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ABSTRACT 
 

In this thesis, the effectiveness of various proposed strategies for the accept/reject decision 

regarding the knapsack problem with items with stochastic returns and capacity 

requirements are analyzed. The knapsack problem is a problem with a list of items with each 

its own return and capacity requirements.  Such kinds of knapsack problems are common in 

air cargo revenue management in the booking process for free-sale cargo. The goal is to 

maximize returns while not exceeding knapsack capacities.  The most common strategy is to 

accept requests whenever their return per capacity unit is at least equal to some threshold 

value.  It is shown that even when setting these threshold values optimally, more complex 

decision strategies exist that perform better. These strategies include making the threshold 

value variable over the booking period, dividing the available capacity over several buckets 

with each its own threshold value and a strategy combining both.  The results show that the 

last strategy combines the benefits of the two individual strategies and significantly 

outperforms them.  However, determining the optimal decision variables for this strategy 

was found to be a very difficult problem in practice. A dynamic programming algorithm for 

the accept/reject decision is also proposed which performs better than the best found 

heuristic solutions in any other strategy in multidimensional cases.  

Keywords: bid-prices, air cargo, revenue management, stochastic knapsack 
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CHAPTER 1  INTRODUCTION 
 

This thesis is related to the field of revenue management in air cargo. The thesis is inspired 

by current challenges faced by the Revenue Management department of Air France-KLM-

Martinair (AF-KL) Cargo, world’s largest non-integrator cargo airline. 

 

Revenue management is the practice of determining what is the lowest acceptable price to 

sell a unit of capacity space for a certain good, in order to maximize total returns. In air 

cargo, the capacity under consideration is cargo space on airplanes in three dimensions: 

weight, volume and pallet positions.  

     Passenger airlines are known to be the birth ground of revenue management. The 

advances made in revenue management in the passenger field can however not be directly 

translated to cargo revenue management. For instance, whereas passengers simply fill up a 

type of seat, such as a seat of economy class or business class, cargo is a more complex 

matter where one type of cargo fills capacity in three dimensions, of which weight and 

volume are continuous. Each cargo to be transported has its own specifications of these 

dimensions, thus cargo revenue management models have to be much more intricate to be 

able to deal with the much larger diversity of possible cargo specifications. However, due to 

the increased complexity, one might also expect that revenue management practices might 

have even larger merit in the cargo context than it has had in the passenger context.  

    Various problems in the field have been formulated in the literature, including 

overbooking, the balance between long-term contracts and spot deals and different routing 

options between locations (for an overview, see Kasilingam, 1996). The central problem in 

cargo revenue management is the booking problem, which is the problem of deciding 

whether to accept or reject a current request with certain known returns and capacity 

requirements, given a certain capacity on a route and given unknown future further demand 

on that route. Booking requests come in one by one, and, in the pure problem, it is assumed 

that it is not possible to cancel requests that have been acepted earlier in time.  In scientific 

literature, this is a multidimensional knapsack problem with stochastic demand. 

     The central research question in this thesis is whether the current implemented strategies 

common in air cargo revenue management can be improved by using more advanced 

strategies and how large the improvement would be.  The strategies analyzed can easily be 

applied in settings other than air cargo as well.  

     For an overview of early implementations of revenue management at KLM Cargo, pre Air 
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France-merger.see Slager and Kapteijns (2003). Particularly, it should be noted that AF-KL 

has already implemented cargo revenue management procedures, namely static bid-price 

models with changing bid-prices troughout the booking period due to recourse taking into 

account remaining capacities, that significantly improve expected revenues over all accepted 

bookings, compared to a first-come-first-served (FCFS) strategy. The strength of the 

implemented strategy is that it is quite parsimonous, however, because of its relative 

simplicity it is likely that other strategies will perform better. Evaluating the benefit of more 

complex strategies is the central topic of this thesis.  

      

In Chapter 2 the problem and research question that are central to this thesis will be 

described. In Chapter 3, a literature review will be conducted regarding other papers that 

have been written on the subject. Also, it will be discussed what is novel in this research 

compared to earlier research on the subject. In Chapter 4, various possible bid-price 

strategies are discussed in words and in Chapter 5 the mathematical models are formalized 

with regards to the decision problem of determining the optimal decision variables in these 

bid-price strategies.  In Chapter 6 a dynamic programming algorithm will be described that 

serves as an alternative strategy to bid-price strategies for the booking problem. In Chapter 

7 the real-life data to be used in an investigation into the performance of the various 

strategies for the booking problem will be described in detail. In Chapters 8 and 9 the 

performance of the bid-price strategies will be discussed. In Chapter 8 the analysis is based 

on small instances that could be solved to close-to optimality. In Chapter 9 the analysis is 

based on very large instances that could not be solved to optimality and decision variables 

were chosen based on heuristics. The first analysis is more relevant for determining the 

improvement potential moving from certain strategies to others, while the second analysis is 

more relevant for practice: namely how much of this improvement potential is likely to be 

fulfilled in practice. In Chapter 10 the dynamic programming  algorithm’s performance 

compared to the optimized bid-price strategies on small instances will be analyzed. In 

Chapter 11 the dynamic programming algorith’s performance on large instances compared 

to the bid-price strategies in combination with heuristics will be analyzed.  

Readers who are not comfortable in the area of Operations Research may skim Chapter 3 

and skip Chapters 5 and 6 without loss of clarity of argument.  
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CHAPTER 2  PROBLEM DEFINITION AND RESEARCH QUESTION  

The business context of this thesis is cargo airlines. Cargo airlines transport cargo from point 

A to point B. Their direct customers are called forwarders, which are specialized logistic 

organizations acting as middle-man in the relationship between end-customers, for instance 

shops or producers, and airlines.  A combination of a specification of cargo and an itinerary, 

which is the exact travel route from point A to B including transshipment points and modes 

of transport, is called a shipment. It should be noted that not all segments in an itinerary 

have to be flights; in fact, almost all intra-European cargo travel by AF-KL is transported by 

trucks. Also, not all flights have to be executed by the shipping airline, some are operated by 

another airline, in which the shipping airline pays this operating airline an interline fee.    

Current tendering procedure: 

Central to the problem definition of this thesis is the current procedure of accepting offers 

made by forwarders, the customers of cargo airlines, for a shipment.  The main criterion on 

which the acceptation decision is based, is shipment contribution (SCb) per kg or m3 for that 

shipment, which is a cargo airline’s specification of contribution margin. Contribution margin 

equals revenue per unit minus variable costs per unit, where a unit is defined as a kilogram 

in weight or a cube in volume of cargo. An airplane’s cargo capacity is bounded by weight as 

well as volume, so the appropriate unit to use depends on which of these two is the stricter 

constraining factor. As mentioned before, an airplane’s cargo capacity is also bounded by it’s 

amount of pallets positions available, but this is not often constraining. In AF-KL’s 

experience, in the great majority of all flights, volume is the stricter constraining factor, in 

which case SCb per m3 is the appropriate metric to use. The exact buildup of total SCb per 

shipment is as follows:  

 

  

In this equation, revenue consists of the base-rate per chargeable kg multiplied by 

chargeable weight in kg. The distinction between actual weight and chargeable weight is 

Equation 1 
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discussed later in this section.  Surcharges consist of a fuel surcharge and a security 

surcharge per actual kilogram of weight.  Variable costs consist of handling costs at the 

stations, segment costs consist of actual fuel costs for the flight and costs of trucking if 

applicable. 

Fixed costs are deliberately not a part of the shipment contribution’s definition. The great 

majority of cargo is transported on flights that also carry passengers. Thus, the decision to fly 

these flights has already been made and fixed costs are thus regarded as sunk costs. In the 

remainder of this thesis, flights will be considered to be shared passenger-cargo flights. 

Dividing SCb by the total volume in m3 or weight in kg of a shipment yields SCb per m3 or SCb 

per kg for this shipment. Obviously, the larger SCb per unit is, the more attractive a certain 

quote from a forwarder is for an airline, holding other variables constant.  Airlines typically 

set a threshold value for SCb per unit for a shipment, called an Entry Condition (EC) in AF-KL, 

or in the broader academic literature, a bid-price. If the SCb per unit for a request on a 

shipment is at least equal to the EC for that shipment, that request is in principle accepted 

and otherwise it is in principle rejected.   Price deducted by EC is dubbed “additional SCb”.  

     When capacity exceeds forecasted demand, the EC is usually set at a level that revenues 

are able to cover variable costs plus a safety margin, dubbed ‘rock-bottom’ EC by AF-KL. For 

higher demand-flights, the EC is set at a higher level, such that the customers with the 

lowest willingness to pay can be rejected, yet the flight will still be full enough. 

       It is possible and usual to create multiple entry conditions for a flight, inducing price 

differentiation. For instance, half of the flight capacity might have an entry condition A, and 

the other half might have an entry condition B. This strategy is yet to be fully implemented 

by AF-KL and investigating the benefits of such a strategy compared to the regular strategy is 

one of the research topics in this thesis.  

 

Considerations regarding volume and weight:  

As noted before, the primary constraint in an airplane’s cargo capacity is its volume, but 

basic cargo rates are based on weight. This would mean, without further sophistication, that 

dense goods, meaning goods with a large weight to volume ratio, would be priced the same 

as low density goods with the same weight, while in most cases, namely when the flight 

involved is volume-constrained, the first case would be preferable for the airline.  For this 

reason, the concept of chargeable weight is introduced by IATA, the international aviation 

regulatory association. The industry standard density of goods is defined as one ton (1000 

kg) per 6 m3. Any goods having lower density than this standard are defined as being low 
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density goods, the remaining goods are defined as high density goods. For high density 

goods, chargeable weight is defined as being equal to actual weight. For low density goods, 

chargeable weight in tons = actual volume in m3/6, note that under the industry standard, a 

1 m3 piece would weigh 1/6th of a ton. This practically means that the normally relatively 

unattractive low density goods, compared to high density goods or the industry standard, 

have their effective rates increased. They are now priced as if their density was one ton per 

6 m3. However, high density goods do not get a similar discount. Note that the effect of this 

is that the high density goods still have relatively attractive rates, from the airline’s side, 

given that a shipment is volume-constrained rather than weight-constrained.   

In the remainder of this thesis, weight will refer to actual weight unless stated otherwise, 

and SCb’s related to the respective requests will be adjusted in the way their density 

requires.  

There is also a definitional distinction to be made regarding volume. Volume can be defined 

in two ways: actual physical volume or ‘water volume’ and operational volume. Goods have 

a certain physical volume, but might also have restrictions regarding safe transportation. For 

instance, on some goods, other goods may not be stacked. The volume that could otherwise 

be used but because of this kind of restriction cannot be utilized is added to the physical 

volume to make up operational volume. Operational volume is always larger than or equal 

to physical volume. Unless stated otherwise, volume will be assumed to refer to operational 

volume, because this is the volume that is by far most important in practice, for instance, 

when considering volume capacity on a flight, it is total operational volume that has to 

smaller than the volume capacity of the airplane.  

A flight that is (very close to) full on one of the capacities is called a constrained flight.  

Research question: 

 

The central research question in this thesis is the following: 

 

How well does a strategy of using a single EC or bid-price perform in the booking problem 

compared to the a posteriori optimum, in terms of expected cumulative returns obtained?  Is 

it possible to increase expected cumulative returns by implementing more advanced 

strategies for the booking problem?  

 

See Appendix B for an overview of all terms introduced in this chapter. 
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In this chapter, the business context surrounding the booking problem in air cargo has been 

described. Also, the research question was introduced. In the next chapter, a literature 

review will be discussed in which various results related to methods for the booking problem 

in air cargo are investigated.    
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CHAPTER 3  LITERATURE REVIEW  
 

In the previous chapter, the problem definition and research question have been 

formulated. It has been discussed that the central problem in this thesis is the booking 

problem in air cargo. In this chapter, a literature review will be conducted regarding 

academic studies focusing on the same problem.  

Disregarding any aspects related to the upfront unknown, stochastic demand occurrences, 

the booking problem can be seen as a multidimensional knapsack problem. A 

multidimensional knapsack problem is one in which certain items are to be selected, while 

the knapsack has maximum capacities in various dimensions (Frieze & Clarke, 1984). Each 

item has a certain utility value and the goal is to maximize the sum of utility values of the 

items that are selected, such that the capacities of the knapsack are not exceeded. In the 

cargo case, the capacity dimensions include weight, volume and available pallet positions, 

although the last is in practice very unrestrictive and is often disregarded from models (Pak 

& Dekker, 2004). The knapsack problem is an NP-hard problem and for large instances, it 

might take an extremely large time to solve the problem to optimality.   

Polynomial approximation algorithms exist that asymptotically approach optimality when 

the number of items in the problem grow to infinity (cf. Rinnooy Kan et al., 1993). However, 

this still leaves the problem of stochastic demand occurences unanswered. This problem is 

partially solved by Papavastrou et. al. (1996) who developed a dynamic programming 

approach that solves the accept/reject decision for potential knapsack items, where all 

knapsack items arrive in different points of time, each has a stochastic weight and utility and 

rejected knapsack items cannot be recalled at a later point in time. Thus, instead of 

maximizing returns as in the deterministic problem, their approach maximizes expected 

utility or returns, as is the goal in this thesis as well. However,  they only consider the one-

dimensional knapsack problem and their results are dependent on some assumed 

distributions for capacity requirements and utility, namely, that the conditional probability 

density functions for the capacity requirements  given returns are concave. Thus, their 

method is not general and this requirement may not be met in real life.   

 

 Another related problem is determining the optimal overbooking level. Kasilingam (1996) 

developed an integral equation that can be solved for the optimal overbooking level given 

the density functions for the show-up rate and cargo capacities, the last of which are 

stochastic on combined passenger-cargo flights due to the fact that passenger luggage has a 
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higher boarding priority than business cargo,  and given deterministic offloading costs. 

Depending on the complexity of the density functions used, the equations can either be 

solved to optimality analytically or be optimized using numerical methods.  

Various practical approaches to optimizing the solution to booking problems have been 

developed in the academic literature. Various papers have used a bid-price approach, in 

which the profit rate of accepting a certain cargo offer is known, but the optimal threshold 

level of the bid-price is to be determined, i.e. it is not obvious what the lowest bid is that the 

airline should accept for this cargo. By using a bid-price approach, it is prevented that early 

cargo with a relatively low return is filling up space that could be filled up by later cargo with 

relatively higher returns.  Thus the threshold bid-price per kg or m3 is set to the levels that 

optimize expected total returns, while cargo return rates, future demand distributions and 

their volume and weight distributions are considered to be known.  This corresponds to our 

situation of the SCb for a request being known but the threshold price for accepting the 

request is not.  The threshold bid-price can also be interpreted as the value for which a unit 

of capacity can be expected to be sold in the future at a certain point of time (Pak & Dekker, 

2004).  

 

The first paper addressing the booking problem in air cargo is by Pak and Dekker (2004). In 

their model, a bid is accepted if the profit rate associated with the bid is higher than the 

opportunity cost rate associated with the offer, i.e. the expected future revenue lost by 

accepting the bid, because less weight and volume will be available. Obviously, in order for 

this condition to work, some kind of expected revenue function that can evaluate the 

opportunity costs involved with accepting the bid needs to be specified. Given this revenue 

function and given that all demand occurrences, including their returns and capacity 

requirements, are known in forehand, Pak and Dekker have developed both a MIP-model 

and a greedy algorithm that optimize the bid-prices, but the assumption of clairvoyance is 

obviously a bit utopian. Their more general approach is to use simulation to generate the 

future demand occurrences. Over each simulation run and demand instance, optimal bid-

prices per weight and volume rate are determined, using a polynomial time greedy heuristic 

for solving multi-dimensional knapsack problems, described in Rinnooy Kan et al. (1993).  By 

averaging over all demand instances, the bid-prices that optimize average profit over all 

instances can be determined.  

 

Pak and Dekker study the performance of their algorithm and conclude that it leads to 
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almost 10 percent profit increases compared to the most obvious and simplest solution of 

using the shadow prices for the weight and volume constraints obtained from the LP-

relaxation of the MIP. Interestingly though, they also conclude that the use of the greedy 

algorithm described earlier, combined with simulated demand occurrences, lead to even 

slightly better results, but that the use of it was still too computation intensive to be used in 

online decision making at the time.  

Han et al. (2010) model practically the same problem using a Markov chain.  The states of 

the model keep track of the cumulative weight and volume booked at a certain moment. 

Cargo offers are accepted if the profit rate is higher than the threshold bid-price per kg 

multiplied by chargeable weight. Using a returns function that links the expected number of 

times various states are visited with the expected revenue resulting from visiting these 

states, they developed a closed-form expression for total expected revenue as a function of 

the threshold bid-prices. The optimal bid-prices can then be determined using some 

unconstrained optimization method, as the revenue surface is unimodal. Their simulation 

efforts show that their method results in higher overall revenue than Pak and Dekker’s 

approach in most situations, although the magnitude of the difference is very dependent on 

the parameterization.  

Huang and Hsu (2005) focus specifically on the risks associated with overbooking and 

stochastic cargo capacities: namely the fact that cargo may need to be offloaded when the 

real capacity is smaller than the booked cargo. They developed a dynamic programming 

algorithm that optimizes overall revenue given profit rates and demand probabilities in each 

period by optimizing the accept/reject decision per booking request. In an empirical study 

they also come to an interesting conclusion regarding no-show penalties: total expected 

revenue is much more sensitive to supply uncertainty than to no-show penalties, and they 

conclude that airlines might increase their expected revenue by increasing penalties, 

although they did not investigate the effect of this policy on the airline’s attractiveness to 

customers. Their approach might be considered to be too computationally demanding to use 

in a continuous online accept/reject decision cycle.   

 

Amaruchkul et. al. (2007) also use a dynamic programming approach policy for optimizing 

the accept/reject decision for booking offers. An advantage of their approach is that they 

consider actual volume and weight of cargo, i.e. the volume and weight of the cargo that are 

actually delivered by the customers to the airline, to be different from requested volume 

and weight, a distinction that is important in practice but is not modeled in the models 
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described before. Interestingly, they come up with a decision heuristic using bounds on 

some statistic relationships that dramatically reduces the computational requirements 

associated with deriving the optimal policy.   

As can be understood from the above overview, even if an appropriate model exists for the 

deterministic booking problem, the issue of stochastic demand still needs to be addressed. 

Various difficulties are in place here that are unique to the cargo segment and have been 

discussed in the literature, including the fact that the booking period for free sales is quite 

short, it opens 14 days before booking. Another difficulty is the fact that the number of 

bookings is most of the times very small, but with very volatile weight and volume 

requirements (Kasilingam, 1996). Another, more practical, difficulty is due to the fact that 

residual demand prediction requires information on all booking requests made, including 

those booking requests that are rejected (Moussawi and Çakanyildirim, 2005). However, in 

general rejected booking requests are not kept track of in most airline’s databases.  This is 

currently also true in the case of AF-KL.  
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The following table summarizes the various papers that have been discussed on methods for 

improving performances of strategies for the air cargo booking problem:  

 

Table 1: Overview of methods 

Authors (year) Method used Decision variables 

Papavastrou et. al. (1996) Dynamic programming, 

deadlined knapsack problem 

with stochastic weights and 

returns 

Accepting/rejecting incoming 

items 

Pak and Dekker (2004) Simulation, bid-price policy Bid-prices for weight and 

volume, knowing which fixes 

the accept/reject decision 

Rinnooy Kan et al. (1993 Greedy algorithm, 

multidimensional knapsack 

problem 

Accepting/rejecting incoming 

items 

Han et al. (2010) Markov chain analysis, bid-

price policy 

Bid-prices for weight and 

volume 

Huang and Hsu (2005) Dynamic programming, 

overbooking 

Accept/reject decision, no-

show penalty, overbooking 

rate 

Amaruchkul et. al. (2007) Heuristics based on dynamic 

programming 

Accept/reject decision 

 
 

In this chapter a literature review has been conducted regarding methods that have been 

developed for the booking problem in air cargo. As can be seen, there has been quite some 

research done into determining optimal bid-prices. However, what is missing is an analysis in 

the exact merits of a bid-price based strategy for the booking problem with stochastic 

entries. Assume it is possible to determine bid-prices optimally, then there is still the 

question of whether the strategy of accepting a request whenever its return per volume unit 



17 
 

is at least equal to the bid-price is an optimal strategy. In the next chapter, the various 

strategies that will be tested in an empirical study will be described.   
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CHAPTER 4  BID-PRICE STRATEGIES  

 
As found in the business context section, a bid-price policy for individual flights has already 

been implemented in the air cargo industry. The academic literature is focused on 

determining the optimal values of these bid-prices. However, there is little discussion on 

how optimal a static bid-price strategy is. This thesis will focus on determining how well 

other strategies than a static bid-price strategy perform, both in how large the gap in 

expected returns is to the optimal a posteriori knapsack solution and in ease of determining  

well-performing decision variables in practice.  

 

Various strategies exist or have been proposed in AF-KL for the accept/reject decision. These 

strategies will first be discussed briefly. In later chapters of this paper, their respective 

effectivities will be analyzed based on real-life data.  

Strategy 1a: 

 

This strategy uses a single entry condition (EC) based on volume, that is independent of 

time. I.e. the entry condition remains constant throughout the booking period. A booking 

request is accepted if its ratio 
𝑆𝐶𝑏

𝑣𝑜𝑙𝑢𝑚𝑒
 is larger than or equal to the EC. It is clear that there 

exists an optimal EC within this strategy, however, this does not mean that there do not exist 

other strategies that perform better. This strategy is expected to work reasonably well for 

volume-constrained flights, but it only takes request differentiation into account very 

roughly. It is expected to work well for very ‘smooth’ booking requests’ SCb/m3 distributions 

or when the various distributions of booking requests are independent of time, i.e. the 

profile of incoming requests is about the same at the start of the booking period as it is at 

any other moment in the booking period.  

Strategy 1b: 

 

This strategy uses a time-dependent EC based on volume. That is, the EC is allowed to be 

changed after every booking request, or after an interval of any other number of requests. A 

booking request is accepted if its ratio 
𝑆𝐶𝑏

𝑣𝑜𝑙𝑢𝑚𝑒
 is larger than or equal to the specific EC 

applicable at that period. As in strategy 1a, the goal is to find the set of EC’s that maximizes 

expected cumulative SCb. This strategy is expected to work much better than strategy 1a in 
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cases where the booking requests’ distributions of returns and/or capacity requirements 

differ significantly over time.  

Strategy 2a: 

Dividing the volume capacity of an airplane into various (B) buckets, and setting time-

independent EC’s on each of these buckets. A booking request will be filling the capacity of 

the highest bucket such that the booking request’s ratio 
𝑆𝐶𝑏

𝑣𝑜𝑙𝑢𝑚𝑒
  is still at least equal to that 

bucket’s EC and such that there is still capacity left in that bucket. Eventual residual volume 

left after using this rule will be filling capacity respecting the same rule with updated 

remaining bucket capacities.  A booking request is still rejected if its volume is larger than 

the sum of remaining volumes over all buckets for which that bucket’s EC is smaller or equal 

to that request’s 
𝑆𝐶𝑏

𝑣𝑜𝑙𝑢𝑚𝑒
, i.e. it is not possible to accept partial requests.   

For example: consider a flight with 900 volume, divided in three buckets of 300 each. The 

EC’s are set as follows: 400, 500 and 600. Consider the first incoming request having 350 

volume and 550 SCb/m3.  It will not fill the third bucket as its SCb per m3 is not high enough. 

It will fill the second bucket entirely. The 50 residual volume will be filling the first bucket, 

which now has 250 volume remaining. Consider the second incoming request also having 

550 SCb/m3 and 350 volume. It will not be accepted because the third bucket has too high 

EC for this request and the first and second buckets only have a sum of 250 remaining 

volume. This strategy is expected to perform well in the cases of well differentiated booking 

requests, e.g. there are several peaks in the distribution of SCb/m3 per booking request.   

 

Strategy 2b: 

In this strategy, we combine strategies 1b and 2a, namely we incorporate buckets with ECs 

that are time-dependent. The conceptualized increases in expected cumulative SCb of this 

strategy vis-à-vis strategy 1a are equal to the sum of the increases of strategies 1b and 2a, 

although the total benefit will probably be smaller than the sum of the two individual 

increases, due to the fact that the benefits of the individual strategies probably have some 

overlap.  

Note that in the thesis, in general, for all strategies an EC based on volume will always be 

used, even if in some cases the capacities and demand are set such that the flight is likely to 

be weight-constrained.  Besides parsimony, another reason for this is that if more 

sophisticated strategies can close the optimality gap with the a posteriori optimal knapsack 
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solution sufficiently, then the whole process of deciding dual bid-prices, one for volume and 

one for weight, can be neglected.  

In some sections, the effect of having dual bid-prices compared to a single bid-price will be 

analyzed. Whenever one of the strategies is executed with dual bid-prices, this will be 

explicitly mentioned.  

Framework of strategies: 

 

Strategies 1a to 2b can be summarized  in the following framework.  

 
 

 

 

 

 

Strategy 1a: Static EC 

 

Strategy 1b: Time-dependent EC 

 

 

Strategy 2a: Buckets with static EC’s 

 

 

Strategy 2b: Buckets with time-dependent 

EC’s 

 

Figure 1: Strategies to be analyzed 

 

In this chapter, various bid-price strategies for determining which items to reject and which 

to accept in the booking problem in air cargo have been discussed. In the next chapter, these 

strategies will be formalized in mathematical models. 
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Incorporating time-element in EC-setting 
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CHAPTER 5  MATHEMATICAL APPROACH ES FOR BID-
PRICE STRATEGIES  

 

In this chapter, mathematical approaches for determining the optimal decision variables in 

bid-price strategies will be formalized.  Note that the strategies discussed here assume a 

two-dimensional problem in weight and volume, although it is conceptually not difficult to 

extend the models to include more dimensions.  

Strategy 1a: 

Strategy 1a is a problem in one variable, namely the static Entry Condition. This means it is 

not difficult to find the optimal Entry Condition enumerating over all values of SCb/m3 for a 

certain list of request. When EC’s have to be acquired that are robust over varying demand 

instances, we should repeat this procedure a large number of times using simulation, by 

generating demand instances from appropriate distributions.  

This simulation should have as input the distribution of incoming requests, the volume and 

weight capacity of a flight, the number of requests to be generated and the entry condition 

used. The simulation then generates  for each run the desired number of requests from 

appropriate distributions, namely the distributions of a request’s volume, weight and SCb 

and shows whether each request is accepted or rejected, the remaining weight and volume 

after each request and the cumulative SCb at each time period. 

The main use of this simulation is to calculate the average cumulative SCb over a number of 

simulation runs for a certain request distribution and a certain EC-setting.  

An incoming request is accepted when both of the following conditions are met and rejected 

otherwise: 

1) The request’s SCb/volume unit is at least equal to the EC at that period. 

2) The request’s volume requirement, respectively weight requirement are smaller or equal 

to the remaining volume, respectively remaining weight at that period. 

 

The simulation is not complex and has fast running times, namely approximately 0.3 seconds 

for 100 requests and 100 simulation runs1. This implies that in the case of strategy 1a it can 

also easily be used to determine an approximate optimal EC by iterating over all reasonable 

                                                                 

1 When solving times are mentioned, the used hardware is an HP EliteBook 2530p 

with Intel Core 2 Duo CPU (2 cores), 4GB RAM, Windows 7 64-bit. AIMMS 3.13 SU1 

was used for modeling MIPs and unless specified otherwise,  the commercial solver 

GUROBI 5.5 was used for solving the MIPs. 
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ECs, by starting with an EC of 0 and increasing the EC to be tested by a certain increment 

after each iteration, until some kind of stopping criterion is reached and a posteriori taking 

the EC with the highest average cumulative SCb. For instance, the safe stopping criterion 

choice is when the EC to be tested is larger than the maximal value of SCb/volume unit in the 

distribution. 

MIP strategy 1b: 

The mathematical program for determining the a posteriori optimal EC under strategy 1b  

for a certain list of booking requests is as follows. Note: in this MIP and all following MIPs, 

round down found EC’s to the next significant digit. The objective value of the MIP is correct 

but the MIP might set the EC’s slightly too high (only in the last digit).  

 

 

Index: 

t: for period. Each period a booking request comes in 

Variables: 

𝑦𝑡
1: binary indicator variable, equal to 1 if EC smaller than or equal to SCb/m3, 0 otherwise 

 𝑦𝑡
2: binary indicator variable, equal to 1 if the request at time t still fits weight-wise, 0 otherwise 

𝑦𝑡
3: binary indicator variable, equal to 1 if the request at time t still fits volume-wise, 0 otherwise 

𝑥𝑡: binary decision variable, equal to 1 if the request at time t should be accepted, 0 otherwise 

ECt: entry condition for period t 

 

Parameters: 

𝑠𝑡: total SCb of the request in period t 

𝑤𝑡:  weight of the request in period t 

𝑣𝑡:  volume of the request in period t  

𝑞𝑡 = 
𝑠𝑡

𝑣𝑡
  : SCb/volume unit in period t 

𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦:  weight capacity of the flight 

𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦:  volume capacity of the flight 

𝜀: smallest positive number possible 
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The objective function maximizes the sum of SCb’s over all accepted requests. Constraints 11 

to 13 guarantee that a request is accepted when all three conditions are satisfied and a 

request is rejected when less than three of the conditions are satisfied. Constraints 2 to 4 set 

the binary variable related to the first condition for a request to 1 whenever the EC is smaller 

or equal to the request’s SCb/m3, 0 otherwise. Constraints 5 to 7 set the binary variable 

related to the second condition for a request to 0 whenever the request does not fit weight-

wise, 1 otherwise. Constraints 8 to 10 are equivalent constraints for the volume dimension.  

Note that this model optimizes the entry conditions purely based on one scenario, i.e. a list 

of T request. To determine the entry condition that is robust over various scenarios the 

above model should and can easily be extended in a stochastic programming manner. All 

variables and parameters, except EC and the weight and volume capacities which are 

assumed to be constant over all scenarios, should simply be augmented with a subscript sc 

max∑𝑥𝑡𝑠𝑡

𝑇

𝑡=1

       𝑠. 𝑡 .        [1]

𝑦
𝑡
1 ≥  

1

max(𝑞
𝑡
) + 1

(𝑞
𝑡
− 𝐸𝐶𝑡) + 𝜀   𝑓𝑜𝑟 𝑡 = 1, … , 𝑇     [2]

𝐸𝐶𝑡 − 𝑞𝑡 ≤ max (𝑞
𝑡
)(1 − 𝑦

𝑡
1)   𝑓𝑜𝑟 𝑡 = 1, … , 𝑇  [3]

𝑦
𝑡
1 ∈ {0,1} 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇   [4]

𝑤𝑡 − (𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑ 𝑥𝑗𝑤𝑗)

𝑡−1

𝑗=1

≤ max (𝑤𝑡)(1 − 𝑦𝑡
2) 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇  [5]

𝑦
𝑡
2 ∈ {0,1} 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇  [6]

𝑦
𝑡
2 ≥

1

𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 1
((𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑ 𝑥𝑗𝑤𝑗)

𝑡−1

𝑗=1

− 𝑤𝑡) + 𝜀 [7]

𝑣𝑡 − (𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑ 𝑥𝑗𝑣𝑗)

𝑡−1

𝑗=1

≤ max (𝑣𝑡)(1 − 𝑦𝑡
3) 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇  [8]

𝑦
𝑡
3 ∈ {0,1} 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇 [9]

𝑦
𝑡
3 ≥

1

𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 1
((𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑ 𝑥𝑗𝑣𝑗)

𝑡−1

𝑗=1

− 𝑣𝑡) + 𝜀 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇 [10]

𝑥𝑡 ≥ 𝑦
𝑡
1 + 𝑦

𝑡
2 + 𝑦

𝑡
3 − 2  𝑓𝑜𝑟 𝑡 = 1, … , 𝑇  [11]

𝑥𝑡 ≤  
1

3
(𝑦

𝑡
1 + 𝑦

𝑡
2 + 𝑦

𝑡
3)   𝑓𝑜𝑟 𝑡 = 1, … , 𝑇  [12]

𝑥𝑡 ∈ {0,1}   𝑓𝑜𝑟 𝑡 = 1, … , 𝑇  [13]

𝐸𝐶𝑡 ≥ 0 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇 [14]

 

 

 

  MP 1: MIP for strategy 1b, one scenario 
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for scenario.  As for the objective function, the average sum of all SCb’s over all accepted 

requests over all scenarios should be taken. This results in the following model. Here, 𝑝𝑛𝑠𝑐 

equals the normalized probability of scenario sc, 𝑝𝑛𝑠𝑐 = 
𝑝𝑠𝑐

∑ 𝑝𝑠𝑐
𝑁
𝑠𝑐=1

, where 𝑝𝑠𝑐is the marginal 

probability of scenario sc.  

Note: the sum of marginal probabilities of the used scenarios is usually smaller than 1 due to 

the fact that there are more scenarios possible than the ones consider. In fact these 

marginal probabilities might even be smaller than the machine epsilon, an upper bound on 

the relative error due to rounding in floating point arithmetic, and thus may not be able to 

be determined accurately using conventional methods. In the succeeding analyses in this 

thesis, 𝑝𝑛𝑠𝑐 is set to uniform probability 1/N for all sc.   

 

 

 

 

  

max ∑ ∑𝑝𝑛𝑠𝑐𝑥𝑡,𝑠𝑐𝑠𝑡,𝑠𝑐

𝑇

𝑡=1

𝑁

𝑠𝑐=1

       𝑠. 𝑡 .        [1]

𝑦
𝑡,𝑠𝑐
1 ≥  

1

max(𝑞
𝑡,𝑠𝑐
) + 1

(𝑞
𝑡,𝑠𝑐
− 𝐸𝐶𝑡) + 𝜀    𝑓𝑜𝑟 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁     [2]

𝐸𝐶𝑡 − 𝑞𝑡,𝑠𝑐 ≤ max(𝑞
𝑡,𝑠𝑐
) (1 − 𝑦

𝑡,𝑠𝑐
1 )   𝑓𝑜𝑟 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁  [3]

𝑦
𝑡,𝑠𝑐
1 ∈ {0,1} 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁   [4]

𝑤𝑡,𝑠𝑐 − (𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑ 𝑥𝑗𝑤𝑗)

𝑡−1

𝑗=1

≤ max(𝑤𝑡,𝑠𝑐) (1 − 𝑦𝑡,𝑠𝑐
2 ) 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁  [5]

𝑦
𝑡,𝑠𝑐
2 ∈ {0,1} 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁  [6]

𝑦
𝑡,𝑠𝑐
2 ≥

1

𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 1
((𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑ 𝑥𝑗𝑤𝑗)

𝑡−1

𝑗=1

− 𝑤𝑡,𝑠𝑐) + 𝜀  𝑓𝑜𝑟 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁 [7]

𝑣𝑡,𝑠𝑐 − (𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑ 𝑥𝑗𝑣𝑗)

𝑡−1

𝑗=1

≤ max (𝑣𝑡,𝑠𝑐)(1 − 𝑦𝑡,𝑠𝑐
3 ) 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁  [8]

𝑦
𝑡,𝑠𝑐
3 ∈ {0,1} 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁 [9]

𝑦
𝑡,𝑠𝑐
3 ≥

1

𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 1
((𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑ 𝑥𝑗𝑣𝑗)

𝑡−1

𝑗=1

− 𝑣𝑡,𝑠𝑐) + 𝜀  𝑓𝑜𝑟 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁 [10]

𝑥𝑡,𝑠𝑐 ≥ 𝑦
𝑡,𝑠𝑐
1 + 𝑦

𝑡,𝑠𝑐
2 + 𝑦

𝑡,𝑠𝑐
3 − 2  𝑓𝑜𝑟 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁  [11]

𝑥𝑡,𝑠𝑐 ≤  
1

3
(𝑦

𝑡,𝑠𝑐
1 + 𝑦

𝑡,𝑠𝑐
2 + 𝑦

𝑡,𝑠𝑐
3 )   𝑓𝑜𝑟 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁  [12]

𝑥𝑡,𝑠𝑐 ∈ {0,1}   𝑓𝑜𝑟 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁  [13]

𝐸𝐶𝑡 ≥ 0  𝑓𝑜𝑟 𝑡 = 1, … , 𝑇 [14]

 

 

 

  

MP 2: MIP for strategy 1b, multiple scenarios 
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The optimal solution for strategy 1b can never be worse off than the optimal solution for 

strategy 1a, as the EC’s for each period could simply set to the optimal EC under strategy 1a, 

i.e. every period has the same EC.  

Note that when using a single scenario, the optimal objective value will be equal to the 

solution of the equivalent multidimensional knapsack model. The knapsack solution can 

namely be translated to this MIP’s solution by setting EC to infinity for items that should not 

be accepted and to zero for items that should be accepted. 

When using multiple scenarios, this translation is not possible as the EC’s for each t are valid 

over all scenarios.  

Finally, note that the EC for strategy 1a can also easily be obtained using MP 2, by omitting 

the subscript t in EC, even though it is much more resource efficient to obtain a static EC by 

enumeration or simulation. 

Considerations regarding solution’s robustness over varying demand instances: 

 

This MIP-formulation is quite complex and takes a rather long time to solve using 

commercial solvers for large T and N. For instance, using T=100 and N=15, it already takes 

about 10 minutes to solve this model with a 0.28% optimality gap using GUROBI 5.5. This 

results in EC’s that are close to optimal for the 15 scenarios used. This is not likely to be a 

very robust solution as for each time period we only have considered a maximum of 15 

distinct requests.  Thus, the EC’s are close to optimal for the considered scenarios but might 

perform quite bad for scenarios out of scope of the optimization. A suggested solution that 

is theoretically less well performing in the case of usage with a large number of scenarios but 

is likely to be much more robust in the case of a small number of scenarios considered is to 

divide T in m distinct sub-periods. Then, only the optimal EC’s for the m sub-periods are 

determined. Thus, instead of T different EC’s, m < T EC’s are determined. For period t, ECr is 

used whenever 𝑡 ≤ 𝑟 ≤ 𝑇.  

 

This approach has two concurrent and independent advantages: 

1) Keeping available computation resources and time equal, more scenarios can be 

considered in the optimization, as the number of decision variables and constraints in the 

optimization is reduced.  

2) Keeping the amount of scenarios equal, more requests are considered in determining 

each EC. For instance: using N=15 and m =1, 1 ∗ 15 = 15 requests are considered for 
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determining each EC. Using N=15 and m =5, 5 ∗ 15 = 75 requests are considered for 

determining each EC. Thus, the resulting EC’s are likely to be much more robust for scenarios 

not considered in the optimization.  

MIP strategy 2b: 

The MIP for determining optimal bucket sizes and ECs is the following:  

  

Index: 

t: for period. Each period a booking request comes in 

sc: for scenario 

i: for bucket 

Variables: 

𝐸𝐶𝑖𝑡: entry condition for bucket i, period t  

𝑟𝑎𝑡,𝑠𝑐
𝑖 : volume accepted in bucket i, period t, scenario sc  

𝑦𝑡,𝑠𝑐
1 : binary variable, equal to 1 if there is still enough weight remaining for the request 

at time period t, in scenario sc, 0 otherwise  

𝑐𝑎𝑡,𝑠𝑐
𝑖 :  equal to remaining volume in bucket i, if 𝑞𝑡,𝑠𝑐 ≥ EC, 0 otherwise, in period t, 

scenario sc 

𝑦𝑡,𝑠𝑐
2 :  binary variable, equal to 1 if the sum of remaining volumes in the buckets for 

which the SCb/volume unit is higher or equal to EC, in period t, scenario sc, 0 otherwise 

𝑦𝑡,𝑠𝑐
3𝑖 : binary variable, equal to 1 if the entry condition for bucket i is smaller than or 

equal to the SCb/volume for period t, scenario sc  

𝑥𝑡,𝑠𝑐
𝑖 : binary variable,  equal to 1 if a certain positive amount of volume is accepted in 

bucket i, 0 otherwise, period t, scenario sc  

𝐴𝑡,𝑠𝑐
𝑖 : auxiliary variable, equal to min(𝑣𝑡,𝑠𝑐, 𝑟𝑣𝑡−1,𝑠𝑐

𝑖 ) 

𝑐𝑛𝑖: bucket proportion (larger or equal to 0, smaller or equal to 1, sum up to 1 over all 

buckets) 

𝑥𝑡,𝑠𝑐: binary variable, equal to 1 if the request in period t should be accepted, 0 

otherwise 

𝑧𝑡,𝑠𝑐
𝑖 is a binary auxiliary variable used to model an if-then type constraint. 

 

Parameters: 

𝐵 = number of buckets 

𝑝𝑛𝑠𝑐 = normalized probability of scenario sc 

𝑠𝑡,𝑠𝑐: total SCb of the request in period t, scenario sc 

𝑤𝑡,𝑠𝑐:  weight of the request in period t, scenario sc 

𝑣𝑡,𝑠𝑐:  volume of the request in period t, scenario sc  

𝑞𝑡,𝑠𝑐 = 
𝑠𝑡,𝑠𝑐

𝑣𝑡,𝑠𝑐
  : SCb/volume unit in period t, scenario sc 

𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦:  weight capacity of the flight 

𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦:  volume capacity of the flight 

𝜀: smallest positive number possible 
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max ∑∑𝑝𝑛𝑠𝑐

𝑇

𝑡=1

𝑥𝑡,𝑠𝑐𝑠𝑡,𝑠𝑐

𝑁

𝑠𝑐=1

       𝑠. 𝑡 .        [1]

𝑦𝑡,𝑠𝑐
1 ≥

1

𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 1
(𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑𝑥𝑗,𝑠𝑐𝑤𝑗,𝑠𝑐

𝑡−1

𝑗=1

 ) + 𝜀  𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁 [2]

𝑤𝑡,𝑠𝑐 − (𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑𝑥𝑗,𝑠𝑐𝑤𝑗,𝑠𝑐

𝑡−1

𝑗=1

 ) ≤ max(𝑤𝑡,𝑠𝑐) (1 − 𝑦𝑡,𝑠𝑐
1 ) 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁  [3]

𝑦𝑡,𝑠𝑐
2 ≥

1

𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 1
(∑𝑐𝑎𝑡,𝑠𝑐

𝑖

𝐵

𝑖=1

− 𝑣𝑡,𝑠𝑐) + 𝜀  𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… ,𝑁 [4]

𝑣𝑡,𝑠𝑐 − ∑𝑐𝑎𝑡,𝑠𝑐
𝑖

𝐵

𝑖=1

≤ max(𝑣𝑡,𝑠𝑐) (1 − 𝑦𝑡,𝑠𝑐
2 ) 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁  [5]

𝑦𝑡,𝑠𝑐
3𝑖 ≥

1

max(𝑞𝑡,𝑠𝑐) + 1
(𝑞𝑡,𝑠𝑐 − 𝐸𝐶𝑖𝑡) + 𝜀  𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁 [6]

𝐸𝐶𝑖𝑡 − 𝑞𝑡,𝑠𝑐 ≤ max(𝑞𝑡,𝑠𝑐)(1 −𝑦𝑡,𝑠𝑐
3𝑖 )  𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁 [7]

𝑥𝑡,𝑠𝑐
𝑖 ≤

1

3
(𝑦𝑡,𝑠𝑐

1 + 𝑦𝑡,𝑠𝑐
2 + 𝑦𝑡,𝑠𝑐

3𝑖 ) 𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁   [8]

𝑥𝑡,𝑠𝑐
𝑖 ≥ (𝑦𝑡,𝑠𝑐

1 + 𝑦𝑡,𝑠𝑐
2 + 𝑦𝑡,𝑠𝑐

3𝑖 ) − 2 𝑓𝑜𝑟 𝑖 = 1,… ,𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁   [9]

𝐴𝑡,𝑠𝑐
𝑖 ≤ 𝑐𝑛𝑖 ∗ 𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑𝑟𝑎𝑗,𝑠𝑐

𝑖

𝑡−1

𝑗=1

  𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁   [10]

𝐴𝑡,𝑠𝑐
𝑖 ≤ 𝑣𝑡,𝑠𝑐 − ∑ 𝑟𝑎𝑡,𝑠𝑐

𝑗

𝐵

𝑗=𝑖+1

 𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁   [11]

𝑐𝑛𝑖 ∗ 𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑𝑟𝑎𝑗,𝑠𝑐
𝑖

𝑡−1

𝑗=1

− 𝐴𝑡,𝑠𝑐
𝑖 ≤  𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (1 − 𝑧𝑡,𝑠𝑐

𝑖 ) 𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁   [12]

𝑣𝑡,𝑠𝑐 − 𝐴𝑡,𝑠𝑐
𝑖 − ∑ 𝑟𝑎𝑡,𝑠𝑐

𝑗

𝐵

𝑗=𝑖+1

≤ max(𝑣𝑡,𝑠𝑐)𝑧𝑡,𝑠𝑐
𝑖  𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁  [13]

𝑟𝑎𝑡,𝑠𝑐
𝑖 ≤ 𝑣𝑡,𝑠𝑐 𝑥𝑡,𝑠𝑐

𝑖  𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁  [14]

𝑟𝑎𝑡,𝑠𝑐
𝑖 − 𝑎𝑡,𝑠𝑐

𝑖 ≤ max(𝑣𝑡,𝑠𝑐) (1 −  𝑥𝑡,𝑠𝑐
𝑖 )𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁 [15]

𝑎𝑡,𝑠𝑐
𝑖 − 𝑟𝑎𝑡,𝑠𝑐

𝑖 ≤ max(𝑣𝑡,𝑠𝑐) (1 −  𝑥𝑡,𝑠𝑐
𝑖 ) 𝑓𝑜𝑟 𝑖 = 1,… ,𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… ,𝑁 [16]

∑𝑐𝑛𝑖
𝐵

𝑖=1

= 1 [17]

𝐸𝐶𝑖𝑡 ≥ 𝐸𝐶𝑖−1,𝑡  𝑓𝑜𝑟 𝑖 = 2,… ,𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇 [18]

𝑥𝑡,𝑠𝑐 ≥
1

𝐵
∑𝑥𝑡,𝑠𝑐

 𝑖

𝐵

𝑖=1

 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁 [19]

𝑥𝑡,𝑠𝑐 ≤∑𝑥𝑡,𝑠𝑐
𝑖

𝐵

𝑖=1

 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁 [20]

𝑐𝑛𝑖 ∗ 𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑𝑟𝑎𝑗,𝑠𝑐
𝑖

𝑡−1

𝑗=1

− 𝑐𝑎𝑡,𝑠𝑐
𝑖 ≤  𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ (1 − 𝑦𝑡,𝑠𝑐

3𝑖 ) 𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁 [21]

𝑐𝑎𝑡,𝑠𝑐
𝑖 ≤ 𝑐𝑛𝑖 ∗ 𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 −∑𝑟𝑎𝑗,𝑠𝑐

𝑖

𝑡−1

𝑗=1

 𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁 [22]

𝑐𝑎𝑡,𝑠𝑐
𝑖 ≤ 𝑣𝑜𝑙𝑢𝑚𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑦𝑡,𝑠𝑐

3𝑖  𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇, 𝑠𝑐 = 1,… , 𝑁 [23]

 

 

MP 3: MIP for strategy 2b 
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Constraints 2 and 3 set the first variable (𝑦𝑡,𝑠𝑐
1 ) to 1 if there is still enough weight capacity 

remaining, else to 0. Constraints 4 and 5 set the second variable (𝑦𝑡,𝑠𝑐
2 ) to 1 if there is still 

enough volume remaining in the buckets for which the EC is smaller than or equal to the 

request’s SCb/m3, else to 0. Constraints 6 and 7 set the third variable for the i-th bucket 

(𝑦𝑡,𝑠𝑐
3𝑖 ) to 1 if the request meets that bucket’s SCb/m3, else to 0. Constraints 8 and 9 make 

sure that a request is accepted in a bucket when all three conditions for that bucket are met, 

and rejected when less than three conditions are met. Constraints 10 to 13 set auxiliary 

variables 𝐴𝑡,𝑠𝑐
𝑖  equal to min (𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑣𝑜𝑙𝑢𝑚𝑒, 𝑣𝑡,𝑠𝑐 - ∑ 𝑟𝑎𝑡,𝑠𝑐

𝑗𝐵
𝑗=𝑖+1 ). Constraints 14 to 16 

set the accepted volume in each bucket equal to 𝐴𝑡,𝑠𝑐
𝑖  if the request is accepted, and equal 

to 0 if the request is rejected. Constraint 17 makes sure the bucket proportions add up to 1. 

Constraints 18 makes sure that the EC for each bucket is not lower than the EC for the 

preceding buckets. Constraints 19 and 20 set auxiliary variables 𝑥𝑡,𝑠𝑐 equal to 1 if the request 

is accepted in any of the buckets, 0 otherwise. Constraints 21 to 23 set auxiliary variable 

𝑐𝑎𝑡,𝑠𝑐
𝑖  equal to the remaining volume in bucket i if the EC of that bucket is satisfied, 0 

otherwise.  

Note that this program can easily be used in the case of s2a as well by dropping the subscript 

t in the variable EC.  

 

In this chapter, mathematical models for determining the optimal decision variables for the 

various bid-price strategies have been formalized. In later chapters, the performance of the 

various bid-price strategies will be analyzed in real-life cases using the models described in 

this chapter.      

   Besides these strategies, in the next chapter the general ideas used in the dynamic 

programming (DP) algorithms for the accept/reject decision presented in the literature 

review section will be applied in a custom algorithm that is most appropriate for the 

application at hand.  

  

Domain constraints:  

𝐸𝐶𝑖𝑡 , 𝑟𝑎𝑡,𝑠𝑐
𝑖 , 𝑐𝑎𝑡,𝑠𝑐

𝑖 , 𝑐𝑛𝑖, 𝐴𝑡,𝑠𝑐
𝑖 : ≥ 0 𝑓𝑜𝑟 𝑖 = 1, … , 𝐵, 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁   [24] 

𝑦𝑡,𝑠𝑐
1 , 𝑦𝑡,𝑠𝑐

2 , 𝑦𝑡,𝑠𝑐
3𝑖 , 𝑥𝑡,𝑠𝑐

𝑖 ,, 𝑥𝑡,𝑠𝑐, 𝑧𝑡,𝑠𝑐
𝑖  ∈ {0,1} 𝑓𝑜𝑟 𝑖 = 1,… , 𝐵, 𝑡 = 1, … , 𝑇, 𝑠𝑐 = 1, … , 𝑁  [25] 
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CHAPTER 6  DYNAMIC PROGRAMMING ALGORITHM  
 

In this chapter, the dynamic programming algorithm used in this thesis will be presented.  

The basic dynamic programming algorithm will assume the following problem structure: 

- A single flight with known, deterministic capacities, possibly including overbooking.  

- Capacities are in three dimensions: weight, volume and pallet positions.  

- Deterministic number of requests, known upfront. 

- Deterministic SCb and capacity requirements for all requests, known upfront. 

- An offloading cost function, that takes as input the amount of overbooked capacities 

used, in all dimensions and gives as output the expected total offloading costs for 

these overbooked capacities used.  

Extensions of the basic model include: 

- Including multiple flights. 

- Including expected show-up rates for requests. 

These extensions will be discussed after having formalized the basic algorithm.  

 

Regarding the offloading function, the following clarification needs to be made. 

Offloading costs can be seen as a combination of the physical and organizational costs of 

having to store the associated offloaded cargo for a longer amount of time and the costs 

associated with compensating the customer for the delay in transportation. It is assumed 

that the customer does not cancel their request for transportation, but that the associated 

offloaded cargo will be delivered by the next appropriate flight. This is common practice in 

air cargo. Thus, we do not need to take into account that the SCb that was incurred for 

accepting the request needs to be subtracted again. The SCb is still earned by the airline. 

However, we do need to subtract the request’s capacity requirements from the total 

capacities of the next flight. Determining exactly which cargo to offload is an optimization 

problem on its own and is out of scope of this thesis. Including this optimization problem 

would make the DP-algorithm very unwieldy. Because the exact offloading costs will depend 

on  the exact type of cargo that is offloaded and the offloading cost function only takes as 

input the amount of overbooked capacities used in each dimension, the offloading cost 

function is appropriate and thus the related costs are ‘expected costs’.  

 

The following table introduces the notation used in the basic version of the DP-algorithm.  
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Table 2: Notation used in basic DP-algorithm 

Notation Explanation 

𝐵𝑡
𝑗
 Accepted capacity regarding dimension j in period t, if no booking was 

accepted in period i, 𝐵𝑡
𝑗
 equals 0 for all j 

𝐸𝑗
+ The amount of overbooked capacity of dimension j that is actually used 

O(v, w, p) Offloading costs when having to offload v volume, w weight and p positions 

P Real amounts of positions on the flight plus any overbooked capacity if 

applicable 

PR Real amount of pallet positions on the flight excluding overbooking 

pt Number of remaining pallet positions in period t 

R(t, vt, wt, pt) Optimal total remaining SCb from time t to 0, where 0 is the time of 

departure, given vt remaining volume, wt remaining weight and pt remaining 

pallet positions in the flight at time t 

𝑠𝑡 SCb of request in period t 

T Period in which the first booking on the flight could be placed. 0 is period of 

departure 

t Index for period 

V Operational volume capacity of the flight plus any overbooked capacity if 

applicable 

VR Operational volume capacity on flight excluding overbooking 

vt Remaining volume in period t 

W Real weight capacity of the flight plus any overbooked capacity if applicable 

WR Real weight capacity on flight excluding overbooking 

wt Remaining weight in period t 

 

 

The dynamic programming algorithms presented in the papers (cf. Amaruchkul, et al. (2007), 

Huang & Hsu (2005) and Papastavrou, et al. (2007)) generally work as follows: first an 
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optimal expected remaining SCb function R2 is defined, where: 

 

Total SCb  = Revenue from all accepted offers – variable costs associated with flight – 

offloading costs if applicable;  more precisely,  

R(t, vt, wt, pt) = optimal total remaining SCb from time t to 0, where 0 is the time of 

departure, given vt remaining volume, wt remaining weight and pt remaining pallet positions 

in the flight at time t.  Note that vt = V – ∑ 𝐵𝑖
𝑣𝑇

𝑖=𝑡+1 , where V equals the operational volume 

capacity of the flight plus any overbooked capacity if applicable, T equals the period in which 

the first booking could be placed and 𝐵𝑖
𝑗
 is defined as the accepted capacity regarding 

dimension j in period i. If no booking was accepted in period i, 𝐵𝑖
𝑗
 equals 0 for all j. 

Equivalently, wt = W – ∑ 𝐵𝑖
𝑤𝑇

𝑖=𝑡+1 , where W equals the real weight capacity of the flight plus 

any overbooked capacity if applicable and pt = P – ∑ 𝐵𝑖
𝑝𝑇

𝑖=𝑡+1 , where P equals the real 

amounts of positions on the flight plus any overbooked capacity if applicable.  

Note that the time between successive periods can be made arbitrarily small by making the 

unit of time more granular and by increasing T. This way, the problem can be modeled in 

such a way that in any period at most one booking is requested.  

The optimal total remaining SCb function has to be a non-decreasing function of t, vt and wt, 

keeping the other two variables fixed, as it is never unbeneficial to have more time, volume 

or weight available.  

Potential offloading costs are incurred at the period of departure and the DP variable is 

initialized here:  

R(0, v0, w0, p0) = -O(V - VR – v0, W - WR - w0, P – PR – p0), for  0 ≤ 𝑣0 ≤ 𝑉, 0 ≤ 𝑤0 ≤ 𝑊, 0 ≤ 𝑝0 ≤

𝑃 where O is some expected offloading cost function to be specified based on practical 

considerations and VR, WR and PR are the operational volume capacity, real weight capacity 

of the flight and real amount of pallet positions on the flight (excluding overbooking). Note 

that V - VR – v0, W - WR - w0 and P - PR - p0, when positive, equal the amount of overbooked  

volume or weight capacity that is used by the flight. If all are negative, expected offloading 

costs may be assumed to be close to zero.   

                                                                 

2 See Appendix A for an overview of the notation introduced in this 

chapter. 
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A general recursive relation for 𝑅(𝑡, 𝑣𝑡 , 𝑤𝑡, 𝑝𝑡,) can be devised as follows: 

𝑅(𝑡, 𝑣𝑡, 𝑤𝑡, 𝑝𝑡,) = max (𝑠𝑡

+  𝑅(𝑡 − 1, 𝑣𝑡 − 𝐵𝑡
𝑣 , 𝑤𝑡 −𝐵𝑡

𝑤 ,  𝑝𝑡 −𝐵𝑡
𝑝
), 𝑅(𝑡 − 1, 𝑣𝑡 , 𝑤𝑡,𝑝𝑡,)) , 𝑓𝑜𝑟 1 ≤ 𝑡

≤ 𝑇, 0 ≤ 𝑣𝑡 ≤ 𝑉, 0 ≤ 𝑤𝑡 ≤ 𝑊, 0 ≤ 𝑝𝑡 ≤ 𝑃 

 

Equation 2 

where 𝑠𝑡 equals the shipment contribution associated with accepting the offer at time t. 

Whenever 𝑅(𝑡, 𝑣𝑡, 𝑤𝑡, 𝑝𝑡 ) needs to be evaluated in this recursive relation, and  𝑣𝑡 , 𝑤𝑡 

and/or 𝑝𝑡  is negative, 𝑅(𝑡, 𝑣𝑡 , 𝑤𝑡, 𝑝𝑡) should be set to −∞. This prevents booking more 

weight and volume than the planned capacities including overbooking. 

In this recursive equation, the first element in the maximum operator is related to the 

decision of accepting the offer at period t, and the second element is related to the decision 

of rejecting the offer. Thus, the decision rule whether to accept an offer in period t is as 

follows: accept if 𝑠𝑡 ≥  𝑅(𝑡 − 1, 𝑣𝑡 , 𝑤𝑡, 𝑝𝑡 ) −  𝑅(𝑡 − 1, 𝑣𝑡 − 𝐵𝑡
𝑣 , 𝑤𝑡 − 𝐵𝑡

𝑤 ,  𝑝𝑡 − 𝐵𝑡
𝑝
).  

Thus, using this approach, one can both calculate whether to accept a certain booking 

request and calculate optimal time-dependent bid-prices, which are equal to 𝑅(𝑡 −

1, 𝑣𝑡 , 𝑤𝑡,  𝑝𝑡) −  𝑅(𝑡 − 1, 𝑣𝑡 − 𝐵𝑡
𝑣 , 𝑤𝑡 − 𝐵𝑡

𝑤 ,  𝑝𝑡 − 𝐵𝑡
𝑝
).  

It should be noted that in practice the amount of pallet positions on planes is rather small (in 

the range 10-25). Thus, the inclusion of the amount of pallet positions as a capacity 

dimension does not dramatically increase the amount of states of the DP-variable R(t, vt, wt, 

pt).  
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The DP variable, i.e. the optimal revenue can also be determined in a much simpler manner, 

using a BIP formulation:  

R(𝑇, 𝑣𝑡 , 𝑤𝑡 , 𝑝𝑡) = Max ∑ 𝑠𝑡𝑥𝑡
𝑇
𝑡=1 −  𝑂(𝐸𝑣

+, 𝐸𝑤
+, 𝐸𝑝

+) s.t.  

∑ 𝑥𝑖𝑞𝑖
𝑗
≤ 𝑇

𝑖=1  𝑤𝑡 ∀ 𝑗 ∈ {𝑤, 𝑣, 𝑝}  

𝐸𝑣 =  V − VR  − 𝑣𝑡  +  ∑ 𝑥𝑖𝑞𝑖
𝑣𝑇

𝑖=1    

𝐸𝑤 =  W – WR – 𝑤𝑡  + ∑ 𝑥𝑖𝑞𝑖
𝑤𝑇

𝑖=1    

𝐸𝑝 =  P – PR – 𝑝𝑡  + ∑ 𝑥𝑖𝑞𝑖
𝑝𝑇

𝑖=1    

𝐸𝑗 = 𝐸𝑗
+ − 𝐸𝑗 

− ∀  𝑗 ∈ {𝑤, 𝑣, 𝑝}  

𝐸𝑗
+ ≥ 0  ∀ 𝑗 ∈ {𝑤, 𝑣, 𝑝} 

𝐸𝑗
− ≥ 0  ∀ 𝑗 ∈ {𝑤, 𝑣, 𝑝} 

𝑥𝑖 ∈ {0,1}, 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑇 

 

MP 4: MIP for knapsack problem with offloading function 

 

where 𝑥𝑖 is a binary variable equaling 1 if the booking request in period i is accepted, 𝑞𝑖
𝑗
 is 

dimension j’s capacity requirement of period i’s booking request. Note that 𝐸𝑗
+ equals the 

amount of overbooked capacity of dimension j that is actually used. As long as the offloading 

function O is linear in the positive components of the overbooked capacities, i.e., linear in  

𝐸𝑣𝑓
+ , 𝐸𝑤𝑓

+  and 𝐸𝑝𝑓
+ , this is a linear integer program which can be approximated well by 

conventional Branch and Bound-algorithms.  In the case of an offloading function that is 

non-linear in the positive components of the overbooked capacities, this program might 

become difficult to solve. In the case of a linear offloading function, the BIP-formulation 

should be used. In this case, when using a commercial solver, the running times when using 

this BIP-formulation are much faster than using the general DP-formulation. 

Although the above DP algorithm is promising, the issue of deterministic demand still needs 

to be addressed. Obviously, in a real-life case, future demand is not exactly known.  

However, we can assume that the distributions of weight, volume, pallet positions and SCb 

of requests are known.  

The approach that will be used in the research of this thesis, is to generate a large amount of 

lists of future requests and determine in each time period whether to accept or reject the 

request at that time by solving the DP-algorithm for all demand instances and accepting 

when the average cumulative SCb when accepting the current request is larger than the 

expected cumulative SCb when rejecting the current request. This approach will be 
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formalized at the end of this chapter. Note that the DP-algorithm itself does not change. It is 

just applied a large number of times with each time a different set of generated future 

demand.  First, two extensions of the basic DP-algorithm will be discussed. After having 

discussed the extensions, the final algorithm including these extensions will be given. 

Extension 1: allowing booking requests involving multiple flights 

Up to this moment, booking requests only involved one flight. Now, the algorithm will be 

extended to also be able to incorporate booking requests involving multiple flights, with 

each their own capacities. Conceptually, this factor is not difficult to remodel in the 

discussed DP algorithm. The volume and weight capacities of all the additional flights can 

simply be considered as additional capacity dimensions. Thus, we can reformulate the DP 

variable as follows: 

R(⋃ [𝑡𝑓 , 𝑣𝑡𝑓 , 𝑤𝑡𝑓, 𝑝𝑡𝑓]𝑓∈𝐹 ), where F is the set of flights. Also, we need to augment 𝐵𝑡
𝑗
 to 𝐵𝑡𝑓

𝑗
, 

for all capacity dimensions j.  The change of the recursion equation is obvious. This way, 

given enough computation time and resources, the problem can still be solved to optimality. 

Obviously, a major problem is the extremely high dimensionality of this approach, in the 

case of a larger amount of flights. Another practical consideration is which flights to include. 

The booking request at a certain period t concerns a certain set of flights, however, future 

booking requests might include some of the flights in this set as well as other flights, which 

means these additional flights need to be included in the state space as well. However, if we 

have a number of disjoint sets of flights we can simply decompose the problem in smaller 

problems. For instance, if all booking requests involve flights from either set A or set B, 

where A ∩ B =∅, R(⋃ [𝑡𝑓 , 𝑣𝑡𝑓 , 𝑤𝑡𝑓, 𝑝𝑡𝑓]𝑓∈𝐴∪𝐵 ) = R(⋃ [𝑡𝑓 , 𝑣𝑡𝑓 , 𝑤𝑡𝑓,𝑝𝑡𝑓]𝑓∈𝐴 ) + 

R(⋃ [𝑡𝑓 , 𝑣𝑡𝑓 , 𝑤𝑡𝑓,𝑝𝑡𝑓]𝑓∈𝐵 ) for all states. 

Extension 2: incorporating expected show-up rates for requests: 

In the original DP algorithm, show-up rates are incorporated by overbooking a certain 

percentage of capacity. Then, in the initialization of the DP variable, expected costs of 

offloading are calculated based on the actually used amount of overbooking. However, this 

approach is rooted in the assumption that show-up rates are approximately uniform over all 

bookings. In practice, this is often not the case. Often, requests including multiple routes 

involve low-demand routes that are included in the deal to make up for higher capacity 

commitment on high-demand routes. However, often flight analysts suspect that the 

customer will have a bad show-up rate in the low-demand flight. Thus, the offloading cost 
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function should be adjusted so that it takes into account the expected show-up rates of the 

various booking requests accepted in the past.   Note that the show-up rate is not a 

probability. The outcome is not binary in the sense that the customer shows up with his 

requested capacities or not, but the customer shows up with a certain percentage of the 

requested capacities.   

Final dynamic programming algorithm: 

 

In this section, the final DP-model will be developed, incorporating the two extensions 

discussed.  

In order to include the show-up rates of requests, the DP-variable is augmented with states 

𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤  and 𝐶𝑡𝑓
𝑝
 where 𝐶𝑡𝑓

𝑗
 equals the cumulative expected capacity of dimension j that will 

show up of all bookings booked from time T to t+1. Thus,  𝐶𝑡𝑓
𝑗
= ∑ 𝑃𝑟𝑖𝑓𝐵𝑖𝑓

𝑣𝑇
𝑖=𝑡+1 , where 𝑃𝑟𝑖𝑓 

equals the showup-rate of the request in period i, assumed constant over all dimensions j.  

 

The following basic DP-model will be used for analyzing the problem at hand. All booking 

requests for all periods are assumed known in advance, including their capacity 

requirements and show-up rates, either because we want to analyze certain accept/reject-

strategies a posteriori or by drawing the requests from appropriate distributions.  

 

General DP-formulation to be used, including show-up rates 

{
 
 
 

 
 
 

𝑅𝑓(0, 𝑣0𝑓, 𝑤0𝑓, 𝑝0𝑓, 𝐶0𝑓
𝑣 , 𝐶0𝑓

𝑤 , 𝐶0𝑓
𝑝
)  =  −O(𝐶0𝑓

𝑣  −  VRf , 𝐶0𝑓
𝑤  −  WRf, 𝐶0𝑓

𝑝
 −  PRf), for  0 ≤ 𝑣0𝑓 ≤ 𝑉𝑓, 0 ≤ 𝑤0𝑓 ≤ 𝑊𝑓, 0 ≤ 𝑝0𝑓 ≤ 𝑃𝑓

  𝑅𝑓(𝑡, 𝑣𝑡𝑓, 𝑤𝑡𝑓,  𝑝𝑡𝑓, 𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
) =  max (

𝑠𝑡𝑓 +  𝑅(𝑡 − 1, 𝑣𝑡𝑓 − 𝐵𝑡𝑓
𝑣 , 𝑤𝑡𝑓 − 𝐵𝑡𝑓

𝑤 , 𝑝𝑡𝑓 − 𝐵𝑡𝑓
𝑝
, 𝐶𝑡𝑓

𝑣 + 𝑃𝑟𝑡𝑓𝐵𝑡
𝑣, 𝐶𝑡𝑓

𝑤 + 𝑃𝑟𝑡𝑓𝐵𝑡
𝑤 , 𝐶𝑡𝑓

𝑝
+ 𝑃𝑟𝑡𝑓𝐵𝑡

𝑝
 ),

𝑅(𝑡 − 1, 𝑣𝑡𝑓, 𝑤𝑡𝑓, 𝑝𝑡𝑓, 𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
)

) ,

𝑓𝑜𝑟 1 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑣𝑡𝑓 ≤ 𝑉𝑓 , 0 ≤ 𝑤𝑡𝑓 ≤ 𝑊𝑓 , 0 ≤ 𝑝𝑡𝑓 ≤ 𝑃𝑓.

𝑅𝑓(𝑡, 𝑣𝑡𝑓, 𝑤𝑡𝑓, 𝑝𝑡𝑓 𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
) =  −∞ 𝑖𝑓 𝑣𝑡𝑓 < 0 𝑜𝑟 𝑤𝑡𝑓 < 0 𝑜𝑟 𝑝𝑡𝑓 < 0

 

  

Equation 3 

Note that we start evaluating the R-function for the states that have as input time period the 

period of departure. At this time, there will be no more booking requests, so the remaining 

SCb will never be positive. At the time of departure, only the expected offloading costs still 

need to be considered. This leads to the first equation. The three input variables for the 

offloading cost function are the amount of overbooked volume, weight and positions, 

respectively.  

For any other input time period, the second equation is applicable. In this case, a decision 
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needs to be made whether the current booking request will be accepted or rejected. The 

first argument of the maximum function refers to the case of accepting the current request, 

in which case we reduce the available capacities, increase the cumulative expected show-up 

quantities and have optimal remaining SCb consisting of the sum of the SCb of the current 

request and the optimal remaining SCb with the reduced remaining capacities and the 

increased booked quantities when the next request arrives. The second argument refers to 

the case that we reject the request, in which case optimal remaining SCb equals the optimal 

remaining SCb at the time of the next request with the current remaining capacities and 

cumulative expected show-up quantities. Obviously, the optimal decision is associated with 

the maximum of these two arguments.  

The third equation ensures that overbooking limits are respected. 

When the input time period equals T, all feasible combinations of accepting/rejecting the 

future booking requests have been considered and 𝑅𝑓(𝑇, 𝑣𝑡𝑓, 𝑤𝑡𝑓,  𝑝𝑡𝑓, 𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
) equals the 

optimal remaining SCb we are interested in. This optimal remaining SCb is associated with 

the optimal combination of accepting/rejecting the future booking requests.  

 

The decision rule is to accept the offer in period t involving a single flight f if 𝑠𝑡𝑓 ≥ 𝑅(𝑡 −

1, 𝑣𝑡𝑓, 𝑤𝑡𝑓, 𝑝𝑡𝑓,𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
) − 𝑅 (𝑡 − 1, 𝑣𝑡𝑓 − 𝐵𝑡𝑓

𝑣 , 𝑤𝑡𝑓 − 𝐵𝑡𝑓
𝑤 , 𝑝𝑡𝑓 − 𝐵𝑡𝑓

𝑝
, 𝐶𝑡𝑓

𝑣 +𝑃𝑟𝑡𝑓𝐵𝑡𝑓
𝑣 ,𝐶𝑡𝑓

𝑤 + 𝑃𝑟𝑡𝑓𝐵𝑡𝑓
𝑤 ,𝐶𝑡𝑓

𝑝
+

𝑃𝑟𝑡𝑓𝐵𝑡𝑓
𝑝
 ).    

Thus, using this formulation we can retrieve the optimal booking decisions for all periods 

recursively.  

Note that we can evaluate 𝑅𝑓(𝑡, 𝑣𝑡𝑓, 𝑤𝑡𝑓, 𝑝𝑡𝑓,𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
) for any positive integer t by first 

evaluating 𝑅𝑓(0, 𝑣0𝑓, 𝑤0𝑓 , 𝑝0𝑓, 𝐶0𝑓
𝑣 , 𝐶0𝑓

𝑤 , 𝐶0𝑓
𝑝
) for all values 0 ≤ 𝑣0𝑓 ≤ 𝑉𝑓 , 0 ≤ 𝑤0𝑓 ≤ 𝑊𝑓 , 0 ≤ 𝑝0𝑓 ≤

𝑃𝑓 , 0 ≤ 𝐶0𝑓
𝑣 ≤ 1, 0 ≤ 𝐶0𝑓

𝑤 ≤ 1, 0 ≤ 𝐶0𝑓
𝑝 ≤ 1  with appropriate increments in the variables. 

Then, the period of time can be incremented by one and evaluated for all values 0 ≤ 𝑣0𝑓 ≤

𝑉𝑓 , 0 ≤ 𝑤0𝑓 ≤ 𝑊𝑓 , 0 ≤ 𝑝0𝑓 ≤ 𝑃𝑓 , 0 ≤ 𝐶0𝑓
𝑣 ≤ 1, 0 ≤ 𝐶0𝑓

𝑤 ≤ 1, 0 ≤ 𝐶0𝑓
𝑝 ≤ 1, again, after which  

the period of time can be incremented by one again. When the period of time equals t, 

𝑅𝑓(𝑡, 𝑣𝑡𝑓, 𝑤𝑡𝑓, 𝑝𝑡𝑓,𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
) can be evaluated. 

    However, this is not an efficient approach as the expected remaining SCb function does 

not need to be evaluated for all these states in order to evaluate 𝑅𝑓(𝑡, 𝑣𝑡𝑓, 𝑤𝑡𝑓, 𝑝𝑡𝑓,𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
).  

For example, take a hypothetical booking period consisting of two periods and a flight having 

10 volume. The booking request in the first period, where t = 2, comprises 6 volume and the 

booking request in the second period, where t = 1, comprises 3 volume. In this case, we do 
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not need to evaluate the R-function for the complete interval of 𝑣𝑡𝑓 ∈ [0, 10], for t ∈

{0, 1, 2}, as evaluating for 𝑣2𝑓 = 10, 𝑣1𝑓= 10, 𝑣1𝑓 = 4, 𝑣0𝑓 = 10, 𝑣0𝑓 = 4 and 𝑣0𝑓 = 1 suffices.  

Generalizing this idea, see Appendix C for pseudocode of algorithm 𝑆𝑓
1 that finds all relevant 

states for which it is needed to evaluate the R-function.   

 

A serious problem is the high number of states for larger values of t. As from any state the 

remaining SCb of two other states is needed, an upper bound on the number of states is 

∑ 2𝑖𝑡
𝑖=0 . The easiest way to reduce the number of states is to discretize the state space and 

rounding the original valuse to an appropriate amount of decimals. Thus, we decrease the 

granularity of the state space by discretizing it. For this, we choose 𝑣𝑡𝑓
𝑟  = round(10i 

𝑣𝑡𝑓

𝑉𝑓
)/10i, 

𝑤𝑡𝑓
𝑟  = round(10j 

𝑤𝑡𝑓

𝑊𝑓
)/10j, 𝑝𝑡𝑓

𝑟  = round(10k 
𝑝𝑡𝑓

𝑝𝑓
)/10k, 𝐶𝑡𝑓

𝑣𝑟 =  round(10l
𝐶𝑡𝑓
𝑣

𝑉𝑓
)/10l, 𝐶𝑡𝑓

𝑤𝑟 =

 round(10m 
𝐶𝑡𝑓
𝑤

𝑤𝑓
) /10m and 𝐶𝑡𝑓

𝑝𝑟
=  round(10n 

𝐶𝑡𝑓
𝑝

𝑝𝑓
) /10n where i, j, k, l, m and n are the 

number of decimals to be rounded to. Let S = i+j+k+l+m+n, the sum of the rounding 

constants.  This gives an upper bound on the number of states of (t+1)(10+1)S. Due to the 

rounding, 𝑣𝑡𝑓 ≠ 𝑣𝑡𝑓
𝑟 𝑉𝑓 but we can guarantee|𝑣𝑡𝑓 − 𝑣𝑡𝑓

𝑟 𝑉𝑓| ≤ 
𝑉𝑓

2∗10𝑖
, as the maximal absolute 

error when translating 
𝑣𝑡𝑓

𝑉𝑓
 to 𝑣𝑡𝑓

𝑟 is 
1

2∗10𝑖
  For the other rounded variables, an equivalent 

relationship holds.  
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Implementing this change, the expected remaining SCb function changes to: 

𝑅𝑓(0, 𝑣0𝑓
𝑟 , 𝑤0𝑓,

𝑟  𝑝0𝑓
𝑟 , 𝐶0𝑓

𝑣𝑟 , 𝐶0𝑓
𝑤𝑟 , 𝐶0𝑓

𝑝𝑟
)  =  −O(𝐶0𝑓

𝑣𝑟Vf – VRf, 𝐶0𝑓
𝑤𝑟Wf – WRf, 𝐶0𝑓

𝑝𝑟
Pf – PRf)

 for  0 ≤ 𝐶0𝑓
𝑣𝑟 ≤ 1, 0 ≤ 𝐶0𝑓

𝑤𝑟 ≤ 1,0 ≤ 𝐶0𝑓
𝑝𝑟
≤ 1

𝑅𝑓(𝑡, 𝑣𝑡𝑓
𝑟 , 𝑤𝑡𝑓

𝑟 , 𝑝𝑡𝑓
𝑟 , 𝐶𝑡𝑓

𝑣𝑟 , 𝐶𝑡𝑓
𝑤𝑟 , 𝐶𝑡𝑓

𝑝𝑟
) =

I(𝑣𝑡𝑓
𝑟 − 

𝐵𝑡𝑓
𝑣

𝑉𝑓
<  0 ∨ 𝑤𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑤

𝑊𝑓
< 0 ∨ 𝑝𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑝

𝑃𝑓
< 0) ∗ 𝑅(𝑡 − 1, 𝑣𝑡𝑓, 𝑤𝑡𝑓,𝑝𝑡𝑓,𝐶𝑡𝑓

𝑣 , 𝐶𝑡𝑓
𝑤  )

+ (I (𝑣𝑡𝑓
𝑟 − 

𝐵𝑡𝑓
𝑣

𝑉𝑓
≥ 0) ∗ I (𝑤𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑤

𝑊𝑓
≥ 0) ∗ I (𝑝𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑝

𝑃𝑓
≥ 0)

∗ max

(

 
 
 
 
 
 

𝑠𝑡𝑓 + 𝑅𝑓

(

 
 
 
 
 

𝑡 − 1, 𝑟 (𝑖, 𝑣𝑡𝑓
𝑟 − 

𝐵𝑡𝑓
𝑣

𝑉𝑓
) ,

𝑟 (𝑗, 𝑤𝑡𝑓
𝑟 − 

𝐵𝑡𝑓
𝑤

𝑊𝑓
) , 𝑟 (𝑘, 𝑝𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑝

𝑃𝑓
) 𝑟(𝑙, 𝐶𝑡𝑓

𝑣𝑟 +
𝑃𝑟𝑡𝑓𝐵𝑡

𝑣

𝑉𝑓
),

𝑟(𝑚, 𝐶𝑡𝑓
𝑤𝑟 +

𝑃𝑟𝑡𝑓𝐵𝑡
𝑤

𝑊𝑓
), 𝑟(𝑛, 𝐶𝑡𝑓

𝑝𝑟
+
𝑃𝑟𝑡𝑓𝐵𝑡

𝑝

𝑃𝑓
)

)

 
 
 
 
 

, 𝑅𝑓(𝑡 − 1, 𝑣𝑡𝑓
𝑟 , 𝑤𝑡𝑓

𝑟 , 𝑝𝑡𝑓
𝑟 , 𝐶𝑡𝑓

𝑣𝑟 , 𝐶𝑡𝑓
𝑤𝑟 , 𝐶𝑡𝑓

𝑝𝑟
) )

 
 
 
 
 
 

 

𝑓𝑜𝑟 1 ≤ 𝑡 ≤ 𝑇, 0 ≤ 𝑣𝑡𝑓
𝑟 ≤ 1, 0 ≤ 𝑤𝑡𝑓

𝑟 ≤ 1, 0 ≤ 𝑤𝑡𝑓
𝑝
≤ 1,0 ≤ 𝐶0𝑓

𝑣𝑟 ≤ 1, 0 ≤ 𝐶0𝑓
𝑤𝑟 ≤ 1,0 ≤ 𝐶0𝑓

𝑝𝑟
≤ 1.

𝑅𝑓(𝑡, 𝑣𝑡𝑓
𝑟 , 𝑤𝑡𝑓

𝑟 , 𝑝𝑡𝑓
𝑟 , 𝐶𝑡𝑓

𝑣𝑟 , 𝐶𝑡𝑓
𝑤𝑟 , 𝐶𝑡𝑓

𝑝𝑟
) =  −∞ 𝑖𝑓 (𝑣𝑡𝑓

𝑟 < 0 𝑜𝑟 𝑤𝑡𝑓
𝑟 < 0 𝑜𝑟 𝑝𝑡𝑓

𝑟 < 0) 
 

 

Equation 4 

where I(s) is the binary indicator function returning 1 if statement s is true, 0 otherwise, and 

r(i,x) = round(10i𝑥) /10i. Algorithm 𝑆𝑓
2 in appendix C is the updated version of algorithm 

𝑆𝑓
1, implementing this change of discretization of the state space.  

 

Algorithm 𝑅𝑓
2  in Appendix C generates expected remaining SCb for all relevant states 

generated by algorithm 𝑆𝑓
2, amongst which the current state, which is the top row.  

Algorithm 𝐴𝑓
2 that can be found in Appendix C in pseudocode generates the optimal binary 

decision vector for all relevant states, i.e. whether we should accept the booking request in 

this state. 

Finally, algorithm 𝐷𝑓
2 in Appendix C outputs a T-length binary vector with the t-th position 

equaling 1 if the offer at time t should be accepted, 0 otherwise. Thus, as output we have for 

the list of requests in the case, for each request, whether in the optimal solution we should 

accept this request or reject it.  

Note that if we are only interested in the outcome of the R-function, we only need to apply 

algorithm 𝑆𝑓
2 to generate the state space and use the output matrix as in put for algorithm 

 𝑅𝑓
2 to calculate the outcome of the R-function.  

Running times: 

In the following table average running times for running 𝑆𝑓
2, 𝑅𝑓

2, 𝐴𝑓
2 and 𝐷𝑓

2  consecutively for 
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a certain flight f are enumerated for various rounding precisions and various values of t. The 

following testing configuration is used: 𝑣0𝑓
𝑟 = 𝑤0𝑓

𝑟 = 𝑝0𝑓
𝑟 = 1, 𝐶0𝑓

𝑣𝑟 = 𝐶0𝑓
𝑤𝑟 = 𝐶0𝑓

𝑝𝑟
= 0, Vf = 100,Wf =

200,Pf = 18, VRf = 80,WRf = 160, PRf= 15. Show-up rates are generated using a uniform 

distribution between 0.3 and 1 (with increments of 0.01), volumes are integer uniformly 

distributed between 1 and 25, weights are integer uniformly distributed between 2 and 50, 

positions are continuously uniformly distributed between 1 and 3 and SCb’s are integer 

uniformly distributed between 1 and 100. These distributions are not realistic but will suffice 

for testing the effect of increasing T on running times. The rounding precisions are chosen in 

such a way that they are related to the magnitude of the variables, i.e. lower precision for 

the position dimension and higher for the volume dimension, where the case of 14 is a very 

high precision setting and 11 is a lower precision setting, but still sufficient for most 

purposes. To be precise, in the case of 11: k = n = 1.2 and i = j = l = m = 2.15. In the case of S = 

14 these values are multiplied by 
14

11
. The times in brackets in the following table are 

standard errors of the mean.  
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Table 3: Running times of DP algorithm 

T Average running time:  

Over 25 runs 

S 

10 2.81 seconds  (0.09 seconds)  11 

10 3 seconds (0.08 seconds) 14 

13 43.42 seconds (3.06 seconds) 11 

13 57.53 seconds (3.38 seconds) 14 

15 10.62 minutes (3.19 

minutes)  

11 

15 19 minutes (6.56 minutes) 14 

 

As can be seen, the running time is very sensitive to the magnitude of T. Large running times 

can be reduced somewhat for the same value of T by reducing the rounding precision. It 

should be noted that the rounding precision is not that important in this specific example 

because most of the variables are already integer valued, resulting in many duplicate states, 

which are only added and evaluated once anyway.  If we set all distributions to be 

continuously uniformly distributed, the effect of the rounding precision becomes much more 

profound.   Thus, it is confirmed that discretizing the state space is an appropriate idea in 

reducing the complexity of the algorithms.  

Effect of rounding on algorithm precision: 

A setting of T = 13 shall be used in conjunction with 10 runs to analyze the effect of the 

discretizing precision on the calculated value s of the R-function. Ten sets of demand 

instances have been generated and fixed in each run. The parameterization is the same as 

above, except that all parameters have been multiplied by 1000, except for the show-up 

rate. The various settings of rounding precision will then be applied on the same demand 

instance in order to guarantee comparability of the results. First, the revenue will be 

calculated without discretizing the state space. This means that the value of the R-function 

in this case equals the optimal revenue with probability 1, as all possible combinations of 

accepting and rejecting the various requests are evaluated in an non-discretized manner.  

This means that we can compare the relative difference of the absolute error between the 
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average optimal revenue over all 10 cases and the average calculated optimal revenue for 

any given S over all 10 cases. 

Table 4: Effect of rounding on DP-algorithm 

S Average calculated optimal 

revenue 

Deviation (%) compared to 

optimum 

No rounding 470492.6 - 

26 470492.6 0% 

20 470492.6 0% 

17 470492.6 0% 

14 470492.6 0% 

11 469527.8 -0.2% 

10 469722.9 -0.2% 

9 469920.3 -0.2% 

8 469225.1 -0.2% 

7 470485.1 -0.002% 

6 476421.6 +1.3% 

5 467507.7 -0.6% 

4 446900.7 -5% 

3 471969.4 +0.3% 

2 495522.6 +5.3% 

1 502680.1 +6.8% 

0 502680.1 +6.8% 

 

As can be seen from the above table, for this case, the discretizing of the state space does 

not have dramatic influences on the calculated expected SCb, even in the case of rounding 

to integers (S=0). However, it should be noted that it is a bigger problem that in some of the 
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more rigorous discretizations, the calculated optimal expected SCb is greater than the 

calculated optimal expected SCb in the case of no rounding. This obviously points to an 

infeasible solution. To give an extreme example of how this is possible: suppose we round 

remaining capacities to integers. Suppose we start with 10 capacity units and the first 

request takes 3 units. If this request is accepted, relative capacity reduces to 0.7 but in the 

rounding case, remaining relative capacity is still 1. Thus, the algorithm can accept the first 

request without any capacity cost at all, which can obviously lead to infeasible solutions.   

Use of dynamic programming model with stochastic demand: 

At this moment, a dynamic programming approach has been established that is able to 

determine optimal cumulative SCb for a given demand instance. Seeing that in real-life, we 

only know the current request and not the future requests, the following approach will be 

used to incorporate unknown future demands.   

Here, a certain demand instance or scenario of T requests is given and we need to decide for 

each request whether to accept or reject it. However, we only know the requests up to that 

moment, not the requests that arrive later in time. Also, when we have made an 

accept/reject decision, that decision is fixed and we may not change that decision at a later 

moment of time.  

1) Generate N demand scenarios, each containing T-1 requests.  

2) Initialize t to T, w to the weight of the flight and v to the volume of the flight.  

3) For all scenarios, determine optimal SCb of the following two alternatives, 

considering current remaining capacities and only requests later than time t: 

1: Rejecting the current request at t  

2: Accepting the current request considering that this will cost some weight and 

volume capacity 

4) If the sum of optimal SCb’s over all scenarios of the first alternative is larger than or 

equal to the sum of optimal SCb’s over all scenarios of the second alternative plus , 

the request at time t should be accepted.  

5) Reduce t by 1, and, if request was accepted, reduce w and v accordingly. 

6) Repeat steps 3 to 5 until a decision has been made for all requests.  

 

Note that the cumulative SCb of this approach does not need to be equal to the optimal 

cumulative SCb of the instance. The approach is expected to work better if more scenarios 

are used.  
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In step 3, in general the DP-algorithm can be used. If the offloading function is linear, in this 

step the optimal SCb’s can also be determined by solving the appropriate knapsack problem, 

which is much more time-efficient.  

In this chapter, a dynamic programming algorithm that can be used for the booking problem 

was discussed and formalized. This DP-algorithm is an alternative to the various bid-price 

strategies for the booking problem described in Chapter 4. A basic version of the algorithm 

was first described and after this, extensions were discussed which also can handle multiple 

flights, individual show-up rates for each requests and discretization of the state space in 

order to speed up calculation, in lieu of some precision. Also, it was discussed how the 

algorithm, which is deterministic in nature, can be used in stochastic problems where we do 

not exactly know which requests will arrive in the future.  In the next chapter, the data to be 

used in an investigation into the merits of various strategies for the booking problem will be 

described. In the chapters after the next, the performance of the various bid-price strategies 

vis-à-vis each other and vis-à-vis the DP-algorithm will be analyzed.  
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CHAPTER 7  DATA COLLECTION AND ANALYSIS  

In the previous chapters, various strategies for the booking problem have been formalized. 

These strategies include a static bid-price strategy, a time-dependent bid-price strategy, a 

bucket strategy with static bid-prices and a bucket strategy with time-dependent bid-prices. 

The performance of the various in terms of maximizing expected cumulative SCb will be 

investigated using real-life data from AF-KL Cargo. In this chapter the datasets will be 

described.  

Real-life data was collected on two routes, which will be called R1 and R2. These routes are 

interesting to analyze because flights on these routes are often constrained, making the EC-

setting more interesting, i.e. on non-constrained flights it is optimal to set EC equal to 0. All 

carried cargo on these two routes in June and July 2013 has been stored, including the 

weight, volume, SCb and date of the request. This last piece of information allows analysis of 

the time element in bookings, e.g. whether early bookings differ significantly from late 

bookings.  The information related to one piece of cargo including its weight, volume, SCb 

and date is stored in a document called an air-way bill (AWB). Some descriptive statistics are 

summarized in the following table: 

Table 5: Statistics of two routes 

 R1 R2 

Number of AWB’s  3905 2825 

Average weight 904 1518 

Std. dev. weight 1628 2861 

Coefficient of variation 

weight 

1.80 1.88 

Minimum weight 20.42 16.82 

(1/6)*100 percentile 

weight 

23.5 29.2 

(2/6)*100 percentile 

weight 

35.3 148.6 

Median weight 460.6 453.1 

(4/6)*100 percentile 

weight 

844.1 1027.3 

(5/6)* 100 percentile 

weight 

1548.3 2104.6 
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Maximum weight 31724 38344 

Average volume 4.00 9.32 

Std. dev. volume 7.76 17.3 

Coefficient of variation 

volume 

1.94 1.86 

Minimum volume 0 0.184 

(1/6)*100 percentile 

volume 

0.155 0.186 

(2/6)*100 percentile 

volume 

0.210 1.235 

Median volume 2.32 3.141 

(4/6)*100 percentile 

volume 

3.60 5.62 

(5/6)*100 percentile 

volume 

5.9 17.24 

Maximum volume 186.7 230 

Average SCb/m3 387 333 

Std. dev. SCb/m3 214 160 

Coefficient of variation 

SCb/m3 

0.55 0.48 

Minimum SCb/m3 28 -6 

(1/6th)*100 percentile 

SCb/m3 

183 183 

(2/6th)*100 percentile 

SCb/m3 

213 236 

Median SCb/m3 295 298 

(4/6th)*100 percentile 

SCb/m3 

576 400 

(5/6th)*100 percentile 

SCb/m3 

648 488 

Maximum SCb/m3 1819 2118 
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These distributions can be visualized in a number of boxplots and histograms. 

 

  

Figure 2: Boxplot weight distributions 

Note: top whisker corresponds to 95th percentile instead of maximum for clarity reasons.   

 

Figure 3: Marginal probabilities for each weight class 
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Figure 4: Boxplot volume distributions 

Note: top whisker corresponds to 95th percentile instead of maximum for clarity reasons.   

 

Figure 5: Marginal probabilities for each volume class 
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Figure 6: Boxplot SCb/m3 distributions 

Note: top whisker corresponds to 99th percentile instead of maximum for clarity reasons.  

 

Figure 7: Marginal probabilities for each SCb/m3 class 

As can be seen from above statistics and plots, the variation of the size (volume/weight) of 

requests is quite large. However, the interquartile distance is not that big compared to the 

total spread. There is a very large group of small shipments and a small group of relatively 

extremely big shipments. The distribution of SCb/m3 is much less volatile.  
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As discussed before, the date of a request is also taken into account. The booking window 

for standard requests opens thirteen days before departure. It is also interesting to analyze 

the differences in requests’ distributions per booking day in these thirteen days before 

departure. Then we can see if there is any difference in distributions, which would make 

more sophisticated manners of accepting/rejecting requests more likely to perform better.  

 

 

Figure 8: Number of AWB’s for each route and booking day 

 

Figure 9: Average weight per request, for each route and booking 
day 
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Figure 10: Average volume per request, for each route and amount 
of days before departure 

 

 

Figure 11: Average SCb/m3 per request, for each route and amount 
of days before departure 
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Figure 12: Average total SCb per request, for each route and 
amount of days before departure 

 

Data on offloading costs is not used. Thus, the offloading function will be the zero function. 

This also allows the use of MP 4 in the dynamic programming algorithm, which considerably 

speeds up the algorithm. This means the running times in Table 3 are not representative for 

the further research.  Also, data on pallet positions were not used. Finally, booking requests 

always involve just one flight and show-up rates were assumed to be 100%. Thus, the basic 

DP-algorithm without the two extensions of multiple flights and show-up rates can be used.  

The reason for above simplifications is the fact that this research is focused on the 

performance of various  strategies for the booking problem, and above factors are theorized 

to only make the comparison more complex without changing the relative magnitude of the 

performance differences between strategies. 

The following graphs shows the cumulative volume slope in green as a function of SCb per 

m3 buckets of €25 each. These graphs show that the slope is increasing very fast in the lower 

buckets, meaning that increasing an EC by a little in these regions, will mean a relatively 

large amount of extra rejections, due to requests not achieving the EC.  

 



Figure 13: Volumes and weights per SCb/m3 buckets, R1 



Figure 14: Volumes and weights per SCb/m3 buckets, R2 



In this chapter real-life data to be used in an investigation into the performance of the 

various strategies for the booking problem has been introduced and discussed in detail. In 

the next chapters, this investigation will be formalized and discussed.   
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CHAPTER 8  RESULTS OF BID-PRICE STRATEGIES OPT IMIZATION BASED 

ON SMALL INSTANCES  
 
In this chapter, the real-life data discussed in the previous chapter will be used as input for 

an investigation into the performance of the various bid-price strategies discussed in 

Chapter 4, when the decision variables in these strategies are optimized. The decision 

variables in these strategies are the EC’s and if applicable the bucket sizes. Because the 

formal mathematical models described in Chapter 5 are computationally quite heavy, the 

analysis in this chapter is based on rather small problem instances. This allows us to compare 

the various strategies in a fair manner, namely, in a manner where all strategies are 

executed in a nearly optimal way. However, as the number of scenarios used is small, the 

optimal decision variables found may not work well when used in other, larger scenario sets. 

To overcome this limitation of the analysis, in the next chapter heuristics to find decision 

variables that work well when using a very large number of scenarios will be explored.  

This chapter and the next chapter have differing goals. The goal of this chapter is to 

determine the improvement potential when moving from simple bid-price strategies, for 

instance s1a, to more complex bid-price strategies, for instance s2b. Then, in the next 

chapter, we attempt to find well-working decision variables that hopefully are able to fulfill 

some of this improvement potential. 

Solving times strategy 1a: 

First, using T = 100 and N = 15, the performance of the latest versions of various well-known 

MIP-solvers will be tested on two generated scenario sets of 15 scenarios each, on route 1 

and for various starting capacities. This implies a decision problem with nearly 20,000 

constraints and around 13,500 variables of which almost 11,000 integer.  The scenario sets 

are generated using the empirical distributions discussed in the previous chapter. The 

problems are solved to optimality. Capacities-setting C1 refers to a case of 
𝑇

2
 volume and 

T*1000 weight (volume-constrained flight), C2 refers to a case of  
𝑇

2
 volume and (weighted 

average density)* 
𝑇

2
 weight (sometimes volume constrained, sometimes weight-constrained, 

called a ‘flip-flop’ flight), C3 refers to a case of  
𝑇

2
 volume and T*40 weight (weight-

constrained flight).  
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Table 6: Solving times for strategy 1a compared over various 
solvers 

 C1, S1  C2, S1   C3, S1 C1, S2  C2, S2 C3, S2 

CPLEX 

12.5 

7.82 sec  13.26 sec 16.91 sec 9.63 sec 26.97 sec 15.38 sec 

GUROBI 

5.5 

132.57 sec 182.52 154.24 sec 100.62 sec 146.14 sec 152.93 sec 

MOSEK 

6.0 

>500 sec 

(terminated, 

4.4% 

optimality 

gap) 

>500 sec 

(terminated, 

6% optimality 

gap) 

- - - - 

 

Solving times strategy 1b: 

The same settings as above are used on the two best performing solvers, except that an 

optimality gap of 2% is allowed, i.e. the solvers run until a feasible solution is found that is 

proven to be at most 2% worse than the optimal solution.  

Table 7: Solving times for strategy 1b compared over two best 
performing solvers 

 C1, S1  C2, S1   C3, S1 C1, S2  C2, S2 C3, S2 

CPLEX 

12.5 

414 sec 

(1.3% gap) 

>500 sec 247 sec (1.9% 

gap) 

>500 sec 289 sec (1.8% 

gap) 

>500 sec 

GUROBI 

5.5 

19.5 sec 

(1.8% gap) 

213 sec (2% 

gap) 

9.11 sec(1.5% 

gap) 

6.99 sec (1.8% 

gap) 

169 sec (1.9% 

gap) 

33 sec (1.9% 

gap) 
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Solving times strategy 2a: 

T = 20, N =10 is used, an optimality gap of 20% is allowed. 

  

Table 8: Solving times for strategy 2a compared over two best 
performing solvers 

 C1, S1  C2, S1   C3, S1 C1, S2  C2, S2 C3, S2 

CPLEX 

12.5 

242 sec 

(19.3% gap) 

243 sec  

(16.8% gap) 

>500 sec  

(48.1% gap)  

>500 sec 

(23.1% gap) 

>500 sec 

(37.3% gap) 

>500 sec 

(36.9% gap) 

GUROBI 

5.5 

212 sec 

(17.6% gap) 

329 sec 

(15.7% gap) 

>500 sec 

(76.2% gap) 

>500 sec 

(30.3% gap) 

447 sec 

(16.3% gap) 

>500 sec 

(52.3% gap) 

 

Solving times strategy 2b: 

T = 20, N =10 is used, an optimality gap of 20% is allowed. 

Table 9: Solving times for strategy 2b compared over two best 
performing solvers 

 C1, S1  C2, S1   C3, S1 C1, S2  C2, S2 C3, S2 

CPLEX 

12.5 

102.9 sec 

(19.2% gap) 

>500 sec 

(167.5% gap) 

>500 sec 

(30.3% gap) 

>500 sec 

(126.8% gap) 

>500 sec 

(25.5% gap) 

>500 sec 

(39.5% gap) 

GUROBI 

5.5 

316.4 sec 

(19.9% gap) 

199 sec 

(18.1% gap) 

>500 sec 

(28.0% gap) 

39 sec (18.4% 

gap) 

218 sec 

(19.5% gap) 

456 sec 

(19.7% gap) 

 

For convenience, for the rest of thesis only one solver will be used. Although CPLEX performs 

much better than GUROBI in many cases, GUROBI will be used as the solver, because it 

performs better in the case of the most difficult problem (s2b), in which CPLEX performed 

very badly in some scenarios.  
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Comparison objective value between strategies 1a and 1b: 

 

The optimal objective value of the following three approaches will be compared: 

 

1) The optimal objective value corresponding to strategy 1a,single EC. 

2) The optimal objective value of the MIP corresponding to strategy 1b, EC dependent on 

time. 

3) The objective value of the MIP corresponding to the two-dimensional knapsack problem.  

 

The scenario sets used will be held constant over the three problems. Thus we solve for a 

certain scenario set the knapsack problem for all scenarios individually and take as optimal 

objective value the average of the individual optimal objective values. Then, for the same 

scenario set, we use the MIP to find the optimal static entry condition or optimal time-

dependent entry conditions.  

As discussed before, the second objective value cannot be lower than the first objective 

value as the optimal solution of the first MIP is also feasible for the second MIP and they 

have the same objective function. It should also be clear that the third objective value 

cannot be worse than the second objective value, by the same reasoning. In fact, the 

objective value of the third MIP is the upper bound for the objective value of any 

accept/reject strategy.  

T = 100 and N=15 will be used. In the MIP corresponding to strategy 1b an optimal EC is 

determined for every time period  
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Table 10: Comparison optimal solutions s1a, s1b and knapsack for 
R1 

 C1, S1  C2, S1   C3, S1 C1, S2  C2, S2 C3, S2 

Single EC 

(s1a) 

18809 14713 8022 18669 15657 8213 

Time-

dependent 

EC (s1b) 

19524 - 

197873 

17589 - 

17937 

10149 - 

10269 

19922 - 

20246 

18046 - 

18344 

9988 - 10155 

Knapsack 

solution 

(upper 

bound) 

19801 17980 10255 20238 18373 10247 

 

 C1, S1  C2, S1   C3, S1 C1, S2  C2, S2 C3, S2 

Single EC 

(s1a), 

difference 

with 

optimum 

5%  18.2%  21.8%  7.8%  17.3%  19.8%  

Time-

dependent 

EC (s1b), 

difference 

with 

optimum 

≤ 1.4% ≤2.2%  ≤1%  ≤1.6%  ≤1.8%  ≤2.5%  

Time-

dependent 

EC (s1b), 

improvement 

compared to 

s1a 

≥ 3.8% ≥ 19.5% ≥ 26.5% ≥ 6.7% ≥ 15.3% ≥ 21.6% 

 

 

                                                                 

3 First value corresponds to best-found solution, upper value is best-found 

upper bound.  
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Table 11: Comparison optimal solutions s1a, s1b and knapsack for 
R2 

 C1, S1  C2, S1   C3, S1 C1, S2  C2, S2 C3, S2 

Single EC 

(s1a) 

22920 18776 11006 22897 20199 13138 

Time-

dependent 

EC (s1b) 

25224 -25303 21855 - 

22181 

17401 - 

17631 

29113 - 

29176 

22000 - 

22236 

16776 - 

17043 

Knapsack 

solution 

(upper 

bound) 

25413 22262 18094 29335 22411 17530 

 

 C1, S1  C2, S1   C3, S1 C1, S2  C2, S2 C3, S2 

Single EC 

(s1a), 

difference 

with 

optimum 

9.8%  15.6%  39.2%  21.9%  9.9%  25%  

Time-

dependent 

EC (s1b), 

difference 

with 

optimum 

≤0.74%   ≤1.83%  ≤3.83%  ≤0.76%  ≤1.9%  ≤4.31%  

Time-

dependent 

EC (s1b), 

improvement 

compared to 

s1a 

≥ 10% ≥ 16.3% ≥ 58.1% ≥ 27.1% ≥ 8.9% ≥ 27.6% 
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Sub conclusions: 

The results so far from this chapter are combined in the following table: 

Table 12: Sub conclusions Chapter 8  

 Average improvement from s1a 

to s1b, MIP 

Average closure of optimality 

gap between knapsack and s1a, 

by using s1b, MIP 

R1, C1 5.3% 76.8% 

R1, C2 17.3% 88.0% 

R1, C3 24.0% 91.4% 

R2, C1 18.6% 95.4% 

R2, C2 12.5% 85.6% 

R2, C3 41.5% 86.4% 

C1, average over two routes 12.0% 86.1% 

C2, average over two routes 14.9% 86.8% 

C3, average over two routes 32.8% 88.9% 

 

Using time-dependent EC’s instead of static EC’s led to an average improvement of over 10% 

in the MIP, and more significantly and more importantly, given that there simply is an upper 

bound on the possible increase, closes the optimality gap by more than 86% on average. This 

shows that the strategy at least has some theoretical merit. As expected, the improvements 

gained were larger in the cases of C2 and C3, where in practice dual bid-prices or an EC on 

SCb/kg would be used. However, interestingly enough, the closure of the optimality gap is 

also very large in cases C2 and C3, showing that a strategy of using time-dependent EC’s 

could possibly diminish the added value of using dual bid-prices at all.  

Comparison of all bid-price strategies:  

Now, strategies 2a and 2b will be added to the comparison. The various strategies are tested 

using small scenario sets of 10 with 20 requests each. In strategies 2a and 2b, three buckets 

are used. The algorithms were allowed 1000 seconds of solving time. In the case of R1, C1, 

S1, strategy s2a was solved to optimality. The average is taken over the best found feasible 
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solutions. Also added is the achieved cumulative SCb when using a first-come first-served 

(FCFS) strategy, i.e. s1a with EC forced at 0.  

It is straightforward to extend MP 2 to also include an EC based on weight. The 

implementation used is to accept a request when it fits and it satisfies both EC’s: the EC on 

volume and the EC on weight. Note that variations are possible and this may not be the 

optimal implementation. Including a second EC is interesting in the case of C2, flip-flop 

flights and C3, weight-constrained flights. Obviously, including an EC based on weight can 

never decrease the optimal objective function for a given constraint setting and scenario set, 

as the EC on weight can simply be set to 0, in which case it has no effect.   

Table 13: Comparison of optimal objective values for various bid-
price strategies, R1, C1 

 

Table 14: Comparison of optimal objective values for various bid-
price strategies, R1, C2 

 

 

 

R1, C1 S1 S2 S3 S4 S5 Average 

FCFS 2712 2594 2472 2423 2585 2519 
S1a 3155 3414 3029 2897 3521 3203 
S1b 3235 3462 3198 2998 3672 3313 
S2a 3226 3468 - 

3658 
3112 - 
3378 

3051 - 
3219 

3538 - 
3814 

3279 

S2b 3274 – 
3450 

3468 - 
3663 

3198 - 
3484 

3090- 3289 3758- 3870 3358 

Knapsack 3396 3488 3396 3251 3780 3462 

R1, C2 S1 S2 S3 S4 S5 Average 

FCFS 2234 2194 2623 2423 2441 2383 
S1a 2527 2844 2863 2603 2971 2762 
S1a (dual 
EC) 

2983 3049 3005 2682 3068 2951 

S1b 2840 3060 3049 2718 3162 2966 
S2a 2710 - 

2869 
2883 – 
3208 

2966 - 
3176 

2730 - 
3011 

3060 – 
3376 

2870 

S2b 3009 - 
3314 

3150 – 
3382  

3134 - 
3373 

2742 – 
3040 

3190 - 
3437 

3045 

Knapsack 3130 3197 3273 2981 3296 3175 
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Table 15: Comparison of optimal objective values for various bid-
price strategies, R1, C3 

 

 

Table 16: Comparison of optimal objective values for various bid-
price strategies, R2, C1 

 

Table 17: Comparison of optimal objective values for various bid-
price strategies, R2, C2 

R1, C3 S1 S2 S3 S4 S5 Average 

FCFS 1368 1126 1525 1286 1171 1295 
S1a (EC on 
volume) 

1702 1743 1631 1510 1820 1681 

S1a (EC on 
weight) 

1702 1746 1701 1532 1848 1707 

S1b 1707 1778 1682 1548 1865 1716 
S2a 1702 1743 1643 1523 1820 1686 
S2b 1749 1781 - 

1833 
1703 1548 1865 1729 

Knapsack 1795 1830 1812 1594 1895 1785 

R2, C1 S1 S2 S3 S4 S5 Average 

FCFS 2975 2614 3010 2737 3005 2868 
S1a 3355 3377 3454 3756 3700 3572 
S1b 3570 3570 3617 3858 4734 3870 
S2a 3538 - 

3756 
3538 - 
3917 

3583 - 
3885 

3841 - 
4088 

4128 3726 

S2b 3579 - 
3896 

3682 - 
3948 

3619 - 
3982 

3914 - 
4097 

4991 - 
5285 

3957 

Knapsack 3890 3848 3835 3999 5245 4163 

R2, C2 S1 S2 S3 S4 S5 Average 

FCFS 2640 2323 2228 2392 2548 2426 

S1a 3144 2847 2802  2916 2864 2915 

S1a (dual 
EC) 

3219 2980 3170 3113 3144 3125 

S1b 3280 3043 3149 3205 3094 3154 

S2a 3173 2959 2966 3104 3132 3067 

S2b 3340 – 
3750 

3092 – 
3429 

3249 – 
3598 

3144 – 
3564 

3150 – 
3643 

3195 

Knapsack 3518 3289 3490 3350 3479 3425 
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Table 18: Comparison of optimal objective values for various bid-
price strategies, R2, C3 

 

 

Conclusions: 

Table 19: Conclusions Chapter 8  

 Average 

improvement 

from s1a to 

s1b, MIP 

Average 

closure of 

optimality gap 

between 

knapsack and 

s1a, by using 

s1b, MIP 

Average 

improvement 

from s1a to 

s2a, MIP 

Average 

closure of 

optimality gap 

between 

knapsack and 

s1a, by using 

s2a, MIP 

Average 

improvement 

from s1a to 

s2b, MIP 

Average 

closure of 

optimality gap 

between 

knapsack and 

s1a, by using 

s2b, MIP 

C1, average 

over two 

routes 

5.9% 46.5% 3.4% 27.7% 7.8% 62.5% 

C2, average 

over two 

routes 

7.8% 48.2% 5.7% 43.2% 11% 64% 

C3, average 

over two 

routes 

8.7% 37.8% 2.4% 23.3% 8% 50.9% 

 

The improvement potential of s1b over s1a is confirmed again, although the improvement is 

smaller this time. This might be due to the number of request having decreased. S2a also 

offered improvements in objective function over s1a, albeit smaller than in the case of s1b. 

S2b combines the improvement potential of both s1b and s2a, in the cases of C1and C2 even 

R2, C3 S1 S2 S3 S4 S5 Average 

FCFS 1718 1633 1536 1624 1842 1671 
S1a 
(volume) 

2129 2055 2175 2218 2184 2152 

S1a (weight)  2269 2218 2444 2393 2258 2316 
S1b 2282 2337 2433 2303 2466 2364 
S2a 2182 2158 2292 2277 2330 2248 
S2b 2335 - 

2501 
2412 2467 - 

2568 
2347 - 
2547 

2610 - 
2775 

2434 

Knapsack 2546 2539 2757 2592 2749 2659 
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exceeding the sum of the two individual increases.  It is also interesting to see that s1b with 

EC’s based on volume outperformed a dual bid-price strategy even in flip-flop and volume 

constrained settings.  This can indicate that the whole process of determining which EC to 

use may be obsolete in real-life cases such as those in air cargo, with a relatively constant 

density of requests.  

Having ascertained the improvement potential of more complex bid-price strategies over 

static bid-price strategies in small instances, in the next chapter it will be analyzed whether 

this improvement potential can also be lived up to in larger instances, using heuristics to find 

well-performing decision variables. 

  



66 
 

CHAPTER 9  COMPARISON OF PERFORMANCE OF BID-
PRICE STRATEGIES USIN G HEURISTICS IN LARGE 

INSTANCES  

 

In this chapter, the developed simulation will be used to try and find well-performing 

decision variables for the various bid-price strategies. As the simulation is much less complex 

than the MIPs used, much more scenarios can be used in this approach.  

Comparison strategy 1b vs. strategy 1a using heuristics: 

The following approach will be used to assess the practical effect of strategy 1b vis-à-vis 

strategy 1a.  The optimal EC for strategy 1a will be determined by simulation: the cumulative 

SCb for various ECs will be determined over 100 runs. EC will be initialized at 0 and 

incremented by 1 until the EC has reached the level of the maximum ratio between SCb and 

volume in the data set used. The optimal EC is the EC with the highest average cumulative 

SCb. Note that this is not necessarily optimal but likely to be close to the real optimum.  

This generates the following graph of average cumulative SCb as a function of EC in the case 

of R1, C1. The optimal simulated EC equals 247.  

Figure 15: Example of average cum. SCb as function of EC 
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Strategy 1b will be implemented with five different ECs, i.e. there is not an EC for each time 

period individually but T will be divided in five distinct subperiods with an EC for each. The 

MIP for strategy 1b will be solved three times for three scenario sets of 34 scenarios with a 

tolerated optimality gap of 2%. This has three solution sets with five ECs as a result. For each 

of the five ECs the ‘optimal’ EC taken is the median of the three ECs found for that period.  

Table 20: Obtained strategies for s1b 

Strategy 1b ECs 

R1, C1 

Scenario set 1 Scenario set 2 Scenario set 3 Median 

EC1 (valid for 

requests 1 to 

20) 

285.1372661 310.1471897 306.6042052 306.6042052 

EC2 (valid for 

request 21 to 

40) 

301.0354213 268.0882676 289.9380762 289.9380762 

EC3 (valid for 

requests 41 to 

60) 

271.948127 253.5155126 289.9380762 271.948127 

EC4 (valid for 

requests 61 to 

80) 

262.2381668 263.3953301 238.4410661 262.2381668 

EC5 (valid for 

requests 81 to 

100) 

218.4307554 193.9025328 181.7130546 193.9025328 

 

In order to compare the simulated average cumulative SCb between the best obtained 

variable setting for strategy 1a (i.e. with  EC = 247) and the best obtained variable setting for 

strategy 1b, i.e. the median values in above table, these ECs were used in the simulation 

with 100,000 runs. 
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Table 21: Differences in objective function between strategies 1a 
and 1b in detail 

R1 C1 Strategy 1a  Strategy 1b  

Average cumulative SCb 18581 19171 (3.17% improvement, as 

opposed to 3.8% theoretically) 

Standard deviation cumulative 

SCb 

2541 2873 

Coefficient of variation 13.7% 15% 

Maximum cumulative SCb 35221 35300 

Minimum cumulative SCb 6429 7549 

Median cumulative SCb  18276 18723 

25th percentile cumulative SCb 17184 17427 

75th percentile cumulative SCb 19585 20341 

  

The same analysis will be repeated for capacity settings C2 and C3.  

 

In the case of C2, the median of the optimal EC’s for the five periods over three scenario sets 

were found to be (305.1703229, 294.904859, 285.1372661, 253.5155126, 198.3727831). 

The best found static EC was 250. Simulating 100.000 runs using this static EC-setting yields 

average cumulative SCb of 14756 (standard deviation of 2139). Over 100.000 runs, using the 

found time-dependent EC’s yields average cumulative SCb of 16160 (standard deviation of 

2051), an increase of 9.5%. 

In the case of C3, the median of the optimal EC’s for the five periods over three scenario sets 

were found to be (350.233361, 345.065449, 318.784254, 302.472625, 227.06098). The best 

found static EC was 288. Simulating 100.000 runs using this static EC-setting yields average 

cumulative SCb of 8158 (standard deviation of 1651). Over 100.000 runs, using the found 

time-dependent EC’s yields average cumulative SCb of 9102 (standard deviation of 1631), an 

increase of 11.6%. 

R2: 

In the case of C1, the median of the optimal EC’s for the five periods over three scenario sets 

were found to be (450.140898, 382.558424, 355.222900, 435.163999, 363.120523). The best 

found static EC was 388. Simulating 100.000 runs using this single EC-setting yields average 
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cumulative SCb of 23581 (standard deviation of 4743). Over 100.000 runs, using the found 

time-dependent EC’s yields average cumulative SCb of 25031 (standard deviation of 4897), 

an increase of 6.1%. 

In the case of C2, the median of the optimal EC’s for the five periods over three scenario sets 

were found to be (400.48425, 390.8327, 341.25834, 460.23526, 310.52362). The best found 

static EC was 345. Simulating 100.000 runs using this static EC-setting yields average 

cumulative SCb of 18615 (standard deviation of 4273). Over 100.000 runs, using the found 

time-dependent EC’s yields average cumulative SCb of 19969 (standard deviation of 4455), 

an increase of 7.3%. 

In the case of C3, the median of the optimal EC’s for the five periods over three scenario sets 

were found to be (390.8327, 363.120523, 338.52943, 401.2353, 350.21424). The best found 

static EC was 366. Simulating 100.000 runs using this static EC-setting yields average 

cumulative SCb of 12535 (standard deviation of 4633). Over 100.000 runs, using the found 

time-dependent EC’s yields average cumulative SCb of 14310 (standard deviation of 4973), 

an increase of 14.2%. 
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Sub conclusions: 

We extend Table 12 to include the results from the results from the applied heuristic in the 

last column: 

 

Table 22: Comparison between MIP improvement and 
improvement in practice 

 Average improvement 

from s1a to s1b, MIP 

Average closure of 

optimality gap 

between knapsack 

and s1a, by using 

s1b, MIP 

Average 

improvement 

from s1a to s1b, 

in practice 

R1, C1 5.3% 76.8% 3.2% 

R1, C2 17.3% 88.0% 9.5% 

R1, C3 24.0% 91.4% 11.6% 

R2, C1 18.6% 95.4% 6.1% 

R2, C2 12.5% 85.6% 7.3% 

R2, C3 41.5% 86.4% 14.2% 

C1, average over 

two routes 

12.0% 86.1% 4.7% 

C2, average over 

two routes 

14.9% 86.8% 8.4% 

C3, average over 

two routes 

32.8% 88.9% 12.9% 

 

It can be seen that some of the improvement potential obtained in the analysis using MIPs 

was fulfilled in practice. However, the improvement is smaller in the case of using heuristics 

and large instances than in the case of using MIPs and small instances. This might show that 

the used heuristic for strategy 1b is not sophisticated enough or not enough input data was 

used. Remember that median EC’s were taken over only three scenario sets. Still, it has been 
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shown that it is quite easy to improve on a static bid-price strategy using time-dependent 

bid-prices.  

Comparison strategy 2a vs. strategies 1a and 1b using heuristics: 

 

First of all, it was attempted to use the found solutions for the MIP in the previous chapter. 

The found solutions were the following (R1, C1):  

Table 23:  Example of optimal decision variables for strategy 2a, 
R1, C1 

 S1 S2 S3 S4 S5 

Bucket 

proportion 

1 

0.39 0 0.68 0.20 0.34 

Bucket 

proportion 

2 

0.26 0.24 0.24 0.15 0.53 

Bucket 

proportion 

3 

0.35 0.76 0.08 0.65 0.13 

EC1 203.108680 170.0093701 203.814541 144.8420925 232.8626728 

EC2 206.7854826 182.8760386 241.2229025 242.6570288 233.4502628 

EC3 241.2229025 243.1817595 488.3872046 260.3676805 452.6339378 

 

Simulating the found strategies from table 14 over 10.000 runs, results in the following 

average cumulative SCb: 

Table 24: Average cum. SCb over 10.000 runs for found strategies, 
s2a 

 S1 S2 S3 S4 S5 

Average 

cumulative 

SCb 

3078 2993 3109 2879 3078 
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Optimal EC for s1a, based on 1000 runs, was found to be 209. Average cumulative SCb for 

this strategy (100.000 runs)  = 3150, larger than any of the values in above table. 

This shows that the amount of scenarios used in the MIP is unfortunately too small. 

However, as the MIP is too computationally demanding to handle more scenarios, this is not 

a viable option. It also shows that finding bucket sizes and entry conditions for each bucket 

that outperform strategy 1a is a difficult problem, as even strategies that make sense in 

certain cases, i.e. above strategies, do not work better than strategy 1a in a large scenario 

set. As this approach does not seem effective, it will not be attempted in the remainder of 

this thesis. Instead, well-working decision variables will be attempted to be found by use of a 

heuristic.  

The proposed heuristic H for determining the optimal decision variables for strategy 2a, i.e. 

the various ECs and the bucket sizes, is the following: 

 

Step 1: initialize with random bucket proportions adding to 1 (c1, c2, c3) and all three ECs equal to the 

optimal EC from strategy 1a. Note that this strategy is exactly the same as strategy 1a with optimal 

EC. 

Step 2: Try to improve the EC of the highest bucket (EC3) by simulating over all values of this highest 

EC in the range of [EC2, max(SCb /m3)] by taking appropriate increments in EC3. In iteration i, EC3 is set 

to EC3i. Next, determine the optimal EC2 in the range of [EC1, EC3i]. In an equivalent manner, 

determine the optimal EC1. 

Step 3: Repeat step 2 until the relative improvement is smaller than a certain threshold value. We 

now have approximately optimal values of ECs for the current bucket proportions. 

 

Step 4: Try to improve the bucket proportions for the current ECs by simulating over all allowed 

combinations of the bucket proportions, i.e. all proportions larger than or equal to 0 and adding up to 

1, by taking appropriate increments in the bucket proportions.  

Step 5: Repeat step 4 until the relative improvement is smaller than a certain threshold value. We 

now have approximately optimal values of bucket proportions for the current ECs. 

Step 6: Repeat steps 1 to 5 any desired number of times.  

 



73 
 

Note that in each iteration of step 2 and step 4 the objective value cannot decrease, except 

due to not simulating enough runs. Also, after step 5 the heuristic will terminate in a local 

optimum, although this does not have to be a global optimum.  This is why in step 6 we 

repeat a number of times, each time with different starting bucket proportions.  

In practice, it is often observed that steps 4 and 5 are redundant and the local optimum is 

already obtained after step 3.  

No heuristics have been attempted in order to find well-working decision variables for 

strategy 2b.  

 

R1, C1: 

Using the simulation for s1a, based on 1000 runs, the best EC was found to be 209. Average 

cumulative SCb for this strategy (100.000 runs)  = 3150, standard deviation of 840. 

Using a scenario set of 200 scenarios, best time-dependent EC’s for the five periods were 

found to be (228.4082901, 233.4502628, 206.7854826, 212.8951503, 155.8775431) using 

the MIP for s1b. Simulating strategy 1b with this variable setting over 100.000 runs, an 

average cumulative SCb of 3187 is obtained with standard deviation of 818. 

Heuristic H was attempted, which resulted in EC’s of (206, 218, 236), with bucket 

proportions of (0.28, 0.51, 0.21), an average cumulative SCb of 3172 over 100.000 runs, with 

standard deviation of 837. 

 

Table 25: Comparison of performance of various bid-price 
strategies in practical cases, R1, C1 

 

R1, C2: 

Using the simulation for s1a, based on 1000 runs, the best EC was found to be 209. Average 

cumulative SCb for this strategy (100.000 runs) = 2759, standard deviation of 519.  

R1, C1 S1a S1b S2a 

Average cumulative 

SCb over 100.000 runs 

(standard deviation) 

3150 (840) 3187 (818) 3172 (837) 
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Using a scenario set of 200 scenarios, best time-dependent EC’s for the five periods were 

found to be (307.0706762, 311.1660684, 206.7854826, 209.2647161, 180.2130421). 

Simulating strategy 1b with this variable setting over 100.000 runs, average cumulative SCb 

of 2798 is obtained (standard deviation of 510). 

Heuristic H was attempted, which resulted in EC’s of (185, 207, 220), with bucket 

proportions of (0.26, 0.47, 0.27), average cumulative SCb of 2783 over 100.000 runs, 

standard deviation of 476. 

Table 26: Comparison of performance of various bid-price 
strategies in practical cases, R1, C2 

 

R1, C3: 

Using the simulation for s1a, based on 1000 runs, the best EC was found to be 209. Average 

cumulative SCb for this strategy (100.000 runs) = 1635, standard deviation of 384.  

Using a scenario set of 200 scenarios, best time-dependent EC’s for the five periods were 

found to be (268.0879678, 311.1660684, 311.1660684, 182.8760386, 209.2647161). 

Simulating strategy 1b with this variable setting over 100.000 runs, average cumulative SCb 

of 1655 is obtained (standard deviation of 391).  

Heuristic H was attempted, which did not find any strategy that worked better than a single 

EC-strategy. 

 Table 27: Comparison of performance of various bid-price 
strategies in practical cases, R1, C3 

R1, C2 S1a S1b S2a 

Average cumulative 

SCb over 100.000 runs 

(standard deviation) 

2759 (519) 2798 (510) 2783 (476) 

R1, C3 S1a S1b S2a 

Average cumulative 

SCb over 100.000 runs 

(standard deviation) 

1635 (384) 1655 (391) 1635 (384) 
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R2, C1: 

Using the simulation for s1a, based on 1000 runs, the best EC was found to be 281. Average 

cumulative SCb for this strategy (100.000 runs) = 3350, standard deviation of 974.  

Using a scenario set of 200 scenarios, best time-dependent EC’s for the five periods were 

found to be (322.6000806, 306.3608255, 282.1306833, 236.0780671, 175.8683446). 

Simulating strategy 1b with this variable setting over 100.000 runs, average cumulative SCb 

of 3418 is obtained (standard deviation of 914).  

Heuristic H was attempted, which resulted in EC’s of (236, 280, 280) with bucket proportions 

of (0.3, 0.35, 0.35), average cumulative SCb of 3370 over 100.000 runs, standard deviation of 

900. 

 

Table 28: Comparison of performance of various bid-price 
strategies in practical cases, R2, C1 

 

R2, C2: 

Using the simulation for s1a, based on 1000 runs, the best EC was found to be 237. Average 

cumulative SCb for this strategy (100.000 runs) = 2849, standard deviation of 672.  

Using a scenario set of 200 scenarios, best time-dependent EC’s for the five periods were 

found to be (322.6000806, 338.163215, 259.188750, 247.641577, 236.078067). Simulating 

strategy 1b with this variable setting over 100.000 runs, average cumulative SCb of 2884 is 

obtained (standard deviation of 680). 

Heuristic H was attempted, which resulted in EC’s of (230, 240, 290) with bucket proportions 

of (0.12, 0.67, 0.21), average cumulative SCb of 2854 over 100.000 runs, standard deviation 

of 686. 

 

R2, C1 S1a S1b S2a 

Average cumulative 

SCb over 100.000 runs 

(standard deviation) 

3350 (974) 3418 (914) 3370 (900) 



76 
 

Table 29: Comparison of performance of various bid-price 
strategies in practical cases, R2, C2 

 

R2, C3: 

Using the simulation for s1a, based on 1000 runs, the best EC was found to be 273. Average 

cumulative SCb for this strategy (100.000 runs) = 2037, standard deviation of 736.  

Using a scenario set of 200 scenarios, best time-dependent EC’s for the five periods were 

found to be (322.60008, 341.814584, 306.360825, 296.435655, 236.078067). Simulating 

strategy 1b with this variable setting over 100.000 runs, average cumulative SCb of 2121 is 

obtained (standard deviation of 759). 

Heuristic H was attempted, which resulted in EC’s of (270, 270, 355) with bucket proportions 

of (0.10, 0.10, 0.9), average cumulative SCb of 2042 over 100.000 runs, standard deviation of 

737. 

Table 30: Comparison of performance of various bid-price 
strategies in practical cases, R2, C3 

 

 

 

  

R2, C2 S1a S1b S2a 

Average cumulative 

SCb over 100.000 runs 

(standard deviation) 

2849 (672) 2884 (680) 2854 (686) 

R2, C3 S1a S1b S2a 

Average cumulative 

SCb over 100.000 runs 

(standard deviation) 

2037 (736) 2121 (759) 2042 (737) 
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Conclusions: 

We have seen that in all cases it was possible to find using a heuristic decision variables that 

improved expected cumulative SCb using s1b compared to s1a. Also, in all but one of the six 

cases it was possible to find using heuristic H decision variables that improved expected 

cum. SCb using s2a compared to s1a. In all of the six cases: the relationship 𝑜𝑏𝑗(𝑠1𝑏) >

𝑜𝑏𝑗(𝑠2𝑎) ≥ 𝑜𝑏𝑗(𝑠1𝑎) holds. This is consistent with the results from earlier theoretical 

optimization using MIPs. We will extend Table 19 with the practical results from this chapter.  

Table 31: Conclusions Chapter 9  

 Average 

improve-

ment 

from s1a 

to s1b, 

MIP 

Average 

closure of 

optimality 

gap 

between 

knapsack 

and s1a, by 

using s1b, 

MIP 

Average 

improve-

ment from 

s1a to s1b, 

using in 

practice 

Average 

improveme-

nt from s1a 

to s2a, MIP 

Average 

closure of 

optimality 

gap 

between 

knapsack 

and s1a, by 

using s2a, 

MIP 

Average 

improve-

ment from 

s1a to s2a, 

using 

heuristic 

in practice 

Average 

improvem-

ent from 

s1a to s2b, 

MIP 

Average 

closure of 

optimality 

gap 

between 

knapsack 

and s1a, by 

using s2b, 

MIP 

C1, 

average 

over two 

routes 

5.9% 46.5% 1.6% 3.4% 27.7% 0.7% 7.8% 62.5% 

C2, 

average 

over two 

routes 

7.8% 48.2% 1.3% 5.7% 43.2% 0.6% 11% 64% 

C3, 

average 

over two 

routes 

8.7% 37.8% 2.7% 2.4% 23.3% 0.2% 8% 50.9% 

 

   It is interesting to see that although average improvements are larger in comparing the 

MIP solutions than in comparing the heuristic solutions, in both the MIPs as the heuristic 

solutions, s1b performs better than s2a. Thus, the results from the two analyses are 

consistent. It would seem that s1b is stronger from a theoretical optimization standpoint 

than s1a, as well as it is easier to find well-working decision variables for s1b than for s2a. 
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Having analyzed the performance of the various bid-price strategies in depth using both 

MIPs for small instances and heuristics for large instances, the next analysis is to analyze the 

performance of the developed DP-algorithm.    
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CHAPTER 10  THEORETICAL PERFORMAN CE OF THE DP-

ALGORITHM  

First of all, the performance of the DP-algorithm will be tested in the same scenario sets as 

before, using 200 prediction scenarios.   

Table 32: Comparison of DP-algorithm objective function with 
objective function of bid-price strategies, R1 

 

 
 
 

 
 

R1, C1 S1 S2 S3 S4 S5 Average 

FCFS 2712 2594 2472 2423 2585 2519 
S1a 3155 3414 3029 2897 3521 3203 
S1b 3235 3462 3198 2998 3672 3313 
S2a 3226 3468 - 

3658 
3112 - 
3378 

3051 - 
3219 

3538 - 
3814 

3279 

S2b 3274 – 
3450 

3468 - 
3663 

3198 - 
3484 

3090- 3289 3758- 3870 3358 

DP 3179 3235 3021 2778 3535 3150 
Knapsack 3396 3488 3396 3251 3780 3462 

R1, C2 S1 S2 S3 S4 S5 Average 

FCFS 2234 2194 2623 2423 2441 2383 
S1a 
(volume) 

2527 2844 2863 2603 2971 2762 

S1a (dual 
EC) 

2983 3049 3005 2682 3068 2951 

S1b 2840 3060 3049 2718 3162 2966 
S2a 2710 - 

2869 
2883 – 
3208 

2966 - 
3176 

2730 - 
3011 

3060 – 
3376 

2870 

S2b 3009 - 
3314 

3150 – 
3382  

3134 - 
3373 

2742 – 
3040 

3190 - 
3437 

3045 

DP 2842 2945 3016 2663 2952 2884 
Knapsack 3130 3197 3273 2981 3296 3175 

R1, C3 S1 S2 S3 S4 S5 Average 

FCFS 1368 1126 1525 1286 1171 1295 
S1a 
(volume) 

1702 1743 1631 1510 1820 1681 

S1a (weight) 1702 1746 1701 1532 1848 1707 
S1b 1707 1778 1682 1548 1865 1716 
S2a 1702 1743 1643 1523 1820 1686 
S2b 1749 1781 - 

1833 
1703 1548 1865 1729 

DP 1689 1743 1745 1505 1820 1700 
Knapsack 1795 1830 1812 1594 1895 1785 
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Table 33: Comparison of DP-algorithm objective function with 
objective function of bid-price strategies, R2 

 

 

 
 
 
 

R2, C1 S1 S2 S3 S4 S5 Average 

FCFS 2975 2614 3010 2737 3005 2868 
S1a 3355 3377 3454 3756 3700 3572 
S1b 3570 3570 3617 3858 4734 3870 
S2a 3538 - 

3756 
3538 - 
3917 

3583 - 
3885 

3841 - 
4088 

4128 3726 

S2b 3579 - 
3896 

3682 - 
3948 

3619 - 
3982 

3914 - 
4097 

4991 - 
5285 

3957 

DP 3153 3277 3189 3376 3423 3316 
Knapsack 3890 3848 3835 3999 5245 4163 

R2, C2 S1 S2 S3 S4 S5 Average 

FCFS 2640 2323 2228 2392 2548 2426 

S1a 
(volume) 

3144 2847 2802  2916 2864 2915 

S1a (dual 
EC) 

3219 2980 3170 3113 3144 3125 

S1b 3280 3043 3149 3205 3094 3154 

S2a 3173 2959 2966 3104 3132 3067 

S2b 3340 – 
3750 

3092 – 
3429 

3249 – 
3598 

3144 – 
3564 

3150 – 
3643 

3195 

DP 3130 2890 2980 3050 3132 3013 

Knapsack 3518 3289 3490 3350 3479 3425 

R2, C3 S1 S2 S3 S4 S5 Average 

FCFS 1718 1633 1536 1624 1842 1671 
S1a  
(volume) 

2129 2055 2175 2218 2184 2152 

S1a (weight)  2269 2218 2444 2393 2258 2316 
S1b 2282 2337 2433 2303 2466 2364 
S2a 2182 2158 2292 2277 2330 2248 
S2b 2335 - 

2501 
2412 2467 - 

2568 
2347 - 
2547 

2610 - 
2775 

2434 

DP 1983 2134 2418 2141 1936 2122 
Knapsack 2546 2539 2757 2592 2749 2659 
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Table 34: Conclusions Chapter 10 

 

 

The DP-algorithm seems to have the most potential in a flip-flop-setting. It should be noted 

that the MIP objective value for s1a might be a bit optimistic because the EC is optimized in 

a clairvoyant manner based on a scenario set of only ten scenarios. In contrast, the DP-

algorithm is non-clairvoyant.  Thus, it might be expected that s1a will perform worse in a 

practical setting, whereas the DP-algorithm will not. This is the subject of the following 

chapter.   

 
 

Difference of DP-algorithm 
compared to s1a (volume), 
MIP 

Difference of DP-algorithm 
compared to s1a (dual EC), 
MIP 

C1, average over two routes -4.4% -4.4% 

C2, average over two routes +3.9% -2.9% 

C3, average over two routes -0.1% -4.4% 
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CHAPTER 11  NUMERICAL RESULTS FOR  THE DP-        

                                ALGORITHM IN PRACTICE                                                         

First of all, the effect of the number of prediction scenarios will be tested. One might assume 

that a larger number of prediction scenarios will lead to a more sound result. However, 

taking for instance two times as much prediction scenarios, will also increase the 

computation time by approximately a factor 2. Thus, there is some tradeoff between this 

benefit and downside.  

The R1 data will be used for testing the effect with T=20 and using capacities C3, i.e. a 

weight-constrained flight. The effect of the number of prediction scenarios will be tested 

over 100 simulation runs. Thus, there are 100 instances to be solved, and these 100 

instances have been fixed, such that the difference in objective values between the various 

settings is purely due to the strategy used and not due to differences in the profitability of 

the instance. In the DP-algorithm, we use GUROBI to solve the knapsack problems. As we do 

not have an offloading function, the model is linear.  

Table 35: Effect of number of prediction scenarios on DP-algorithm 
performance 

 1 

prediction 

scenario 

2 prediction 

scenarios 

5 prediction 

scenarios 

10 prediction 

scenarios 

50 prediction 

scenarios 

200 

prediction 

scenarios 

500 

prediction 

scenarios 

Average 

cum. SCb 

over 100 

runs 

1545 1630 1687 1695 1706 1703 1706 

Standard 

deviation 

454 401 404 404 383 392 384 

 

Note: the average cum. SCb for these 100 instances when solving the respective knapsack 

MIPs equals 1782. 

Using the best static EC of 209 from the previous section yields average cumulative SCb of 

1683 (standard deviation 384) over these 100 instances. Remember that s2a also attained 

this exact average cumulative SCb. Using the proposed strategies for s1b yielded 1693 

(standard deviation 380). As can be seen in the above table, using 10 scenarios already 

performs about the same as the time-dependent EC setting strategy. Using more scenarios 

makes the DP-algorithm perform better than the time-dependent EC setting strategy, which 

was until now consistently the best performing of the strategies for which finding practical 
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solutions was feasible, i.e. excluding s2b for which we don’t have a useful heuristic that finds 

the appropriate strategy variable settings. Note that using 50 scenarios or more is not time-

consuming at all for solving one instance. Solving one instance using 50 decision scenarios 

takes approximately 3 seconds, and note that in real-life, one would not be solving an entire 

instance at once, but making the accept/reject decision for a single request per moment of 

request, which would take even considerably less time.  

Generating a set of 1000 scenarios and using the DP-algorithm on each of these scenarios, 

using 100 prediction scenarios, the following average cumulative SCb’s are achieved. Note 

that these values will be used for comparing the DP’s performance against the heuristics 

used for determining decision variables in the cases of s1a, s1b and s2a.  

Table 36: Average cum. SCb of heuristics 

Setting 

used 

DP-algorithm S1a (EC on 

volume) 

S1a (dual 

EC) 

S1b S2a 

R1, C1 3175 3150 3150 3187 3172 

R1, C2 2880 2759 2807 2798 2783 

R1, C3 1660 1635 1649 1655 1635 

R2, C1 3301 3350 3350 3418 3370 

R2, C2 2945 2849 2890 2884 2854 

R3, C3 2089 2037 2103 2121 2045 
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In the previous table, for s1a with dual EC, the following ECs were used in the case of C2: 

Table 37: Found optimal solutions s1a with dual bid-prices 

R1, C2 S1 S2 S3 S4 S5 Median 

EC, volume 203.10868 206.785482 203.81454 200.309454 169.79182 203.1087 

 

EC, weight 0.86139453 0.86734865 0.93073148 0.953310196 0.895792134 0.895792 

 

 

R2, C2 S1 S2 S3 S4 S5 Median 

EC, volume 199.084071 202.40183 190.847394 219.224711 203.554178 202.40183 

EC, weight 1.37754403 1.3495952 1.39133961 1.39412148 1.54869963 1.39133961 

 

Interestingly enough the optimal decision variables are quite constant over the scenario sets, 

which gives some hope that the median values of the decision variables might work quite 

well in a heuristic approach. 

As the heuristic solution for s1a with dual bid-prices, the above median EC’s were be used. 
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Table 38: Conclusions Chapter 11 

 Difference 
of DP-
algorithm 
compared 
to s1a (EC 
on 
volume), 
MIP 

Difference 
of DP-
algorithm 
compared 
to s1a 
(dual EC), 
MIP 

Difference 
of DP-
algorithm 
compared 
to s1a (EC 
on 
volume), 
heuristic 

Difference 
of DP-
algorithm 
compared 
to s1a 
(dual EC), 
heuristic 

Difference 
of DP-
algorithm 
compared 
to s1b, 
heuristic 

Difference 
of DP-
algorithm 
compared 
to s2a, 
heuristic 

C1, 

average 

over two 

routes 

-4.4% -4.4% -0.3% -0.3% -1.9% -1.0% 

C2, 

average 

over two 

routes 

+3.9% -2.9% +3.9% +2.3% +2.5% +3.4% 

C3, 

average 

over two 

routes 

-0.1% -4.4% +2.0% +0.0% -0.6% +1.8% 

 

As can be seen from Table 38, although the DP-algorithm performed worse than strategy 1b 

in small instances using MIPs, it performed very well in large instances where the bid-price 

strategies’ performance dropped because of the difficulty of finding the optimal decision 

variables. In the constraint settings of C1 and C3, which are practically one-dimensional, the 

DP-algorithm performed on average marginally worse than strategy 1b with dual bid-prices, 

but in the most difficult constraint setting C2, the DP-algorithm performed on average 2.3% 

better than strategy 1b with dual bid-prices.  

 

  



86 
 

CONCLUSION  
 

In this thesis, several strategies for the booking problem in air cargo have been discussed.  

These included using static bid-prices (strategy 1a), time-dependent bid-prices (strategy 1b), 

a bucket-based strategy with static bid-prices (strategy 2a) and a bucket-based strategy with 

time-dependent bid-prices (strategy 2b) and a custom dynamic programming algorithm.  

The strategies have been tested in two settings. In the first setting, MIPs were used to 

ascertain the improvement potential in performance of the various extended strategies 

compared to the basic strategy 1a. In this setting, the instances tackled were small in order 

to be able to find close to optimal results in the MIPs. In the second setting, larger instances 

were tackled, however, this has as result that the MIPs could not be used anymore. In order 

to find well-working decision variables, heuristics were used.  

In this conclusion, the research question as posed in Chapter 2 will be answered, which was 

the following: 

 

How well does a strategy of using a single EC or bid-price perform in the booking problem 

compared to the a posteriori optimum, in terms of expected cumulative returns obtained?  Is 

it possible to increase expected cumulative returns by implementing more advanced 

strategies for the booking problem?  

 

By means of MIPs, it was found that in the most realistic capacity setting, namely pure 

volume-constrained, using time-dependent EC’s based on volume (s1b) improved average 

cumulative SCb by 3 to 18 percent compared to a strategy using a single bid-price based on 

volume (s1a), dependent on dataset used and number of requests used. The larger the 

number of requests, the larger the increase. In a realistic, non-clairvoyant, practical case, the 

respective increase using solutions obtained by heuristics was 1 to 5 percent. 

 

For a bucket-based strategy (s2a), the increases compared to s1a ranged 2 to 4 percent in 

the MIP-case and 0.6 to 0.7 percent in the heuristic case.  

Combining time-dependent ECs and buckets in s2b, the increases compared to s1a ranged 5 

to 11 percent in the MIP-case.  This corresponds to a closure of the optimality gap between 

the a posteriori optimum and strategy s1a of 60 to 65 percent. Heuristics were not 

attempted for this strategy. It should be noted that for the bucket-based strategies only 

small instances were considered, thus the maximal increase is smaller than the maximal 
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increase in the case of s1b where larger instances were also considered. On the small 

instances, increases by using s1b in the MIP-case ranged 3 to 10 percent.  

This study has confirmed that combining buckets and time-dependent EC’s leads to 

theoretically better performing strategies for a knapsack problem with stochastic requests. 

The increase in expected returns by using this strategy exceeds the individual increases by 

using the composing strategies, i.e. s1b and s2a. This shows that there is some synergy 

between the two composing strategies and that these strategies do not tackle exactly the 

same problem by different means.  

 

However, obtaining decision variables for this strategy, i.e. constant bucket proportions and 

time-dependent EC’s at the same time, that perform robustly well over changing scenarios is 

extremely difficult, even when knowing the exact distributions of request’s characteristics: 

returns and capacity requirements .Thus, the promising theoretical gains may be extremely 

difficult to achieve in practice.  

As above results show, amongst the two composing strategies, a strategy of time-dependent 

EC’s (s1b) performed better in both theoretical as practical settings than a bucket based 

strategy with static EC (s2a). Thus, it seems to hold greater potential for performance gains 

next to being much easier to determine the optimal decision variables for.  

 

In the case of a flip-flop setting, a strategy of dual bid-prices outperformed a bucket-based 

strategy in a theoretical setting, but was outperformed by strategies using time-dependent 

bid-prices based on volume only. However, well-performing dual bid-prices are not difficult 

to obtain in a heuristic manner. In practical cases, these solutions outperformed the 

heuristic solutions of both time-dependent bid-prices based on volume and a bucket-based 

strategy based on volume.  

Interestingly enough, in this setting the best performing strategy in practical cases was the 

DP-algorithm described in this thesis. This confirms the potential of this approach in 

nontrivial multidimensional problems, i.e. problems where none of the dimensions are 

redundant. Also, the DP-algorithm has negligible running times in a practical approach and 

there is no determining of optimal decision variables, such as bid-prices, involved. The 

algorithm only takes as input the current request, which is to be accepted or rejected, and 

assumed distributions of requests’ characteristics. 

In one-dimensional cases the DP-algorithm performed marginally worse than a strategy 

based on time-dependent bid-prices. 
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It was also found that in both a non-trivial two-dimensional case as in a one-dimensional 

case a strategy based on dual bid-prices is outperformed by s1b based on volume. Thus, it 

would seem that the benefit of using dual bid-prices is smaller than the benefit of using 

time-dependent bid-prices, and this could make the decision approach of determining bid-

prices simpler in practice.  

However, this result is very dependent on the specific characteristics of air cargo, namely a 

strong correlation between returns per m3 and SCb per kg due to a relatively stable density, 

and might not hold in other applications.  

 

Managerial implications: 

 

It was found that time-dependent EC-setting offered a larger increase in expected returns 

than implementing buckets, compared to a static EC-setting. Theoretically, we have found 

that combining time-dependent EC’s with buckets offers an even larger increase, but it was 

deemed too complex to find the combination of time-dependent EC’s and bucket 

proportions for this strategy. It is advised that more research is put into the setting of these 

variables before this strategy is implemented. 

 

It is not difficult to improve on a static EC-setting by implementing time-dependent EC’s. In 

this paper, a simple method of using median optimal EC’s by solving a mathematical 

program repeatedly led to EC’s that outperformed the strategy of using the optimal static 

EC.  

 

In the case where the booking problem has multiple dimensions, such as in the case of air 

cargo with weight and volume, and none of the dimensions is redundant in practice, it might 

be worthwhile to investigate the use of the DP-algorithm proposed in this paper. In 

multidimensional cases, this DP-algorithm performed even better in terms of expected 

cumulative SCb than the strategy of using time-dependent EC’s. However, this DP-algorithm 

does not use bid-prices at all and thus it can probably not easily be applied in the current 

airlines’ booking request acceptance policy.  
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DISCUSSION  

 
Various limitations exist in the research performed in this thesis, the most important of 

which are the following: 

 

- For generating requests, real-life AWB data was used. However, real-life AWB’s 

mean that these are requests that have been accepted in the past. No data was 

available on requests that had been rejected. Thus, the dataset is biased vis-à-vis the 

unknown dataset of real-life requests, in the sense that the dataset used on average 

has too high returns per capacity units. This can clearly be seen in Figure 7, where 

the class with SCb/m3 less than 100 is almost completely absent, because requests 

having this SCb/m3 were almost always rejected. However, this downside could be 

partly tackled by varying the amount of requests, as by having a dataset that is 

biased positively but taking the number of requests biased negatively, the two might 

cancel out. This was not possible in this research as the average number of requests 

per flight was also unknown. However, all used strategies benefit from this bias. If it 

is assumed all strategies benefit equally from the bias, the relative increases 

mentioned in this thesis are still exactly valid. This limitation is more a barrier for 

determining optimal bid-prices and bucket proportions in practice. ECs mentioned in 

this thesis might not be realistic or optimal in real-life because it was not possible to 

mimic the real-life setting exactly.  

- The number of requests was hold constant and was not stochastic. The number of 

requests was set at a value consistent with used capacity settings such that the flight 

would be somewhat constrained.  

- The instances analyzed were relatively small, namely 20 requests. However, results 

for strategy s1b have shown that larger instances only offered larger potentials for 

return increases in the case of more complex strategies.  

- Recourse strategies were not investigated for bid-price models. For instance, if in a 

scenario the remaining capacities at the end of the booking period were still very 

large, EC’s were kept at positive levels where it probably would be better to set 

them at zero.  
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Suggestions for further research include the following: 

 

- Extending strategies s1b, s2a and s2b to also use dual bid-prices. 

- Investigating methods to solve large MIPs faster, such as Lagrangian relaxation, 

which could especially be beneficial in the case of the MIP for strategy s2b.  

- This thesis was focused on the theoretical analysis of the increase in expected 

cumulative SCb when adapting more complex strategies than a simple bid-price 

strategy. Heuristics have been attempted in practical situations but were not the 

focus of this thesis. It is likely that better performing heuristics can be found. 

- Investigate recourse strategies. Recourse strategies might be able to further close 

the optimality gap between the analyzed bid-price strategies and the a posteriori 

knapsack optimum. It might be difficult to include recourse strategies in a MIP, but it 

is not difficult to include it in the simulation.  

- The decision rule in the DP-algorithm used was to accept a request if the expected 

remaining cumulative SCb when accepting the request was larger than when 

rejecting the request.  It is possible that the DP-algorithm would perform better 

when using a different decision rule, for instance, accepting a request if in the 

majority of future scenarios the cumulative SCb is larger in this case than when 

rejecting the request. It is not likely that this specific adjustment would perform 

better, but only one decision rule was tested.  
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APPENDIX A:  OVERVIEW OF USED NOTATION IN 

THEORETICAL MODEL (CHAPTER 5) 
 

Notation Explanation 

𝐵𝑡𝑓
𝑗

 Accepted capacity regarding dimension j in period t, flight f, if no booking was 

accepted in period i, flight f, 𝐵𝑡𝑓
𝑗

 equals 0 for all j 

𝐶𝑡𝑓
𝑗

 Cumulative expected amount of dimension j in flight f that will show up of all 

bookings booked from time T to t+1 

𝐶𝑡𝑓
𝑗𝑟

 Normalized 𝐶𝑡𝑓 
𝑗

(see page 37) 

𝐸𝑗𝑓
+  The amount of overbooked capacity of dimension j that is actually used 

f Index for flight 

Of(v, w, p) Expected offloading costs for flight f when having to offload v volume, w 

weight and p positions 

P Real amounts of positions on the flight plus any overbooked capacity if 

applicable 

𝑃𝑟𝑡𝑓 Show-up rate of customer associated with request in period t, flight f, thus 

expected proportion of requested volume, weight and positions that will 

show up, assumed constant over all dimensions 

PR Real amount of pallet positions on the flight excluding overbooking 

ptf Number of remaining pallet positions in period t, flight f 

𝑝𝑡𝑓
𝑟  Normalized ptf (see page 37) 

𝑞𝑡𝑓
𝑗

 Dimension j’s capacity requirement of period t’s booking request for flight f 

R(t, vt, wt, pt) Optimal total remaining SCb from time t to 0, where 0 is the time of 

departure, given vt remaining volume, wt remaining weight and pt remaining 

pallet positions in the flight at time t 

𝑠𝑡 SCb of request in period t 

Tf Period in which the first booking on flight f could be placed. 0 is period of 

departure 

tf Index for period, for flight f 

Vf Operational volume capacity of flight f plus any overbooked capacity if 

applicable 

VRf Operational volume capacity on flight f excluding overbooking 
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vtf Remaining volume in period t, flight f 

𝑣𝑡𝑓
𝑟  Normalized vtf (see page 37) 

Wf Real weight capacity of flight f plus any overbooked capacity if applicable. 

WRf Real weight capacity on flight f excluding overbooking. 

wtf Remaining weight in period t, flight f 

𝑤𝑡𝑓
𝑟  Normalized wtf (see page 37) 

𝑥𝑡 In MIPs: equal to 1 if request in period t accepted, 0 otherwise 

 

 

 

  



94 
 

APPENDIX B:  DEFINITIONS AND ABBREVIATIONS  

Air-way bill (AWB): A document storing information related to a piece of cargo (including its 

weight, volume, SCb and date). [29] 

Chargeable weight: the weight used in pricing calculations, as opposed to actual weight. The 

chargeable weight of indense goods is corrected to make up for their relatively large volume.  

Constrained flight: A flight that is (very close to) full on one of the capacities. 

Days of week (DoW): weekdays, the different possible days in a week to fly a flight.  

Entry condition (EC): Threshold condition for SCb set by Revenue Management. If SCb for a 

segment is lower than the EC for that segment, the quote is generally rejected.  

 

FCFS: First-come-first-served, equal to an EC-setting with EC of zero.  

 

Flip-flop flight: constraint setting C2, i.e. a flight that is sometimes volume constrained, 

sometimes weight constrained.  

 

Forwarder: Direct customers of cargo airlines, acting as intermediaries between airlines and 

end customers.  

Interline: A segment of a shipment carried by a different airline than the shipping airline, for 

a fee paid by the shipping airline.  

Itinerary: the exact travel route from point A to B, including transshipment points and modes 

of transport. 

Operational volume: the volume that a good practically takes up, which is potentially 

different from its water volume (for instance, due to restrictive stacking rules).  

Rock-bottom entry condition: The lowest possible level of entry condition, equal to that 

flight’s variable costs plus a safety margin. Usually used for low-demand flights.  

Shipment:  A combination of a specification of cargo and an itinerary. 

Shipment contribution (SCb): an airline’s specification of contribution margin for a segment, 

consisting of the sum of revenues and surcharges, after deducting variable costs. 



95 
 

Additional Shipment Contribution: equal to a flight offer’s price minus that flight’s entry 

condition. If this value is positive in principle the offer is accepted and if negative it is 

rejected. However, this decision rule might not be optimal.  
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APPENDIX C:  PSEUDOCODE FOR ALGORITHMS  
 

Algorithm 𝑆𝑓
1: 

This algorithm finds all states to be visited in order to evaluate 𝑅𝑓(𝑡, 𝑣𝑡𝑓, 𝑤𝑡𝑓, 𝑝𝑡𝑓,𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
) in a 

matrix Sf. The algorithm also takes Sf as input and an index in.  Sf should be initialized to Sf = 

[𝑡, 𝑣𝑡𝑓 , 𝑤𝑡𝑓,  𝑝𝑡𝑓, 𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
] and in to 1.   

 

Algorithm 1: 𝑺𝒇
𝟏 

Note that states for which 𝑣𝑡𝑓, 𝑤𝑡𝑓 and/or 𝑝𝑡𝑓  are negative are not added. These states 

always have expected remaining SCb of minus infinity, so they do not need to be kept track 

of individually. 

 

 

 

Algorithm 𝑆𝑓
1 

Input: 𝑡, 𝑣𝑡𝑓 , 𝑤𝑡𝑓 , 𝑝𝑡𝑓 , 𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
,  Sf, in 

Output:  Sf 

 

if t>0   

 if row [𝑡 − 1, 𝑣𝑡𝑓 , 𝑤𝑡𝑓, 𝑝𝑡𝑓 , 𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
] not yet in Sf  

  Sf := 
𝑆𝑓

[𝑡 − 1, 𝑣𝑡𝑓 , 𝑤𝑡𝑓 , 𝑝𝑡𝑓 , 𝐶𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 , 𝐶𝑡𝑓
𝑝
]
  

               endif 

               if t > 0 and  𝑣𝑡𝑓 −𝐵𝑡𝑓
𝑣 ≥ 0 and 𝑤𝑡𝑓 −𝐵𝑡𝑓

𝑤 ≥ 0 and 𝑝𝑡𝑓 − 𝐵𝑡𝑓
𝑝
≥ 0   and row                   

 [𝑡 − 1, 𝑣𝑡𝑓 − 𝐵𝑡𝑓
𝑣 , 𝑤𝑡𝑓 − 𝐵𝑡𝑓

𝑤 , 𝑝𝑡𝑓 − 𝐵𝑡𝑓
𝑝
, 𝐶𝑡𝑓

𝑣 + 𝑃𝑟𝑡𝑓𝐵𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 + 𝑃𝑟𝑡𝑓𝐵𝑡𝑓
𝑤 , 𝐶𝑡𝑓

𝑝
+ 𝑃𝑟𝑡𝑓𝐵𝑡𝑓

𝑝
]   

not yet in Sf                                        

  Sf := 

𝑆𝑓

                             [𝑡 − 1, 𝑣𝑡𝑓 − 𝐵𝑡𝑓
𝑣 , 𝑤𝑡𝑓 − 𝐵𝑡𝑓

𝑤 , 𝑝𝑡𝑓 − 𝐵𝑡𝑓
𝑝
, 𝐶𝑡𝑓

𝑣 + 𝑃𝑟𝑡𝑓𝐵𝑡𝑓
𝑣 , 𝐶𝑡𝑓

𝑤 + 𝑃𝑟𝑡𝑓𝐵𝑡𝑓
𝑤 , 𝐶𝑡𝑓

𝑝
+ 𝑃𝑟𝑡𝑓𝐵𝑡𝑓

𝑝
]
 

                endif  

endif  

if in ≤ number of rows of Sf 

 Sf := 𝑆𝑓
1(Sf(in, :), Sf, in+1)         *** where Sf(i, :) is the i-th row of Sf 

endif 
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Algorithm 𝑆𝑓
2: 

 

Algorithm 2: 𝑺𝒇
𝟐 

  

Algorithm 𝑆𝑓
2 

Input: 𝑡, 𝑣𝑡𝑓
𝑟 , 𝑤𝑡𝑓

𝑟 , 𝑝𝑡𝑓
𝑟 , 𝐶𝑡𝑓

𝑣𝑟 , 𝐶𝑡𝑓
𝑤𝑟 , 𝐶𝑡𝑓

𝑝𝑟
,  Sf, Vf, 𝑊𝑓 , 𝑃𝑓, in 

Output:  Sf 

If t>0  

 if row [𝑡 − 1, 𝑣𝑡𝑓
𝑟 , 𝑤𝑡𝑓

𝑟 , 𝑝
𝑡𝑓
𝑟 , 𝐶𝑡𝑓

𝑣𝑟, 𝐶𝑡𝑓
𝑤𝑟, 𝐶𝑡𝑓

𝑝𝑟] not yet in Sf    

  Sf := 
𝑆𝑓

[𝑡 − 1, 𝑣𝑡𝑓
𝑟 , 𝑤𝑡𝑓

𝑟 , 𝑝
𝑡𝑓
𝑟 , 𝐶𝑡𝑓

𝑣𝑟, 𝐶𝑡𝑓
𝑤𝑟, 𝐶𝑡𝑓

𝑝𝑟] 
  

               endif 

              if 𝑣𝑡𝑓
𝑟 − 

𝐵𝑡𝑓
𝑣

𝑉𝑓
≥ 0 and 𝑤𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑤

𝑊𝑓
≥ 0 and 𝑝𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑝

𝑃𝑓
≥ 0  and row       [𝑡 − 1, 𝑟 (𝑖, 𝑣𝑡𝑓

𝑟 −      
𝐵𝑡𝑓
𝑣

𝑉𝑓
) , 𝑟 (𝑗, 𝑤𝑡𝑓

𝑟 −

                 
𝐵𝑡𝑓
𝑤

𝑊𝑓
) , 𝑟 (𝑘, 𝑝𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑝

𝑃𝑓
) , 𝑟(𝑙, 𝐶𝑡𝑓

𝑣𝑟 +
𝑃𝑟𝑡𝐵𝑡

𝑣

𝑉𝑓
) , 𝑟(𝑚, 𝐶𝑡𝑓

𝑤𝑟 +
𝑃𝑟𝑡𝐵𝑡

𝑤

𝑊𝑓
), 𝑟(𝑛, 𝐶𝑡𝑓

𝑝𝑟
+
𝑃𝑟𝑡𝐵𝑡

𝑝

𝑃𝑓
)] not yet in Sf 

  Sf :=  

 

𝑆𝑓

[𝑡 − 1, 𝑟 (𝑖, 𝑣𝑡𝑓
𝑟 − 

𝐵𝑡𝑓
𝑣

𝑉𝑓
) , 𝑟 (𝑗, 𝑤𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑤

𝑊𝑓
) , 𝑟 (𝑘, 𝑝𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑝

𝑃𝑓
) , 𝑟(𝑙, 𝐶𝑡𝑓

𝑣𝑟 +
𝑃𝑟𝑡𝐵𝑡

𝑣

𝑉𝑓
) , 𝑟(𝑚, 𝐶𝑡𝑓

𝑤𝑟 +
𝑃𝑟𝑡𝐵𝑡

𝑤

𝑊𝑓
), 𝑟(𝑛, 𝐶𝑡𝑓

𝑝𝑟
+

𝑃𝑟𝑡𝐵𝑡
𝑝

𝑃𝑓
)]

 

                endif 

endif  

if in ≤ number of rows of Sf 

 Sf := 𝑆𝑓
1(Sf(i, :),  Sf, in+1)         *** where Sf(i, :) is the i-th row of Sf 

endif 
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 Algorithm 𝑅𝑓
2: 

 This algorithm augments matrix Sf with an eighth column representing the expected 

remaining SCb function for the corresponding row’s state.  

 

 

Algorithm 3: 𝑹𝒇
𝟐 

  

Algorithm 𝑅𝑓
2 

Input: Sf 

Output:  Sf 

 

in = number of rows of Sf 

while in > 0  

               t = Sf(in, 1) 

  if t = 0 

  Sf(in, 8) = −O(Sf(in, 5)Vf – VRf , Sf(in, 6)Wf  −  WRf, Sf(in, 7)Pf  −  PRf) 

 else 

  a = -∞ 

  if row [𝑡 − 1, 𝑟 (𝑖, 𝑣𝑡𝑓
𝑟 − 

𝐵𝑡𝑓
𝑣

𝑉𝑓
) , 𝑟 (𝑗, 𝑤𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑤

𝑊𝑓
) , 𝑟 (𝑘, 𝑝𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑝

𝑃𝑓
) , 𝑟(𝑙, 𝐶𝑡𝑓

𝑣𝑟 +

                                    
𝑃𝑟𝑡𝐵𝑡𝑓

𝑣

𝑉𝑓
) , 𝑟(𝑚, 𝐶𝑡𝑓

𝑤𝑟 +
𝑃𝑟𝑡𝐵𝑡𝑓

𝑤

𝑊𝑓
), 𝑟(𝑛, 𝐶𝑡𝑓

𝑝𝑟
+
𝑃𝑟𝑡𝐵𝑡𝑓

𝑝

𝑃𝑓
)] exists in Sf              

                                                a = 𝑠𝑡𝑓 + S(corresponding row index,  8) 

  endif 

                             index = row index of [𝑡 − 1, 𝑣𝑡𝑓
𝑟 , 𝑤𝑡𝑓

𝑟 , 𝑝
𝑡𝑓
𝑟 , 𝐶𝑡𝑓

𝑣𝑟, 𝐶𝑡𝑓
𝑤𝑟, 𝐶𝑡𝑓

𝑝𝑟] in Sf 

                             b = Sf(index, 8) 

  Sf(in, 8) = max (𝑎, 𝑏)  

 endif 

 in := in-1 

endwhile 

  

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              



99 
 

Algorithm 𝐴𝑓
2:  

 

This algorithm augments matrix Sf with a ninth binary column with a value equaling one if in 

the revenue-optimizing strategy the offer at time t should be accepted, 0 otherwise. Note 

that for t=0, the value is arbitrarily set to zero, because there is no offer at this time.  

 

 

Algorithm 4: 𝑨𝒇
𝟐 

  

Algorithm 𝐴𝑓
2 

Input: Sf 

Output:  Sf 

 

Sf(:,9) = 0 

in = last row index of Sf for which t ≠  0 

while in > 0  

 index = row index of Sf for which Sf(index, 1) = Sf(in, 1) – 1 and Sf(index, q) =         

               Sf(in, q) for q = 2,3…, 7.  

 if Sf(index, 8) ≠ Sf(in, 8) 

  Sf(in, 9) = 1 

 endif 

 in = in-1 

endwhile 
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Algorithm 𝐷𝑓
2: 

 

The following algorithm outputs a T-length binary vector with the t-th position equaling 1 if 

the offer at time t should be accepted, 0 otherwise. 

 

Algorithm 5: 𝑫𝒇
𝟐 

 

Algorithm 𝐷𝑓
2 

Input: Sf 

Output:  Df 

Index = 1 

Df = empty T-vector 

for t = 1:T  

 in = row index of row of first seven columns of Sf for which Sf(in,1) = Sf(index,1) -1       

              and Sf(in,i) = Sf(index,i) for i = 2,3, …., 7. 

 inn = row index of row of Sf for which the first seven columns equal [𝑡 −

                  1, 𝑟 (𝑖, 𝑣𝑡𝑓
𝑟 − 

𝐵𝑡𝑓
𝑣

𝑉𝑓
) , 𝑟 (𝑗, 𝑤𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑤

𝑊𝑓
) , 𝑟 (𝑘, 𝑝𝑡𝑓

𝑟 − 
𝐵𝑡𝑓
𝑝

𝑃𝑓
) , 𝑟(𝑙, 𝐶𝑡𝑓

𝑣𝑟 +

                                    
𝑃𝑟𝑡𝐵𝑡𝑓

𝑣

𝑉𝑓
) , 𝑟(𝑚, 𝐶𝑡𝑓

𝑤𝑟 +
𝑃𝑟𝑡𝐵𝑡𝑓

𝑤

𝑊𝑓
), 𝑟(𝑛, 𝐶𝑡𝑓

𝑝𝑟
+
𝑃𝑟𝑡𝐵𝑡𝑓

𝑝

𝑃𝑓
)] (set inn = 0 if the row does not      

              exist) 

 if Sf(index,9) = 1 

                 Df(t) = 1 

     index = inn 

 else 

    Df(t) = 0 

     index = in 

endif 

endfor 
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