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Abstract 

This study analysed the impact of closures of the IJtunnel on the demand for public transport in GVB’s network 

in Amsterdam. Based on academic literature the determinants of public transport demand were identified 

which lead to a conceptual model on public transport demand. This model was applied to a panel of multiple 

service lines in Amsterdam in order to quantify the effect of the IJtunnel closures. Using fixed effects 

estimation, this study found an 18,4% decrease of the number of passengers and a 45% reduction of the 

number of passengerkilometres for the IJtunnel service lines on average per day. Moreover the results suggest 

a substitution effect from the IJtunnel service lines towards the other service lines in Amsterdam North, where 

the number of passengers increased by 8,6% and the number of passengerkilometres by 15%. However, this 

latter effect does not offset the decline of public transport demand on the IJtunnel service lines (both in 

percentage effects and in absolute terms). In addition, this study found that the IJtunnel closures had a 

stronger impact during five subsequent weekend closures compared to singular closures. As a consequence of 

the IJtunnel closures GVB is confronted with extra costs which include a decline of passenger revenues and a 

subsidy loss. The findings from this study allow GVB to demonstrate the actual effects of the closures of the 

IJtunnel, which can strengthen their position in the discussion and decision making on future IJtunnel closures.  

Keywords: public transport, demand, passenger, Amsterdam, IJtunnel, diversion, closure 
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1. Introduction 

GVB Amsterdam is the main provider of public transport services in the Dutch capital city and its surroundings, 

transporting daily commuters, tourists and other travellers to their destinations. Its network operates 24 hours 

a day and generates approximately 8500 trips a day by means of metro, tram, bus and ferryboat. GVB 

recognizes the importance of “a quick, reliable, comfortable and safe public transport for the economic and 

social development of the city” (GVB Amsterdam, 2013). However the public transport network in Amsterdam 

is often confronted with (un)foreseen circumstances and events, which require adjustments in the service 

schedule and will thus affect the passengers. Unforeseen circumstances, for example road accidents, 

temporary road congestion, passenger violence or even weather conditions demand immediate adjustments 

which cannot be planned in advance. Though, adjustments can be planned for foreseen circumstances such as 

diversions for maintenance activities of the transport network, or large events in the city like the Amsterdam 

Marathon. For these latter events GVB implements so called “Temporary Traffic Arrangements” (in Dutch: 

Tijdelijke VerkeersMaatregelen (TVMs)) which involve diversions and adaptions of the service schedule.  

Even though GVB aims to minimize the consequences of these temporary traffic arrangements, passengers and 

their demand for public transport within the transport network will be affected. Consequently, these 

arrangements can have an impact on passenger revenues. Extensive literature is available on the factors 

affecting the demand for public transport, but no research has been done on the impact of temporary 

diversions. This research therefore analyses the impact of the temporary traffic arrangements (due to 

maintenance activities and events) on the demand for public transport in GVB’s network. In particular, the 

impact of temporary closures of the IJtunnel is analysed. This tunnel for motorized vehicles connects the 

northern part of Amsterdam above the IJ with the city centre and is closed regularly due to maintenance 

activities. Temporary traffic arrangements are planned by GVB in the form of diversions for multiple service 

lines. GVB perceives the consequences of these closures as substantial, but the actual effect is unknown. 

Therefore, the main research question is: What is the impact of temporary traffic arrangements for closures of 

the IJtunnel on the demand for public transport in Amsterdam? 

As the knowledge on the actual impact of the IJtunnel closures is limited, the objective of this thesis is to 

provide insight into the magnitude of the effects. Therefore this research develops a quantitative model based 

on the literature which captures these effects by means of estimated elasticities. The model will be applied to a 

panel dataset, which allows to control for unobserved (time-invariant) characteristics and can facilitate causal 

inference. Next to this contribution to the academic literature, the results from this model provide valuable 

information for GVB as it quantifies the actual effects of the IJtunnel closures on public transport demand in 

their network. Since GVB can impose a claim for the incurred costs associated with the IJtunnel closures, the 

results from this research were used to estimate the incurred revenue- and subsidy loss. Furthermore, the 

findings from this study allow GVB to improve forecasts on the effects of these temporary traffic arrangements. 

In addition to the academic relevance and the added value for GVB, the model developed in this thesis 

provides extra value as the panel dataset used is based on chipcard data. The availability of this data allows a 
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more accurate analysis of the demand for public transport compared to former measurement methods of 

passenger flows.  

The remainder of this thesis is organized as follows. Chapter 2 elaborates on public transport and temporary 

traffic arrangements in Amsterdam. More specifically the closures of the IJtunnel and the associated diversions 

will be discussed. The literature review in Chapter 3 identifies multiple factors that affect the demand for public 

transport and summarizes the findings from the available quantitative models on this subject. Based on the 

findings from literature a model is developed which analyses the effect of IJtunnel closures in Chapter 4. 

Accordingly, the data and methodology used for this analysis will be discussed. The results of the analysis are 

presented in Chapter 5 and will be discussed in Chapter 6. Moreover, the latter chapter presents the limitations 

and implications of the research. Chapter 7 will conclude on the main findings of this study and finally Chapter 

8 will present recommendations for further research. 
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2. Public Transport and Temporary Traffic Arrangements in Amsterdam 

As a result of rapid urbanization, population growth and modern (economic) life styles, public transport has 

become one of the most commonly used transport modes. Public transport is defined as “a collective form of 

transport other than private car or taxi, which comprises all transport systems in which passengers do not travel 

in their own vehicles” (Polat, 2012, p. 1212). A public transport system transports members of the general 

public and facilitates mobility within a city. This chapter will first discuss the development and the role of public 

transport in Amsterdam. Second, the theoretical impact of temporary traffic arrangements will be discussed. 

Finally, the temporary traffic arrangements for the specific case of the IJtunnel closures will be introduced. 

2.1 Public Transport in Amsterdam 

People’s mobility is becoming an increasingly important aspect of city life. A growing city population and 

increasing mobility of the city’s inhabitants is associated with an increase in the demand for mobility and 

therefore the demand for transport (Polat, 2012). Over time a significant increase in the population’s mobility 

and the use of public transport was observed. It is even argued that the increase of public transport demand 

before 2010 was higher compared to demographic growth (EMTA, 2010). However this appears not to be true 

for the last five years in Amsterdam, where population grew but the use of public transport declined. Graph 1 

(on the following page) illustrates this observation.  

The red line in Graph 1 shows population growth over time. On January 1
st

 2013 the Amsterdam population 

consisted of 799,442 inhabitants, which implies an increase of 7% compared to 2008. The bars in Graph 1 

illustrate the public transport quantities for the last five years in Amsterdam by means of the number of 

passengers, passengerkilometres and service schedule hours per year
1
. The number of passengers decreased 

over time from 218 million passengers in 2008 to 206 million in 2012. The number of passengerkilometres in 

2012 was 176 million kilometres lower compared to 2008. In addition, the number of service schedule hours 

decreased over time from 1,636,000 hours in 2008 to 1,620,000 hours in 2012. Though, the service schedule 

hours follow a different pattern than the number of passenger(kilometre)s. For both the number of passengers 

and passengerkilometres the sharpest drop can be seen from 2009 to 2010 whereas the service schedule hours 

increase in this time period. This can be explained as the service schedule hours are planned based on the 

public transport volumes in the preceding year(s)
2
. Based on Graph 1 it can be concluded that public transport 

volumes decreased in the time-period from 2008 to 2012 while population grew, which implies that the 

positive relation found between population growth and public transport demand does not hold for the last few 

years in Amsterdam.  

                                                           
1 Note that the magnitude of the numbers is different for service schedule, this number is expressed in thousands while the 
number of passenger(kilometre)s is expressed in millions. 
2
 In 2011 a high number of service schedule hours is observed while the number of passenger(kilometre)s decreased further 

in the preceding years. This implies that the planning of service schedule hours was not well adapted to the changes in 
demand.  
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Graph 1: Population growth and public transport quantities in Amsterdam for the period 2008-2012 

 

Source: O+S Amsterdam (2013). 

Population growth may be associated with an increase in the demand for transport in general (Polat, 2012). 

Multiple transport modes can be used to meet this demand which can change the role of public transport 

within a city. On the one hand the role of public transport in a city may become more important as population 

grows, since car ownership and car use may be relatively problematic in cities due to lack a of parking space or 

congestion. On the other hand, other transport modes such as the bicycle or walking are viable alternatives for 

transport in the city as the travelled distance within the city is relatively small. Graph 2 shows the modal split in 

Amsterdam. 
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Graph 2: Modal split in Amsterdam based on the average number of movements per day 

 

Source: O+S Amsterdam (2013). 

Graph 2 shows that walking and cycling are important ways to move within the city of Amsterdam. On average, 

these travel modes were respectively responsible for 27% and 32% of the travel movements per day in 2011. 

The largest share of transport movements was therefore made by bicycle. Also a substantial share of travel 

movements was made by public transport. As shown in Graph 2, in 2011 on average 16% of the movements per 

day in Amsterdam were made by means of public transport. The share of car transport was relatively high 

compared to public transport; on average the car was used for 22% of the movements per day. In addition, 

Graph 2 shows that the share of transport by car has decreased from 29% in the period 1986-1991 to 22% in 

2011, while transport by bicycle increased from 21% to 32% in these periods. Based on Graph 1 and Graph 2 it 

can be concluded that even though population grew and public transport volumes fell over time in Amsterdam, 

the proportion of public transport use compared to total transport appears to be relatively stable and has 

changed relatively little over time.  

Based on the transport volumes and share of public transport in the modal split, it is clear that public transport 

is an important mode of transport within the city of Amsterdam. Therefore, temporary traffic arrangements 

due to maintenance activities or events can affect passenger travel within the city. The next section will discuss 

temporary traffic arrangements and their impact in more detail. 

2.2 Temporary traffic arrangements in the GVB network 

The road- and rail infrastructure used by GVB requires maintenance work regularly. Accordingly, some (parts 

of) routes cannot be utilised during the execution of these maintenance activities. Moreover, the city of 
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the city are inaccessible for public transport. For these situations GVB imposes adjustments in the form of 
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“Temporary Traffic Arrangements” (in Dutch: TVM’s, Tijdelijke VerkeersMaatregelen). These include for 

example the implementation of temporary diversions, shortened or lengthened routes of service lines, 

adjustments of the timetable, stops which are temporarily suspended and the establishment of temporary new 

stops. These arrangements will have an impact on GVB’s passengers, the workload of the GVB’s staff and the 

firm’s finances (GVB, 2011).  

2.2.1    Impact of temporary traffic arrangements on passengers 

Even though GVB’s objective is to minimize deviations from the standard timetable and therefore to minimize 

the impact of temporary traffic arrangements, the impact severity differs per situation. The temporary traffic 

arrangements are categorized on a scale from 0 to 3, where higher levels are associated with a more severe 

impact on GVB’s passengers. These categories are shown in Table 1. 

Table 1: Categories of temporary traffic arrangements 

Category Description 

0 No impact on the passenger, only a service announcement 

1 Alteration within the currently scheduled driving time and intervals 

2 New service schedule, minor impact/short time period/limited number of service lines affected 

3 New service schedule, large impact/long time period/ large number of service lines affected 

Source: GVB (2011).  

Depending on the category of the temporary traffic arrangement, passengers are confronted with changes in 

timetables, routes and travel duration. Temporary traffic arrangements of category 0 do not affect the 

passengers and include service announcements such as temporary speed limits or warnings for bad conditions 

of infrastructure. Category 1 arrangements involve for example temporary displacements of stops and do not 

require a change in driving time, so that the impact on passengers is only minor. Arrangements of category 2 or 

3 include (large scale) events and diversions which require a change in the service schedule. This implies route 

changes, temporary changes/closures of stops, the need for extra vehicles and changes in time tables. Public 

transport passengers should therefore adapt their journey in the sense that they should take into account 

longer travel times or a longer distance to/from the stops. As this may be perceived by passengers as 

inconvenient, passengers can choose alternative modes of transport or can decide to travel less. The reduction 

of the number of passengers will in turn lead to a loss of passenger revenues. The impact on passengers and 

passenger revenues however depends on the duration of the arrangement and the service lines affected. 

2.2.2 Impact within GVB 

Next to the impact on passengers, the temporary traffic arrangements also demand adjustments within GVB. 

The process of planning these arrangements takes time and is organized in different steps. The planning 
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process involves among others consultation with multiple external parties
3
, the planning of adjusted routes and 

timetables, adjustments of transport systems
4
, adjustments and/or displacements of stops and travel 

information at the stops, and communication towards the passengers (GVB, 2012). Furthermore, extra 

personnel are employed to inform passengers at the route and at stops, and extra teams are on stand-by in 

case of emergencies, irregularities or other disturbances. As multiple departments within the firm are 

responsible for the execution of these tasks involved, temporary traffic arrangements lead to a higher workload 

on GVB’s staff.    

2.2.3 Impact on finances 

The costs associated with temporary traffic arrangements derive among others from the preparation process 

and the need for extra personnel and vehicles. Other costs are related to a loss of the number of passengers 

and thus passenger revenues. Moreover, since GVB receives a subsidy from Stadsregio Amsterdam based on 

the number of vehicle kilometres, a diversion which shortens route length of the service lines may reduce the 

subsidy granted. Considering these costs, relatively small temporary traffic arrangements will be financed by 

GVB from a previously determined budget. The larger arrangements are not financed from the regular budget 

but require separate agreements. Since GVB became an independent business on January 1
st

 2007 (RTV Noord-

Holland, 2006), the firm is able to file a claim for the involved costs of temporary traffic agreements at the 

responsible external parties (municipality of Amsterdam) in order to compensate for the additional costs 

involved. However, the subsidy loss cannot be included in this claim as separate arrangements are made with 

respect to subsidies between GVB and Stadsregio Amsterdam. 

2.3 Temporary traffic arrangements for the IJtunnel closures 

This research estimates the impact of temporary traffic arrangements for one specific case in particular, the 

temporary closures of the IJtunnel. The IJtunnel directly connects the northern part of Amsterdam with the city 

centre, and provides a fast and short route for motorized vehicles (including GVB’s busses) to cross the IJ. 

Alternative routes to cross the IJ by road are via the Coentunnel, Zuiderzeeweg or the ringroad A10, but these 

routes imply a large detour and no direct connection to the city centre. Furthermore, ferryboats provide a 

frequent service to cross the IJ, though these can only be used by pedestrians and bicyclists. As the IJtunnel is 

used by multiple public transport operators
5
 and provides the most important direct connection between 

Amsterdam North to the city centre, the closure of the IJtunnel is expected to have a substantial impact on the 

demand for public transport.  

                                                           
3
 External parties include among others road managers, managers of traffic systems, fire-brigade, police and project 

engineers. 
4
 Adjustments of routes and timetables should be adjusted in transport systems (such as EBS) in order to provide the right 

travel information for the passengers. In addition, these adjustments are necessary to correctly register check ins and check 
outs with the public transport chipcard. The latter provides travel information of passengers to GVB, but is moreover it is 
crucial to calculate the right trip tariff for passengers. 
5
 Other public transport operators which use the IJtunnel are Connexxion and EBS. 
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The IJtunnel is closed regularly due to maintenance activities, mostly during the night or in weekends. As a 

consequence of these temporary closures, diversions are implemented for the four “IJtunnel service lines”
6
. As 

Amsterdam Central Station cannot be reached by these bus lines, they are diverted towards the 

Buiksloterwegveer from which passengers can take the ferryboat across the IJ towards the backside of the 

Central Station. From this point passengers should walk through the station (which takes approximately 5 

minutes) to reach the front of the station were the IJtunnel service lines would otherwise stop. The diversion is 

illustrated in Figure 1. 

Figure 1: Regular route through IJtunnel (red) and diverted route via the Buiksloterwegveer (green) 

  

Next to the IJtunnel service lines, the closure of the IJtunnel is also expected to affect the remaining lines in 

Amsterdam North. These provide alternative (but longer) routes to the city centre which involve interchanges. 

Considering the duration and number of affected service lines
7
, these IJtunnel closures are categorized as 

temporary traffic arrangements of category 2. The diversion can cause inconvenience for passengers as it 

involves extra travel time, interchanges between the bus and ferry boat and walking distance at the Central 

Station. Therefore passengers may find an alternative mode of transport or alternative routes. Moreover, they 

can decide to postpone their travel or not to travel at all.  

                                                           
6
 GVB’s service lines 32, 33, 34 and 35 use the IJtunnel in the regular timetable and are diverted during the IJtunnel 

closures. Next to the service lines of GVB, an additional ten service lines of EBS and five service lines of Connexxion are 
affected by the IJtunnel closure, though these will not be included in this research.  
7
In addition to the IJtunnel service lines, the nightlines (service lines 391, 392 and 394) will also be affected by the 

temporary traffic arrangements. Though, for this analysis there is no chipcard data available for these lines as separate 
nightbus tickets were sold in the time period used.  
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In 2012 the IJtunnel was closed in multiple weekends during the year. However, in March 2013 the tunnel was 

closed for five subsequent weekends from Saturday morning to Monday morning. As the nature of these 

closures differs with respect to the sequence, the effect of the closures in March 2013 may differ from the 

effect of other (single) IJtunnel closures. On the one hand, the effect on the demand for public transport may 

be stronger for the closures in March 2013 compared to other closures. Passengers are more likely to be 

informed about the five subsequent closures compared to a single weekend closure, so that they can adapt 

their travel plans, find alternative modes of transport, postpone their journey or may decide not to travel at all. 

For short single weekend closures, passengers are less well informed and are more likely to continue their 

(diverted) journey as they notice the diversion along the way. On the other hand, the effect of the closures in 

March 2013 can be less severe compared to other closures. Passengers may be less likely to postpone their trip 

for five weekends compared to one weekend (though this depends on the travel purpose, importance and 

urgency of the trip, where more urgent trips will be made despite the closures). Moreover as passengers are 

more likely to be informed they can prepare themselves for their diverted route. It is unclear whether the 

effect on the demand for public transport of subsequent closures differs from random closures. This study will 

therefore analyse the effect of the IJtunnel closures for March 2013 and for other IJtunnel closures in more 

detail. The announcement of the temporary traffic arrangement for the specific IJtunnel closures in March 

2013 is added in Appendix A. 

Concluding, this chapter discussed the characteristics of public transport in Amsterdam. Moreover, the 

organization and the consequences of temporary traffic arrangements for GVB were presented. The specific 

case of closures of the IJtunnel was introduced, for which the impact on the demand for public transport will be 

analysed in this study. The next chapter will identify multiple factors that affect public transport demand based 

on the scientific literature. 
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3. Literature review 

The demand for public transport is extensively discussed in academic and professional papers, as well as in 

government and consulting reports. Most of these studies focused on price as the main determinant for the 

demand for transport, and accordingly estimated own-price elasticities. Other studies identified and estimated 

elasticities of multiple other factors which affect the demand for public transport. Differences in research 

techniques, country selection, research period and transport mode are the main causes for varying results. The 

literature on the demand for public transport also includes meta-analyses. These compared and summarized 

the results from multiple quantitative analyses on this topic in order to derive more accurate effects (and 

magnitudes of these effects). This chapter defines the demand for public transport and provides an overview of 

the factors that affect this demand according to the academic literature. In addition, quantitative findings from 

previous studies on this subject will be discussed.  

3.1 Public transport demand 

Many different models have been developed on the demand for public transport in the scientific literature, in 

which this demand is expressed in multiple ways. In economics, demand reflects the amount of a good or 

service that people are willing to buy for a certain price. The demand for public transport could therefore be 

defined as the amount of public transport services that people are willing to make use of for a specific price. 

According to Balcombe et al. (2004) the demand for transport reflects the choice of travellers among different 

alternatives of trips which maximizes their utility, considering all the constraints specific to their choice. These 

constraints include time and money available to the traveller to spend on travelling, and the supply of transport 

which is determined by the service timetable and is thus beyond the traveller’s choice. The demand function 

therefore reflects the number of trips demanded in a given time period in terms of multiple explanatory 

variables. 

The most commonly used indicator for the demand for public transport is the number of trips within a specific 

time period. An alternative and often used measure is the number of passengerkilometers, which is a function 

of the number of passengers and their distance travelled (FitzRoy and Smith, 1998). The number of trips and 

the number of passengerkilometres were also used by Nijkamp and Pepping (1998) in their meta-analysis on 

the variance of the public transport demand elasticities in Europe. In addition to these measures, Balcombe et 

al. (2004) used passenger revenues to reflect the demand for public transport. 

Public transport services have some specific characteristics which should be taken into account in the analysis 

of demand. First, public transport is dynamic and interactive as it involves multiple transport modes, passenger 

types, travel purposes, travel frequencies and travel times. Second, time is an important dimension in public 

transport. During morning and evening peak hours demand is higher and more concentrated as mainly workers 

and students demand transport, but demand is more evenly spread during the rest of the day when leisure- or 

other types of travellers mainly use public transport. Third, the expectations from public transport services 

differ per type of traveller; the time and purpose of travel shape expectations differently. For example, workers 
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travelling during rush hour have lower expectations of service quality and comfort than leisure travellers. 

Fourth, the availability of alternative travel modes influences the demand for public transport (Polat, 2012). 

These characteristics imply that not one explicit demand function exists as the demand for public transport is 

different for each person, transport mode, time, place etcetera.   

3.2 Factors affecting the demand for public transport 

As mentioned above, the academic literature has identified multiple factors which affect the demand for public 

transport. One often cited paper on this subject is the so called TRL-report by Balcombe et al. (2004), which 

analysed and quantified the determinants for public transport demand in Great-Britain. Quantitative models 

were developed by Matas (2004) and Wang (2011) who respectively modelled the demand for public transport 

in Madrid and three cities in New Zealand (Auckland, Wellington and Christchurch). Both models include 

multiple explanatory variables that affect demand. In addition, meta-analyses by Nijkamp and Pepping (1980) 

and Holmgren (2007) combined results from multiple studies in order to draw some general conclusions on 

public transport demand (Holmgren, 2007). Each of these papers elaborate on quantifying the effect of factors 

that influence the demand for transport.  

With respect to these factors, a distinction is made between endogenous factors which can directly be 

influenced by transport operators and exogenous factors which cannot directly be influenced by operators. 

Endogenous factors include the cost of travel (in terms of fares and travel time), service quality and marketing 

& promotion activities. Exogenous factors include behavioural factors, travel distance, travel time, availability 

of alternative modes of transport and transport dependency (which are specific to individuals), but also 

economic, demographic and social factors, government policy, land use and weather conditions. The next 

sections will discuss these factors separately and will review the findings on these factors from the above 

mentioned literature. 

3.2.1 Endogenous factors 

A first endogenous factor that affects public transport demand is the cost of travel, where an increase in the 

cost of travel is associated with lower demand for public transport. The cost of travel can directly be influenced 

by the public transport operator and consists of two elements: fares and time. Fares represent the direct costs 

(sum of fares) charged for a specific trip, while time is a traveller-specific component associated with the 

traveller’s valuation of his/her time (Polat, 2012). These elements will be discussed separately. 

The majority of literature focuses on the effect of fares and fare changes on the demand for public transport. In 

general it can be stated that an increase of the fare level is associated with a decline in public transport 

patronage (Balcombe et al., 2004). This corresponds to the results by Webster and Bly (1980) who found a 

public transport fare elasticity of -0.3. The elasticity value of -0.3 implies that a 1% increase in the public 

transport fare would lead to a decrease in the demand for transport of 0.3%. As the relative change in the 

demand is smaller than the relative change in fare, public transport demand is said to be inelastic. This result 

was based on international aggregated elasticities for all fares, journey purposes, passenger types and trip 
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lengths (Balcombe et al., 2004) and has been used as a rule of dumb for the 1980s (Bresson et al., 2003). 

Although this result was based on averages from multiple studies, the different conditions under which the 

estimates were obtained are not taken into account (Holmgren, 2007). Therefore estimated elasticities for 

fares and other factors will differ based on the conditions under which they are estimated. 

Since the 1980s multiple studies on the demand for public transport found different elasticities. These 

differences may be addressed to changing elasticities over time, but also because a distinction was made 

between the effects of fares on public transport demand on the short-, medium- and long term (1-2 years, 5-7 

years and 10-12 years respectively) (Balcombe et al., 2004). Additionally elasticities differ between countries, 

cities and types of areas (rural versus urban areas), but also for area size, transport modes, time periods during 

the day (peak/off-peak), the type of traveller, journey purpose and the direction and distance of travel. 

Moreover, the effects of fare changes depend on the fare level, the magnitude and the direction of the fare 

change. All these dimensions contribute to a wide variety of studies on fare elasticities with differing results.  

In Webster and Bly’s footsteps, Oum et al. (1992) reviewed multiple other studies and found elasticity values 

for urban transit mostly ranging within -0.1 to -0.6. Meta-analysis by Holmgren (2007) found an average 

elasticity of -0.38 based on 81 estimated price-elasticities for public transport. Bresson et al. (2003) reported 

fare long run price-elasticities of approximately -0.7 for France and England and Wang (2011) found long-run 

values with respect to bus transport ranging from -0.34 to -0.46. Finally, Goodwin (1992) reported an average 

elasticity of -0.41 for bus transport based on analysis of 50 studies. In addition Goodwin (1992) stated that 

there is a reasonably clear pattern for long term elasticities to be between 50 per cent higher and three times 

higher than the short term. With this respect, the more recent study by Balcombe et al. (2004) distinguished 

between short-, medium- and long term elasticities and found values of -0.4, -0.56 and -1.0 respectively for bus 

fares. This implies that the demand for public transport becomes more price-sensitive on the long run. Based 

on these findings fare elasticities differ significantly depending on time periods, transport modes and other 

specific factors in which a mode operates. 

Next to fares, another determinant for the cost of travel is travel time. In general, a longer travel time is 

associated with higher costs of travel (opportunity costs of time) and is therefore negatively related to the 

demand for public transport. Travel time includes access time, waiting time, journey time and interchange 

time. First, access time refers to the time needed to get to a service stop, either walking, cycling or by other 

modes of transport. A longer access time can be considered as inconvenient and is associated with higher 

opportunity costs of time and lower public transport demand. Second, related to access time is access 

coverage, which refers to the span of the area where public transport is offered. A larger access coverage is 

associated with more potential travellers who can make use of public transport and thus with a higher level of 

public transport demand. Third, waiting time at the stop is another time component. This depends on the 

frequency of service offered at a certain stop. A higher frequency reduces waiting time and therefore the cost 

of travel. After all, waiting time is also considered as inconvenient and is perceived more negatively than 

journey time and access time (Polat, 2012). Fourth, with respect to journey times, alternative modes of 
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transport might provide a shorter journey time compared to public transport. One source for increasing 

journey times is (network) congestion, which decreases the service quality provided, increases the cost of 

travel with respect to time and therefore may lead to preference for other modes of transport. Finally, time 

spend on interchanges between transport modes also affects the cost of travel. The travel time component is 

thus positively related with the costs of travel and hence negatively related to the demand for public transport.  

A second endogenous factor that is often included in demand models for public transport is service quality, 

which may be more important for passenger transport than price (Oum et al., 1992). Service quality is closely 

related to the cost of travel and comprises multiple (time and non-time related) aspects. Some time-related 

aspects were discussed above and regard for example access time to the boarding point and egress time at the 

alighting point and in-vehicle time.  Another time-related service quality aspect is the service interval. Service 

intervals are often measured by total vehicle kilometres, which is the product of frequency and route length 

(Fitzroy and Smith, 1998). This implies that the service quantity supplied is actually an important component of 

service quality supplied.  

With respect to vehicle kilometres, Balcombe et al. (2004) summarized average elasticity values for bus 

demand of 0.4 in the short-run and 0.7 in the long-run based on 27 and 23 measurements respectively, so that 

a 1% increase of the number of vehicle kilometres is associated with a less than 1% increase in the demand for 

transport. Wang (2011) found long-run elasticities ranging from 0.62 to 0.73 with respect to (bus) vehicle 

kilometres. Holmgren’s (2007) meta-analysis found an average elasticity with respect to vehicle kilometres of 

0.72 based on 58 observations. These elasticity values are higher for Sundays, in the evenings and in rural areas 

in which the service levels are generally lower compared to weekdays, daytime and urban areas. In addition, 

Holmgren (2008) emphasized the positive two-way relationship between this service quality and the demand 

for transport. That is, service quality affects the demand for public transport, and the level of demand in turn 

affects the quality of service offered. 

Considering the two elements of vehicle kilometres in more detail, both frequency and route length are 

positively related to the demand for public transport. A higher frequency (that is; the more often a service is 

offered on a specific route within a specific period of time) is associated with shorter waiting times for 

customers and therefore a higher demand for public transport. Furthermore, route length reflects the area 

covered for public transport services on a network level. The wider this area, the higher the accessibility and 

the more passengers can make use of the services. A higher service level (in terms of frequency and route 

length) can thus increase service quality and can reduce the cost of travel in terms of time, which in turn can 

lead to an increase of public transport demand. Matas (2004) found a positive relationship between route 

length and public transport patronage and reported an elasticity value of 0.53 for bus trip demand with respect 

to the bus route length.  

In addition, other service quality factors are related to vehicle specific characteristics, service reliability, the 

provision of information and interchanges between modes (Balcombe et al., 2004). Vehicle characteristics are 

important determinants for the comfort a transport mode provides. Even though transport operators can try to 
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maximize comfort within their vehicles, transport by car is perceived as more comfortable with respect to 

seating, ventilation and storage capacity than public transport. In addition, crowdedness in public transport 

may reduce travel comfort. Service reliability is the degree of dependability and trust-ability of passengers in a 

specific transport mode, which includes aspects as accessibility, confidence, frequency, punctuality and service 

capacity (Polat, 2012). With regard to punctuality, Nordheim & Ruud (2011) found that delays are perceived as 

extremely inconvenient in the city of Oslo. Delays are associated with irritation by passengers as they have to 

wait for the delayed public transport service, do not arrive on time for appointments, or have to take an earlier 

departure because of the unreliable service (Nordheim & Ruud, 2011). In general, vehicles which provide a 

comfortable travel environment, high service reliability and good information are associated with higher levels 

of demand. However, more interchanges between modes are associated with lower levels of demand. By 

(re)developing their public transport network, operators could therefore minimize the need for interchanges. 

In addition, other service quality factors are related to vehicle specific characteristics, service reliability, the 

provision of information and interchanges between modes (Balcombe et al., 2004). Vehicle characteristics are 

important determinants for the comfort a transport mode provides. Even though transport operators can try to 

maximize comfort within their vehicles, transport by car is perceived as more comfortable with respect to 

seating, ventilation and storage capacity than public transport. In addition, crowdedness in public transport 

may reduce travel comfort. Service reliability is the degree of dependability and trust-ability of passengers in a 

specific transport mode, which includes aspects as accessibility, confidence, frequency, punctuality and service 

capacity (Polat, 2012). With regard to punctuality, Nordheim & Ruud (2011) found that delays are perceived as 

extremely inconvenient in the city of Oslo. Delays are associated with irritation by passengers as they have to 

wait for the delayed public transport service, do not arrive on time for appointments, or have to take an earlier 

departure because of the unreliable service (Nordheim & Ruud, 2011). In general, vehicles which provide a 

comfortable travel environment, high service reliability and good information are associated with higher levels 

of demand. However, more interchanges between modes are associated with lower levels of demand. By 

(re)developing their public transport network, operators could therefore minimize the need for interchanges. 

A final endogenous factor for public transport demand relates to marketing and promotion activities. In 

combination with quality and price incentives, marketing and promotion by public transport operators can 

increase the demand for public transport. However, public transport operators tend to rely on conventional 

forms of communication towards their customers while communication towards non-users of public transport 

is limited (Balcombe et al., 2004). Though, in the medium/long run, marketing can substantially contribute to 

the promotion of public transport. 

3.2.2 Exogenous factors 

The demand for public transport is also affected by exogenous factors, which cannot directly be influenced by 

transport operators. Some of these factors depend (to a certain degree) on the individual traveller, for example 

behavioural factors, travel distance, travel time and the availability of other transport modes. Other factors are 

more associated to the external environment, such as economic, demographic and social factors or 
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government policy. Even though each of these factors affect the demand for public transport, the existing 

quantitative models on this subject only include a selection of these factors since it is difficult to measure or 

quantify some of them (Polat, 2012). Varying estimated elasticities for these factors were found in scientific 

literature.  

First, behavioural factors are specific to individual travellers and affect public transport demand. For each 

individual, the demand for transport depends among others on personal characteristics, preferences and goals. 

Trip behaviour therefore differs per individual and per situation. However, it must be noted that in the short 

run passenger behaviour is more predictable than in the long run as travel patterns may change over time (also 

due to socio-economic changes).  

Another traveller specific factor is travel distance. In general, traveller’s willingness to make journeys decreases 

when travel distance increases. This can be explained by the negative perception of travellers for journey 

duration, boredom, discomfort and the rising opportunity costs of travel time. Shorter trips are made more 

frequently. In addition, when travel distance is beyond a certain threshold distance, travellers tend to choose 

another mode of transport than public transport (Polat, 2012).   

The demand for public transport also heavily depends on the time of travel during the day. During morning and 

evening peak times, the demand is high as journeys are made for work and school purposes. Next to the peak 

hours, journeys for leisure purposes are made outside the peak hours where demand for public transport is 

more evenly spread. Therefore, the time of travel depends on the journey purpose of the individuals. 

The availability of other transport modes than public transport, and the costs associated with these modes, also 

affects public transport demand. In general, when the availability (costs) of alternative modes rises, the 

demand for public transport expected to decrease (increase). The most important competitor and substitute 

for public transport is the private car. The car is often preferred for its higher comfort level, more convenient 

door-to-door transport and shorter travel times. Car ownership and the associated costs (for example in terms 

of fuel price) therefore affect the demand for public transport. 

Another exogenous factor that is specific to individual travellers is the degree of public transport dependency 

which is related to car ownership. When a traveller has a limited number of transport alternatives, demand for 

public transport is expected to be higher (Polat, 2012). This may especially be the case in low income regions or 

in cities in which car ownership may be more problematic due to a lack of space. 

Furthermore, economic factors affect public transport demand. These factors include among others the 

employment rate and the general level of wealth. In the long run, the employment rate is positively related to 

the demand for public transport. Matas (2004) found an elasticity value for GDP (as indicator of the level of 

wealth) of 0.15 with respect to the demand for transport. However, if household income or wealth exceeds a 

certain threshold, public transport is often substituted for transport by private vehicles (Polat, 2012). Income, 

car ownership and petrol prices are economic factors which are discussed in more detail. 
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The effect of income on the demand for transport is still unclear. In general, an increase in income is associated 

with an increase in the demand for transport, assuming that transport is a normal good. Meta-analysis by 

Holmgren (2007) reported income elasticities for public transport ranging from -0.82 to 1.18, with an average 

value equal to 0.17. Bresson et al. (2004) found elasticities ranging from -0.02 in France to -0.66 in England. The 

wide range of values may be explained as income is also related to car ownership. As the car may be seen as a 

substitute for public transport, there is a negative impact of income on the demand for public transport via car 

ownership. When interpreting income elasticities it is important to know whether car ownership is included in 

the estimation. Balcombe et al. (2004) found income elasticities ranging between -1.0 and -0.5 including the car 

ownership effect. Though, they stated that when car ownership reaches saturation the elasticities are expected 

to become less negative in the long run.  

As mentioned, car ownership and the availability of alternative modes of transport affects the demand for 

public transport. According to Balcombe et al. (2004) a person in a car-owning household is less likely to make a 

trip by public transport than a person in a non car-owning household. Since car ownership strongly depends on 

income it is difficult to separate car ownership effects and income effects. However, some studies estimated 

only the effect of car ownership on the demand for public transport. Holmgren’s (2007) meta-analysis showed 

elasticities ranging from -3.37 to 0 based on 8 observations, with a mean of -0.86. Wang (2011) found a long-

run elasticity of car ownership with respect to bus transport in Auckland of -3.10. This indicates that public 

transport demand is highly sensitive to the level of car ownership.  

Petrol prices are another important component of the cost of travel by car. Petrol prices are negatively related 

to the level of consumption of petrol and therefore car use. Based on 120 observations, Goodwin (1992) found 

average petrol price elasticity with respect to the consumption of petrol of -0.48, implying that higher petrol 

prices are associated with less petrol consumption. As the car can be seen as a substitute for public transport, 

higher petrol prices are associated with lower car use and higher public transport use. Accordingly, Goodwin 

(1992) found an average elasticity of public transport demand with respect to petrol prices of 0.34. Holmgren 

(2007) reported elasticity values ranging from 0 to 1.04 with an average of 0.38 and Matas (2004) estimated an 

elasticity value of 0.155 for petrol price with respect to demand for bus transport in Madrid. Finally, Wang 

(2011) found long-run elasticity values for petrol prices with respect to bus transport ranging from 0.32 to 0.37. 

All these values imply that a higher petrol price is indeed associated with a rise in the demand for public 

transport. 

Next to economic factors, demographic and social factors affect the demand for public transport. These include 

among others population growth, the population age structure, gender and child ownership. Groups like young 

adolescents and elderly people are more likely to use public transport as these groups are associated with low 

car ownership/use and relatively low incomes. Furthermore, males are more likely to have access to a car so 

that they are more sensitive to fares compared to females (Balcombe et al., 2004). However, these 

demographic and social factors change slowly over time and are expected to affect public transport demand in 

the long run, while they are less likely to affect demand in the short run. 
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Government policy affects public transport demand since the government or local authorities are often 

involved in the provision of public transport (infrastructure). In many cities, municipalities consider this as one 

of their main duties. On the one hand, government policies may stimulate public transport demand for 

example by means of subsidies. On the other hand, pricing mechanisms may discourage the use of alternative 

transport modes such as the car, which can relieve congestion and negative environmental impacts in cities but 

can increase the demand for public transport (Polat, 2012).  

The demand for public transport is also influenced by land-use characteristics. This is a very broad concept and 

includes among others population density, where highly populated areas are associated with more public 

transport use and less car use. Based on 8 studies, Tsai (2013) found elasticities with respect to population 

density ranging from 0.004 to 2.70, which illustrates the positive relation between density and public transport 

demand. Another land-use characteristic is reflected by settlement size (in terms of population), which is 

positively related to public transport use. Settlement size is also positively related to the facilities and services 

provided in the local area, and it is negatively related to travel distance. Also the layout of land use affects 

public transport use. Mixed land use, which combines housing, employment and shopping facilities, enables 

people to carry out their daily activities locally and therefore reduces the need for travel. Concentrated 

employment provision stimulates public transport demand and reduces car use, partially because of a lack of 

parking space (Balcombe et al., 2004). Based on 7 studies, Tsai (2013) reported elasticities with respect to land 

use mix ranging from 0.01 to 0.365, which indicates a positive relationship between land use mix and public 

transport demand. 

Finally with respect to the exogenous factors, weather conditions in the form of rainfall, snowfall and 

temperatures can play a role in the demand for public transport. Transit users are subject to direct physical 

impact from weather, both on their way to/from public transport as in the public transport vehicles. Rainfall 

and snowfall affect public transport demand for multiple reasons. Krygsman, Dijst and Artenze (2004) discussed 

that environmental conditions such as rainfall and wind affect the accessibility to public transport, which is 

mostly done by walking or cycling. The disutility of getting wet during access to public transport would imply a 

reduction of the demand for public transport. Moreover, rain and snow reduce visibility and traffic speed which 

reduces public transport service quality. Martin et al. (2000) reported traffic speed reductions ranging from 

10% during wet conditions to 25% in wet and slushy conditions. This reduction of service quality would be 

associated with a decline in public transport demand. Gaudry (1975) found a loss in the number of passengers 

in public transport due to rainfall in the city of Montreal, but found two opposite effects for snowfall. New 

snowfall was negatively related to public transport demand, whereas accumulated snowfall (old + new 

snowfall) showed a positive relation. This would imply that travellers are less inclined to use public transport 

during actual snowfall, while the accumulation of snow increases public transport demand. As Montreal’s 

inhabitants are used to large amounts of rain- and snowfall, the latter does not impede travellers to use public 

transport. 
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With regard to temperatures, Gaudry (1975) found that a fall in temperature was associated with a loss in the 

number of passengers for public transport in the city of Montreal. During cold weather travellers may prefer 

other transport modes (such as private car) which can provide more comfort like heating and shelter. Guo, 

Wilson and Rahbee (2007) stated that cold (wet) weather may depress outdoor sports and recreation activities 

as well as social events, so that public transport demand reduces. They find a positive relation between 

temperature and public transport demand in Chicago, so that warmer weather tends to lead to higher transit 

ridership. However, opposite cold weather (extreme) heat may also affect public transport demand. On the 

one hand, demand may increase since hot weather increases recreation activities for example in parks or near 

water (Guo et al., 2007). On the other hand it could be expected that extremely high temperatures discourages 

travellers to use public transport, as rising (in-vehicle) temperatures may be associated with less travel 

comfort. Moreover, extreme heat may cause technical failure of cooling systems which reduces the quality of 

the public transport service. These findings with regard to temperature suggest that temperature may have an 

exponential relation with the demand for public transport, so that demand is positively related with public 

transport demand below a certain threshold temperature, whereas a negative relation occurs for higher 

temperatures than this threshold (Figure 2). However, a study by a British bus operator found that the effects 

of weather conditions showed little impact of temperature or hours of sunshine on public transport use, while 

rainfall was associated with a reduction in public transport use (Balcombe et al., 2004). 

Figure 2: Potential exponential function between temperature and demand for public transport 

 

3.3 Summary of findings 

The discussed literature identified multiple endogenous and exogenous factors that affect the demand for 

public transport. These factors are summarized and categorized in Table 2 (on the next page). 
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Table 2: Endogenous and exogenous factors for the demand for public transport 

Endogenous factors Exogenous factors 

Related to individuals                                           Related to external environment 

Cost of travel 

   - Fares 

   - Time 

Behavioural factors Economic factors 

   - Income 

   - Car ownership 

   - Petrol price 

Service quality Travel distance Demographic and social factors 

Marketing and promotion Travel time Government policy 

 Availability of alternative transport modes Land use 

 Transport dependency Weather conditions 

    - Rain 

    - Snowfall 

    - Temperatures 

 

As discussed there is an extensive pool of research on the factors influencing the demand for public transport, 

resulting in different findings and estimations of elasticities. Balcombe et al. (2004) concluded that fare, quality 

of service and car ownership are the most significant factors for public transport demand. Holmgren (2007) 

supported these findings and stated that an ideal demand model should incorporate these three factors and 

additionally fuel price and income. However, it must be noted that some of these relevant factors are more 

important than others under different circumstances. Modelling the demand for transport as a complex 

function of these factors remains difficult, but imperfect models are not without value as they may be more 

useful to planners and policymakers than some random guesses (Balcombe et al., 2004).  

In summary, this chapter identified multiple factors that affect the demand for public transport. Based on these 

findings, a model was developed which captures the effect of the IJtunnel closures on public transport demand. 

In the next chapter this model will be discussed and the data and methodology used for the analysis will be 

presented.  
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4. The model: Data and Methodology 

Based on the findings from the literature review, a conceptual model was developed which captures the effect 

of temporary diversions on the demand for public transport in the GVB network. This chapter describes the 

data and methods used for this analysis. First the conceptual model for the demand for public transport will be 

discussed. Second, the variables in the analysis, their source and their expected signs will be discussed. Third, 

the final models will be presented. Fourth, the methodology used for the analysis and the tests performed on 

the dataset will be discussed. Finally, the descriptive statistics of the data will be presented.  

4.1 Conceptual model 

Model development usually starts with specifying in conceptual terms the variables which are to be modelled 

and the factors which influence these variables (Zureiquat, 2012). As the goal of this thesis was to estimate the 

impact of temporary diversions on the demand for public transport, a model was developed on public 

transport demand in which a diversion is the main factor of interest. Other factors on demand which were 

identified in the literature review were included in the model according to data availability. By controlling for 

these variables, the specific (net) effect of diversions on the demand for transport could be isolated. 

Conceptually, the model was composed as follows: 

               

where  

  = the demand for transport 

   = variable of interest: temporary traffic arrangements 

   = endogenous factors (directly influenced by public transport operator) 

   = exogenous factors (not directly influenced by public transport operator) 

Multiple measures could be used to represent these independent variables in a model on public transport 

demand. However, not every factor found in the literature review can be quantified. Table 3 (on the next page) 

shows the quantifiable variables which could potentially be included in the model. 
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Table 3: Quantifiable variables which could potentially be included in the model 

 Potential measures 

y = the demand for 

transport 

The number of trips 

Passenger kilometres 

Passenger revenues 

x1= variable of 

interest: temporary 

traffic arrangements 

IJtunnel closures for IJtunnel service lines (lines 32, 33, 34, 35) 

IJtunnel closures for lines in Amsterdam North (lines 36, 37, 38) 

Other temporary traffic arrangements 

x2= endogenous 

factors 

 

Fares: fare level, fare changes 

Service quality: 

   - Access and egress time 

   - Service intervals: vehicle kilometres operated, frequency, route length, waiting        

time, schedule delay 

   - Service reliability: (excessive) waiting time, punctuality, (excessive) in-vehicle time 

   - Interchanges between modes: average number of interchanges within trip 

x3= exogenous factors  Petrol price: average fuel price per day 

Transport dependency: availability of alternative modes of transport, car ownership 

Economic factors:  

   - Income: income per capita, income per household 

   - Car ownership: number of cars, average number of cars per household 

   - Employment: employment rate 

   - Overall wealth: GDP, household income 

Demographic/social factors: population growth, average population age, gender, 

number of children within household. 

Government policy: level of subsidies/taxes 

Land use: population density, settlement size, land use density 

Weather conditions: rainfall, snowfall, temperature 

Source: own construction of Balcombe et al. (2004), Bresson et al. (2003), Goodwin (1992), Holmgren (2007), Nijkamp and 

Pepping (1980), Oum et al. (1992), Polat (2012) and Tsai (2013). 

Since many of the previously discussed factors were not quantifiable and many data had constraints, it was not 

possible to include all of these variables in the analysis. Therefore, a selection of variables was added to the 

model according to data availability. 

The conceptual model was used to analyse the impact of the IJtunnel closures, which was expected to have an 

effect on both the IJtunnel service lines and the other service lines in Amsterdam North. Moreover, as 

discussed in Section 2.3 the closures in March 2013 were expected to have a different effect compared to other 

IJtunnel closures. Therefore two separate models were used to analyse the effect of the IJtunnel closures. First, 
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a general model was used to capture the total effect of all IJtunnel closures. Second, a specific model was used 

in which the effects are split up for March 2013 and other periods. This is shown schematically in Figure 3. 

Figure 3: Schematic representation of the analysis 

 

First these models were used for an analysis per day. Though, Section 3.1 discussed that time is an important 

dimension of public transport demand. During morning- and afternoon peak hours demand is relatively 

concentrated whereas demand is more evenly spread during off-peak hours. In order to analyse whether the 

effect of the IJtunnel closures differ for these different time periods per day, both the general model and 

specific model were applied for the morning peak, afternoon peak and off-peak hours. In total, this resulted in 

sixteen estimated models. 

4.2 Data and variables 

In order to analyse the impact of temporary diversions on the demand for public transport, the conceptual 

model was applied to a panel dataset. This panel comprised data for twenty service lines (see Appendix B) in 

the period February 1
st

 2012 to July 31
st

 2013. The panel dataset included both the service lines which are 

affected by the IJtunnel closures and control lines. The IJtunnel service lines (lines 32, 33, 34 and 35) and the 

remaining lines in Amsterdam North (lines 36, 37 and 38) were included as they are affected by the IJtunnel 

closures directly. Moreover, thirteen control lines were included which were selected according to multiple 

criteria. These were either bus or tram lines, which have Amsterdam Central Station as their turning point or 

which stop at the Central Station on their way to their final destination. Metro lines were excluded as data 

were not available for each metro line separately. Based on data availability, multiple dependent and 

independent variables were included in the dataset which will be discussed in the next sections. 

4.2.1 Dependent variables  

The demand for public transport is a broad concept and is represented by two measurements. One 

measurement for the demand for transport derived from the literature is the number of trips. As the data on 

Specific model 

General model 

Effect of IJtunnel closures 

IJtunnel service lines 

Closures in 
March 2013 

Other 
closures 

Other service lines in 
Amsterdam North 

Closures in 
March 2013 

Other 
closures 
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the number of trips were incomplete
8
, the number of boarding passengers was used as a measure for the 

demand for public transport. This variable reflects the number of check-ins made with the chipcard and was 

available on a daily and hourly basis. Though, this measurement may be biased. First, the number of check-ins 

may be influenced as a consequence of false check-ins (for example when passengers unintentionally check in 

twice), this would overestimate the number of trips. Additionally, fare dodgers are not counted in this measure 

(after all, they do not check in). Therefore the actual number of passengers may be underestimated. Finally, 

trips of which only a check out is registered and transactions in degraded mode
9
 are not included in this 

measurement. This may also imply an underestimation of the actual number of passengers. Data on the 

number of boarding passengers were extracted from the GVB chipcard database. The number of boarding 

passengers was derived per day and per hour for each service line separately. 

The second dependent variable for the public transport demand is the number of passenger kilometres, which 

reflects the distance travelled by the passengers. Just as the number of boarding passengers, this measure may 

be biased due to missing check ins and check outs for which no distance can be registered. Data on this variable 

were derived from the GVB chipcard database per day and per hour for each service line separately. 

4.2.2 Independent variables  

The independent variables were chosen according to the academic literature on the demand for transport. Two 

types of independent variables were included in the analysis. First the endogenous variables (which can directly 

be influenced by the public transport provider) reflected service levels which affect the demand for transport. 

Second, exogenous factors (which cannot directly be influenced by the public transport provider) were 

included such as weather conditions and fuel prices. 

The endogenous factors included in the model are related to service quality. As discussed in Section 3.2.1 an 

often used measure for the service level is the number of vehicle kilometres, for which Holmgren (2008) 

identified a positive two-way relationship with the demand for transport (that is; supply and demand for public 

transport are mutually dependent). The number of vehicle kilometres supplied is a function of frequency 

(service intervals) and route length, which were included separately in the conceptual model. Frequency is 

expressed as the number of scheduled trips per hour and was derived from GVB’s “Interval overview” for each 

service line separately. Since service intervals are associated with the supply and quality of public transport, 

frequency was expected to be positively related to the demand for transport. Route length represents the 

covered distance of the service lines in kilometres and was derived from GVB’s “List of service stops” for each 

service line separately. As discussed in Section 3.2.1, route length as a measure of service quality reflects the 

area covered by public transport services which would be positively related to public transport demand. 

                                                           
8 The number of trips based on chipcard data involves linking check-ins and check-outs. However, the data includes missing 

check-ins or check-outs which cannot be linked and are therefore not counted as a trip. Moreover, data on the number of 
trips were not available per day and per hour.  
9
 When the in-vehicle systems which register the chipcard transactions are in “degraded mode”, the vehicle is unable to 

recognize its location. Transactions in degraded mode will be registered as (partially) unknown, consequently no distance 
and trip price will be calculated.  
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Though, it must be noted that this is applicable on a network level but is less applicable for individual service 

lines. After all the route length may be long when the route covers large distances in a straight line, but also 

when the route circles through multiple streets in a relatively small area. Therefore, route length in this model 

does not necessarily reflect service level (the area covered) but was included as a component of supply of 

public transport. Moreover, it controls the demand for public transport in terms of passengerkilometres for 

route distance.  

A second element of service quality is service reliability, which was represented in the model by the departure 

punctuality measure. Departure punctuality is expressed as the percentage of vehicles in the schedule which 

depart “on time”, that is; the percentage of vehicles which depart exactly on time or within a range of two 

minutes from the exact departure time. Punctuality was expected to be positively related to the demand for 

transport so that a more reliable transport service leads to higher demand. Punctuality was measured per day 

and the data were derived from the GVB Dashboard Line Management (DBLM) which reports among others on 

punctuality, productivity and absence of employees.  

The first exogenous factor is the price of petrol. This measure was included to link the demand for transport to 

the availability of alternative modes of transport. As fuel prices rise, the use of alternative transport modes 

such as the car may decline which may increase the demand for public transport. Therefore, fuel prices were 

expected to be positively related to the demand for public transport. The variable was measured by the price of 

petrol per day in euros per litre, as registered by Travelcard Nederland BV in the CBS Statline database (CBS, 

2013). 

Second, weather conditions were included as exogenous factors. These were represented by rainfall and 

temperature as measured by KNMI’s weather station at Amsterdam Schiphol Airport. This is the nearest 

weather station to the city of Amsterdam. Rainfall was measured in millimetres of rain per square meter per 

hour, and was expected to be positively related to the demand for transport. Temperature was measured in 

degrees Celsius on a height of 1.5 meters during the observation and was measured per hour. This variable was 

expected to exponentially (parabolic function) related to the demand for public transport (see Section 3.2.2). 

The data on these variables were derived from KNMI’s historical weather database (KNMI, 2013).  

4.2.3 Overview of included data 

The previous sections discussed the dependent and independent variables included in the dataset. Table 4 

provides an overview of the available data for the variables used, their source and their extraction level. In 

addition, the expected sign of their relation to the demand for public transport are shown. These expectations 

were based on the academic literature.  
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Table 4: Variables included in the dataset 

 Variable (name) Description Source Level Sign 

Demand for 

public transport 

Boarding passengers 

(lnpassengers) 

Number of check ins GVB Chipcard database
10

 Per service line  

per hour/per day 

 

Demand for 

public transport 

Passenger kilometres 

(lnpassengerkms) 

Number of passenger 

kilometres 

GVB Chipcard database
10

 Per service line  

per hour/per day 

 

Service level 

(intervals) 

Frequency 

(lnfrequency) 

Number of scheduled 

trips per hour 

GVB Interval Overview 

2012/2013
10

 

Per service line 

Per hour/per day 

+ 

Service level Route length 

(Dlnroutelength) 

Route length (sum of both 

directions) in kilometres 

GVB List of service stops 

2012/2013
10

 

Per service line 

Per hour/per day 

+ 

Service level 

(reliability) 

Departure punctuality 

(punctuality) 

% of departures on time 

(0=>x<2 minutes) 

GVB Dashboard Line 

Management (DBLM)
10

 

Per service line 

Per hour/per day 

+ 

Alternative mode 

of transport 

Petrol price 

(Dlnpetrolprice) 

Price of petrol per litre in 

euros 

CBS Statline Per hour/per day + 

Weather 

conditions 

Rainfall 

(lnrainfall) 

Rainfall in millimetres per 

hour 

KNMI weather historical 

database 

Per hour/per day - 

Weather 

conditions 

Snowfall 

(lnsnowfall) 

Number of hours snowfall 

per day 

KNMI weather historical 

database 

Per day - 

Weather 

conditions 

Temperature 

(temperature(2)) 

Temperature in degrees 

Celsius 

KNMI weather historical 

database 

Per hour/per day -
11

 

 

Next to independent variables in Table 4, multiple dummy variables were used in order to capture the effect of 

the IJtunnel closures on the demand for public transport. In the general model (see Section 4.1) two dummies 

were included to capture the total effect of closures of the IJtunnel; one for the effect on the IJtunnel service 

lines and one for the remaining service lines in Amsterdam North. In the specific model four dummies were 

included which isolate the effect of the IJtunnel closures for March 2013 and other periods for both the 

IJtunnel lines and other lines in Amsterdam North. In both the general and the specific models a dummy was 

added to control for the effect of other temporary traffic arrangements for all service lines in the dataset (for a 

list of all temporary traffic arrangements, see Appendix C)
12

. Finally, time dummies were included to control for 

time effects as unexpected variation or special events may affect the outcome variable (Torres-Reyna, 2013). 

That is, time dummies capture the effects for reasons which are not captured in the other independent 

variables (Wooldridge, 2002, p. 410). Table 5 provides an overview of the included dummy variables. 

                                                           
10

 Internal documentation at GVB Amsterdam. 
11

 Note that the demand for public transport with respect to temperature was expected to be a parabolic function which 
opens downwards. For this relation the estimated coefficient for the quadratic function of temperature requires to be 
negative. Hence, the negative expected sign does not imply that a negative relation between temperature and demand for 
public transport is expected.  
12

 These other temporary traffic arrangements include only the arrangements of category 2 and 3, as they are expected to 
affect public transport demand (see Section 2.2.1). Arrangements in lower categories are often only service announcements 
and do not include changes in timetables. Their effect on passengers is perceived as minimal. 
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Table 5: Dummy variables included in the models  

Dummy type Dummy name Dummy for For service lines Sign 

General model     

IJtunnel closure dummy dijLtunnel
13

 All IJtunnel closures IJtunnellines  - 

IJtunnel closure dummy dijLadamN
13 

All IJtunnel closures Lines in Amsterdam North + 

Specific model for March 2013    

IJtunnel closure dummy dijLtunnelm13
13 

IJtunnel closures March 2013 IJtunnellines - 

IJtunnel closure dummy dijLtunnelother
13 

Other IJtunnel closures IJtunnellines  - 

IJtunnel closure dummy dijLadamNm13
13 

IJtunnel closures March 2013 Lines in Amsterdam North  + 

IJtunnel closure dummy dijLadamNother
13 

Other IJtunnel closures Lines in Amsterdam North  + 

All models     

Temporary traffic 

arrangements dummy 

dttaother
 

Other temporary traffic 

arrangements  

All service lines   - 

Time dummy dyear12 Yearly variation   

Time dummy djan, dfeb, dmar, dapr, 

dmay, djun, djul, daug, 

dsep, doct, dnov, ddec 

Monthly variation   

Time dummy dmonday, dtuesday, 

dwednesday, dthursday, 

dfriday, dsaturday, 

dsunday 

Daily variation   

 

4.3 Final models 

The demand for public transport was modelled based on the variables described in the previous section. 

However, in order to specify the final models the functional form of the models should be addressed. 

According to Balcombe et al. (2004) there is no consensus among researchers to either the functional form of 

the model or the variables which should be included to obtain the best explanation of demand. Empirical 

analysis and testing different model specifications should lead to the optimal model specification.  

One argument to use a log-linear model is the ease of interpretation, as the estimated parameters can be 

interpreted as constant elasticities. With respect to modelling the demand for public transport, the use of arc-

elasticities is commonly preferred over linear elasticities. The former assumes the demand function to be 

convex, while the latter assumes it to be linear. According to Balcombe et al. (2004) there is empirical evidence 

that the demand functions are indeed convex, so that linear elasticities are likely to give unrealistic predictions. 

Second, log transforming data is useful when there are large differences in the magnitudes of the numbers the 

                                                           
13

 With respect to the dummy names, d refers to dummy, ij refers to IJtunnelclosure, L refers to type of line (tunnel: IJtunnel 
service lines or adamN: lines in Amsterdam North), m13 refers to the specific IJtunnelclosures in March 2013, other refers 
to other IJtunnel closures than in March 2013. 
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data takes on (University of Maryland, 2010). Third, log transformations lead to constant variances of variables 

so that potential heteroskedasticity problems are reduced (University of Southern California, 2013). Another 

advantage is that the difference in logs approximates the growth rate. For these reasons, the dependent 

variables in this research were expressed in the form of a natural logarithm. The independent variables were 

also log transformed, except for variables which took on negative values (the logarithm of a negative number 

does not exist) or variables which were expressed as ratios. 

Considering the functional form and the discussed variables, the final (general) model estimated was: 

 

                                  

  ̂   ̂                ̂                   ̂                ̂                 

  ̂               ̂               ̂                ̂              
 

  ̂               ̂               ̂                                   

The specific model which isolated the effect of the IJtunnel closures in March 2013 from other IJtunnel closures 

was reflected by:  

 

                                  

   ̂    ̂                ̂                   ̂                ̂                 

  ̂               ̂               ̂                ̂              
 

  ̂                  ̂                     ̂                

  ̂                    ̂                                   

In these formulas, ln indicates a log-transformed variable, Dln indicates the first difference of a log-transformed 

variable (the reason for this is explained in Section 4.4.2) and d indicates dummy variables. In addition, the 

subscript i represents the individual (service line) dimension of the panel data and subscript t indicates the time 

dimension. Since i denotes the different service lines,    reflects the unobserved service line effect. That is, it 

represents all factors affecting the number of passenger(kilometre)s that do not change over time.     is the 

often called idiosyncratic error (time-varying error) as it represents the unobserved factors that change over 

time and affect the number of passenger(kilometre)s (Wooldridge, 2002, p.420). 

4.4 Methodology 

As discussed this research used panel data in order to capture the impact of the IJtunnel closures on the 

demand for public transport. The use of panel data has multiple advantages. Panel data contains multiple 

observations over time for the same units (service lines). This allows to control for unobserved characteristics 

of these service lines that affect the outcome variables (that is, it can control for omitted variables). In addition, 

panel data can facilitate causal inference and can be used to study the results of policy making (Wooldridge, 

2002, p.13). Panel data analysis provides the possibility to observe dynamic behaviour as it includes a temporal 

effect which is crucial for accurate forecasts of demand (Zureiqat, 2008). Finally, panel data increases the 
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sample size compared to single cross-sectional data or time-series data, which leads to more precise estimates 

and test statistics with more power (Wooldridge, 2002, p.409). 

4.4.1 Model estimation technique 

 

Although panel data provides multiple advantages, Ordinary Least Squares estimation leads to incorrect results 

as it ignores the panel structure of the data. Two alternative estimation techniques can be applied to panel 

data, the fixed effects estimation technique and the random effects technique. The fixed effects estimation 

explores the relation between predictor and outcome variables within an entity or individual (Torres-Reyna, 

2013). In this research, the entity dimension was reflected by the service lines so that fixed effects estimation 

concentrates on differences “within” service lines over time. Fixed effects assumes that the individual (service 

line) unobserved effects are correlated with the independent variables. Time-invariant variables are constant 

and perfectly collinear with the service line, so that time-invariant variables are eliminated by the within 

transformation: its impact will be subsumed by the fixed effects (Verbeek, 2008). Random effects estimation 

combines variation within and between service lines, so that the variation across service lines is assumed to be 

random and uncorrelated with the predictor or independent variables included in the model (Torres-Reyna, 

2013). That is, the random effects estimator is appropriate when the individual (service line) unobserved effect 

is thought to be uncorrelated with all the explanatory variables (Wooldridge, 2002, p. 455). Contrary to fixed 

effects estimation, random effects do allow time-invariant variables to be included in the model. The most 

important difference between fixed effects and random effects estimation is thus that fixed effects allow for 

correlation between the unobserved effect and the explanatory variables, whereas random effects does not.  

 

As this research mainly focused on changes over time within service lines, it was expected that fixed effect 

estimation was more appropriate in this research. Moreover the time period available for this analysis was only 

18 months, so that some variables were likely to be time-invariant. Fixed effects estimation would capture 

these time invariant factors. A Hausman test was performed to determine whether fixed effects were indeed 

more appropriate (see Appendix D). Except for one model, fixed effects estimation was preferred for all 

models. Therefore this research followed a more conservative approach in which it was assumed that the 

unobserved effect is correlated with the explanatory variables (ANU, 2009), so that fixed effects estimation was 

used for all models. This also allowed for a more consistent comparison of the models. The assumptions for 

fixed effects estimation are discussed in Appendix E.  

 

4.4.2 Tests on the dataset 

Missing values  

Before quantifying the model, the dataset was analysed for missing values. For departure punctuality, 1.83% of 

the observations (7,483 out of 409,667) were missing. This may be due to the fact that the EBS system (from 

which the data was derived) did not register punctuality as a consequence of technical errors. For example, 
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when a failure in the vehicle’s GPS system occurs or when EBS’ servers do not function properly, punctuality is 

not registered. Next to technical errors, non-registered punctuality may also occur during temporary 

diversions. This occurs when the adapted route and service schedule is not loaded properly onto the 

bus/tram’s registration systems. For the panel data analysis this implies that when no observations for 

punctuality were present, these observations were not used in the estimated models. As punctuality is an 

important factor for the demand for public transport, missing data were corrected by mean imputation. For 

this panel dataset, this implies that the mean value of punctuality was calculated per month for each service 

line separately. Mean punctuality was imputed for all missing observations, except for days on which special 

events occurred such as Queensday 2012 and 2013 or during the Amsterdam Marathon 2012. Data on 

punctuality for these latter events are likely to be outliers, as the crowdedness in the city is expected to 

(negatively) affect punctuality. 

With respect to the number of passengerkilometres, registration errors in the data occurred during two days of 

the IJtunnel closures. As the registered number of passengerkilometres had a value equal to zero, this would 

imply an overestimation of the actual effect of the IJtunnel closure. In order to avoid this bias, these specific 

observations were eliminated from the dataset. 

Test for multicollinearity 

The included variables in the dataset were tested for perfect multicollinearity, which refers to an exact linear 

relationship between independent variables (Wooldridge, 2002). As a consequence of multicollinearity, 

standard errors may be large and t-statistics tend to be small, which may lead to wrong inference of results. In 

addition, multicollinearity may result in incorrect signs or insignificance for theoretically important variables.  

 

The correlation table in Appendix F shows that there was no perfect collinearity (that is; none of the correlation 

coefficients in the table was equal to 1) between any of the included variables in the dataset. Though, some 

variables showed a relatively high correlation, which implies that the variables share (to some extent) similar 

information and have the same explanatory power. This forms a risk for multicollinearity problems. The 

correlation coefficient between the number of boarding passengers and passenger kilometres was equal to 

0.9173. This is not surprising, as the number of passenger kilometres is a function of the number of boarding 

passengers. However, this did not cause any problems as these variables were not included in the same model, 

after all they are dependent variables which were used in separate models. The variable frequency was highly 

correlated to both the number of boarding passengers (0.8274) and the number of passenger kilometres 

(0.8625). As frequency is a measure of the supply of transport, this high correlation can be explained by the 

two-way relationship between the demand for transport and the supply of transport (see Section 3.2.1 under 

service quality). Even though frequency may cause multicollinearity problems, the variable was included in the 

models as it is an important determinant for the demand for transport.  
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Test for non-stationarity  

Since panel data includes a time dimension, the data were tested for non-stationarity. A non-stationary time 

series is one whose statistical properties such as mean, variance and autocorrelation are not constant over 

time (Duke University, 2005). Using non-stationary time series in a regression model leads to the problem of 

spurious results. This implies that a significant relationship may be obtained between variables which actually 

are unrelated (Humboldt University Berlin, no date). Using non-stationary data for modelling or forecasting 

purposes can lead to spurious results. An often used solution for this problem is to transform the data into 

stationary data by first-differencing (Duke University, no date). The first-difference of the process is often 

stationary (Wooldridge, 2002, p.363). 

 

An Augmented Dickey-Fuller unit-root test was performed on each panel within the dataset. This test includes 

a number of lags and the option of a time trend. As no lag length selection criteria for daily data was available 

in the literature, the test was performed for both one and two lags. In addition, the test can include a linear 

time trend in the model which describes the process by which the time series develops. All variables were 

tested both with and without a time trend. The results from these test specifications were similar and are 

shown in Appendix G. The variables petrol price and route length had non-stationary properties (contained a 

unit root) in all tests. In order to eliminate potential spurious regression problems, the data on these variables 

were transformed into stationary data by taking first differences. In the final model formulas in Section 4.3 this 

is indicated by the letter D. 

 

Test for heteroskedasticity and autocorrelation 

 

The estimated models were tested for heteroskedasticity and serial (auto)correlation. Heteroskedasticity 

implies that the variance of the error term is the not the same regardless of the values of the independent 

variables. Serial correlation occurs in time-series when the error terms are correlated to the error terms of the 

previous period. As a consequence of heteroskedasticity and serial correlation the standard errors of the 

estimated parameters are incorrect, so that t-statistics and confidence intervals are no longer valid. This may 

lead to wrong inference. As it appears from the Wald test for groupwise heteroskedasticty in Appendix H, 

heteroskedasticity was apparent in the estimated models. In order to check for serial correlation the 

Wooldridge test for autocorrelation in panel data was performed (see Appendix H). This test showed that there 

was serial correlation in the error terms. As both heteroskedasticity and serial correlation were apparent, serial 

correlation robust standard errors were used to correct for both these problems.  

 

4.5 Descriptive statistics 

The dependent variables in the original dataset contained 409,667 half-hourly observations for twenty service 

lines (N=20). These observations were aggregated to a daily level, which leaves 10,887 observations daily 

observations in the dataset. On average the dataset contained 544 observations per service line. As the 
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number of service lines N was smaller than the number of time periods T (N < T), the dataset had the form of a 

long panel (Kim, 2012). However the dataset was unbalanced as each service line had a different number of 

observations over time. Table 6 shows the descriptive statistics of the daily dataset, after which these 

observations will be discussed for each variable separately. 

Table 6: Descriptive statistics of the dataset 

Variable 
 

Mean Std. Dev. Min Max Observations 

Passengers overall 11396.69 7923.767 53 39933 N =   10887 

 
between 

 
7502.195 1495.55 28840.85 n =      20 

 
within 

 
3046.434 -7381.16 22488.84 T-bar =  544.35 

       Passengerkilometers overall 33749.66 22100.27 0 108807 N =   10887 

 
between 

 
20664.62 6173.746 79413.58 n =      20 

 
within 

 
9101.854 -25524.5 63143.68 T-bar =  544.35 

       Frequency overall 5.667135 1.610809 1.878788 10.8 N =   10887 

 
between 

 
1.501194 3.142362 9.339713 n =      20 

 
within 

 
0.675217 3.127423 7.127423 T-bar =  544.35 

       Route length overall 19.68789 5.710265 11.936 39.289 N =   10887 

 
between 

 
5.851148 12.52929 39.27495 n =      20 

 
within 

 
0.241595 18.53218 20.42018 T-bar =  544.35 

       Punctuality overall 0.844977 0.087737 0 1 N =   10874 

 
between 

 
0.037977 0.76357 0.911277 n =      20 

 
within 

 
0.07955 -0.03692 1.081407 T-bar =   543.7 

       Petrol price overall 1.75841 0.0349 1.695 1.83 N =   10887 

 
between 

 
5.61E-05 1.758368 1.758622 n =      20 

 
within 

 
0.0349 1.694788 1.830042 T-bar =  544.35 

       Rainfall overall 3.323569 6.849571 0 54.4 N =   10887 

 
between 

 
0.065502 3.208624 3.475229 n =      20 

 
within 

 
6.849273 -0.15166 54.51495 T-bar =  544.35 

       Snowfall overall 0.516212 2.203143 0 19 N =   10887 

 
between 

 
0.001082 0.515596 0.519409 n =      20 

 
within 

 
2.203143 -0.0032 19.00062 T-bar =  544.35 

       Temperature overall 10.56175 6.845665 -10.1421 27 N =   10887 

 
between 

 
0.104782 10.13641 10.63941 n =      20 

 
within 

 
6.844902 -10.1637 26.96599 T-bar =  544.35 
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4.5.1 Dependent variables 

Table 6 showed the descriptive statistics for among others the dependent variables in this research. From the 

table it can be derived that on average, the service lines in the dataset had an average number of 11,396 

boarding passengers and 33,750 passenger kilometres per line per day. In order for the dataset to be a 

representative sample, the included service lines should provide a good reflection of the public transport 

network. With respect to the dependent variables, Graph 3 and 4 show the development of the average 

number of boarding passengers and passengerkilometres per month over time for both the control lines and 

the IJtunnel service lines included in the dataset.  

Graph 3: Development of the average number of passengers per month over time 

 

 

In both Graph 3 and 4 the number of passenger(kilometre)s follow a similar pattern for the IJtunnel service 

lines and the control lines. However, the average values of the passenger(kilometre)s were higher for the 

control lines than for the IJtunnel service lines. This occurs as the control lines include service lines with higher 

levels of public transport patronage (this will be discussed later, see Graph 5 and 6). When Graph 3 and 4 are 

compared, a similar pattern can be observed over time for the number of boarding passengers and the number 

of passenger kilometres. This is not surprising as the number of passenger kilometres is a function of the 

number of passengers. Therefore the absolute values of the number of passenger kilometres were higher than 

the number of passengers. As the graphs show, the number of passenger(kilometre)s fluctuates per month. For 

example, October 2012 and March 2013 show the highest values and August 2012 the lowest values. The latter 

can be explained by the summer holidays, in which an adjusted summer timetable was implemented.  
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Graph 4: Development of the average number of passenger kilometres per month over time 

 

Next to variation over time, the passenger(kilometre)s differ between service lines. Graph 5 and Graph 6 show 

the average number of boarding passengers and passenger kilometres respectively per day for each service line 

separately, where the four IJtunnel servicelines are shown in red. As the average number of passengers and 

passengerkilometres for the IJtunnel service lines per day were 5,715 and 26,617 respectively, the passenger 

flows on these lines were below the average of the complete sample
14

. 

Graph 5: Average number of passengers per day for each service line in the dataset

 

                                                           
14

 For the descriptive statistics of the IJtunnel service lines in particular, see Appendix I. 
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Graph 6: Average number of passengerkilometres per day for each service line in the dataset 

 

Graph 5 and 6 show the two measures for the demand for transport for each service line separately
15

. Line 1, 

17 and 26 appear to transport the largest passenger flows. The absolute number of passenger(kilometre)s for 

these lines were relatively high compared to the IJtunnel service lines and could therefore be seen as outliers. 

Even though the presence of outliers can lead to inflated errors and distorted parameter estimates, there is no 

conformity on whether outliers should be removed from the sample. When the data points are legitimate the 

data are more likely to be a representative of the population (GVB’s public transport network) as a whole if 

outliers are not removed (Osborne and Overbay, 2004). For this reason, and for the fact that removal of these 

three service lines leads to a substantial loss of observations, the data for these lines were preserved in the 

dataset. Graph 5 and 6 also show that the service lines 36 and 38 (two out of the three remaining service lines 

in Amsterdam North) transport the smallest passenger flows. These differences in passenger(kilometre)s 

between lines are also shown in Table 6, where the between variation was equal to 7,502 boarding passengers 

and 20,664 passenger kilometres per day. The variation within service lines was smaller than the between 

variation, and was equal to 3,046 passengers and 9,100 passenger kilometres per day. 

Distinction between days of the week 

Next to differences in the demand for transport per month as shown in Graph 3 and 4, there is also a difference 

in the demand for transport per day of the week. These differences are visualized in Graph 7 (on the next 

page), which shows the number of boarding passengers per day of the week. From the graph it can be derived 

that both the number of passenger(kilometre)s were highest on Wednesdays, Thursdays and Fridays. The 

lowest levels of public transport occurred on Saturdays and Sundays, so that the passenger flows were larger 

during the weekdays compared to the weekends.  

 

                                                           
15

 For a description of origins and destinations of these lines, see Appendix B. 
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Graph 7: Level of public transport per day of the week 

 

Distinction between Peak and Off-Peak hours 

Next to the analysis per day, the models were estimated separately for peak and off-peak hours. The morning 

peak was defined as the period between 7 am and 9 am, whereas the afternoon peak hours were defined 

between 4.30 pm and 6 pm. The remaining time period was then defined as off-peak hours. Graph 8 shows the 

proportions of passengers in peak and off-peak hours on average per day. As the duration of the peak and off-

peak hours differ this is shown as a weighted average per hour.  

Graph 8: Passenger transport in peak and off-peak hours, weighted average per hour 

 

Graph 8 shows that passenger transport per hour was most concentrated in the afternoon peak. On average 

per hour 997 passengers were transported, compared to 636 passenger per hour in the morning peak and 402 

passengers per hour in off-peak periods. This implies that passenger transport per hour in the afternoon peak 
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was more than twice the size of passenger transport in off-peak periods. The number of passengerkilometres 

showed similar proportions. On average 2,881 passengerkilometres per hour were covered in the afternoon 

peak, whereas the number of passengerkilometres per hour was lowest during off-peak hours. A possible 

explanation for the observed proportions of passenger transport in peak and off-peak hours may be derived 

from the types of travellers and travel purposes. During the morning peak public transport is mostly used by 

passengers going to school or work, whereas travellers for leisure purposes usually travel later during the day 

in the off-peak hours. In the afternoon peak both types of passengers may be combined as workers and leisure 

travellers both return to their homes, so that passenger transport per hour is more concentrated during the 

afternoon peak.  

4.5.2 Independent variables 

Next to information on the dependent variables, Table 6 (on page 37) shows the descriptive statistics for the 

explanatory variables on the network level. When these descriptive statistics on the network level are 

compared to the descriptive statistics of the IJtunnel service lines in particular (as shown in Appendix I) it can 

be concluded that the average punctuality of the IJtunnel lines was lower compared to punctuality on the 

network level. The average punctuality of the IJtunnel service lines shows that on average 80,7% of the 

departures were on time, whereas the average punctuality on the network level was 84,49%. The overall 

variation of punctuality was relatively small so that the fluctuation of average from the mean was only minimal. 

The variation over time (within service lines) was 7,95% on the network level whereas the variation between 

service lines was only 3,79%.  

With respect to frequency, Table 6 (on page 37) shows that the average frequency for all the service lines in the 

dataset was equal to 5.6 scheduled trips per hour, which is exactly equal to the average frequency of the 

IJtunnel service lines (see Appendix I). However, frequency depends on the time of day (peak/off-peak hours), 

day of the week and even per month (during summer vacations the frequencies on some service lines are 

adjusted downwards). Next to the variation over time, frequency differs between service lines as passenger 

flows (and therefore the required frequencies) are larger on one line compared to the other. According to the 

descriptive statistics this between variation on the network level was equal to 1.5 scheduled trips per hour. 

Within service lines frequency changes as peak-hours require a higher frequency compared to off-peak hours 

and early mornings and late evenings require fewer trips per hour than time periods during the day. This within 

variation was equal to 0.676 trips per hour on average for all service lines (see Table 6 on page 37).  

The average route length of the service lines in the dataset was equal to 19.68 kilometres. From the descriptive 

statistics it can be derived that the variation of route length between service lines in the dataset was larger 

compared to the within variation. The small within variation could be explained as the route length of a service 

line only changes once a year when the new timetable is implemented. Though there was a large difference of 

route lengths between the service lines in the dataset. The average route length of the IJtunnel service lines 

was equal to 18.7 kilometres, which is a little lower compared to the total average of the dataset (see Appendix 

I). 
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The described descriptive statistics for the dependent and endogenous variables thus vary for different service 

lines. In summary, the level of public transport on the IJtunnel service lines was relatively small compared to 

other GVB service lines included in the dataset. Though, the pattern of the number of passenger(kilometre)s 

over time appeared to be similar for these lines compared to the control lines. Punctuality and the average 

route length for the IJtunnel service lines were lower compared to the average of the sample whereas 

frequency of the IJtunnel lines was exactly equal to the dataset’s average.  

Finally with respect to the exogenous variables, the average temperature at the weather station of Amsterdam 

Schiphol Airport was equal to 10.5 degrees Celsius, whereas the average rainfall per hour was 3.32 millimetres. 

Snow was expected to affect the demand for public transport as well. On 45 out of the 547 days in the dataset 

snowfall was observed, with a maximum of 19 hours a day. In particular, snow fell during two of the five 

weekends in March 2013 in which the IJtunnel was closed. More specifically, on March 10
th

 2013 and March 

30
th

 2013 snowfall was relatively intense as it was observed for 10 and 9 hours a day respectively. The final 

explanatory variable which cannot be influenced by the transport operator is the price of petrol. The average 

price of petrol between February 1
st

 2012 and July 31
st

 2013 was equal to 1,758 euros per litre. Graph 9 shows 

the development of the petrol price over time.  

Graph 9: Average petrol price per litre in euros 

 

Graph 9 shows that the price of petrol fluctuates over time around its mean. As discussed in Section 4.4.2 this 

variable had non-stationary properties so that this variable could cause problems of spurious regression. 

Therefore this variable was included by using the first-difference.  

In summary, this chapter presented the models used to analyse the effect of the IJtunnel closures on the 

demand for public transport. Moreover, the data and methodology used for this analysis were discussed and 

descriptive statistics of the data were described. In the next chapter the results of the analysis will be reported. 
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5. Results 

In order to estimate the impact of the temporary traffic arrangements for the IJtunnel closures, the conceptual 

model on the demand for transport was applied to the dataset as described in Chapter 4. The models were 

estimated on a daily basis and for the morning peak, afternoon peak and off-peak periods in particular. In this 

chapter the results from the analysis will be presented. It is important to note that these results are all 

addressed under the Ceteris Paribus assumption (that is, “other (relevant) factors being equal” (Wooldridge, 

2002, p.13)). The results of the models estimated for the number of passengers will be discussed in Section 5.1 

and for the number of passengerkilometres in Section 5.2. The findings will be summarized in Section 5.3.  

5.1 Models on the number of passengers 

The results of the analysis are presented in Table 7 (on the next page). The total effect of the IJtunnel closures 

on the number of passengers estimated by the general model are shown in the four columns on the left side of 

the table. The specific model which isolates the specific effect of the IJtunnel closures in March 2013 from 

other IJtunnel closures are shown in the four columns on the right side of the table. Each model was estimated 

for an average day and for peak- and off-peak hours in particular. The bold figures in the table indicate 

significant effects at the 5% significance level. 

The effect of the IJtunnel closures were captured by the included dummies which are listed at the bottom of 

Table 7. The closures were associated with a significant decline of the number of passengers on the IJtunnel 

service lines, except for during the morning peak hours. The percentage effects of the IJtunnel closures are 

presented in Table 8. Based on the analysis per day, the IJtunnel closures were associated with an 18,4% 

decline in the number of passengers on the IJtunnel service lines. This effect was larger during off-peak periods 

(19,4% less passengers) compared to the afternoon peak hours (13,6% less passengers). In addition to the 

effect on the IJtunnel service lines, the closures had a positive effect on the number of passengers on the 

service lines in Amsterdam North (except for in the morning peak), though this effect was not significant.  

Table 8: Percentage effect of the IJtunnel closures on the number of passengers
16

 

Effect of IJtunnel closure on: Analysis per day Morning peak Afternoon peak Off-peak 

IJtunnel service lines (total) -18.37 % -5.26 % -13.58 % -19.35 % 

        - for IJtunnel closures in March 2013 -21.10 % -12.54 % -15.80 % -22.04 % 

        - for other closures -14.87 % 4.39 % -10.86 % -15.80 % 

Other service lines in Amsterdam North (total) 8.55 % -6.57 % 2.53 % 9.64 % 

       - for IJtunnel closures in March 2013 12.98 % -9.88 % 1.31 % 14.68 % 

       - for other closures 2.63 % -2.27 % 3.98 % 3.05 % 

Printed in bold = significant at a 5% significance level  

                                                           
16 Note: these percentages were calculated by the formula:         ( ̂)     (Wooldridge, 2002, p. 219). 
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Table 7: Models on the number of passengers 

        
 

Analysis per day Morning peak Afternoon peak Off-peak Analysis per day Morning peak Afternoon peak Off-peak 

log Frequency (departures per hour) 1.317 (0.131) 0.733  (0.153) 0.776  (0.144) 1.212  (0.110) 1.319  (0.132) 0.731  (0.153) 0.776  (0.145) 1.215  (0.111) 
∆ log Route length (in kilometres) 7.309 (0.810) 25.895 (2.745) 5.938  (0.944) 6.052  (0.614) 7.309  (0.808) 25.883 (2.743) 5.934  (0.943) 6.052  (0.613) 

Punctuality (% departures on time) 0.143 (0.036) 0.350  (0.058) 0.161  (0.044) 0.130  (0.035) 0.143  (0.036) 0.352 (0.059) 0.162  (0.044) 0.129  (0.036) 

∆ log Petrol price (in euros per litre) 0.685 (0.609) -0.619 (1.099) -1.254 (1.114) 0.673 (0.606) 0.688 (0.605) -0.744 (1.109) -1.290 (1.109) 0.679 (0.607) 

log Rainfall (in millimetres) 0.008 (0.002) 0.088  (0.006) -0.024 (0.008) 0.007 (0.002) 0.008  (0.002) 0.088 (0.006) -0.024 (0.008) 0.007 (0.002) 
log Snowfall (number of hours per day)  0.005 (0.002) 0.051  (0.004) -0.001 (0.003) 0.001 (0.002) 0.005 (0.002) 0.052 (0.004) -0.001 (0.003) 0.001 (0.002) 

Temperature (in degrees Celsius) -0.007  (0.001) -0.013  (0.001) -0.003 (0.001) -0.006 (0.001) -0.007 (0.001) -0.013 (0.001) -0.004 (0.001) -0.006 (0.001) 

Temperature
2
 (in degrees Celsius) 0.000 (0.000) 0.000  (0.000) -0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) -0.000 (0.000) 0.000 (0.000) 

dummy Year12 -0.023 (0.015) 0.021 (0.015) -0.003 (0.014) -0.029 (0.015) -0.023 (0.015) 0.020 (0.015) -0.003 (0.014) -0.029 (0.015) 
dummy February 0.055  (0.004) 0.089  (0.010) 0.025 (0.007) 0.056 (0.004) 0.055  (0.004) 0.090 (0.010) 0.025 (0.007) 0.056 (0.004) 

dummy March 0.078  (0.007) 0.153  (0.013) 0.020 (0.010) 0.076 (0.008) 0.078  (0.007) 0.157 (0.014) 0.022 (0.011) 0.076 (0.008) 

dummy April 0.110  (0.010) 0.106  (0.010) 0.032 (0.011) 0.120 (0.010) 0.110  (0.010) 0.107 (0.010) 0.032 (0.011) 0.120 (0.010) 

dummy May 0.076 (0.013) 0.050  (0.018) 0.014 (0.013) 0.089 (0.014) 0.076  (0.013) 0.051 (0.018) 0.014 (0.013) 0.089 (0.014) 
dummy June 0.122  (0.011) 0.219  (0.015) 0.050 (0.012) 0.120 (0.011) 0.122  (0.011) 0.220 (0.015) 0.050 (0.012) 0.120 (0.011) 

dummy July 0.123  (0.025) 0.040 (0.037) 0.034 (0.034) 0.119 (0.022) 0.123  (0.025) 0.040 (0.037) 0.035 (0.033) 0.119 (0.022) 

dummy August 0.074 (0.040) -0.052 (0.052) 0.017 (0.047) 0.067 (0.037) 0.075 (0.040) -0.053 (0.052) 0.016 (0.047) 0.067 (0.037) 

dummy September 0.072  (0.033) 0.232  (0.020) -0.009 (0.051) 0.054 (0.038) 0.072  (0.033) 0.232 (0.020) -0.009 (0.051) 0.055 (0.038) 
dummy October 0.102  (0.027) 0.184  (0.019) 0.048 (0.042) 0.097 (0.031) 0.103 (0.028) 0.186 (0.019) 0.048 (0.042) 0.097 (0.031) 

dummy November 0.111  (0.014) 0.235  (0.020) 0.070 (0.019) 0.098 (0.014) 0.111  (0.015) 0.235 (0.020) 0.070 (0.019) 0.099 (0.014) 

dummy December 0.031 (0.017) -0.146  (0.016) 0.011 (0.021) 0.053 (0.017) 0.032 (0.017) -0.145 (0.016) 0.012 (0.021) 0.054 (0.017) 

dummy monday 0.221  (0.028) 1.615  (0.095) 0.388 (0.034) 0.167 (0.028) 0.220  (0.028) 1.617 (0.095) 0.388 (0.035) 0.166 (0.028) 
dummy tuesday 0.297  (0.030) 1.729  (0.096) 0.425 (0.034) 0.240 (0.030) 0.297  (0.030) 1.730 (0.096) 0.425 (0.034) 0.239 (0.030) 

dummy wednesday 0.324  (0.030) 1.725  (0.098) 0.441 (0.033) 0.277 (0.029) 0.324  (0.030) 1.727 (0.098) 0.441 (0.033) 0.277 (0.029) 

dummy thursday 0.364  (0.029) 1.746  (0.097) 0.474 (0.034) 0.323 (0.027) 0.364  (0.030) 1.747 (0.097) 0.474 (0.034) 0.323 (0.028) 

dummy friday 0.353  (0.030) 1.643  (0.098) 0.408 (0.035) 0.337 (0.026) 0.352  (0.031) 1.644 (0.098) 0.408 (0.035) 0.337 (0.027) 
dummy saturday 0.209  (0.022) 0.625  (0.032) 0.158 (0.037) 0.213 (0.020) 0.209  (0.022) 0.625 (0.032) 0.158 (0.037) 0.213 (0.021) 

dummy other temporary traffic arrangements -0.015 (0.032) -0.056 (0.042) -0.022 (0.036) -0.007 (0.031) -0.015 (0.032) -0.057 (0.042) -0.022 (0.036) -0.008 (0.031) 

dummy IJtunnel service lines (total) -0.203  (0.038) -0.054 (0.051) -0.146 (0.046) -0.215 (0.043)         
dummy service lines Amsterdam North (total) 0.082 (0.072) -0.068 (0.112) 0.025 (0.071) 0.092 (0.084)         

dummy IJtunnel service lines (March 2013)         -0.237  (0.044) -0.134 (0.066) -0.172 (0.050) -0.249 (0.052) 

dummy IJtunnel service lines (other)         -0.161  (0.040) 0.043 (0.062) -0.115 (0.047) -0.172 (0.042) 

dummy service lines Amsterdam North (March 2013)         0.122 (0.079) -0.104 (0.104) 0.013 (0.058) 0.137 (0.094) 
dummy service lines Amsterdam North (other)         0.026 (0.071) -0.023 (0.125) 0.039 (0.096) 0.030 (0.075) 

constant 6.450  (0.210) 3.691 (0.238) 5.143 (0.272) 6.431 (0.179) 6.448  (0.212) 3.692 (0.238) 5.144 (0.273) 6.427 (0.180) 

Number of observations 10823 10779 10816 10823 10823 10779 10816 10823 

R²-within 0.678 0.8319 0.6277 0.6057 0.6782 0.832 0.6278 0.606 
Printed in bold = significant at a 5% significance level (Standard errors in parentheses) 
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The specific IJtunnel closures in March 2013 also showed a significant negative effect on the number of 

passengers on the IJtunnel service lines, except for the morning peak hours. Based on the analysis per day, 

Table 8 shows that these specific IJtunnel closures were associated with 21% less passengers on the IJtunnel 

service lines whereas the other closures were associated with 15% less passengers compared to regular 

situations. For the other service lines in Amsterdam North the effect was also stronger during the five 

subsequent closures in March 2013 compared to other closures, though neither of these effects were 

significant. A test was performed to investigate whether the effect on the number of passengers in March 2013 

was significantly different from the effect of other closures (see Appendix J). This test showed that the effect 

on the number of passengers on the IJtunnel service lines was not significantly different from other closures, 

whereas the effect on the service lines in Amsterdam North was different. With respect to the other temporary 

traffic arrangements for other service lines in the public transport network, Table 7 shows no significant effect 

on the number of passengers. 

Comparing the effects during peak and off-peak hours, no significant effects of the IJtunnel closures on the 

number of passengers were found during the morning peak. Though, for the IJtunnel service lines the effect 

was less strong during the afternoon-peak compared to off-peak hours. 

Considering the endogenous variables in the model, the three service level variables (frequency, route length 

and punctuality) had a significant positive effect on the number of passengers. That is, an increase in the 

service level (and therefore service quality) was associated with an increase of the demand for public transport. 

The effect of frequency was smaller during the peak hours, however the interpretation of the estimated effect 

for frequency could be incriminating because of causality issues (this will be explained in the Discussion 

(Chapter 6)). The effect of route length and punctuality was larger in the morning peak compared to other 

time-periods during the day. 

With respect to the exogenous variables, petrol price had no significant effect on the number of passengers.  

The weather conditions did affect the number of passengers, though the effects were only small. Rainfall had a 

significant effect, but the signs were inconsistent as a negative effect was found during the afternoon peak but 

a positive effect was found in the remaining models. Snowfall only appeared to have a significant effect during 

the morning peak, where snowfall was associated with an increase of the number of passengers. The effect of 

rainfall appeared to be stronger than the effect of snowfall. With respect to temperature the effect was very 

small and unclear. The relation between temperature and public transport demand was expected to be a 

parabolic function which opens downwards (captured by the quadratic variable temperature
2
), but this only 

appeared to be significant during peak hours. The shape of the parabola is unclear as both positive and 

negative estimates were found. Moreover, the very small estimates (coefficients are almost equal to zero) 

indicate very wide parabolas
17

. This implies that the number of passengers grows and declines relatively slowly 

with temperature. The linear term of temperature would indicate a negative relation with the number of 

                                                           
17

 When  ̂  is the estimated coefficient for the quadratic term of temperature (temperature2), the parabola opens 

downwards when   ̂      while the parabola opens upwards when | ̂ |   . A smaller (larger) value for  ̂  indicates a 

wider (smaller) the parabola. 
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passengers, so that higher temperatures are associated with lower public transport demand. Even though the 

temperature variables are jointly significant, no clear relation with the number of passengers was found. 

Finally, dummies were included to control for general trends over time. The number of passengers in 2013 did 

not significantly differ from the number of passengers in 2012 (dyear12). Regarding monthly effects, the 

analysis per day showed that the number of passengers was significantly higher in all months compared to 

January (reference situation). Especially in April, June, July, October and November the number of passengers 

was higher compared to January. However, the monthly effects differ for the peak and off-peak models. In the 

morning peak June, September and November showed a significantly higher number of passengers, while the 

number of passengers was significantly lower in December compared to January. The model for the afternoon 

peak showed little monthly variation in the number of passengers, while the off-peak model showed 

significantly more passengers in April, June and July. The dummies included for each day of the week showed 

that the number of passengers was higher for each day compared to Sundays (the reference situation). The 

number of passengers was highest on Wednesdays, Thursdays and Fridays and this effect was significantly 

larger in the morning peak hours compared to other models. Also the number of passengers in the morning 

peak was higher during weekdays compared to days in the weekend. 

5.2 Models for the number of passengerkilometres 

Next to the number of passengers, the number of passengerkilometres was used as a measure for the demand 

for public transport. Table 9 (on the next page) shows the results for the models estimated for this dependent 

variable for the analysis per day, the morning peak, afternoon peak and off-peak hours. The general model in 

the four columns on the left side of the table again estimate the total effect of the IJtunnel closures, whereas 

the specific model in the columns on the right side isolate the effect of the specific closures in March 2013. 

With regard to the variables of interest, the IJtunnel closures show large and significant effects on the number 

of passengerkilometres. The percentage effects are shown in Table 10. 

Table 10: Percentage effect of the IJtunnel closures on the number of passengerskilometres
18

 

Effect of IJtunnel closure on: Analysis per day Morning peak Afternoon peak Off-peak 

IJtunnel service lines (total) -45.01 % -37.06 % -41.26 % -45.88 % 

        - for IJtunnel closures in March 2013 -46.37 % -42.07 % -42.54 % -47.11 % 

        - for other closures -42.59 % -28.11 % -39.16 % -43.67 % 

Other service lines in Amsterdam North (total) 15.03 % -1.09 % 11.07 % 16.30 % 

       - for IJtunnel closures in March 2013 21.65 % -2.08 % 13.54 % 23.37 % 

       - for other closures 6.29 % -0.10 % 7.68 % 7.14 % 

Printed in bold = significant at a 5% significance level  

                                                           
18

 Note: these percentages were calculated by the formula:         ( ̂)     (Wooldridge, 2002, p. 219). 
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Table 9: Models on the number of passengerkilometres 
       

 
Analysis per day Morning peak Afternoon peak Off-peak Analysis per day Morning peak Afternoon peak Off-peak 

log Frequency (departures per hour) 1.282 (0.167) 0.608 (0.157) 0.742 (0.158) 1.184 (0.134) 1.285 (0.168) 0.607 (0.157) 0.742 (0.158) 1.188 (0.135) 
∆ log Route length (in kilometres) 7.561 (0.769) 27.670 (2.978) 6.507 (0.828) 6.145 (0.550) 7.563 (0.768) 27.657 (2.976) 6.506 (0.828) 6.148 (0.549) 

Punctuality (% departures on time) 0.150 (0.032) 0.374 (0.067) 0.194 (0.052) 0.131 (0.032) 0.149 (0.032) 0.376 (0.067) 0.195 (0.052) 0.131 (0.033) 

∆ log Petrol price (in euros per litre) 0.179 (0.585) -0.928 (1.268) -0.943 (1.113) 0.005 (0.602) 0.192 (0.584) -1.073 (1.273) -0.957 (1.111) 0.024 (0.601) 

log Rainfall (in millimetres) 0.005 (0.003) 0.083 (0.005) -0.034 (0.010) 0.004 (0.003) 0.005 (0.003) 0.083 (0.005) -0.034 (0.010) 0.004 (0.003) 
log Snowfall (number of hours per day)  0.004 (0.002) 0.053 (0.004) -0.000 (0.003) -0.000 (0.002) 0.004 (0.002) 0.054 (0.004) -0.000 (0.003) -0.000 (0.002) 

Temperature (in degrees Celsius) -0.005 (0.001) -0.012 (0.001) -0.002 (0.001) -0.004 (0.001) -0.005 (0.001) -0.012 (0.001) -0.002 (0.001) -0.004 (0.001) 

Temperature
2
 (in degrees Celsius) -0.000 (0.000) 0.000 (0.000) -0.000 (0.000) -0.000 (0.000) -0.000 (0.000) 0.000 (0.000) -0.000 (0.000) -0.000 (0.000) 

dummy Year12 -0.034 (0.016) 0.016 (0.014) -0.016 (0.014) -0.042 (0.016) -0.034 (0.016) 0.016 (0.014) -0.016 (0.014) -0.042 (0.016) 
dummy February 0.045 (0.005) 0.081 (0.010) 0.011 (0.009) 0.047 (0.005) 0.045 (0.005) 0.082 (0.010) 0.011 (0.009) 0.047 (0.005) 

dummy March 0.078 (0.010) 0.152 (0.015) 0.018 (0.012) 0.076 (0.010) 0.077 (0.010) 0.156 (0.015) 0.018 (0.012) 0.075 (0.010) 

dummy April 0.102 (0.012) 0.100 (0.013) 0.023 (0.015) 0.113 (0.012) 0.102 (0.012) 0.101 (0.013) 0.023 (0.015) 0.112 (0.012) 

dummy May 0.065 (0.013) 0.039 (0.016) -0.002 (0.014) 0.079 (0.013) 0.065 (0.013) 0.040 (0.016) -0.002 (0.014) 0.079 (0.013) 
dummy June 0.113 (0.015) 0.202 (0.020) 0.037 (0.016) 0.111 (0.015) 0.113 (0.015) 0.203 (0.020) 0.038 (0.016) 0.110 (0.015) 

dummy July 0.121 (0.027) 0.012 (0.037) 0.028 (0.036) 0.120 (0.024) 0.121 (0.027) 0.013 (0.037) 0.029 (0.036) 0.120 (0.024) 

dummy August 0.070 (0.045) -0.093 (0.053) 0.008 (0.052) 0.067 (0.039) 0.071 (0.045) -0.094 (0.053) 0.008 (0.052) 0.068 (0.039) 

dummy September 0.062 (0.029) 0.188 (0.026) -0.027 (0.057) 0.043 (0.035) 0.061 (0.029) 0.187 (0.026) -0.027 (0.057) 0.043 (0.035) 
dummy October 0.105 (0.025) 0.178 (0.019) 0.044 (0.045) 0.100 (0.029) 0.105 (0.025) 0.179 (0.019) 0.045 (0.045) 0.100 (0.029) 

dummy November 0.110 (0.022) 0.232 (0.025) 0.073 (0.027) 0.097 (0.021) 0.110 (0.022) 0.231 (0.025) 0.073 (0.027) 0.097 (0.021) 

dummy December 0.035 (0.018) -0.143 (0.018) 0.013 (0.021) 0.060 (0.019) 0.035 (0.018) -0.142 (0.018) 0.013 (0.021) 0.060 (0.019) 

dummy monday 0.197 (0.034) 1.654 (0.096) 0.371 (0.035) 0.130 (0.029) 0.196 (0.034) 1.654 (0.096) 0.371 (0.035) 0.129 (0.029) 
dummy tuesday 0.277 (0.035) 1.772 (0.096) 0.410 (0.035) 0.205 (0.031) 0.276 (0.036) 1.773 (0.096) 0.410 (0.035) 0.204 (0.031) 

dummy wednesday 0.304 (0.036) 1.766 (0.098) 0.429 (0.033) 0.244 (0.030) 0.303 (0.036) 1.767 (0.098) 0.429 (0.033) 0.243 (0.030) 

dummy thursday 0.344 (0.036) 1.792 (0.097) 0.464 (0.035) 0.289 (0.030) 0.343 (0.036) 1.793 (0.097) 0.464 (0.035) 0.288 (0.030) 

dummy friday 0.326 (0.037) 1.689 (0.098) 0.383 (0.036) 0.299 (0.029) 0.325 (0.038) 1.690 (0.099) 0.383 (0.037) 0.298 (0.030) 
dummy saturday 0.180 (0.026) 0.619 (0.032) 0.129 (0.041) 0.181 (0.024) 0.179 (0.027) 0.619 (0.032) 0.129 (0.041) 0.181 (0.024) 

dummy other temporary traffic arrangements 0.001 (0.050) -0.075 (0.068) 0.004 (0.050) 0.008 (0.049) 0.001 (0.050) -0.076 (0.068) 0.004 (0.050) 0.008 (0.049) 

dummy IJtunnel service lines (total) -0.598 (0.035) -0.463 (0.052) -0.532 (0.055) -0.614 (0.030)         
dummy service lines Amsterdam North (total) 0.140 (0.063) -0.011 (0.134) 0.105 (0.073) 0.151 (0.071)         

dummy IJtunnel service lines (March 2013)         -0.623 (0.030) -0.546 (0.048) -0.554 (0.045) -0.637 (0.028) 

dummy IJtunnel service lines (other)         -0.555 (0.050) -0.330 (0.073) -0.497 (0.073) -0.574 (0.042) 

dummy service lines Amsterdam North (March 2013)         0.196 (0.074) -0.021 (0.129) 0.127 (0.073) 0.210 (0.086) 
dummy service lines Amsterdam North (other)         0.061 (0.054) -0.001 (0.143) 0.074 (0.076) 0.069 (0.055) 

constant 7.667 (0.265) 5.084 (0.252) 6.322 (0.303) 7.642 (0.212) 7.663 (0.267) 5.083 (0.252) 6.321 (0.304) 7.637 (0.213) 

Number of observations 10815 10771 10808 10815 10815 10771 10808 10815 

R²-within 0.6541 0.8161 0.5786 0.5724 0.6543 0.8162 0.5787 0.5727 
Printed in bold = significant at a 5% significance level (Standard errors in parentheses) 
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Based on the analysis per day, the IJtunnel closures showed a decline in the number of passengerkilometres of 

45% on the IJtunnel service lines compared to regular situations. Furthermore, the results showed a significant 

15% increase of the number of passengerkilometres on the service lines in Amsterdam North.  

The five subsequent weekend closures in March 2013 were associated with a 46,4% decrease in the number of 

passengerkilometres on the IJtunnel service lines, whereas the number of passengerkilometres declined by 

42,6% during other IJtunnel closures. This shows that there was a stronger decline of the number of 

passengerkilometres during the five subsequent closures in March 2013 compared to other closures, though 

the difference was relatively small. With respect to the service lines in Amsterdam North, the results showed a 

21,7% increase in the number of passengerkilometres during the closures in March 2013 but no significant 

effect was found for other closures. Again a test was performed to check whether the effects of the closures in 

March 2013 are significantly different from the effect of other closures (see Appendix J). This test showed that 

the effect on the number of passengerkilometres on both the IJtunnel service lines and the lines in Amsterdam 

North was significantly different in March 2013 compared to other closures of the IJtunnel. Other temporary 

traffic arrangements for other service lines in the public transport network had no significant effect on the 

number of passengers, as shown in Table 9. 

The effect of the IJtunnel closures on the IJtunnel service lines appeared to be significant for all time-periods. 

This effect was stronger during off-peak hours compared to peak hours. Moreover, the effect in the morning 

peak was smaller compared to the afternoon peak. Considering the service lines in Amsterdam North, the 

effect of the IJtunnel closures was only significant during the off-peak periods.  

Regarding the endogenous variables, frequency, route length and punctuality showed a positive and significant 

effect on the number of passengerkilometres. The effects for route length and punctuality were stronger in the 

morning peak model compared to the other time periods. Considering the exogenous variables, petrol price 

had no significant effect on the number of passengerkilometres. Moreover, the models showed limited effects 

of weather conditions. The effect of rainfall on passengerkilometres was small and was significant during the 

morning- and afternoon peak, but the direction of the effect differed
19

. During the morning peak rainfall was 

associated with an increase in the number of passengerkilometres, while the opposite effect occured during 

the afternoon peak. Snowfall had a positive significant effect on the number of passengerkilometres during the 

morning peak. Even though the linear and quadratic term of the temperature variables were jointly significant 

the effect of temperature was ambiguous and very small, as the directions and significance for the quadratic 

term (and thus the form of the parabola) differed among the models.  

The included time dummies indicate that the number of passengerkilometres differed significantly in 2013 

from 2012 in the analysis per day and the off-peak model. Based on the analysis per day, the number of 

                                                           
19

 Considering the analyses per day, the effect of rainfall was found to be significant in the specific model but not in the 
general model. The p-value of this variable was very close to -0.05, so that rainfall is perceived as significant in one model 
but not in the other. 
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passengerkilometers in 2012 was approximately 3,4% lower than 2013
20

. The monthly dummies show that in 

the analysis per day and off-peak model the number of passengerkilometres was significantly higher in April, 

June, July, October and November compared to January (reference situation). In the morning peak model the 

largest difference was shown between November and January. Also, June showed a significantly higher number 

of passengerkilometres in the morning peak, while the number of passengerkilometres in December was 

significantly lower compared to January. The monthly variation in the model for the afternoon peak was small. 

On Wednesdays, Thursdays and Fridays the highest number of passengerkilometres occurred compared to 

Sundays. The daily effect was significantly larger in the morning peak hours compared to other models.  

5.3 Goodness of fit 

The goodness of fit of the estimated models is reported in Table 8 and Table 10 by the within R-squared. This 

measure shows the explained variance of the demeaned data, and can be interpreted as the amount of time 

variation in the dependent variable that is explained by the time variation in the independent variables 

(Wooldridge, 2002, p.444). In the estimated models per day, approximately 66% of the time variation in both 

then number of passengers and passengerkilometres could be explained by the time variation in the included 

explanatory variables (see Table 8 and Table 10). The within-R
2
 was higher for the models in the morning peak. 

This implies that the time variance of the explanatory variables explained a larger proportion of the variance of 

the number of passenger(kilometre)s in the morning peak compared to the other models. In the morning peak 

approximately 82% of the variance over time of the number of passenger(kilometre)s could be explained by the 

time variation in the explanatory variables. The estimates of the morning peak models therefore provide more 

accurate predictions. 

5.4 Summary of findings 

The conceptual model was applied to two measures of the demand for transport (the number of passengers 

and the number of passengerkilometres). The results show that the directions of the effects of the independent 

variables were very similar for both the number of passengers and passengerkilometres. However, the sizes of 

the effects differed per variable and per time period. The model was also estimated for peak- and off-peak 

hours, where the effects of the included variables appeared to be stronger for the morning peak periods 

compared to other time periods.  

The size of the effect of the IJtunnel closures on the explained variables differed. For example, based on the 

analysis per day the IJtunnel closures were associated with 18,4% less passengers but 45% less 

passengerkilometres on the IJtunnel service lines. The decline in the demand for public transport on the 

IJtunnel service lines was stronger during the five subsequent closures in March 2013 compared to other 

IJtunnel closures. The number of passenger(kilometre)s increased for the service lines in Amsterdam North 

during these closures but this effect was only significant for the number of passengerkilometres in March 2013 

(in the analysis per day and off-peak hours).  

                                                           
20

 This percentage was calculated by the formula:         ( ̂)     (Wooldridge, 2002, p. 219). 
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Considering the control variables, the size of the effects on both the number of passengers and 

passengerkilometres were very similar. The service quality variables were positively associated with both the 

number of passengers and the number of passengerkilometres whereas petrol price had no significant effect 

on either of these explained variables. The effect of weather conditions on both measures was inconsistent and 

very small in all models. The endogenous variables thus had significant positive effects on the demand for 

public transport, but the significance and size of the effects of the exogenous factors was limited. 

This chapter presented the results of the analysis on the impact of the IJtunnel closures on the demand for 

public transport. In the next chapter these findings will be discussed in more detail and possible explanations 

for the results will be provided.  
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6. Discussion 

This study analysed the effect of the temporary traffic arrangements for closures of the IJtunnel on the demand 

for public transport in Amsterdam. In this chapter the results of the analysis will be discussed and will be put 

into perspective by relating the results to previous findings from the literature. Furthermore the limitations of 

this research will be discussed. Taking these limitations into account, this chapter will conclude with the 

implications which can be derived from this study.   

6.1 Discussion of the results 

6.1.1 Results for variables of interest 

The temporary traffic arrangements for the IJtunnel closures were expected to have a negative effect on the 

demand for public transport on the IJtunnel service lines. The results of the analysis confirm this expectation as 

the closures of the IJtunnel are associated with a significant decline of both the number of passengers and 

passengerkilometres for these lines. Based on the analysis per day, closing the IJtunnel would reduce the 

number of passengers on the IJtunnel lines by 18,4% and the number of passengerkilometres by 45%. The 

reduction of the number of passengerkilometres is stronger compared to the reduction of the number of 

passengers since both the number of passengers and the travelled distance are reduced (the route is 

shortened). Moreover, a relatively long and highly occupied distance of the route is eliminated from the 

original route distance, as the IJtunnel service lines cannot drive the regular route through the IJtunnel to 

Amsterdam Central Station. On this particular part of the route the highest degree of occupation is reached 

during regular circumstances, as the number of passengers on these lines grows (declines) towards (from) the 

Central Station). Therefore, the reduction of the number of passengerkilometres may be even stronger 

compared to the number of passengers. 

Contrary to the IJtunnel service lines, the temporary traffic arrangements for the IJtunnel closures were also 

expected to affect the demand for public transport on the other three service lines in Amsterdam North. These 

service lines offer an alternative but longer route (both in terms of travel time and distance) between 

Amsterdam North and the city centre and could thus be seen as substitutes for the IJtunnel service lines. Based 

on the analysis per day a significant increase of the number of passengerkilometres (15%) was found, whereas 

the effect on the number of passengers was smaller (8,5%) and not significant. Since the number of 

passengerkilometres is a function of the number of passengers and the route distance of these service lines is 

relatively long, the change in the number of passengerkilometres was again stronger compared to the number 

of passengers. However it must be noted that the decline of public transport demand on the IJtunnel service 

lines is not offset by the increase of public transport demand on the service lines in Amsterdam North, both in 

percentage effects and in absolute terms. After all, the absolute number of passenger(kilometre)s on the 

service lines in Amsterdam North is relatively small compared to the absolute number of passenger(kilometre)s 

on the IJtunnel service lines (as discussed in Section 4.5; shown in Graph 5 and Graph 6 on page 39/40). 
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The effect of the IJtunnel closures for the five subsequent weekends in March 2013 was isolated from other 

single weekend closures in separate models. Regarding the magnitude of these effect, the results show that the 

decline of the number of passengers on the IJtunnel service lines in March 2013 (-21,1%) was stronger 

compared to other IJtunnel closures (-14,9%). Also the decline of the number of passengerkilometres on these 

service lines was stronger for the IJtunnel closures in March 2013 (-46,4%) compared to other IJtunnel closures 

(-42,6%). With respect to the service lines in Amsterdam North the closures in March 2013 were associated 

with an increase in the number of passengers of 13%, whereas the increase was only 2,6% for other closures. 

Also the effect on the number of passengerkilometres on these service lines was stronger for the closures in 

March 2013 (+21,7%) compared to other closures (+6,3%). This might imply that the IJtunnel lines are more 

likely to be substituted for the other lines in Amsterdam North, as passengers are willing to try these 

alternative routes of public transport in case of multiple subsequent closures of the IJtunnel (but to a less 

extent during singular IJtunnel closures). Passengers are likely to be better informed on the subsequent 

closures so that they can plan their alternative route in advance, whereas passengers are less well informed on 

single closures. In the latter case they find out about the temporary traffic arrangements during their trip, and 

are more likely to continue this journey. 

A test was performed to investigate whether these effects in March 2013 were indeed significantly different 

from the other closures (see Appendix J). The results of this test indicate that the effect on both the number of 

passengers and passengerkilometres of the IJtunnel closures in March 2013 were significantly different, except 

for the effect on the number of passengers on the IJtunnel service lines. However, this latter exception does 

not necessarily imply that the decline of the number of passengers for the IJtunnel service lines is similar for all 

IJtunnel closures. Rather this test result may occur since (the effect of the IJtunnel closures on) the number of 

passengers is relatively small so that the test does not find a significant difference for the included data, 

whereas more data over a longer time period might result in significant test results. Overall, the results indicate 

that the effect of the subsequent closures in March 2013 were different compared to the effect of other 

(single) IJtunnel closures. 

The effect of the IJtunnel closures on the demand for transport appeared to be stronger during off-peak 

periods compared to peak periods per day. The closures are planned during weekends in which the peak and 

off-peak periods are less distinctive, after all passengers in the weekends mostly travel for leisure purposes and 

are less restricted by time. The closures will thus affect the passengers in off-peak periods more compared to 

peak periods. This can be explained by the fact that almost 90% of time per day is considered as off-peak 

period is, whereas the remaining 10% is considered as morning- and afternoon peak.   

The effect of the temporary traffic arrangements for the IJtunnel closures differed from the effect of other 

temporary traffic arrangements on other service lines. The latter did not show a significant effect on the 

demand for public transport. The nature of the IJtunnel closures is different from the nature of other 

temporary traffic arrangements since the water (the IJ) forms a major obstacle between Amsterdam North and 

the city centre. For other temporary traffic arrangements in the city, more alternative routes are available 
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which deviate less from the original route, whereas alternative routes for the IJtunnel have a substantial longer 

route length. The IJtunnel closures can thus be perceived as more radical and have a substantial effect on the 

demand for public transport within Amsterdam. 

In summary, the temporary traffic arrangements for the IJtunnel closures lead to a significant decline in the 

demand for transport on the IJtunnel service lines (especially during off-peak hours) and a small increase of 

public transport demand on the service lines in Amsterdam North. The five subsequent weekend closures of 

the IJtunnel in March 2013 had a stronger effect on both the IJtunnel service lines and the lines in Amsterdam 

North compared to other IJtunnel closures. This may suggest that substitute travel from the IJtunnel service 

lines to the lines in Amsterdam North is more likely during multiple subsequent closures.  

6.1.2 Results for endogenous and exogenous variables in the model 

With respect to the endogenous variables in the model, the service level variables had a significant positive 

effect on the demand for public transport. Though, interpreting the effect for frequency could be incriminating 

because of causality issues. On the one hand an increase of frequency may lead to an increase in the demand 

for public transport. On the other hand, due to an increase in the demand for public transport the public 

transport operator may increase frequency in order to fulfill transport demand. Even though the effect of 

frequency appeared to be highly significant, the causality of the effect is ambiguous. However, the variable was 

included in the model to control for time table characteristics.  

Another variable related to the supply of public transport is route length, which was positively associated with 

the demand for public transport. On a network level, this would correspond to the findings from the literature 

where longer route lengths are associated with a wider area covered by public transport services. A wider area 

covered increases public transport accessibility so that more passengers can make use of the services. This 

effect was especially strong in the morning peak, which would imply that a wider area covered could increase 

the number of potential commuters by public transport. However, it must be noted that route length is less 

applicable as a measure of service level for the individual service lines (as discussed in Section 4.2.2). Though 

the variable was included in the model in order to control for route distance.  

Finally with respect to the endogenous variables, punctuality appeared to be positively related to public 

transport demand. An improvement of departure punctuality could lead to an increase of public transport 

demand since passengers are less displeased by waiting time for delayed vehicles. Moreover, service reliability 

is improved so that passengers do not have to take an earlier departure in order to be sure to arrive on time. 

The effect of punctuality was especially strong in the morning peak, in which passengers are mostly commuters 

to work and school for whom it is important to arrive on time. Overall these results are in line with the findings 

from the literature, where an improvement of service quality is associated with higher public transport 

demand. 

Regarding the exogenous variables only the weather conditions appeared to have some significant effect on 

the demand for public transport, though the effects were only small. Rainfall and snowfall were expected to be 
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negatively related to the demand for public transport as they reduce public transport accessibility and traffic 

speed. Moreover, heavy snowfall may obstruct the public transport network so that the supply of public 

transport falls and consequently demand. Contrary to these expectations, the results showed that rainfall was 

associated with an increase in the demand for public transport (except for in the afternoon-peak). This may be 

explained by the fact that the bicycle is an important mode of transport in the city of Amsterdam. As travellers 

do not prefer to get wet, bicyclist may be more inclined to substitute their bike for public transport when rain 

occurs. This would imply that this effect outweighs the possible negative effect caused by reduced traffic speed 

or access to public transport. However one exception occurred during the afternoon peak hours, where rainfall 

was negatively related to the demand for transport. A possible explanation for this observation is that 

travellers postpone their journey when it rains during the afternoon peak. Especially commuters from work 

who are planning to go home may decide to stay at work a little longer. Also snowfall showed an opposite 

effect from what was expected based on the literature, as snowfall was positively related to public transport 

demand. Though, this effect was only significant for the morning peak. The slipperiness caused by snow adds to 

the disutility of getting wet during travel, so that bicyclist may be more inclined to use public transport instead.  

With respect to temperature, a parabolic relation with the demand for public transport was expected which 

opens downwards. That is, below a certain threshold temperature public transport demand was expected to 

decrease with declining temperatures as cold weather depresses outdoor activities. Above this threshold, rising 

temperatures were expected to depress public transport demand as (in-vehicle) heat reduces service quality 

and travel comfort. However, this research did not find significant results for this type of relation for the city of 

Amsterdam. Moreover, the effect of temperature on the public transport demand was very small. This may be 

explained by the moderate climate in Amsterdam, in which extreme temperatures are rather exceptional and 

temperature varies within a relatively small range. Temperature may have a larger effect on public transport 

demand in cities where temperatures extremes are more common and varies within a larger range.  

Finally, the number of passengerkilometres has grown in 2013 compared to 2012 but no significant growth of 

the number of passengers was found. This can again be explained by the fact that absolute values of the 

number of passengers are relatively small compared to the number of passengerkilometres. Next to the yearly 

effects, the levels of demand for public transport appeared to be higher in April, June, July, October and 

November compared to January, whereas the number of passengers is relatively low in January, August and 

December. The results also showed that the demand for transport was larger on Wednesdays, Thursdays and 

Fridays whereas demand was relatively low on Saturdays and Sundays. Commuter travel during the weekdays 

is responsible for a large part of public transport demand, whereas leisure travel during the weekends reflects a 

smaller part of public transport demand. 

Summarizing the effects of the control variables, service quality appeared an important determinant on the 

demand for public transport. This would imply that GVB can increase patronage on their network by improving 

their service level. The effects of exogenous factors appear to be limited for public transport demand in 

Amsterdam. 
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6.2 Limitations 

The results of this study showed a significant impact of the IJtunnel closures on public transport demand. 

Though, multiple limitations should be taken into account in the interpretation of the results. These limitations 

derive among others from the data used, the model and the used methodology.  

First, the analysis in this thesis was based on chipcard data. This chipcard data may be imperfect or biased for 

multiple reasons. Travelers may accidentally check in or check out multiple times as they are for example 

inexperienced with chipcard use, keep their card for the reader too long or too often, do not see or hear the 

transaction properly or may simply forget to check in/out. This leads to “missing check ins” and “missing check 

outs” or incorrect registration of trips or interchanges. The latter also occurs when vehicles are in so-called 

“degraded mode”. That is, when vehicles end up outside the range of their scheduled route or when the 

vehicles chipcard registration systems or do not function properly for another reason, the systems cannot 

determine the vehicles’ location so that check ins/outs are registered at an unknown location. Next to the loss 

of chipcard travel information for the transport provider, this implies that the travelled distance and travel fare 

cannot be calculated properly. Though, it should be noted that the bias due to technical failure may differ per 

day. Finally, GVB’s chipcard data does not include all public transport demand within the network in 

Amsterdam, as non-chipcard travel products still exist. For example, passengers may travel with combined 

paper tickets for theaters and concerts. In addition fare dodgers are not registered, however this is no different 

compared to former counting methods of passengers. As the majority of passengers in Amsterdam’s public 

transport network travels by chipcard and the degree of missing/incorrect check ins and check outs are only 

limited, the chipcard data are assumed to be a good reflection of public transport travel.  

A second limitation of the used dataset is related to chipcard data, as the used data contains personal details of 

travelers. Due to privacy consideration this data is only allowed to be stored for 18 months by the transport 

provider, so that the data used for this analysis were available only for this limited time period. This implies 

that the estimates reflect effects in the short term, and cannot be used to conclude on long-term effects. 

Additionally, the dataset only includes bus and tram services. Night busses were not included as there was no 

possibility to use the chipcard on these busses, so that no chipcard data was available. Data on metro services 

were not readily available and metro as a transport mode has characteristics different from bus and tram 

services (for example, metro lines are not affected by road traffic and road diversions whereas busses and 

trams are). However the metro is one of the most important transport modes in Amsterdam, so that the 

dataset may not be a perfect representation of public transport within the city and no inferences can be made 

for metro services. These data limitations should be kept in mind when analyzing the results. 

Third, the model used to estimate the impact of temporary traffic arrangements was based on findings from 

the academic literature. However, due to data availability issues some determinants of the demand for 

transport could not be included in the model. For example, fares and fare changes have been identified as 

important explanatory variables in modeling the demand for transport. Since fares depend on a boarding fare 

and a fare per travelled kilometer, the price of each trip differs. Fares are also different for certain passenger 
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groups; for example elderly, children and students travel against a reduced tariff. Moreover, fares are a 

complicated variable to add to the model as interchanges within a trip may take place. The boarding fare is 

charged only once so that in case of interchanges within 30 minutes of a journey, travelers only pay for the 

extra traveled kilometres after the interchange. Though, interchanges could not be derived from the chipcard 

data so that the number of check ins could overestimate the number of passenger and their fares paid. Note 

that the latter can also lead to an overestimation of the calculated revenue loss, as this was based on the 

decline of the number of passengers and an average revenue per trip.  

One possibility to incorporate fares would be to include the average fare paid based on for example travelled 

kilometres per service line. However this factor would be time-invariant for the time-period included in the 

dataset, so that the variable would have been eliminated from the model. For the above reasons, and the fact 

that fares are difficult to reflect on a service line level, fares were not included in the model as an explanatory 

variable. Also fare changes could not be included in the model as the yearly indexation of fares differs per 

ticket type. This yearly change would then also be perfectly correlated to the included year dummy, so that also 

this variable would be eliminated from the model.  

Next to fares other determinants of the demand for transport derived from the literature could not be included 

in the model due to data availability. For example the time of travel could not be included as this differs per 

trip, per service line and per person (including transport to- and from the public transport stop). Other 

behavioral, social, economic and demographic factors were not included due to measurement problems or 

time invariance. Some factors do not differ per service line and can be perceived as time invariant for the time 

period in the model so that they are not included in the model. After all, time invariant variables are perfectly 

correlated to the unit dimension of the data so that they cannot be estimated when fixed effects are used: time 

invariant variables are eliminated from the model. It would be too difficult to measure and quantify all the 

relevant factors in the complex public transport modeling, though imperfect models may be more valuable to 

planners and policymakers than some random guesses (Balcombe et al., 2004). Though it should be taken into 

account that the factors which cannot be included in the model do affect the demand for transport. 

Finally, limitations derive from the used methodology, more specifically the used estimation technique. All 

models in this research were estimated by means of fixed effects estimation. This estimator is limited in the 

sense that it ignores the between-variation (so the variation between service lines). Also fixed effects 

estimation cannot be used to analyse time-invariant causes of the dependent variable, after all time-invariant 

variables cannot be added to the model as the effects are subsumed by the fixed effects. Though, this also 

provides an advantage as the fixed effects estimator cannot be biased because of omitted time-invariant 

characteristics, as it controls for all time-invariant differences between the units (service lines) (Torres-Reyna, 

2013). However, fixed effects estimation does not allow to generalize inferences beyond the sample used in 

the model, whereas random effects estimation does.  
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6.3 Implications of the IJtunnel closures 

Taking the discussed limitations into account, multiple implications can be derived from the results of this 

study. First, the closures of the IJtunnel have important financial implications for GVB. The public transport 

operator will experience a loss of passenger revenue as a consequence of the decline of the number of 

passenger(kilometre)s on the IJtunnel service lines during the IJtunnel closures. The elasticities quantified by 

this study allow to estimate the loss of passengers and revenue more accurately. Based on the estimates 

derived by the analysis per day, a weekend closure of the IJtunnel would lead to a decline of passengers on the 

IJtunnel lines and an increase of passengers on the other service lines in Amsterdam North. However the 

decline of passengers on the IJtunnel service lines is not offset by the increase of passengers on the lines in 

Amsterdam North, as both the percentage effects and the absolute number of passengers are smaller on the 

service lines in Amsterdam North. This implies that GVB incurs a net loss of passengers and passenger revenues 

as a consequence of the IJtunnel closures. The loss of passenger revenues was calculated based on the net loss 

of passengers per weekend day and an average revenue per trip (see Appendix K)
21

.  

In addition to the revenue loss, the closures of the IJtunnel will affect the subsidy that GVB receives for the 

exploitation of Amsterdam’s public transport network. This subsidy is granted by Stadsregio Amsterdam and is 

based on a certain amount per kilometre that differs per transport mode. Since the route distance is shortened 

for the IJtunnel service lines during the closures of the IJtunnel, the amount of subsidy for GVB will be reduced. 

The actual loss of subsidy was calculated based on the reduction of route distance for the IJtunnel service and 

the amount of subsidy per kilometre (see Appendix K)
21

. Note that the route distance for the other service lines 

in Amsterdam North does not change, so that the subsidy received for these lines remains unaffected. 

Next to the revenue- and subsidy loss, GVB is confronted with additional costs for the closures of the IJtunnel. 

These involve for example costs for communication of the diversions towards the passengers and the extra 

utilization of the ferry boats across the IJ. Moreover, additional costs are involved with the extra personnel 

employed to inform passengers and to monitor and preserve safety during the closures. Except for the subsidy 

loss
22

, GVB can impose a claim for these costs involved at the municipality of Amsterdam (which is the 

responsible party for these closures). This study enables GVB to make a more accurate estimate of this claim.  

Second, this study analysed the specific effects of the IJtunnel closures for public transport demand in GVB’s 

network. As a substantial effect was found for GVB, one can argue that the closures will also affect other public 

transport operators which use the IJtunnel. Therefore, the total effect of the IJtunnel closures on the demand 

for public transport may be even larger. Moreover, the estimated effects in this study only focused on the 

short-term impact of the IJtunnel closures but the demand for public transport may also be affected in the long 

run. Considering the inconvenience of the closures for public transport passengers, regular and subsequent 

closures may lead to a structural loss of GVB’s customers. As this research showed that the effects of the 

                                                           
21

 As the calculation of the revenue- and subsidy loss involves confidential information specific to GVB, the actual numbers 
used in the calculations and the outcomes are not allowed to be published in this thesis.  
22

 For subsidies separate arrangements are made with Stadsregio Amsterdam, see Section 2.2.3. 
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IJtunnel closures appear to be stronger during multiple subsequent closures, the long term impact should be 

taken into account as a serious threat.  

Third, this research allows to make some inferences with respect to policy on future closures of the IJtunnel. As 

the impact of multiple subsequent closures appears to be stronger, the loss of passenger revenues could be 

reduced by avoiding a sequence of IJtunnel closures within a limited time period. With respect to the time 

period in which the closures are planned, the months January, August and December are associated with 

relatively low public transport demand. Considering the days of the week, public transport demand is relatively 

low on Saturdays and Sundays compared to other days of the week. In order to minimize the number of 

passengers affected by the IJtunnel closures and therefore the loss of passenger revenues, the best time to 

plan IJtunnel closures is during weekends in January or during summer (August). Even though public transport 

demand is relatively low in December, this month may be less appropriate for IJtunnel closures as the 

weekends are characterized by high shopping activity for the holidays. 

Concluding, this study allows GVB to demonstrate the magnitude of the impact of the IJtunnel closures. This 

implies that GVB’s position (and the position of other public transport providers which use the IJtunnel) may be 

strengthened in the discussions and decision making for future closures of the IJtunnel. Moreover, this 

research allows for a more accurate estimation of net revenue loss and thus the claim involved for the 

municipality. The results of this study can therefore be especially valuable with respect to the negotiations on 

the days and time at which the IJtunnel is to be closed, the duration of the closures and the associated 

compensation.  
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7. Conclusion 

This study analysed the impact of temporary traffic arrangements for closures of the IJtunnel on the demand 

for public transport in Amsterdam. Multiple public transport service lines use the IJtunnel as the main direct 

connection between Amsterdam North and the city centre, so that closures of the tunnel will lead to 

temporary diversions for the IJtunnel service lines. During these diversions public transport passengers are 

confronted with longer travel durations and more interchanges between transport modes. This will affect the 

demand for public transport and hence passenger revenues. Additionally, GVB is confronted with additional 

costs for organizing the temporary diversions and receives less subsidy. Since the knowledge on the actual 

effect of the IJtunnel closures was limited, this research provides useful insights as it quantifies the effect on 

the demand for public transport and the accompanying costs. 

The results of this study showed that closures of the IJtunnel result in a significant decline in the demand for 

transport on the IJtunnel service lines, especially during the off-peak hours. Based on the analysis per day, 

closing the IJtunnel is associated with an 18,4% reduction of the number of passengers and a 45% decline in the 

number of passengerkilometres. Though these effects are partially offset by an increase of public transport 

demand on the remaining service lines in Amsterdam North, which provide an alternative (but longer) 

connection with the city centre. Taking into account these opposite effects, the closure of the IJtunnel is 

associated with a decline of public transport demand and consequently a net revenue loss. Moreover, GVB 

would receive less subsidy from Stadsregio Amsterdam as a consequence of the shortened routes of the 

IJtunnel service lines during the IJtunnel closures.  

In addition, this research found that the effects on public transport demand were different for the IJtunnel 

closures in the five subsequent weekends in March 2013 compared to other (single) closures. The decline of 

passengers on the IJtunnel service lines and the increase on the lines in Amsterdam North were both stronger 

during the closures in March 2013, which suggests a stronger substitution effect from the IJtunnel service lines 

to the other lines in Amsterdam North when the IJtunnel is closed for multiple subsequent weekends.  

Taking the limitations of this research into account, this study enables GVB to demonstrate the magnitude of 

the impact of the IJtunnel closures in discussions and decision making processes for prospective closures of the 

IJtunnel. This could strengthen GVB’s position (and the position of other public transport providers which use 

the IJtunnel) in the negotiations with respect to the days and time at which the IJtunnel is to be closed, the 

duration of the closures and the associated compensation. 

As a final note with respect to the future, this research has made a first step in analysing the effect of 

temporary traffic arrangements for maintenance activities and events. As this type of research can provide 

valuable information for public transport operators, this study may encourage other public transport operators 

to analyse the effects of similar issues in their specific network. 
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8. Recommendations for further research 

The discussed limitations in Chapter 6 provide opportunities for further research. The performed analysis could 

be improved or elaborated in multiple ways.  

First the dataset used for the analysis could be improved. The limited time period used in this research could be 

expanded into a longer time series, which would improve the accuracy of the model. A longer time period also 

allows to include more explanatory variables which were considered as time invariant for this analysis, but 

which may be time variant over a longer time period. Additionally the dataset may be expanded by inclusion of 

more service lines so that the dataset embodies an improved reflection of the network. This may strengthen 

the model specification and its estimates. More specifically, the effect of the IJtunnel closures on the night 

busses may be estimated in future research. On August 20
th

 2013 a nightbus ticket for the chipcard was 

introduced by GVB, which allows passengers to use the chipcard for these bus lines. This provides additional 

data for future use.  

Second, the analysis can be expanded to deepen the understanding of the effect of the IJtunnel closures. For 

example one might analyse whether the effect of a single day closure may be different from weekend closures 

(multiple days in a row), or one might isolate the effect for the specific bus lines separately. Furthermore, the 

revenue loss may be calculated in more detail according to the boarding fare and fare per travelled kilometre. 

This requires more specific information on the trip length, number of interchanges
23

 and ticket type per 

individual. 

Third, the conceptual model and methodology used in this research can be used to quantify the impact of other 

specific temporary traffic arrangements which are expected to have a substantial impact on the demand for 

public transport. As this application can provide useful and valuable information not only on public transport in 

Amsterdam but also for other cities, this research may encourage other public transport operators to analyse 

the effects for their specific network.  

 

 

 

 

 

  

                                                           
23

 The number of interchanges was not available for the time period analysed in this research. On September 1
st

 2013 a 
new tool was introduced in GVB’s chipcard database which allows to extract this information. This can provide more 
accurate estimates on the loss of passenger(revenue)s. 
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Appendix A: Announcement for the IJtunnel closures in March 2013 
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Appendix B: GVB service lines included in analysis 

Service 

line 

number 

Modal 

type 

From → to  Remarks 

1 Tram   Osdorp De Aker to Amsterdam Central Station  Via Leidseplein 

2 Tram  Nieuw Sloten to Amsterdam Central Station  Via Leidseplein 

4 Tram  Station RAI to Amsterdam Central Station  Via Station Amsterdam RAI 

13 Tram  Geuzenveld to Amsterdam Central Station   

16 Tram   De Boelelaan/VU to Amsterdam Central Station   

17 Tram  Osdorp Dijkgraafplein to Amsterdam Central Station  Via Station Amsterdam Lelylaan 

18 Bus  Slotervaart to Amsterdam Central Station  Via Station Amsterdam Lelylaan 

21 Bus  Geuzenveld to Amsterdam Central Station   

22 Bus  Indische Buurt to Spaarndammerbuurt  Also stops at Amsterdam Central Station 

24 Tram  De Boelelaan/VU to Amsterdam Central Station   

25 Tram  President Kennedylaan to Amsterdam Central Station  

26 Tram  IJburg to Amsterdam Central Station   

32 Bus   Buikslotermeerplein to Amsterdam Central Station  Goes through IJTunnel in regular timetable 

33 Bus  Nieuwendam to Amsterdam Central Station  Goes through IJTunnel in regular timetable 

34 Bus  Buikslotermeerplein to Amsterdam Central Station  Goes through IJTunnel in regular timetable 

35 Bus  Molenwijk to Amsterdam Central Station  Goes through IJTunnel in regular timetable 

36 Bus  Station Sloterdijk to Banne Buiksloot   

37 Bus  Molenwijk to Amstelstation   

38 Bus  Molenwijk to Nieuwendam Amerbos  Stops at Buiksloterwegveer (ferry boat) 

48 Bus  Station Sloterdijk to Borneo Eiland  Via Station Amsterdam Sloterdijk 
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http://195.193.209.12/gvbpublicatieinternet/SelectRichting.aspx?type=lf&lijnnummer=36&key=6e161a12-2481-4c8b-9317-15897e25624a
http://195.193.209.12/gvbpublicatieinternet/SelectRichting.aspx?type=lf&lijnnummer=36&key=6e161a12-2481-4c8b-9317-15897e25624a
http://195.193.209.12/gvbpublicatieinternet/SelectRichting.aspx?type=lf&lijnnummer=37&key=6e161a12-2481-4c8b-9317-15897e25624a
http://195.193.209.12/gvbpublicatieinternet/SelectRichting.aspx?type=lf&lijnnummer=37&key=6e161a12-2481-4c8b-9317-15897e25624a
http://195.193.209.12/gvbpublicatieinternet/SelectRichting.aspx?type=lf&lijnnummer=38&key=6e161a12-2481-4c8b-9317-15897e25624a
http://195.193.209.12/gvbpublicatieinternet/SelectRichting.aspx?type=lf&lijnnummer=38&key=6e161a12-2481-4c8b-9317-15897e25624a
http://195.193.209.12/gvbpublicatieinternet/SelectRichting.aspx?type=lf&lijnnummer=48&key=6e161a12-2481-4c8b-9317-15897e25624a
http://195.193.209.12/gvbpublicatieinternet/SelectRichting.aspx?type=lf&lijnnummer=48&key=6e161a12-2481-4c8b-9317-15897e25624a
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Appendix C: List of Temporary traffic arrangements 

The table below shows the temporary traffic arrangements included in the panel data analysis. This involves 

the twenty included service lines in the period February 1
st

 2012 to July 31
st

 2013. The IJtunnel closures are 

shown in italics. 

Table 11: List of temporary traffic arrangements included in the dataset 

TVM ID Date/period (mm-dd-yyyy) 

From                 Until 

Service lines Remarks 

12003 DH 3-12-2012  5-25-2012 13, 18  

12072 AH 4-21-2013  37  

12075 AH 4-16-2012  4-20-2012 22, 37  

12076 AH 4-23-2012  4-27-2012 22, 37  

 4-30-2012  1, 2, 4, 13, 16, 17, 18, 21, 22, 

24, 25, 26, 48 

Queensday 2012 

12131 AH 5-21-2012  6-1-2012 34, 35  

12149 AH 6-4-2012  6-15-2012 34, 35  

12164 RW 6-17-2012  6-18-2012 16, 24  

12165 AH 6-16-2012  6-17-2012 37  

12171 RW 6-23-2012  6-24-2012 16, 24  

12215 EW 7-29-2012  32, 33, 34, 35 IJtunnel closure 

12216 AH 8-5-2012  32, 33, 34, 35 IJtunnel closure 

12216 AH 8-25-2012  8-26-2012 32, 33, 34, 35 IJtunnel closure 

12226 AH 8-20-2012 9-13-2012 32  

12238 AH 9-1-2012 9-2-2012 32, 33, 34, 35 IJtunnel closure 

12246 AH 9-8-2012  9-9-2012 37  

12257 DH 9-23-2012  4, 16, 22, 24, 25, 26, 32, 33, 

34, 35, 36, 38, 48 

Dam to Dam run 

12287 DH 10-21-2012  2, 4, 16, 22, 24, 25, 37 Amsterdam Marathon 

12288 DH 10-22-2012  12-20-2012 1, 2, 13, 17 Only on Mondays, Tuesdays, 

Wednesdays and Thursdays 

12306 AH 11-17-2012  11-18-2012 37  

12308 RW 11-13-2012    11-14-2012 18, 24  

12319 DH 11-18-2012  1, 2, 4, 16, 22, 24, 25, 26, 32, 

33, 34, 35, 48  

 

12340 AH 11-24-2012  11-25-2012 32, 33, 34, 35 IJtunnel closure 

13010 AH 2-2-2013     2-3-2012 34, 37  

13020 EW 3-4-2012        4-19-2012 18  
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13021 EW 3-23-2013  3-24-2013 13  

 4-30-2013  1, 2, 4, 13, 16, 17, 18, 21, 22, 

24, 25, 26, 38, 48 

Queensday 2013 

13036 AH 3-2-2013    3-31-2013 32, 33, 34, 35 IJtunnel closure: during 5 

subsequent weekends 

13084 AH 9-5-2013    5-12-2013 36  

13106 AH 5-13-2013  6-3-2013 34  

13117 AH 5-21-2013      5-24-2013 37  

13120 AH 5-27-2013  6-29-2013 48  

13131 AH 6-3-2013    6-24-2013 37  

13132 AH 6-9-2013  4, 16, 24, 25  

13133 AH 6-9-2013  26  

13153 AH 6-24-2013  6-28-2013 34, 37  
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Appendix D: Hausman test 

The Hausman test was performed for each model to determine whether fixed effects or random effects 

estimation was preferred. One example of the output of the test is shown below. As this output is almost 

similar for each model the output of only one test will be displayed. 

 

This output shows that the results of fixed and random effects estimation differ so that fixed effects estimation 

would be preferred. The Hausman test was performed for each model to determine whether fixed effects or 

random effects estimation was preferred. Table 12 shows the preferred estimation techniques for the models 

estimated per time period. 

Table 12: Preferred estimation technique based on the Hausman test 

 Number of passengers Number of passengerkilometres 

Analysis per day FE RE 

Morning Peak FE FE 

Afternoon Peak FE FE 

Off-peak FE FE 

 

The Hausman test results show that the fixed estimator is preferred for all models except for the analysis per 

. * --> Reject H0, use fixed effects.

                (V_b-V_B is not positive definite)
                Prob>chi2 =      0.0041
                          =       51.72
                 chi2(28) = (b-B)'[(V_b-V_B)^(-1)](b-B)

    Test:  Ho:  difference in coefficients not systematic

            B = inconsistent under Ha, efficient under Ho; obtained from xtreg
                           b = consistent under Ho and Ha; obtained from xtreg
                                                                              
   dsaturday      .2090566     .2079441        .0011124               .
     dfriday      .3525663     .3500675        .0024988               .
   dthursday      .3642641      .361734        .0025301               .
  dwednesday      .3243837     .3218813        .0025024               .
    dtuesday      .2974231     .2949186        .0025045               .
     dmonday      .2205523     .2180396        .0025127               .
        ddec      .0314788     .0315931       -.0001142               .
        dnov      .1112036     .1112969       -.0000934               .
        doct      .1023723     .1024935       -.0001213               .
        dsep      .0715965     .0717123       -.0001158               .
        daug      .0741867     .0759308        -.001744               .
        djul      .1225331     .1236565       -.0011234               .
        djun      .1219509     .1220362       -.0000853               .
        dmay      .0757241     .0757935       -.0000694               .
        dapr      .1095995     .1096879       -.0000884               .
        dmar      .0781681      .078228       -.0000599               .
        dfeb      .0546379     .0547123       -.0000744               .
     dyear12     -.0226539    -.0228089         .000155               .
   dothertta     -.0150298    -.0148318        -.000198               .
   dijLadamN      .0819934     .0834393       -.0014459               .
  dijLtunnel     -.2031694    -.2034872        .0003178               .
temperature2      .0000216     .0000219       -3.01e-07               .
 temperature      -.007224    -.0072287        4.65e-06               .
  lnsnowfall      .0046886     .0046859        2.68e-06               .
  lnrainfall      .0077368     .0077072        .0000296               .
Dlnpetrolp~e      .6854086     .6881032       -.0026946               .
 punctuality      .1429163     .1428307        .0000856               .
Dlnroutele~h      7.309095     7.307436        .0016593               .
 lnfrequency      1.316879     1.326799       -.0099201        .0013772
                                                                              
                    fe1A         re1A        Difference          S.E.
                    (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
                      Coefficients     

        and possibly consider scaling your variables so that the coefficients are on a similar scale.
        what you expect, or there may be problems computing the test.  Examine the output of your estimators for anything unexpected
Note: the rank of the differenced variance matrix (28) does not equal the number of coefficients being tested (29); be sure this is

. hausman fe1A re1A

. * Hausman test: FE or RE?
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day on the number of passengerkilometres. When random effects estimation is preferred by the Hausman test, 

this implies that the estimates of random effects and fixed effects are similar and random effects is consistent 

and more efficient. However, when fixed effects are preferred it is assumed that the unobserved effects are 

correlated to the explanatory variables so that random effects cannot be used. As the analysis per day on the 

number of passengerkilometres is the only exception regarding the preferred estimator, this research follows a 

more conservative approach in which it is assumed that the unobserved effect is correlated with the 

explanatory variables (ANU, 2009). Therefore fixed effects estimation is used for all models in this research. 
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Appendix E: Assumptions for fixed effects estimation 

 

A fixed effects estimation is used to estimate the models on the demand for transport. Just as with cross-

sectional data, there are multiple assumptions which should be taken into account in order for the fixed effects 

estimator to be the Best Linear Unbiased Estimator. These are (1) linearity in parameters, (2) random sampling, 

(3) no perfect collinearity, (4) strict exogeneity (zero conditional mean), (5) homoskedasticity, (6) no serial 

correlation in the error terms and (7) uit follows normal distribution (Wooldridge, 2002). In this appendix these 

assumptions will be discussed in more detail. 

 

1. Linearity in parameters is assumed so that: 

 

                                     

 

Where βj are the parameters to estimate. 

 

2. Random sampling in the cross-sectional dimension implies that each individual in the sample as subset 

of a larger set is chosen randomly; that is each individual has the same probability of chosen.  

 

3. No perfect collinearity implies that there are no perfect linear relations between explanatory variables 

and that each variable changes over time (at least for some i). When a model suffers from perfect 

collinearity, the model cannot be estimated by OLS (Wooldridge, 2002). Before adding the 

independent variables into a multiple regression, the variables in the dataset are therefore analysed 

with respect to perfect multicollinearity, which refers to an exact linear relationship between 

independent variables (Wooldridge, 2002). As a consequence of multicollinearity, standard errors may 

be large and t-statistics tend to be small, which may lead to wrong inference of results. In addition, 

multicollinearity may result in incorrect signs or insignificance for theoretically important variables. 

Even though perfect collinearity causes problems, this assumption does allow for some correlation 

between the independent variables (Wooldridge, 2002). Appendix F shows the correlation table for 

the included variables in the dataset, in which the stars indicate a significant correlation between 

variables at the 5% significance level. The correlation table shows that there is no perfect collinearity 

(that is; none of the correlation coefficients in the table is equal to 1) between any of the included 

variables in the dataset. Though, some variables show a relatively high correlation, which implies that 

the variables share (to some extent) similar information and have the same explanatory power. This 

forms a risk for multicollinearity problems. The correlation coefficient between the number of 

boarding passengers and passenger kilometers is equal to 0.9173. This is not surprising, as the number 

of passenger kilometres is a function of the number of boarding passengers. However, this will not 

cause any problems as these variables are not included in the same model, after all they are 

dependent variables which will be used in separate models. Then there is the variable frequency, 
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which is highly correlated to both the number of boarding passengers (0.8274) and the number of 

passenger kilometres (0.8625). As frequency is a measure of the supply of transport, this high 

correlation can be explained by the twoway relationship between the demand for transport and the 

supply of transport (see Section 3.2.1 under service quality). Even though frequency may cause 

multicollinearity problems, the variable is included in the models as it is an important determinant for 

the demand for transport.  

 

4. The strict exogeneity (or zero conditional mean) assumption holds that the explanatory variables are 

uncorrelated to the error term uit across all time periods so that the explanatory variables are said to 

be exogenous (Wooldridge, 2002).   

 

When these four assumptions hold the estimator is said to be unbiased and consistent. 

 

5. Homoskedasticity (=no heteroskedasticity) implies that the variance of the error term is the same 

regardless of the values of the independent variables, so that: 

 

                          
                    

  

As a consequences of heteroskedasticity the standard errors of the estimated parameters are 

incorrect, so that t-statistics and confidence intervals are no longer valid. As it appears from the Wald 

test for groupwise heteroskedasticity in Appendix H, heteroskedasticity is apparent in the estimated 

models. In order to correct for heteroskedasticity, heteroskedasticity-robust standard errors should be 

applied which can be used for inference.  

 

6. The sixth assumption is that there is no serial correlation (autocorrelation) in the error terms 

conditional on all explanatory variables and    so that: 

 

   (       |                     

 

The problem with serial correlation is that it leads to estimated standard errors which are smaller than 

the true standard errors. This in turn affects the t-statistics and confidence intervals which may lead to 

wrong inference. In order to check whether serial correlation is an issue, the Wooldridge test for 

autocorrelation in panel data was performed (see Appendix H). This test shows that there is serial 

correlation in the error terms. As both heteroskedasticity and serial correlation are apparent, 

clustered standard errors are used to correct for these problems.  

 

When assumption 1-6 hold, the fixed effects estimator is said to be the Best Linear Unbiased Estimator (BLUE). 
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7. Finally, the normality is assumed which implies that conditional on    and   , the      are independent 

and identically distributed as Normal(o,   
 ), that is: the error terms follow a normal distribution so 

that the obtained t- and F-statistics have an exact t and F distributions.  
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Appendix F: Correlation table 

Table 13 shows the correlation between the included variables in the model. The table is divided over two pages due to the large size.  

Table 13: Correlation table 

 lnpassengers lnpassengerkms lnfrequency lnroutelength Dlnroutelength punctuality lnpetrolprice Dlnpetrolprice lnrainfall 

lnpassengers 1         

lnpassengerkms 0.9173 1        

lnfrequency 0.8274 0.8625 1       

lnroutelength -0.2853 -0.0888 -0.3183 1      

Dlnroutelength     1     

punctuality 0.0979 0.0617 0.0924 -0.0894  1    

lnpetrolprice       1   

Dlnpetrolprice     -0.0519            1  

lnrainfall       -0.0411 -0.0614 1 

lnsnowfall 0.019                -0.0252 0.0557 

temperature -0.0795 -0.0822 -0.0863   -0.0361           0.0383 0.0274 

dijLtunnel -0.1002 -0.1008 -0.0468   -0.0308 0.0384 -0.0314 0.0247 

dijLadamN -0.1311 -0.1161 -0.1763 0.1106  -0.0348 0.0348 -0.0278  

dijLtunnelm13 -0.0717 -0.0779 -0.0318    0.0191 -0.0399  

dijLtunnelother -0.0699 -0.0637 -0.0346   -0.0341 0.0362  0.0512 

dijLadamNm13 -0.0983 -0.0851 -0.1419 0.085             -0.0345  

dijLadamNother -0.0866 -0.0791 -0.1048 0.0706  -0.0369 0.0344  0.0356 

dothertta 0.0519 0.0536 0.0401 0.0283   0.0313 -0.0617  

 

 

 



77 
 

 

 

Table 13 (continued): Correlation table 

 lnsnowfall temperature dijLtunnel dijLadamN dijLtunnelm13 dijLtunnelother dijLadamNm13 dijLadamNother dothertta 

lnpassengers          

lnpassengerkms          

lnfrequency          

lnroutelength          

Dlnroutelength          

punctuality          

lnpetrolprice          

Dlnpetrolprice          

lnrainfall          

lnsnowfall 1         

temperature -0.4272 1        

dijLtunnel 0.0432 -0.0295 1       

dijLadamN 0.0396 -0.0306  1      

dijLtunnelm13 0.0714 -0.069 0.7443  1     

dijLtunnelother  0.0329 0.6654            1    

dijLadamNm13 0.0618 -0.0601  0.7662            1   

dijLadamNother  0.0241  0.6408             1  

dothertta -0.0216                 1 
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Appendix G: Stationarity of the data 

In addition to the discussed assumptions, it is necessary to know whether variables are stationary or non-

stationary over time in order to avoid problems of spurious regression (Humboldt University Berlin, no date). A 

stationary time series is one whose statistical properties such as mean, variance and autocorrelation are 

constant over time (Duke University, 2005). However economic time series often contain a time trend so that 

its statistical properties are not constant over time, that is: the time series is non-stationary. Consider the 

following equation:  

            

 

where Yt is the variable being tested,    is the error term and t indicates the time dimension. When |ρ|<1 the 

variable is stationary, so that the shocks die out according to the value of ρ (New York University, no date). On 

the other hand, when |ρ|>1 the variable is non-stationary and explosive, so that past shocks have a larger 

impact than current shocks. When |ρ|=1 the variable is non-stationary and is said to have a unit root. This is a 

so called random walk model, in which the value at time t will be equal to last period’s value plus a stochastic 

component    which is independent and identically distributed with a zero mean and variance. The variance of 

a random walk goes to infinity over time, so that a random walk cannot be predicted (Iordanova, 2009). 

 

Using non-stationary time series in a regression model leads to the problem of spurious results; a significant 

relationship may be obtained between variables which actually are unrelated (Humboldt University Berlin, no 

date). Spurious regression is therefore defined as “a problem that arises when regression analysis indicates a 

relationship between two or more unrelated time series processes simply because each has a trend, is an 

integrated time series, or both” (Wooldridge, 2002). As non-stationary data cannot be used for modelling or 

forecasting purposes, this data are transformed into stationary data by first-differencing (Duke University, no 

date). The first-difference of the process is often stationary (Wooldridge, 2002, p.363). 

 

The panel data were tested for stationarity by a Fisher-type panel unit-root test for panel data as proposed by 

Maddala and Wu (1999). This test has two advantages; first the test can be performed with any unit root test 

on a single time-series and does not require the same unit-root in each cross-section. Second, contrary to other 

unit root tests, this test does not require a balanced panel dataset (Hoang and McNown, 2006). As the dataset 

in this research is unbalanced, this test is especially applicable.  

 

The specified test performed an Augmented Dickey-Fuller unit-root test on each panel within the dataset. Here 

the tested null hypothesis is that all panels contain a unit root, the alternative hypothesis is that at least one 

panel is stationary. This test includes a number of lags and whether there is a time trend. As no lag length 

selection criteria for daily data was available in the literature, the test was performed for both one and two 

lags. In addition, the test can include a linear time trend in the model which describes the process by which the 

time series. Therefore, all variables have been tested both with and without a time trend. The results from 
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these test specifications are similar and are shown below. The variables petrol price and route length have non-

stationary properties (contained a unit root) in all tests. In order to eliminate potential spurious regression 

problems, the data on these variables were transformed into stationary data by taking first differences.  
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Appendix G (continued): Test results of Augmented Dickey-Fuller unit-root test 

One lag, without time trend 

                                                                               
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       -4.2052       1.0000
 Inverse logit t(34)       L*        2.0759       0.9772
 Inverse normal            Z         2.2386       0.9874
 Inverse chi-squared(40)   P         2.3871       1.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                            
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnroutelength

. xtunitroot fisher lnroutelength, dfuller lag(1)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      143.4841       0.0000
 Inverse logit t(104)      L*      -81.9136       0.0000
 Inverse normal            Z       -33.8615       0.0000
 Inverse chi-squared(40)   P      1323.3605       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                          
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnfrequency

. xtunitroot fisher lnfrequency, dfuller lag(1)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      156.7200       0.0000
 Inverse logit t(104)      L*      -89.3044       0.0000
 Inverse normal            Z       -36.3401       0.0000
 Inverse chi-squared(40)   P      1441.7461       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.25
Ho: All panels contain unit roots           Number of panels       =     20
                                             
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnpassengerkms

(2 missing values generated)
. xtunitroot fisher lnpassengerkms, dfuller lag(1)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      156.7200       0.0000
 Inverse logit t(104)      L*      -89.3044       0.0000
 Inverse normal            Z       -36.3401       0.0000
 Inverse chi-squared(40)   P      1441.7461       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                           
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnpassengers

. xtunitroot fisher lnpassengers, dfuller lag(1)

. * --> one lag, without time trend

. * Test for unit root (non-stationarity)
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The null-hypothesis in these test is that all panels contain a unit root. From the p-values in the tests above, it 
can be concluded that the null-hypothesis cannot be rejected for the variables lnpetrolprice and lntourelength. 
That is, these variables show non-stationary properties. 

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       23.2470       0.0000
 Inverse logit t(104)      L*      -15.3520       0.0000
 Inverse normal            Z       -12.8470       0.0000
 Inverse chi-squared(40)   P       247.9275       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                          
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for temperature

. xtunitroot fisher temperature, dfuller lag(1)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       86.8664       0.0000
 Inverse logit t(104)      L*      -50.6038       0.0000
 Inverse normal            Z       -26.5959       0.0000
 Inverse chi-squared(40)   P       816.9567       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 252.45
Ho: All panels contain unit roots           Number of panels       =     20
                                         
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnrainfall

(5838 missing values generated)
. xtunitroot fisher lnrainfall, dfuller lag(1)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm        0.4554       0.3244
 Inverse logit t(104)      L*       -1.7273       0.0435
 Inverse normal            Z        -1.9367       0.0264
 Inverse chi-squared(40)   P        44.0730       0.3033
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                            
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnpetrolprice

. xtunitroot fisher lnpetrolprice, dfuller lag(1)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      114.7471       0.0000
 Inverse logit t(79)       L*      -76.3885       0.0000
 Inverse normal            Z       -31.2226       0.0000
 Inverse chi-squared(40)   P      1066.3289       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 543.70
Ho: All panels contain unit roots           Number of panels       =     20
                                          
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for punctuality

(13 missing values generated)
. xtunitroot fisher punctuality, dfuller lag(1)
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One lag, with time trend 

 

 

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       -3.6799       0.9999
 Inverse logit t(34)       L*        0.2977       0.6161
 Inverse normal            Z         0.3329       0.6304
 Inverse chi-squared(40)   P         7.0859       1.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                            
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnroutelength

. xtunitroot fisher lnroutelength, dfuller trend lag(1)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      141.5257       0.0000
 Inverse logit t(104)      L*      -80.8843       0.0000
 Inverse normal            Z       -33.8858       0.0000
 Inverse chi-squared(40)   P      1305.8447       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                          
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnfrequency

. xtunitroot fisher lnfrequency, dfuller trend lag(1)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      156.7200       0.0000
 Inverse logit t(104)      L*      -89.3044       0.0000
 Inverse normal            Z       -36.3401       0.0000
 Inverse chi-squared(40)   P      1441.7461       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.25
Ho: All panels contain unit roots           Number of panels       =     20
                                             
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnpassengerkms

(2 missing values generated)
. xtunitroot fisher lnpassengerkms, dfuller trend lag(1)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      156.7200       0.0000
 Inverse logit t(104)      L*      -89.3044       0.0000
 Inverse normal            Z       -36.3401       0.0000
 Inverse chi-squared(40)   P      1441.7461       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                           
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnpassengers

. xtunitroot fisher lnpassengers, dfuller trend lag(1)
> generated)
. * --> one lag, with time trend (trend includes a linear time trend in the model that describes the process by which the series is 
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The tests shown above include a time trend. From the p-values in these tests, it can be concluded that the null-
hypothesis cannot be rejected for the variables petrol price and route length. Also under this test specification 
these variables thus show non-stationary properties. 

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       15.1579       0.0000
 Inverse logit t(104)      L*      -10.8444       0.0000
 Inverse normal            Z       -10.0348       0.0000
 Inverse chi-squared(40)   P       175.5766       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                          
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for temperature

. xtunitroot fisher temperature, dfuller trend lag(1)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       76.8196       0.0000
 Inverse logit t(104)      L*      -45.0377       0.0000
 Inverse normal            Z       -24.9015       0.0000
 Inverse chi-squared(40)   P       727.0956       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 252.45
Ho: All panels contain unit roots           Number of panels       =     20
                                         
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnrainfall

(5838 missing values generated)
. xtunitroot fisher lnrainfall, dfuller trend lag(1)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       -1.8535       0.9681
 Inverse logit t(104)      L*        0.5692       0.7148
 Inverse normal            Z         0.6431       0.7399
 Inverse chi-squared(40)   P        23.4216       0.9830
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                            
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnpetrolprice

. xtunitroot fisher lnpetrolprice, dfuller trend lag(1)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      116.4220       0.0000
 Inverse logit t(79)       L*      -77.4617       0.0000
 Inverse normal            Z       -31.4714       0.0000
 Inverse chi-squared(40)   P      1081.3096       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 1 lag
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 543.70
Ho: All panels contain unit roots           Number of panels       =     20
                                          
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for punctuality

(13 missing values generated)
. xtunitroot fisher punctuality, dfuller trend lag(1)
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Two lags, without time trend  

                                                                               
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       -4.2048       1.0000
 Inverse logit t(34)       L*        2.0737       0.9771
 Inverse normal            Z         2.2363       0.9873
 Inverse chi-squared(40)   P         2.3907       1.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                            
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnroutelength

. xtunitroot fisher lnroutelength, dfuller lag(2)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      129.6394       0.0000
 Inverse logit t(104)      L*      -74.1793       0.0000
 Inverse normal            Z       -31.6560       0.0000
 Inverse chi-squared(40)   P      1199.5299       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                          
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnfrequency

. xtunitroot fisher lnfrequency, dfuller lag(2)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      156.7200       0.0000
 Inverse logit t(104)      L*      -89.3044       0.0000
 Inverse normal            Z       -36.3401       0.0000
 Inverse chi-squared(40)   P      1441.7461       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.25
Ho: All panels contain unit roots           Number of panels       =     20
                                             
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnpassengerkms

(2 missing values generated)
. xtunitroot fisher lnpassengerkms, dfuller lag(2)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      156.7200       0.0000
 Inverse logit t(104)      L*      -89.3044       0.0000
 Inverse normal            Z       -36.3401       0.0000
 Inverse chi-squared(40)   P      1441.7461       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                           
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnpassengers

. xtunitroot fisher lnpassengers, dfuller lag(2)

. * --> two lags, without time trend

. 
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The tests shown above includes two lags but no time trend. From the p-values in these tests, it can be 
concluded that the null-hypothesis cannot be rejected for the variables petrol price and route length. Also 
under this test specification these variables thus show non-stationary properties. 

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       18.4875       0.0000
 Inverse logit t(104)      L*      -12.7055       0.0000
 Inverse normal            Z       -11.2625       0.0000
 Inverse chi-squared(40)   P       205.3573       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                          
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for temperature

. xtunitroot fisher temperature, dfuller lag(2)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       32.3499       0.0000
 Inverse logit t(104)      L*      -20.3996       0.0000
 Inverse normal            Z       -15.4826       0.0000
 Inverse chi-squared(40)   P       329.3465       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 252.45
Ho: All panels contain unit roots           Number of panels       =     20
                                         
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnrainfall

(5838 missing values generated)
. xtunitroot fisher lnrainfall, dfuller lag(2)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm        1.3840       0.0832
 Inverse logit t(104)      L*       -2.4624       0.0077
 Inverse normal            Z        -2.7375       0.0031
 Inverse chi-squared(40)   P        52.3787       0.0909
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                            
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnpetrolprice

. xtunitroot fisher lnpetrolprice, dfuller lag(2)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      111.0484       0.0000
 Inverse logit t(79)       L*      -74.0187       0.0000
 Inverse normal            Z       -30.6054       0.0000
 Inverse chi-squared(40)   P      1033.2470       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Not included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 543.70
Ho: All panels contain unit roots           Number of panels       =     20
                                          
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for punctuality

(13 missing values generated)
. xtunitroot fisher punctuality, dfuller lag(2)
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Two lags, with time trend 

                                                                               
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       -3.6826       0.9999
 Inverse logit t(34)       L*        0.3039       0.6185
 Inverse normal            Z         0.3398       0.6330
 Inverse chi-squared(40)   P         7.0620       1.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                            
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnroutelength

. xtunitroot fisher lnroutelength, dfuller trend lag(2)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      124.5911       0.0000
 Inverse logit t(104)      L*      -71.4826       0.0000
 Inverse normal            Z       -31.1047       0.0000
 Inverse chi-squared(40)   P      1154.3770       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                          
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnfrequency

. xtunitroot fisher lnfrequency, dfuller trend lag(2)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      156.2101       0.0000
 Inverse logit t(104)      L*      -89.0219       0.0000
 Inverse normal            Z       -36.2772       0.0000
 Inverse chi-squared(40)   P      1437.1853       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.25
Ho: All panels contain unit roots           Number of panels       =     20
                                             
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnpassengerkms

(2 missing values generated)
. xtunitroot fisher lnpassengerkms, dfuller trend lag(2)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      156.7200       0.0000
 Inverse logit t(104)      L*      -89.3044       0.0000
 Inverse normal            Z       -36.3401       0.0000
 Inverse chi-squared(40)   P      1441.7461       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                           
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnpassengers

. xtunitroot fisher lnpassengers, dfuller trend lag(2)
>  generated)
. * --> two lags, with time trend (trend includes a linear time trend in the model that describes the process by which the series is
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The tests shown above includes two lags and a time trend. From the p-values in these tests, it can be concluded 
that the null-hypothesis cannot be rejected for the variables petrol price and route length. Therefore, all four 
test specifications (one/two lags, with/without time trend) result in the same conclusion. That is, petrol price 
and route length show non-stationary properties which may cause spurious regression. These variables are 
therefore transformed into first-differences. 

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       11.0432       0.0000
 Inverse logit t(104)      L*       -8.5173       0.0000
 Inverse normal            Z        -8.3368       0.0000
 Inverse chi-squared(40)   P       138.7732       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                          
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for temperature

. xtunitroot fisher temperature, dfuller trend lag(2)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       29.0759       0.0000
 Inverse logit t(104)      L*      -18.5849       0.0000
 Inverse normal            Z       -14.5775       0.0000
 Inverse chi-squared(40)   P       300.0631       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 252.45
Ho: All panels contain unit roots           Number of panels       =     20
                                         
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnrainfall

(5838 missing values generated)
. xtunitroot fisher lnrainfall, dfuller trend lag(2)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm       -1.2131       0.8874
 Inverse logit t(104)      L*       -0.1694       0.4329
 Inverse normal            Z        -0.1914       0.4241
 Inverse chi-squared(40)   P        29.1500       0.8976
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 544.35
Ho: All panels contain unit roots           Number of panels       =     20
                                            
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for lnpetrolprice

. xtunitroot fisher lnpetrolprice, dfuller trend lag(2)

                                                                              
 Other statistics are suitable for finite or infinite number of panels.
 P statistic requires number of panels to be finite.
                                                                              
 Modified inv. chi-squared Pm      114.2478       0.0000
 Inverse logit t(79)       L*      -76.0686       0.0000
 Inverse normal            Z       -31.1499       0.0000
 Inverse chi-squared(40)   P      1061.8632       0.0000
                                                                              
                                  Statistic      p-value
                                                                              
Drift term:   Not included                  ADF regressions: 2 lags
Time trend:   Included
Panel means:  Included
AR parameter: Panel-specific                Asymptotics: T -> Infinity

Ha: At least one panel is stationary        Avg. number of periods = 543.70
Ho: All panels contain unit roots           Number of panels       =     20
                                          
Based on augmented Dickey-Fuller tests
Fisher-type unit-root test for punctuality

(13 missing values generated)
. xtunitroot fisher punctuality, dfuller trend lag(2)
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Appendix H: Test for heteroskedasticity and autocorrelation 

The estimated models were tested for heteroskedasticity and autocorrelation. Heteroskedasticity implies that 

the variance of the error term is the not the same regardless of the values of the independent variables. A 

modified Wald test for panel data was performed for all estimated models. The output below shows the 

significant results for one of the heteroskedasticity test of the general model on the number of passengers.  

 

This test shows that there is heteroskedasticity, so that robust standard errors should be used in order to be 

able to derive correct inferences. As the results are significant for all sixteen tests, the output is shown only 

once. 

Autocorrelation occurs in time-series when the error terms are correlated to the error terms of the previous 

period. The Wooldridge test for autocorrelation in panel data was performed for all estimated models. The 

output is shown below. 

 

This test shows that autocorrelation is present, which was the case for all other models. As both 

heteroskedasticity and autocorrelation were present serial correlation-robust standard errors were applied in 

order to derive correct inferences. 

 

 

 

 

 

 

  

> corrects for both heteroskedasticity and serial correlation)
. * --> reject H0 of no serial correlation, so there is serial correlation. Use serial correlation-robust standard errors (cluster: 

           Prob > F =      0.0000
    F(  1,      19) =     85.614
H0: no first order autocorrelation
Wooldridge test for autocorrelation in panel data

. xtserial lnpassengers lnfrequency Dlnroutelength punctuality Dlnpetrolprice lnrainfall lnsnowfall temperature temperature2 

. * test for serial correlation in error term

. do "C:\Users\Sylvia\AppData\Local\Temp\STD07000000.tmp"

end of do-file
. 
>  (robust).
. * --> reject H0 of homoskedasticity (constant variance), there is heteroskedasticity so that robust standard errors should be used

Prob>chi2 =      0.0000
chi2 (20)  =     458.66

H0: sigma(i)^2 = sigma^2 for all i

in fixed effect regression model
Modified Wald test for groupwise heteroskedasticity

. xttest3

. * test for heteroskedasticity

> corrects for both heteroskedasticity and serial correlation)
. * --> reject H0 of no serial correlation, so there is serial correlation. Use serial correlation-robust standard errors (cluster: 

           Prob > F =      0.0000
    F(  1,      19) =     85.614
H0: no first order autocorrelation
Wooldridge test for autocorrelation in panel data

. xtserial lnpassengers lnfrequency Dlnroutelength punctuality Dlnpetrolprice lnrainfall lnsnowfall temperature temperature2 

. * test for serial correlation in error term

. do "C:\Users\Sylvia\AppData\Local\Temp\STD07000000.tmp"

end of do-file
. 
>  (robust).
. * --> reject H0 of homoskedasticity (constant variance), there is heteroskedasticity so that robust standard errors should be used

Prob>chi2 =      0.0000
chi2 (20)  =     458.66

H0: sigma(i)^2 = sigma^2 for all i

in fixed effect regression model
Modified Wald test for groupwise heteroskedasticity

. xttest3

. * test for heteroskedasticity
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Appendix I: Descriptive statistics for specific line groups 

Table 14 shows the descriptive statistics for the IJtunnel service lines in particular, whereas Table 15 shows 

these statistics for the service lines in Amsterdam North. 

Table 14: Descriptive statistics for the IJtunnel service lines (lines 32, 33, 34 and 35) 

Variable 
 

Mean Std. Dev. Min Max Observations 

Passengers overall 5715.188 2252.175 230 12399 N =    2180 

 
between 

 
1716.505 4081.528 8055.923 n =       4 

 
within 

 
1691.592 -1763.74 10058.26 T =     545 

       Passengerkilometres overall 26617.88 9569.226 0 54519 N =    2180 

 
between 

 
6289.261 22227.2 35821.37 n =       4 

 
within 

 
7867.044 -9202.018 45318.51 T =     545 

       Frequency overall 5.535421 1.095783 4 8.275862 N =    2180 

 
between 

 
0.903444 4.970566 6.885065 n =       4 

 
within 

 
0.767008 3.439829 6.926218 T =     545 

       Route length overall 18.68675 2.420689 16.141 21.425 N =    2180 

 
between 

 
2.79453 16.141 21.425 n =       4 

 
within 

 
0 18.68675 18.68675 T =     545 

       Punctuality overall 0.807268 0.097512 0.1429 1 N =    2176 

 
between 

 
0.030986 0.76357 0.834935 n =       4 

 
within 

 
0.093745 0.115233 1.043697 T =     544 

       Petrol price overall 1.758396 0.034905 1.695 1.83 N =    2180 

 
between 

 
0 1.758396 1.758396 n =       4 

 
within 

 
0.034905 1.695 1.83 T =     545 

       Rainfall overall 3.296239 6.801784 0 54.4 N =    2180 

 
between 

 
0.047369 3.231193 3.344771 n =       4 

 
within 

 
6.801661 -0.04853 54.46505 T =     545 

       Snowfall overall 0.515596 2.202305 0 19 N =    2180 

 
between 

 
0 0.515596 0.515596 n =       4 

 
within 

 
2.202305 0 19 T =     545 

       Temperature overall 10.60278 6.858379 -10.1421 27 N =    2180 

 
between 

 
0.021283 10.58181 10.63142 n =       4 

 
within 

 
6.858354 -10.1211 26.97136 T =     545 
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Table 15: Descriptive statistics for the service lines in Amsterdam North (lines 36, 37 and 38) 

Variable 
 

Mean Std. Dev. Min Max Observations 

Passengers overall 4405.358 4034.345 53 14877 N =    1633 

 
between 

 
4360.379 1495.55 9416.002 n =       3 

 
within 

 
1893.482 -4957.64 9866.356 T-bar = 544.333 

       Passengerkilometres overall 18589.76 17227.43 299 61202 N =    1633 

 
between 

 
18846.48 6173.746 40263.93 n =       3 

 
within 

 
7726.772 -21375.2 39527.82 T-bar = 544.333 

       Frequency overall 3.687433 0.861842 1.878788 5.0625 N =    1633 

 
between 

 
0.606117 3.142362 4.339997 n =       3 

 
within 

 
0.705402 1.987481 5.011919 T-bar = 544.333 

       Route length overall 29.39565 7.278145 21.982 39.289 N =    1633 

 
between 

 
8.908542 21.98278 39.27495 n =       3 

 
within 

 
0.058926 29.31459 29.52259 T-bar = 544.333 

       Punctuality overall 0.819196 0.145178 0 1 N =    1630 

 
between 

 
0.047672 0.789886 0.874218 n =       3 

 
within 

 
0.139862 0.02931 1.02931 T-bar = 543.333 

       Petrol price overall 1.758382 0.034926 1.695 1.83 N =    1633 

 
between 

 
1.23E-05 1.758375 1.758396 n =       3 

 
within 

 
0.034926 1.694986 1.830007 T-bar = 544.333 

       Rainfall overall 3.351684 6.927929 0 54.4 N =    1633 

 
between 

 
0.109555 3.266544 3.475229 n =       3 

 
within 

 
6.927351 -0.12355 54.48514 T-bar = 544.333 

       Snowfall overall 0.516228 2.203748 0 19 N =    1633 

 
between 

 
0.000547 0.515596 0.516544 n =       3 

 
within 

 
2.203748 -0.00032 19.00063 T-bar = 544.333 

              

Temperature overall 10.56221 6.843208 -10.1421 27 N =    1633 

 
between 

 
0.048811 10.509 10.60488 n =       3 

 
within 

 
6.843092 -10.1527 26.95733 T-bar = 544.333 
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Appendix J: Test equality of effects 

A test was performed in order to investigate whether the effects IJtunnel closures in March 2013 are 

significantly different from other IJtunnel closures. The output below shows that the effect on the number of 

passengers on the IJtunnel service lines does not significantly differ between March 2013 and other closures, 

whereas the effect does differ for the other lines in Amsterdam North. With respect to the number of 

passengerkilometres, the effect of the IJtunnel closures in March 2013 is significantly different from the effect 

of other closures, for both the IJtunnel service lines and the other service lines in Amsterdam North.  

Test for number of passengers 

 

Test for number of passengerkilometres 

 

  

. 

. *--> reject H0, the coefficients are not similar so the effects are significantly different.

            Prob > F =    0.0373
       F(  1,    19) =    5.01

 ( 1)  dijLadamNm13 - dijLadamNother = 0

. test dijLadamNm13=dijLadamNother

. *--> do not reject H0, the coefficients are similar so the effects are not significantly different.

            Prob > F =    0.0569
       F(  1,    19) =    4.11

 ( 1)  dijLtunnelm13 - dijLtunnelother = 0

. test dijLtunnelm13=dijLtunnelother

. 
> lclosures.H0:coefficients are equal.
. * test whether effect of IJtunnel closures in March 2013 on the number of passengers is significantly different from other IJtunne

. 

. *--> reject H0, the coefficients are not similar so the effects are significantly different.

            Prob > F =    0.0028
       F(  1,    19) =   11.75

 ( 1)  dijLadamNm13 - dijLadamNother = 0

. test dijLadamNm13=dijLadamNother

. *--> reject H0, the coefficients are not similar so the effects are significantly different.

            Prob > F =    0.0433
       F(  1,    19) =    4.69

 ( 1)  dijLtunnelm13 - dijLtunnelother = 0

. test dijLtunnelm13=dijLtunnelother
> closures. H0:coefficients are equal.
. * test whether IJtunnel closures in March 2013 on the number of passengerkilometres is significantly different from other IJtunnel
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Appendix K: Calculation of revenue- and subsidy loss due to closures of the 

IJtunnel 

Note: as the calculation of the revenue- and subsidy losses include confidential information specific to GVB, the 

actual numbers used in the calculations and the outcomes are not allowed to be published in this thesis. 

Therefore, this appendix outlines the calculation made but does not provide the actual amounts involved.  

Due to the IJtunnel closures GVB experiences a loss of passengers and thus passenger revenues. Moreover the 

diversion implemented shortens the route for the IJtunnel service lines. GVB receives a subsidy per kilometre 

from the Stadsregio Amsterdam, which implies that the actual subsidy received is reduced due to the IJtunnel 

closures. Since the IJtunnel closures were all planned during weekends, the calculations in this appendix were 

based on average quantities per weekend day.  

Table 16 shows the calculation of the revenue- and subsidy loss due to the closure of the IJtunnel per average 

weekend day. The second column shows the change of the average number of passengers per weekend day 

due to the IJtunnel closures, this was calculated by means of the average number of passengers per weekend 

day and the percentage changes estimated by this research
24

. These numbers were multiplied by an average 

revenue of € x per trip
25

, which results in the associated revenue loss in the third column. In the fourth column 

the change of the average number of kilometres driven per weekend day are shown for each service line. 

Multiplying these numbers by a subsidy of € x per kilometre for busses, the actual subsidy loss is obtained in 

the fifth column. The final column shows the total loss of both revenues and subsidy. 

 

 

 

 

 

 

                                                           
24

 The used percentage change for the IJtunnel service lines was -18.37%, for the other service lines in Amsterdam North 
this was +8.55% (see Table 8 on page 44). 
25

 The monetary costs for a trip using the chipcard are based on a standard boarding fare and a basic fare per travelled 
kilometre (OV-chipkaart, 2013). Though, as multiple ticket types and products are available these fares differ per 
passengers. For example, children and seniors travel against a reduced tariff, whereas passengers with annual- or season 
tickets pay a fixed price and can travel unlimitedly. Using the boarding fare and fare per kilometre for this calculation would 
be less accurate as it would lead to a substantial overestimation of revenue loss. Therefore, the revenue loss was calculated 
by means of an average revenue per trip in which the use and fares of different ticket types are weighted. Note that this 
may also result in an overestimation as the number of passengers (check-ins) is larger than the actual number of trips 
(passengers may check in multiple times during one trip as a consequence of interchanges between modes). Though this 
overestimation is perceived as less severe than the overestimation of the chipcard tariffs. 
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Table 16: Calculation of revenue- and subsidy loss per average weekend day due to IJtunnel closures 

Service lines ∆ # passengers  ∆ € passenger 
revenue 

∆ # kilometres  ∆ € subsidy  ∆ € revenue 
loss and 

subsidy loss 

IJtunnel lines      

32 X X X X X 

33 X X X X X 

34 X X X X X 

35 X X X X X 

Net loss X X X X X 

      

Lines in Amsterdam North      

36 X X X X X 

37 X X X X X 

38 X X X X X 

Net gain  X X X X X 

      

NET LOSS PER DAY X X X X X 
 

As the effects of the IJtunnel closure appeared to be stronger for the multiple subsequent closures in March 

2013 compared to other closures, the total revenue- and subsidy loss for the specific closures in March 2013 

were calculated. This calculation was constructed in a similar way as Table 16, but the percentage differences 

used in the third column differ
26

. Note that the subsidy loss in these calculations are equal as the average 

reduction of kilometres per day is similar per day. 

 

 

 

 

 

                                                           
26

 The used percentage change for the IJtunnel service lines during the specific closures in March 2013 was -21.10%, for the 
other service lines in Amsterdam North this was +12.98% (see Table 8 on page 44). 


