer, absence of interviewer

effects, no interviewer variability and convenience for respondents. Besides the advantages

mentioned, there also some disadvantages like: difficult to ask a lot of questions, greater

risk of missing data, lower response rate, cannot collect additional data, etc. (Bryman &

Bell, 2011) and (Korzilius, 2000).

3.2.1 Sample selection

To find a large number of instances for this research, which are executing agile

software development projects, a specific group of people need to be found. To find those

people LinkedIn7 will be used. The questionnaire will be communicated via LinkedIn user

groups that have the agile or agile software development as topic. People who are having a

LinkedIn account can be a member of a user group. For this research the population are

three different LinkedIn user groups. The user groups and number of members are visible

in Table 10: LinkedIn user groups. The total number of members are: 74.840, but because

people can be a member of multiple user groups, members can be a duplicate. This means

that there are at least 43.780 unique peoples who can answer the questionnaire.

6 https://www.enquetesmaken.com
7 Social media platform for business

 39

LinkedIn User Group Members8 Sample Size9
Agile and Lean Software Development 43.780 380-381 respondents
Agile 24.732 377-379 respondents
Lean Agile Software Development
Community

6.328 361-364 respondents

Table 10: LinkedIn user groups

Via the group sites of LinkedIn it is possible to start a “discussion” which are

visible for all members. This discussion function will be used to inform users about the

questionnaire. This discussion will contain information about the research with a link to the

questionnaire itself. During a period of one month the data will be collected and a

discussion will be started four times in total. This will be done to inform the members about

the questionnaire at to have as many respondents as possible.

 There will be the situation of non-response. It is very unlikely that 43.780 will

answer the questionnaire. Based on the population, which is the user group on LinkedIn,

the sample size can be calculated (Korzilius, 2000). For the user group with over 43.000

members the sample size should be between 380 and 381 respondents. Via the

questionnaire tool (www.enquetesmaken.com) it is possible to analyse if people have

answered the questionnaire multiple times or did not fully complete the questionnaire. This

will be discussed during the data analysis.

3.3 DATA ANALYSIS

To understand if the level of Agile is having an effect on the project management

indicators, it is important to measure all concepts. In the subparagraphs below there is an

explanation how each of the concepts will be measured. After the answers are received the

first step will be to check the completeness of the answers. Also will be checked if answers

need to modify. By this we mean making the answers generic. E.g. if people have answered

8 Number of members at date 25-05-2013
9 (Korzilius, 2000)

 40

US, America, USA, Unites States, etc. one generic answer will be chosen. This will be

done for all answers were free text was applicable. Always the original answers will be

visible in relation to the corrected answers, done by the researchers.

3.3.1 Level of Agile

The level of agile will be measured based on the characteristics of agile software

development: 2.2.1. Characteristics of Agile Software development. For each characteristic

there are several questions that could lead to the following answers: Strongly Disagree (1),

Tend to disagree (2), Neither Agree nor Disagree (3), Tend to agree (4) or Strongly agree

(5). For this a likert scale is used. The scores with 1 relate to low level of agile and a score

of 5 relates to a high level of agile. The measured level of agile is the answer of the

respondent. This could be the level of agile of company of executed projects. The result

could be different if a colleague of the initial respondent would answer the survey. In some

case the score will be giving during the data analysis. This will be done for the questions 7

and 10. The full survey is visible in Appendix B: Survey. For each level of agile the score

per characteristics will be calculated and divided by the number of questions (per

characteristics three or four questions are available). This will result in a score per agile

characteristic. The four scores per agile characteristic will be summarized and divided by

four. This will lead to a level of agile score between 1 (low) and 5 (high). In Table 11:

Example agile level calculation an example of the calculation is visible. The final level of

agile is rounded to a whole number to have a score of 1, 2, 3, 4 or 5.
Agile characteristics Score Number of questions Characteristic score
Incremental 11 3 3,7
Cooperative 15 3 5,0
Adaptive 20 4 5,0
Straightforward 15 4 3,8
FINAL AGILE LEVEL 4
Table 11: Example agile level calculation

 41

3.3.2 Project planning & budget

A part of the project management triangle are time (planning) and cost (budget).

Both indicators will be measured in the easiest way. Was the project finished within

planning and or budget? Yes or no. If the project was not finished within planning and/or

budget a second question will be asked. This will be used to measure with how many

months (planning) and with which value the budget was extended. This will be needed to

calculate the extension of planning or budget in percentage. An answer of no will have

score 1 and an answer of yes will have a score of 3.

3.3.5 Project scope

The score of the score will be measured in the following way. The score for the

scope is a combination of two questions. First the percentage that is needed before starting

the project (0% is a high score and 100% is a low score). Agile would suggest a low

percentage of all requirements, because not everything can be defined at the beginning of

the project. Second how much of the initial scope is finally implemented in the final

product (0% is a high score and 100% is a low score). If all of the defined requirements is

needed it would suggest that a change is not possible. The combination of the two scores

will give the score for the project scope. This can be a score between 1 (low) and 5 (high).

This will be done based on the percentages: 0% - 20% is score 1, 20% - 40% is score 2, etc.

until 80% - 100% is score 5. This will be answered by questions 21 and 22 of the survey.

3.3.5 Software quality

The software quality will be measured based on one question. And is related to how

much of the actual software is approved by the quality and assurance department (Q&A)

after the first round of testing. The final score will be between 1 (low) and 5 (high) and is

 42

done based on the percentages given as answer: 0% - 20% is score 1, 20% - 40% is score 2,

etc. until 80% - 100% is score 5. This is question 32 of the survey.

3.4 VALIDITY AND RELIABILITY

3.4.1 Validity

Validity can be divided into measurement validity, internal validity, external

validity and ecological validity. Validity refers to the issues of whether or not an indicator

measures the devised a concept. The external validity is concerned if the results of the study

can be used for a generalization outside the specific research context (Bryman & Bell,

2011). Because the context of the study is focussed on software development projects, the

findings are primarily in this context.

3.4.1 Reliability

Reliability concerns the consistencies and stability of the findings of the research

(van Burg, 2011). Will the researcher have the same results after repeating the study or will

a different research have the same result by doing the same study. Reliability can be

divided into internal and external reliability. Internal reliability concerns if several

researchers agree on what they have concerned (Bryman & Bell, 2011). During this

research there is only one researcher and no observation have taken place. One researcher

will do the interpretation and the analysis of the findings of the questionnaire.

The external reliability concerns about the issue if the indicators will give the same

results during repeatable application within the same conditions. It is hard to say if there is

absolute reliability. Will a respondent give the same answers or will a different respondent

give the same answers about the same project as a colleague, because the research is about

the results of a software development project.

 43

Chapter 4: Analysis & Results

This chapter describes the exploration and the results of the collected data from

respondents who have answered the online questionnaire. The first part of the chapter will

describe the data in a more general way and the following paragraphs will explain the data

per item of the conceptual model.

4.1 DESCRIPTIVE

The questionnaire was online for a total of 19 days. At July 9th the questionnaire

was closed. In total 39 people have responded to the questionnaire and 29 of those

respondents have entered the questionnaire completely. For some parts of the analysis it is

possible to use the not full answered questionnaires. People from 13 different countries

answered the questionnaire. This is visible in Table 12: Respondents per country.

Country Percentage of respondents
USA 51,7%
UK 6,9%
Argentina 6,9%
Netherlands 3,4%
Canada 3,4%
India 3,4%
Sweden 3,4%
Australia 3,4%
Finland 3,4%
Germany 3,4%
Italy 3,4%
Switzerland 3,4%
Zimbabwe 3,4%
Table 12: Respondents per country

 44

Scrum is the most used agile method. Almost 76 percent of the respondents are

using the Scrum method within their software development projects. About 17 percent of

the respondents are using another (not part of the default answers) or a hybrid method. This

hybrid method contains aspects of different agile method, but is not an “official” agile

method. The used agile methods are visible in: Table 13: Used agile methods

Agile method Percentage of respondents
Scrum 75,9%
XP (Extreme Programming) 3,4%
Crystal Methods 3,4%
Other / hybrid 17,2%
Table 13: Used agile methods

4.2 LEVEL OF AGILE

The analysis of the data shows that, based on full answered questionnaires, the

characteristics of agility: 2.2.1. Characteristics of Agile Software development, can be

described. 72,4 percent of the respondents is working according to an agile level that can be

defined as Level 4. Because there is no answer that will fit in a Level 2 group the results

show that over 96 percent is working according to an agile level of 3 or higher. The agile

level is defined on there to four indicators. If more indicators were used it is likely that the

level of agile was more spread. The full results are visible in Figure 5: Level of Agile

results.

 45

Figure 5: Level of Agile results

One of the questions was to give a score (from 0 to 10) about agility to the

project/company of the respondent of the questionnaire. This means each level is having a

range of two points. Level 1 will be between 0 and 2, Level 2 between 2 and 4, etc. It looks

like that the respondents for level 3, 4 and 5 are having a realistic view on their agility

level. Only for the respondents for level 1 give themselves the maximum score. 96 percent

of the respondents give a score that is expected based on the level they fit in. The results are

visible in Table 14: Level of agile & respondent agile score

Level of Agile Score range Agile score of respondents
Level 1 0-2 10,0
Level 2 2-4 0,0
Level 3 4-6 5,4
Level 4 6-8 6,8
Level 5 8-10 9,0
Table 14: Level of agile & respondent agile score

3,4% 0,0%

17,2%

72,4%

6,9%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

Level 1 Level 2 Level 3 Level 4 Level 5

Level of Agile

 46

4.3 LEVEL OF AGILE VERSUS PROJECT ELEMENTS

As described before the level of agile will be tested against the four elements of

managing a (software development) project. Those elements are planning, budget and

quality and scope. In this paragraph each of those elements are discussed.

4.3.1 Level of Agile and planning

The relationship between level of agile and finishing the software development

within project is illustrated in Figure 6: Level of Agile & Project Planning. In the chart the

results of the respondents are visible. The score of the project planning is 1 (not within

planning) or 3 (within planning). The result of R square is 0,0001. This means that 0,01

percent of the variation of achieving the initial deadline is explained by the model. Based

on unreliable answers it is impossible to analyze the percentages of deviation between the

initial planning and the actual execution of the project in relation with the level of agile.

The results are visible in Table 15: Regression analysis of agile level and project planning.

Equation

Model summary Parameter estimates

R R Square
Adjusted
R Square

Std.
Error F Sig. Constant b1

Project
Planning 0,0100 0,0001 -0,0369 1,0357 0,0027 0,9589 1,9813 0,0140
Table 15: Regression analysis of agile level and project planning

 47

Figure 6: Level of Agile & Project Planning

4.3.2 Level of Agile and budget

It turns out that there is a negative effect on the executing a software development

project within the initial budget when the level of agile will be higher. When the level of

agile is higher than the software development projects will be executed less within the

initial budget. The value of R Square is low. The model explains only 5,9 percent of the

variation of finishing a software development within budget. There is no significant relation

between these two variables. The p-value is 0,203. This means that the standard value of 5

percent is exceeded. The full results are visible in Figure 7: Level of Agile & Project

budget. The score of the project planning is 1 (not within budget) or 3 (within budget).

Based on unreliable answers it is impossible to analyze the percentages of deviation

between the initial budget and the actual budget of the project in relation with the level of

agile.

y = 0,014x + 1,9813
R² = 0,0001

1	

2	

3	

0	
 1	
 2	
 3	
 4	
 5	

Pr
oj

ec
t B

ud
ge

t

Level of Agile

Project Planning

Project Planning

Lineair (Project Planning)

 48

Equation

Model summary Parameter estimates

R R Square
Adjusted
R Square

Std.
Error F Sig. Constant b1

Project
Budget 0,244 0,0594 0,025 0,990 1,704 0,203 3,4486 -0,3364
Table 16: Regression analysis of agile level and project budget

Figure 7: Level of Agile & Project budget

4.3.3 Level of Agile and quality

Like the budget aspect of a project there is also a negative effect between a higher

agile level and the software quality of a software development project. The R square for

this relationship is very low with 0,08 percent. The score for quality can be between 1

(Low) and 5 (high), which is visible in Table 17: Regression analysis of agile level and

software quality. This based on the quality score which is given by the respondents. They

could give a rate between 0-20%, 20-40%, etc. until 100%. The unknown scores are

marked as zero percent and will therefore have the lowest quality score. The complete

results are visible in Figure 8: Level of Agile & software quality. The p-value for the

relationship between the level of agile and the software quality is 88,4 percent. This makes

y = -0,3364x + 3,4486
R² = 0,05937

1	

2	

3	

0	
 1	
 2	
 3	
 4	
 5	

Pr
oj

ec
t B

ud
ge

t

Level of Agile

Project Budget

Project Budget

Lineair (Project Budget)

 49

the relationship not significant. It looks there no significant relationship between the level

and agile and the software quality.

Equation

Model summary Parameter estimates

R R Square
Adjusted
R Square

Std.
Error F Sig. Constant b1

Project
Quality 0,0284 0,0008 -0,0362 1,4581 0,0218 0,8836 4,0748 -0,0561
Table 17: Regression analysis of agile level and software quality

Figure 8: Level of Agile & software quality

4.3.4 Level of Agile and scope

Based on the results there is a negative effect between the level of agile and the

scope of the project. The R square for this relationship is low with 1,6 percent. The score

for scope can be between 1 (Low) and 5 (high) and is displayed in Figure 9: Level of Agile

& Scope. The p-value for the relationship between the level of agile and the project scope is

34,4 percent. This makes this relation ship not significant. The results for this equation are

visible in Table 18: Regression analysis of agile level and scope.

y = -0,0561x + 4,0748
R² = 0,00081

1	

2	

3	

4	

5	

0	
 1	
 2	
 3	
 4	
 5	

So
ft

w
ar

e
Q

ua
lit

y

Level of Agile

Sofware Quality

Project Quality

Lineair (Project Quality)

 50

Equation

Model summary Parameter estimates

R R Square
Adjusted
R Square

Std.
Error F Sig. Constant b1

Project
Scope 0,1824 0,03328 -0,00205 1,2659 0,9294 0,3436 4,2103 -0,2827
Table 18: Regression analysis of agile level and scope

Figure 9: Level of Agile & Scope

y = -0,2827x + 4,2103
R² = 0,03328

1	

2	

3	

4	

5	

0	
 1	
 2	
 3	
 4	
 5	

Pr
oj

ec
t S

co
pe

Level of Agile

Project Scope

Project Scope

 51

Chapter 5: Conclusion & Discussion

This final chapter is arranged into four sections. The first part will be a discussion

about this research. The chapter continues with the conclusions of the research. This

chapter will be finalized with an advice for future research.

5.1 DISCUSSION & LIMITATIONS

During this research a probabilistic relation is tested between the level of agile

working methods in software development projects and the four dependents concepts of a

project: 1) quality of the software, 2) project finished within budget, 3) project finished

within budget and 4) project finished within scope. The expectation was to have a very high

and positive relationship between the level of agile and the project characteristics. But the

results show a complete different outcome.

As for almost all studies also this research is having limitations. Some limitations

are well considered. The analysis of this research should be evaluated taking into account

the following limitations. The project aspect of quality is measured based on the internal

input from the respondents. Most of the respondents were not able to able to identify how

the quality was measured, but they were able to give a score. Because the research was

focused on the internal process the opinion of the customer was not taken into account.

This could have led to other scores of quality.

Both the planning and budget aspect are only looking if the project was finished

within the budget / planning. It gives no information how much the project was delayed or

what the extra costs are. During the survey the questions was asked to identify the delay in

the project and the extra costs, but an answer to this was not given. Therefore it was only

possible to analyze if the project was within planning / budget. Although the results (of all

 52

project aspects) are not significant a direction for both quality and scope are clear visible.

This would require more in depth research to validate if this is correct.

Another limitation is the number of respondents. In total 39 people have answered

the survey and in total 29 of those surveys are completely answered and used for the

analysis. Based on 3.2.1 Sample selection a total of 380 respondents as part of the sample

size was the goal. Only 7,6 percent of the expected sample size is achieved.

The last important limitation is related to the level of agile. As mentioned before,

there is not a lot academic research available about the level of agile. ‘Agility’ is very

abstract. The used definition, how to measure agile, is a method. There will be many more

methods to measure the level of agile and this is one of the methods. This is a first step in

the direction of measuring the level of agile, but further research is needed.

5.2 CONCLUSION

Based on the outcome we could say that there is for project aspects (budget,

planning, scope and quality) that there is no significant relationship with the defined level

of agile. Although the outcome is not significant some directions of the relations can be

used. To summarize, this research has lead to the following main conclusions:
• There is no empirical evidence that a higher level of agile will lead to

significant higher software quality;

• There is no empirical evidence that a higher level of agile will result in

significant more often finishing within the initial planning and / or budget;

• There is no empirical evidence that a higher level of agile will result in

significant more often finishing within the initial defined scope;

• The relation between higher level of agile and

 53

Looking to the initial research question: “Will the, level of the Agile working

method, influence the quality of a project?”, we have to conclude that based on this

research the total quality of a project will not significant be influenced by the level of agile.

5.3 FUTURE RESEARCH

During this research a first exploration was done related to the level of agile and

relation of this to the defined project elements. Although the relationships are very low and

the relationships are not significant, further analysis of level of agile would be advised. The

level of agile is defined on a few indicators, but a more detailed clarification of the level of

agile could be defined. The academic research, related to the level of agile is very limited.

It is for software companies, very hard to say in which way they have adopted agility. The

research of (Sidky, 2007) can be a very good starting point. It would be of added value if

the level of agile can be defined including a method to measure this.

The project elements and especially planning and budget, are analyzed on a very

high level; is the project in budget / planning yes or no? If the same relationship is tested a

more detailed clarification of the element planning and budget would be needed. If a

project is not finished within the initial planning / budget the interesting question would be

with how many percent the project element was extended.

Finally it still would be interesting to repeat this research with the same research

question by using a different method. For example by using a single or a multiple case

study.

 54

Chapter 6: References

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development
methods: Review and Analysis. Espoo, Finland: VTT Publications.

Abrahamsson, P., Warsta, J., Siponen, M., & Ronkainen, J. (2003). New Directions on
Agile Methods: A Comparative Analysis . Software Engineering, 2003.
Proceedings. 25th International Conference on , 244-254.

Atkinson, R. (1999). Project management: cost, time and quality, two best guesses and a
phenomenon, its time to accept other success criteria. International journal of
project management , 17 (6), 337-342.

Awad, M. (2005). A comparison between agile and traditional software development
methodologies. University of Western Australia.

Boehm, B. (2002). Get Ready for Agile Methods, with Care. Computer , 35 (1), 64-69.
Brooks, C. (2012). Project Management and IT.
Bryman, A., & Bell, E. (2011). In Business research methods. USA: Oxford University

Press.
Charette, R. N. (2005, September). IEEE Spectrum. Retrieved October 13, 2012, from

http://spectrum.ieee.org/computing/software/why-software-fails
Chow, T., & Cao, D. (2008). A survey study of critical success factors in agile software

projects. The Journal of Systems and Software , 81 (6), 961-971.
Cockburn, A., & Highsmith, J. (2001). Agile Software Development: The People Factor .

Computer , 34 (11), 131-133.
Cooke-Davies, T. (2002). The ‘‘real’’ success factors on projects. International Journal of

Project Management , 20 (3), 185-190.
Cugola, G., & Ghezzi, C. (1998). Software Processes: a Retrospective and a Path to the

Future. Software Process: Improvement and Practice , 4 (3), 101-123.
de Wit, A. (1988). Measurement of project success . International Journal of Project

Management , 6 (3), 164-170.
Deephouse, C., Mukhopadhyay, T., Goldenson, D., & Kellner, M. (1995). Software

processes and project performance. Journal of Management Information Systems ,
12 (3), 187-205.

Dingsøyr, T., Hanssen, G., Dybå, T., & G. Anker, J. N. (2006). Developing software with
scrum in small cross-organizational project. Lecture notes in Computer Science , 5-
15.

Dul, J., & Hak, T. (2008). Case Study Methodology in Business Research. Oxford: Elsevier.

 55

Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A
systematic review. Information and Software Technology , 50 (9-10), 833-859.

Ehlers, K. (2011). Agile software development as managed sensemaking. Doctoral
dissertation, University of Stellenbosch, Stellenbosch.

Estler, H.-C., Nordio, M., Furia, C. A., Meyer, B., & Schneider, J. (2012). Agile vs.
Structured Distributed Software Development: A Case Study. 2012 IEEE Seventh
International Conference on Global Software Engineering , 11-20.

Garvin, D. A. (1986). What does "Product Quality" Really Mean? Sloan Management
Review , 26 (1), 25-43.

Goldstein, H. (2005, September). IEEE Spectrum. Retrieved November 24, 2012, from
http://spectrum.ieee.org/computing/software/who-killed-the-virtual-case-file

Highsmith, J., & Cockburn, A. (2001). Agile Software Development: The Business of
Innovation. Computer , 34 (9), 120-122.

Hoogendoorn, S. (2012). In S. Hoogendoorn, Dit is Agile. Hoogendoorn, S. (2012). Dit is
agile/druk 1. Pearson Education Benelux BV.

Huo, M., Verner, J., Zhu, L., & Babar, M. (2004). Software quality and agile methods. 28th
Annual International Computer Software and Applications Conference , 520-525.

IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology . The
Institute of Electrical and Electronics Engineers, New York.

ISO 25010:2010(E). (2010). “Systems and Software Engineering—Systems and Software
Product Quality Requirements and Evaluation (SQuaRE)—System and Software
Quality Models,. Geneva.

Jørgensen, M. (1999). Software quality measurement. Advances in Engineering Software ,
30 (12), 907-912.

Jugdev, K., & Muller, R. (2005). A retrospective look at our evolving understanding of
project success. Project Management Journal , 36 (4), 19-31.

Karlesky, M., & Vander Voord, M. (2008). Agile Project Management. ESC 247, 267.
Boston.

Kitchenham, B., & Pfleeger, S. (1996). Software Quality: The Elusive Target. Software,
IEEE , 13 (1), 12-21.

Korzilius, H. (2000). De kern van survey-onderzoek. Uitgeverij van Gorcum.
Larman, C., & Basili, V. R. (2003). Iterative and Incremental Development: A Brief

History. IEEE Computer , 36 (6), 47-56.
Mann, C., & Mauer, F. (2005). A case study on the impact of scrum on overtime and

customer satisfaction. Agile Development Conference , 70-79.

 56

Miller, G. (2001). The Characteristics of Agile Software Processes. The 39th International
Conference of Object-Oriented Languages and Systems (39).

Petersen, K., & Wohlin, C. (2009). A comparison of issues and advantages in agile and
incremental development between state of the art and an industrial case. The
Journal of Systems and Software , 82 (9), 1749-1490.

Phan, D. D., George, J. F., & Vogel, D. R. (1995). Managing software quality in a very
large development project. Information & Management , 29 (5), 277-283.

Poppendieck, M., & Poppendieck, T. (2003). In Lean Software Development: An Agile
Toolkit. Addison-Wesley Professional.

Procaccino, J., Verner, J., Shelfer, K., & Gefen, D. (2005). What do software practitioners
really think about project success: an exploratory study. Journal of Systems and
Software , 78 (2), 194-203.

Royce, W. W. (1970). Managing the development of large software systems. Proceedings
of IEEE WESCON , 328-338.

Sidky, A. (2007). A Structured Approach to Adopting Agile Practices: The Agile Adoption
Framework. Doctoral dissertation, Virginia Polytechnic Institute and State
University.

Standish Group International. (2010). The CHAOS Report. Standish Group International.
Toor, S.-u.-R., & Ogunlana, S. O. (2010). Beyond the ‘iron triangle’: Stakeholder

perception of key performance indicators (KPIs) for large-scale public sector
development projects. International Journal of Project Management , 28 (3), 228-
236.

van Burg, E. (2011). Kwaliteitscriteria voor ontwerpgericht wetenschappelijk onderzoek .
In J. van Aken, & D. Andriessen, Handboek ontwerpgericht wetenschappelijk
onderzoek: Wetenschap met effect (pp. 146-164). Boom Lemma uitgevers.

Van der Klis, P. (2009). Agile software development bij een verzekeringsmaatschappij.
Master Thesis, Open Universiteit Nederland.

van Solingen, R., & Berghout, E. (1999). The Goal/Question/Metric Method: a practical
guide for quality improvement of software development. Berkshire: McGraw-Hill
Publishing Company.

Versionone. (2008). The State of Agile Development. Versionone.
Vlaanderen, K., Jansen, S., Brinkkemper, S., & Jaspers, E. (2011). The agile requirements

refinery: Applying SCRUM principles to software product management.
Information and Software Technology , 53 (1), 58-70.

Wateridge, J. (1998). How can IS/IT projects be measured for success? International
journal of Project Management , 16 (1), 59-63.

 57

Weinberg, G. (1991). Quality software Management. In Quality Software Management:
Anticipating Change. (p. 336). Dorset House.

 58

Appendix A: Agile methodologies

In the table below there is a description of the six most common agile methods described by

(Van der Klis, 2009). The table also shows per agile method the key points, special features

and the shortcomings as mentioned by (Abrahamsson, Salo, Ronkainen, & Warsta, 2002).

Agile Method Authors Key points Special features Identified shortcomings

Extreme
Programming

Highsmith (2002),
Abrahamsson (2002),
Abrahamsson (2003)
Williams (2004)
Strode (2005)

Customer driven
development, small
teams,

Refactoring – the ongoing
redesign of the system to
improve its performance
and responsiveness to
change.

While individual practices
are suitable for many
situations, overall view
and management practices
are given less attention.

Crystal Methods Highsmith (2002),
Abrahamsson (2002),
Abrahamsson (2003)
Williams (2004)
Strode (2005)

Family of methods.
Each has the same
underlying core
values and
principles.
Techniques, roles,
tools and standards
vary

Method design principles.
Ability to select the most
suitable method based on
project size and criticality

Too early to estimate:
only two of four
suggested methods exist.

Scrum Highsmith (2002),
Abrahamsson (2002),
Abrahamsson (2003)
Williams (2004)
Strode (2005)

Independent, small,
self-organizing
development teams,
30-day release
cycles.

Enforce an paradigm shift
from the ‘defined an
repeatable’ to the ‘new
product development view
Scrum’

While Scrum details in
specific how to manage
the 30-day release cycle,
the integration and
acceptance tests are not
detailed.

Rational Unified
Process (RUP)

Abrahamsson (2002), Complete software
development model,
including tool
support. Activity
driven role
assignment

Business modelling, tool
family support

RUP has no limitations in
the scope of use. A
description how to tailor,
in specific, to changing
needs is missing

Dynamic
Systems
Development
Method

Highsmith (2002),
Abrahamsson (2002),
Abrahamsson (2003)
Strode (2005)

Application of
controls to RAD,
use of time boxing,
empowered DSDM
teams, active
consortium to steer
the method
development

First truly agile software
development method, use of
prototyping, several user-
roles: ambassador,
visionary and advisor

While the method is
available, only
consortium members have
access to white papers
dealing with the actual
use of the method.

Adaptive
Software
Development

Highsmith (2002),
Abrahamsson (2002),
Abrahamsson (2003)
Strode (2005)

Adaptive culture,
collaboration,
mission driven
component based
iterative
development

Organizations are seen as
adaptive systems. Creating
an emergent order out of a
web of interconnected
individuals.

ASD is more about
concepts and culture than
the software practice

Source: (Abrahamsson, Salo, Ronkainen, & Warsta, 2002)

 59

Appendix B: Survey

Question
ID Question Answer option

1
In which country is the headquarters of your
company located? Free answer

2
How much employees are working in your
organization? Free answer

3 Which method of agile do you use?

XP (Extreme Programming)
Scrum
DSDM (Dynamic Systems Development Method)
Rational Unified Process (RUP)
ASD (Adaptive Software Development)
Crystal Methods
Other

4
For how many years is the company using an
Agile method?

Never
Less than 6 months
Between 6 and 12 months
Between 1 and 2 years
Between 2 and 5 years
More than 5 years

5
What is the average number of team members in
an agile software development project?

Between 0 - 5 members
Between 5 - 10 members
Between 10 - 15 members
Between 15 - 20 members
More than 20 members

6
What percent (%) of your company’s software
projects use an Agile methodology? A value between 0 & 100

7
What is the time of an average iteration between
two deliveries?

1 - 3 weeks
3 - 6 weeks
6 - 9 weeks
9 - 12 weeks
More than 12 weeks

8

It is a common practice to divide the system up
into mini-­‐‑projects. The system is seldom
developed as one large project.

Strongly Disagree
Tend to disagree
Neither Agree nor Disagree
Tend to agree
Strongly agree

9

All the iterations and releases, including the
requirements, are part of the plan for the whole
project.

Strongly Disagree
Tend to disagree
Neither Agree nor Disagree
Tend to agree
Strongly agree

 60

10

If a problem occurred that affected the schedule
or requirements of a project, the client was
updated.

When the delivery was done
By the end of the week
Immediately
By the end of the day
Never

11
The customer has the authority to decide what is
being developed in which iteration.

Strongly Disagree
Tend to disagree
Neither Agree nor Disagree
Tend to agree
Strongly agree

12

When the project manager was unreachable, at
any point in time all team members had enough
information to update the customer about the
exact status of the project.

Strongly Disagree
Tend to disagree
Neither Agree nor Disagree
Tend to agree
Strongly agree

13
In order to deliver valuable software to clients,
change should be welcomed and not constrained.

Strongly Disagree
Tend to disagree
Neither Agree nor Disagree
Tend to agree
Strongly agree

14

The plan for upcoming iteration may change
based on customer feedback from the previous or
current iteration.

Strongly Disagree
Tend to disagree
Neither Agree nor Disagree
Tend to agree
Strongly agree

15
The customer is given the authority to direct
what is being developed in which iteration.

Strongly Disagree
Tend to disagree
Neither Agree nor Disagree
Tend to agree
Strongly agree

16

The customer can give his/her feedback
throughout the development process even if it
means that requirements must be changed.

Strongly Disagree
Tend to disagree
Neither Agree nor Disagree
Tend to agree
Strongly agree

17
Does the project needs to maintain a high process
ceremony due to certain audits or regulations?

Strongly Disagree
Tend to disagree
Neither Agree nor Disagree
Tend to agree
Strongly agree

18 All our project plans are always documented?

Strongly Disagree
Tend to disagree
Neither Agree nor Disagree
Tend to agree
Strongly agree

19 The agile method we are using is easy to use?

Strongly Disagree
Tend to disagree
Neither Agree nor Disagree
Tend to agree
Strongly agree

 61

20 The agile method we are using is easy to learn?

Strongly Disagree
Tend to disagree
Neither Agree nor Disagree
Tend to agree
Strongly agree

21

We start a project (development) when the
following percentage of requirements are
available: A value between 0 & 100

22
What percent (%) of the initial requirements is
part of the final ‘product'? A value between 0 & 100

23 What was the initial planning of the project? Free value

24
Was the project finished within the initial
planning?

Yes
No

25 With how many months the project was delayed? Free value

26 What was the initial budget of the project? Free value

27
Was the project finished within the initial
budget?

Yes
No

28 With how much is the initial budget increased? Free value

29
How do you measure the software quality during
the development phase?

Measuring the defects (bugs / errors)
Calculating the rework costs
Each delivery needs approval from the customer
Q&A gives approval
Other:

30
How good is the software quality after
development (per delivery)? Score between 1 & 10

31
What were the amount errors per 1000 lines of
code on average per delivery?

Unknown
Number of errors per 1000 lines of code (free value)

32

How much % of the developed software is
passed Q&A (and good for the
customer/delivery) after the first round of
testing?

80 - 100%
60 - 80%
40 - 60%
20 - 40%
0 - 20%
Unknown

33

If you could rate your company and the projects
about the ‘agility level’ what would it be?

Agility means: how agile are we A value between 0 & 10

