
Erasmus University Rotterdam

Master Thesis
Operations Research and Quantitative Logistics

Allocation of maritime assets in
surveillance missions

Author:
B.B. van Genderen
Studentnumber 323963

Supervisors:
Erasmus University Rotterdam

Dr. D. Huisman
TNO

Ir. J.F.J. Vermeulen

november 2013

Abstract

This thesis presents a way to optimize the allocation of surveillance units in an anti
piracy mission. Because of the many similarities with search theory we have used the yet
available research in this field to solve this problem. We assume that the total area to
be surveyed consists of a finite set of non-overlapping subareas to which we can assign
our surveillance units. We assume that the time during which we have to allocate our
units consists of a finite set of periods with equal length. In these periods each of our
surveillance units can be assigned to exactly one area. We introduce a measure indicates
the risk (of pirate attacks) in a certain area. With respect to this value we try to optimize
the allocation of our units, taking transit times between areas into account. In this
thesis we use CPLEX to solve a mixed-integer linear formulation. We also consider two
metaheuristics, namely cross-entropy and simulated annealing. The methods were tested
on a variety of problems. CPLEX was able to solve most of these problems, except
the larger ones. Simulated annealing finds near optimal solutions and is able to find a
solution for all cases. Cross-entropy finds near optimal solutions for the small cases, but
when increasing the number of periods it is unable to still find good solutions.

1

Contents

1 Introduction 3

2 Problem Description 4

3 Literature Survey 8

4 Mathematical Formulation 11
4.1 Network Formulation - NMSP . 11
4.2 Network Formulation - MSP . 14
4.3 Linear Formulation . 14

4.3.1 Identical Searcher NMSP . 15
4.3.2 Identical Searcher MSP . 16
4.3.3 Different Searcher NMSP . 18
4.3.4 Different Searcher MSP . 19

5 Solving NMSP and MSP 21
5.1 Network Formulation . 21

5.1.1 Cross-Entropy Method . 21
5.1.2 Simulated annealing . 23

5.2 Linear Formulation . 25

6 Results 26
6.1 Setting the parameters . 27
6.2 Identical Searcher . 28

6.2.1 NMSP . 28
6.2.2 MSP . 29

6.3 Different Searchers . 30
6.3.1 NMSP . 30
6.3.2 MSP . 30

7 Conclusion and Recommendations 32

8 Literature 34

9 Appendix 35
9.1 Appendix A - List of Definitions . 35
9.2 Appendix B - Variations . 36

9.2.1 Cells . 36
9.2.2 Risk reduction . 36

2

1 Introduction

Maritime surveillance is surveillance of the sea or other waters. This type of surveillance is
like any other type, often done to prevent illegal activities. On the water common examples
of such activities are smuggling, illegal fishing and piracy. This thesis focuses on the latter
one.

When talking about pirates most people think about tough men with eye patches and
peg legs that lived centuries ago, however during the last decades piracy has again become a
serious problem. Modern piracy mainly takes place near the coast of Somalia, in the Indian
Ocean, the Gulf of Oman and in several other places. The targets of pirates are often cargo
ships. These ships continuously pass through the area infected with pirates. The pirates
use small high speed boats to approach the ships. Their goal is to hijack these cargo ships
and demand a ransom. In a report by the world bank it was estimated that piracy costs
the global economy up to 18 billion US dollars each year. Apart from the negative economic
effect, piracy also endangers the lives of the crew on the cargo ships.

To encounter pirates and prevent attacks, several countries have located maritime units
in the piracy zones. These units survey the area and deal with any pirates encountered. The
effectiveness of these maritime units partly depends on the location in which they are active.
Therefore this location should be chosen wisely. To maximize the effect of our maritime units
we should optimize the allocation. This optimization will be the focus of this thesis. We will
develop a model which is able to allocate maritime units such that the effect of their units is
maximized.

Our goal however, is not to maximize the amount of pirates that we catch. We only want
to catch pirates when they are actually able to attack ships, or preferably pirates that are
near victims to prevent attacks. We start with a definition of the problem in sections 2,
then we continue with a survey of the relevant literature in Section 3. After discussing the
literature we give a mathematical formulation of the problem in Section 4. The methods that
we will use to solve the problem are explained in Section 5. The results and the conclusion
are given in section 6 and 7.

3

2 Problem Description

In this thesis we investigate the allocation of maritime units in maritime surveillance missions.
In these missions the navy is often operating in a large area. We will refer to this area as
the Area of Operations (AOO). An example of an AOO is given in Figure 1. There are
different causes for problems in the AOO. The main cause of these problems is the presence
of pirates. These pirates frequently attack so called white vessels that pass through the area.
Other causes of trouble are for example illegal fishing and smuggling. By doing maritime
surveillance they navy wants to prevent the malicious activities that take place inside their
AOO. In this thesis we will focus on piracy, however other factors such as illegal fishing and
smuggling could be incorporated in the model as well.

Figure 1: The Gulf of Oman with an example of the AOO

To protect the AOO, several maritime units or assets are available. Examples of such
assets are Frigates, UAVs and Helicopters. These assets do not work individually but are
grouped in so called task groups. The compositions of the task groups are fixed, however
different task groups may have different capabilities. Some task groups could contain more
assets and are therefore more effective in protecting the sea, while some task groups may be
faster and are therefore able to travel to other areas in a shorter time. The totality of all task
groups forms the task force.

We divide the total AOO into smaller areas, to which we will refer as cells, as can be seen
in Figure 2. Furthermore we divide the total period for which we want to make a planning for
our task groups into periods of equal length. In each period, each task group will be assigned
to exactly one cell. This is also called the Area of Responsibility (AOR) of a task group. The
task groups may not operate in the same cell during the same period. Task groups are allowed
to stay in a cell during consecutive periods. If a task group is assigned to a different cell in
the next period a transit time must be taken into account. This transit time is equal to the
distance between the centers of the two areas divided by the average speed of the task group.
It is impossible to consecutively visit two areas with a transit time that exceeds the length of

4

Figure 2: A cell structure over the Area of Operations

one period. The transit possibilities for a task group are visually explained in Figure 3. A
certain task group is positioned in the cell with the red dot. Its average speed per period is
equal to two times the length of a cell. The green circle, which has a radius of 2 cell lengths,
represents the area that can be reached in the following period. All possible locations for the
next period are given by the black dots.

Figure 3: Example of task groups transit possibilities

To make an optimal assignment of task groups to cells we need to define a measure that
tells us what benefit we can gain from assigning task groups to cells. Therefore we will first
clarify the situation inside the areas. A cell may contain several pirates. These pirates move
regularly to different places or back to the coast. We will however not model the behavior
of these pirates. Instead we assume that there is a so-called threat map of the whole AOO,
indicating the average amount of pirate activity in each cell within the AOO. This map
indicates where the pirates are often located. As stated before, pirates are not of any interest
as long as there is no white vessel in their neighbourhood. Therefore we will also include
information about the white vessels in our data. The movements of white vessels through

5

our AOO are assumed to be known. The two sources of information are combined into the
so-called risk map. The risk map holds a value for each cell in the AOO, for each period. This
value is high if a cell has both high pirate activity and a lot of white vessels passing through
this cell. The risk value in a cell will be referred to as the Risk Density (RD) of a cell. The
value of the threat map is assumed to be the same during the whole period, however the
movement of white vessels changes each period. Therefore the RD in a cell can also change
every period.

The RD can be seen as the risk in a cell that we can prevent - or the profit that we can
gain - by visiting this cell. Note that we cannot always prevent the full risk, thus not gain the
full value of the RD when assigning a task group to a cell. This is explained by the fact that
we cannot perfectly protect some cell, even if we assign a task group to it. We will introduce
a measure of effectiveness (MOE) that indicates how good we prevent the risk in some cell,
or which percentage of the RD we will gain when visiting some cell. This measure depends on
the capabilities of a task group such as speed. It will also depend on the time that the task
group is spending in this cell during the period. The time that a Task Group can spend in
the cell is equal to the length of the period minus the transit time from the previous location
to this cell.

We will now differentiate between two versions of the problem. In the first version we
assume that the pirate activity does not change after a task group has visited a cell. Visiting
a cell only reduces the risk in the current period. We will refer to this problem as the Non-
reactive Multiple Searcher Problem (NMSP). In the second variation we assume that a task
group also neutralizes the pirates in some area. Therefore visiting a cell no longer only reduces
the risk in the current period, but also in the following period. In this thesis we will assume
that if a task group visits a cell in period t, the risk in that cell in period t + 1 will be
completely reduced. In period t+ 2 the risk in this cell will be normal again. We will refer to
this problem as the Multiple Searcher Problem (MSP). Example 2.1 clarifies the idea of the
MSP.

6

Example 2.1 Consider an AOO which is divided into three cells, a time horizon of three
periods and a single task group. Figure 4 represents this situation. The left column shows
the initial RD values in the different cells for all three periods. This value does not take into
account which cells we are going to visit. We will assume that the MOE of our task group is
equal to 1 multiplied by the time that a task group spends in a cell. E.g. if a task group spends
half a period in a cell the risk in this cell is reduced with 50% during this period. Furthermore
we will assume that our task group takes half a period to travel from a cell to the neighbour
cell. Our task group starts in the left cell.

Say we choose to stay in the left cell at t = 1. Since we do not have to travel to reach
this cell we can spend the total period in this cell, resulting in a MOE of 1. This means we
reduce the RD at t = 1 in the left cell by 100%. We also reduce the RD in the left cell at
t = 2 with 100%. In terms of the objective function we gain 10+20 = 30. Say we move to the
central cell at t = 2. Now we first need to travel to this cell, which will cost us half a period.
Our MOE is equal to 0.5 so we reduce 50% of the risk in this cell in the second period. We
also reduce the RD in the following period with 100%. The objective value is increased with
0.5× 40 + 20 = 40. This process continues until we have chosen a location for all periods.

Initial risk Updated risk

t = 1

t = 2

t = 3

10 20 0

20 40 5

40 20 10

0 20 0

0 20 5

40 0 10

Figure 4: RD reduction example

We have made various assumptions in the problem description. In appendix B we present
some variations on the assumptions that we made. These variations might be useful when
facing a real surveillance mission or when facing other types of surveillance missions.

7

3 Literature Survey

The problem that we are facing in this thesis is closely related to search theory. Therefore a
brief overview of the important literature in this field is given in this section. Search theory
has been studied for several decades and finds its origin in the second world war. In a typical
problem of search theory, one or more searchers and one or more targets are considered.
The searcher searches the area, in which the target is assumed to be, for a certain amount
of time. This area is simplified to a grid with a finite number of cells, similar as in Figure
2. Furthermore the time is divided into discrete time periods. In each period the searcher
searches in one of the cells in the area. A distinction can be made between search for static
and dynamic targets. In the static case, the target remains in the same position, and in the
dynamic case the target moves through the AOO according to a probability distribution. In
most related papers the target is assumed to move according to some probability distribution.
There are various paths which the target can take with given probabilities. A path is a
sequence of cells that are visited by the target. The target is assumed to be in exactly one
cell in each period. Since the possible paths and their probabilities are known we can calculate
for each period the probability that the target is in a certain cell, or its location probability.
The searcher wants to maximize the probability of detecting the target. Therefore we try
to find a path for the searcher with the highest cumulative detection probability. Note that
both the searcher and the target stay in exactly one cell per time period.

If one of the searchers visits a certain cell and he does not observe the target it becomes
less likely that the target has taken any path in which he would visit that cell during that
period. This conditionality is also incorporated in most of the research in search theory.

The sketched scenario for a typical search theory problem has many similarities with our
problem. We also divide our area into a finite number of cells, and our total period into
smaller periods of equal length. We assign each of our task groups - searchers - to exactly
one cell per period. Furthermore we try to maximize some objective value which depends on
the cells we choose to visit. This objective value is no probability function, describing the
location probability of our target(s), but a risk value. Similar to the searcher problem the
risk values are known from the beginning. As explained in the problem description and in
example 2.1, the risk value in a cell also depends on the earlier visits of cells in the MSP,
which is similar to the conditional location probability. Therefore the form of the problem is
similar to the searcher problem.

Eagle (1984) faced the searcher problem which is described above for a single searcher
and a single target. Both the searcher and the target are restricted to move only to ad-
jacent cells in consecutive periods. Eagle ignored the conditional location probability. He
presented a dynamic programming approach which is able to solve a 9 cell, 10 period problem
to optimality. Eagle and Yee (1990) faced the same problem again but included the condi-
tional location probability. They extended a branch-and-bound method which was initially
presented by Stewart (1979). The bounds are obtained by solving a relaxed nonlinear formu-
lation of the problem. Again optimal solutions were realized for small problem instances and
the computation time was reduced.

Martins (1993) also investigates this problem. He solved the problem, using a branch-
and-bound method just like Eagle and Yee, however instead of relaxing the constraints in the
problem, he relaxed the objective function. Instead of maximizing the probability of detection
he maximized the expected number of detections. The expected number of detections is an
upper bound on the probability of detecting a target. The computation speed of the branch-

8

and-bound procedure was improved.
More complex search theory focuses on finding a single target with multiple searchers.

Dell et al. (1996) investigated this problem for up to three searchers. They made the same
assumptions with respect to the movement of the target and the searchers as was done by
Eagle and Yee (1990). Dell et al. formulated the problem as a directed graph, where the
nodes represent the locations of all the searchers. By defining the nodes as the location
of all searchers, the problem can easily be applied to both single- and multiple searcher
problems. Several heuristics were compared in solving this problem. Dell used Local search,
a heuristic presented by Martins (1993) as well as an improved version of this heuristic, a
Genetic Algorithm, a Genetic Algorithm which uses the results from the other heuristics and
a moving horizon heuristic. Last but not least the branch-and-bound method by Eagle and
Yee was extended for multiple searchers and used as a benchmark. For larger instances of the
problem only the heuristic by Martins and the Genetic algorithm were able to find solutions
within a reasonable time. This research showed that the branch and bound method which
produces optimal solutions for smaller instances is not effective for solving large problem
instances.

Sato (2008) continued the research for the multiple searcher problem, single target prob-
lem. He used a new branch and bound method and two different heuristics to solve the
problem. The branch and bound method was not sufficient to solve larger instances (more
than two searchers) of the problem, but it obtained optimal solutions for smaller instances.
The first heuristic, based on the heuristic by Martins (1993), was able to find high quality so-
lutions in a short time, however it was unable to solve large problems. The second heuristic, a
cross-entropy method (CE), finds near optimal solutions in a relatively short time. The cross-
entropy method, introduced by Rubinstein (1997,1999), is a metaheuristic that randomly
generates paths for the searchers. The paths are made by selecting a move from one cell to
another with a certain probability until the path is complete. The probability of selecting a
move depends on the quality of earlier solutions using this move. The method keeps record of
the Melite best paths found so far, called the elite sample. If many paths in the elite sample
use a certain move, the chance is high, if few or none of these solutions contains the move, it
will be low.

Sato and Royset (2010) present a new way to view the multiple searcher problem. In this
research the problem was extended and transit times between cells were included. The prob-
lem was formulated as a mixed-integer nonlinear problem for the multiple searcher, multiple
target problem. They also presented a linear formulation for the multiple searcher, single
target problem. This formulation however requires all searchers to be identical. Several cut-
ting plane techniques as well as some other solvers, among which CPLEX, were applied. The
developed cutting plane techniques were able to solve large problems to (near) optimality.
The CPLEX solver performed best in situations with a small amount of searchers.

In our research we will consider two different scenarios. The first scenario, NMSP, is similar
to a Multiple Searcher Single Target problem where the conditional location probabilities are
ignored. The second scenario, MSP, is similar to a common Multiple Searcher Single Target
problem where the conditional location probabilities are included. Different from earlier
research we allow searchers to travel between non adjacent cells. Furthermore we include a
transit time between cells, which has only been done by Sato and Royset (2010).

In our research we will apply several techniques to solve the problem. We will use the cross-
entropy method as is done by Sato (2008). Furthermore we will also use simulated annealing
(SA) by Kirkpatrick et al. (1983), which has never been applied to a (multiple) searcher

9

problem. Last but not least we will introduce a new linear formulation of the problem, which
is an extension of the linear formulation in Sato and Royset (2010). In contrary to their linear
formulation our formulation does not require the searchers to be identical.

10

4 Mathematical Formulation

In this section we introduce two different mathematical formulations for the problem that we
have described in section 2. The first one is a network formulation with nodes and weighted
directed arcs. The second formulation is a linear formulation of the problem. We start with
the network formulation for the NMSP, which is based on the Multiple Searcher Problem
by Sato (2008). All mathematical notations that are used in this formulation are presented
below.

4.1 Network Formulation - NMSP

Sets
C = {1, . . . , C} set with all cells in the AOO
J = {1, . . . , J} set with all task groups
T = {1, . . . , T} set with all time periods

Graph
G = (N ,A) a weighted directed acyclic graph
N ⊆ CJ × T set of all nodes, where CJ is a J-dimensional set of cells
A ⊆ N ×N set of all arcs
F(n) ⊆ N set of all nodes that can be reached from node n ∈ N

Parameters
dj,c,c′ time in periods between cells c ∈ C and c′ ∈ C for task group j ∈ J
rc,t risk density in cell c ∈ C at time t ∈ T
nj the cell belonging to task group j ∈ J in node n ∈ N
t(n) the time period belonging to node n ∈ N
w(n, n′) the weight on the arc between node n ∈ N and n′ ∈ N
αj the effectiveness of task group j ∈ J

Variables
Pt a path through the graph G from period 0 to period t ∈ T

Function
gj(c, c

′) reduction for task group j ∈ J in cell c ∈ C from cell c′ ∈ C
z(Pt) the objective function for a path Pt

The set of all task groups is represented by J . These task groups are available for surveying
the total AOO. The AOO consists of a finite number of cells represented by the set C. The
total planning period consists of a finite number of periods, represented by the set T . We
introduce the parameter dj,c,c′ , the time in periods that task group j ∈ J requires to go from
the center of cell c ∈ C to the center of cell c′ ∈ C. The risk density in cell c in period t is
represented by rc,t. We introduce a function gj(c, c

′) as can be seen in equation (1), which
indicates the percentage of the risk we prevent if task group j ∈ J visits cell c′ from cell c.
This function may take any form, however we have decided to simply define it as the effective
time that we spend in the cell times the effectiveness, αj , of task group j. The time we spend

11

in cell c′ if we visit it after we visited cell c is equal to 1 minus the travel time between cell c
and cell c′ in periods.

gj(c, c
′) = (1− dj,c,c′)αj (1)

We model the problem with a weighted directed acyclic graph G = (N ,A) . The nodes n ∈
N represent the location of the task groups at some point in time. Therefore N ⊂ (CJ × T).
The arcs (n, n′) ∈ A represent the movement from the cells belonging to n at time t to the
cells belonging to n′ in period t + 1. In other words the arcs represent the movement of the
task groups. Note that an arc is only defined if the transition from one location to another is
possible within one period for all task groups. The nodes that can be reached from a certain
node n are given by F(n). In the graph we also include a beginning node and a terminal
node, representing the location of the task group before and after the planning period. We
introduce the notation nj representing the cell to which the jth task group is assigned to if
node n is chosen. Furthermore we introduce t(n) representing the time corresponding to node
n.

If we would consider an AOO with 3 cells and 2 task groups there would be several different
ways to allocate our task groups. The different possibilities, six in total, are shown in Figure
5. We have also created the network that belongs to this situation if we would consider 5
consecutive periods. This network is shown in Figure 6. In this network all nodes within a
certain period can reach all nodes in a consecutive period. This will not always be the case.
If we would only allow the task groups to travel a distance of 1 cell length in a single period, a
task group could not travel from cell 1 to cell 3 at once. As result the node that corresponds
to situation 1 in Figure 5 would not be connected to the node that corresponds to situation
5 or 6.

1 2

3 4

5 6

Figure 5: Example of all the different situations for a three-cell, two searcher situation

12

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

n0 nterm

Figure 6: a Directed Network

The weights on the arcs represent the profit, or risk reduction, that is obtained by going
from some allocation of the task groups to the allocation in the next period. Let the weight
on an arc (n, n′) be denoted by w(n, n′). The weights are calculated by multiplying the risk
density in the cells that will be visited with the measure of effectiveness of the task group
that is assigned to the cell, see equation (2).

w(n, n′) =
∑
j∈J

rn′j ,t(n′)gj(nj , n
′
j) (2)

A planning for the total period can be represented by a path along the graph from begin-
ning to end. The total risk reduction of such a path is given by the sum of the weights on
the arcs along the path. We denote a path from period 1 to period t by Pt. The node which
is visited at time t′, t′ = 0, . . . , t, in path Pt is given by Pt(t′). The profit of such a path is
given by z(Pt), see equation (3). We want to find the path with the highest value for z(PT).
Therefore the problem is defined as shown in equation (4).

z(Pt) =

t∑
i=1

w(Pt(i− 1),Pt(i)) (3)

NMSP = max z(PT) (4)

13

4.2 Network Formulation - MSP

For the MSP we will need to make a few adjustments to the NMSP formulation. In the NMSP
a task group reduces the risk in the current period if it visits a cell. In the MSP a task group
reduces the risk in the current period but also in the following period when it visits a cell.
The risk in the current period is reduced in the same way as in the NMSP. The risk in the
following period is reduced completely. The risk in a cell now depends on the locations of the
task groups in the previous period. Namely, if a cell was visited in the previous period, the
risk is equal to zero. Else it is equal to rc,t. To incorporate this in the model we introduce
r̂c,t|Pt−1, the risk density in cell c at time t, given a subpath Pt−1. We will simply denote
this by r̂c,t, however note that this value is conditional to Pt−1, see equation (5). We also
introduce an indicator function I(c,Pt(t − 1)) which is equal to 1 if one of the task groups
visited cell c in period t−1 and 0 else in the chosen subpath. The new function for the weights
is given in equation (6). The first part is the same as in equation (2). The second part is
the risk that we reduce in the following period. In equation (7) the new objective function
is given which is the sum over all the conditional weights on the arcs along the chosen path.
We want to find the path that maximizes the value of ẑ, see (8).

r̂c,t = rc,t(1− I(c,Pt(t− 1))) (5)

ŵ(n, n′) =
∑
j∈J

r̂n′j ,t(n′)gj(nj , n
′
j) + rn′j ,t(n′)+1 (6)

ẑ(Pt) =

t∑
i=1

ŵ(Pt(i− 1),Pt(i)) (7)

MSP = max ẑ(PT) (8)

4.3 Linear Formulation

Besides the formulation of the problem as a network, we also consider a linear formulation
of the problem. This formulation is based on Sato and Royset (2010), however it had to
be changed for our situation. In Sato and Royset (2010) a linear formulation is presented
for cases where the searchers are identical. Some of the problems that we will be facing do
not consider identical searchers. Therefore we have extended the formulation in Sato and
Royset (2010) for different task groups. We will first introduce the original model that does
not consider different capabilities for the task groups and thereafter extend the model.

14

4.3.1 Identical Searcher NMSP

Sets
C = {1, . . . , C} set with all cells in the AOO
T = {1, . . . , T} set with all time periods
F(c) ⊆ C the cells that can be reached from cell c
R(c) ⊆ C the cells that can reach cell c

Parameters
α effectiveness of a task group
dc,c′ fraction of a period required to travel from cell c ∈ C to c′ ∈ C
rc,t risk density in cell c ∈ C at time t ∈ T
x0c equals 1 if a task group must begin in cell c ∈ C in period 0, otherwise 0
xT+1
c equals 1 if a task group must end in cell c ∈ C in period T+1, otherwise 0

Variables
Xc,c′,t equals 1 if a task group goes from cell c ∈ C to cell c′ ∈ C

in which he will stay during period t and 0 otherwise.
Qc,c′,t equals rc,tα(1− dc,c′) if Xc,c′,t = 1 and 0 otherwise.

Functions
z(Q) =

∑
t∈T

∑
c∈C

∑
c′∈F(c)Qc,c′,t

max
X,Q

z(Q) (9)

s.t Qc,c′,t ≤ rc,tα(1− dc,c′)Xc,c′,t ∀c, c′ ∈ C, t ∈ T (10)∑
c′∈F(c)

Xc,c′,1 = x0c ∀c ∈ C (11)

∑
c′∈R(c)

Xc′,c,T = xTc ∀c ∈ C (12)

∑
c′∈R(c)

Xc′,c,t =
∑

c′′∈F(c)

Xc,c′′,t+1 ∀c ∈ C, t = 1, . . . , T − 1 (13)

∑
c′∈F(c)

Xc,c′,t = 1 ∀c ∈ C, t ∈ T (14)

∑
c′∈R(c)

Xc′,c,t = 1 ∀c ∈ C, t ∈ T (15)

Qc,c′,t ≥ 0 ∀c, c′ ∈ C, t ∈ T (16)

Xc,c′,t ∈ {0, 1} ∀c, c′ ∈ C, t ∈ T (17)

15

The objective function, see equation (9) is given by the sum of all the risk reductions,
Qc,c′,t, over the whole period. We need to maximize this value in order to obtain the highest
risk reduction. The constraints shown in equation (10) force Qc,c′,t to be 0 if we do not visit
cell c’ from cell c in period t. Else Qc,c′,t must be smaller than the risk that we reduce in
period t.

The constraints given in equation (11) and (12) are used when we require the task groups
to start from a specific cell or end in a specific cell. If we do not require this, we need to add
some artificial cell with distance 0 to all other cells. The constraints given in equation (13)
require task groups that enters cell c in period t to depart from this cell in period t + 1. In
other words, if a task group goes in a cell it must continue from this cell and task groups can
only leave a cell if they actually were in that cell. This constraint, in combination with the
constraints given in equations (11) and (12) also guarantee that we do not use more than J
task groups. To prevent two task groups from being in the same cell at the same time we
need the constraints in equations (14) and (15).

Finally we want all values of Q to be non-negative and the value of X to be binary. This
is the mixed integer formulation of the NMSP with identical searchers. We will continue with
the formulation of the MSP for identical searchers.

4.3.2 Identical Searcher MSP

Sets
C = {1, . . . , C} set with all cells in the AOO
T = {1, . . . , T} set with all time periods
F(c) ⊆ C the cells that can be reached from cell c
R(c) ⊆ C the cells that can reach cell c

Parameters
α effectiveness of a task group
dc,c′ fraction of a period required to travel from cell c ∈ C to c′ ∈ C
rc,t risk density in cell c ∈ C at time t ∈ T
x0c equals 1 if a task group must begin in cell c ∈ C in period 0, otherwise 0
xT+1
c equals 1 if a task group must end in cell c ∈ C in period T+1, otherwise 0

Variables
Xc,c′,t equals 1 if a task group goes from cell c ∈ C to cell c′ ∈ C

in which he will stay during period t and 0 otherwise.
Qc,c′,t equals Rc,tα(1− dc,c′) + rc,t+1 if Xc,c′,t = 1 and 0 otherwise.
Rc,t the updated risk density.

Functions
z(Q) =

∑
t∈T

∑
c∈C

∑
c′∈F(c)Qc,c′,t

f(X.,c,t−1) = 1−
∑

c′∈C Xc′,c,t−1

16

max
X,Q,R

z(Q) (18)

s.t Qc,c′,t ≤ (Rc,tα(1− dc,c′) + rc,t+1)Xc,c′,t ∀c, c′ ∈ C, t ∈ T (19)

Rc,1 = rc,1 ∀c ∈ C (20)

Rc,t = rc,tf(X.,c,t−1) ∀c ∈ C, t = 2, . . . , T (21)∑
c′∈F(c)

Xc,c′,1 = x0c ∀c ∈ C (22)

∑
c′∈R(c)

Xc′,c,T = xTc ∀c ∈ C (23)

∑
c′∈R(c)

Xc′,c,t =
∑

c′′∈F(c)

Xc,c′′,t+1 ∀c ∈ C, t = 1, . . . , T − 1 (24)

∑
c′∈F(c)

Xc,c′,t = 1 ∀c ∈ C, t ∈ T (25)

∑
c′∈R(c)

Xc′,c,t = 1 ∀c ∈ C, t ∈ T (26)

Qc,c′,t, Rc,t ≥ 0 ∀c, c′ ∈ C, t ∈ T (27)

Xc,c′,t ∈ {0, 1} ∀c, c′ ∈ C, t ∈ T (28)

The objective function, see equation (18) is the same as in the NMSP. The constraints
shown in equation (19) force Qc,c′,t to be 0 if we do not visit cell c’ from cell c in period t.
Else Qc,c′,t must be smaller than the risk that we reduce in period t plus the risk that we
reduce in the following period. These constraints are however non-linear because we multiply
two variables. Therefore we replace them with the constraints in the equations (29) and (30).
The constraints given in equation (29) force us to set the value of Qc,c′,t to 0 if Xc,c′,t is
0. Otherwise it must be smaller than the initial risk density in period t multiplied by the
effective time spend in cell c′ plus the risk density in period t + 1. This value is an upper
bound on the real risk reduction because the initial risk density is always larger than or equal
to the updated risk value. To make sure we choose a correct value for Qc,c′,t we need the
constraints in equation (30). In here we require Qc,c′,t to be smaller than the updated risk
value, multiplied by the MOE of a task group plus the initial risk in period t+ 1.

Qc,c′,t ≤ (rc,tα(1− dc,c′) + rc,t+1)Xc,c′,t ∀c, c′ ∈ C, t ∈ T (29)

Qc,c′,t ≤ Rc,tα(1− dc,c′) + rc,t+1 ∀c, c′ ∈ C, t ∈ T (30)

The updated risk value in period 1 is equal to rc,1 since there has been no search yet,
see equation (20). After period 1 the risk value should be updated, see equation (21). The
updated risk value, Rc,t, depends on the values of Xc′,c,s for all c′ ∈ R(c) and for s ≤ t. The
function f(X.,c,t−1) is equal to 1 if any task group visits cell c in period t−1 and 0 otherwise.
As results Rc,t becomes 0 if cell c was visited in period t− 1 and rc,t otherwise.

The remaining constraints in equations (22)- (28) are exactly the same as in the NMSP,
except for constraint (27) in which we also require R to be non-negative.

We will now look at the formulations for the different searcher problems, starting with
the NMSP formulation.

17

4.3.3 Different Searcher NMSP

Sets
C = {1, . . . , C} set with all cells in the AOO
T = {1, . . . , T} set with all time periods
J = {1, . . . , J} set with all task groups
F(c) ⊆ C the cells that can be reached from cell c
R(c) ⊆ C the cells that can reach cell c

Parameters
dj,c,c′ time in periods required to travel between cells c ∈ C and c′ ∈ C

for task group j ∈ J
rc,t risk density in cell c ∈ C at time t ∈ T and t = T + 1
αj effectiveness of task group j ∈ J
x0c,j equals 1 if task group j ∈ J must begin in cell c ∈ C in period 0, otherwise 0

xT+1
c,j equals 1 if task group j ∈ J must end in cell c ∈ C in period T+1, otherwise 0

Variables
Xj,c,c′,t equals 1 if task group j ∈ J goes from cell c ∈ C to cell c′ ∈ C

in which he will stay during period t and 0 otherwise.
Qj,c,c′,t equals rc,tαj(1− dj,c,c′) if Xj,c,c′,t = 1 and 0 otherwise.

Functions
z(Q) =

∑
j∈J

∑
t∈T

∑
c∈C

∑
c′∈F(c)Qj,c,c′,t

f(Xj,.,c,t−1) = 1−
∑

c′∈C Xj,c′,c,t−1

max
X,Q

z(Q) (31)

s.t Qj,c,c′,t ≤ (rc,tαj(1− dj,c,c′))Xj,c,c′,t ∀c, c′ ∈ C, t ∈ T , j ∈ J (32)∑
c′∈F(c)

Xj,c,c′,1 = x0c,j ∀c ∈ C, j ∈ J (33)

∑
c′∈R(c)

Xj,c′,c,T = xTc,j ∀c ∈ C, j ∈ J (34)

∑
c′∈R(c)

Xj,c′,c,t =
∑

c′′∈F(c)

Xj,c,c′′,t+1 ∀c ∈ C, t = 1, . . . , T − 1, j ∈ J (35)

∑
c′∈F(c),j∈J

Xj,c,c′,t = 1 ∀c ∈ C, t ∈ T (36)

∑
c′∈R(c),j∈J

Xj,c′,c,t = 1 ∀c ∈ C, t ∈ T (37)

Qj,c,c′,t ≥ 0 ∀c, c′ ∈ C, t ∈ T , j ∈ J (38)

Xj,c,c′,t ∈ {0, 1} ∀c, c′ ∈ C, t ∈ T , j ∈ J (39)

18

The formulation of the different searcher NMSP is similar to the identical searcher NMSP,
however we introduce an extra index j to distinct between the separate task groups. The
objective function, see equation (31), is given by the sum of all the risk reductions, Qj,c,c′,t,
over the whole period. The constraints in equations (32) guarantee that the value of Qj,c,c′,t

is chosen correctly. If Xj,c,c′,t equals one, the value of Qj,c,c′,t is equal to rc,tαj(1− dj,c,c′) and
else it will be equal to zero.

The constraints (33) - (37) are similar to (11) - (15), but adjusted for the separate task
groups. Finally the restrictions on Q and Xremain the same in this formulation.

4.3.4 Different Searcher MSP

Sets
C = {1, . . . , C} set with all cells in the AOO
T = {1, . . . , T} set with all time periods
J = {1, . . . , J} set with all task groups
F(c) ⊆ C the cells that can be reached from cell c
R(c) ⊆ C the cells that can reach cell c

Parameters
dj,c,c′ time in periods required to travel between cells c ∈ C and c′ ∈ C

for task group j ∈ J
rc,t risk density in cell c ∈ C at time t ∈ T and t = T + 1
αj effectiveness of task group j ∈ J
x0c,j equals 1 if task group j ∈ J must begin in cell c ∈ C in period 0, otherwise 0

xT+1
c,j equals 1 if task group j ∈ J must end in cell c ∈ C in period T+1, otherwise 0

Variables
Xj,c,c′,t equals 1 if task group j ∈ J goes from cell c ∈ C to cell c′ ∈ C

in which he will stay during period t and 0 otherwise.
Qj,c,c′,t equals Rc,tαj(1− dj,c,c′) + rc,t+1 if Xj,c,c′,t = 1 and 0 otherwise.
Rc,t the updated risk density in cell c ∈ C at time t ∈ T .

Functions
z(Q) =

∑
j∈J

∑
t∈T

∑
c∈C

∑
c′∈F(c)Qj,c,c′,t

f(Xj,.,c,t−1) = 1−
∑

c′∈C Xj,c′,c,t−1

19

max
X,Q,R

z(Q) (40)

s.t Qj,c,c′,t ≤ (rc,tαj(1− dj,c,c′) + rc,t+1)Xj,c,c′,t ∀c, c′ ∈ C, t ∈ T , j ∈ J (41)

Qj,c,c′,t ≤ Rc,tαj(1− dj,c,c′) + rc,t+1 ∀c, c′ ∈ C, t ∈ T , j ∈ J (42)

Rc,1 = rc,1 ∀c ∈ C (43)

Rc,t = rc,tf(Xj,.,c,t−1) ∀c ∈ C, t = 2, . . . , T, j ∈ J
(44)∑

c′∈F(c)

Xj,c,c′,1 = x0c,j ∀c ∈ C, j ∈ J (45)

∑
c′∈R(c)

Xj,c′,c,T = xTc,j ∀c ∈ C, j ∈ J (46)

∑
c′∈R(c)

Xj,c′,c,t =
∑

c′′∈F(c)

Xj,c,c′′,t+1 ∀c ∈ C, t = 1, . . . , T − 1, j ∈ J

(47)∑
c′∈F(c),j∈J

Xj,c,c′,t = 1 ∀c ∈ C, t ∈ T (48)

∑
c′∈R(c),j∈J

Xj,c′,c,t = 1 ∀c ∈ C, t ∈ T (49)

Qj,c,c′,t, Rc,t ≥ 0 ∀c, c′ ∈ C, t ∈ T , j ∈ J (50)

Xj,c,c′,t ∈ {0, 1} ∀c, c′ ∈ C, t ∈ T , j ∈ J (51)

The objective function, see equation (40), is given by the sum of all the risk reductions,
Qj,c,c′,t, over the whole period. Again we want to maximize this value. The constraints in
equations (41) and (42) guarantee that the value of Qj,c,c′,t is chosen correctly. The first
restriction forces us to set the value of Qj,c,c′,t to 0 if Xj,c,c′,t is 0. Otherwise it must be
smaller than rc,tαj(1−dj,c,c′) + rc,t+1. This value is an upper bound on the actual risk that is
reduced by visiting cell c′ from cell c in period t with task group j. To make sure we choose a
correct value for Qj,c,c′,t we need the constraints in equation (42). In here we require Qj,c,c′,t

to be smaller than rc,tαj(1− dj,c,c′) + rc,t+1.
The constraints (43) - (49) are similar to (20) - (26), but adjusted for the separate task

groups. Finally the restrictions on Q, X and R remain the same in this formulation.

20

5 Solving NMSP and MSP

We will now introduce the methods that are used to solve the problems in this thesis. This
section is divided in two parts, since we are considering two different formulations. The first
part is about the network formulation. In this part we explain the two methods that we use
to solve this formulation. These methods, simulated annealing and cross-entropy are both
metaheuristics. The second part explains how we solve the mixed-integer linear formulations
of the four problems. In this case we will use CPLEX to solve the problem.

5.1 Network Formulation

To solve the network formulation we will use two different metaheuristics. Since we do already
consider a linear formulation which we will solve exactly, we will not consider any exact
techniques to solve the network formulation. We expect that the larger problems cannot be
solved to optimality and therefore we think it will be useful to develop metaheuristics that
can still handle larger problems. These metaheuristics should be able to find (near) optimal
solutions within a reasonable time. We will now explain the two metaheuristics that are used
in this thesis.

5.1.1 Cross-Entropy Method

When solving the network formulation of the (N)MSP we want to construct a feasible and
optimal path through the network. This optimal path should follow arcs from the beginning
of the network to the end of the network in such a way that the total value of these (weighted)
arcs is maximized. A simple way to construct paths is by starting in the first node and ran-
domly selecting arcs until we reach the terminal node. The cross-entropy method is based on
this idea. However, instead of selecting arcs perfectly random, the arcs are selected according
to a probability distribution. For each node n ∈ N we specify a probability distribution σn,n′

over the outgoing arcs (n, n′) for all n′ ∈ F(n). This distribution specifies the likelihood of
going from node n to node n′.

The probability distribution is updated in each iteration in order to achieve a distribution
that specifies the optimal path. To achieve such a distribution we first generate a large
amount of paths according to our initial distribution. Then we evaluate these paths and
select a fraction of the paths with the highest objective value. These so called Elite paths are
used to update our distribution. The arcs that are chosen in the elite paths will become more
likely to be chosen in further iterations. After updating the probability distribution a new set
of solutions is generated and the process is repeated. The pseudocode of the cross-entropy
method is given in heuristic 1.

As input parameters we require the sample size M , which specifies the number of paths
we want to generate in each iteration. The elite sample size M elite is required, which specifies
the number of samples we consider as superior. Obviously M must be larger than M elite since
the set of elite samples is a subset of all samples.

In step 0 we set the best solution so far equal to zero. And we start with iteration 1. In
step 1 we initiate the distribution for generating the paths. This could be done in several
ways. The better the initial distribution, the easier we may find an optimal solution. In
previous research this was done by creating an upper bound on the path. We have chosen
to set the probability of selecting arc n′ when we are in position n equal to the value of arc

21

Input Sample size M , elite size M elite, stopping parameter s and smoothing parameter β.
Step 0 Set z∗ = 0 and i = 1

Step 1 For all n ∈ N and n′ ∈ F(n), define an initial probability distribution σ
(1)
n,n′

Step 2 Generate M search plans based on probability distribution σ
(i)
n,n′ .

Step 3 Evaluate all search plans. Select M elite best plans. Set z̄(i) to max
m∈Melite

z(m). If

z̄(i) ≥ z∗, then z∗ = z̄(i).
Step 4 If z̄(i) = z̄(i−1) = . . . = z̄(i−s), then stop. Otherwise go to Step 5.

Step 5 Calculate σ
(i+1)
n,n′ with equation (52). Increase i by 1 and go to step 2.

σ
(i+1)
n,n′ = β

l
(i)
n,n′∑

n′∈F(n) l
(i)
n,n′

+ (1− β)σ
(i)
n,n′ (52)

With l
(i)
n,n′ the number of times arc (n, n′) was selected in the elite samples.

Heuristic 1: cross-entropy

w(n, n′) divided by the sum of the weights of all outgoing arcs belonging to n. The initial
value of the distribution can be calculated with equation (53).

σ
(0)
(n,n′) =

w(n, n′)∑
n′∈F(n)w(n, n′)

(53)

In step 2 we generate M search plans using the probability distribution we defined. This
is done by starting in the initial node and selecting the arcs according to the probability
distribution until we reach the terminal node. In step 3 we calculate the objective values of
the M paths. From these paths the M elite best paths are selected. Furthermore we check if
the best search plan of this iteration, z̄(i), is better than the best solution so far, z∗. If this is
true we update z∗. In step 4 we check whether there has been any change in the best solution
during the last s iterations. If this is the case we continue, otherwise we assume that we have
found the optimum. In step 5 the probability function of the arcs is updated for the next

iteration. The new probability σ
(i+1)
n,n′ depends on the value of ln,n′ , the amount of paths in

the elite sample in which arc (n, n′) was used. The new value for σ
(i+1)
n,n′ , the probability of

going to node n′ when we are in node n is equal to a discounted value of the old probability
plus the fraction of elite paths in which we have chosen to go to node n′ when we were in
node n. After updating the probability we return to step 2 and the process is repeated.

When facing problems with a large amount of cells we will have a very large amount of
nodes, which are connected with a lot of other nodes. This results in an incredibly large
amount of arcs. For each of these arcs we need to keep track of the value for σn,n′ . For
an increasing number of cells the amount of arcs quickly escalates. To prevent this we will
introduce a variation on the cross-entropy method, also used by Sato (2008). Instead of
generating paths through the weighted directed network, we will generate paths for each task
group separately. Each task group gets its own distribution, σj,n,n′ , to generate paths with.
The nodes in this case do not represent the locations of all task groups, but just of a single
task group. After generating paths for each task group separately, the paths are combined

22

and evaluated together in the same way as is done before. The rest of the heuristic will remain
the same. This heuristic is given in heuristic 2.

We have also added an extra step to the original cross-entropy to improve the heuristic. In
this extra step, step 6 in heuristic 2, we add some randomness in the probability distribution.
The heuristics goes to this step if the last s iterations have found the same best solution,
which indicates that the probability distribution has converged. This randomness creates the
opportunity to move out of a local optimum. The randomness is achieved by multiplying
the value of σ with γ and adding (1 − γ). The pseudocode in Heuristic 2 represents the
adjusted cross-entropy method. We also need a new stopping criterion. We have now choose
to stop the heuristic if there has been no improvement in the best solution during the last
imax iterations

Input Sample size M , elite size M elite, stopping parameter s and smoothing parameter β.
Step 0 Set the best solution so far z∗ = 0 and i = 1
Step 1 For all j ∈ J , n ∈ N and n′ ∈ F(n), define an initial probability distribution

σ
(1)
j,n,n′

Step 2 Generate M search plans for each task group, based on probability distribution

σ
(i)
j,n,n′ .

Step 3 Evaluate the joint search plans of all task groups combined. Select M elite best
plans. Set z̄(i) to max

m∈Melite
z(m). If z̄(i) ≥ z∗, then z∗ = z̄(i). If there has been no

improvement in the solution for imax iterations, stop.
Step 4 If z̄(i) = z̄(i−1) = . . . = z̄(i−s) =, then go to step 6. Otherwise go to Step 5.

Step 5 Calculate σ
(i+1)
j,n,n′ with equation (54). Increase i by 1 and go to step 2.

σ
(i+1)
j,n,n′ = β

l
(i)
j,n,n′∑

n′∈F(n) l
(i)
j,n,n′

+ (1− β)σ
(i)
j,n,n′ (54)

With l
(i)
j,n,n′ the number of times arc (n, n′) was selected in the elite samples for task group

j ∈ J .
Step 6 Include some randomness in the distribution by applying updating σ as follows.

σ
(i)
j,n,n′ = (1− γ) + γσ

(i)
j,n,n′ (55)

Heuristic 2: cross-entropy-II

5.1.2 Simulated annealing

Simulated annealing is one of the most common metaheuristics. This metaheuristic is basically
a neighbourhood search in which we allow worse solutions to be chosen. The probability to
choose solutions of lower quality depends on the cooling parameter, or the temperature, which
is slowly reduced. At some point the probability of selecting worse solutions will become so
small that we only accept solutions with a higher value. If we cannot find any improvement
from this point we terminate the program. The idea behind simulated annealing is that we
search many local optima in the hope to find a global optimum. Because we also accept worse
solutions we do not easily get stuck in local optima (assuming the parameter setting is done
correctly). The exact steps of the heuristic are shown in the following pseudo-code.

23

Step 0 Set temperature to t0 and start with a path P
Step 1 Randomly select a neighbour of P; Pnew.
Step 2 If z(Pnew) > z(P), accept the neighbour. Otherwise accept the neighbour with
probability p(Temperature, z(Pnew)).
Step 3 Update the temperature: Temperature = Temperature× β, where β is the
cooling parameter. If the temperature is higher than tend, return to step 1.
Step 4 Return the best solution found.

Heuristic 3: Simulated annealing

In step 0 the heuristic is initialized. The beginning temperature has to be chosen such
that we will accept all solutions in the neighbourhood of our current solution. In the next
section we will explain our choice for the parameters such as beginning temperature. In step 0
we also need to construct a feasible path. This can be done with a greedy heuristic. In step 1
we will have to select a neighbour from the chosen path. To select neighbours we first need to
define the neighbourhood of a solution. This is often the critical part in simulated annealing,
as well as in other metaheuristics. We have considered several different neighbourhoods and
tested them all. From these neighbourhoods we have selected the one that performs the best.
The following neighbourhood choices were considered for our simulated annealing heuristic.

• change the position of one task group in one period

• change the position of several task groups in one period

• change the position of several task groups in several periods

The first neighbourhood is the most basic neighbourhood that one can think of. This
neighbourhood only looks at the change of location of one task group in one period. The
benefit of this neighbourhood above others is that it can do single changes that are beneficial.
However it might sometimes be good to do a switch of allocation between two task groups.
Therefore we introduce neighbourhood two, in which we change the location of several task
groups in a single period. The third neighbourhood is the broadest and considers the change
of several task groups in several periods.

In step 2 we determine whether we want to accept the neighbour or not. If the neighbour
has a better objective function value than the previous path we automatically accept it,
however if this is not the case we accept it with a probability depending on the difference
in objective value and the current temperature. The probability can be calculated with
equation (56). This probability is high if the difference between the two paths is small. Note
that the value of z(Pnew) − z(Pold) is always negative. We know that e−x approaches 1 if
x approaches zero. The probability of accepting a neighbour with a solution that is much
lower than our current solution is small since e−x approaches 0 if x becomes large. The
probability of accepting depends on the value of the temperature. If the temperature is very
large we might accept all possible changes. If the temperature becomes low we do accept only
neighbours whose objective value is very close to the current solution.

p(Temperature, z(Pnew)) = e
z(Pnew)−z(Pold)

Temperature (56)

24

In step 3 we update the temperature. If the temperature becomes lower than the specified
lowest temperature we will stop searching for better solutions. If this is not the case we will
return to step 1.

5.2 Linear Formulation

The mixed-integer linear formulation of the problem is based on Sato and Royset (2010).
In this paper a linear formulation for the MSP was introduced. This formulation requires
that the searchers are identical. They also presented a nonlinear formulation for the MSP
with different searchers. We have changed the linear formulation in such a way that it can be
used for different types of searchers, without making the problem nonlinear. Sato and Royset
used several methods to solve the problem. The best performing methods were 3 different
cutting plane algorithms and the CPLEX solver. The cutting plane methods performed best
in situations with an increasing amount of searchers, however in instances with not too many
searchers CPLEX turned out to be the best method. In our case we are not facing a problem
with increasing searchers and therefore we think it will be better to use the CPLEX solver.
We have implemented all four formulations into AIMMS, a mathematical modeling software
package, and used the implemented CPLEX 12.4 solver to solve the problems.

25

6 Results

We have applied our methods to several cases to test the quality of the suggested methods.
Because there are no real data available we have generated our own data. As data we required
a risk density for each cell in each period. In the problem description we have explained that
the risk density is actually a combination of the threat map (density of pirates) and the
presence of white vessels. In order to generate data we separated the two parts, which are
the ingredients for creating the risk densities. First we created a density map for the pirates,
which is nothing more then a single number for each cell in the area. As stated in the problem
description, this value is fixed over the whole period. We think it is unlikely that every cell
has the same pirate density and therefore we have chosen different densities for different cells.
Some cells are dealing with a high pirate density, while others have a very low density. The
presence of white vessels changes each period. We generated the presence of white vessels in
each cell with an exponential distribution. The parameter for this distribution is different
per cell, as it is unlikely that white vessels pass each cell with the same likelihood. We have
chosen to use the exponential distribution, because we do not want negative values and we
want a possibility for high values. An example of one of the cases is shown in figure 7. In this
figure we can see an area of 50 cells during 10 periods. The risk density is shown on a scale
from black (low risk) to white (high risk). This figure shows us that the cells are generated
with different parameters. E.g. the upper cells has a much lower chance of high risk than the
central cells.

Figure 7: An example of a generated case (50 cells, 10 periods)

The cases that we will consider are listed in table 1. We will consider three different sizes
for the AOO; 50, 100 and 200 cells. The sizes are chosen in correspondence with realistic
surveillance missions. A total AOO of 100 to 200 cells could correspond with a realistic
maritime surveillance mission. For each of the types of AOO we consider 10, 20 and 30 time
periods. In all cases we will use 3 task groups. We will consider both the case where we have
identical searchers as well as the case where we use searchers with different qualities. In the
identical searcher cases, the task groups are all operating with αj = 1. The distance that can
be traversed by a task group in one period is set equal to 3. In the different searcher cases, we
set α1 = 1, α2 = 0.75 and α3 = 0.5. The distance that can be traversed by the task groups
are 3, 4 and 5 respectively.

We will consider all cases in both the NMSP and the MSP problem, meaning there are
actually 36 cases. For each case we generated 10 instances to make the results more accurate.
This amount does of course not guarantee that the results are perfectly accurate, however
it gives us more certainty. To the NMSP as well as to the MSP we applied cross-entropy,

26

Case nr. of Cells nr. of Periods nr. Task Groups α Task Groups speed Task Groups

1 50 10 3 {1, 1, 1} {3, 3, 3}
2 50 20 3 {1, 1, 1} {3, 3, 3}
3 50 30 3 {1, 1, 1} {3, 3, 3}
4 100 10 3 {1, 1, 1} {3, 3, 3}
5 100 20 3 {1, 1, 1} {3, 3, 3}
6 100 30 3 {1, 1, 1} {3, 3, 3}
7 200 10 3 {1, 1, 1} {3, 3, 3}
8 200 20 3 {1, 1, 1} {3, 3, 3}
9 200 30 3 {1, 1, 1} {3, 3, 3}
10 50 10 3 {1, 0.75, 0.5} {3, 4, 5}
11 50 20 3 {1, 0.75, 0.5} {3, 4, 5}
12 50 30 3 {1, 0.75, 0.5} {3, 4, 5}
13 100 10 3 {1, 0.75, 0.5} {3, 4, 5}
14 100 20 3 {1, 0.75, 0.5} {3, 4, 5}
15 100 30 3 {1, 0.75, 0.5} {3, 4, 5}
16 200 10 3 {1, 0.75, 0.5} {3, 4, 5}
17 200 20 3 {1, 0.75, 0.5} {3, 4, 5}
18 200 30 3 {1, 0.75, 0.5} {3, 4, 5}

Table 1: Case Scenarios

simulated annealing and CPLEX 12.4. Both the heuristics are implemented with java in
the Eclipse compiler. We have implemented the mixed-integer linear problem in AIMMS.
Everything was performed on a laptop with an intel i5-2450M processor (2,50 GHZ) with
4,00 GB RAM.

6.1 Setting the parameters

For both the metaheuristics we had to determine the right parameters in order to optimize
their performance. Choosing the parameters is often a tricky part when using a metaheuristic.
Simulated annealing also requires us to define a neighbourhood. In section 5 we explained
three different neighbourhoods. We have applied them all to several instances of the problem
with different parameter settings. It turned out that the most basic neighbourhood is able to
obtain the best solutions. Both other neighbourhoods often got stuck before even solutions
that were 10% from the optimal solution. Therefore we have chosen to use neighbourhood 1.
The parameter that need to be defined in the simulated annealing heuristic are the beginning
temperature, a cooling parameter and a stopping parameter.

The beginning temperature determines the likelihood of accepting worse solutions in the
beginning. When we start the heuristic we want to accept all solutions, because we do not
want to exclude the possibility of reaching the global optimum. Therefore we set the beginning
temperature equal to twice the highest RD over all periods. The stopping parameter needs to
be chosen in such a way that we will only stop if the probability of accepting a worse solution
approaches zero, and we have searched the whole neighbourhood of the current solution. We
chose to terminate the program when the temperature reaches 0.001 times the beginning
temperature as we found that the heuristic often stops improving before even reaching 0.01

27

times its beginning temperature. The cooling parameter must be chosen in such a way that
we search enough time in each area, however not too long. This parameter is often best
defined by trial and error. We found that a value of 1 − 10−7 is a sufficient choice for this
parameter. Choosing a smaller value, for example 1−10−6 results in evidently worse solutions.
Choosing a value that is closer to 1 did not result in much better solutions, but mainly in a
longer computation time. Therefore we have chosen to set the value of this parameter equal
to 1− 10−7.

For the cross-entropy method its difficult to determine a good set of parameters in a
theoretical way. The required parameters are M , Melite, β and γ which are the sample size,
elite sample size, smoothing parameter and reset parameter respectively. The sample size
determines how many solutions we will generate in each iteration. The elite sample size
determines how many solutions we will use to update the probability distribution that is used
for generating solutions. The smoothing parameter determines how much the distribution is
changed after each iteration. Finally the reset parameter determines how much randomness
we add if the heuristic gets stuck in a local optimum.

We tested many combinations of different values for M , Melite and β. We found that
choosing a high value for M , such as 105 or even 106 did not make the heuristic more efficient
than a sample size of 104. Naturally each iteration takes much longer if M is chosen very
large and this would be worth the effort if the program would find better solutions, however
we did not find much difference between the improvement of the solutions when setting M
equal to 104 and 106. Since each iteration in the latter case takes roughly 100 times longer
we thought it was better to use a sample size of 104. We also tested smaller sample sizes,
but that resulted in a heuristic that is initially quick, however after a while it gets stuck
and from there it improves very slow. If Melite is high the heuristic becomes somewhat like
a random search. We found that a very small value for Melite works best. The value of β
determines how much the distribution changes in each iteration. If this value is chosen to
large the distribution converges to quick and we get stuck in local optima. If β is chosen to
small, it takes very long before anything happens. The value of γ is not so difficult to choose.
It should be chosen in such a way that we allow enough randomness to move out of a local
optimum, however not to big so we loose our current progression. Finally we have chosen to
set M = 104, Melite = 3, β = 0.4 and γ = 0.90. We stop the heuristic if there has been no
improvement for 100 iterations.

6.2 Identical Searcher

6.2.1 NMSP

Table 2 shows us the results for the NMSP problem for identical searchers. The table contains
the results for all three methods for case 1-9. The value in this table is the average deviation
from optimality over 10 different instances (different random numbers) of the same case.
CPLEX solves the problem to optimality for all cases. Simulated Annealing is not able to
solve the problem to optimality for all cases, however its solutions are often near optimal.
The solutions found by simulated annealing deviate on average little more than 1% from
the optimal solution. Simulated annealing found the actual optimal solution in 10% of the
cases. The worst solution found by simulated annealing deviated only 4.4% from optimality.
Cross-entropy is able to find near optimal solutions for the smaller cases. In the cases with
more cells, and especially in the cases with more periods the solutions are far from optimality.

28

Table 3 shows the average computation times for the cases. CPLEX is by far the fastest of
the three methods, however simulated annealing and cross-entropy do not have very large
computation times either.

Case CE SA CPLEX

1 0.67 0.86 0.0
2 1.66 0.94 0.0
3 4.22 0.87 0.0
4 2.31 1.13 0.0
5 10.52 1.13 0.0
6 29.25 1.33 0.0
7 4.09 0.44 0.0
8 18.00 1.56 0.0
9 37.39 1.45 0.0

Table 2: Results as percentage from optimality

Case CE SA CPLEX

1 99s 146s ≤ 10s
2 187s 292s ≤ 10s
3 307s 423s ≤ 10s
4 181s 155s ≤ 10s
5 318s 303s ≤ 10s
6 541s 451s 28s
7 291s 165s ≤ 10s
8 508s 314s ≤ 10s
9 945s 461s 42s

Table 3: Computation Times

6.2.2 MSP

We now continue to look at the MSP for identical searchers. The results as average percentage
from optimality are given in table 4. CPLEX is again able to solve case 1-9 to optimality.
The results for simulated annealing are similar to those for the NMSP. The solutions deviate
on average 1% from optimality. In almost 9% of the cases an optimal solution was found,
and the largest deviation from optimality was 3.7%. If we look at the computation times in
table 5 we see that the computation times for CPLEX have become much larger than for the
NMSP, while the computation times for simulated annealing remain more or less the same.
Even though simulated annealing does not find the optimal solution, it is much faster than
CPLEX. Cross-entropy is unable to provide good solutions to the problem.

Case CE SA CPLEX

1 1.88 0.24 0.0
2 3.25 0.48 0.0
3 20.14 0.46 0.0
4 2.61 0.12 0.0
5 11.04 0.74 0.0
6 26.85 0.68 0.0
7 1.63 0.43 0.0
8 16.20 1.12 0.0
9 34.88 1.17 0.0

Table 4: Results as percentage from optimality

Case CE SA CPLEX

1 112s 164s 63s
2 220s 322s 268s
3 340s 500s 981s
4 212s 168s 123s
5 391s 329s 491s
6 649s 496s 2026s
7 370s 178s 340s
8 720s 342s 1683s
9 1085s 512s 3821s

Table 5: Computation Times

29

6.3 Different Searchers

We continue with the problem where searchers have different capabilities. For this problem
we will also look at the NMSP and the MSP variant.

6.3.1 NMSP

The results in table 6 show us that CPLEX also performs good in the different searcher
problem. CPLEX obtains optimal solutions in a short time. Though we can observe a
growing computation time. For very large cases this might become a problem. Simulated
annealing is again able to find good solutions, and does not seem to have any trouble with
the different searcher problem. If we compare the solutions with the NMSP for identical
searchers we do not observe a large difference in quality, nor in computation time for SA.
Cross-entropy also performs similar to the identical searcher NMSP. Its solutions are near
optimal for the smaller cases, but they become very bad for the larger cases.

Case CE SA CPLEX

10 2.89 0.27 0.0
11 10.93 0.46 0.0
12 26.94 0.79 0.0
13 3.06 0.49 0.0
14 21.21 0.54 0.0
15 34.44 1.08 0.0
16 5.17 0.81 0.0
17 25.49 0.65 0.0
18 40.12 1.10 0.0

Table 6: Results as percentage from optimality

Case CE SA CPLEX

10 101s 152s 5s
11 182s 284s 17s
12 310s 423s 31s
13 208s 154s 19s
14 341s 291s 141s
15 575s 425s 304s
16 310s 161s 77s
17 549s 299s 466s
18 1081s 436s 4212s

Table 7: Computation Times

6.3.2 MSP

The MSP for different searchers is different from the other problems. CPLEX is unable
to solve most of the cases to optimality or even unable to find a solution due to memory
issues. Therefore we have solved the linear relaxation of the problem instead to obtain an
upper bound. We use this upper bound to determine an upper bound on the distance from
optimality for the metaheuristics. We used CPLEX to solve the linear relaxation.

For case 10 CPLEX was still able to find a solution for most instances. It was even able to
solve a single instance to optimality. The upper bound on the instances for case 10 is obtained
by the lowest upper bound that was found by CPLEX when solving the original problem. In
all other cases it was provided by the best solution of the linear relaxation of the problem.
For the instance of case 10 that was solved to optimality the solution by simulated annealing
was only 0.49% from the optimal solutions. The solutions for case 10 that were obtained by
simulated annealing were on average 4.91% away from the upper bound that was found by
CPLEX. CPLEX was unable to solve the linear relaxations for case 17 and 18. Therefore
we cannot make any statements about the quality of the solutions produced by simulated
annealing and cross-entropy for these cases.

If we look at the results in table 8 we see that the results for simulated annealing are
much worse than the solutions to the other problems. This is likely due to the fact that

30

we used an upper bound instead of the real optimal solution. We do not expect that the
solutions for simulated annealing are much worse than those for the other cases, because
there is no significant difference between the quality of the NMSP and the MSP solutions
in the identical searcher case. Neither is there a significant difference between the quality
of the NMSP solutions for the identical and the different searcher cases. However there is
no proof to justify these statements and therefore we have to settle with the upper bounds.
The computation times for simulated annealing are still not very high. The results for cross-
entropy are again far from optimality.

Case CE SA

10 10.12 4.91
11 24.75 14.84
12 36.53 14.37
13 17.76 15.45
14 26.96 10.73
15 42.94 13.24
16 13.91 8.57
17 - -
18 - -

Table 8: Results as percentage from UB

Case CE SA

10 121s 157s
11 239s 317s
12 369s 478s
13 207s 163s
14 417s 323s
15 649s 489s
16 385s 174s
17 772s 347s
18 1171s 502s

Table 9: Computation times

31

7 Conclusion and Recommendations

In this thesis we have developed several methods to optimize the allocation of task groups
in maritime surveillance missions. We faced four different versions of the problem, namely
the Non reactive Multiple Searcher problem with identical searchers, the Multiple Searcher
problem with identical searchers, the Non reactive Multiple searcher problem with different
searchers and finally the Multiple Searcher problem with different searchers.

We have extensively tested the developed solution methods for all four problems. For each
problem we considered 9 different cases which vary in amount of cells and number of periods.
Each case was generated 10 times to obtain stable results. The optimization methods that
we used are a cross-entropy method, simulated annealing and CPLEX.

In the NMSP for identical searchers as well as for different searchers we found that CPLEX
performs better than the metaheuristics. However in the MSP for identical searchers the
CPLEX solver becomes very slow for the larger instances, while simulated annealing obtains
near optimal solutions within a short time. In the MSP for different searchers we see the
power of simulated annealing. Where the CPLEX solver cannot solve the problem anymore
for large cases, simulated annealing still finds solutions in a reasonable time. The quality of
these solutions is difficult to determine exactly because we do not have the exact solutions
to the problem. Therefore we solved a linear relaxation of the problem to obtain an upper
bound on the optimal solution. The results that were produced by simulated annealing, are
within 15% of the upper bound on the optimal solution. The results for cross-entropy are
less promising. In the smaller cases cross-entropy finds near optimal solutions, however when
considering more than 10 periods cross-entropy is unable to find good solutions.

All with all we can conclude that the CPLEX solver as well as simulated annealing are very
successful in solving the defined problem. CPLEX is able to solve a wide range of problems
but is limited with respect to the size of the problem. Simulated annealing has shown to
provide stable and near optimal solutions in a short time. The choice between these two
methods is a choice between optimality and computation time.

Even though we are able to find optimal solutions to our defined problem, we should not
forget that an optimal solution is only as good as the assumptions of the model and the data.
If this method would be applied in a real surveillance missions for which it is also designed,
it would require risk values that are representing the real situation as good as possible. The
threat maps which indicate the likely locations of the pirates should be very accurate. The
prediction of the movement of white vessels through the AOO should also be done as good
as possible, which is difficult if we are looking far ahead. Furthermore the functions that
are used in our model, such as the reduction of risk and the MOE, should be specified in a
correct way. If this is done carelessly, the optimal solution is unlikely to be optimal for the
real situation.

This thesis has faced the allocation of searchers in anti piracy surveillance missions. How-
ever, if one would desire to do so, the problem could easily be extended to other types of
surveillance missions. The same method could be applied to maritime surveillance against
smuggling or illegal fishing. It would only require a different measure instead of the risk
density that we have used in this thesis. Furthermore different assumptions should be made
about the MOE and the risk reduction function. Apart from maritime surveillance it could
also be applied to surveillance on land. Though land has more restrictions in movement than
water, one could easily overcome this by defining the distances between cells in a good way.

We will also do some recommendations with respect to further research. First of all it may

32

be interesting to improve the simulated annealing heuristic that we have used in this thesis.
The current heuristic uses a very simple neighbourhood, which we think could be improved by
combining the different neighbourhoods that we have mentioned in our research. This could
be done by selecting a neighbour from the neighbourhood that we used with a probability p1
and from another (or several other) neighbourhood(s) with a probability 1 − p1. We think
this change could improve the current heuristic.

With respect to the cross-entropy heuristic we think there is more room for improvement.
The solutions that were found for the larger cases were far from optimal. We expect that
other parameter settings can lead to solutions that are closer to optimal. It is however likely
that a longer computation time will be required to achieve solutions that are near optimal. It
may also be difficult to obtain a version of the cross-entropy heuristic that can compete with
the solutions of simulated annealing. Therefore we think that any effort with respect to this
subject is better spend in improving simulated annealing than cross-entropy.

33

8 Literature

R.F. Dell, J.N. Eagle, G.H.A. Martins, and A.G. Santos. Using multiple searchers in
constrained-path, moving-target search problems. Naval Research Logistics, 43(4):463–480,
1996.

J.N. Eagle. The optimal search for a moving target when the search path is constrained.
Operations research, 32(5):1107–1115, 1984.

J.N. Eagle and J.R. Yee. An optimal branch-and-bound procedure for the constrained path,
moving target search problem. Operations research, 38(1):110–114, 1990.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simmulated annealing. science,
220(4598):671–680, 1983.

G.H. Martins. A new branch-and-bound procedure for computing optimal search paths.
Technical report, DTIC Document, 1993.

H. Sato. Path optimization for single and multiple searchers: models and algorithms. Tech-
nical report, DTIC Document, 2008.

H. Sato and J.O. Royset. Path optimization for the resource-constrained searcher. Naval
Research Logistics (NRL), 57(5):422–440, 2010.

T.J. Stewart. Search for a moving target when searcher motion is restricted. Computers &
operations research, 6(3):129–140, 1979.

34

9 Appendix

9.1 Appendix A - List of Definitions

AOO Area Of Operations
AOR Area of Responsibility
Asset A maritime unit such as Frigates, Helicopters and UAV’s
NMSP Non Reactive Multiple Searcher Problem
MOE Measure of Effectiveness
MSP Multiple Searcher Problem
RD Risk Density, the risk in a certain area at some point in time
Task Force All task groups together
Task Group A combination of assets that stays together as a team
White Vessel A vessel that is a possible victim for pirates

35

9.2 Appendix B - Variations

This thesis presents several methods to solve the identical and different searcher versions of
both the NMSP and the MSP. We have made multiple assumptions, which mainly apply to
the anti piracy missions that we consider. These assumptions are very likely to be wrong when
considering other problems. In this section we will take a closer look at the assumptions and
look if they can be changed without changing the difficulty of the problem.

9.2.1 Cells

We will first look at the assumptions regarding the cells. In our problem we have assumed
that all cells are equally shaped and sized. If we would let go this assumption, thus allowing
cells to have different sizes, would the problem change? The problem would in fact stay
exactly the same because we can still define distances between cells and the risk density in
cells. However one should note that if we have different sizes of cells, the effectiveness of a
task group in cells might also change. It is off course more difficult to protect a cell that is
larger. Therefore in a variation of the problem where different sizes of cells occur, it should
be taken into account that a task group that operates in a larger cell should have a smaller
measure of effectiveness. In figure 8 a simple instance with different sized cells is given. Two
task groups are operating in this area, shown by the colored dots. The blue task group should
have a larger measure of effectiveness than it would have in one of the other cells. We could
incorporate this in the model by adding an extra parameter which is different for each cell,
task group combination.

Figure 8: Variation in cell size

Another assumption with regards to the cells is that none of the cells overlap and that all
cells together form the AOO. In a realistic mission it might be useful to ignore some parts of
the AOO if nothing of interest could happen. For example, areas in the sea in which pirates
are never sighted, or areas that are avoided by white vessels. Ignoring several cells does not
directly affect the problem, but only makes it easier to solve. On the other hand, ignoring
cells reduces the possibility to transit between other cells. Therefore it may not always be
clever to leave out cells.

9.2.2 Risk reduction

In the MSP a risk reduction takes place after visiting a cell. We assumed that visiting a cell in
period t resulted in a complete reduction of the risk in period t+ 1. This reduction was easy

36

to implement in the linear model, however if we would have chosen a different risk reduction
this might have not been so easy. We will now look at three different reduction functions and
look if we could use them without loosing the linearity of our model.

First of all we could have chosen a fixed reduction of ε > 1 in the following period, meaning
the risk would not be completely reduced in the following period but just partly. This would
result in the same model as we have now, however we would have to add the factor ε to several
of the constraints in the model. In the identical searcher model the function f(X.,c,t−1) should
be replaced with (57). Furthermore the factor rc,t+1 in constraints (29) and (30) needs to be
multiplied with ε.

f(X.,c,t−1) = 1− ε
∑
c′∈C

Xc′,c,t−1 (57)

We could also choose a variable reduction depending on the amount of time that we spend
in the cell. E.g. if a task group spends half a period in a cell, the risk will be reduced with
50% during the following period. In this case the reduction becomes dependent of the factor
(1− dc,c′). To achieve this we need to change the same constraints as before, however instead
of using ε we need to use (1− dc,c′). This change as well as the previous change do not affect
the difficulty of the problem, since no extra variables nor constraints were added to the model.
We only multiply with constants.

We will now look what happens if we choose a risk reduction that affects several periods.
For example, if a task group visits a cell in period t, the risk will be reduced with 50% in
period t + 1 and with 25% in period t + 2. Constraint (29) and (30) would become (58)
and (59). The function f(X.,c,t−1) should be replaced with (60). The problem remains linear
after applying these changes and should not become much more difficult to solve.

Qc,c′,t ≤ (rc,t(1− dc,c′) + 0.5rc,t+1 + 0.25rc,t+2)Xc,c′,t ∀c, c′ ∈ C, t ∈ T (58)

Qc,c′,t ≤ Rc,t(1− dc,c′) + 0.5rc,t+1 + 0.25rc,t+2 ∀c, c′ ∈ C, t ∈ T (59)

f(X.,c,t−1) = 1− 0.5
∑
c′∈C

Xc′,c,t−1 − 0.25
∑
c′∈C

Xc′,c,t−2 (60)

We can conclude that several changes in the risk reduction function are possible without
extremely increasing the difficulty of the problem. We have only looked at the linear model
since any change can be applied to the metaheuristics as they do not require a linear objective
function. The changes in constraints that we mentioned were only for the identical searcher
problem, but they are exactly the same for the different searcher problem.

37

