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Abstract
This paper considers a game theoretical model similar to auditing

models. A large group of agents must comply to a principal’s rules,
while having an incentive to cheat. The principal has an incentive
to monitor behaviour and fine cheating agents. The current paper
additionally considers a feeling of shame when an agent is caught,
which reduces incentives to cheat and thus the need for monitoring
efforts. Psychological incentives, such as feelings of shame, are closely
related to norms and values. These could be influenced and, in the-
ory, optimised on the long term by governments, through for example
education or religion. This paper proves the existence of some posi-
tive, finite level of shame, such that the welfare loss of the necessity to
monitor behaviour is minimised, under certain parameter conditions.

Keywords: Shame, Psychological incentives, Monitoring, Principal-
agent, Auditing, Welfare, Game theory
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1 Introduction

In this paper, I consider a situation where a large group of agents interacts
with a principal. The agents have to comply to the principal’s rules. However,
the agents have an incentive not to comply, which in turn gives the principal
an incentive to monitor their behaviour. Research into this type of situations
is important for policy making, as it concerns understanding the behaviour
of agents and minimising the costs of monitoring it.

In classical economical models, compliance of an individual agent in such
situations would be based on monetary incentives. However, negative feelings
from cheating and getting caught doing so can as well play an important role
in understanding the agents’ behaviour, as they would decrease an agent’s
incentive to cheat. Therefore, it is also interesting to consider such psy-
chological incentives in an economical model, as it may decrease monitoring
costs while at the same time being a cost itself. In this paper, I will model
these psychological incentives as a feeling of shame of the agent towards other
agents (and perhaps to itself) when getting caught cheating.

An additional component I will include in the model is a probability that
agents who comply to the rules of the principal can still be fined. This could
happen due to either errors in the system, or mistakes by the agent. While
this adds a degree of realism to the model, it also ensures that an infinite
amount of shame, which is obviously not realistic, would not be a solution
for the necessity of costly monitoring efforts.

Although the model may be suitable for many types of situations, I will
consider a setting of a railway line. Passengers are the agents in this model,
required to comply by buying a train ticket. They can also ’dodge’ by not
buying a ticket, at risk of being fined by the railway company and experienc-
ing disutility of feeling ashamed for it. This railway company is the principal,
with the goal of profit maximisation. Although this may not be directly true
for public organisations, its management is mostly judged by its financial
performance or at least cost-effectiveness. This makes profit maximisation a
credible assumption for public organisations as well.

I assume the railway line to only consist of two stations, so the trip has
no stops in between. This way, no passengers can avoid a train conductor
that checks tickets. Another assumption is that the conductor is unpreju-
diced when writing fines to passengers who do not have a ticket, although in
practice a train conductor may act with some (perhaps acceptable) level of
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discrimination. Also, it may be possible to predict someones wealth by his
appearance and adjust the monitoring strategy for that passenger accord-
ingly. However, such practices would be considered unethical in practice,
and are not applied in the model. Instead, the two assumptions lead to the
important property that all passengers face the same monitoring strategy of
the railway company.

Central to this paper is the described feeling of shame that an agent ex-
periences when he is caught cheating. In the game theoretical model, it is
treated as an exogeneous factor. However, such feelings of shame can be
considered closely connected to the norms and values that exist in a soci-
ety. Its government is able to exert influence on these norms and values, for
example through education, religion or advertising campaigns on television.
Thereby, the government is able to adjust, on the long term, the level of
shame agents would experience when they are caught cheating. This may
not only create a social and livable society, but can also serve an economical
purpose. Therefore, I formulate the following research question:

Is there some level of shame that minimises the welfare
loss of the necessity to monitor behaviour?

On the one hand, such shame when getting caught lowers the agents’ in-
centives to cheat, which would require less monitoring and thus increases
welfare. On the other hand, the shame itself also creates an additional psy-
chological cost, decreasing welfare. This makes the effect of shame in the
model unambiguous and interesting to consider.

One may argue that the additional psychological cost that a caught agent
experiences is not in the interest of total welfare of a society, because it is his
own fault. However, in this paper I consider the approach of utilitarianism
and weigh the utility of each individual equally in calculation of social welfare.

In answering the research question, I will consider two types of games,
with different timings of actions. The first is a simultaneous game, where
both the agents and the principal move at the same time. The second is a se-
quential game, where the principal commits to a certain monitoring strategy
and the agents make their move after observing this strategy. Additionally,
I will consider the differences in outcomes of both games, in terms of welfare
and monitoring efforts.

An interesting aspect is that the principal can benefit from fining many
agents, especially since complying agents risk being erroneously fined as well.
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Therefore, it could be possible that a principal prefers a high amount of cheat-
ing agents. However, I generally expect to find that the principal commits
to higher monitoring efforts in the sequential game, to deter the agents of
cheating.

The structure of the paper is as follows. After the related literature in the
next section, I first discuss the setup of the model in section 3. In section
4.1, I analyse the simultaneous game theoretical model and provide proof for
the existence of such an optimal level of shame, using several lemma’s and
propositions. In section 4.2, I discuss how the results for the sequential game
differ from those of the simultaneous game. In section 5, I will conclude and
provide additional remarks about the model and possible further research
into the subject.

2 Related literature

The described model with dodging and checking of train tickets as an example
has not yet received much attention in the literature. However, it shares a
connection to the field of accounting and is closely related to the literature
on auditing models. Similarly, in such models, an agent has to comply to
some behaviour required by a principal, who has an incentive to monitor the
agent’s behaviour because it has an incentive not to comply.

Of auditing models, several applications are discussed in the literature,
where the application to tax auditing is considered the largest application.
It is quite similar to that of the current paper, as both concern compliance
of a large group of individuals to the rules of a single organisation, where the
individuals mostly risk a fine based on their earlier compliance decision.

Auditing models require an important assumption about the monitoring
strategy of the principal. In the earlier literature, for example Allingham and
Sandmo (1972), the monitoring strategy of the tax authority was assumed
to be the same for each individual taxpayer, regardless of its characteristics.

Later on, however, auditing models became more based on the assumption
that a principal’s monitoring strategy towards each agent depends on that
agent’s characteristics. Reinganum and Wilde (1986) were one of the first to
introduce the possibility of such heterogeneous monitoring strategies, in the
application of tax auditing. They allowed for the possibility to differentiate in
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monitoring strategy between each taxpayer by their reported income, which
is available information to the tax authority. Taxpayers with a higher income
were found to underreport less and audited with a lower probability in their
model.

Although the assumption is still applied in more recent literature, see for
example Hokamp and Pickhardt (2010), I instead propose a model where the
older assumption of a more simple monitoring strategy is appropriate. As
described in the introduction, the more simple monitoring strategy results
from the assumptions that no passenger can avoid the ticket checking and
that the train conductor is not able to discriminate between passengers.

Another important assumption is the possibility to commit to a monitor-
ing strategy. Both possibilities have been considered in the literature. For
example, Baron and Besanko (1984), Border and Sobel (1987) and Townsend
(1979) assume it is possible to commit to a monitoring strategy, while Rein-
ganum and Wilde (1986) assume the opposite.

Others considered commitment unrealistic, since the principal ex post has
less incentive to audit because more agents have complied, see for example
Khalil (1997), Bolton and Scharfstein (1990) and Hart (1995). Nonetheless,
the current paper concerns an environment where the agent can, in reality,
observe deviations from the monitoring activities of the principal (although
not modelled) and anticipate in future trips. I therefore consider both pos-
sibilities of strategy commitment.

In this respect, Ho and Wang (2013) found that being unable to commit to
an auditing strategy in a credit market can result in lower welfare. Likewise,
I investigate if the same is true for the model of the current paper.
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3 Model setup

In this section, I will translate the proposed setting into a meaningful game
theoretical model. The separate characteristics of the model concern the type
of game, the players and their payoffs and strategies, and the appropriate
solution concept. Additional to the outcomes of this solution concept to
both types of players, I will discuss a third, broader type of outcome: total
welfare for society.

3.1 Passengers

Let n be the amount of passengers that travel with the railway company.
Each player i, i = 1, ..., n, gets benefit B > 0 from the trip, while facing the
option to either ’buy’ a ticket at price p > 0, or ’dodge’ the ticket and pay
nothing.

However, because the railway company may occasionally check tickets
(see section 3.2), both dodging passengers and paying passengers who lose
their ticket with probability ` ∈ (0, 1) risk getting caught. In that case,
each has to pay a fine f > 0, beside (again) the regular price p, and suffers
additional psychological costs of shame S ≥ 0. For simplicity, I assume it is
not possible for dodging passengers to ’find’ a ticket that a buying passenger
lost.

The probability of getting caught is denoted by π ∈ [0, 1], and a di-
rect result of the ticket checking activity of the railway company, as will be
explained in section 3.2. In this model, I assume a world without discrimi-
nation, as discussed in the introduction. Therefore, all passengers face the
same level of π.

As the parameters so far are identical for all passengers, the model would
not result in realistic continuous reactions to different levels of π. For low
values of π under a certain level, all passengers would dodge. For high levels
of π above a certain level, everyone would buy a ticket. Therefore, I choose
to differentiate between the passengers by a different valuation of money for
each passenger i, denoted by vi ≥ 0, which follows a certain distribution over
the population of passengers.

Let ψ(vi) be the probability density function and Ψ(vi) its cumulative
distribution function. This function can be chosen in any way subject to
vi > 0, to reflect differences in society. For example, a beta distribution can
be convenient, as its shape parameter can be used to model inequality in
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income and thus valuation of money.

Each passenger i now faces the decision between the options ’buy’ and
’dodge’, with the following expected utilities (EU), given the level of π,

EUi(buy|π) = B − vip− π`
(
vi(p+ f) + S

)
EUi(dodge|π) = B − π

(
vi(p+ f) + S

) (1)

From these expected utilities follows that there is some threshold level of vi
for which a passenger i is indifferent. Let this threshold level of vi be denoted
by v∗. Passengers with vi < v∗ choose to buy a ticket, whereas passengers
with vi > v∗ value money enough to dodge the ticket.

Next, let δ be the proportion of passengers that have the strategy to
’dodge’ the ticket. For the purpose of identification of individual strategies,
let vi > vj ∀i > j such that passengers with higher i have a higher tendency
to ’dodge’. Then δ defines the individual strategy of each passenger i as
’dodge’ if i > n− δn and ’buy’ if i ≤ n− δn.

With n very large as a finite integer, analysis of the equilibria will be too
complex. Therefore, I let n → ∞ to maintain continuity in the (reaction)
functions used in all further analysis. Although the amount of players must
be finite for proper game theory, there is extensive research on such large
games with infinite amount of players, also called atomic models. See for
example Aumann (1964), Neyman (2002) and Jara-Moroni (2012) for further
reference.

3.2 Railway company

The railway company chooses its ticket checking probability π as strategy.
For any ticket checking, the railway company incurs deployment costs of the
train personnel. These costs are scaled by the factor cπ > 0 and quadratic
in π, to model that catching more passengers is increasingly more expensive.
The resulting checking costs are cππ

2, where checking all passengers (π = 1)
costs cπ per passenger.

In cases where the railway company does not check tickets, it only receives
price p from the paying passengers. If it does checks tickets, it receives the
additional price p and fine f from the passengers without a ticket. However,
writing a fine incurs administrational costs cf > 0. Also, cf < f to ensure
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the railway company has an incentive to indeed write a fine when catching a
passenger without a ticket.

The resulting profit function Π, given some level of dodging δ, is

Π(π|δ) = π

(
p+

(
δ + (1− δ)`

)
(f − cf )

)
+ (1− π)(1− δ)p− cππ2. (2)

3.3 Timing of actions

In this paper, I will consider two games with different timings of the players’
actions. The first is a simultaneous game, which is a static game with im-
perfect information, where all players choose their strategy simultaneously
without knowing what the other players will do. The second is a sequen-
tial game, where the railway company commits to a certain level of π. The
passengers have perfect information and learn this level of π and react to
it. Both types of games have complete information and a Nash Equilibrium
(NE) as solution concept.

3.4 Social welfare

With the combination of the levels of δ and π, social welfare can be defined
as the benefit B minus the non-retrievable administrational- and checking
costs, all expressed as an average per passenger. Let W be the social welfare
per passenger, defined as

W = B − π
(
δ + (1− δ)`

)
(cf + S)− cππ2. (3)

I assume that the administrational- and checking costs do not flow back to
society through, for example, salaries, and that lost ticket revenue for the
railway company is equally well spent in society by the dodging passengers.

4 Analysis and results

In this section, I will further analyse both the simultaneous game and the
sequential game, in terms of reaction functions and behaviour in the solution
of the Nash Equilibrium. Furthermore, I will provide proof for the existence
of an S > 0 such that social welfare is maximised, for the simultaneous game.
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I will refer to a numerical example throughout this section, to illustrate
characteristics of the game theoretical model. This example contains the
parameters B = 20, p = 7.5, f = 35, cf = 5, cπ = 10 and ` = 0.02. For
simplicity, vi follows a uniform distribution between 0 and V = 2.5. I chose
the parameters to be realistic for the described railway environment.

4.1 Simultaneous game

First, consider the choice of each passenger i between the expected utilities
in (1). It chooses to dodge if EUi(buy|π) < EUi(dodge|π), which simplifies
to

vi >
π(1− `)S

p− π(1− `)(p+ f)
= v∗ if v∗ > 0 (4)

Passenger i’s valuation of money, vi, must be larger to choose ’dodge’
when either shame or fine increases, or when the price decreases. When these
changes occur, the reaction function of the total proportion of passengers
dodging, δ, must decrease, because now less passengers value money more
than the increased value of v∗.

Note also that, when

π ≥ p

(1− `)(p+ f)
, (5)

the denominator in (4) becomes negative. Buying a ticket is then always the
worst option, despite the level of S or vi. The reaction δ will then remain 0
when π increases further.

In general, the condition in (4) leads to the following reaction function:

δBR(π) = 1− Pr(vi ≤ v∗).

Specifically, the conditions lead to:

δBR(π) =

{
0 if v∗ < 0

1−Ψ
(

π(1−`)S
p−π(1−`)(p+f)

)
if v∗ ≥ 0

(6)

As expected, δBR is decreasing in S, π and f , and increasing in p and `. For
the special case that S = 0, the reaction function is:

δBR(π) =


0 if π > p

(1−`)(p+f)
[0, 1] if π = p

(1−`)(p+f)
1 if π < p

(1−`)(p+f)

(7)
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Note that the second condition in (7) can lead to a Nash Equilibrium with a
mixed strategy, where δ can be anywhere between 0 and 1.

The above results in two lemma’s that support the construction of proof
for the existence of a level of S > 0 such that welfare is maximised.

Lemma 1 δBR(π) is monotonically decreasing in π.

Note that it is strictly decreasing in π, unless condition (5) is satisfied.

Lemma 2 δBR(π) is monotonically decreasing in S.

Here, δBR(π) is also strictly decreasing in S, unless condition (5) is satisfied.

Next, the reaction function of the railway company, πBR(δ), can be obtained
by the first order condition that maximises the expected profit function in
(2), which yields

∂Π(π|δ)
∂π

= p+
(
δ + (1− δ)`

)
(f − cf )− (1− δ)p− 2cππ = 0

=⇒ πBR(δ) =
δ
(
p+ (1− `)(f − cf )

)
+ `(f − cf )

2cπ
(8)

This result supports the following lemma, which I will also prove using eco-
nomic reasoning instead of mathematics.

Lemma 3 πBR is strictly increasing in δ.

Proof If δ increases, then the marginal revenue (received price and fine) of
checking more tickets increases, because more people are then caught because
more people dodge. The marginal costs remain the same at the current level
of π. In equilibrium, marginal revenue of increasing π must equal marginal
costs. Because the marginal revenue is now higher, the railway company has
an incentive to increase π. �

Note that in the reaction function πBR =
δ[p+(1−`)(f−cf )]+`(f−cf )

2cπ
it can be seen

that if δ = 0, πBR =
`(f−cf )

2cπ
. As this means that π will always remain positive

in equilibrium, the following lemma can be proven as well.
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Lemma 4 δBR becomes infinitely small as S becomes infinity large.

Proof As π ≥ `(f−cf )
2cπ

> 0, it can be seen in (4) that v∗ →∞ as S →∞. In
order to have a proper probability distribution where total probability sums
up to 1, the probability density function ψ(v) must tend to 0 when v →∞.
A necessary result is that limv→∞Ψ(v) = 1. Therefore it must be true that
limS→∞ δ

BR(π) = 1− limv∗→∞Ψ(v∗) = 0. �

Consider again lemma 2. The following lemma considers the magnitude of
the effect of S on δBR(π), i.e. the derivative ∂δBR

∂S
.

Lemma 5 The negative influence of S on δBR is largest when S is small,
but not infinitely large.

Proof When S is low, its total negative influence on δBR is low, so δBR will
still be relatively large. Since πBR is only influence by S through δBR, it
follows from lemma 3 that πBR is still relatively large as well.

Consider the utility of dodging in (2). When S is small such that the
given level of π is still large, an increase in S has a relatively large influence
on this utility because the probability that the passenger incurs these shame
costs is high. As a result, the minimum valuation of money needed to dodge,
v∗ as in (4), increases more. This results in a larger decrease in δBR(π).

Figure 1: Combinations of given levels of S and π for the passengers, where
v∗ remains unchanged.
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This can be illustrated by considering the trade-off between S and the
given level of π, that is necessary for some passenger to remain indifferent
between buying or dodging the ticket, i.e. when EUi(buy|π) = EUi(dodge|π).
Due to this indifference, a curve that connects such combinations of S and
π concerns the indifferent passenger at the threshold v∗, where the level of
δBR would not change. See figure 1 for an example of such a curve.

Consider the equation of v∗ as in (4), with the purpose of keeping v∗

constant. Expressing S in terms of π and taking the derivative yields

∂S

∂π
= − v∗p

(1− `)π2
< 0.

This derivative’s absolute value describes the rate of substitution between S
and π necessary to remain indifferent between dodging and buying a ticket.
This rate of substitution is smallest (or the derivative least negative) when
S is small and the given π is large. This means that when S is close to 0, an
increase of S would require a large decrease of the given π, for v∗ and (thus)
δBR(π) to remain the same as a result. The direct decrease in δBR(π) is then
relatively large.

Also, note that the indifference curve in figure 1 has its horizontal asymp-
tote below 0, at S = −(p + f) as derived from (4). Therefore, because
S ∈ [0,∞), the derivative ∂δ

∂S
cannot tend to −∞ when S becomes very

small. Additionally, because δ ∈ [0, 1], the derivative cannot tend to −∞ on
its domain and must be finite.

Figure 2: Equilibrium levels of δ and π, against changing S.
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Although πBR is only influenced indirectly by S through δBR, consider
also how it adapts towards a Nash Equilibrium due to a change in S. When
S increases, v∗ increases, causing δBR to decrease. As a result, πBR decreases
indirectly, which further increases the rate of substitution between S and π
at their new given levels. This again means that the influence of S on δNE

gets smaller as it increases. This is confirmed by figure 2 of the equilibrium
levels of π and δ in the numerical example, against changing S. �

On the basis of the previous five lemma’s, I propose the following proposition:

Proposition 1 Equilibrium levels of ticket checking πNE and ticket-dodging
δNE are monotonically decreasing in the level of shame S. The decrease is
largest when S is small.

Proof From lemma 2 follows that δBR decreases. As a direct result, using
lemma 3, πBR decreases as well. Because S only has a direct effect on δBR,
lemma 5 is sufficient to prove that the effect of S on δNE and, therefore, on
πNE is largest when S is small.

However, the decrease in πBR causes δBR to increase again, making the
total effect ambiguous. Therefore, assume instead by contradiction that δNE

increases. πNE then increases as well. However, passengers now face higher
levels of both S and π. This means that δNE should be lower than before
S increased, which is a contradiction. This proves that δNE must decrease,
and so must πNE. �

To provide additional insight into the behaviour of δNE and πNE, consider
some example reaction functions with several values of S, in figure 3. The
top left diagram shows the reaction functions with S = 0. The other three
diagrams show increasing levels of S, with S3 > S2 > S1 > 0. The Nash
Equilibrium in the plots shifts to the bottom left as S increases, with πNE and
δNE both decreasing. When S gets large enough, as in the last diagram with
S3, v∗ > V occurs before π becomes too high as in condition (5). This results
in the reaction function of the passengers intersecting the π-axis before the
usual point π = p

(1−`)(p+f) .

At a certain level of S, the reaction function δBR reaches 0 before the
point where the reaction function of the railway company intersects the π-
axis. From this point, increasing S does not change the equilibrium levels
πNE and δNE.
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Figure 3: Reaction functions with increasing shame, with S3 > S2 > S1 > 0

The next two propositions together support the theorem that there is some
S > 0 such that welfare is maximised. First, proposition 2 states that wel-
fare could be increased at all by introducing S in the model with some finite
amount. Next, proposition 3 rules out the possibility that an infinitely high
level of S benefits welfare, which would imply there is no optimum at all.
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Proposition 2 Welfare increases when increasing shame S with some finite
amount from S = 0, under certain conditions.

Proof Since we know from proposition 1 that both πNE and δNE will de-
crease, three welfare effects in the welfare function (3) can be identified. Con-
sider these three effects in more detail, expressed as an average per passenger
in the model.1 It is important to consider that π, δ and πδ are functions of
S in equilibrium.

1. Total average costs of ticket checking decrease
The derivative of the total average costs of ticket checking, as in equa-
tion (3), to S is

∂cππ
2

∂S
= 2cππ

∂π

∂S
< 0.

As S increases, πNE decreases and ∂π
∂S
< 0 becomes less steep as a result

of lemma’s 2, 3 and 5. The derivative, and therefore the effect of S on
these costs, becomes less negative when S is larger.

2. Total average administration costs of writing fines decrease
The derivative of the total average costs of writing fines, as in equation
(3), to S is

∂π
(
δ + (1− δ)`

)
cf

∂S
=
∂(πδ)

∂S
(1− `)cf +

∂π

∂S
`cf < 0,

where both ∂(πδ)
∂S

and ∂π
∂S

are negative and become less steep as S in-
creases. As a result, this second positive effect becomes smaller as well,
as S increases.

3. Total average incurred shame costs per caught passenger in-
crease or decrease
The derivative of the total average shame costs, as in equation (3), to
S is

∂π
(
δ + (1− δ)`

)
S

∂S
=

(
πδ +

∂(πδ)

∂S
S

)
+`

(
π(1− δ) +

(
∂π

∂S
− ∂(πδ)

∂S

)
S

)
1Superscript notations of δ and π are mostly ommitted.
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Figure 4: Shame costs and proportions of caught passengers, against level of
S

From the first terms in both separate brackets follows that the cur-
rently caught dodgers (πδ) and caught passengers who lost their tick-
ets (`π(1− δ)) incur more shame costs. The groups of caught dodgers

shrinks by ∂(πδ)
∂S

, while the group of caught passengers who lost their

tickets could either grow or shrink by `
(
∂π
∂S
− ∂(πδ)

∂S

)
. When considering

the decrease of the proportion of all caught passengers,

∂π
(
δ + (1− δ)`

)
∂S

= (1− `)∂πδ
∂S

+ `
∂π

∂S
< 0,

it becomes clear that less passengers are caught in total when S in-
creases.

However, it still remains unclear how this decrease of the group of
caught passengers weighs up against the shame costs created by the
increase of S itself. Therefore, this third welfare effect, as well as the
total welfare effect of an increase in S, is ambiguous.

Figure 4 shows that the total average shame costs indeed increase
very sharply for low levels of S, although both proportions, of caught
dodgers and passengers who lost their tickets, decreased sharply as
well. Around S = 100, the proportion of caught passengers becomes
sufficiently low and decreases sufficiently, such that the increase in S
decreases total average shame costs.

It is clear that higher levels of parameters cπ, cf and ` directly increase the
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magnitude of the three effects, respectively. However, since the three effects
also strongly depend on the changes in proportions of δNE, and πNE, it is
important to consider the influence of the parameters on these changes.

Therefore, consider ∂δ
∂S

. Its overall magnitude strongly depends on the
shape and width of the distribution of the valuation of money. If one would
observe that a relatively large proportion of passengers chooses to buy a
ticket instead of dodging when S increases, δBR would decrease a lot, so πBR

would as well. Positive effects 1 and 2 will then be large. Concerning effect
3, shame costs may even decline when a lot less people are caught compared
to the additional costs of a higher level of S. If, however, it takes a big
increase of S to induce even a single passenger to consider buying a ticket,
positive effects 1 and 2 may not compensate for effect 3, which would clearly
be negative.

Also, when ` is large, an increase of S has relatively little effect on the
tendency to cheat less, because instead buying a ticket still entails high risk
of getting caught. Beside its influence on ∂δ

∂S
, a high level of ` also implies

that more passengers are caught in equilibrium, not only because fair pas-
sengers are caught more often, but also because more passengers dodge (and
are caught with higher probability than when they bought a ticket). This
means that an increase in S has a higher negative effect on welfare.

See figures 5 and 6 for an illustration of the levels of welfare for both the
simultaneous and the sequential game, for the parameters of the numerical
example. Again, these parameters are B = 20, p = 7.5, f = 35, cf = 5,
cπ = 10 and ` = 0.02, and vi uniformly distributed between 0 and V = 2.5.
I vary the levels of V , `, cf and cπ in order to examine the sensitivity of the
social welfare curves to these parameters.

The figures show that both games have a potential increase in welfare.
However, in the simultaneous game for almost all parameter variations, the
negative effect of shame costs dominated for small values of S. This is because
πNE is then still high, so more passengers are caught and incur those shame
costs S. For higher values of S, welfare could increase above the S = 0 level.

As expected, the graphs of the variations of parameters V and ` show
that higher values may lack a potential increase in welfare. Both parameters
appear to have a relatively large influence on the welfare curves, considering
their rather mildy chosen level of variation.

Although high levels of cf and cπ increase the first two positive cost-
effects as described above, higher cost-levels do show a potential increase
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in welfare in figure 6, where lower cost-levels do not. This results from the
fact that such higher costs provide a higher potential decrease in monitoring
costs, compared to the (incurred) shame costs required to decrease dodging
incentives.

Therefore, under the condition that ` and the spread in the distribution of
vi are sufficiently low, and cf and cπ are sufficiently high, a potential increase
in welfare due to some increase in S exists. �

Proposition 3 In the limit, increasing S results in an infinite decrease of
welfare.

Proof In other words, limS→∞W = −∞.
When S becomes sufficiently large, it follows from lemma 4 that δBR → 0.

As a result, it follows from (8) that πBR → `(f−cf )
2cπ

> 0. The only passengers
that are caught are those that lost their ticket, of which the proportion tends

to π · ` =
`2(f−cf )

2cπ
.

As the equilibrium does not change in the limit, further increasing S
does not decrease monitoring costs or administrational costs, but merely in-
creases the shame costs the unfairly caught passengers experience. Therefore,
limS→∞W = −∞. �

These propositions lead to the following main theorem that concerns the
research question.

Theorem 1 There can be an optimal level of S for maximum welfare in a
simultaneous game, under certain conditions.

Proof The existence of an optimal S follows from propositions 2 and 3,
under the conditions discussed in the former proposition.

Consider the lowest S > 0, for which welfare has increased as in propo-
sition 2. From this point, welfare cannot increase towards infinity for some
finite increase of S, because δ and π in (3) are bounded between 0 and 1 and
are the only changing variables besides S. With an infinite increase of S,
welfare must instead tend to minus infinity. Therefore, there must be some
finite S in between where the welfare function has a global maximum. �
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Figure 5: Welfare levels for both the simultaneous and the sequential game,
for some parameter variations.
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Figure 6: Welfare levels for both the simultaneous and the sequential game,
for some parameter variations.
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4.2 Sequential game

Now, the railway company commits to a certain level of π beforehand, an-
ticipating on the reaction of the passengers. Therefore, it is interesting to
consider the railway company’s incentives to induce either higher or lower
levels of δNE, through commitment to a monitoring strategy of π.

Taking the equilibrium of the simultaneous game as reference point, the
railway company faces certain benefits (more revenue in fines) and costs
(more checking- and administrational costs) from increasing π any further,
given the level of δ. Since it was an equilibrium, these benefits and costs
are necessarily equal. With commitment in the sequential game, the railway
company would anticipate that the passengers dodge less when π increases,
and have an incentive to do so if this increases profits.

Therefore, consider the partial derivative of the railway company’s profits
in (2) to δ:

∂EURC(π|δ)
∂δ

= π(1− `)(f − cf )− (1− π)p

= π
(

(1− `)(f − cf ) + p
)
− p

Most naturally, one would expect that a company is always aversive to cheat-
ing. The derivative would be negative, such that cheating hurts profits.
Rewriting ∂EURC(π|δ)

∂δ
< 0 shows that this is the case when the condition

πNE <
p

(1− `)(f − cf ) + p
(9)

is satisfied. Observe that when writing a fine provides a large benefit of
f − cf for the railway company, or when price p decreases such that a dodg-
ing passenger causes a smaller loss of revenue, the threshold in (9) decreases.
As expected, this increases the tendency to instead prefer higher levels of
dodging, compared to the equilibrium of the simultaneous game. The same
happens when ` decreases, because fair passengers become less interesting
for potential revenue of writing unfair fines, making dodging passengers rel-
atively more profitable.

Note that all equilibria must satisfy πNE < p
(1−`)(p+f) (see also condition

(5)). So, first, it can be seen that the railway company always commits to
a higher level of π, and thus favors lower levels of dodging, when all these
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possible equilibria satisfy condition (9), i.e. when

p

(1− `)(f − cf ) + p
>

p

(1− `)(p+ f)
⇐⇒ (1− `)cf − `p > 0 (10)

is satisfied.
Consider also the case when condition (10) is not satisfied2. When πNE

is now sufficiently high, above the threshold in (9), the railway company in-
stead favors higher levels of dodging and will commit to a lower level of π.
This is the case for low levels of S, which follows from lemma 1. If, however,
S increases and thus πNE decreases, such that it is lower than that threshold
in (9), the additional benefit of a dodging passenger decreases because it is
caught with less probability. Profit is then hurt by dodging passengers, which
provides the railway company an incentive to commit to a higher level of π
than in the simultaneous game.

In the numerical example of the model, condition (10) is satisfied, such that
the railway company always commits to a higher level of π and the levels of
dodging are reduced as a result. Also, figure 7 confirms that less passengers
are caught in total in the numerical example. Therefore, the railway com-
pany has lower administrational costs and the passengers incur less shame
costs on average, at the expense of higher ticket checking costs.

Figure 7: Proportions of total caught passengers for both types of games,
against the level of shame costs S.

2Note that the possibility of ` > 0 is crucial for this to occur.

23



To see how this influences the difference in levels of welfare among both
games, consider again figures 5 and 6. First, the levels of welfare are higher
in the sequential game than in the simultaneous game. The opposite would
be true when instead applying models with parameters that do not satisfy
condition (10), such that the railway company commits to a lower level of π.

Second, beside these differences in absolute levels of welfare among both
types of games, the commitment also changes the influence of the level of S
on the change in welfare. Figures 5 and 6 show that welfare in the sequential
game mostly increases directly when S is introduced in the model. This
results from a decrease in both administrational- and ticket checking costs.
The passenger’s tendency to dodge less can be fully utilised by the railway
company to prevent costly monitoring activity. In the numerical example, I
even observed that dodging was mostly reduced to δNE = 0 in the sequential
game. At the same time, beside the decrease in monitoring costs, total
average shame costs do not increase as much as in the simultaneous game,
because less passengers are caught and incur shame costs S.
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5 Conclusion and discussion

In this paper, I discussed a model where multiple agents must comply to
the rules of a principal, who has to costly monitor the agents because they
have an incentive not to comply. I showed that introducing the experience
of shame for caught agents has the potential to increase social welfare, with
the existence of a global maximum for a finite level of shame. Although
this creates a psychological burden on the agents, such psychological costs of
shame decrease the agents’ incentives to cheat. Therefore, monitoring efforts
and costs can be reduced as well, which could result in a higher social welfare.

However, certain conditions may affect the existence of an optimal level
of shame. First, the heterogeneity among the group of agents in tendency
to cheat, in this paper modeled by valuation of money, must not be too
large. A more homogeneous group requires a smaller level of shame to change
behaviour of the same amount of agents. Second, if the administrational- and
monitoring costs are too small, the potential decrease in monitoring costs
does not outweigh the introduced shame costs that caught agents experience.
Third, when relatively many agents are caught unfairly when monitored, for
example due to losing their ticket, a feeling of shame has less impact on
cheating tendency, since compliance still entails a high risk of getting caught.

I considered the model in both a simultaneous game and a sequential
game where the principal commits to a monitoring strategy. In the sequen-
tial game, the principal generally commits to a higher level of monitoring,
resulting in higher welfare than in the simultaneous game. The opposite
may occur in case of a high probability that an agents is caught unfairly
when monitored. Also, because the principal can fully utilise the decrease in
cheating tendency of the agents to prevent cheating, welfare mostly increases
directly when shame is introduced into the model, whereas welfare at first
decreases sharply in the simultaneous game.

Through the existence of an optimal level of shame, this paper demonstrates
the economical importance of norms and values in a society, as these in-
fluence psychological feelings such as shame on the long term. It therefore
shows the important role the government plays in the described situation,
by being able to create and maintain norms and values to its citizens, by for
example religion or education. These do not only make a social and liveable
society, but can also serve an economical purpose when chosen optimally.

However, this paper considers social welfare according to the utilitarian
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approach, weighing the utility of each individual equally. Therefore, it does
not take into account any ethical considerations, as one might for example
believe that a cheating person deserves to be ashamed. Nonetheless, there
are many situations where any average person may be tempted to cheat
when it is very easy to do so or requires additional action to comply, such
as mildly breaking the speed limit, ’forgetting’ to report all of your taxes or
not handing in the hotel’s bathrobe after your stay.

A limitation of this paper is that both the fine and the price are treated as
exogeneous factors in the model. In practice, however, a principal may have
an incentive to adapt these parameters as well. Further research is necessary
to see if considering a model with these parameters as endogeneous still pro-
duces similar results. However, one would have to overcome difficulties with
integrating a demand function for the price parameter and a participation
constraint due to a tendency towards very high fines.

Since the decisions of the agents contain an element of chance, an alterna-
tive to the valuation of money would be to differentiate between passengers
on their risk averseness. First, this can be accomplished by a utility function
with an overall exponent parameter, which is differentiated upon between
agents, similar to vi. Second, it is possible to apply prospect theory instead
of expected utility theory, by multiplying utilities with a function of the prob-
ability of each event. This could be used to let agents assign greater weight
to large losses (being fined), again with a different function for each agent.

When modelling risk in such ways, it is also possible to differentiate on
wealth, in a simpler way than the multiplication factor vi, by adding an
amount mi in the utilities (before the exponent) as money endowment or
income. In the current model without risk exponents, such a parameter
would be cancelled out when comparing utilities as in (4).

Another possibility for further research is to take a step back from the
(infinitely) large amount of agents, as it may lack conformity to proper game
theory. Single agents in the model may act to represent differentiated groups
in society, for example a wealthy agent and a poor agent, or a risk-loving
agent and a risk-averse agent, or combinations of these four together. This
would prevent the problem that a single agent in the model creates outcomes
with all agents either complying or cheating around a monitoring thresh-
old, which would be unrealistic. Instead, as multiple (fixed) proportions of
cheating agents are possible in the equilibria of the game, the model remains
more realistic, while it should still be possible to reproduce the results of the
current paper.
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